A coherence criterion for Fréchet modules
Index theorem for elliptic pairs, Astérisque no. 224  (1994), p. 99-113
@incollection{AST_1994__224__99_0,
     author = {Schneiders, Jean-Pierre},
     title = {A coherence criterion for Fr\'echet modules},
     booktitle = {Index theorem for elliptic pairs},
     author = {Collectif},
     series = {Ast\'erisque},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {224},
     year = {1994},
     pages = {99-113},
     zbl = {0856.58040},
     mrnumber = {1305644},
     language = {en},
     url = {http://www.numdam.org/item/AST_1994__224__99_0}
}
Schneiders, Jean-Pierre. A coherence criterion for Fréchet modules, in Index theorem for elliptic pairs, Astérisque, no. 224 (1994), pp. 99-113. http://www.numdam.org/item/AST_1994__224__99_0/

[1] P. Berthelot, A. Grothendieck, and L. Illusie (eds.), Séminaire de géométrie algébrique du Bois-Marie 1966/67 (SGA6), Théorie des intersections et théorème de Riemann-Roch, Lecture Notes in Mathematics, no. 225, Springer, 1971. | MR 354655 | Zbl 0218.14001

[2] J. M. Bony and P. Schapira, Existence et prolongement des solutions holomorphes des équations aux dérivées partielles, Invent. Math. 17 (1972), 95-105. | Article | Numdam | MR 338541 | Zbl 0246.35077 | Zbl 0225.35008

[3] H. Cartan and J. P. Serre, Un théorème de finitude concernant les variétés analytiques compactes, C. R. Acad. Sci. Paris 237 (1953), 128-130. | MR 66010 | Zbl 0050.17701

[4] C. Houzel, Espaces analytiques relatifs et théorème de finitude, Math. Ann. 205 (1973), 13-54. | Article | MR 393552 | Zbl 0264.32012

[5] M. Kashiwara, On the maximally overdetermined system of linear differential equations I, Publ. Res. Inst. Math. Sci. 10 (1975), 563-579. | Article | MR 370665 | Zbl 0313.58019

[6] J. P. Ramis and G. Ruget, Résidus et dualité, Invent. Math. 26 (1974), 89-131. | Article | MR 352522 | Zbl 0304.32007

[7] P. Schapira and J.-P. Schneiders, Elliptic pairs I. Relative finiteness and duality, this volume. | Zbl 0856.58038