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Hopf structure on the Van Est spectral sequence in K-theory 

ULRIKE TILLMANN 

In this paper, we study the van Est spectral séquence and its close rela-
tionship to iiT-theory and cyclic homology. The bicommutative Hopf algebra 
structure on the Van Est spectral séquence induces a long exact séquence 
of indécomposables. This leads us to Diagram C below and a proof of 
Karoubi's conjecture on the duality relationship of multiplicative K-theory 
and smooth group cohomology in some restricted cases. In the last section 
we reinterpret the Van Est spectral séquence as the Serre spectral séquence 
of a fibration of simplicial spaces. This paper is a sequel to [Ti] to which 
the reader is refered for further motivation. 

I would like to thank the organizers for the opportunity to présent thèse 
resuit s at the conférence. 

1. Resuit s. 

Here we describe briefly the main results. The reader familiar with the 
earlier paper will see easily how Diagram C below is an improvement on 
Diagram B in [Ti] as now ail rows are exact. The unfamiliar reader might 
find it helpful to read Sections 3 and 4 first which we hope are of interest 
in their own right and where we review many définitions in more détail. 

Let A be a Banach or Fréchet algebra over FS, GLA = limn_>oo GLnA be 
the gênerai linear group over A, and Q\A — limn^oo Q^nA be its Lie algebra. 
If M\ and M2 are two infinité matrices over A, dénote by M\ © M2 the 
infinité matrix that acts on even coordinates like M\ and on odd coordinates 
like M2. This sum opération defines a map of groups © : GLA x GLA • 
GLA and also of Lie algebras © : 0 U x g U • QlA. It is well known that 
over a field (here to be taken R or C) this product and the diagonal map give 
the structure of a bicommutative Hopf algebra to the homology H*GLA of 
the underlying topological space, to the Lie algebra homology H^^glA, 
and to the group homology H*BGLA$ of the discrète group GLA^. The 
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product is commutative as M± ©M2 and M2®Mi only differ by conjugation 
via a permutation matrix. (See [L] for a proof in the case of H^teQlA). 

In order to study the Van Est spectral séquence, we are more interested 
in cohomology, i.e. de Rham cohomology H* G LA, continuous Lie alge-
bra cohomology H^^glA, and smooth group cohomology H^GLA. We 
will assume that thèse are of finite type. This ensures that © induces 
a well-defined comultiplication on thèse three algebras. For the Van Est 
spectral séquence we will also have to assume that the de Rham complex of 
differential forms is split. (See Section 4.) Let GLAo dénote the identity 
component of G LA. The invariant differential forms on GLA0 can be iden-
tified with the exterior algebra on 0L4, and ail three cohomology groups 
associated with GLAo are connected, that is H° is one dimensional. 

P R O P O S I T I O N 1. The van Est spectral séquence for GLAo is a spectral 
séquence of connected, bicommutative Hopf algebras with 

E2 = H;mGLA0 <g> H*GLAo HîieglA. 

P R O O F : The direct sum opération © : GLAo x GLAo GLAo is a group 
homomorphism and its induced map on the Lie algebra QlA is again © as 
defined above, for exp(Mi © M2) = expMi ffi expM2. The proposition then 
follows by naturallity of the van Est spectral séquence. (See Section 4 and 
[Be] for more détails.) 0 

COROLLARY 2. There is an exact séquence of indécomposables 

... — Q(H*smGLA0) — Q(HlieQ\A) — Q(H*GLAQ) — ... 

P R O O F : This follow from an application of Theorem 3.1 to the Van Est 
spectral séquence of Propostion 1. 0 

Using the notation Q for indécomposables and P for primitives as in Sec­
tion 3, thèse vector spaces may now be identified as follows. By [LQ] or 
[T], the space of indécomposables Q(H^ie&lA) is isomorphic to the contin­
uous cyclic cohomology groups HC*~X A. For simplicity, we assume now 
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that GLA is connected. Then, the cohomology H*GLA is the dual Hopf 
algebra of H*GLA and Q(H*GLA) = [P(H*GLA)]*. Furthermore, as 
GLA is an associative H-space, rationally P(H*(GLA; Z)) is isomorphic to 
the homotopy groups -K*GLA = K^^A. Thus, Q(H*GLA) is essentially 
the dual of topological iiT-theory and we may use the suggestive notation 
K?opA := [P(Hn-iGLA)]*. Similarly, we define K%lgA := [P(HnBGLA6)Y 
and K™ei := [P(HnGLA/GLAs)]*• Hence, by passing to indécomposables, 
Diagram B in [Ti] may now be replaced by the commutative 

DIAGRAM C. 

HC?A 
i 

H H™ A 
B HC?+1A dds 

HC?+1A 

HC?+1A 

Kn 4 
lvtop^ 

Q(H?mGLA) HC^A Kn+1 A 

h ùhrei 

Kn A Kn A Kn A lxtop J± 

Here the top row is Connes' exact séquence for continuous cyclic and 
Hochschild cohomology. The middle row is that of Corollary 2 reinterpreted. 
The bottom row is also exact and is by définition the dual of the exact 
séquence that relates relative, Quillen's algebraic, and periodic J^-theory. 
The vertical maps are described as follows. D3rn composed with h is the 
dual of the Dennis trace map, and chre\ is the dual of Karoubi's relative 
Chern character.1 

P R O O F : If indeed we had just passed to indécomposables, there would be 
nothing to prove as ail maps would be well defined and the commutativity 
of Diagram C would follow from that of Diagram B in [Ti]. However, in 
order to stay closer to to the if-homology groups, K*lgA and K*eXA have 
not been defined in terms of indécomposables. We thus need to thus define 
h and chre\. This can be done as follows. 

1The missing vertical lines may be filled in by the dual of Karoubi's topological Chern 
character. See [Ti, §5] for further comments. 
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In [Ti] we constructed a factorization 

HHnA Dsrr, Hn^GLA y HnBGLAs 

of the dual Dennis trace map. Composing D3rn with the projection onto 
indécomposables gives the map H H™ A —• Q^H^GLA). Now, in a bicom-
mutative Hopf algebra, the natural map from the primitives to the indé­
composables is an isomorphism. Thus we may think of the indécomposables 
as the subspace Pfâ^GLA) to get a well defined map to HnBGLA$. Its 
image is contained in P(H°) where H° dénotes the continuous dual Hopf 
algebra of H = H+BGLAs, i.e. H° is the largest Hopf algebra contained 
in H*BGLAS. But for ail Hopf algebras we have P(H°) = [Q(H)]* by a 
theorem of Michaelis [Mi]. Hence, 

Q(H:mGLA) = P(H™mGLA) P{H°) = [Q(H)\* = [P(H)]* = K2lgA 

is well defined. Similarly, the factorization of the dual relative Chern 
character HC™~XA —• H%ieQÏA HnGLA/GLAs gives rise to the map 
chrel : HC^A K?elA. 0 

In [K] Karoubi also defines multiplicative /^-groups MKnA such that 
they fit into a long exact séquence 

... —v HCcn_xA — • MKnA —> K^opA — 

The middle row of Diagram C is just the dual of this séquence. This gives 
us a partial solution to a conjecture by Karoubi that the continuous dual of 
the multiplicative lïT-theory is the smooth group cohomology. We illustrate 
this with an example in the next section for A = C. 

2. Example A = C. 

We consider C as an algebra over R. GLC is connected and it is well-
known that its de Rham cohomology is an exterior algebra with one gener-
ator in each odd dimension: 

H*{GLC, C) = EZ(xux39 ...,*„...) 
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where xp has degree 2p — 1 and transgresses to the universal Chern class cp 
in the Serre spectral séquence associated to the universal GLC-hundle. 

Using the unitary trick, one can show that with coefficients in C the de 
Rham cohomology is isomorphic to the smooth group cohomology, that is: 

H*(GLC,C) = H:m(GLC,C) 

where the isomorphism is given via multiplication by (z)n in dimension n. 
The composition of this isomorphism and the natural map iy*m(CrXC, C) —> 
H*(BGLCs7 C) maps xp to the Borel regulator élément in dimension 2p — 1. 
(More precisely, one considers its image in H*(BGLCs,C/Rp) where Rp = 
R ®z ÏP and TLP is the subgroup of C generated by (2-KÏ)P . See for example 
[DHZ].) 

Finally, we compute the Lie algebra homology of fl(C as a vector space 
over IR. Using the relation of Lie algebra cohomology to cyclic cohomology, 
one has 

Q(H£ie(0lC; C)) = HC*(C;C) = C © C 

in even dimensions and zéro otherwise. Hence, for n = 2p — 1, the middle 
row of Diagram C breaks up in short exact séquences 

(*) o — > c — > c e c — > c —>o. 

Recall [K], Karoubi's multiplicative iiT-groups MKnA fit into a long exact 
séquence 

... v K^A — Y HC^A —> MKnA 

For A = C and n = 2p — 1 this breaks into short exact séquences 

0 > Z ksk k C y C/Zp > 0. 

The above cohomology séquence (*) is clearly the continuous dual of this 
séquence with 

Hom|ont(AfiiC2p-iC; C) = Hom|ont(C/Zp; C) = C = H^X(GLC; C). 
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3. Spectral séquence of Hopf algebras. 

The goal of this section is to show how a spectral séquence of cocommu-
tative Hopf algebras leads to a long exact séquence of primitives. For this 
we will assume that ail Hopf algebras are connected and of finite type over 
a field of characteristic zéro. 

Let E be such a Hopf algebra with coproduct A. Its set of primitives is the 
set P(E) := {x E E\ A(x) = 1®X + X®1}, and its set of indécomposables 
is the set Q(E) := Ë/Ë2 where Ë is the augmentation idéal. As E is of 
finite type its dual E* is also a Hopf algebra and 

P(E)* = Q(E*). 

We refer the reader to [MM] and [B] for the basic theory of differential 
graded Hopf algebras. Recall, though, that E is called primitive (coprimi-
tive, biprimitive) if the natural map P(E) —• Q(E) is surjective (injective, 
bijective), and that this is équivalent to E being cocommutative (commu-
tative, bicommutative) [MM, 4.17]. 

T H E O R E M 3 .1 . Let {Er,dr} be a spectral séquence of Hopf algebras con-
verging to A with En = B®C for some n > 0, where A,B,C are biprimitive 
Hopf algebras of finite type. Then there are long exact séquences 

(*) P(A)n~1 y P(C)n"1 • P(B)n y P(A)n 

and equivalently 

(**) Q{A)n~1 > QiC)"-1 • Q(B)n —• Q(A)n 

P R O O F : By the Hopf décomposition theorem [B, 3.9, 3.10], every biprimi­
tive differential graded Hopf algebra E is isomorphic as a differential graded 
Hopf algebra to 0 • Ki ® 0 ^ Mj ® Q where 

K% = f\(xi) (g) k[yi] with dx{ = y{ and dy{ — 0 

Mj = /\(XJ) ® k[yj] with dyj = Xj and dxj = 0 

Q = f\(x3) ® k[yt] with dx3 — 0 and dyt = 0. 
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Then H ( E ) = Q as Hopf algebras, and we note: 

the differential maps primitives to primitives, and 

the preimage of a primitive is a primitive. 

By hypothesis, P { E n ) = P ( E * > ° ) ® P ( E % * ) . Thus, using a bigraded version 
of the Hopf décomposition theorem, P ( H ( E n ) ) = P ( E n + 1 ) = P Ç E * 9 ^ ) © 
PÇE^+x) and by induction 

(2) PiEoc) = P(E*J) © P(£&*) 

Furthermore, by (1) the familiar exact séquence 

0 —± E^-1 —> E0k'k~x Ek'° — EkJ —+ 0 

induces an exact séquence on primitives for k > n: 
(3) 

0 _ + p^Eoo)0'"-1 —> P(^fc)0'*-1 — P(£*)fc'° — P(^oo)fc'° — 0. 

(1) 

Aeain usine (1), 

Pf^)0 '* -1 = PiEn)0*-1 = P(C)k-1 
(4) 

P(Ek)k>° = P(En)k>° = P(B)k 

as dr, leaves thèse unchanged for dimension reasons when n < r < k. 

Finally, two graded, biprimitive Hopf algebras E and E are isomorphic 
if and only if à\vciEk = dimi?* for ail k. This is immédiate from the Hopf 
décomposition theorem. Hence, 

(5) P(A)k = P(^oo)* = P(E°^)k © P(E^°)k 

Putting (3), (4), and (5) together, we yield the long exact séquence (*). 

COROLLARY 3.2. If in Theorem 3.1, the algèbra A is merely assumed to 
be primitive (resp. coprimitive) then séquence (*) (resp. séquence is 
still exact. 

PROOF: Recall (the dual of) Corollary 2.2, in [B]: If E and Ë are two 
primitive Hopf algebras with dimEk = dirai t then E and E are isomorphic 
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as coalgebras. The last part of the argument in the proof of Theorem 3.1 
can then be changed to read as follows: As A and E^ are two primitive 
Hopf algebras of the same rank, they are isomorphic as coalgebras and hence 
P(A) = P(^oo). 

T H E O R E M 3.3. If in Theorem 3.1 ail three algebras, A,B,C, are merely 
assumed to be primitive (resp. coprimitive), then séquence (*) (resp. sé­
quence (**)} is still exact. 

P R O O F : Recall from [B, 2.2, 3.8] that every primitive différential graded 
Hopf algebra (E,d) is isomorphic to its biprimitive form °E as differential 
graded coalgebra. Furthermore, there is a spectral séquence {£R(E), dr} of 
biprimitive Hopf algebras with £Q(E) = °E converging to the biprimitive 
form ° H ( E ) of its homology. 

The theorem now follows by induction on r where at each stage we com-
pute ER from ER-\ via the corresponding spectral séquence of biprimitive 
Hopf algebras to which we can apply Theorem 3.1. As ER is isomorphic 
to °ER as a differential graded coalgebra, P(ER) = P(°ER). This and the 
various exact séquences that resuit from the application of Theorem 3.1 
prove the resuit after some diagram chasing. <0> 

R E M A R K 3.4: The above theorems have obvious dual versions where the 
spectral séquence is replaced by a spectral séquence corresponding to a 
homology theory. In this case the arrows in séquences (*) and (**) are 
reversed. 

E X A M P L E 3.5: The motivating example was that of the Serre spectral sé­
quence of a multiplicative fibre map of iï-spaces F —• E —• B over the 
rationals with F and B connected. 

Recall that the rational homology of an iJ-space X is a primitive Hopf 
algebra, the diagonal map inducing the commutative comultiplication and 
the iï-space structure giving rise to the multiplication. Furthermore, its 
primitives P(H*(X,Q,)) are isomorphic to the rational homotopy groups 
7r*X <g) Q [MM, Appendix]. Hence, in the case of a multiplicative fibre map, 
Theorem 3.3 gives us the long exact séquence of rational homotopy groups 

. . . • 7rNF ® Q • 7rNE ® Q • nnB ®Q 

428 



HOPF STRUCTURE ON THE VAN EST SPECTRAL SEQUENCE IN K-THEORY 

4. Van Est spectral séquence as Serre spectral séquence. 

In this section it is shown that the Van Est spectral séquence may be 
interprétée! as a Serre spectral séquence in continuous cohomology. More 
détails on the simplicial spaces and complexes below may also be found in 
[Ti] Sections 2 and 4. 

Recall, if Ym is a simplicial space then its continuous cohomology with 
coefficients in a topological vector space V is defined by 

H:(Y.,V) = H*(C*(Y.,V),6) 

where Cn(Y», V) is the set of continuous functions f : Yn —+ V, and 6 is the 
usual boundary map induced by the face maps of Y"#. 

For example, the continuous cohomology of a topological group G is by 
définition the continuous cohomology (in the above sensé) of the simplicial 
space E+G/G = B*G, where E%G is the bar construction on G. That is, 

H*C(G,V) = H*C(B.G,V). 

Another important example is the simplicial space of singular smooth 
simplices of a manifold X with the C°° compact-open topology. We will 
simply dénote this simplicial space by X * . Then the smooth singular coho­
mology of X is isomorphic to the continuous cohomology of XM: 

H*X = H*(X.) 

at least when X has the smooth homotopy type of an open subset of a 
Fréchet space [BS3, 1.6]. Here, and from now on, real coefficients are un-
derstood. 

Recall from [Be], a complex of topological vector spaces (C*,d) is called 
split if the complex is homotopy équivalent to its homology, or equivalently, 
if Cn = Bn © Hn(C*) 0 Én+1 with Bn C ker(d) and Én+1 isomorphic to 
qks, d9+ k 

PROPOSITION 4 .1 . Let G be a Lie group such that 
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(1) ft*G and G* (G.) are split, and 
(2) H*G = H*G.. 

Then intégration deR : Cl*G —• G*(G#) restricted to the G-invariant sub­
complexes induces an isomorphism in homology. Thus, if g dénotes the Lie 
algebra of G then 

H*LieQ~H*c{G./G) 

Condition (2) seems to be the weaker condition and is automatically 
satisfied by ail groups known to satisfy condition (1). Thèse include the 
diffeomorphism group Diff(Af) of a compact manifold M, the loop group 
LG of a compact Lie group G, and the gênerai linear group GLnA when 
A is a seperable Banach space or A = COG(M) for a compact manifold [Be, 
7.5, 8.9] [BS3, 1.5]. 

P R O O F : Consider the commutative diagram of (double) complexes 

(n*G)G C^(E.G,n*G)G 

deR deR 

C*(G.)G C^{E.G,C^{G.))G 

The suffix oo indicates here that we take smooth instead of continuous maps. 
Note that Hlie& = H((Q*G)G) and H*(G./G) = H{C*(G.)G) as G acts 
freely on G*. The horizontal maps are edge maps induced by the inclusion 
of a G-module into the constant functions, V C—• C^ÇE.G, V). As both 
Q*G and G*(G#) are smoothly injective G-modules, thèse are homology 
équivalences (see also [BS3, §8]). 

We are left to show that the right hand vertical map is a homotopy 
équivalence. We replace the homogenous cochains by the non-homogenous 
cochains: 

C*^{B.G,Q*G) 
deR ̂ C^{B.G,C%G.)). 

Both fi*G and G* (G.) are split so that the Ei-terms of the spectral sé­
quences, which arise from the filtrat ion of the double comlexes by columns, 
are C^B.G, H*eRG) and C^(B.G, H*(G.)) respectively. But by the 
usual de Rham Theorem and condition (2), H%eRG = H*(G.). Hence, 
deR induces an isomorphism of i?i-terms, and hence on the abutments. 0 
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CAVE AT: In gênerai, we may not replace the continuous cohomolgy with 
the ordinary cohomology in Proposition 4.1. For example, if G = SLnR 
then Ht (G./G) = HlieMnR is finite dimensional but H2 (G./G) is infi­
nité dimensional [M, Lemma 7]. This also means that chre\ : H^ieglA —• 
H* (GLA./GLA) is in gênerai not an isomorphism. (Recall, GLA/GLAs 
was defined to be the realization of the simplicial set GLA./GLA.) 

P R O P O S I T I O N 4.2. There is natural map of spectral séquences from the 
Van Est spectral séquence for a Lie group G to the Serre spectral séquence 
in continuous cohomology for the ûbration of simplicial spaces 

G. —• B.G xr G. —• B.G. 

Furthermore, if G is connectée and satisûes the conditions of Proposition 
4.1 then the transformation induces an isomorphism on E2~terms. 

PROOF: Let E.G XG G. be the orbit space of the cartesian product E.G x 
G. under the diagonal action of G. We can identify E.G x& G. with the 
twisted cartesian product B.G x r G. via 

o 19ii--">9n-i9n,9 +br1d (ffo 19ii--">9n-i9n,9o 1(J) 

where Çj G G and a is a smooth n-simplex of G. It is easy to check that 
<f> is a homeomorphism of simplicial spaces when E.G, B.G, and G. are 
given the usual simplicial structure and the twisting function r : BnG —> G 
is defined by 

(9u • • •ïfln) 9i X-

Then clearly C*(E.G xGG.) = C*(B.G x r and the natural map 

C*(B.G,C*(G.)) = C*(E.G,C*(G.))G 

C*(E.G x G.)G = C*(B.G x r G.) 

that takes the filtration by columns of the double complex on the left hand 
side to the usual filtration associated to a fibration on the right hand side. 
(We refer the reader to [BS1, §8] for détails on the Serre spectral séquence 
in continuous cohomology. Note that in our case r is the same as f as the 
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twisting group is the constant simplicial group G.) Recall that the van Est 
Spectral séquence is associated to the filtration by columns of the double 
complex 

C^B.CSTG). 

Thus, composition of the de Rham map deR with A gives us the desired 
natural map of spectral séquences. 

If G satisfi.es the conditions of Proposition 4.1 then G*G# is split and A 
induces an isomorphism on JE^-terms [BS1, 8.3] with 

E2 = H:(G,H*G), 

where we identified jfiT*(G#) with H*G using condition (2). Furthermore, 
filtering the double complex C*(BmG,C*(G*)) by rows, we get another 
spectral séquence which collapses at the ^ - t e r m to H* (G./G) as G*(G#) 
is G-injective. When G is connected, H*G is an invariant G-module. Thus, 
in this case the Serre spectral séquence takes the form 

E2 = H*G <g> H*G H*(G./G) = H*(B.G xr G.). 

while the Van Est spectral séquence has the form 

E2=H:rnG®H*G H*Lieg. 

By Proposition 4.1, the abutments are the same, which forces iï*mG = H*G 
by the Zeeman Comparison Theorem. This proves the second part of the 
proposition. <C> 

R E M A R K 4.3: It follows from the proof of Proposition 4.2 and Theorem 
4.3 in [Ti] that the natural projection G# xG E.G —» E.G/G and eval : 
G./G —» E.G/G which takes an rz-simplex a to its évaluation at the vertices 
(<j(0),.. . , cr(n)) are identical in continuous cohomology. 

R E M A R K 4.4: It is well-known (e.g. [BW, IX §5]) that for locally compact 
groups G which are countable at infinity the continuous and the smooth 
cohomology are the same, that is 

H:rnG®H* dd 

4 3 2 




