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DIVISIBILITY IN THE CHOW GROUP OF ZERO-CYCLES 
ON A SINGULAR SURFACE 

by 

Claudio P E D R I N I 1 and Charles W E I B E L 2 

§0. Introduction. 

In this paper we study the divisibility of the Chow group CH2(X) of Ci-
cycles on a surface X over a field k. When X is smooth this question has 
been studied by several authors [MSw] [B2] [R] [CT-R], and we extend many 
of their resuit s to singular surfaces. 

The Chow group of a singular surface X is defined as follows. Choose a 
closed Y C X containing the singular locus of X but no irreducible component 
of X , and let Z2{X, Y) be the free abelian group on the set of codimension 2 
points of X — Y. For each closed curve T in X missing Y, and every rational 
function / on T, the divisor (/) should equal 0 in CH2(X). If dimY = 0, 
CH2(X) = CH2(X,Y) is the quotient of Z2{X,Y) by the subgroup spanned 
by thèse divisors ; it is independent of Y because by [PW1, 2.2] it is isomorphic 
to SKo(X), the subgroup of Ko(X) consisting of éléments of rank 0 and 
déterminant 1. If dimY = 1 we form CH2(X) = CH2(X,Y) by adding the 
extra relations that ( /) = 0 for every closed curve T on X which is locally 
eut out by a nonzerodivisor and every / G k{T) such that the support of (/) 
misses T ( 1 7 ; this group is also independent of Y, because by [LW] we have 
CH2(X,Y) = SK0(X). 

If X is a surface and /C2 dénotes the Zariski sheaf associated to the presheaf 
U t-+ K2(U), there is a well known isomorphism, called "Bloch's Formula" : 

(0.1) CH2(X) 9Ê SK0(X) Ç* H2ai(X,/C2). 
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C. PEDRINI, C. WEIBEL 

It was discovered by Bloch [Bl] for smooth quasiprojective surfaces, extended 
to ail smooth varieties by Quillen [Q], and to singular surfaces by Levine 
[Ll] ; see also [PW1, 8.9]. For regular surfaces, (0.1) also follows from the 
Brown-Gersten spectral séquence [BG]. For gênerai 2-dimensional noetherian 
schemes, (0.1) follows from Thomason's generalization [TT, 10.3] of the 
Brown-Gersten spectral séquence. 

Our results relate CH2(X) to the Zariski cohomology of a certain sheaf 
7ï2 on X. To define it, fix an integer n such that ^ G ky let jjbn dénote 
the étale sheaf of nth roots of unity, and set //®2 = /in <g) By définition, 
H2 = H2(n®2) is the Zariski sheaf associâted to the presheaf U i-> H2t (17, fJ,®2) 
of étale cohomology. Since this sheaf has exponent n, it is convenient to adopt 
the notation that G/n dénotes G/nG and nG dénotes {x G G : nx = 0} for 
any abelian group or sheaf G. Here is our first resuit. 

THEOREM A . — Let X be a quasiprojective surface over a field k con-
taining Then the Chern class c2,2 : K2{U) —> H2t(U, JJ,®2) induces an 
isomorphism : 

CH2(X)/n ~ #z2ar(X,/C2)/n - H?ar(X,H2(»®2)) 

This resuit was originally proven in the smooth case by Bloch and Ogus 
[BO], and generalized to the case of isolated singularities by Barbieri-Viale 
[BV1, 3.9]. We give a short proof of Theorem A in §1, using the Nisnevich 
topology on X, a method suggested to us by R. Thomason. 

After submitting this paper, which contained a second more technical proof 
of Theorem A in §2, we became aware of the following unpublished resuit of 
Ray Hoobler [Hoob] which, given Bloch's formula (0.1), immediately implies 
Theorem A. 

HOOBLER'S THEOREM 0.2. — Let k be a field containing ^. 
1) If A is a semilocal ring, essentially offinite type over k, then the Chern 

class C22 : K2{A) —± H2t(A, fi®2) is an isomorphism. 
2) If X is a quasiprojective scheme over k, there is an isomorphism of 

(Zariski) sheaves 
c2>2 : /C2/n^t t2( / i®2) . 

When X or A is smooth over fc, this theorem is implicit in Merkurjev and 
Suslin's work [MS, §18] ; see [B3, 3.3] [CT-R, p.168] and [PW2, 4.3]. When X 
is a singular curve, this theorem was proven in [PW2, 5.2]. 

Our original proof of Theorem A is therefore obsolète. As a favor to the 
reader, we have deleted it. It was the original §2 of this paper. 

The current §2 gives a short survey of the étale Chern classes Cij. We 
also prove that the isomorphism in Theorem A lifts Grothendieck's Chern 
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DWISIBILITY IN THE CHOW GROUP 

class c2,4 : Ko(X) —• H^t(X^ //®2) to SK0(X) in the sensé that c2,4 is the 
composite 

SK0(X)^SK0(X)/n ~ Hssss2at(X,H2) H^t(X,^2), 

7 being the edge map in the Leray spectral séquence for Xet —• XZSLT. When X 
is smooth this proves that the "cycle map" considered in [CT-R] and [Sai,§5] 
is just C2,4-

In § 3 we consider the normalization TT : X • X of X. Using Mayer-
Vietoris séquences, we relate CH2(X)/n to the Chow group CH2(X)/n. Let 
Y dénote the singular locus of X, and set Y = 7r_1(l^), so that we have a 
cartesian square : 

Y 
3 

X 

Y 
i 

7T 

X. 

THEOREM B . — Assume that k contains (in and ^. Then there is an exact 
séquence for the sheaf H2 = 7i2(/J,®2) : 

H1 (X, H2) 0 H1 (Y, H2) H1 (Y, H2) -> H2(X9 H2) H2(X, H2) -+ 0 . 

Using Theorem A and the two isomorphisms H1(Y^7ï2) = SKi(Y)/n and 
H1 (Y,H2) = SK1(Y)/n of [PW2, 5.1], we can restate Theorem B as follows. 

COROLLARY C . — With n as in Theorem B, there is an exact séquence : 

H^{Xs,U2) 0 SKs1(Y)/n SKsxty)/*. CH2(X)s/n CH2(sX)/n 0 

In the Appendix, we indicate how much of Corollary C can be obtained 
from pure K-theoretic techniques, i.e., without resorting to 7i2. 

In § 4 we relate the n-torsion in the Chow group of X to the term i / ^ X , 7i2) 
appearing in Corollary C, as well as to the quotient iï1(X,A^2) of SKi(X). 
When X is smooth, we know by [ B 3 , 1.12][MS, 8.7.8(e)] that there is an exact 
séquence : 

( 0 . 3 ) 0 — H1(X,K2)/n — H\X,n2(n®2)) — nCH2(X) — 0 . 
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C. PEDRINI, C. WEIBEL 

When X is a surface with isolated singularities, (0.3) needs to be modified 
because the subsheaf nK2 of n-torsion éléments in KL2 has more complicated 
cohomology. Indeed, the vanishing of H2(X, n/C2) in the smooth case is the 
basis for the proof of (0.3) in [MS], but if X has isolated singularities we show 
in 4.2 that 

H2(X,n!C2) 9é H^X^H1^®2)). 

This group is just H2(X,Ox)/n when /jin C fc, and we know that it can 
be nonzero for normal surfaces; see [PW1, 5.9]. We are able to prove the 
following generalization of (0.3) in §4. (Again, we have deleted those parts 
which Hoobler's Theorem makes obsolète.) 

THEOREM D . — Let X be a quasiprojective surface over a field k containing 
^. Assume that X is normal, or more generally that Sing(X) is finite. Then 
there is an exact séquence : 

H°(X, K2/n) ^ H2(X, NK2) ^H^X, JC2)/n ̂ H\X, K2/n)-> nCH2(X)->0 

Remark. Presumably the map H°(X,H2) H2(X,1H}) in Theorem D is 
the differential in the Leray spectral séquence converging to H*t(X, ^n2)- ^ 
so, and we write NH3(X) for the kernel of H*t(X,n®2) H°{X,H3), then 
we may restate Theorem D as the following exact séquence, which generalizes 
part of the séquence of [Suslin, 4.4]. 

(0.4) 0 Hx{X,K2)ln -> NH3(X) -> nCH2(X) 0 

COROLLARY E (Collino [C]). — Suppose that k is either an algebraically 
closed field, or the reals M, or a local field. Let X be a surface having only 
isolated singularities. Then the n-torsion in CH2(X) is finite for every n with 
J e * . 

Proof Fix n and let k be any field such that H\t(k,M) is finite for 
constructible n-torsion sheaves M. Then each Hçt(X, /J,®*) is finite by [SGA4, 
XVI.5.1]. When X is a surface, the Leray spectral séquence Hp(X,?ïq) 
H2t{X^iJL®i) dégénérâtes enough to show that the group H1 (X,H2{JJL®2)) = 
H1(X,K,2/n) is finite. Now apply Theorem D. [] 

There is a "degree" map CH2(X) —• Z°, where c dénotes the number of 
irreducible proper components of X. The image A has finite index in Zc, and 
CH2(X) = A 0 A0(X), where Ao(X) is the group of zéro cycles of relative 
"degree" zéro. Therefore ail of our divisibility results are actually statements 
about the divisibility of the subgroup Ao(X) of CH2(X). 
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In §5 we apply our structural results to surfaces over spécial kinds of 
fields : algebraically closed fields, number fields and the field IR of real 
numbers. If k = k we show that AQ(X) is n-divisible — and hence that 
CH2(X)/n = (Z/n)c — for every surface X and every n prime to char(k), a 
well-known resuit for smooth surfaces. 

If k is a number field and X is smooth, Bass has conjectured that Ko(X) 
and therefore SK0(X) = CH2(X) is a finitely generated abelian group. 
This would imply that CH2(X)/ n is finite. By results of Colliot-Thélène and 
Raskind [CT-R91], and of Salberger, this finiteness is known to hold for every 
smooth projective surface X such that H2(X, Ox) = 0 and Bloch's Conjecture 
holds for X (see 5.3.1) ; in particular it holds for ail surfaces which are not 
of gênerai type. Bass' conjecture does not carry over to singular surfaces ; we 
give examples of seminormal affine and projective surfaces over any number 
field k such that both CH2(X)/n and NCH2(X) are infinité. 

Finally we consider varieties over the real numbers R, relating CH2(X) to 
the topologicaLspace .X(K). If the singular locus of X has codimension > 2 
and d = dim X , we show in theorem 5.8 that 

(0.5) CHd{x) ^ zc e (z/2y-R e v, 

where t = dim.HD(X(M),Z/2), R is the number of irreducible proper com-
ponents of X having a smooth real point and V is a divisible abelian group. 
This calculation extends results of Colliot-Thélène and Ischebeck [CT-I] for 
smooth projective varieties. When d = 2, the case of a real surface with iso-
lated singularities, (0.5) yields isomorphisms 

SK0(X)/2 ^ CH2(X)/2 9i (Z/2)t+c"il, A0(X)/2 ^ (Z/2)t"K, 

where c, R and t = d imiJ2(X(R), Z/2) are defined above. Finally, we use 
Corollary C to extend (0.5) to any real surface in theorem 5.12. (For technical 
reasons, we need to add a summand (Z/2)e to (0.5) when X is not smooth, but 
we suspect that e = 0 in ail cases.) Thèse results may be applied to compute 
CH2(X)/2 of real surfaces having a one-dimensional singular locus, including 
the so-called "real umbrellas" (see 5.13). 

Notation 

We fix an integer n. If G is an abelian group or sheaf, we shall write 
G/n , n - G and nG respectively for the cokernel, image and kernel of the 
homomorphism G ——• G. 

X will always dénote a noetherian scheme over Z[^] ; by "surface" we will 
mean a 2-dimensional quasiprojective scheme defined over a field k (with 
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^ G k). The étale sheaf of n* roots of unity is and we shall also consider 
/j,®2 = /j,n We write 7iq or Ti*^®*) for the Zariski sheaf on X associated 
to the presheaf U i—• H*t(U, p®1), and JCn for the Zariski sheaf associated to 
the presheaf U h-» Kn(U). 

§1. Proof of Theorem A 

Our goal in this section is to give a short proof of Theorem A, without 
using Hoobler's Theorem (0.2). The only Chern class used in this section is 
c 2 2 : K 2 ( X ) / n ^ H 2 t ( X , ^ 2 ) . 

Let febea field containing ^ . If X is any surface over not only do we have 
Bloch's formula (0.1), but we can apply the right exact functor H2aT(X, — ) to 
the séquence fC2 — 1 ^ 2 —• JC2/n—+ 0 to get canonical isomorphisms : 

CH2(X) /n °Ê H2aT(X,lC2)/n 9É H2ai(X, JC2/n). 

Therefore, Theorem A just states that there is an isomorphism 

(1-1) H^(X,)C2/n) ~ H2ai(X,H2(^2)) . 

If X is a smooth variety over k then, as mentioned in the introduction, 
Theorem A is well known. Indeed, the sheaf map c22 : ^2 -^^2(i^n2) induces 
an isomorphism of sheaves 

(1.2) c22 : fC2/n QÊ H 2 ( ^ 2 ) . 

The following elementary lemma, whose proof is left to the reader, imme-
diately proves Theorem A — that (1.1) holds — for surfaces with isolated 
singularities, i.e., surfaces X with dim(Sing(X)) = 0. 

LEMMA 1.3. — Let f : J7 —> G be a map of Zariski sheaves on a noetherian 
scheme X . Suppose the kernel and cokernel of f are supported on a union 
of closed d-dimensional subschemes of X . Then Hd~*~1(X, J7)—+Hd+1(X,G) is 
onto, and 

H ^ X , ? ) 9É Hl{X ,G) for a l l i > d + 2. 

For gênerai surfaces, our proof of Theorem A uses a resuit of Y. Nisnevich 
which was pointed out to us by R. Thomason. Let Xnis dénote X endowed 
with the Nisnevich topology introduced in [NI]. This topology is intermediate 
between the étale and Zariski topologies on X in the sensé that there are 
natural morphisms of sites Xet —> Xnis —• Xzar. Let )C21S and T^isC^n2) dénote 
the (Nisnevich) sheaves on Xn{s associated to the presheaves U H-> K2(U) and 
U »—> H2t(X, fJ>®2)<> respectively. The following resuit essentially follows from 
Gabber's theorem [G, Th. l ] , see also [N2, 8.6]. 
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DIVISIBILITY IN THE CHOW GROUP 

THEOREM 1.4. — Let X be a quasiprojective scheme over a field k with 
— G k. Then the Chern class C22 induces an isomorphism of sheaves on Xn{s : 

c22: /Cr / n -^2 i s ( /x®2) 

COROLLARY 1.5 (Nisnevich version of theorem A). — Let X be a quasipro­
jective surface over a field k with £ G k. Then SK0(X) = H2is(X, /Qis) and 

SK0(X)/n - HÎis(X,Kt)/n - iï2is(X,/Cnis/n) S iïn2is(X,«L(m£2)). 

Proof When d i m X = 2, Xnis has cohomological dimension 2. Therefore 
ffn2is(X,-) is right exact hence H^X, /C£is)/n S* tfn2is(X,/Cnis/n). The 
argument that S l foPO — ̂ n i s (^?^2LS) is identical to the argument for the 
Zariski topology, using the spectral séquence of [TT, 10.8] : 

Îis(X,Kt)/n - iï2is(X,/Cnis/n) S iïn2is(X,«L 

In détail, the following terms of E2 are known to live to : 

H°(X,K™) = H°(X,IC0) = H°(X,Z) 

H ° i s ( X , / C n = H^iXt/d) = H0zai(X,O*x) 

H*is(X,)C™) Si H^X,^) Si Pic(X). 

Therefore this spectral séquence yields a filtration on Ko whose associated 
graded groups are the same as those associated to the analogous spectral 
séquence for Xzar. Q 

The morphism Xnis —> Xzar yields a commutative diagram, in which the 
maps labelled are isomorphisms by (0.1) and (1.5) : 

SK0(X)/n Si H^(X,K;2/n) 
C22 

H^(X,H2(^2)) 

re 

Hlis(X,Kr/n) 
— H^(X,H2(^2)) k +dxk 

We claim that both the kernel and cokernel of the Chern class map c22 : 
K^jn - ^ ^ ( / i ^ 2 ) are sheaves supported on the subscheme Sing(Xred) of 
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Xza.T, which has dim < 1. Lemma 1.3 will then yield the surjectivity of the 
map H2ar(X, K2/n) —• H2aT(T-C2(/jL®2)), and theorem A will follow from a chase 
of the above diagram. 

This claim is immédiate from (1.2) when X is reduced, because then X 
is smooth in codimension 0. When X is not reduced, we argue as follows. 
Let }C2ed and 7ï2ed dénote the Zariski sheaves associated to the presheaves 
U i—• i^2(£/red) and U • HGt(Ured>M®2), respectively. Since the canonical 
isomorphism of sites Xet = (Xred)et identifies the sheaves fxn on X and on 
Xred, we have H2(/J,®2) ^ H2ED. Therefore it suffices to show that K2 ^ /C£ed ; 
we prove this assertion in 1.7 below. 

The ability to ignore nilpotent ideals in theorem A, as well as in the other 
results in this paper, rests upon the following lemma and its corollary. 

LEMMA 1.6. — If A is a commutative ring containing ^ then K2(A)/n = 
K2(ATed)/n. 

Proof Let I be the nilradical of A, so that Ared = A/I. In the iïT-theory 
séquence 

K2 ( A, J) — 1T2 ( A) — K2 (A/I) — S Ri ( A, / ) — 0 

both K2(A,I) and SK1(A,I) are uniquely n-divisible by [Wl, 1.4]. Hence 
K2(A,I)/n = SK^A.Pj/n = 0 and Tor(Z/n, SKX(A, I)) = 0. The lemma is 
now élément ary. Q 

COROLLARY 1.7. — If X is any scheme over Z[^] then K2jn = JC^/n- In 
particular, 

(i) / / d i m ( X ) = 1 then SK1{X)/n S SK^X^/n ; 
(ii) i / d im(X) = 2 then SK0(X)/n SK0(XTed)/n. 

Proof From the Brown-Gersten spectral séquence of [TT], we see that : 
(i) when d i m p O = 1 then SK^X) 2ê HX{X,K2), hence SK1(X)/n ^ 
H1(XJK2/n)9 and (ii) when dim(X) = 2 then SK0(X) 2é H2(X,K2), hence 
SK0{X)/n^H2{X,K2/n). D 

§2 The étale Chern classes 

We begin this section with a short summary of étale Chern classes. Then 
(in 2.3) we show that the isomorphism in Theorem A is a lift of Grothendieck's 
Chern class c24 : K0(X) —» H*t (X, //®2). Recall that with our fixed notation 
the integer n is fixed, and ail schemes X are defined over Z[^] . 

Classical étale Chern classes 2.1. The classical étale Chern classes are 
set maps Ci = Cii2i : K0(X) —•» H2l(X, /x®1), constructed by Grothendieck to 
satisfy the following axioms. They are natural in X. By convention, CQ(X) = 1 
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for ail a? G -Ko(X). The Ci satisfy the Whitney sum formula ci(x + y) = 
X^*+j=^ c%(x) U cj(y)- The first Chern class c\ = c\2 is the composition of the 
déterminant map det : KQ(X) —* Pic(X) = i ï ^ X , Gm) with the boundary 
map c? : H^T(X9Gm) —• H2T(XYfin) arising from the Kummer séquence on 
Xet- K L is a line bundle on X , Ci(L) = 0 for ail i > 1. 

Thèse axioms détermine ail the other Chern class maps Cj as follows. A 
typical élément of KQ(X) has the form [E] — [F], where E and F are vector 
bundles on X . It is possible to replace X by a flag bundle X1 over X because 
Hlî{X,nV) injects into H2I(X',^) by [J, 2.2.4]. Doing so, we may assume 
that [E] and [F] are sums of classes of line bundles in Ko(X). The Whitney 
sum formula then détermines Ci([E]), C{([F]) and finally (by induction on i) 
Ci([E] — [F]). Note that if F is a trivial vector bundle then C{(F) = 0 for i 7̂  0 
and we have the simple formula Ci([i£] — [F]) = C{(E). 

The Product Formula [Gr, 1(1.6), 11(2.7)] is sometimes listed as an axiom. It 
expresses Ci(x-y) as a universal polynomial Qi in the classes c i ( x ) , . . . , C{^.1(x) 
and c i ( y ) , . . . , Ci_i(?/) when x and y have rank zéro. The polynomial Q2 is 
c2(x - y) = —ci(a;)ci(y), but Q3 has 4 terms and Q4 has 10 terms ; see [Gr, 
1(1.18)] and [W3, 3.6]. 

Higher étale Chern classes 2.2. Less classical are the higher Chern classes 
d = Cij, defined by Quillen and Illusie in 1974 and exposed in the articles 
[Shek][Soulé][GilRR]. Fixing the indices i > 1, 0 < j < 2i and setting 
m = 2i — j > 0 for convenience, is an additive homomorphism from 
KRN(X)/n to i ï^t(X, //®2). Thèse Cij are natural in the scheme X over Z[ l /n ] . 

The most important higher Chern class is e n ; it is defined on Ki(X) 
as the composite of the natural projection det : Ki(X) —• iï"°(X, O^) = 
H®t(X, <Gm) with the boundary map d : H^T(X^Grn)—• iï^t(X, fjb) associated 
to the Kummer séquence. AU other Chern classes vanish on the summand 
H°(X, 0%) of i^ i (X) . The Chern class c10 vanishes on K2(X) [Soulé, p.279]. 

The Product Formula for Cij is simpler for higher iîT-theory than it is for 
KQ. If x G iTmi(X), y G Km2(X) with mi ,m2 > 0 then this formula reads 

(2.2.1) Ci(x • y) = 
l(x)Uci2s 

-A - i v 

(h - l)!(i2 - 1)! 
cil(x)Uci2(y). 

In particular, c22 • K2(X)H2t(X^^2) coincides up to sign with the 
classical Galois symbol : if x ,y G K\(X) then c22({x,y}) = — c1(x) U ci(y). 
(Cf. [Shek].) 

Mod n variation 2.2.2. We can extend higher Chern classes to -RT-theory 
with coefficients, replacing Km(X)/n with the larger group i^m(X; Z /n ) when 
m > 2. Thèse classes were defined by Soulé in [Soulé] for affine schemes; 
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we can immédiately extend the définitions to quasi-projective schemes using 
Jouanolou's trick. The first new aspect of thèse mod n Chern classes is that 
cio is the projection K2(X-Z/n) nKi(X) -> nH0(X,O*x) = H°{X^n). 

As long as n is odd, thèse C{ are additive and satisfy the Product Formula 
(2.2.1). There are technical problems that arise when n is even, starting 
with the possible lack of additivity of c22 ; we refer the reader to [W3] for 
a discussion. 

This complètes our survey of étale Chern classes. 

We now turn to the study of c24 : K0(X) H*t(X/JL$2). If dim(X) = 2, 
the Leray spectral séquence for s : XGt —> XZSLT and the sheaf ji®2 yields an 
exact séquence : 

HÎJX. u_ ) —>H"(X.7t (u_ )) H*(X.H l u r ddd sd-Us iï.VX.udv?'^. 

THEOREM 2.3. — Let X be a 2-dimensional noetherian scheme over WDD 
Then the following diagram commutes. 

SKa(X) K0(X) 

H2(c22) ^ 

fir2(c22)(A1 d+d;d+ d;d 
re 

C24 

fir2(c22)(A1x+xdksd 

Here H2(c22) is induced by the map c22 : K2 -^TC2(/J,®2) via Bloch's formula 
(0.1). 

Proof Replacing X by a suitable flag bundle X' and using the splitting 
principle, we may write any élément s of SKQ(X) as a product u\ • u2 in 
Ko(X'), where Ui = [Li] — 1 for appropriate line bundles L{ on XF. Since 
H*T{X, fi®2) injects into H*T (X' , # ) by [J, 2.2.4] we may replace X by X1 in 
Computing 024(5). Let À; dénote the image of U{ in iJ1(X, O^) under the map 
det : K0(X) —• Pic(X) ^ i ï ^ X . / C i ) . Under Bloch's formula, 5 corresponds 
to the product Ai • À2 in H2(X,JC2). Therefore we must show that 7 sends 
the élément iï2(c22)(Ai • A2) of #2ar(X,H2{^2)) to the élément c24(^i • u2) 
ofiJe4t(X,/^2). 

The Product Formula for the Chern classes C24 and C22 (see 2.1 and 2.2) 
yields 

c2±{ux • u2) = -c i2(ui ) U c12(u2) 
fir2(c22)(A1 • A2) = -Srl(c11)(A1) Uif1(c11)(A2) 
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where H\cxl) : H^T(X, Kx) H^T(X, U1^)) is induced from c n : 
/Ci —• rH1(/J>n)- Now the Leray filtration on H*t(X,/LI®*) is preserved by 
cup products, such as H2t(X9iin) (g) H2t(X, /in) —• H*t(Xy /x®2), and the in­
duced product on the associated graded groups, such as H1(XJ7ï1(/j/n)) <g> 
HX(X,H1^)) — iJ2(X, W2(/x®2)) is the usual product. This compatibilité 
together with the vanishing of H3(XzaLT, — ) and H4(XZSLI, —) when d i m X = 2, 
implies that there is an injection p : ̂ (X^Ti1) «—• iï2t(X,/in)/£*iJ2ar(X,//n) 
compatible with 7 in the sensé that for ai G H1(Xy7ï1) we have 7(ai U a2) = 
(pa1)U(pa2) in H*t(X,p,®2). Taking ai — i ï1(cn)(Ài), it suffices to show that 
in H2t(X, /xn)/e*iï2ar(X, /xn) we have c i2(^) = /9iJ1(cn)(Ai). This assertion 
about C12 is a spécial case of the more gênerai resuit 2.4 below. Q 

Our factorization of c12 requires some observations about the filtration on 
H2t(X, p,n) associated to the Leray spectral séquence for the morphism of sites 
s : Xet —• XZSiT. In rows q = 0 and q = 1 of the spectral séquence we have Hp 
of the sheaves W°(//n) = p,n and W1()t/n) = sss dd dd Therefore the bottom layer 
of the filtration is the image of e* : iJ2ar(X, /J,N) —• H2t (X, Assuming for 
simplicity that ii£far(X, /zn) = 0, the next layer of the filtration is given by an 
injection 

p : HLT(X,0*x/n) — H2(X^n)/e*H2(X,fin). 

Finally, we define d to be the map 

H^{X,0*x) ~ HÎt(X,dddGm) A HÏt(X,Vn) 

arising from the Kummer séquence on Xet. 

PROPOSITION 2.4. — Let X be a scheme over Z[^] . Then : 
a) The map i J1(cn) is induced from the natural quotient map 0 \ —• ^x/71' 
b) Assuming for simplicity that H^^X, jjLn) = 0, the following diagram 
commutes. 

K0(X) 
Cl 2 

Hl(X,nn) Hl{X^n)/e*H^{X^n) 

det a 

Pic(X) = HÎ&t(X,Ox) 
d+dld+d 

evr 

Hl&I{X,Ox/n) 

Remark 2.4-1 •' Part b) remains valid if .ff̂ ar (X, fin) ^ 0, provided we replace 
H^T(X, 0*x/n) by the kernel of the différentiel 

d2 : H^t(X,Ox/n) -» H^r(X,i*n). 
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