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THE SECOND HOMOLOGY GROUP 
OF CURRENT LIE ALGEBRAS 

PAUL ZUSMANOVICH 

0. INTRODUCTION 

It is a well known fact that the current Lie algebra (g)C[[£, t"1]] associated 
to a simple finite-dimensional Lie C-algebra Q has a central extension leading 
to the affine non-twisted Kac -Moody algebra £/®C[[£, © with bracket 

{x ® / , y ® 9} = [x, y]® fg+ (x, y)Res^g z 

where (· , ·) is the Killing form on Q (cf. [Kac]). 
In view of the known relationship between central extensions and the second 

(co)homology group with the coefficients in the trivial module , one of the 
main results of this paper can be considered as a generalization of this fact 
for general current Lie algebras, i.e. Lie algebras of the form L ® A where 
L is a Lie algebra and A is associative commutative algebra, equipped with 
bracket 

[x (g) a, y ® b] = [x, y] (8) ab. 

Theorem 0 .1 . Let L be an arbitrary Lie algebra over a field K of charac­
teristic p ^ 2 and A an associative commutative algebra with unit over K. 
Then there is an isomorphism of K-vector spaces: 

( 0 . 1 ) H2(L®A) ~ H2(L)®A 0 B{L)®HC1{A) 

e A2(L/[L, L]) ® Ker(S2(A) A) © S2(L/[L,L])®T(A) 

where the mapping S2 (A) —• A induced by multiplication in A and T(A) = 
(ab A c + ca A b + be A 6, c E A). 

Here B(L) is the space of coinvariants of the L-action on S2(L), HC\{A) 
is the first-order cyclic homology group of A , and A 2 and S2 denote skew and 
symmetric products respectively. Notice that in the case L = [X, JL], the third 
and fourth terms in the right-hand side of ( 0 . 1 ) vanish. 

s. M. F. 
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Many particular cases of this theorem were proved by different authors 
previously. A n exhaustive description of all previous works on this theme 
may be found in [H] and [S]. 

The first t ime a cohomology formula of the type (0.1) has appeared in 
[S] , where Theorem 0.1 was proved assuming that L is 1-generated over an 
augmentation ideal of its enveloping algebra. A . Haddi [H] obtained a result 
similar to Theorem 0.1 in the case when K is a field of characteristic zero 
(however, it seems that his arguments work over any field of characteristic 
P 7 ^ 2 , 3 ) . 

Our method of proof differs from all previous ones and is based on the Hopf 
formula expressing H2(L) in terms of a presentation 0 —> / —• L(X) ~~* L ~~* 0, 
where C = C(X) is the free Lie algebra over K freely generated by the set X: 

(0.2) H2(L)~ ([£,£](! !)/[£, I] 

(see, for example, [KS]). 

The contents of the paper are as follows. §1 is devoted to some technical 
preliminary results. In §2 we determine the presentation of a current Lie 
algebra L <g) A. In §3 Theorem 0.1 is proved. As it corollary we get in §4 
a description of the space B(L ® A). In §5 a "noncommutative version" of 
Theorem 0.1 is proved (Theorem 5.1). Namely, we derive the formula for the 
second homology group of a Lie algebra (A<g>B)(~~^, where A , B are associative 
(noncommutat ive) algebras with unit, and (—) in superscript denotes passing 
to an associated Lie algebra. The technique used here is no longer based on the 
Hopf formula, but on more or less direct computations in some factorspaces 
of cycles. However, arguments used in proof, resemble, to a great extent, the 
previous ones. Getting a particular case B = Mn(K), we recover, after a 
slight modification, an isomorphism H2(sln(A)) HC\(A) obtained in [KL]. 

The following notational convention will be used: the letters a, 6, c, 
possibly with sub- and superscripts, denote elements of algebra A , while let­
ters u, w,. . . denote elements of the free Lie algebra C(X) with the set of 
generators X = { a ; * } , if the otherwise is not stated. Cn(X) denotes the nth 
term in the derived series of C{X). The arrows >—» and —» denote injection 
and surjection respectively. 

All other undefined notions and notations are standard, and may be found, 
for example in [F] for Lie algebra (co)homology, and in [LQ] for cycl ic homol­
ogy. In some places we use diagram chasing and 3 x 3-Lemma without explicit 
to mention it. 
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1. P R E L I M I N A R I E S 

Looking on the formula ( 0 . 1 ) , one can distinguish between the first two 
"principal" terms and other two "non-principal" ones. In order to simplify 
calculations, we will obtain a variant of Hopf formula leading to the appear­
ance of "principal" terms only, and then the general case will be derived. 

Each nonperfect Lie algebra £ , i.e. not coinciding with its commutant 
[ L , L ] , possess a "trivial" homology classes of 2-cycles with coefficients in the 
module K, namely, classes whose representatives do not lie in I A [ I , L]. More 
precisely, consider a natural homomorphism i¡) : Ü2(L) —> H2(L/[L, L]) ~ 
A2(L/[L, L\) and denote Hesss (L) = Keri/>, the homology classes of "essential" 
cycles. 

L e m m a 1 · ! · One has an exact sequence 

0 
He

sss (L) 
H2(L) 

w 
A 2 ( ¿ / [ £ , £ ] ) 

7T 
[L,L]/[[L9L]9L] 0 

where K is induced by multiplication in L. 

Proof. This is just an obvious consequence of a 5-term exact sequence derived 
from the Hochschild-Serre spectral sequence Hn(L/[L, L ] , i J m ( [ L , L])) 
Hn+m(L). 

Further, we need a version of Hopf formula for i f f S 5 ( £ ) -

L e m m a 1.2· Given a presentation 0—>I—>C—>L-^0ofa Lie algebra L, 
one has 

(1.1) mss(L) ~ 
c3m 

C3 n [C, /1 
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Proof. Since L/[L,L] ~ £/(£2 + I), the Hopf formula ( 0 . 2 ) being applied to 
the algebra L/[L,L] gives H2(L/[L,L]) ~ C2/[C, C2 + J] , and 

Kerip = Ker 
C2(1I 

[Ai] 
£ 2 

[ £ , £ 2 + i ] 
= C2 n J D [£, £ 2 + / ] 

[Ai] 
= c3ni 

C3 n [£, J] . 

Now consider an action of a Lie algebra L on S2 (L) via 

[z,xVy] = [z,x] Vy + xV[z,y]. 

Let B(L) = S2(L)/[L, S2(L)] be the space of coinvariants of this action. The 
dual B(L)* is the space of symmetric bilinear invariant forms on L. 

Let / , J be ideals of L. Define J) to be the space of coinvariants of 
action of L on I V J. One has a natural embedding B(i\ J) —> B(L). The 
natural map L V J —• ( L / 7 ) V ( ( / + J ) / J ) defines a surjection J ) —• 
B(L/I,(I+ J)/1). 

L e m m a 1.3· The short sequence 

( 1 - 2 ) 0 B(L, /nJ) + B(I, J) J) B(L/J, ( i + J ) / i ) 0 

is exact. 

Proof. Since Ker(L V J L / J V ( I + J ) / / ) = L V (J PI J) + I V J, the 
factorization through [L,S2(L)] yields 

Ker(B(L, J) B(L/I, (I + J)/1)) 

= (LV (I C\ J) + IV J + [L,S2(L)])/[L,S2(L)] ~ B(L, I n J) + B(I, J) 

Remark. Actually we need the two following cases of this Lemma: 
( 1 ) J = [L, L]. Since IV[L, L] and [J, L]VL are congruent modu lo [L, S2(L)] 

and [I, L] C I n [L, L], then B ( I , [L, L]) C B(L, I (1 [L, L]) and we get a short 
exact sequence 

(1.3) 0 B(L,In[L,L]) B(L,[L,L]) B(L/I, [L/I,L/I]) 0 

( 2 ) / = [L, L] and J = L. Then taking into account that for an abelian Lie 
algebra M, B(M) ~ S2(M), the short exact sequence ( 1 . 2 ) becomes 

(1.4) 0 B(L,[L,L]) B{L) S2(L/[L,L]) 0 
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2 . P R E S E N T A T I O N O F L <g> A 

In this section starting from the presentation of L we construct the presen­
tation of L ® A. 

Let 0 I C(X) P L 0 be a presentation of the Lie algebra L. 
Tensoring on A , we get a short exact sequence 

( 2 . 1 ) 0 I® A C(X) <8> A P®1 L<g> A 0 . 

Let X(A) be a set of symbols x(a), x 6 X, a E A. Define a homomorphism 
4> : C{X{A)) C(X) ®Ahy 

(f> : u(ici(ai),.. - ,# n(a n)) u(xi,..., xn) ® ai ... . a n . 

Obviously this mapping is surjective, and taking into account ( 2 . 1 ) , gives rise 
to the following exact sequence: 

( 2 . 2 ) 0 4>~r(I ® A) C{X{A)) (p<g>lW L ® A 0 

which gives the presentation of L ® A. 
In order to determine the structure of 0 _ 1 ( J ® A ) , let us introduce one no­

tation. For each homogeneous element u = u{x\,..., xn) of C(X), define u(a) 
to be u(xi(a), x2(l), . . . , # n ( l ) ) - Now having an arbitrary element u £ C(X), 
define u(a) as Ui(a) + · · · + un(a), where u = u\ + - · · + un is decomposit ion 
of u into the sum of homogeneous components. 

L e m m a 2.1· 
( 1 ) Kercf) is linearly generated by elements of the form 

(2.3) E 

3 

u(xil(aJ

1)1...yxin(aJ

n)) 

where u(xi1,. . . , Xin) is homogeneous element of C(X) and 
E i a { . . . a i = 0. 

( 2 ) 0 _ 1 (7(8) A) is linearly generated modulo Kercf) by elements of the form 
u(a) where u £ I. 

Proof. ( 1 ) Evidently each element of C(X(A)) may be expressed as a sum 
of elements of the form u(a) and elements of the form ( 2 . 3 ) , the latter ly­
ing in Ker(f). To prove that they exhaust all Kercf), take a nonzero element 

E i E j

;Ui(a , ij) belonging to Kercf), where u^s are linearly independent, and 
obtain Y2i Ui <g) dij = 0 , which implies E a2J- = 0 for each i. 

( 2 ) The factorspace <j>~1(I®A)/Ker(j), consisting from cosets u(a) + Kercf), 
maps onto I ® A, whence the conclusion. 

We need also the following technical result. 
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L e m m a 2 .2 . For any u,v,w & C{X) and a,b,c £ A, the elements 

[[w, u](a),v(b)] - [[w,u](b),v(a)] + [[w,v](a),u(b)] - [[w,v](b),u(a)] 

and 

[[u,v](ab),w(c)] ~ [lu^v](c),w(ab)] 
+[[«, v](ca),w(b)] - [[u,v](b),w(ca)] 
+[[u, v](bc), w(a)] ~ [[u,v](a),w(bc)] 

belong to [£(X(A)),Ker<t>]. 

Proof. Consider the first case only, the second is analogous. We have modulo 
[C(X(A)), Ker<f>]: 

[[w,u](a), v(b)] - [[w, u](b), v(a)] + [[w, v](a), u(b)] - [[™,v](b), u(a)] 
= [[w(l),u(a)],v(b)] + [[v(b),w(l)],u(a)] 

+ [[w(l),v(a)],u(b)] + [[«(&), u;(l)], «(a)] 
= -[[t*(a), «(&)],«;(!)] + [[u(b), v(a)], w(l)} = 0. 

3. T H E S E C O N D H O M O L O G Y O F L <g> A 

The a im of this section is to prove Theorem 0.1. 
Consider the following commutative diagram with exact rows and columns, 

where stands for <^-1(/<8) A) (we will use this notation in some places 
further): 

0 0 

C3(X(A)) D [£(X{A)), (J)'1] n Ker<t> . C3{X{A)) n Ker4> 

C3{X{A))n[C{X{A))^-x] C3(X(A)) n^"1 H%SS(L ® A) 

4> 4> 

(C3(X) <g> A) n [C{X) (g> A, I <g> A] (C3(X)®A)n(I®A) 

0 0 
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The middle row follows from the Lemma 1.2 applied to the presentation (2 .2) . 
Completing this diagram to the third column, we get a short exact sequence 

(3.1) 0 
£3(X(A)) nKer<f> 

C*(X(A))n[£(X(A)), ^ - 1 ( J ® A)] nKer<j> 
H%SS(L(8)A) 

c3(x)ni 
£ 3 ( X ) n [£(*),/] 

<g> A -> 0. 

According to Lemma 1.2, the right term here is nothing else then i J | s s ( - ^ ) ® 
A. Let us compute the left term. 

Let ^F(Y) b e a free skewcommutative algebra on an alphabet Y with nonas-
sociative product denoted by [· , · ] . Define a mapping a : Jr2(X(A)) —• 
S2(F(X))® (AAA) by 

(3.2) a : [u(x1(a1),.. . , x „ ( a „ ) ) , Vixxih), . . . , Xm(bm))] 

(U(XÍ,. . . , X n ) V v(Xi, . . . , X m ) ) ® ( « i . . . a „ A 6i . . . 6 m ) . 

(recall that J^(Y) is just [JF(Y), JF(F)]). 
It is easy to see that this mapping is well defined and surjective. 
Let J(Y) be an ideal of F(Y) generated by elements of the form [[u, v], w] + 

[[w, u], v] + [[v, w], u], u,v,w £ T(Y) such that F(Y)/J(Y) ~ C(Y). 

L e m m a 3 .1 . 

a(J(X(A))) = (J(X)VF(X) + [ f ( I ) , 5 2 ( / ( I ) ) ] ) ® ( i A A ) 

+ (f2(X) VT(X))®T(A). 

Proof. Writing the generic element in J(X(A)), it is easy to see, by consider­
ing graded degree, that every element in a(J(X(A))) can be written as a sum 
of an element lying in (J(X) V F^X)) ® (A A A) and an element of the form 

(3.3) ([u, v] V w) <g> (ab A c) + ([w, u]V v) (g> (ca Ab) + ([v, w] V u) (g) (6c A a) 

for certain u,v,w G .^"(-X") and a, 6, c G A. 
Substituting in (3.3) 6 = c = 1, we get an element 

([w, t>] V w + [w, ti] V v — w)] V w) ® (1 A a ) . 

Now permuting the letters u, v in the last expression, one easily get that 

(T2(X) VF(X))® ( l A i ) C a(J(A(X))). 
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Substituting in (3.3) c = 1 and taking into account the last relation, we get 

(3.4) ([w, u] V v + u V [w, v]) ® (A A A) C a(J(A(X))). 

Any element in (3.3) is congruent modulo (3.4) to an element of the form 

(T2(X) V T(X))® {ab A c + ca A b + be A a) 

proving the Lemma. 

Now factoring the surjection ol through J(X(A)) and using Lemma 3.1, we 
get a mapping 

â:C2(X(A)) B(jC(X)) <g> HCi(A) + (KX V KX) ®{AA A), 

(KX denotes the space of linear terms in ^F(X) such that ^F(X) = KX + 
J F 2 ( X ) ) , which being restricted to £3(X(A)), gives rise to the surjection 

<y:C*(X(A)) B{C(X),C2{X))®HC1{A), 

where HCi(A) = (A A A)/T(A) is a first order cyclic homology of A. 
Further, the restriction of mapping <f> defined in §2, to C3(X(A)) leads to 

surjection 4> : C3{X(A)) -• C3(X) ® A. 

L e m m a 3 .2 . cê(C3(X(A)) D Ker(j>) = â(C3(X(A))). 

Proof. The Lemma follows immediately from Lemma 2.1 and equality 

a[u(a),v(b)] = 
1 

2 
a([u(a),v(b)] - [u(b),v(a)]), 

where the argument in the right-hand side lies in Ker<f>. 

L e m m a 3 .3 . 

â(C3(X(A))n[C(X(A)), 0- 1 ( /<8>A)]) = B(£(X),I n£2(X)) ®Hd(A). 

Proof. According to Lemma 2.1, a(C3 (X(A))C\[C(X(A)), < £ - 1 (I<g>A)]) consists 
from the linear span of the following elements: 

u V v <g> a A 6, 

where either u € C2(X), v G / or u € C(X), v e i n C2(X), and 

E 

3 

u V v ® a A b j 
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where ]TV bj = 0. The last expression obviously vanishes. 

Modu lo \C(X),S2(C(X))} we have: 

C2(X) V / = C(X)V [I,C(X)] Ç C(X)V (In£2(X)), 

what implies the assertion of Lemma. 

Lemmas 3.2 and 3.3 imply that the mapping a?, being restricted to 
£ 3 ( X ( A ) ) n < £ - 1 (I®A) and factored through C3(X(A))n[C(X(A)), fi'1 (I®A)] 
gives rise to surjection 
(3.5) 

/3: 
C3(X(A)) n 0 - 1(i~ ® A) 

C3{X(A)) n [ £ ( X ( A » , ^- i (J ® A)] 
B(£(X),£Z(X)) 

B ( £ ( X ) , / n £ 2 ( X ) ) 
® f f d ( A ) . 

The right-hand side here is by (1.3) isomorphic to B(L, [L, L]) <g> HCi(A). 
Further, according to (3.1) and Lemma 3.2, /3 can be restricted to a sur­

jection 
(3.6) 

0: 
C3(X(A))<lKeró 

C3(X(A))n [C(X(A)), 0 - 1 ( / ® A)] PI Ker<¡> 
B(L, [L,L])®HCX{A). 

L e m m a 3 .4 . /3 in (3.6) is injective. 

Proof. Denoting the left-hand side in (3.5) as Frac, consider the following 
diagram: 

Ker([L, L]® A AL® A L® A) 
h 

H%SS{L®A) 
j 

Frac 

i 0 

L V [L, L] ® A A A 
n 

B(L, [L, L]) ® HC1(A) 

where h is obvious factorization, j is isomorphism following from Lemma 1.2 
applied to presentation (2.2) , n = 7 (g) s, where / : L V [X, L] —• [£,£]) 
and s : A A A —+ HC\(A) are obvious factorizations, and i is defined as 

(3.7) i : (x V y) ® (a A 6) 
1 

2 
( x ® a A j / ® f c - x ® 6 A ¡ / ® a ) 

for x G [L, L ] , y E L. 
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The following calculation verifies the commutativity of this diagram: 

/3 o j o h o i((x V y) <g) (a A 6)) 

= 
1 

2 
¡3 o j o h(x <g> a A y ® b — x <g> b A y <g> a) 

= 
u 

2 
¿3 o (g) a A y <g> b — x <g> b A y <g) a) 

= 1 
2 

/5 o j((u(a) + 0 - 1 ) A (v(6) + - (ti(6) + A (v(a) + <j>~i)) 

= 
1 
2 

i8(Ka), t;(6)]-[ t i(6) , t ; (a)]) 

= 
1 
2 

((a: V y) (g> (a A ft) - (or V y) ® (6 A a) ) 

= x V y 0 a Ab 

= n((x V j / ) ® (a A 6)) 

where the overlined elements denote cosets in the corresponding factorspaces, 
and rr = t/ + 7, y = v + I. 

It is also clear from previous calculation and from Lemmas 2.1 and 3.2 that 
the image of j o h o i coincides with the left-hand side of (3 .6) . 

Thus the kernel of the mapping (3.6) can be evaluated as 

Ker/3 = j o h o i(Ker n) 

= j o h o i(([z, x] V y + [z, y] V x) (g> (a A 6) 

+ ([x,v]Vz) ® (a& A c + ca A b + be A a ) ) 

= J ^ ] ® « A j / ® 6 - [z,x\®b /\y ® a 

+ [z, y] ® a A x ® b — [z, y] <g) 6 A x <g) a) 

+ y] ® a& A z <g> c — [a:, y] ® c A 2 ® ab 

+ ì/] ® c a A 2 ® b — [x, y] ® b A 2 ® ca 

+ [xi y] ® ^ c A 2 (8) a — [x, y] ® a A z ® 6c)) 

= <[[«;, u] (a) , V (6) ] - [ [«; , u](6),«(a)] 

+ [[u;,t;](o),«(6)] - [[«7,v](&),tx(a)]> 

+ ([[w,u](a&),w(c)] - [[u,w](c),iw(a6)] 

+ [[«>v](ca),u/(&)] - [[u,v](b),w(ca)] 

+ [[u,v](bc),w(a)] - [[u,v](a),w(bc)]) 

AAA 
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(here u = x + I, v = y + I, w = z + I). The latter expression vanishes thanks 
to Lemma 2.2. 

Putting together (3 .1) , (3.6) and Lemma 3.4, we get 

Proposition 3.5· H%SS(L®A) ~ Hiss(L)®A e £(Lj£,£])®fTCi(A). 

By Lemma 1.1 we have an exact sequence 

(3.8) 

0 H%SS(L ® A) H2(L®A) A2(L/[L,L]®A) TA 
[L,L)/[[L,L],L]®A 

0. 

L e m m a 3.6 . 

Ker-ïïA — Ker(A2(L/[L,L]) 
7T 

[L,L]/[[L,L],L])® A 

e A2(L/[L, L}) ® Ker(S2(A) A) © S2(L/[L,L])® A2(A). 

Proof. The following commutative diagram with exact rows and columns 

0 

S2(L/[L,L])®A2(A) S2(L/[L,L])®A2(A) 7T 0 

i 

К er π A A 2 (L/[L,L)<8>A) 
= 

[L,L]/[[L,L],L]®A 
k 

KerOx ® m ) A 2 (L/[L,L])®S2(A) 
nOm 

[L,L]/[[L,L],L]®A 

0 

where i is defined in (3.7) , and 

k\x®a/\y®b (xAy)®(aV b) 
m : a V b i—• ab 

for x , y G L/[L, L], a, 6 G A , implies 

(3.9) КеттхА — Ker(7r ® rn) © S 2 ( £ / [ L , L ] ) ® A 2 ( A ) . 
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Considering the commutative diagram with exact rows and columns 

0 

A 2 (L/[L,L])0 Ker m = A 2 (L/\L,L])®Ker m 0 

Ker(ir <g) m ) A 2 (L/[L, L] (g> S2(A) 
7r®m 

[L,L]/[[L,L],L]®A 

1 ® m 

Kevin ® 1) A 2 ( Z / [ L , X,]) ® A 7T<R)1 [L,L]/[[L,L],L]®A 

0 

we get 

(3.10) Ker(ic <g> m ) ~ A 2 ( L / [ L , £ ] ) ® K e r ( 5 2 ( A ) -.· A) 

© Ker(A2(L/[L,L] 7T [ L , L ] / [ [ L , X ] , i ] ) ( g > A . 

Putting (3.9) and (3.10) together proves the Lemma. 

Combining Proposition 3.5, (3.8) and Lemma 3.6, we get 

H2(L ®A)~ H%SS(L) ® A 0 Ker(A2(L/[L, L)) [L,L]/[L,[L,L]])®A 

© B(L, [L, L]) <g) HCi(A) © S2(L/[L,L])® A2(A) 

© A2(L/[L, L\) ® A ' e r ( S 2 ( A ) A ) 

B y L e m m a 1.1 the first two terms here give H2{L)®A. Using a (noncanonical) 
splitting A2(A) = HCi(A)(BT(A) and the exact sequence (1 .4) , the third and 
fourth terms give B(L) <g> HCX{A) © S2(L/[L,L]) <g> T(A). Combining these 
identifications gives Theorem 0.1. 

Remark. It is interesting to compare Theorem 0.1 with the two-dimensional 
case of the homological operation 

Hn (L <g> A) © 
¿4- 7 = n — 1 

HCi(U(L))®HCj(A) 

defined in [FT] (U(L) is the universal enveloping algebra of L and the ground 
field assumed to be of characteristic zero). Taking n = 2, we obtain a mapping 

(3.11) H2{L®A) HCl{U(L))®HC0(A) © HCQ(U(L))®HC1(A) 
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Cyclic homology of universal enveloping algebras was studied in [FT] and 
[Kas2]. Using their results, we may observe that if S(L) denotes the whole 
symmetric algebra over X, 

HC0(U(L)) = HQ(L,S(L)) = S(L)/[L,S(L)] 

and HCi(U(L)) is a certain factorspace of H\(L, S(L)) containing H2(L) . 
This implies that in general (3.11) is neither injection, nor surjection. How­
ever, if L = (3.11) is an injection. 

4. C O M P U T A T I O N O F B(L <g> A) 

Theorem 0.1 allows us to compute B(L <g) A) in terms of L and A (of 
course, an alternative but longer proof may be given by means of direct com­
putations). 

Theorem 4.1· B(L <g> A) ~ B(L, [L, L)) <g> A © S2(L/[L, L] <g> A). 

Proof. It is more convenient to use Proposition 3.5 rather then Theorem 0.1 
to obtain a formula for B(L ® A, [L, L] & A) and then to derive the general 
case. 

Take any commutative unital algebra A1 with HC±(A') ~ K. According 
to Proposit ion 3.5, 

(4.1) 

H^SS{L® A® A') ~ H%SS(L® A)® A' 0 B(L ® A, [L, L] ®A) 

~ H*SS{L) ® A <g> A' 0 B(L, [L, L]) ® HCX{A) ®A'& B(L ® A, [L, L] ® A). 

On the other hand, 

(4.2) 

H^SS(L® A® A') ~ H%SS(L) ® A® A' e [X, ¿1) ® Hd (A ® A') 

~Hiss(L)®A®A' e B(L,[L,L]) ® Hd(A) ® A' 0 B ( X , [L, L]) ® A. 

(the last isomorphism follows from the partial first-order commutative case 
of the Kunneth formula for cyclic homology (cf. [Kasl]) : HC\{A ® A') ~ 
Hd{A) ® A' + A ® Hd(A')). 

Comparing (4.1) and (4.2) , and using the naturality condition guaranteeing 
compatibility, one has 

B(L <g> A, [L, L] ® A) ~B(L,[L,L])®A. 

Now the assertion of Theorem easily follows from the last isomorphism and 
the short exact sequence (1.4) being applied to the algebra L ® A. 
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5. T H E S E C O N D H O M O L O G Y O F A ® B 

Recall that given an associative algebra A, we may consider its associated 
Lie algebra A^~^ with the same underlying space A and the brackets [a, b] = 
ab — ba, as well as a Jordan algebra A ^ with multiplication aob = ^(ab+ba). 

Remind that T(A) = (ab Ac+caAb+bcA a|a, 6, c G A). For the sake of 
convenience we also will use the following notations: 

T ( A , [A,A]) = T(A) + [A,A]AA 
[A, A] A A 

Hd(A, [A,A]) = 
AAA 

[A, A] A A + T(A) 
= 

A2(A/[A,A]) 
T(A, [A, A]) 

(the second one is analogue of iy|ss(-k) for cyclic homology) . 
The aim of this section is to prove the following 

T h e o r e m 5 .1 . Let A,B be associative algebras with unit over a field K of 
characteristic p ^ 2. Let F(A, B) denotes the direct sum of the following four 
vector spaces: 

(1) A[A,A]/[A,A]®HC1(B) 
(2) A/A[A,A]®H2(B<--)) 
(3) (Ker(S2(A) A/[A, A\))/[A, S2(A)] ® HC^B, [B, B]) 
(4) Ker(S2(A/[A,A]) A/A[A, A]) <g> T(B, [B, B]) 

where arrows in (3) and (4) induced by (associative or Jordan) multiplication 
in A. 

Then H2((A®By-A ~ F(A, B) © F(B, A). 

The proof is divided into several steps. 
We employ the following short exact sequence: 

0 A2 A <g> S2B i A2(A®B) p S2A <g) A2B 0 

where the middle term is identified with the direct sum of two extreme ones 
via 

a i ® bi A a 2 ® b2 a i A a 2 ® 6i V b2 + a i V a 2 ® 6 i A 6 2 , 

and i and p are obvious imbedding and projection respectively. In what 
follows, this will be used without explicitly mentioning it. 

The arguments are quite analogous to the ones at the beginning of §3. Here 
they applied to H2((A ® B)(~^) ~ Ker d/Im d {d is the differential in the 
standard homology complex of (A ® B)(~^). The mapping p gives rise to the 
following short exact sequence: 

(5.1) 0 
Ker p H Ker d 
Ker p H Im d 

Я 2 ( ( А ® Б ) < - > ) 
p(Ker d) 
p(Im d) 

0 
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