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Some Developments and Applications of the Abstract Mourre Theory 

Anne Boutet de Monvel-Berthier and Vladimir Georgescu1 

1. I n t r o d u c t i o n 

In 1979 Eric Mourre introduced the concept of locally conjugate operator and 
invented a very efficient method of proving the limiting absorption principle 
(L.A.P.). His ideas opened the way to a complete solution of the N-body problem: 
detailed spectral properties have been obtained by Perry, Sigal and Simon and 
asymptotic completeness has been proved by Sigal and Soffer. The abstract side of 
Mourre theory has been further developped by Perry, Sigal and Simon [PSS] (they 
eliminated an assumption on the first commutator which was annoying in 
applications) and by Mourre [M] and Jensen and Perry [JP] (the L.A.P was 
established in better spaces). 

In [ A B G ] efforts were made in order to avoid the use of the second 
commutator of the hamiltonian with the conjugate operator. Optimal, in some 
sense, results in this direction were obtained in [BGM2] and [BG1]. In [BGM2] the 
space £ which appears below is the domain of the hamiltonian and the main 
theorem is easy to apply in the N-body case with short-range and long-range 
interactions of a very general nature. In [BG1,2] the space # is the form-domain of 
the hamiltonian (the domain is not assumed invariant under the group generated by 
the conjugate operator, this being compensated by a stronger condition on the first 
commutator) and the theory is applied to pseudo-differential operators. In both 
cases, the L.A.P. is established in "optimal" (in some sense) spaces, which allows 
one to get without any further effort very good criteria for the existence and 
completeness of relative, local wave operators. 

The main part of this article is devoted to an exposition of several applications 
of a version of the locally conjugate operator method which we developed in 
[BG1,2]. In fact, theorems 3.1 and 3.2 below are the main results got in [BG1] and 
in sections 4 and 5 we show their force and also fineness. In the preliminary section 
2 we introduce and discuss the most important notion we have isolated, that of 
operator of class # 1 with respect to a unitary group. This is a quite general 

property and in section 5 we show in some simple cases that it is almost impossible 
to be replaced by a weaker one without loosing the strong form of the L.A.P. given 
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in theorem 3.1. Moreover, in section 5 we show how to deal with hamiltonians with 
very singular interactions (this part will be treated more thoroughly in a later 
publication). But section 4 contains the most important results. Although their 
formulation is abstract, it is trivial to apply them to many-body hamiltonians. After 
the Nantes conference, as A. Soffer raised the problem of the spectral analysis of 
hard-core N-body hamiltonians, we decided to formulate, in this paper, several 
consequences of theorem 3.1 such as to cover non-densely defined hamiltonians (in 
fact we use pseudo-resolvents in place of resolvents). The particular case of hard­
core N-body hamiltonians is the subject of a in-preparation-joint-paper with A. 
Soffer. Finally, an appendix contains a technical estimate related to Littlewood-
Paley theory which seemes to us quite powerful in various situations. 

2 . U n i t a r y Groups in F r i e d r i c h s C o u p l e s 

In our approach, the natural framework for the "locally conjugate operator 
method" is a triplet ( £ , # ; W ) consisting of two Hilbert spaces % such that 
continuously and densely, and a strongly continuous unitary one-parameter group 
W = {Wa}ae R in which leaves $ invariant: W a £ c £ for all oce R .The Hilbert 

spaces are always complex but not necessarily separable. In our applications, # will 
be either the domain of the hamiltonian, or its form domain, or it will be just 2f£ 
(although, in this last case, the hamiltonian could be unbounded and even non-
densely defined). 

A triplet ( # , # ;W) with the preceding properties will be called a unitary group 
in a Friedrichs couple , the pair of spaces ($,3%) being called a Friedrichs couple. 
In this section we shall fix such a system (#,<# ;W) and we shall study some notions 
related to it. 

Let be the adjoint (or antidual) space of identify by using Riesz 
lemma and embed as usual ^c^zfcz^*. Then define ^s=[^^*](1_s)/2 by complex 
interpolation for -1<S<1, so that g>1=g>, £ ° = ^ and J T 1 ^ * . Observe that we have 
canonical identifications (S£s)*=$~s. We shall denote iT=B(^,^*) the Banach space 
of continuous linear operators from £ to and 11-11̂  its norm; observe that 3C is 
equipped with an isometric involution T»—»T*. For each s , t e [ - l , + l ] we have 
canonical embeddings B($s,$l)c:X. Then the norm in £s, resp. in B(^s,g>t), will be 
denoted ll-lls, resp. IMIsa , and we abbreviate IHI0 = ll-ll , ll-ll00 = 11-11. 

The following fact will be often used below: 

L E M M A 2.1: Let E ,F be Hilbert spaces such that E c F continuously and let 
W„(oc)=elAoc, a e E , f e f l C~~group in F which leaves E invariant: W „ E c E 
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E E 
(VoceR).Denote Wa=WalE considered as operator in E. Then {Wa}aeIR is a C0-
group in E and its infinitesimal generator is the closed, densely defined operator 
AE in E defined as the restriction of A to D(AE)={u€D(A)nEI AueE}. 

Proof: The lemma has been proved in [ABG] under the assumption that E,F are 
separable. We shall reduce ourselves to this case. The only problem is to prove the 
continuity of a^-> Waue E when ue E. Let E0 (resp. F0) be the closed subspace of 
E (resp.F) generated by {Waul a e R } . Then E0cF0 continuously and densely, W 
leaves E0 and F0 invariant and it is strongly continuous in F0. Moreover, FQ is 
separable because a*—> WaueF0 is continuous and its image is a total subset of FQ. 
Since F*cE* continuously and densely, we see that E* is separable, hence E0 is 
separable too. Now we may apply lemmas 1.1.3 and 1.1.4 from [ABG1] to 
(E0,F0;WIF()).B 

Let us apply this lemma in the case of the unitary group W in the Friedrichs 
couple (E, H) Denote A the self-adjoint operator in such that Wa=elAcc. The 

notations W^, A^ have the same signification as in the preceding lemma. Now let 
^* (£ -if. ^ 

W* =(W_a) eB(S> ). Since for a group weak and strong continuity are equivalent, 

{W* }a€]R will be a C0-group in 5 ; we denote A5 its generator (closed, densely 

defined operator in such that =exp(iocA^ )). 

It is easily shown that W* \% =Wa and an application of lemma 2.1 shows that 

A is just the restriction of A^ to {ueD(A^ )nX | A^ u€^f} . Interpolating between 
# and we see that induces a C0-group W^S in each the infinitesimal 
generators of these groups being the natural restrictions of A^ . It will be obvious 
in later arguments that no confusion arises if we drop the index which indicates the 
space in which the operators are considered. We summarize these facts in: 

PROPOSITION 2.2: Let ( £ , # ;W) be a unitary group in a Friedrichs couple. Then , 

for each o teR, the operator Wa in ffl is continuous when ffl is equipped with the 

topology induced by and, if we denote again by Wa its unique extension to a 

continuous operator on the application a*—> WaeB(^*) is a C0-group in *§* 

which leaves invariant and induces a C0-group in each space #s. Let A be the 

infinitesimal generator of the group W in $*9 i.e. A is the unique closed, densely 

defined operator in such that Wa=elAa; denote D(A;#*) its domain. Then for 

each s e [ - l ,+ l ] , the restriction of A to 
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(2.1) D(A;£S) = {ue£s I ueD(A;£*) and AueV*} 

is a closed, densely defined operator in <$s which is just the infinitesimal generator 
of the C0-group Wal^s. 

We shall always consider D(A;#S) as a Hilbert space, the norm being the graph 

norm associated to A in £s: llull^ = [ llull̂  + IIAull̂  ]1/2. It follows from a well-known 

lemma of Nelson (see theorem 1.9 in [D]) that D(A;£ )cD(A;£s )c :£ s continuously 

and densely for all s e [ - l , + l ] . Moreover, the operator A with domain D(A;^f ) is 

self-adjoint in 2%. 

Finally, let us remark that the equality Wa =W_a has to be interpreted in the 

following sense: i f -1<S<1, then the adjoint of the operator Wal^seB(^s) is equal 

to W_al^_seB(g>_s), the identification (#s)*= $-s being assumed. 

Let us consider now the group of automorphisms of the Banach space 

%=B($$*) induced by W, namely ^a (T)=wotTWa for T e X - 0bserve that 

a»—> #^(T)e^T is continuous only when X is equipped with the strong operator 

topology, hence {^a^aeR ls not a C0-group on 9C. However, one has Wa=e^a, 

with £$(T)=[A,T], in a sense which we shall explain below. 

DEFINITION 2.3: Let O<0<1. We shall say that an operator TeB($ *) is of class 

CE(A;£,S*) , andwe shall" write TeCE(A;0',£*), ifthe function a — > ^ 0 > 3 f is bolder 

continuous of order i.e. there is c<<*> such that ||WeTW£-TII ̂ ~<cl£r for lel<l. JOT 8=+0 

we replace Holder continuity by (Dini-continuity, more precisely we write TeC+0(A;^,^ *) if 

JjIIWeTW*-TII^ £-1de<oo. 

Remark that we could replace here W £ T W £ - T by the commutator 

[T,We]=TWe-WeT=(WeTW*-T)We. One can refine the notion and define 

T€Ce(A;8>s,g>t) for some - l<s , t< l by replacing the norm \l\\qr with the norm 

||•||s,r 
If T:£— is a linear continuous operator, we shall denote [A,T]=-[T,A] 

the continuous sesquilinear form on D ( A ; £ ) defined by the formula 

<ul[A,T]v> = <AulTv>-<ulTAv>. Taking into account that W is a C0-group in £ 
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and that a^-> Waue$ is strongly differentiate for each ueD(A;#) it is trivial to 
see that 

(2.2) WaTW*-T = i % WT[A,T]W* dx 

as sesquilinear forms on D(A;£). In particular, denoting A a = ( ia)_1(Wa-l) for 
a^O, we get 

(2.3) [Aa,T] = a"1 iaQ WT [A,T]Wa_T dx. 

as forms on D(A;#) . In the next lemma we shall summarize some easy 
consequences of these formulas. 

LEMMA 2.4: An operator TeB(#,#*) is of class Cl(A;$,$*) if and only if one of 
the following equivalent properties is fulfilled : 

(a) lim infe_^+0 ll[Ae,T]ll^ < oo ; 

(b) the function oc>-> WaTW*eB(£,£*) is weakly derivable at oc=0 ; 
(c) the preceding function is strongly continuously derivable ; 
(d) the sesquilinear form [A,T] is continuous for the topology induced by *3 on 

D(A;S); 
(e) lime_^0 [Ae,T] exists weakly in B($\#*); 

(f) l i m ^ ^ o /|^(W2£TW^-2WeTW*+T) £"2de exists weakly (hence also strongly) 

in B(S,#*). 
Under these conditions, if we denote by the same symbol [A,T] the continuous 
sesquilinear form on $ which extends the form [A,T] given on D(A;#) and the 
continuous operator >1£ * associated to it, then: 

(2.4) [A,T] = - i ^ WaTW;ia=0 = lime_,0 [Ae,T] , 

the derivative and the limit being taken in the strong operator topology of 
B(£,£*). Moreover, we shall have [A ,T]eB(^s,g>t)/^ some - l < s , t < l , if and only 
if TeCHA;^8,^) and in this case (2.2) will hold strongly in B(^s,^t). 

Proof: (2.2) and (2.3) show that £-HWeTW*-T)->[iA,T] and [Ae,T]->[A,T] 

weakly as forms on D(A;#) (W is strongly continuous on D(A;^) also). So (b) <=> 

(e) <=> (d) <=> (c) (use (2.2) again). From (a) and the compacity of closed balls of 9C 

in the weak operator topology, we see that 8 ̂  (W^TW£ -T) is weakly convergent in 

B(£,#*) for some sequence £j^0, so we get (d) again. It remains to show that (f) is 
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equivalent with the other assertions (see [BB] for the technique which we shall use). 

Let JX:X ->9C be defined by J ^ f ^ i H ^ d a and let S^=(£n2)-1J^(^Te(T)-T)e-2d8. 
A simple calculation gives: 

(2.5) JT(S^) = (£n2)_1 J * \ [ T " ^ ( T ) - T ) ] orMoc. 

If (b) is fulfilled, taking into account that l i m ^ o Jx=l m the strong operator 

topology of X=B($9$*), we get S[X=(Xn2)-1J^Joc(i[A,T])a-1da which easily 

implies that lini|I^oS^l=[iA,T] strongly. Now observe that: 

(2.6) 2£n2 Su = 2 J 1 ( ^ ( T ) - T ) 8~2de - l\} (Tf^(T)-T) e~2de = 

= 2 li;2Cre(T)-T)e-2de - J1'2CT2e(T)-2-r e(T)+T) e "2d8 , 
hence the limit in (f) exists strongly. Reciprocally, assume (f). Then (2.6) shows 
that l i m ^ o S^=S exists weakly. But (2.5) implies (with no assumption on T) that 

l i m ^ Q J X ( V = T ~ W ( T ) - T ) strongly. So we get x-K^x(T)-T)=Jx(S)->S strongly 
as x ^ O , in particular (b) is fulfilled. • 

COROLLARY 2.5 (Virial theorem): / / " T : £ - > £ * is symmetric and of class 
C^A;^,^*) , and if u ,ve# are such that Tu=^u, Tv=\v for some then 
<ul[A,T]v>=0. 

Proof: Using the second equality in (2.5) we have: 

<ul[ A,T]v> = lime_>()<ul[Ae,T]v> = lime^0(<ul AeTv> - <Tul Aev>)=0. • 

In order to arrive at deeper aspects of Mourre theory (namely a precise form 
of the limiting absorption principle) the C1 regularity property is not enough. One 
can introduce a stronger notion, namely to ask that a*—> WaTWaeB(#,£*) be 

norm derivable at a=0; we then say that T is of class C^(A;^,^*) (i.e. it is of class 

C1 in the uniform topology). This is equivalent with asking, besides TeC^A;^ ,^* ) , 
that oc»—> Wa[A,T]Wa be norm-continuous. Unfortunately, even this assumption is 
not strong enough, as our example from section 5 shows. However, the sufficient 
assumption we have been able to isolate, is only slightly stronger than this one. In 
fact, the proof of lemma 2.4 shows that T e C ^ A ; ^ , ^ * ) if and only if the limit in 
(f) exists in norm. Our condition is the following: 

DEFINITION 2.6: An operatorTeB($ is said to 6e of class Kk^, £*) if: 

(2.7) JJ IIW2eTW2*£-2WeTW*+TII^ 8"2d8 < «>. 

32 



ABSTRACT MOURRE THEORY 

It is clear that the expression under the norm above may be replaced by the 
more symmetrical WeTWe+W_eTW_*£-2T or by [We,[We,T]]. In fact W2eTW^-

2W£TW*+T=[We,[We,T]]W2*e. Using the notation Ae=(ie)-1(WE-1) introduced 
above, (2.7) can be expressed in the equivalent from 

(2.8) JJ ll[Ae,[Ae,T]]ll^ de < ~ . 

The remark we made jus t before the definit ion impl ies 
tfKA^^cC^A;^*). in order to compare the assumption T e ^ 1 with other 
assumptions made in the development of Mourre theory, it is useful to introduce the 
classes CS(A;£,#*) for l<s<2 or s=l+0. 

DEFINITION 2.7: Let se] l ,2] or s=l+0; denote 9=s - l in the first case andQ=+0 in the 
second one. We shall say that TeB(£ ,»*) is of class CS(A;# i / T e C ^ A ; ^ * ) and 
[A,T]eCe( A ;£,£*). 

S o T s C 1 + 0 ( A ; ^ * ) means that a - > WaTW*eB(£,£*) is derivable and its 
derivative is a Dini-continuous function. We have for 0<9<1: 

(2.9) ^\A^^*)^Cl+0(A;^^*)^ C,+e(A;<?,<?*). 

Only the first inclusion is not completely trivial, but it follows easily from: 

WeTW*+W_eTW_*e-2T = i fQ {Wt[A,T]W*-W_T[A,T]W_*} dx. 

By lemma 2.4, TeC2(A;£,£*) means that [A,T] and [A,[A,T]] belong to 
B(#,!£ ); this is, essentially, the situation considered by Mourre and Perry, Sigal 
and Simon. The case 0<9<1 was studied in [ABG] while the class #1 is implicit in 
the definition of "admissibility" given in section 4 of [BGM]. 

We shall not explain here how the assumption T e ^ l(A\&9$*) is verified in 
applications. In fact this is quite easy if one uses the technique presented in [BG2] 
together with the estimate proved in the appendix at the end of this paper (see 
[BG2] for examples). 

3 . T h e L i m i t i n g A b s o r p t i o n Pr inc ip le 

In this section we shall summarize the results of our Note [BG1]. Let ;W) 
be a unitary group in a Friedrichs couple and H a self-adjoint operator in ifC with # 
as form-domain (i.e. #=D(IHI1/2) algebraically; by closed graph theorem the 
equality will hold on a topological level too). Then H extends to a continuous 
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symmetric operator (denoted by the same symbol) H : # ^ # * and, if E is the spectral 

measure of H, then E(J)eB(£)nB(£*) for any Borel set J c R . 

D E F I N I T I O N 3.1 : <We shall say that A is conjugate to H on an open suBsetJalR. (in form 
sense) i / T I e C H A * ) and there is a strictly positive number a and a compact operator 
K:£->#* such that E(J)[iH,A]E(J)>aE(J)+K (as operators £->£*). / / K = 0 , we say that 
A is strictly conjugate to H on J. If he R and A is (strictly) conjugate to H on a neighbourhood 
ofX, we say that A is (strictly) conjugate to H at X. If A is (strictly) conjugate to H at all 
points of an open set J, then we say that A is locally (strictly) conjugate toW on J. 

Using the virial theorem (corollary 2.5) it is a trivial matter to show that, 
under the conditions of the first part of the preceding definition, H has in J a finite 
number of eigenvalues (counting multiplicities). We shall denote J0 the set of XeJ 
such that X is not an eigenvalue of H. Then we put (C^lzelCI ±Im z > 0 } . Clearly 
C±3z»—> (z-H)"1€B(8,*,g') as a holomorphic function. In order to control its 
boundary values on J0, we shall need the following space: 

(3 .1 ) S = (S*,D(A;S*))1/2fl . 

Here (v)Q p is the real interpolation functor which makes sense if 0 < 9 < 1 and 

l<p<oo. Hence § is a Banach space such that D(A;# *)c<§(z!£* continuously and 

densely. Taking adjoints we get $(z§* continuously but not densely in general, 

because § could be non-reflexive. We shall denote $* the closure of *§ in § *; it is 

known that (§* )*=§ . Observe that we have a natural continuous embedding 

B(^*,^)c:B(§*), in particular we may consider the holomorphic function 

£±BZ*-> (z-H)~leB(S,S*). 

T H E O R E M 3.1 : Assume that H e ^ ^ A ; ^ , £*) and that A is conjugate to H on the 
open subset JczE . Then the function (D^z*—> (z-H)~leB(§ ,§ *) extends as a 
weak*-continuous function on (C±uJ0. In particular, H has no singularly continuous 
spectrum in J and the function JqBX>—> (X±io-H)~leB($ ,$*) is well defined and 
weak*-continuous. 

T H E O R E M 3.2: Let ($-},ffl;Wj), j=l ,2, be two unitary groups in Friedrichs couples 

with the same Hilbert space 2/t. Let Hj be a self-adjoint operator in № with <$} as 

form-domain and such that H^c^l(A^<S^*). Assume that Aj is conjugate to Hj on 

an open subset J c R (independent of]). Let (Sj=(^*,D(Aj;^*))1/2 l and assume that 
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there is a continuous operator N\S\-^$2 such that H2=H1+V as forms on 

D(H1)xD(H2). Finally, denote Ec. the continuous component of the spectral measure 
of Ej. Then the following relative wave operators exist {hence are complete ) : 

(3.2) W ^ s - l i m ^ e ^ V ^ C J ) ; W ^ s - l i n ^ e 1 ^ 1 " ^ ) . 

4 . P s e u d o - r e s o l v e n t s w i t h a S p e c t r a l Gap 

The theorems 3.1 and 3.2, as we stated them, do not seem to give optimal 
results for N-body Schrodinger hamiltonians. In fact, in this case ^f=L2(Rn) and 

one tries to take as conjugate operator the generator of dilations A=|(PQ+QP), 
where P=-iV is the momentum and Q is the position observable (multiplication by 
xeRn). The hamiltonian has the form H= 5 P2+V(Q) where V is a real distribution 
on R n such that V(Q) (the operator of multiplication by V) is a continuous operator 
tfl(Rn)->tf-l(Rn) (usual Sobolev spaces). A natural choice for the form-
domain of H is V=X\Rn). Then [iH,A]=P2-QV,(Q)=2H-(2V(Q)+QV,(Q)) (where 
V'=VV) as sesquilinear forms on <^(Rn). Clearly HeCl(A'9№\№~1) if and only if 
QV/(Q)eB(<^f1,^f~1). But this condition is, locally, stronger than needed (although it 
covers many examples in which the sum defining H exists only in form sense, so the 
usual Mourre theory does not apply). Our purpose now is to overcome this 
problem, in particular to recover the results of [BGM] from theorem 3.1. Observe 
that, if H is a N-body hamiltonian with short and long range interactions, then H is 
lower semibounded, so it has a spectral gap. We shall now study operators with 
spectral gaps but which are very singular: they need not be densely defined and we 
shall not require that their domains or form-domains be invariant under the group 
Wa. In particular, N-body Schrodinger hamiltonians with hard-core interactions 
are covered by this formalism (cf.joint work with A.Soffer). 

Let TfC be a Hilbert space and Wa=elAoc a strongly continuous unitary group in 
<#f, so A is a densely defined, self-adjoint operator in №. We denote D(A;№) the 
domain of A equipped with the graph-norm. Then D(A;<#) is a Hilbert space 
continuously and densely embedded in №, hence we may define by real 
interpolation the Banach space: 

(4.1) <T = (# ,D(A;# ))1/2fl . 

Then D(A;^f )cSra№ continuously and densely. After the identification №=№*, we 

get ^cJVcJF* continuously, in particular B ^ c B ^ , ^ * ) continuously. 
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Let {R(z)| ze(C\IR} be a self-adjoint pseudo-resolvent in i.e. a family of 
bounded operators such that R(z1)-R(z2)=(z2-z1)R(z1)R(z2) and R(z*)=R(z)*. It is 
known (see [HP]) that the closure of the image of R(z) is a subspace ft0 of 2fi 
independent of z, and there is a self-adjoint, densely defined in # 0 operator H such 
that R(z)|^fo=(z-H)-1 and R ( z ) | # 9 # O = 0 (formally, think that H=oo on ^ G ^ 0 ) . It is 

clear that R(z) is a holomorphic function of ze(D\R. We shall say that the pseudo-
resolvent {R(z)} has a spectral gap at the point ^ 0 e E if this function extends to an 
holomorphic function on a neighbourhood of A,0. Of course, this is equivalent with 
saying that X0 is in the resolvent set of the operator H in # 0 . 

L E M M A 4.1: If the operator R(z0) is of class % \A\3K)for some z0 in the domain of 

holomorphy o/{R(z)}, then R(z) will be of class (£l(A,ffl)for all z in this domain. 

Proof: The hypothesis means, according to (2.8): 

(4.2) j j ll[Ae,[A£,R(z0)]]llBW d£ < - . 

Then this will be true if Ae is replaced by A_e too. Since (Ae)* = A_e 
andR(z0)*=R(z^), it will follow that R(z*0)e#i(A;<#). Hence, by an 
analytic continuation argument, it is enough to show that R(z)e# X(A\№) for z near 
z0. If |z-z0| IIR(z0)lkl, then R(z)=R(z0)[l+(z-z0)R(z0)]-1. So it is enough to prove 
two things: (i) if SeB(^f) is bijective and SeVl(A\X\ then S^eff^A;*?); (ii) if 
S,TeB(#) are of class <€\A\tf\ then STetf i(A;#) . But: 

(4.3) [Ae.IAe.S"1]] = 2S-1[Ae,S]S-1[Ae,S]S-1-S-1[Ae,[Ae,S]]S-1 

(4.4) [Ae,[Ae,ST]] = 2[Ae,S][Ae,T] + [Ae,[Ae,S]]T + S[Ae,[Ae,T]]. 

It remains to observe that ll[Ae,S]ll<const. if S e ^ !(A;^f), because this implies 

SeCKA;^) and we may use (e) of lemma 2.4. • 
If the assertions of lemma 4.1 are true, we shall say that the pseudo-resolvent 
{R(z)} is of class ^1{A). In the applications it is sometimes useful to be able to 
express this property directly in terms of the self-adjoint operator H. The next 
criterion is efficient in the N-body case. 

PROPOSITION 4.2: Assume that {R(z)} is the resolvent of a self-adjoint, densely 
defined operator H in 7fC with domain invariant under W. Denote % the domain o /H 

equipped with graph-norm and identify &ctfc:$*. Then the pseudo-resolvent 
{R(z)} is of class !(A) if and only i / H e f f K A ; ^ * ) . 
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Proof: Assume He <¡? KktfJS *). Let z0e C not in the spectrum of H Then H-z0=S 

is an isomorphism of # onto ¿íf and onto # . Since A£ is a bounded operator in 

each #s, it is easy to show that (4.3) is valid. We have to prove (4.2). The last term 

in (4.3) is integrable because it is bounded by clltA^fA^H]]!!! v The first term in 

the r.h.s. of (4.3) has norm in B(^f) bounded by 

cHEA^HlH^.! ll[Ae,H]||l5_1/2=c||[A£,H]||'_1/2 < c' e-2||W£HW*-H||^1/2 . 

Hence it is enough to prove that the last expression is integrable. We use the identity 
2(#"8-l)=(^T2£-l)-(^rE-l)2 in order to obtain for 0<e<l: 

(4.5) 2||WeHW*-H||lf_1/2S l|W2£HW¿-H||lr.1/2 + ce2||[A£[A£,H]]||lr_1/2. 

Hence 

(4.6) 2[ il0e~2 ||WeHW*-H||^1/2 de]"2 < [ Jje"2 l|W2£HW2£-H||'_1/2 de]1/2 

+ c[J¿e2||[A£[A£,H]] lí_1/2d8]i/2. 

In the first integral of the r.h.s. make the change of variable 2e=x; the contribution 
of the integral over TG(1,2) is finite, whereas the integral over TG(0,1) is 2~1/2 
times the l.h.s. of (4.6). So, it is enough to prove that the last term above is finite. 
But we have, by complex interpolation: 

(4.7) 82||[A£,[A£,H]]||'_1/2 < 82||[A£,[A£,H]]||1>0 l l t A ^ A ^ H ] ] ! ! ^ 

< c||[Ae,[Ae>H]]||lf.1 , 

which finishes the proof of (4.2). In order to prove the converse (S_1e # => 

Setf^Atftf*)), a similar argument is applied to (4.3) with S replaced by S _ 1 . • 

Remark .There is a variant of this proposition for the case when W leaves invariant 

only the form-domain of H, i.e. the space <Sm. In order to be able to use this in 

applications, one needs some informations about D(H), which can be obtained by 

more refined methods if H is, say, an elliptic operator (see [GT]; observe that !£, 

the domain of H, could be a rather pathological space even if #1/2, its form-domain, 

is quite simple). 

The next result is an easy corollary of theorem 3.1. 

PROPOSITION 4.3: Let {R(z)} be a self adjoint pseudo-resolvent of class tfl(A). 

Assume that {R(z)} has a spectral gap at some point X0e E and let J be an open 

subset of E such that X0 does not belong to its closure. Finally, suppose that A is 

conjugated to R(k0) on ]={(XQ-X)~l \ \e]}.Then there is J0cJ, with J\J0 a finite set 
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such that the holomorphic function ( 0*3 z»—> R(z)eB(5r,5r*) extends to a weak*-

continuous function on (E±uJ0. If A is strictly conjugated to R(k0) on J, then J0=J. 

Remark: J\J0 coincides with the set of eigenvalues in J of the self-adjoint (non-
densely defined in general) operator H; these eigenvalues are of finite multiplicity 
and the associated eigenvectors belong to the range of R(z) (which is independent of 
z). If the domain of H is invariant under W, proposition 3.3 of [BG3] shows how to 
verify the fact that A is conjugated to R(^0). 

Proof: Observe first that R(^0) is a bounded, self-adjoint operator.A number |ie J 
is an eigenvalue of R(^0) if and only if X0-[i~l is an eigenvalue of H (in №0; 

observe that 0<£J) the multiplicities being the same. We apply theorem 3.1 with 
#=< f̂ and H replaced by R(A,0); hence $-S^. Then remark that for non-real z we 
have 

R(z) = (z-X0)-1R(X0)[R(^0H(z-^0)-1]-1. 

In fact, for |z-A,0| IIR(^0)II<1 this follows from the equation defining the notion of 
pseudo-resolvent and for arbitrary z it remains true by holomorphy. Finally, use 

the fact that z»—> (^0-z)_1 is a homeomorphism of t ^ u J o onto (D\j(J\{eigenvalues 
ofRao)} ) . • 

The space in which the limiting absorption principle has been proved is too 
small for several important applications. In order to improve it, we follow [PSS] 
and use the formula 

(4.8) R(z) = R(k0) + (X0-z)R(X0)2 + (Vz)2r(^o)r(z)r(^o) 
obtained after an iteration from R(z)=R(^0)+(^0-z)R(^0)R(z) (sometimes the form 
R(z)=R(?i0)+(^0-z)R(?t0)1/2R(z)R(?i0)1/2, with R(^0)1/2 conveniently defined, is of 
simpler use). As an example, we state the following general form of the limiting 
absorption principle: 

PROPOSITION 4.4: Assume that the conditions of Proposition 4.3 are fulfilled. Let 
X,XX be Hilbert spaces such thatJCx<zJC and № aJC continuously and densely. 

Identify JC *CL№=$!*C:JC and assume that R(A,0) extends to a continuous operator 
with the property R(A,0)«?f 1eD(A;<^f). Denote X m x=(tf ,«#J)1/2 i (real 

interpolation) and observe that X mx<zJ{ continuously and densely, so that 
X*cztf^/2land B(Jf,Jf * ) c B p f 1 / 2 1 ) continuously. Then : 
(i) R(z)eB(tf9tf*) for each zeC± and the function €±sZ^ R(z)eB(Jf ,«#"*) is 
holomorphic ; 
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(ii) When considered with values in Bpf m v ^ / 2 \X the preceding application 
extends to a weak*-continuous function on ( t ^uJ^ 

Proof: The assertion (i) follows trivially from (4.8). Closed graph theorem 
implies R(>.0)eB(Jf 1 ? D(A ;^f)) . Since R(X0)eB(tf also, we get R(k0):tf 1 / 2 , 1 - ^ 

continuously by interpolation. Then taking adjoints and using the symmetry of 
R(^ 0) w e obtain R(X,0):5r*—>Jf * / 2 r Hence (4.8) and proposition 4.3 imply (ii).B 

Let us consider, as an example, a situation which covers the N-body 
Schrodinger hamiltonians with very singular (even hard-core) interactions. Let 

^ = L 2 ( I R n ) , tf=tf-\Rnl * = # 1 ( R n ) . We take A 4 ( P Q + Q P ) the generator of 

dilations. If <#s

t={u€=^*(IRn) | <P> s <Q> l ue#} are the usual weighted Sobolev 

spaces, we take Xx=^1- The spaces X m x can be explicitely described as follows 

(see [BG2]). Let 9 , r |eC~(IR n ) be such that 0(x)>O if 2~ 1<|x|<2 and 0(x)=O 
otherwise; r|(x)>0 if |x|<2 and r|(x)=0 otherwise. For any s,teE and l<p<oo let ^ft

s

p 

be the Banach space of all temperate distributions u such that: 

| |<P> s r|(Q)u |U + [ P | l<P> s r l Q(rlQ) u\\l rMr ] L 7 P < 00. 

Then X l l 2 , \ ^ \ k \ A N D ^ 1 / 2 , 1 = ^-1/2,00-

If {R(z)} is a pseudo-resolvent in such that R(^ 0)eB(<^f" 1 ,^ + 1), in order to 

get the results of proposition 4.4 we have to ask R(À,0)^"1

1cD(A;<^f). For this 

PQR(À< n)<^r i

1c^ would be enough and this condition is a consequence of 

||<P>sr|(Q)u|U + [ P |l 

COROLLARY 4.5: Let {R(z)} be a self-adjoint pseudo-resolvent on the Hilbert space 
^ f=L 2 (R n ) . Assume that {R(z)} has a spectral gap at A, 0eR and that R(A,0) and 
[Qj,R(A,0)] belong to B(^f" 1,<^ 1) (j=l,...,n). Moreover, assume that a closed 
countable set x ( H ) c E is given such that A = ^ ( P Q + Q P ) is locally conjugated 
to R(X0) on {(X0-X)~l I iUx(H)} and that {R(z)} is of class C1 (A). Then there 

is a closed countable set c ( H ) c R such that the holomorphic function 
C ± 9z»-^ R(z)eB(<?zf~/2 1/2, 00000) extends to a weak*-continuous function on 
CMRNcCH)). 

If one uses the main idea of the proof of theorem 3.2 in the preceding context 
(the fact that the Banach space X~J2 x is of cotype 2; see [BG2]) one immediately 
obtains a very precise criterion for the existence and the completeness of the wave 
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operators. We state it only for densely defined operators, although the general case 
is very similar. 

COROLLARY 4.6: Let H1? H2 be two self-adjoint, bounded from below densely 
defined operators in № =L2(Rn) with 2% 1 as form-domain and such that 
[ Q j A J e B ^ 1 , ^ " 1 ) i/j=l,...,n; k=l,2. Assume that H1-H2:^f 1-^<^f_1 extends to a 
bounded operator from the closure of №x in <#i1/2 ^ into №~y2 v ^na^y» assume 
that for some ^QeR the operators (A^-Hj)-1 and (A,0-H2)_1 are of class (^1(A) , 

A=j(PQ+QP) , and that A is locally conjugated to them outside a closed countable 
set. Then Hv H2 have no singularly continuous spectrum and the wave operators 

s-limt^±ooelH2te~iHltEj exist and have E ^ f as range (E£ is the projection on the 
subspace of continuity of Hk). 

5. Examples . Optimality of the Results . 

The results of the preceding section are corollaries of the theorems 3.1 and 3.2 
and are formulated in a form suited to N-body type hamiltonians. In this section we 
shall consider other situations and obtain results which demonstrate not only the 
power of the theorem 3.1 but also its fineness (especially in connection with the 
^l(A) assumption). We first prove a very precise division theorem (only the one-
dimensional case is treated because of lack of space). 

PROPOSITION 5.1: Let h : R -^R be such that J* e-2co2(e)de < <*>, where 
co2(e)=supxe R |h(x+e)-2h(x)+h(x-£) | is the second modulus of continuity ofh. 
Then h is of class C1. Assume that h is a homeomorphism and that h' is bounded. 
Then for each A,eR the limits lime^Q(h(x)-A,+i£)_1 = (h(x)-A+io)-1 exist in the 
sense of distributions. Moreover, the operator of multiplication by the distribution 
(h(x)-A .Tio)-1 belongs to B(^f 1/2,1(R),<#~1/2'°°(R)) and depend *-weakly 

continuously on X. In particular, the Besov space ffll,2,l(R) consists of continuous 

functions and the distribution VPh(x)-1 belongs to the Besov space <#f~1/2'°°(R). 

Proof: Let us mention first that ^S'P^R) are the Besov spaces denoted BS^(R) in 

[ T ] . In the Hilbert space <#f=L2(R) we consider the tranlation group 

(Wau)(x)=u(x-a). Then Wa=e"iaP and we take A = - P = r ^ , H=h(Q) the operator 

of multiplication by h in № (we assume, without loss of generality, that h'(x)>0 for 

all x e R ) . We have to take £=D(|H|1/2)={ue<tff | (l+|h(Q)|)1/2u€<Kf}. Since h is 

Lipschitz, £ is invariant under W. Observe that 
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IIWeHWe*-2H+W_eHW_*ellBW = co2(e), 

so that H e ^ ^ A ; ^ , ^ * ) . A remark made after definition 2.6 implies that the function 
a—> Wah(Q)W*=h(Q-a)eB(g>^*) is norm-C1. In particular h is of class C1 (for 
another proof of this fact, see theorem 3.3, p.87 of [Sh]). Then [iH,A]=h'(Q) which 
easily implies the Mourre estimate (if I c R is compact, h_1(I) is also compact and 
the inf of h' on compact sets is strictly positive). Finally, observe that 

M^D(AnL,/,p(#,D(A^M^D(AnL,/,p(#,D(A^M^D(AnL,/,p(#,D(A^ 

and OKf172'1) =^-1/2'°°. Taking h(x)=x we see that Mm\WL)aC°(WL)M 

This proposition allows us to make some comments concerning the degree of 
optimality of theorem 3.1. Two different questions have to be considered: 1) is the 
space § optimal, i.e. is it, in some sense, the largest space, in which the L.A.P. 

holds? 2) Is the regularity assumption H e ^ ^ A ; ^ , ^ * ) optimal, or could it be 
replaced by HeCjj(A;£,S?*)? Let us discuss these questions in the setting of 
proposition 5.1. Example 2, page 50, of [P] shows that the best (i.e. smallest) local 
Besov space ^ P ( R ) which could contain the distributions (x±io)-1 is obtained for 

s=-l /2, p=oo (because the imaginary part of +n~1(x±io)~l is the Dirac measure at 
zero) and we have proved that in fact they do belong to this space. So in the scale of 
Besov spaces our space S gives the optimal result in this example. However, as 

explained at the end of section 4 of [BGM2], there is a Banach space X such that 
tfm>lc:X strictly and the L.A.P. is valid in B(Jf ,Jf*) (but this space is not 
comparable with №1/2). Let us pass now to the second question. Consider a C1-
diffeomorphism h:R—>R and ^ e R . Even if the distribution (h(x)-A,+io)-1 exists, 
then it does not belong to H 182 loc in general, because the derivative of h could be 

any (positive) continuous function and the space #~¡¿¿2,1 is not stable under 

multiplication by continuous functions (otherwise it would be just C°(R )) 
(the derivative of h appears when the action on test functions of the distribution 
(h(x)-^+io)-1 is calculated). But something much worse can happen. Using 
an example due to Lusin (see §13, ch.VIII in [Be]) it is easy to construct a 
C^diffeomorphism h with absolutely continuous derivative such that for every 
rational number A,e[0,27c] the limit of (h(x)-A,+ie)_1 as does not exist in 
$ ' ( R ) , i.e. in distribution sense ( or one can use theorem 5.2 from [Ga] in order to 

construct a strictly positive, bounded, uniformly continuous function g with Hilbert 
transform equal to infinity on a dense set and then define h by h'(x) = (g(h(x))_1). 

Finally, let us mention that a condition essentially weaker than ¡l e~2co9(8)de < ©o 
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cannot force the uniform continuity of h', i.e. the modulus of continuity of h' can 

be made of order t"2co2(t)dt (see page 88 of [Sh]). 

The next proposition is a remark which concerns the generality of the locally 
conjugate operator method. We mention it because of the obvious connection with 
proposition 5.1 and because the construction we make explains the terminology 
"locally conjugate operator". 

PROPOSITION 5.2: Assume that a self-adjoint operator H has a purely absolutely 
continuous spectrum of constant multiplicity on an open interval IczR. Then there 
is an operator A which is strictly conjugate to H on any compact subset of I {and 
the derivative of the function oc»—> WaHWa is a B{ffl)-valued C°° function). 

Proof: The assumption we made on H means that there is a Hilbert space X such 
that HE(I) is unitarily equivalent to the operator Q of multiplication by the variable 
x in the Hilbert space № Q=L2{l,dx\X) of square-integrable X-valued functions on I. 
Let F:I—>R be a bounded function of class C°° with all derivatives bounded, with 
F(x)>0 for XG I and such that jc F(x)_1dx=jb F(x)-1dx = oo (where a<c<b and 

I=(a,b)). Then A0=-1/2(F(Q)P+PF(Q)) is a self-adjoint operator in XQ such that 
[iQ,A0]=F(Q) is strictly positive on each compact subset of I. We take A equal to 
U_1A0U on E(I)# (U is the unitary operator E( I )# - > ^ 0 which transforms HE(I) 
in Q) and equal to zero on E(R\I)^f. Observe that if we take F(x)=0 for x*I, we 
shall have [iH,A]=F(H). • 

We shall now give a simple example of a hard-core type situation, in which 
neither the domain nor the form-domain of the hamiltonian are invariant under W, 
but the conjugate operator method can be used if one works directly with the 

resolvent. In <#=L2(R) let H 0 = P 2 = - ^ and R0=(H0+1)-1. We would like to study 
the operator Hoo=H0+Voo where, formally, VOQ(x)=+oo if x<0 and Voo(x)=0 if x>0. 
Rigorously, this operator is the limit in the norm-resolvent sense as k^+°O of 
H K = H 0 + k ( 1 - E ) where E is the operator of multiplication by the characteristic 

function of (0,oo). Let (t>(x)=2-1/2E(x)e~~x. Then R ^ l i m ^ ^ H ^ i r ^ E R ^ - c t ) ® ^ 
where <|)®(|> is the rank one operator which sends u into (])«j)lu>. We shall calculate 
the order of regularity of R^ with respect to the translation group (we do this 
because the result is simpler; in fact the dilation group must be used in order to 
have an example relevant for the N-body case; however, if the point zero, where 
the potential becomes infinite, is replaced by an arbitrary non-zero point, the order 
of regularity of R^ with respect to the translation or the dilation group are 

obviously the same). If Ta=elPoc, then TaRooT_a=EaR0Ea-(|)a®(()a where Ea is 
the operator of multiplication by the characteristic function of (-a,<») and 
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<|)a=Ta<t). Calculating the derivative at a=0 one gets [iP,R00]=2(()®(|), hence R^ i s of 

class CKP;^).Then Ta[iP,RJT_a=2<|>a®<|>a and ll(()a-(|)ll^=2-1/2ll-e-al1/2~a1/2. 

To conclude, R^ is of class C3/2(P;^f) and not more. 
We mention now another explicitly soluble example in which the conjugate 

operator method works but the domain of the hamiltonian is not invariant under the 
group. Let 5 be Dirac measure at zero on IR . Let ft and H0 as above and H=H0+g5 

with g e R \ { 0 } (form-sum). The form-domain of H is Xl(R), but the functions 
in the domain of H have to verify u'(+Q)-u'(-0)=gu(0), so that the domain is 
not invariant under the dilation group W. If g<0, then H has a bound state of 
energy -g2/4, if g>0 then H has no bound states and it always has a purely 
absolutely continuous spectrum equal to [0,°o).The form-domain of H is obviously 
invariant under W and WaH W*=e~2aP2+eag8 as forms on 7fC1 (because 5 is 

homogeneous of degree - n in Rn; or use <ulHu>=J lu'(x)l2dx+glu(0)l2). Hence H is 
of class C°°(k\X\X-x) and [iH,A]=2H-3g5. Since S : ^ 1 - ^ " 1 is a continuous 
operator of rank one, A will be conjugate (strictly if g<0) to H on (e,°°) and - A 
will be conjugate (strictly if g>0) to H on (-«>,-e) for each e>0. Hence we get all 
spectral properties of H from theorem 3.1. 

Our final topic is an improvement of the perturbative method of verifying 
Mourre estimate presented in proposition 7.6 of [BG2]. This allows one to treat 
locally very singular potentials. We begin with the following simple remark: 

L E M M A 5.3: Let H,H0 be self-adjoint ,not necessarily densely defined, operators, in 
some Hilbert space X. If (H-z)"m-(H0-z)"m is compact for some fixed m>l and 
for all ze (C\R, then f(H)-f(H0) is compact for each f:R —>(C continuous and 
convergent to zero at infinity. In this case H and K0 have the same essential 
spectrum. 

Proof: Let R(z)=(H-z)_1, R0(z)=(H0-z)_1 the associated pseudo-resolvents. If 
f=g(m-l) f()r some g e c ^ ( R ) , formula (6) from [BG1] gives: 

f ( H ) = I ^ ( " i r K k r 1 ) ! j R g ( k ) № r i k Rm(^ i ) ]d^ + 

+(H)=I^("irKkr1)!jR Sy~lde JIR 8(n)^)Im[in R m ( * + f e № 

Here n>m+l in order to have norm-convergent integrals. A similar formula for 
f(H0) shows that f(H)-f(H0) is compact for such f. Let 

C00(R)={cp:R ->C I (p continuous and (p(x)^O if lxl->oo} 
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with the sup norm. Since C00(E)9(pi—> cp(H)-cp(H0)eB(^f) is norm-continuous, it 

is enough to show that .#>={g(m~1) | ge C~(R)} is a dense subspace of C ^ R ) , or of 

C~(IR) equipped with the sup norm. But feJI/* if and only if 

J f(x)dx = J xf(x)dx=...=/ xm_2f(x)dx = 0 
and f ^ Jxjf(x)dx are linear functional on which are not continuous for the 
sup norm, so the intersection (j=0,...,m-2) of their kernels is dense for this norm. 
Since X does not belong to the essential spectrum of H if and only if there is 
feC^(IR) with f(X)*0 and f(H)=compact, the last assertion is trivial. • 

The assumption of Lemma 5.3 is easy to verify and allows quite singular 
perturbations H of H0 (see the discussion in section 8 of [Pe]). In the next 
proposition we shall say that a pseudo-resolvent {R(z)} is of class C^(A) if R(z) is 

of class C*(A;<?tf) for some z in the domain of holomorphy; the proof of lemma 4.1 
shows that this will remain true for all such z. 

PROPOSITION 5.4: Let {R0(z)}, {R(z)} be two self-adjoint pseudo-resolvents which 
are of class Cln(A) for some self-adjoint, densely defined operator A. Assume that 
R(z)-R0(z) is compact for some z and that one of them has a spectral gap, so that 
they have a common spectral gap at some point XQe"R. Then A is conjugated to 
R(X0) at some point Xe]R> if and only if it is conjugated to R0(^0) at X. 

Proof: Write R=R(A,0), R0=R0(A0). Since 

[iA,R]-[iA,Ro]=lime^0e-1[We(R-Ro)W*-(R-Ro)] 

is norm limit of compact operators, it will also be compact. Let us write S ~ T if 
S-T is compact. Then (p(R)~cp(R0) for each continuous function q>. Hence 
(p(R)[iA,R]q>(R)~(p(R0)[iA,R0](p(R0). From this the assertion of the proposition 
follows easily. • 

If {R0(z)} is of class *(A), then one may deduce that {R(z)} has the same 
property by applying theorem 6.2 or 6.3 from [BG2] to the difference R(z)-R0(z) 
for some fixed z. Then theorems 3.1 and 3.2 will give a detailed spectral and 
scattering theory for H. For example, results like theorem 8.1 of [Pe] are easily 
obtained. Observe that one has to put conditions only on the difference of the 
resolvents of H and H0 (as in Kato's criterion for the existence of wave operators), 
so H could be very singular with respect to H0 (for example a differential operator 
of higher order). Remark that not only short-range, but also long-range singular 
perturbations are allowed. Moreover, the unperturbed operator HQ can be quite 
complicated (e.g. a N-body hamiltonian), a situation in which usual Enss method (as 
presented in [Pe] for example) does not work. 
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A p p e n d i x : A Tauber ian E s t i m a t e 

We shall prove here an estimate which plays an important role in the 
applications we have in mind and which improves the tauberian theorem described 
in [BG2]. Below we denote BC(R n) the C*-algebra of bounded, continuous 
functions on R n equipped with the norm llfll00=sup{lf(x)l I x e R n } . C£(Rn) is 
equipped with the usual Schwartz topology. 

We shall consider a subalgebra ^ c B C ( R n ) , which contains the constants, and 

which is equipped with a norm II for which M is a Banach space with continuous 

multiplication (i.e. 3M<«> such that Ifgl^<Mlgl for all f,g in M). We assume that 

C ~ ( R n ) o ^ c B C ( R n ) the embeddings being continuous. Let us denote fa(x)=f(ax) 

for each function f on R n and each o>0. Our final assumption is that M is 

invariant under dilations, i.e. f°^M if feJt and a>0, and that there are constants 
0<M,N<oo such that 

(A.l) IfalM < M<a>NlflM for all feJt (<g>=(1+o2)1/2). 

THEOREM: Assume that E is a Banach space and that a continuous, unital 

homomorphism Msf*—>f(A)eB(E) is given. Denote f(oA)sfa(A). Let peJt and 

assume that there is a number 1>N such that for any function 6eC~(Rn\{0}) we 

have lpT0lM < C(0)T^ if 0<T<1. Let £:Rn->R be a function of class C°° and such 
that %(x)=0 (resp. ^(x)=l) in a neighbourhood of zero (resp. of infinity). Denote 
r|(x)=xV^(x). Then there is a constant c such that for all ueE and all 0<£<1: 

(A.2) llp(eA)ull < cll£(eA)ull + cel J* IIT|(TA)UII x~l~l dx + ce^llull. 

Remarks: Here A has to be interpreted as a symbol which helps to distinguish the 
function feM and the operator acting in E associated to it by the homomorphism. 
However, in applications A is in fact an operator or a finite set of operators in E. 
Observe that r |eC~(Rn\{0}) so it belongs to Ji, and £ - l e C £ ( R n ) , so that £ 

belongs to M too. Hence all terms in (A.2) are well defined and (A.2) is an 
estimate of the rate of decay of llp(eA)ull as e->0 in terms of the rate of decay of 
H^(eA)ull and llr|(eA)ull. The condition we put on p is satisfied if there are 
coeC°°(Rn\{0}) and pQeM such that p(x)=co(x)p0(x) for x*0 and cq(tx)=t*co(x) 
for x>0 and x**0. In fact, we shall then have: 

iPxei^ = i c o ^ e i ^ = T ' lcoepj i^ < M x ' k o e i ^ i p ^ < cxl 
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for 0<T<1, because OdQeC^czJt. Observe that p has a zero of finite order I at zero 
in this example, while ^ and r| have zeroes of infinite order: this explains why we 
call (A.2) a "tauberian estimate". Let us mention that in all the applications Hp(eA)ll 
is a constant independent of 8. For example, if A is an unbounded self-adjoint 
operator in a Hilbert space E, then llp(eA)ll=const. while, if supp 9 is included in 
0<a<|x|<b<oo, then llp(TA)0(A)ll < supx|p(xx)0(x)| < csup{ |p(^) | | ax<|^|<bx}. 

Finally, let us observe that if ^ e C ^ ( E n \ { 0 } ) and £(x)=l on SUPP "H* then 
IIti(XA)UII=IIti(TA)C(TA)UII< IIT|(TA)II IIC(XA)UII<CIIC(TA)UII for T<1, hence the 
precise form of r\ is irrelevant. Moreover, if ^ is a function with properties 
similar to ^ , then there is [i>0 such that ^1( | ix)=l for xe supp ^ , hence 
H^(eA)ull=ll^(eA)^1(e|LiA)ulI< cIl^1(ejaA)ulI for e<l , so the precise form of ^ is also 
irrelevant. 

Proof of the theorem : Observe first that for 0<a<b<°° and x^O we have 
^(bx)-^(ax)=Jb rj(tx)t_1dt. In particular l=^(x)+J7 r|(tx) t-1dt if x?K), which implies 

2. 1 
(A.3) pe(x) = pe(x)^e(x)+J~ pe(x)iiet(x) fMt (x*0). 

The application o>—> r | aeC^(EN) is continuous on (0,°o), hence t^if^Ji has 
the same property. Moreover, for t>l: 

(A.4) lper|etU = K p ^ V ' U ^ M<8t>Nlpt-1T1l^ < c(8)tN^, 

because r|eC~(Rn\{0}). 

Hence J~ lper|etl t_1dt so that the integral per|et t_1dt exists in M (in 
norm). Using (A.3) we obtain: 

(A.5) p ^ p ^ + J ^ p ^ r M t 

equality in Ji (in fact, since all the terms are in Ji and M consists of continuous 
functions, it is enough to show that the values at each xtK) of the right and left side 
are equal, which is assured by (A.3)). The continuity of the homomorphism 
f»—» f(A) implies now: 

(A.6) p(8A) = p(eA)^(eA) + J~ p(eA)r|(etA) rMt 

(the integral exists in norm in B(E) due to (A.4)). 

Consider now some ueE and let us apply (A.6) to it. Since Hp(eA)ll< clp£l const, 

for 0<8<1, we get: 

(A.7) llp(eA)ull < cll^(8A)ull + j ~ Hp(sA)r|(8tA)ull rMt = 

= cll£(eA)ull + il Hp(8A)r|(aA)ull crMa + J~ Hp(eA)ri(aA)ull crMa. 
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In order to estimate the first integral above, let 0eC~(Rn\{O}) be such that 6r|=r|. 

Then 

Hp(eA)r|(aA)ull = Hp(eA)9(cA)r|(aA)ull < ll(pE9a)(A)ll IITI(GA)UII < 

< clpe0al^llr|(aA)ull = cl(pea^1G)alM Hr|(aA)ull 

< cM<a>Nlpec^"1Glt^ Hr|(aA)ull < Cl<a>N(e/a)l\\r](aA)u\\. 

If we use this estimate in the first integral from the last member of (A.7), we obtain 
the second term from the right-hand side of (A.2). Finally, we estimate the last 
integral from (A.7) using (observe that r |eC^(Rn\{0}) and a> l ) : 

Hp(8A)r|(aA)ull < clper|<^llull = c K p ^ r i ) ^ Hull < 

< c ^ l p ^ S i l M Hull < c2aN" Vllull. 

Since X>N, we shall obtain the last term of (A.2).B 
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