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Serre's conjecture on Galo is representat ions 

a t tached to Weil curves with addi t ive reduction 

Joan-C. LARIO 

1.Introduction: terminology and facts .- Let E be an elliptic curve 
defined over <Q> which is supposed to be modular, i.e. E is a Weil curve, and 
denote by F(z) = Ane 2jcinz the weight 2 newform attached to E by the 
Eichler-Shimura congruences. 

Fix a prime p> 7. We shall be interested in which cases E has additive 
reduction at p, excluding the Kodaira reduction types J* (y > 0) which are 
related to the potentially semi-stable case. Thus p divides exactly twice the 
geometric conductor NE of the elliptic curve E. 

After [Ed 89] we say that E is p-vertical if E has bad but potentially 
good ordinary reduction at p, and that E is ^horizontal if E has bad but 
potentially good supersingular reduction at p. Recall that these conditions 
can be given in terms of the Hasse invariant (cf. [Hu87], pag.248) of E and, 
moreover, one gets: 

E is p-vertical <==> p = 1 (mod e ) , 

where e is the least common multiple of the multiplicities of the irreducible 
components of the special fibre of the stable model; that is 

e = 

6 if p-type (E) = II,ir ; 
4 if p-type ( E ) = III, IIII*; 
3 ifp-type(E) = IV,IV*. 

The Galois module Ep of the p-torsion points of E gives rise to a contin­
uous and odd representation 

p : GQ^ Aut(Ep) - GL2(FP) , 

which is almost always absolutely irreducible (cf. [Ma 78]). 
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Serre's conjecture (3.2.4?) in [Se 87] predicts, in this case, the existence 
of a Hecke cusp form (modp) 

/(«) = anqn 

of type (Np,kp,ep) satisfying 

an = An (mod p), for all n prime to NE • 

The level JVP, the weight kp and the character ep are given by a precise recipe 
in [Se87] and, depending on the Neron model of they have been computed, 
for instance in [Ba-La91]. 

In [Ba-La91], we verify (3.2.4?) for the Galois representations defined by 
the p-torsion points of the p-vertical Weil curves. In this paper our purpose is 
to emphasize the difference between the p-vertical and the p-horizontal cases 
in order to check Serre's conjecture. Several numerical examples, collected by 
computer calculations, lead us to give a conjecture which implies (3.2.4?) for 
the horizontal case. 

2. Lowering the level (ordinary case) . - First, we shall consider a general 
situation. Let 

F(z) = 
O O 

n=l 

Ane2*inz 

be a newform of type (iV,fc,e), defined over Q. If a : ( Z / M Z ) * -> C* is a 
Dirichlet character modulo M , then the twisted form 

F®a(z) = 
O O 

n=l 

An a(n)e2*inz (a(n) = 0 if g.c.d. (n, M) ^ 1) 

is a Hecke cusp form of type (Nf,k,ea2), where 

N' = l.c.m. (iV, M . conductor ( e ) , M 2 ) . 

If M is prime to the level JV, then F ® a is a newform of type (NM2, fc, e a2); 
otherwise, the form F ® a can either be or not be a newform! The question 
is to decide when it is. 

After Li's work [Li 75], one has a nice criterion to decide whether a Hecke 
cusp form is new or not. More precisely, consider the operators K and HN 
defined by 

G\HN = G\ 
0 - 1 
JV 0 

and G\K(z) = G(-z), 
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for each cusp form G(z) = kOO 

n=l Bne 2'Ktnz of type (iV, k,e). We have 

PROPOSITION . (cf. [Li 75]) . LetG e Sk(N,e) be a Hecke cusp form. Then G 
is a newform of type (Ny fc, e) if and only if the functional equation G\K\HN = 
jG holds for a certain complex constant 7 of absolute value 1. 

Let us go back to the case of elliptic curves. Let F be the newform 
attached to the Weil curve E as above and let NE = Np2 be the conductor of 
E. Choose an embedding Q C Q P and let V : ( Z / p Z ) * Q be the Dirichlet 
character which satisfies 

ip(n) n = 1 (mod 93), 

where 3̂ is the place of Q dividing p fixed by our embedding. 
We ask for which values of j 6 { 0 , . . . ,p — 2} the twisted form F <g) ^ 

fails to be new. Prof.D.B.Zagier suggested to us to apply the following test 
which is an immediate consequence of Li's result. 

COROLLARY . Keep the above notations. If there exist a complex number 
z G H such that 

0 0 

n=l 
An y (n) e- 2nin/NEz 

NEz* 0 0 

n=l 
Anipi(n) e2*inz 

- 1 ^ 0 , 

then F ® ip* is not new. 

On a V A X 8600 at the Facultat d'Informatica de Barcelona we have ob­
tained the following numerical examples, by taking z = 2i/y/Ns € H and a 
few number (around 500) of Fourier coefficients for F (8) ip*'. 

For the elliptic curve 338 A l (cf. [Cre91]), 

E : y2 + xy = x3 - x2 + x + 1 

of conductor NE = 2 • 132, we get the following data: 

j TEST 
0 0.0000000000 
1 0.0000000000 
2 2.6699959395 
3 0.0000000000 
4 0.0000000000 
5 0.0000000000 
6 0.0000000000 
7 0.0000000000 
8 0.0000000000 
9 0.0000000000 

10 2.6699959395 
11 0.0000000000 
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Observe that the Hecke cusp forms F <g) ip2 and F ® ip10 don't seem to be 

newforms. Indeed, as we shall see later, they are not newforms. 

Another example is provided by the elliptic curve 

E : y2 + xy + y = x3 - 39x - 27 

of conductor NE = 4 3 2 (cf. [Ed-Gr-To 90]). In this case we get: 

j TEST 
14 5.5513673695 
28 5.5513673695 , 

and zero for all the others values of j. Now, the Hecke cusp forms F (g) V>14 

and F (g) V>28 are not newforms. 

In the previous examples E is vertical at p = 13, 43, respectively; indeed, 

in both cases we have p = 1 (mod 3) and, following Tate's algorithm [Ta75], 

we find that p-type (E) is equal to II and IV, respectively. 

Actually, we are able to say what happens in the general p-vertical case. If 

£ denotes a prime which does not divide the conductor of 2?, then one can prove 

that the restriction to an inertia group Ip at p of the £-adic representation pi 

attached to F (g) i\) « is given by 

Pt(Ip) = 
1 0 

0 * 

Therefore, we obtain 

PROPOSITION, (cf. [Ba-La91]) . If E is a p-vertical Weil curve as above, 
there exists a newform 

G(z) = Bne 2'KÌnz es2(Np,i>2 
p - i 

e Ш), 

having the same eigenvalue system as the twisted form F ® ip*^. 

Similar arguments do not work when E is p-horizontal. Consider the 
following example: the elliptic curve 605 A l , in [Cre91], 

E : y2 + xy = x3 - x2 - 1414x - 44027 

of conductor NE = 5 • ll2 has 11-type IV*. Since 11 = 2 (mod 3) , E is 
11-horizontal. Running our program we get: 
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j TEST 
0 0.0000000000 
1 0.0000000000 
2 0.0000000000 
3 0.0000000000 
4 0.0000000000 
5 0.0000000000 
6 0.0000000000 
7 0.0000000000 
8 0.0000000000 
9 0.0000000000 

Actually, all the twisted forms F ®ij)3 are newforms. 

3. Lowering the level (supersingular case) . - Keep the notations as above 
and let vss = Since we are interested in Serre's conjecture (3.2.4?), we 
shall assume without loss of generality that p-type (E) = JJ, Ji7, IV. Indeed, 
the exclusion of the cases with asterisk remain justified by considering the 
minimal or companion representations as in [La 91]. 

CONJECTURE ( S S . ? ) . If E is a p-horizontal Weil curve as above, there exists 
a newform 

G(z) = B„e 2ninz eS2(Np,i/j2 
P + i 

e 

having the same eigenvalue system ( m o d ^p) as the twisted form F ifi*^"; 
i.e., such that for all n prime to NE we have 

Bn = An<ipva8(n) (mod<p) . 

Moreover, G is -ordinary if and only if p\np is not irreducible. Here Dp 
denotes a decomposition group for p. 

First of all, we are going to show a numerical example of the lowering of 
the level predicted by the conjecture. 

Consider the elliptic curve E given by the Weierstrafi model 

y2 + xy = x3 + 3x + 1 ; 

it is the curve 242 A l in [Cre91] and has conductor NE = 2 • l l 2 . The 
special fibre of the Neron model over the local ring Z u has reduction type 
77; therefore, E is 11-horizontal. Moreover, E has no Q-rational isogenics of 
degree 11, and then 

p : G® -+ Aut (En) ~ G L 2 ( F n ) 

is irreducible; since v\AcA = 1, we find that p\Du is reducible. 
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Choose an embedding Q c—• Q n such that the character 

V> : (Z /11Z)* -+ Q* , ^ ( 2 ) = e2™'10 , 

satisfies 
^ ( 2 ) = 2-1 (mod p11), 

where $pn is the place of Q, over 11, determined by the embedding. 
Our conjecture (ss.?) predicts the existence of a cusp form 

G(q) = BnqneS2(22^) 

satisfying the congruences 

Bn = Anil>2{n) (mod p11) 

for all odd integers n prime to 11. 
In this case, we find 

dimS2(22,V4) = 1. 

The Eichler-Selberg trace formula (cf. [Hij-Pi-She90]) allows us to obtain the 
Fourier coefficients of the unique normalized newform of this type. 

An efficient implementation of this formula is due to J. Quer; its pro­
gram, written in UBASIC, find the first coefficients of the newform G(q) = 
n>1 Bnqn in S2(22,V4): 

Bz = - C 4 - C 2 - 2 < - 2 

B5 = -2C3 - 2 

B7 = -2<4 - 2C3 - 4<2 - 2C 

B13 = -2C2 - 2C - 2 

Bir = - 4 C 4 - 4C3 - 5C2 - 5C - 4 

B19 = -2C4 - 6C3 - 2C2 - 5C - 5 
... 

where ( = e27"/5. The coefficients Bn can be rewritten taking into account 
that cos7r /5 is the unique positive (double) root of the polynomial 16-X"5 — 
20X3 + 5 X + 1 and that 

i cos 
7T 

10 
= cos 

2TT 

5 
+ isin 

2TT 
5 

-
v / 5 - 1 

4 . 
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On the other hand, computing the first coefficients of the L-series of the elliptic 
curve Ey we find the following: 

l 2 3 5 7 11 13 17 19 23 29 31 37 41 43 

At - - 2 - 3 - 2 - - 5 - 3 - 2 6 3 2 - 7 - 3 - 8 

Finally, since y/5 = 4 (mod 11) and 

cos 
7T 

5 
+ i sin 

7T 

5 = e2™'10 = 2"1 = 6 (mod <pn), 

we get 

I 
y2 (l) Bl Ae1?(l) - Bl 

(mod b11) 

2 cos 2TT 
5 + 2 Sin 2n 

5 - -
3 C O S 

6TT 
5 + i s i n 5 - 4 ^ ( ^ ( 3 ) + i ) 0 

5 C O S 
8TT 
5 + 2 Sin 8TT 

5 ( ^ 5 - l ) ( ^ 8 ( 5 ) + l ) - 2 0 

7 COS 5 + 2 Sin 4TT 
5 - ( V 5 - l ) V 6 ( 7 ) + 2 0 

11 - - -
13 COS 

2TT 
5 + 2 Sin 2TT 

5 - ( V 5 - 1 ) V 2 ( 1 3 ) 0 

17 COS 8TT 
5 + 2 Sin 8TT 

5 ^ + 1 V 8 ( 1 7 ) + 1 0 

19 C O S 
6TT 
5 + 2 sin 6TT 

5 (2v /5 -5 ) (V ' 4 (19 ) + l ) 0 

23 1 -(V5 + 1) 0 

29 C O S 
4TT 
5 + 2 Sin 4TT 

5 (y/E - 5 ) ^ ( 2 9 ) + 2^5 0 

31 C O S 
2TT 
5 + i sin 2TT 

5 2^2(31) 0 

37 COS 4TT 
5 + 2 Sin 4TT 

5 6 V > 6 ( 3 7 ) - 3 ( ^ 5 + 1) 0 

41 COS 6TT 
5 + 2 S i n 

6TT 
5 I = § ^ * ( 4 1 ) + 1) 0 

43 1 1(3^5 + 1) 0 

47 C O S 
6TT 
5 + 2 Sin 6TT 

5 ( 2 V 5 - 6 ) ( ^ 4 ( 4 7 ) + l ) 0 

Since a modular form of given weight and level (modp) cannot start with a 
very high power of q (cf. [Gr90], pag.499), note that in this case we have 
truly proved the congruences Bn = Anip2(n) (mod <pn) for all n. 
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4. Galois representations attached to Wei l curves . -

We deduce Serre's conjecture (3.2.4?) for the remaining case of p-hori-
zontal Weil curves from our conjecture (ss.?). 
THEOREM . Assume conjecture ( 5 5 . ? ) is true. Then Serre's conjecture (3.2.4?) 
is true for all irreducible representations 

p : G Q —• Aut (Ep) 

provided that E is a p-horizontal Weil curve as above. 

PROOF . Consider the twisted representation 

P 
p+1 

e 
) : = p®X p+1 e 

5 

where x ls pth cyclotomic character. It is easy to see that if / 0 ( ^ 7 ^ ) 
satisfies Serre's conjecture so does p. 

The reason to consider p(^j^) instaed of p is that the invariant weight 
for p ( £ ± i ) is less than p+1. Namely (cf. [Ba-La91]), 

kp р + 1 
e ) = 

£ t i ( e — 2) if p\r>p reduces ; 

p+1 — 2 ^ j i if P\DP is irreducible . 

Let G(z) = Bne2ninz E S2 (Np, v 2 p+1 e ) be the newform attached to E as in 
conjecture (ss.?). We have (cf. Lemma 4, [Ba-La91]) that 

Ti (G E - 2 * ± i + ( p - l ) 

1,w 
E Sk 

p+1 {N,1) 

with Tr (G E - 2 « ± i + ( p - l ) 

1,v 
) = G (mod if p\r>p is reducible, and 

Ti (G E 
_ 2 £ ± l + 2 ( p - l ) 

1,w 
E Sk 

p+1 
(N,1) 

with TT(GE - 2 « ± i + 2 ( p - l ) 

1,v 
notes the trace operator and denotes the Eisenstein series of weight one 
attached to rf>. 

Now, we see that the twisted representation p(^-j^) arises from a Hecke 
cusp form (mod p) of type (i\T, kp^2±iy 1). If necessary, since N is prime to p, 
the results in [Jo-Li 89] bring the level N to Np. 

254 

) = G (mod if P\D is irreducible, where Tr de-



GALOIS REPRESENTATIONS ATTACHED TO WEIL CURVES 

REFERENCES 

[Ba-La91] Bayer, P; Lario, J.C. (1991). Galois representations defined by torsion 
points of modular elliptic curves. To appear in Compositio Math. 

[Ca86] Carayol, H. (1986). Sur les représentations Sadiques associées aux for­
mes modulaires de Hilbert. Ann. Sci. École Nor. Sup., 19, 409-468. 

[Cr91] Cremona, J.E. (1991). Computation of modular elliptic curves and 
the Birch-Swinerton-Dyer conjecture. University of Exeter, preprint. 

[Ed89] Edixhoven , B. (1989). Stable models of modular curves and appli­
cations. Faculteit der Wiskunde en Informatica. Rijksuniversiteit te 
Utrecht. Thesis. 

[Ed-Gr-To90] Edixhoven , B.; de Groot, A.; Top, J. (1990). Elliptic curves over the 
rationals with bad reduction at only one prime. Math, of Computa­
tion, 54, 413-419. 

[Gr90] Gross, B.H. (1990). A tameness criterion for Galois representations 
associated to modular forms. Duke Math. Journal, 61 , 445-517. 

[Hi-Pi-She90] Hijikata, H.; Pizer, A.; Shemanske, T. (1990). Twist of newforms. 
[Hu87] Husemöller, D. (1987). Elliptic Curves. GTM Springer- Verlag, 111. 

[Jo-Li89] Jordan, B.;Livné, R. (1989). Conjecture “epsilon” for weight k > 2. 
Bull, of the AMS, 21 , 51-56. 

[La91] Lario, J.C. (1991). Representacions de Galois i corbes el·líptiques. 
Universitat de Barcelona. Thesis. 

[Li75] Li, W. (1975). Newforms and functional equations. Math. Ann., 212, 
285-315. 

[Se87] Serre, J.-P. (1987). Sur les représentations modulaires de degré 2 de 
Gal (Q/Q) . Duke Math. Journal, 54, 179-230. 

[Ma78] Mazur, B. (1978). Rational isogenies of prime degree. Invent. Math., 
44, 129-162. 

[Ta75] Tate, J. (1975). Algorithm for determining the type of a singular fibre 
in an elliptic pencil. Springer LN in Math., 476, 33-52. 

Joan-C . Lario 
Departament de Matemätica Aplicada II 
Univers i t ä t Po l i t ecn ica de Ca ta lunya 
Pau Gargallo, 5 
E-08028 Barce lona (Spain) 

255 


