Astérisque

J. KACZOROWSKI
 The boundary values of generalized Dirichlet series and a problem of Chebyshev

Astérisque, tome 209 (1992), p. 227-235
http://www.numdam.org/item?id=AST_1992__209__227_0

© Société mathématique de France, 1992, tous droits réservés.
L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

The boundary values of generalized Dirichlet series

 and a problem of Chebyshev
J. KACZOROWSKI*

1. Introduction and statement of results

In 1853 Chebyshev asserted in a letter to M. Fuss that there are more primes $p \equiv 3(\bmod 4)$ than $p \equiv 1(\bmod 4) . S$. Knapowski and P. Turán in their well-known series of papers on comparative prime number theory [5] write, after quoting Littlewood's result that $\pi(x, 4,1)-\pi(x, 4,3)$ changes sign infinitely many times as $x \rightarrow \infty$, the following lines: one feels that Chebyshev's vague formulation could also be interpreted so as

$$
\begin{equation*}
\lim _{Y \rightarrow \infty} N(Y) / Y=0, \tag{1.1}
\end{equation*}
$$

where $N(Y)$ denotes the number of integers $m \leq Y$ with the property

$$
\begin{equation*}
\pi(m, 4,1) \geq \pi(m, 4,3) \tag{1.2}
\end{equation*}
$$

(cf. also [6], page 26). They support this conjecture by referring to Shanks [7], who found that (1.2) is not fulfilled for $m \leq 26860$, is then fulfilled for $m=26861$ and $m=26862$, and is again false for $26863 \leq m \leq 616768$. They also ask the following general question ([5], Problem 7).

[^0]For fixed positive integers a, b and q such that $(a, q)=(b, q)=1, a \not \equiv b$ $(\bmod q)$, what is the asymptotical behaviour of $N_{a, b}(Y)$ for $Y \rightarrow \infty$, where $N_{a, b}(Y)$ denotes the number of integers $m \leq Y$ with

$$
\pi(m, q, a) \geq \pi(m, q, b) \quad ?
$$

Our aim is to prove a general result concerning boundary values of Dirichlet series and to show its relevance to Chebyshev's problem. As a corollary we obtain the following theorem.

THEOREM 1. Suppose a and q are positive integers satisfying $(a, q)=1$, $a \not \equiv 1(\bmod q)$ and let the Generalized Riemann Hypothesis (G.R.H.) be true for Dirichlet L-series $(\bmod q)$. Then there exist two constants $0<c_{1}<c_{2}<1$ such that the inequalities

$$
c_{1} Y \leq N_{a, 1}(Y) \leq c_{2} Y
$$

hold for all sufficiently large Y.
This shows that the Knapowski-Turán conjecture (1.1) is false at least when we accept the G.R.H.

The basic tool used in the proof of Theorem 1 is a result concerning generalized Dirichlet series which seems to be of an independent interest. For the sake of brevity, let \mathcal{A} denote the set of all functions

$$
\begin{equation*}
F(z)=\sum_{n=1}^{\infty} a_{n} e^{i w_{n} z}, \quad z=x+i y, \quad y>0 \tag{1.3}
\end{equation*}
$$

satisfying the following conditions:

1. $0 \leq w_{1}<w_{2}<\ldots$ are real numbers.
2. $a_{n} \in \mathbb{C}, n=1,2,3, \ldots$
3. There exists a non-negative integer B such that

$$
\begin{equation*}
\sum_{n=2}^{\infty}\left|a_{n}\right| w_{n}^{-B}<\infty \tag{1.4}
\end{equation*}
$$

4. There exists a non-negative number L_{0} such that for every $x,|x| \geq L_{0}$, the limit

$$
P(x)=\lim _{y \rightarrow 0+} \operatorname{Re} F(x+i y)
$$

exists and represents a locally bounded function of $x \in \mathbb{R} \backslash\left[-L_{0}, L_{0}\right]$.

Moreover, let

$$
\alpha(F)=\inf _{\substack{y>0 \\ x \in \mathbb{R}}} \operatorname{Re} F(x+i y), \quad \beta(F)=\sup _{\substack{y>0 \\ x \in \mathbb{R}}} \operatorname{Re} F(x+i y)
$$

It was proved in [4] that if $F \in \mathcal{A}$ and $\alpha(F)<u<\beta(F)$ then there exists a positive number $l=l(u, F)$ such that

$$
\begin{equation*}
\inf _{x \in I} P(x)<u<\sup _{x \in I} P(x) \tag{1.5}
\end{equation*}
$$

for every interval $I \subset \mathbb{R} \backslash\left[-L_{0}, L_{0}\right]$ of length $\geq l$.
This result is of importance to the prime number theory being a substitute for Ingham's method [1], [2]. Now we impose somewhat stronger conditions on F and we estimate the measure of the set of x satisfying (1.5).

Theorem 2. Let $F \in \mathcal{A}$ and suppose that

$$
\begin{equation*}
\|P\|^{2}=\sup _{|t|>L_{0}+1} \int_{0}^{1}|P(x+t)|^{2} d x<\infty \tag{1.6}
\end{equation*}
$$

Then for every real number u satisfying $\alpha(F)<u<\beta(F)$ there exist positive constants $l=l(u, F)$ and $d_{1}=d_{1}(u, F)$ such that

$$
\begin{equation*}
|\{x \in I: P(x)>u\}| \geq d_{1} \tag{1.7}
\end{equation*}
$$

and

$$
\begin{equation*}
|\{x \in I: P(x)<u\}| \geq d_{1} \tag{1.8}
\end{equation*}
$$

for every interval $I \subset \mathbb{R} \backslash\left[-L_{0}, L_{0}\right]$ of length $\geq l$ (where $|A|$ denotes the Lebesgue measure of a set $A \subset \mathbb{R}$).

We apply this theorem to the function

$$
\begin{align*}
& F_{a, b}(z)=-2 e^{-z / 2} \frac{1}{\phi(q)} \sum_{\chi(\bmod q)}(\overline{\chi(a)}-\overline{\chi(b)}) K\left(z, \chi^{\prime}\right) \tag{1.9}\\
& -\frac{2}{\phi(q)} \sum_{\chi(\bmod q)}(\overline{\chi(a)}-\overline{\chi(b)}) m\left(\frac{1}{2}, \chi\right),
\end{align*}
$$

where $q \geq 2,0<a, b<q,(a, q)=(b, q)=1, a \not \equiv b(\bmod q)$ are integers, K denotes the K-function as introduced in [3]:

$$
K\left(z, \chi^{\prime}\right)=\sum_{\gamma>0} e^{\rho z}, \quad z=x+i y, \quad y>0
$$

(the summation being taken over all non-trivial $L\left(s, \chi^{\prime}\right)$ zeros ρ with positive imaginary parts γ); χ^{\prime} is the primitive Dirichlet character induced by χ, and $m\left(\frac{1}{2}, \chi\right)$ is the multiplicity of a zero of $L(s, \chi)$ at $s=\frac{1}{2}$ (we put $m\left(\frac{1}{2}, \chi\right)=0$ when $L(s, \chi) \neq 0)$. We obtain the following corollaries.

Corollary 1. Suppose the G.R.H. is true for Dirichlet L-functions $(\bmod q)$. Then for every real number u satisfying $\alpha\left(F_{a, b}\right)<u<\beta\left(F_{a, b}\right)$ there exist positive constants $c_{0}=c_{0}(u, q)$ and $d_{0}=d_{0}(u, q)$ such that

$$
\begin{equation*}
\left|\left\{T \leq t \leq c_{0} T: \psi(t, q, a)-\psi(t, q, b)>u \sqrt{t}\right\}\right| \geq d_{0} T \tag{1.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\left\{T \leq t \leq c_{0} T: \psi(t, q, a)-\psi(t, q, b)<u \sqrt{t}\right\}\right| \geq d_{0} T \tag{1.11}
\end{equation*}
$$

for sufficiently large T.
Corollary 2. Suppose the G.R.H. is true for Dirichlet L-functions $(\bmod q)$ and let $(a, q)=1, a \not \equiv 1(\bmod q)$. Then for every positive u there exist $c_{1}=c_{1}(u, q)>0$ and $d_{1}=d_{1}(u, q)>0$ such that

$$
\begin{gather*}
\#\left\{Y \leq m \leq c_{1} Y: \psi(m, q, a)-\psi(m, q, 1)>u \sqrt{m}\right\} \geq d_{1} Y \tag{1.12}\\
\#\left\{Y \leq m \leq c_{1} Y: \psi(m, q, a)-\psi(m, q, 1)<-u \sqrt{m}\right\} \geq d_{1} Y \tag{1.13}
\end{gather*}
$$

$$
\begin{equation*}
\#\left\{Y \leq m \leq c_{1} Y: \pi(m, q, a)-\pi(m, q, 1)>u \sqrt{m} /(\log m)\right\} \geq d_{1} Y \tag{1.14}
\end{equation*}
$$

and

$$
\begin{equation*}
\#\left\{Y \leq m \leq c_{1} Y: \pi(m, q, a)-\pi(m, q, 1)<-u \sqrt{m} /(\log m)\right\} \geq d_{1} Y \tag{1.15}
\end{equation*}
$$

for all sufficiently large Y.

Let us remark that our Theorem 1 follows at once from Corollary 2; it is sufficient therefore to prove this corollary only.

Applying Theorem 2 to the function

$$
\begin{aligned}
& F_{a}(z)=-2 e^{-z / 2} \frac{1}{\phi(q)} \sum_{\chi(\bmod q)} \overline{\chi(a)} K\left(z, \chi^{\prime}\right) \\
&-\frac{2}{\phi(q)} \sum_{\chi(\bmod q)} \overline{\chi(a)} m\left(\frac{1}{2}, \chi\right) \\
&(z=x+i y, \quad y>0, \quad(a, q)=1)
\end{aligned}
$$

in place of $F_{a, b}$, we can prove results analogous to Corollaries 1 and 2 for the remainders $\psi(t, q, a)-t / \phi(q), \psi(m, q, 1)-m / \phi(q)$, and $\pi(m, q, 1)-l i x / \phi(q)$.

2. Proof of Theorem 2

For a real $\delta>0$ we consider the subsidiary function

$$
F_{\delta}(z)=\sum_{n=1}^{\infty} a_{n} S^{N}\left(\delta w_{n}\right) e^{i w_{n} z}, \quad z=x+i y, \quad y>0
$$

where

$$
S(\nu)= \begin{cases}(\sin \nu) / \nu, & \nu \neq 0 \\ 1, & \nu=0\end{cases}
$$

and $N=B+2$. Since $S(\nu) \leq \min (1,1 /|\nu|)$, the sum F_{δ} is absolutely convergent for $y \geq 0$. Moreover, $F_{\delta} \rightarrow F$ as $\delta \rightarrow 0$ almost uniformly on the upper half-plane and thus $\alpha\left(F_{\delta}\right) \rightarrow \alpha(F)$ and $\beta\left(F_{\delta}\right) \rightarrow \beta(F)$ as $\delta \rightarrow 0$. Let us fix a $\delta_{0}, 0<\delta_{0}<\frac{1}{2}$, so small that $\alpha\left(F_{\delta_{0}}\right)<u<\beta\left(F_{\delta_{0}}\right)$.

From (1.4) it follows that the sum in (1.3) absolutely and uniformly converges in every closed half-plane $y \geq y_{0}$ with $y_{0}>0$. Hence we can integrate $F(z)$ term by term. Thus for $y>0$

$$
F_{\delta_{0}}(z)=\frac{1}{\left(2 \delta_{0}\right)^{N}} \int_{-\delta_{0}}^{\delta_{0}} \ldots \int_{-\delta_{0}}^{\delta_{0}} F\left(z+t_{1}+\ldots+t_{N}\right) d t_{1} \ldots d t_{N}
$$

We take real parts and make $y \rightarrow 0+$. Using the Lebesgue bounded integration theorem we obtain

$$
\begin{equation*}
\operatorname{Re} F_{\delta_{0}}(x)=\frac{1}{\left(2 \delta_{0}\right)^{N}} \int_{-\delta_{0}}^{\delta_{0}} \ldots \int_{-\delta_{0}}^{\delta_{0}} P\left(x+t_{1}+\ldots+t_{N}\right) d t_{1} \ldots d t_{N} \tag{2.1}
\end{equation*}
$$

for $|x|>L_{0}+N \delta_{0}$.
Let us consider now the following two cases.
Case 1. $\alpha(F) \beta(F)<0$. Then of course $\alpha(F)<0$ and $\beta(F)>0$. Obviously it suffices to prove (1.7) for positive u only. Moreover, (1.8) follows from (1.7) by considering $-F$ instead of F. Let hence u be positive and let us fix u_{1} satisfying

$$
\begin{equation*}
u<u_{1}<\alpha\left(F_{\delta_{0}}\right) \tag{2.2}
\end{equation*}
$$

$\operatorname{Re} F_{\delta_{0}}(x)$ is almost periodic in the sense of Bohr. Hence there exists a positive constant $l_{1}=l_{1}\left(u_{1}, F, \delta_{0}\right)$ such that every interval of length $\geq l_{1}$ contains a real number x such that

$$
\begin{equation*}
\operatorname{Re} F_{\delta_{0}}(x) \geq u_{1} . \tag{2.3}
\end{equation*}
$$

Let now $I \subset \mathbb{R} \backslash\left[-L_{0}, L_{0}\right]$ be an interval of length $\geq l_{1}+N \delta_{0}$. Let x_{0} be its middle point and let x satisfying (2.3) be such that $\left|x-x_{0}\right| \leq l_{1} / 2$. Let

$$
\begin{gathered}
\mathbf{A}=\{t \in I: P(t)>u\} \\
\mathbf{B}=\left\{\left(t_{1}, \ldots, t_{N}\right):\left|t_{j}\right|<\delta_{0}(j=1,2, \ldots, N), x+t_{1}+\ldots+t_{N} \in \mathbf{A}\right\} \\
\mathbf{C}=\left[-\delta_{0}, \delta_{0}\right]^{N} \backslash \mathbf{B} .
\end{gathered}
$$

Using (2.1) and the Cauchy-Schwarz inequality we get

$$
\begin{aligned}
& u_{1} \leq \operatorname{Re} F_{\delta_{0}}(x) \\
& =\frac{1}{\left(2 \delta_{0}\right)^{N}}\left(\int \underset{\mathrm{~B}}{ } \int+\int \underset{\mathrm{C}}{ } \iint P\left(x+t_{1}+\ldots+t_{N}\right) d t_{1} \ldots d t_{N}\right. \\
& \leq u+\frac{1}{\left(2 \delta_{0}\right)^{N}} \int_{-\delta_{0}}^{\delta_{0}} \ldots \int_{-\delta_{0}}^{\delta_{0}} \int_{\substack{-\left(x+t_{1}+\ldots+t_{N-1}\right) \\
\left|t_{N}\right|<\delta_{0}}} P\left(x+t_{1}+\ldots+t_{N}\right) d t_{N} \ldots d t_{1} \\
& \leq u+\frac{1}{\left(2 \delta_{0}\right)^{N}} \int_{-\delta_{0}}^{\delta_{0}} \ldots \int_{-\delta_{0}}^{\delta_{0}} \int_{\substack{-\left(x+t_{1}+\ldots+t_{N-1}\right) \\
\left|t_{N}\right|<\delta_{0}}}|\mathbf{A}|^{\frac{1}{2}}\|P\| d t_{1} \ldots d t_{N} \\
& =u+|\mathbf{A}|^{\frac{1}{2}}\|P\| /\left(2 \delta_{0}\right) .
\end{aligned}
$$

Hence

$$
|\mathbf{A}| \geq\left(2 \delta_{0}\left(u_{1}-u\right)\|P\|^{-1}\right)^{2}
$$

Hence it is enough to take

$$
d(u, F)=\left(2 \delta_{0}\left(u_{1}-u\right)\|P\|^{-1}\right)^{2}
$$

and

$$
\begin{equation*}
l(u, F)=l_{1}\left(u_{1}, F, \delta_{0}\right)+N \delta_{0} \tag{2.4}
\end{equation*}
$$

Case 2. $\alpha(F) \beta(F) \geq 0$. Replacing if necessary F by $-F$ we can assume that $\alpha(F) \geq 0$. Then (1.7) can be proved exactly in the same way as in Case 1. To prove (1.8) let us fix u_{1} satisfying $\max \left(\alpha(F), \alpha\left(F_{\delta_{0}}\right)\right)<u_{1}<u$. Let l_{1}, I and x have the same meaning as previously with (2.3) replaced by

$$
\begin{equation*}
\operatorname{Re} F_{\delta_{0}}(x) \leq u_{1} \tag{2.3}
\end{equation*}
$$

Let moreover

$$
\begin{gathered}
\mathbf{A}_{1}=\{t \in I: P(t)<u\} \\
\mathbf{B}_{1}=\left\{\left(t_{1}, \ldots, t_{N}\right):\left|t_{j}\right|<\delta_{0}(j=1,2, \ldots, N), x+t_{1}+\ldots+t_{N} \in \mathbf{A}_{1}\right\} \\
\mathbf{C}_{1}=\left[-\delta_{0}, \delta_{0}\right]^{N} \backslash \mathbf{B}_{1}
\end{gathered}
$$

Then

$$
\begin{aligned}
u_{1} \geq \operatorname{Re} F_{\delta_{0}}(x) & \geq \frac{1}{\left(2 \delta_{0}\right)^{N}} \int \ddot{\mathbf{C}}_{1} \int P\left(x+t_{1}+\ldots+t_{N}\right) d t_{1} \ldots d t_{N} \\
& \geq u\left(2 \delta_{0}\right)^{-N} \mu\left(\mathbf{C}_{1}\right) \\
& =u\left(2 \delta_{0}\right)^{-N}\left(\left(2 \delta_{0}\right)^{N}-\mu\left(\mathbf{B}_{1}\right)\right)
\end{aligned}
$$

μ being the N-dimensional Lebesgue measure. Hence

$$
\mu\left(\mathbf{B}_{1}\right) \geq\left(2 \delta_{0}\right)^{N}\left(1-u_{1} / u\right)
$$

But

$$
\begin{aligned}
\mu\left(\mathbf{B}_{1}\right) & \left.=\int_{-\delta_{0}}^{\delta_{0}} \ldots \int_{-\delta_{0}}^{\delta_{0}} \int_{\mathbf{A}_{1}-\left(x+t_{1}+\ldots+t_{N-1}\right)}^{\left|t_{N}\right|<\delta_{0}}\right\} \\
& d t_{N} \ldots d t_{1} \\
& \leq\left|\mathbf{A}_{1}\right|\left(2 \delta_{0}\right)^{N-1}
\end{aligned}
$$

and consequently

$$
\left|\mathbf{A}_{1}\right| \geq 2 \delta_{0}\left(1-u_{1} / u\right)
$$

We obtain (1.8) with the same $l(u, F)$ as in (2.4) and

$$
d_{1}(u, F)=2 \delta_{0}\left(1-u_{1} / u\right)
$$

The proof is complete.

3. Proof of the corollaries

We apply Theorem 2 to the function $F_{a, b}$ defined by (1.9). It belongs to the class \mathcal{A}; condition 4. is satisfied with $L_{0}=0$ (cf. [3]). Condition (1.6) can be proved as follows. For positive y we have by term-by-term integration

$$
\begin{aligned}
& \int_{0}^{1}\left|\operatorname{Re} F_{a, b}(x+t+i y)\right|^{2} d x \\
& \quad \ll 1+\sum_{\gamma>0} \sum_{\gamma^{\prime}>0} \frac{1}{\gamma} \frac{1}{\gamma^{\prime}} e^{-\left(\gamma+\gamma^{\prime}\right) y}\left|\int_{0}^{1} e^{i\left(\gamma-\gamma^{\prime}\right) x} d x\right| \\
& \ll 1+\sum_{\gamma>0} \sum_{\gamma^{\prime}>0} \frac{1}{\gamma} \frac{1}{\gamma^{\prime}} \min \left(1,\left|\gamma-\gamma^{\prime}\right|^{-1}\right) \ll 1
\end{aligned}
$$

uniformly in $t \in \mathbb{R}\left(\gamma\right.$ and γ^{\prime} denote imaginary parts of non-trivial zeros of all Dirichlet L-functions $(\bmod q)$); (1.6) therefore follows making $y \rightarrow 0+$ and using the Lebesgue bounded integration theorem. Finally it is proved in [4], page 242, that

$$
P(x)=e^{-x / 2}\left(\psi\left(e^{x}, q, a\right)-\psi\left(e^{x}, q, b\right)\right)+O\left(x e^{-x / 2}\right)
$$

Hence (1.10) and (1.11) follow from (1.7) and (1.8) by the change of variable $t=e^{x}$; this proves Corollary 1.

To prove Corollary 2 observe that by (3.3), (4.3) and (8.11) of [3] we have
$\operatorname{Re} F_{1, a}\left(r e^{i \phi}\right)=\frac{1}{\pi}(\phi-\pi / 2) \log r+O(1)$ for $0<r<1,0<\phi<\pi$,
and hence $\alpha=-\infty$ and $\beta=+\infty$. Using this, Corollary 1 and the obvious remark that $\psi(t, q, a)-\psi(t, q, 1)=\psi([t], q, a)-\psi([t], q, 1)$ we obtain (1.12) and (1.13). Inequalities for $\pi(x, q, a)-\pi(x, q, 1)$ follow from what we have just proved and the partial summation.

References

[1] A. E. INGHAM, A note on the distribution of primes, Acta Arithmetica, 1 (1936), 201-211.
[2] A. E. INGHAM, On two conjectures in the theory of numbers, Amer. J. Math., 64 (1942), 313-319.
[3] J. KACZOROWSKI, The k-functions in multiplicative number theory, I; On complex explicit formulae, Acta Arithmetica, 56 (1990), 195-211.
[4] J. KACZOROWSKI, The k-functions in multiplicative number theory, IV; On a method of A. E. Ingham, Acta Arithmetica, 57 (1991), 231-244.
[5] S. KNAPOWSKI, P. TURÁN, Comparative prime number theory, I; Acta Mathematica Hungarica, 13 (1962), 299-314.
[6] S. KNAPOWSKI, P. TURÁN, Further developments in the comparative prime number theory, I; Acta Arithmetica, 9 (1964), 23-40.
[7] D. SHANKS, Quadratic residues and the distribution of primes, Math. Tables and other aids to computation, 13 (1959), 272-284.

Jerzy Kaczorowski
Institute of Mathematics Adam Mickiewicz University ul. Matejki 48/49

Poznań, Poland

[^0]: * The work is partially supported by KBN grant no. 210869101.

