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The boundary values of generalized Dirichlet series 

and a problem of Chebyshev 

J. KACZOROWSKI* 

1. Introduction and statement o f results 

In 1853 Chebyshev asserted in a letter to M. Fuss that there are more 
primes p = 3 (mod 4) than p = 1 (mod 4). S. Knapowski and P. Turan in 
their well-known series of papers on comparative prime number theory [5] 
write, after quoting Littlewood's result that 7r(x, 4,1) — 7r(x, 4,3) changes sign 
infinitely many times as x —> oo, the following lines: one feels that Chebyshev's 
vague formulation could also be interpreted so as 

(1.1) Jim N(Y)/Y = 0, 
Y—>>oo 

where N(Y) denotes the number of integers m <Y with the property 

(1.2) 7r(m,4,l) > 7r(m,4,3) 

(cf. also [6], page 26). They support this conjecture by referring to Shanks 
[7], who found that (1.2) is not fulfilled for m < 26860, is then fulfilled for 
m = 26861 and m = 26862, and is again false for 26863 <m< 616768. They 
also ask the following general question ([5], Problem 7). 

* The work is partially supported by KBN grant no. 2 1086 91 01. 
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For fixed positive integers a, b and q such that (a, q) = (6,g) = 1, a ^ 6 
(mod q), what is the asymptotical behaviour of Naib(Y) for Y —• oo, where 
Na,b(Y) denotes the number of integers m <Y with 

7r(ra,g,a) > 7r(m,g,fe) ? 

Our aim is to prove a general result concerning boundary values of Dirich-
let series and to show its relevance to Chebyshev's problem. As a corollary we 
obtain the following theorem. 

THEOREM 1. Suppose a and q are positive integers satisfying (a,g) = 1, 
a ^ 1 (mod q) and let the Generalized Riemann Hypothesis (G.R.H.) be true 
for Dirichlet L-series (mod q). Then there exist two constants 0 < C\ < C2 < 1 
such that the inequalities 

ciY < Na<1(Y) < c2Y 

hold for all sufficiently large Y. 

This shows that the Knapowski-Turan conjecture (1.1) is false at least 
when we accept the G.R.H. 

The basic tool used in the proof of Theorem 1 is a result concerning 
generalized Dirichlet series which seems to be of an independent interest. For 
the sake of brevity, let A denote the set of all functions 

oo 

(1.3) F(z) = Y<a"eiWnZi z = x + ^ 2 />0 
n=l 

satisfying the following conditions: 
1. 0 < wi < W2 < . . . are real numbers. 
2. an e C, n = 1,2,3,.. . 
3. There exists a non-negative integer B such that 

oo 

(1.4) 5 > „ | « ; - B < o o . 
n=2 

4. There exists a non-negative number LQ such that for every x, |x| > i o , 
the limit 

P(x) = lim ReF(x + iy) 
v ' y-o+ v * ' 

exists and represents a locally bounded function of x G R \ [—LQ, LQ]. 

228 
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Moreover, let 

a(F) = inf ReF(x + iy), /3(F) = sup ReF(x + iy). 
y>o y>0 

It was proved in [4] that if F G A and ct(F) < u < /3(F) then there exists a 
positive number I = l(u, F) such that 

(1.5) inf P(x) < u < sup P(x) 

for every interval I C R \ [—¿0? ¿0] of length > /. 
This result is of importance to the prime number theory being a substitute 

for Ingham's method [1], [2]. Now we impose somewhat stronger conditions 
on F and we estimate the measure of the set of x satisfying (1.5). 

THEOREM 2. Let FeA and suppose that 

(1.6) | | P | | 2 = sup 
|* |>L 0 +1 

r1 

'0 
\P(x + t)f dx < 00. 

Then for every real number u satisfying ot(F) < u < /3(F) there exist positive 
constants I = l(u,F) and di = d\(u, F) such that 

(1.7) \{x e I : P(x) > 11}I > dx 

and 

(1.8) \{x e I : P(x) < u}\ > dx 

for every interval I C R \ [—LQ,LQ\ of length > I (where \A\ denotes the 
Lebesgue measure of a set A C M). 

We apply this theorem to the function 

Fa,b(z) = -2e-z'2-
1 

№ X (mod q) 
(X(a)-x(b))K(z,X') 

(1.9) 
2 

Q (q) 
X (mod q) 

( X ( a ) - X ( 6 ) ) m ( i , x ) , 

where q > 2, 0 < a, 6 < (a, q) = (6, q) = 1, a ^ 6 (mod g) are integers, if 
denotes the lif-function as introduced in [3]: 

K(z,X') = 
7>0 

z = x + iy, y > 0 
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(the summation being taken over all non-trivial L(SJX') zeros p with positive 
imaginary parts 7); \' 1S the primitive Dirichlet character induced by x> and 
m ( | , x ) is the multiplicity of a zero of L(s,x) at * = 5 (we put m ( | , x ) = 0 
when L(syx) 0)- We obtain the following corollaries. 

COROLLARY 1. Suppose the G.R.H. is true for Dirichlet L-functions 
(mod q). Then for every real number u satisfying a(Faib) < u < (3(Fayb) 
there exist positive constants c$ = Co(u,q) and do = do(u,q) such that 

(1.10) | { r < t < c0T : *l>(t,q,a) - ip(t,q,b) > \/i}\ > d0T 

and 

(1.11) | { r < t < c0T : ^{t,q,a) - ^(tyq,b) < u\/i}\ > d0T 

for sufficiently large T. 

COROLLARY 2. Suppose the G.R.H. is true for Dirichlet L-functions 
(mod q) and let (a,g) = 1, a ^ 1 (mod q). Then for every positive u there 
exist ci = c\(u,q) > 0 and d\ = d\(u,q) > 0 such that 

(1.12) # { Y < m < cxY : i/j(m, g, a) - ip(m, g, 1) > uy/rn} > d x Y, 

(1.13) # { Y < m < c{Y : xl){m, q, a) - ip(m, qy 1) < -uy/m} > dxY, 
(1.14) 

# {y < m < CiY : 7r(m,g,a) — 7r(m,g, 1) > t t v ^ / ^ o g m ) } > d xY, 

and 

(1.15) 

# { Y < ra < c iY : 7r(ra,g,a) - 7r(ra,g, 1) < -uy/m/(logm)} > d{Y, 

for all sufficiently large Y. 
Let us remark that our Theorem 1 follows at once from Corollary 2; it is 

sufficient therefore to prove this corollary only. 
Applying Theorem 2 to the function 

FJz) = -2e~*/ 2 -
1 

0(9) X (mod q) 
x(a)K(z,X') 

2 
O (q) 

v (mod o) 

x(a)K(z,X') 

(z = a: + tj,, 2 />0 , (a,g) = l ) 
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in place of -Fa,6> we can prove results analogous to Corollaries 1 and 2 for the 
remainders ^>(£,g, a) — t/<j>(q), ^(ra,g, 1) — ra/0(g), and 7r(m,g, 1) — 1ix/</)(q). 

2. Proof of Theorem 2 

For a real 6 > 0 we consider the subsidiary function 

Fs (z) 
oo 

n=l 

a n S * ( ^ n ) e ^ z , z = x + iy, y > 0, 

where 

5 H = 
(sini/)/*/, z/ ̂  0, 

1, i/ = 0 

and N = B + 2. Since S(i/) < min(l, l / | i / | ) , the sum is absolutely conver
gent for y > 0. Moreover, i<$ —• F as 6 —> 0 almost uniformly on the upper 
half-plane and thus a(Fs) —• a(F) and B (F50) —• (3(F) as 6 —• 0. Let us fix a 
¿0, 0 < 60 < 5, so small that a(F6o) <u< P(F6o). 

From (1.4) it follows that the sum in (1.3) absolutely and uniformly con
verges in every closed half-plane y > yo with y0 > 0. Hence we can integrate 
F(z) term by term. Thus for y > 0 

Fs0(z) = 
1 

(260)
N 

so 

-¿0 

¿0 

-So 
F(z + tx + ... + tN) dtx ... dtN. 

We take real parts and make y —> 0+. Using the Lebesgue bounded integration 
theorem we obtain 

(2.1) ReF6o(x) = 
1 

(260)
N 

>60 

-¿0 

So 

-So 
P(x + t1+... + tN) ^ i . . . dtN 

for |x| > L0 + N60. 
Let us consider now the following two cases. 
Case 1. a(F)P(F) < 0. Then of course a(F) < 0 and P(F) > 0. 

Obviously it suffices to prove (1.7) for positive u only. Moreover, (1.8) follows 
from (1.7) by considering —F instead of F. Let hence u be positive and let us 
fix ui satisfying 

(2.2) u<ux <a(F6o). 

Re Fs0 (x) is almost periodic in the sense of Bohr. Hence there exists a positive 
constant /1 = / 1 ( ^ 1 , F, So) such that every interval of length > /1 contains a 
real number x such that 
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(2.3) ReF« 0 (x) > U l . 

Let now I c R \ [—Lo, Lo] be an interval of length > ¿1 + N6Q. Let xo be its 
middle point and let x satisfying (2.3) be such that \x — XQ\ < h/2. Let 

A = {t E I : P(t) > u} 

B = {(h,...,tN) : \tj\ <S0 (¿ = 1,2,...,AT), x + h + ... + t N £ A } 

C = [ - « „ , * > ] " \ B . 

Using (2.1) and the Cauchy-Schwarz inequality we get 

« 1 <ReFSo(x) 

1 

(260)
N B c 

P(x + t1+... + tN)dt1... dtN 

<u + 
1 

(2S0)
N 

s0 

-60 

60 

-60 A-(a5+ti + ...+tjv_i) 
\tN\<6o 

P(x + ¿1 + . . . + tN) dtN ... dtx 

<u + 
1 

( 2 6 0 ) " 

60 So 

-Sn -60 A-(a5+ti + ...+tjv_i) 
|<jv|<*o 

|A |* | |P | | A x . . . dtiv 

= u + | A | » | | P | | / ( 2 « o ) . 

Hence 

| A | > ( 2 V « i - « ) | | P | | - 1 
2 

Hence it is enough to take 

d ( u , F ) = 26o(^i -u)\\P\R) 
2 

and 

(2.4) l(u9F) = l1(uuF,60) + N60. 

Case 2. a(F)fi(F) > 0. Replacing if necessary F by -F we can assume 
that a(F) > 0. Then (1.7) can be proved exactly in the same way as in Case 1. 
To prove (1.8) let us fix ui satisfying max(a(F),a(F$ 0)) < u\ < u. Let Z 1 } J 
and x have the same meaning as previously with (2.3) replaced by 
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(2.3)' R e J ^ A O ^ t i ! . 

Let moreover 

A i = {t € J : P(t) < u} 

B1 = {(tl,...,tN) : \tj\ <60 (j' = l , 2 , . . . , i V ) , x + h + ... + tN e Ax} 

Ci = [-¿0,^0]^ \ Bi. 

Then 

«x > ReFSo(x) > 
1 

(2*0)" Ci 
P(x + t1 + ... + tN)dtl...dtN 

> «(2«o)" J VMCi) 

= u(2So)-N ((26o)*-/i(Bi)), 

u being the iV-dimensional Lebesgue measure. Hence 

,*(Bi)> ( 2 ^ ( 1 - u i / u ) . 

OHI 

/i(Bi) = 

¿0 

-6n 

¿0 

-So Ai-^+ti + .-.+tiv-i) 
|tjv|<$o 

dtw ... dti 

< | A 1 | ( 2 6 o ) J V - 1 

and consequently 

I Ax I >2« 0 ( l - t* i / t i ) . 

We obtain (1.8) with the same l(u,F) as in (2.4) and 

di(tt,F) = 2tf 0 ( l -*i / tO. 

The proof is complete. 
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3. Proof of the corollaries 

We apply Theorem 2 to the function Faj> defined by (1.9). It belongs to 
the class .A; condition 4. is satisfied with LQ = 0 (cf. [3]). Condition (1.6) can 
be proved as follows. For positive y we have by term-by-term integration 

/ |ReJFa,b(a; + í + iy)|2dx 
Jo 

< 1 + E E " V ( 7 + 7 4 / ' e Ì(7-V) * dx 
7>oy>o ^ ^ I"™ 

« i + E E - - 7 ndn(i, |T - У Г1) < i 
7>0y>0 

uniformly in t G Hi (7 and 7' denote imaginary parts of non-trivial zeros of all 
Dirichlet L-functions (mod g)); (1.6) therefore follows making y —• 0+ and 
using the Lebesgue bounded integration theorem. Finally it is proved in [4], 
page 242, that 

P(x) = e-*l2{*l>{e*,q,a)-4{e*,q,b)) + 0{xe-*l2). 

Hence (1.10) and (1.11) follow from (1.7) and (1.8) by the change of variable 
t = ex\ this proves Corollary 1. 

To prove Corollary 2 observe that by (3.3), (4.3) and (8.11) of [3] we have 

ReFi,e(re^) = -(<¿>-7r/2)logT- + 0( l ) for 0 < г < 1, 0 < ф < тг, 
7Г 

and hence a = —00 and /3 = +00. Using this, Corollary 1 and the obvious 
remark that ip{t,q,a) — ip(t,q,l) = i/j([t],q,a) — il>{\t],q,l) we obtain (1.12) 
and (1.13). Inequalities for ir(x, g, a) — 7r(x, g, 1) follow from what we have just 
proved and the partial summation. 
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