@incollection{AST_1992__210__13_0, author = {Agmon, Shmuel}, title = {A representation theorem for solutions of {Schr\"odinger} type equations on non-compact {Riemannian} manifolds}, booktitle = {M\'ethodes semi-classiques Volume 2 - Colloque international (Nantes, juin 1991)}, series = {Ast\'erisque}, pages = {13--26}, publisher = {Soci\'et\'e math\'ematique de France}, number = {210}, year = {1992}, zbl = {0791.58104}, language = {en}, url = {http://archive.numdam.org/item/AST_1992__210__13_0/} }
TY - CHAP AU - Agmon, Shmuel TI - A representation theorem for solutions of Schrödinger type equations on non-compact Riemannian manifolds BT - Méthodes semi-classiques Volume 2 - Colloque international (Nantes, juin 1991) AU - Collectif T3 - Astérisque PY - 1992 SP - 13 EP - 26 IS - 210 PB - Société mathématique de France UR - http://archive.numdam.org/item/AST_1992__210__13_0/ LA - en ID - AST_1992__210__13_0 ER -
%0 Book Section %A Agmon, Shmuel %T A representation theorem for solutions of Schrödinger type equations on non-compact Riemannian manifolds %B Méthodes semi-classiques Volume 2 - Colloque international (Nantes, juin 1991) %A Collectif %S Astérisque %D 1992 %P 13-26 %N 210 %I Société mathématique de France %U http://archive.numdam.org/item/AST_1992__210__13_0/ %G en %F AST_1992__210__13_0
Agmon, Shmuel. A representation theorem for solutions of Schrödinger type equations on non-compact Riemannian manifolds, in Méthodes semi-classiques Volume 2 - Colloque international (Nantes, juin 1991), Astérisque, no. 210 (1992), pp. 13-26. http://archive.numdam.org/item/AST_1992__210__13_0/
[1] On the representation theorem for solutions of the Helmholtz equation on the hyperbolic space, Preprint 1990. | Zbl
,[2] Cauchy problems with characteristic initial hypersurface, Comm. Pure Appl. Math., 26, 1973, pp. 455-475. | DOI | Zbl
and ,[3] A duality for symmetric spaces with applications to group representations, Advan. Math., 5, 1970, pp. 1-154. | DOI | Zbl
,[4] Eigenspaces of the Laplacian; Integral representations and irreducibility, J. Func. Analysis, 17, 1974, pp. 328-353. | DOI | Zbl
,[5] Eigenfunctions of the Laplacian on a real hyperbolic space, J. Math. Soc. Japan, 27, 1975, pp. 82-105. | DOI | Zbl
,