A simple proof of Voronoi's identity
Journées arithmétiques de Genève - 9-13 septembre 1991, Astérisque, no. 209 (1992), pp. 265-274.
@incollection{AST_1992__209__265_0,
     author = {Meurman, Tom},
     title = {A simple proof of {Voronoi's} identity},
     booktitle = {Journ\'ees arithm\'etiques de Gen\`eve - 9-13 septembre 1991},
     editor = {Coray D. F. and P\'etermann Y.-F. S},
     series = {Ast\'erisque},
     pages = {265--274},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {209},
     year = {1992},
     mrnumber = {1211020},
     zbl = {0788.11042},
     language = {en},
     url = {http://archive.numdam.org/item/AST_1992__209__265_0/}
}
TY  - CHAP
AU  - Meurman, Tom
TI  - A simple proof of Voronoi's identity
BT  - Journées arithmétiques de Genève - 9-13 septembre 1991
AU  - Collectif
ED  - Coray D. F.
ED  - Pétermann Y.-F. S
T3  - Astérisque
PY  - 1992
SP  - 265
EP  - 274
IS  - 209
PB  - Société mathématique de France
UR  - http://archive.numdam.org/item/AST_1992__209__265_0/
LA  - en
ID  - AST_1992__209__265_0
ER  - 
%0 Book Section
%A Meurman, Tom
%T A simple proof of Voronoi's identity
%B Journées arithmétiques de Genève - 9-13 septembre 1991
%A Collectif
%E Coray D. F.
%E Pétermann Y.-F. S
%S Astérisque
%D 1992
%P 265-274
%N 209
%I Société mathématique de France
%U http://archive.numdam.org/item/AST_1992__209__265_0/
%G en
%F AST_1992__209__265_0
Meurman, Tom. A simple proof of Voronoi's identity, dans Journées arithmétiques de Genève - 9-13 septembre 1991, Astérisque, no. 209 (1992), pp. 265-274. http://archive.numdam.org/item/AST_1992__209__265_0/

1. B. C. Berndt, Identities involving the coefficients of a class of Dirichlet series I, Trans. Amer. Math. Soc. 137 (1969), 345-359. | DOI | MR | Zbl

2. B. C. Berndt, The Voronoi summation formula, in "The theory of arithmetic functions," Lect. Notes Math. 251, pp. 21-36, Springer, 1972. | DOI | MR | Zbl

3. K. Chandrasekharan and R. Narasimhan, Functional equations with multiple gamma factors and the average order of arithmetical functions, Ann. Math. 76 (1962), 93-136. | DOI | MR | Zbl

4. K. Chandrasekharan, "Arithmetical functions," Springer, 1970. | DOI | MR | Zbl

5. A. L. Dixon and W. L. Ferrar, Lattice point summation formulae, Quart. J. Math. 2 (1931), 31-54. | DOI | JFM | Zbl

6. G. H. Hardy, On the expression of a number as the sum of two squares, Quart. J. Math. 46 (1915), 263-283. | JFM

7. G. H. Hardy, On Dirichlet's divisor problem, Proc. London Math. Soc. 15 (1916), 1-25. | JFM | MR

8. D. A. Hejhal, A note on the Voronoi summation formula, Mh. Math. 87 (1979), 1-14. | DOI | EuDML | MR | Zbl

9. A. Ivic, "The Riemann zeta-function," John Wiley & Sons, 1985. | MR | Zbl

10. M. Jutila, "Lectures on a method in the theory of exponential sums," Tata Institute of Fundamental Research, Lectures on mathematics and physics 80, Springer, 1987. | Zbl

11. E. Landau, Über das Konvergenzgebiet einer mit der Riemannschen Zetafunktion zusammenhängenden Reihe, Math. Ann. 97 (1927), 251-290. | DOI | EuDML | JFM

12. T. Meurman, On exponential sums involving the Fourier coefficients of Maass wave forms, J. reine angew. Math. 384 (1988), 192-207. | EuDML | Zbl

13. Y. Motohashi, "Lectures on the Riemann-Siegel formula," Ulam. Seminar, Dept. Math., Colorado Univ., Boulder, 1987.

14. A. Oppenheim, Some identities in the theory of numbers, Proc. London Math. Soc. 26 (1927), 295-350. | DOI | JFM

15. W. Rogosinski, "Neue Anwendung der Pfeifferschen Methode bei Dirichlets Teilerproblem," Thesis, Göttingen, 1922. | JFM

16. M. G. Voronoi, Sur une fonction transcendante et ses applications à la sommation de quelques séries, Ann. Ecole Norm. Sup. 21 (1904), 207-267, 459-533. | DOI | EuDML | JFM | Numdam

17. G. N. Watson, "A treatise on the theory of Bessel functions (2nd ed.)," Cambridge Univ. Press, 1951. | Zbl