@incollection{AST_1994__222__389_0, author = {Shishikura, Mitsuhiro}, title = {The boundary of the {Mandelbrot} set has {Hausdorff} dimension two}, booktitle = {Complex analytic methods in dynamical systems - IMPA, January 1992}, editor = {Camacho C. and Lins Neto A. and Moussu R. and Sad P.}, series = {Ast\'erisque}, pages = {389--405}, publisher = {Soci\'et\'e math\'ematique de France}, number = {222}, year = {1994}, mrnumber = {1285397}, zbl = {0813.58047}, language = {en}, url = {http://archive.numdam.org/item/AST_1994__222__389_0/} }
TY - CHAP AU - Shishikura, Mitsuhiro TI - The boundary of the Mandelbrot set has Hausdorff dimension two BT - Complex analytic methods in dynamical systems - IMPA, January 1992 AU - Collectif ED - Camacho C. ED - Lins Neto A. ED - Moussu R. ED - Sad P. T3 - Astérisque PY - 1994 SP - 389 EP - 405 IS - 222 PB - Société mathématique de France UR - http://archive.numdam.org/item/AST_1994__222__389_0/ LA - en ID - AST_1994__222__389_0 ER -
%0 Book Section %A Shishikura, Mitsuhiro %T The boundary of the Mandelbrot set has Hausdorff dimension two %B Complex analytic methods in dynamical systems - IMPA, January 1992 %A Collectif %E Camacho C. %E Lins Neto A. %E Moussu R. %E Sad P. %S Astérisque %D 1994 %P 389-405 %N 222 %I Société mathématique de France %U http://archive.numdam.org/item/AST_1994__222__389_0/ %G en %F AST_1994__222__389_0
Shishikura, Mitsuhiro. The boundary of the Mandelbrot set has Hausdorff dimension two, dans Complex analytic methods in dynamical systems - IMPA, January 1992, Astérisque, no. 222 (1994), pp. 389-405. http://archive.numdam.org/item/AST_1994__222__389_0/
[B] Iteration of Rational Functions, Springer Verlag, 1991. | MR | Zbl
,[DH1] Étude dynamique des polynômes complexes, Publ. Math. d'Orsay, 1er partie, 84-02 ; 2me partie, 85-04. | Zbl
and ,[DH2] On the dynamics of polynomial-like mappings, Ann. sient. Ec. Norm. Sup., 4e série, 18 (1985), p. 287-343. | DOI | EuDML | Numdam | MR | Zbl
and ,[La] Systèmes dynamiques holomorphes: explosion de points periodiques paraboliques, Thèse de doctrat de l'Université de Paris-Sud, Orsay, France, 1989.
,[Ma] On the dynamics of Iterated maps V : Conjecture that the boundary of the -set has a fractal dimension equal to , p. 235-238, Choas, Fractals and Dynamics, Eds. Fischer and Smith, Marcel Dekker, 1985. | MR | Zbl
,[Mc1] Area and Hausdorff dimension of Julia sets of entire functions, Trans. AMS, 300 (1987) p.329-342. | DOI | MR | Zbl
,[Mc2] Geometric limits: from hyperbolic -manifolds to the boundary of the Mandelbrot set, in the Proceedings of the Conference: Topological Methods in Modern Mathematics, June 1991, Stony Brook.
,[Mi] Dynamics in one complex variables: Introductory lectures, Preprint SUNY Stony Brook, Institute for Mathematical Sciences, 1990. | MR | Zbl
,[MSS] On the dynamics of rational maps, Ann. scient. Ec. Norm. Sup., (4) 16 (1983) p.193-217. | DOI | EuDML | Numdam | MR | Zbl
, , and ,[Sh] The Hausdorff dimension of the boundary of the Mandelbrot set and Julia sets, Preprint SUNY Stony Brook, Institute for Mathematical Sciences, 1991. | MR | Zbl
,[T] Similarity between the Mandelbrot set and Julia sets, Commun. Math. Phys., 134 (1990) p.587-617. | DOI | MR | Zbl
,