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O N T H E E N V E L O P E S OF H O L O M O R P H Y O F 

S T R I C T L Y L E V I - C O N V E X H Y P E R S U R F A C E S 

Guido L U P A C C I O L U 

I N T R O D U C T I O N 

We shall be concerned with the subject of holomorphic continuation of 
CiMunct ions from a relatively open part of the boundary of a strongly pseu-
doconvex domain. 

Let M be a Stein manifold of dimension n > 2 , i ? C C M a C2-bounded 
strongly pseudoconvex domain and K a proper closed subset of the boundary 
bD of D. 

It is well-known that , due to the strict Levi-convexity of bD \ K, there 
exists an open set U C -D, having bD \ K as a part of its boundary, such tha t 
every continuous CR-function on bD \ K has a unique continuous extension 
to (bD\K)UU which is holomorphic on U. The existence of U is referred to 
as the H. Lewy's extension phenomenon. 

More recents results yield sharper information on U; in particular it has 
been shown that the open set D \ K-p (KJJ = 0(D)-h.\i\l of A") is such a U 
with the mentioned features (see [11, 6] and the references therein). 

For n = 2 it is also known that D \ K-Q has another independent property: 
it is pseudoconvex (see [8, 9, 10]). This, combined with the above, implies at 
once the following noteworthy result: 

(J) For n = 2 the envelope of holomorphy of bD\K is D \ KJJ. 

Remark. Here above and throughout the continuation we speak of en
velopes of holomorphy of non-open subsets of M. We recall tha t in general 
the envelope of holomorphy E(S) of an arbitrary subset S of a Stein man
ifold can be given a precise definition as the union of the components of 
S = spec(0(S)) which meet S (see [5]). However, in the case of our concern 
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where 5 = bD \ K, for the purposes of this paper the envelope of holomorphy 
may be simply understood as the disjoint union of bD \ K and the enve
lope of holomorphy E(U) of an open set U as specified above, regarded as a 
holomorphic extension of U. 

An immediate consequence of (J) is: 

(/)' For n = 2, in order that K be removable, in the sense that each con
tinuous CR-function f on bD \ K may have a continuous extension F G 
C°(D \ K) n 0(D), it is necessary and sufficient that K-^ = K, i.e. that K be 
(D(D)-convex. 

On the other hand, for n > 3 it is not true in general tha t D \ K-p is 
pseudoconvex, as simple examples show, and hence the extension of ( / ) to 
general n > 2 fails to be valid. Indeed Corollary 2 below specifies the necessary 
and sufficient conditions for D \ K-Q to be pseudoconvex when n > 3. Also 
the extension of ( / ) ' to general n > 2 does not hold, since for n > 3 O(D)-
convexity is no longer necessary for removability: for example every Stein 
compactum on bD is removable for n > 3 (see [11]). 

In fact, when n > 3 no theorem of the kind of ( / ) , to the effect of describing 
the envelope of holomorphy of bD \ K for an arbitrary compact set K C bD, 
is known, and it is even unknown, as far as we can say, whether it is always 
t rue tha t bD \ K should have a single-sheeted envelope of holomorphy.1 

As regards ( / ) ' , on the contrary, an extension to n > 2 has been recently 
established (see [7]). It can be stated as follows: 

( iT) For n >2, in order that K be removable it is necessary and sufficient 
that Hn~l(K]0) = 0 and the restriction map Hn-2{D]0) -> Hn~2(K', O) 
have dense image. 

Since for n — 2 the vanishing of Hl(K\ O) is equivalent to the condition 
tha t K be holomorphically convex (see [5]), it follows that ( iT) is indeed an 
extension of (I)' to general n > 2. Note that , since D is a Stein compactum, 
and hence Hq(D; O) = 0 for q > 1, when n > 3 the condition on the restriction 
map amounts to having °Hn~2(K\0) = 0 , where the suffix a means the 
associated separated space. 

1 Added July 19, 1993. Recently E.M. Chirka and E.L. Stout [Removable Singularities 
in the Boundary (to appear)] gave an example of a C°°-bounded strongly pseudoconvex 
domain D CC C2m, m > 2, and a compact set K C bD, with bD \ K being connected, 
such that the envelope of holomorphy of bD \ K is not single-sheeted. 
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(II) gives a first answer to the question of finding, for general n > 2, the 
envelope of holomorphy of bD \K. In fact it states a necessary and sufficient 
condition on K in order tha t the envelope may be the whole D\K. Here we 
shall establish a sharper result of this kind, which includes both ( / ) and (II) 
as particular cases, namely we shall prove the following theorem. 

T h e o r e m . Let n > 2 and let E be a compact set such that K C E C K^. 
Then, in order that D\E may be the envelope of holomorphy of bD \ K, it is 
necessary and sufficient that the following conditions should be satisfied: 

(1) The restriction map Hq(E\ O) -> Hq(K\ O) is bijective for q < n - 3 
and is infective with closed image for q = n — 2. 

(2) H^iE-.O) = 0 and the restriction map Hn'2(B]0) -+ Hn~2(E',0) 
has dense image. 

It is plain that this theorem implies ( / / ) : just take in it E = K. On the 
other hand, for n = 2 Condition (2) means that E — K-p, and then Condition 
(1) amounts to saying that the restriction map O(K^) —> O(K) should be 
injective with closed image, which indeed can be shown to be automatically 
true (see [8]); therefore for n — 2 the theorem does reduce to ( / ) . 

We wish to mention a couple of straightforward further consequences of 
the theorem. If we apply it to the case that n > 3 and E is holomorphically 
convex (e.g. a Stein compactum), on account of the vanishing of Hq(E] O) 
for q > 1, we get at once: 

Corol lary 1. Let n > 3 and let E be a holomorphically convex compact set 
such that K C E C K^. Then, in order that D \ E be the envelope of 
holomorphy of bD \ K} it is necessary and sufficient that Hq(K\ O) = 0 for 
1 < q < n — 3, that Hn~2(K, O) be separated and that E be the envelope of 
holomorphy of K. 

In particular we can state: 

Corol lary 2. For n >3, in order that D\K-Q be the envelope of holomorphy 
of bD \ K, it is necessary and sufficient that Hq(K\ O) — 0 for 1 < q < n — 3, 
that Hn~2(K] O) be separated and that Kjy be the envelope of holomorphy of 
K. 
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Remarks, (i) The cohomological conditions on K in the preceding corol
laries can be shown to be equivalent to the following: 

Hn~2(M \ K\ O) is separated, if n = 3; 

Hq(M \ K\ O) = 0 for 2 < q < n - 2, if n > 4. 

Moreover we recall tha t H2(M\K; O) is separated if and only if d£0,1(M\K) 
is a closed subspace of £° '2(M \ K). 

(ii) It is not possible to omit, in the preceding corollaries, the requirement 
tha t Hn~2(K\ O) should be separated. As a matter of fact, consider the open 
unit ball Bn of C \ n > 3, and the compact sets K = 6Bn fl {z G Cn : 
l m ( ^ _ ! ) = 0,zn = 0} , E = Bn fl {z e Cn : J m ( ^ n _ ! ) = 0, zn = 0}. It 
is readily seen that K is removable, and hence the envelope of holomorpy of 
bMn \ K is not Bn \ E, but the whole Bn \ K. On the other hand E is both 
the envelope of holomorphy and the polynomial hull of A", moreover one has 
№(K] O) = 0 for 1 < q < n - 3 and °Hn-2(K\ O) = 0. Indeed the point is 
tha t in this case Hn-2(K\ O) is not separated. 

1. P R E L I M I N A R I E S 

Before going into the proof of the theorem we need some preliminary results. 
We shall use the notation that , given a compact set E C M , or simply $ 
when no confusion can arise, denotes the paracompactifying family of supports 
in M \ E of all the relatively closed subsets of M \ E whose closure in M is 
compact, tha t is $ — c fl ( M \ E), where c denotes the family of compact 
subsets of M. 

L e m m a 1. Forn > 2, if M\E is connected, the following facts are equivalent: 
(a) Hn-\E] O) = 0 and the restriction map Hn~2(M] O) Hn~2(E] O) 

has dense image. 
(b) Hl(M\E-O) = 0. 

We have already established this result in [7], where it is needed for the 
proof of ( / / ) , so we refer to [7] for its proof. 

L e m m a 2. For n > 2, if D, E C M are a pseudoconvex domain and a 
compact set, respectively, the following facts are equivalent: 

(a) The restriction map Hq(D f]E]0) -> Hq(bD D £ ; O) is bijective for 
q < n — 3 and infective for q — n — 2, moreover the space H™~l(D D E\ O) is 
separated; 
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(/3) D\ E is pseudoconvex. 

Proof. It is known that D\E is pseudoconvex if and only if Hq(D\E; O) = 0 
for q > 1. Moreover the vanishing of Hq(D \ E\ O) is equivalent to that of 
Hq(D \ E\ ft), where ft is the sheaf of germs of holomorphic n-forms on M. 
This follows from the fact that , as M is Stein, a positive integer r and a 
locally free sheaf TZ of (9-modules on M of rank r — 1 exist, such that the 
exact sequence 0 - > 7 £ — > 0 r — > f t - » 0 holds on M , and hence Or = % © ft 
and ftr = Homo(/R>', ft) 0 O. Furthermore the relative cohomology sequence 

HqDnE(D;Q) * Hq(D;Q) • Hq(D \ E;$l] 

implies tha t , for q > 1, \ JE7; fi) = 0 if and only if Hj^nE(D; Q) = 0. 
Then, by resorting to the relative version of the Serre duality theorem (see 

[1; p.287]), we can infer that the pseudoconvexity of D\E is also equivalent to 
the condition that for q > 2 aH^~q(D nE;O) = 0 and H?-q+1(D D E; O) be 
separated, i.e. Hq(D(~)E; O) = 0 for q < 2 and H^~1(DDE; O) be separated. 

Finally the cohomology sequence with compact supports 

H¡(D fi E; O) H9(DnE;0) Hq{bD n E; O) 

implies tha t having Hq(D f~l E;0) = 0 for q < n — 2 is equivalent to the 
condition tha t the restriction map Hq{Df]E; O) —> Hq(bDC\E; O) be bijective 
for g < n — 3 and injective for q = n — 2. 

The proof of the lemma is then completed. 

L e m m a 3 . Let X be a complex analytic manifold of dimension N > 1, F C 
X a closed set, and consider the relative cohomology sequence 

>Hq(X,F-0 Hq(X:0) 
Pi" 

Hq(F;0] 
«(«) 

H9+1(X, F: О) 

where the cohomology spaces are equipped with the standard locally convex 
topologies. Then all the coboundary maps are continuous. Moreover, if 
the space Hq+1(X]0) is separated, is a topological homomorphism (0 < 
q < N — 1). In particular, if X is Stein, all the coboundary maps are 
topological isomorphisms. 

Proof We may argue in terms of Dolbeault's cohomology. The exact 
sequence under consideration can be regarded as the 3-cohomology sequence 
induced by the short exact sequences of spaces of C°° differential forms 

0 - + 5 0 ' * ( X , F ) 
(s) 

£°>q(X (4) 0-+50'*(X,F) 

187 



G. LUPACCIOLU 

0 < q < N. Here £°>q(F)y the space of C°° (0,^)-forms around F , is the 
inductive limit of the Frechet spaces £0,g({7), as U ranges through a funda
mental system of open neighbourhoods of F ; whereas £°'q(X, F ) , the space 
of C°° (0, g)-forms on X supported in X \ F , is the inductive limit of the 
subspaces £G'9(X) C £°'q(X) of the C°° (0,<z)-forms on X supported in the 
closed set G, as G ranges through a family of closed subsets of X \ F , whose 
complements in X form a fundamental system of open neighbourhoods of F . 

Then, to prove the first statement of the lemma, it suffices to show tha t , if 
U is any open neighbourhood of F , nffi : Z^,q(U) —> H^q(U) is the canonical 
projection and pu* : H^q{U) —> H^q(F) the map induced by restriction, 
then the composed map 

0-+50'*(X,F)H^q Hl>q+\X,F) 

is continuous. As a mat ter of fact, if x ' X —> R is any fixed C°° function with 
X = 1 on a neighbourhood of F and supp(x) C J7, it is readily seen tha t , for 
every u> G Z^q(U), 6(q)pu^(u) is the d-cohomology class in H°B>q+\X,F) 
represented by d(xuj)- Now, if {cjn} is a sequence of elements of Z^,q(U), 
convergent to an element u 6 Z^q(U), it is plain that the sequence {d(xu;n)} 

converges to B(xL0) m ^^(X^F), and hence we infer tha t b^pu^ff is 
continuous. 

Next, assume tha t the space H*+\X,0) = H°§'q+1(X) is separated. This 
means tha t dS°'9(X) is a closed subspace of £°'q+1(X) and hence, as the 
spaces £°>i(X), £0*+\X) are Frechet, tha t d : £°^(X) -» £°>q+1(X) is 
a topological homomorphism (see [4]). Therefore d transforms the open 
subsets of £°'q(X) into open subsets of its image. Since the coboundary 
map £W can be explicited as = 7rJg+1) («<*+1 J ) -xa( />(«>)_1 ) _ 1 , where 
n[q+1) : Zl'9+1(X,F) -> tf|'?+1(X,F) and T T ^ : Z°§'\F) # g ' 9 ( F ) are 
the canonical projections, it follows that transforms the open subsets of 
Hl'q(F) into open subsets of its image, and hence it is a topological homo
morphism (see also [3]). 

The lemma is proved. 

2. P R O O F O F T H E T H E O R E M 

After shrinking M to a suitable Stein neighbourhood of D , we may assume 
tha t D is 0 (M)-convex and so Condition (2) is equivalent, also for n = 2, to 
Condition (a) of Lemma 1. 

We first prove the sufficiency. Thus assume that (1) and (2) are valid. 
To prove that D \ E is pseudoconvex, it suffices, in view of Lemma 2, to 

show tha t the space H™~1(E \ K; O) is separated. Let us consider the exact 
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sequence of relative cohomology 

Hn-x{M,E',0) > Hn-\M,K',0) H?-\E\K-0) 

Hn(M, E: 0) 

(see [2; p.60]). We claim that i*(Hn-\M,E; 0)) is closed in Hn~1(M,K] 0) 
and that r* : i ^ - ^ M , K\ 0) -> H^^E \ K\ 0) is a surjective open map. 

As a mat te r of fact, there is a commutative diagram 

Hn-2(E-Q) H^iM^E-O) 

Hn-2(K-0) Hn'\M,K\0) 

where the horizontal arrows are given by coboundary maps and hence, by 
Lemma 3, are topological isomorphisms. This implies at once tha t the im
age of z* is closed, since, by assumption, so is that of p*. Moreover, as 
Hn~1(E] O) = 0, Lemma 3 also implies that Hn(M,E\ O) = 0 too, and so r* 
is surjective. There remains to prove that r* is an open map, i.e., being con
tinuous, tha t it is a topological homomorphism. It is a mat ter of proving that 
the inverse of the bijective linear map r* : H xe^r\°^ ~~̂  ^c~1(^ \ K\ ®) 
induced by r* is continuous. We may argue in terms of Dolbeault 's coho
mology, identifying Hn~\M,K\ O) with H^n-\M,K) and H?-\E\K; O) 

with the inductive limit of the spaces Hv8'n~\U,K) as U ranges through the 
open neighbourhoods of E. For every such ?7, let us choose a C°° function 
X : M —» K. with x = 1 on a neighbourhood of E and supp(x) C U. If 
a e Zl^iU.K), then 8(X*) € Z^n(M,E) = £ ° ' n ( M , £ ) = BS^n'\M,E\ 
and hence one can find, a ¡3 e 50'n_1(M, E) with 8/3 = 3 ( xa ) . Moreover, if /?' 
is another choice of a 9-primitive of d(xa) m £°'n~1(M, E)y one sees tha t the 
class of /3' - (3 in H^n~\M,K) belongs to Ker(r*). Therefore one obtains a 

well-defined linear map SJJ : Z^n~l{U, K) —> Hf>Ker)^^ by mapping every 

a £ Z^'n~1(J7, K) into the class, in **9Ker(^K \ represented by xa~&•> with (3 

being any 9-primitive of 8(xa) m £°'n~1(M^E). One can readily check tha t , 

if a e 8£°>n-2(U,K), then X* ~ P 6 d£° 'n"2(M, K) + Z j jn -1 (M, and the 

latter sum space projects into i7^'n_1(M, K) as a subspace of Ker(r*)\ hence 

SJJ induces a linear map SJJ : if^'n_1(?7, K) —> tf^er|^jA^ It turns out that 

(?r*)"1 is the inductive limit of the maps su as U ranges through the open 

neighbourhoods of Ey and consequently one is reduced to prove that each map 
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su is continuous. To this end, it suffices to prove that , if {OLV} is a sequence of 
elements of Z^'n'~1(J7, A"), convergent to an element a £ Z^'n_1([/, A"), then 

the sequence H^q(F) converges to sjj(a) in 9Ker(r )—* ^ s a m a ^ e r of fact, 
the map 8 : £° 'n_1(M, E) —> £0,n(M, E), being continuous and surjective, is 
a topological homomorphism, hence is open, since the source space and the 
target space are both of type (CJ7) (see [4; p. 148]), and consequently one can 
check the possibility of finding a sequence {/3U} of elements of £Q,n~1(My E), 
convergent to an element (3 £ £° 'n_1(M, £"), in such a way that df}v = d(x&v)-> 
for every i/, and d/3 = d(xa)- Hence the sequence {x&v — 0v} converges to 
X& — /3 in Z^'n~1(M, A ) , which implies the desired conclusion. 

Now, since Im(i*) = Ker(r*) is closed in Hn~1(M, A ; 0 ) and r* is a 
surjective open map, it follows that r*(Hn_1(M, A ; O) \ Ker(r*)) = 
H?-\E \ K-O) \ {0} is open in H?~\E \ A; (9), which proves tha t the 
latter space is separated. 

Next, we have to prove that every continuous CR-function / on bD \ K 
has a unique extension F £ C°(D \ E) fl 0(D \ E). Consider a function 
/ £ C°(D \ E) fl C°°(D \ E) which is equal to / on bD \ A and is holomorphic 
on the interior of a neighbourhood, in D \ E, of bD \ Ky and consider the 
(0, l)-form rj on M \ E defined by 

rj = df on D \ E, rj = 0 on ( M \ E) \ D, 

which is 3-closed and supported in the family $(E). Now, the vanishing 
of Hn~1(E\ O) implies the connectedness of M \ E (see [6]) and therefore, on 
account of Lemma 1, one has that H\(M \E\0) — 0, hence there exists a 
function u £ C$>(M\E) with du = rj on M\E. This function u is holomorphic 
on a neighbourhood of ( M \ E) \ D = (M \ I?) U (bD \ K) and hence, as 
supp(u) £ $ and M\D is connected, it follows that u = 0 on (M\~D)\J(bD\K). 
Then set F = / - u\^E. It is plain that F £ CQ(D \ E) fl 0(D \ E) and 
E\bD\K = / • Finally, the extension F of / is unique, since the connectedness 
o£M\E implies that H°(M \E]0) = 0. 

Now we prove the necessity of the two conditions of the theorem. Thus 
assume tha t D \ E is pseudoconvex and that every continuous Ci2-function 
/ on bD \ K has a unique extension F £ C°(D \E)D 0(D \ E). In the first 
place it follows tha t M \ E is connected, for, if A were a relatively compact 
connected component of M\E, it would be contained in D\E and its boundary 
would not meet bD \ K. Consequently F\A could be any function in 0(A), in 
contradiction with the uniqueness assumption. 

Hence, in view of Lemma 2 and Lemma 1, what we have to show is that 
the image of the restriction map / 9 * : Hn~2(E\0) —» Hn~2(K]0) is closed 
and tha t Hl(M\E;O) = 0. 
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The former fact is again a straightforward consequence of Lemma 2, which 
gives the separation of H^1(D fl E\ 0)\ then the cohomology sequence 

• Hn'\E\0) Hn~2{K-ö) •H?-\E\K\0) 

implies, since 8 is continuous, that p*(Hn~2(E',0)) is closed. Note that the 
continuity of 8 follows from Lemma 3, since the preceding sequence can be 
obtained, by taking inductive limits, from the exact sequences 

>Hn-2(Uj]0) >Hn-2(K;0) Hn-\UhK-ö) 

where {Uj}j^ is a fundamental system of open neighbourhoods of E. 
In order to prove the latter fact, we have to show that , if a is any C°° d-

closed (0, l)-form on M \ £ , supported in <£, there exists a function g £ 
C | ° ( M \ E) with dg — a. Let A CC M be a pseudoconvex domain such 
that D C A and bD fl bA — A", as can be obtained by pushing bD away 
from D with a small C2- perturbation leaving K fixed pointwise. Since D\E 
and A are pseudoconvex, so is A \ E, hence there exists / i £ C°°(A \ E) 
with dfi = a on A \ E. On the other hand, since D is an 0(M)-convex 
Stein compactum, by Lemma 1, applied to D in place of E, one has that 
0 = tf£(S)(M\jp;0) - ^ ( E ) n ( M ^ } ( M \ D;0); hence there exists also 

f2 £ C ^ S ) ( M \ D) with 9 / 2 = a o n M \ D. Then f2 - fi is a holomorphic 

function on A \ D and, since bD \ K is strictly Levi-convex, it extends to 
an / £ 0(A \ D). The latter function in turn extends, by hypothesis, to an 
F £ 0(A \ E), and hence a function g £ C | ° (M \ E), such tha t dg = a , as is 
required, is tha t defined by 

g=:fi+FonA\E, g f2 on M \ D. 

The theorem is proved. 
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