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Topological cyclic homology of the integers 

M . Bökstedt and I . Madsen 

Introduction 
Topological cyclic homology associates to a ring R a spectrum T C ( i 2 ) . The 
homotopy groups TC i {R) are connected to Connes' cyclic homology groups of R, 
but they are stronger invariants than the cyclic homology groups. There is a map, 
called the cyclotomic trace, from Quillen's if-theory spectrum K(R) into TC (R). 
This map is conjectured to be a p-homotopy equivalence for certain complete semi 
local rings, and in particular for rings of integers in local fields with positive residue 
characteristic p. We refer the reader to [25] for further discussion of the cyclotomic 
trace. In this paper we set up a general strategy for calculating topological cyclic 
homology, and we apply it to the key case where the ring in question is the ring 
of p-adic integers. 
Let us very briefly describe the construction of topological Hochschild and cyclic 
homology. If we in the standard simplicial Hochschild complex of R, whose 
homotopy groups are the Hochschild homology groups, replace the ring with the 
Eilenberg-MacLane spectrum it determines, and the tensor product (over Z) with 
smash product of spectra, then we obtain the topological Hochschild homology 
spectrum THH(R). There are severe technical difficulties in carrying out the 
indicated substitutions, but they were overcome in [8] by the introduction of functors 
with smash product. A ring R gives in particular rise to such a functor. The resulting 
spectrum T H H ( R ) turns out to be an equivariant S1 -spectrum with deloops in the 
direction of every representation. Following [24] one would then expect that the 
topological cyclic homology to be closely related to the homotopy orbit spectra 
ECn+ A c „ T H H (.R). This is indeed the case, but instead of taking homotopy quotients 
with respect to the finite cyclic groups it is better to take fixed sets THH (R)Cn. The 
fixed sets contain many strata, one for each subgroup of Cn with the homotopy 
quotient above corresponding to the free strata. The spectrum TC (R) is a certain 
homotopy inverse limit of the fixed sets over a category which contains the inclusions 
of fixed sets and certain maps which mix the strata, cf. [11], [22] and sect.l below. 
The content of the paper is as follows. In the first section we introduce the concept of 
a p-cyclotomic spectrum. It is an equivariant S1 -spectrum with some extra structure, 
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and THH (R) belongs to this class of spectra for any functor with smash product and 
any prime p. The extra structure consists of S^-maps 

cpCp : THH (R)c*> THH (R) 

different from the inclusion of fixed sets, where Cp is the cyclic group of order p. 
For a p-cyclotomic spectrum T there are the important cofibrations 

(0.1) ECpn+ ACPN T T°pn TCpn-x 

with <& equal to the Cpn-i -fixed set of cpcp. The sphere spectrum is a cyclotomic 
spectrum, and the above cofibrations are split for T = 5° , giving the standard 
decomposition from [34] of the fixed point spectra. 
The second section of the paper discusses the norm cofibration 

(0.2) EG+ AQ T —* M a p G ( E G + , T ) H(G;T) 

for an equivariant G-spectrum T. Special cases of this fibration have been considered 
by various authors. We need for our purpose the Greenlees-May foundations from 
[19]. There are spectral sequences for each of the terms of (0.2). For example one has 

(0.3) H*(G; 7r*T) 7r*H(G; T ) 

where H* denotes the Tate cohomology. The main result in sect. 2 is Theorem 2.15, 
which relates the differential structure of (0.3) to the exact homotopy sequences of 
(0.2). 
In section three we tabulate the spectral sequence 

(0.4) H*(Cpn;7V*J) => 7r*Map(ECpn+, J) 

where J is the periodic image of J space, and where we use homotopy groups with 
Fp coefficients for an odd prime p. 
The next two sections four and five discuss the structure of (0.3) when T = THH (ZP) 
and G = Cpn. The natural map from S° = THH ( * ) to T H H ( Z ^ ) is trivial on 
homotopy groups, but induces a highly non-trivial map 

(0.5) Map G ECpn +, S0 -> M a p o ( E C P N + , THH (Zp)) 

It just changes filtration. The 2?2-term 2y*(Cpn-i,7r* J ) of (0.4) is a direct summand 
in thei?2-term of the domain of (0.5), and injects into thel?2-term of the range. Due 
to the filtration shift there are problems however in proving that the i?r-terms of (0.4) 
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injects into the 2?r-term of the range in (0.5). Assuming this to be true, however, 
the structure of (0.4) implies the structure of 

(0.6) H*(Cpn;TT*THH(ZP)) => 7r*MapCp7l(ECpn+,THH(Zp)) 

for all n. This is our Conjecture 4.3. In section five it is shown that Conjecture 4.3 
is indeed true if the unit map from 5° to K(ZP) factors over the J-spectrum. Such a 
factorization is known to exist on the level of the 0-th spaces of the spectra by [28]. 
There are other possible attacks on Conjecture 4.3, than to prove the factorization. 
The most promising is to use that the unit maps into the cyclic 1-skeleton of THH (Zp) 
when composed with the trace map, but at the time of writing we have not been able 
to carry this to a definite conclusion. 

The rest of the paper is based upon Conjecture 4.3, at least in part. Section six and 
section seven compare (0.1) and (0.2) and show that (0.1) is homotopy equivalent 
to the 0-connected cover of (0.2) via the obvious maps which inject fixed sets into 
homotopy fixed sets. This uses Conjecture 4.3 for general n. For n = 1 and n = 2, 
however, we can prove the conjecture, and for these values of n, (0.1) and the 
(-l)-connected cover of (0.2) do agree. Combining the results of section two and 
section four one then obtains the homotopy groups with Fp coefficients of TC (Zp), p 
odd. Section eight proves periodicity: multiplication with v\ induces an isomorphism 
between 7i>(TC {Zp)\ ¥p) and 7i>+2(/>-i)(TC (Zp); Fp) for r > 0. In section nine we 
use the linearization map from T C ( * ) to T C ( Z P ) , the known structure of T C ( * ) , 
from [11], and a theorem of J. Rognes [33], to show that 

(0.7) TC (ZP)J ~ (Im J x Z)J x B ( I m J x Zp)£ x (£6ti)J 

This result, however is dependent on Conjecture 4.3. 

We note that (0.7) is the expected structure of K{ZP)^ according to the generalized 
Lichtenbaum-Quillen conjecture as formulated by Dwyer and Friedlander. It lends 
credit to the belief that the cyclotomic trace is a homotopy equivalence, after p-
completion, for these kind of rings. 

The final section ten has the character of an appendix. Its main result shows that 
relative ÜT-theory is mapped monomorphically to the relative topological Hochschild 
homology in the first non-trivial dimensions. As a consequence we derive an 
unpublished result of the first named author, which is used in a critical way in 
section six. 

The scheme set up here for evaluating TC (—) has been applied to a number of other 
rings. For example, one knows by now TC(i?)£ for R = F, F[[t]], F [ t , t -1 ] 
and fP[e]/(e2) , cf. [22] and [25]. For example, T C ( F ) ~ HZp , the Eilenberg-
MacLane spectrum of Zp, when F is a finite field with pa elements. Furthermore the 
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only non-zero homotopy groups of TC (F[e] / (e2)) are: 

p odd: TC271-1 F[e] / e2 = W z n - i C F ) ^ ^ and T C o ( F [ e ] / ( € 2 ) ) = Zp 

p = 2 : TC2n-l F[e] / €2 = F®n and T C o ( F [ e ] / ( e 2 ) ) = Z2 

Here Wn(F) denotes the Witt-vectors of length n, i.e. 

Wn(F) = ( l + X F [ [ X ] ] ) 7 ( l + X " + 1 F [ [ X ] ] ) , 

and the superscript < — 1 > indicates the —1 eigenspace for the involution on W(F) 
which changes sign on X. This predicts then the values for the "tangent space of 
K(F)”. 
Further advancement in the understanding of TC (R) is dependent upon a more 
thorough understanding of THH (R) than is available at present. We refer the reader 
to the discussion given in [25]. Apart from the obvious unsolved problem of proving 
Conjecture 4.3, the present paper raises at least two other issues, namely to calculate 
TC (Z2) and to calculate TC (A) for rings of integers in local fields of positive residue 
characteristic. Ideally, one might hope to describe TC (A) for a Galois extension 
A/Zp as a functor TC (Zp) and the extension. 
The calculations performed in sections six to eight are somewhat unpleasant, and not 
well understood from an algebraic point of view. One feels that some algebraic notion 
could be developed to explain and streamline them. In particular one would like to 
have a good description of the structure of the homotopy groups of the homotopy S1-
orbit of THH (Zp). This will be needed for example in the calculation of TC(Zp[Cpn]). 
The present paper has been a long time under way, and several people have con
tributed with very helpful comments. We in particular want to acknowledge the help 
we have had from L. Hesselholt and J. Rognes. J. Rognes read a draft of the entire 
paper, corrected several mistakes, and gave many valuable suggestions for improve
ments in the exposition. Finally we owe to him the characterization of the spectrum 
Yibiip used in section nine. 

Added in January 1994, It appears that Stavros Tsalidis in his 1994 Ph.D thesis 
from Brown University has proved Conjecture 4.3 below, so that (0.7) and the other 
conditional results of this paper are in fact theorems. See Remark 6.9 below for a 
little more details. 
Combined with a second recent result due to R. McCarthy that the diagram 

K(R) £ TC(i?)£ 

K (R/I)i T C ( f l / J ) J 
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is homotopy Cartesian when / is a nilpotent ideal in R, one gets from [22] and [25] 
that K(R)£ ~ TC(R)£ for rings of integers in p-local number fields. In particular, 
K(ZP)* ~ TC(Zp)£ is given by (0.7), when p is odd. 
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§ 1. Cyclotomic spectra at p 

We introduce a special class of S1 -equivariant spectra and show that the topological 
Hochschild homology of any functor with smash product belongs to this class. This, 
we hope, will help to clarify the topological cyclic homology of such a functor. 
Let T be an S -̂prespectrum indexed on all representations, or more precisely on 
a complete universe IA in the language of [23], §1.2. It associates to each finite 
dimensional subspace V C IA a based space T(V), and for two such V C W there is 
an S -̂map a : T(V) A Sw~v —+ T(W) so that the obvious associativity conditions 
are satisfied. Here W — V denotes the orthogonal complement to V in W\ T is called 
an S -̂spectrum if the adjoints a : T(V) ftw~vT(W) are homeomorphisms. 
Let C be a finite subgroup of S1 and pc : S1 —> S1/C the isomorphism pc(z) — 
y/z, c =| C |. If X is an S1 -space then Xc is an S1/C'-space and we can form the 
induced 51-space p^(Xc). 
Let us recall from [2], (7.1) or from [23], p . l l l that for any 51-spectrum indexed 
on U and for any (finite) subgroup C C 51, one can define an .S^/C-spectrum &CT 
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indexed on UC by setting 

$CT(Z) = Um nv ~ZT(V)C. 

The induced S1 -spectrum indexed on PQUC is denoted p^$cT: 

p*®cT(p*cZ) = p*c$cT(Z). 

We remember that IA is an inner product space which contains each irreducible S1-
representation a countable number of times. Then the same is the case for the 
S1-universe p^UC and we may pick an identification of U with PQUC'. This done, 
p becomes an S -̂spectrum indexed on U. 
Let T be the family of all finite subgroups of S1 and Tv the subfamily of all p-
groups. A map of 51-(pre)spectra / : T\ —• T2 is called an ^"-equivalence resp. 
^-equivalence if the induced map on fixed point spectra fc : Tp —• Tp is a 
homotopy equivalence for all C G T resp. C € Tv. Here Tp is the usual fixed 
point spectrum indexed on UC, Tp(Z) = T i ( Z ) c for Z C UC. All our spectra are 
CW-spectra, and / : T\ —» T2 is an JF-equivalence if and only if the induced map 

/ A id : T i A ET+ —• T2 A ^ J F ^ 

is an 51-homotopy equivalence. 

Definition 1.1. Let p be any prime. A p-cyclotomic spectrum is an -spectrum 1 
together with an ^-equivalence 

ip : p%p®CpT —• T 

where Cp is the cyclic group of order p. 

There is a similar concept of course of p-cyclotomic prespectra, and the specification 
of a p-cyclotomic prespectrum is a p-cyclotomic spectrum. 
Let F be a functor with smash product (FSP) with F(Sl) (i — 1)-connected for all 
i. Recall that THH#(F) is the cyclic space 

[k] 1—• holiiaMap(.Sio A ... A Sik,F(Sif>) A ... A F(Sik)) 

cf. [8], [11], [22] for details. Its realization THH(F) has an S1 -action. More 
generally we have for any based space Y the cyclic space THH#(F;Y) with k-
simplices 

[k] ^ holiinMap(5^ A ... A Sik, F ( S ^ ) A ... A F(Sik) A Y) 
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Its realization is denoted THH(F; Y). If Y is a based S^-space then THH(F; Y) has 
an 51 x S1-action where one factor acts via the cyclic structure and the other factor is 
the action induced from the action on Y, using that THH(i?; Y ) is a functor in Y. In 
the sequal we shall always consider THH(i?; Y) with its induced diagonal S^-action. 
If Z is a second based 51-space then there is an obvious 51-map THH(F; Y) A Z —» 
THH(i7'; Y A Z) and we may define an S -̂prespectrum by setting 

t(F)(V) = THH(F; Sv) 

Its associated S -̂spectrum is denoted T(F). The spectrum T(F) is different from 
t(F), but not very much as we have: 

Proposition 1.2. The adjoints 

a : t(F)(V) — nwt(F)(V 0 W) 

are J-equivalences, where T is the family of finite subgroups of S1. 

Proposition 1.3. T(F) is a p-cyclotomic spectrum. 

Before we can prove these results we need to prove the following lemma, well-known 
when G is the trivial group, cf. [27], where the terminology "proper" is explained. 

Lemma 1.4. Let Ym be a G-simplicial space with Y^ n(H)-connected for all 
k. Suppose X is a based G-space with finitely many orbit types, and such that 
dimXH < n{H) + 1. IfY1 is proper for the occuring orbit types then 

|Map(X,y . ) H M a p ( X , | Y. | ) 

is a G-homotopy equivalence 

Proof. Consider first the special case of X = G/H+ A Sn where 

MaPG(X, | r . | ) = Map(S*\ \Y.\H) = Map(5", | Y.H |) 
MapG(X,Yk) = Map(Sn,YkH) 

The result now is implied by [27], Theorem 12.3. In general we can induct over the 
G-cells. Suppose given a cofibration 

XQ —> X SN A G/H+ 
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and the theorem proved for Xo. The cofibration induces a simplicial Hurewicz 
fibration 

MaV(Sn,Y?) — MapG(X,y.) — MapG(X0,y.) 
whose realization is a Hurewicz fibration by [27], Theorem 12.7. Consider the 
diagram 

Map(Sn,Y/0 MapG(X,y.) MapG(X0,Y.) 

Map(5^, | Y.H |) MapG(X, |n |) MapG(X0, | Y. |) 
We can inductively assume the outer vertical arrows are homotopy equivalences, and 
get the same conclusion in the middle. 
The same argument works for Map^(X, Ym) for every subgroup K C G, and the 
equivariant result follows from the equivariant Whitehead theorem, cf. [2]. • 

Recall from [11], sect.l the concept of (edgewise) subdivision. For a cyclic space 
Z. and finite cyclic subgroup C C S1, it associates a simplicial space sdcZ. with a 
simplicial C-action. Moreover, there is a homeomorphism 

D :| sdcZ. Z . |, 

a natural R/cZ-action on | sdcZ. | which extends the given simplicial C-action, and 
D is 51-equivariant when R/cZ is identified with S1 in the standard fashion. Here 
c =\C\. In the special case of THH#(ir;Y) the fc-simplices of sdcTHH.(F;Y) 
are given by 

[k] i-> holimMap(SiojR A ... A SikR, F(Sio)(C> A ... A F(Sik)(°> A Y) 

with zi? = RC 0 ... 0 IRC and F(S*)(C) = F(S*) A ... A F(S*), c factors. 
The C-action on the mapping space is by cyclic permution of the factors in the target 
and by the induced action on SlvR in the source ([11], (3.6)). 

Proof of Proposition 1.2. By lemma 1.4 and the above discussion of subdivision it 
suffices to prove that the obvious map 

holinjMap(5^ A ... A SikR, F(Sio)^ A ... A F(Sik)^ A Sv) 
a 

holiiSMap(5^ A ... A SikR A SW,F{S1^ A ... A F(Sik)^ A SW A SV) 
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is a C-homotopy equivalence. Indeed, the simplicial spaces involved are "good" or 
"strictly proper", so [34], Appendix or [27], Theorem 11.13 applies. 
It suffices to take W = IR. In this case we can compose a with the map 

holimMap(S A ... A SikR A F(Sio)^ A ... A F(Sik)A SlR A SV) 
T 

holmìMap(^ A ... A S^k^R, F(Sio)^ A ... A F(Sik+l)^ A Sv) 

upon using the identification SlR = S1 A ... A Sl and the stabilization 

F(Sik)ASl -> F(Sik+l) 

The map r is a C-equivariant homotopy equivalence by [11], Lemma 3.11 and 
Lemma 3.12. Moreover, the composite r o a is a C-equivalence so a must also be 
a homotopty equivalence. • 

Corollary 1.5. The map t(F)(V) T(F)(V) is an J7-equivalence. • 

Let 
<p : sdcTHHk(F;Yf — THHfc (F; Y c ) 

be the map which restricts a fc-simplex 

/ : SioR A ... A SikR -> F(Sio)(°ï A ...F(Sik)^ A Y 

to its C-fixed points, tp(f) = f . The fixed set 5dc'THH#(i7'; Y) has an 
obvious cyclic structure and tp is a cyclic map. The resulting 51-action on 
I sdcTHH* (F; Y) \ c is the quotient R/Z-action associated to the natural IR/cZ-
action on| sdcTHH*(F; Y) \ . Now [11], Lemma 1.11 shows that the composite 

(1.6) cpc : P*c I THH.(.F; Y) f ^ \ sdcTim.(F;Y) \ c -£| THH.(F ; pç{YC) \ 

is an 5x-map; here Pç(—) was defined in the beginning of this section. 

Proof of Proposition 1.3. We first consider the 51-prespectrum t(F). Using (1.6) 
we get an s1 -map 

ip : P*ct(F)(Vf - t(F)(p*c(Vc)). 

We show first that it induces an .F-equivalence 

lim nyC<p : lim ftyCt(F)(V + Z)c -> lim nv° t(F)(p*c(Vc + Z)) 
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for any Z C Uc. Let C C G C 51. We must argue that lim Qv cp is a G-homotopy 
equivalence. To simplify we consider only the case Z — 0 - the general case is only 
notationally more complicated. 
Suppose r = p^}(G/C) so that |G| = |F | - \ C\ . Then sdG = sdrsdc and there 
is a commutative diagram 

p*c\sdGTHH.(F;Sv) \c y \sdrTHH.(F;p*c(SvC)) | 

= 1 Dr = | D G 

p £ | 5 d c T H H . ( F ; S ^ ) | ^ y | T H H . ( F ; ^ ( 5 ^ C ) ) | 

with </? defined on simplices as above, <£(/) = fc. It suffices to see that lim ftyCcp is 
a F-homotopy equivalence. As in the proof of Proposition 1.2, it is enough to prove 
the corresponding statement for lim VtYC (p^. The fiber of (Qv°tp^)0 is 

(*) holin1MapG(5X/C A SiR/SiRC, F(Sio)^ A ... A F(Sik)^ A SV) 

where R = RG,RC = (RG)C ^ FSF and * = We must Prove that the 
connectivity of this mapping space tends to oo as V runs through U. 
Given a space A, we write conn(A) for the maximal i with 7rz_i(A) = 0. When 
A = MapG(X, Y) it is easily seen that 

conn(A) > min conn(F^) - dimXK\K C G 

e.g. by equivariant obstruction theory. We want to apply this to the space in (*) . If 
K D C then &im(SvC A SiR/SiR°)K = dimVK whereas 

[conn(5F A F(S^)(G) A ... A L(Sik)^)K = dimVK + i\ G:K\ 

and the difference tends to oo with (iQl If K ^ C then 

dim(5yC A SiR/SiRC)K = dimVCK + idimi** = dimVCK + i\G:K\. 

In this case, CK is strictly larger than i f so that the difference d i m l ^ — dm\VCK 
tends to infinity when V runs through U. This proves that lim SyC p is a G-homotopy 
equivalence. The specification of (t(F),(p) is the pair (T(F),cp). It follows from 
Proposition 1.2 that this is a p-cyclotomic spectrum. • . 
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Given a G-spectrum T indexed on U, the inclusion i : UG —> U induces a G-spectrum 
z*T indexed on i.e. on G-trivial representations. Conversely, a G-spectrum E 
indexed on UG induces a G-spectrum i*E indexed on U by setting 

(uE)(V) = limnwSv+w-vG-wGE(VG + WG) 

cf. [23], ch II. 1. These constructions are adjoint. In particular if we begin with a 
G-spectrum T- indexed on U we have the G-equivariant counit 

e : i*i*T —• T 

This need not be a G-homotopy equivalence. However we always have 

Lemma 1.7. There is a natural G-homotopy equivalences of spectra indexed on A 

e : z*(i*T A EG+) —• T A £G+ 

provided i*T is bounded from below. 

Proof. The map e is induced from the structure maps 
sl(R-R) A T(Rl^ A EG+ _^ TQR^ A EG+ 

where R = RG. As both sides are free G-spaces it suffices to show that, non-
equivariantly, the listed map is Z-| G| +k(l) connected with k(l) —• oo as I —• oo. 
Now, i£G+ ^ 5° and we have the diagram 

0 p - R ) ( S p - R ) A T ( R / ) ) SlKR-*)T(lR) 

susp = G 

T ( R ' ) 

Since the suspension is approximately 2/-connected the map in (*) becomes roughly 
l-\G\ +l-connected. • 

The functors z*(—) and (—) A EG+ commute since, quite trivially, this is the case 
for their adjoint functors i* and F{EG+,—). The equivariant transfer induces a 
homotopy equivalence 

z*T AQ EG+ [z*(z*T) A EG+]G 

by [23], p.97. Thus we obtain 
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Corollary 1.8. The equivariant transfer gives a homotopy equivalence between 
i*T AQ EG+ and (T A EG+)G. • 

For a p-cyclotomic spectrum (T, ip) we have for Z C Ucpn and V C U the 
composition 

P*cT{Zf* p*r lim $lv-zT(V) Cp 

=5 lim npcP(vCp-z)T(Vf>> 
VcU 

y Urn npcP(vc*-Z)T(phyC^gfgf 
fdf 

= T PcpZ . 
It induces in particular a map of non-equivalent spectra 

(1.9) $ : TCp11 —> TCp"~l 

Let T̂ c1 n denote the homotopy orbit spectrum 

T̂ Cpn = i*T ACPN ECpn+ 

The next result will play an important role throughout the rest of this paper. 

Theorem 1.10. For each bounded below p-cyclotomic spectrum there is a cofibration 
of non-equivariant spectra 

ThCpn - T°pn o TCpn-1 

Proof. The cofibration 

ECpn+ —• —• YjECpn 

induces a cofibration of Cp» -equivariant spectra 

T A ECpn+ —» T —• T A EECpn 

so induces a cofibration upon taking Cp» fixed sets. According to Corollary 1.8, 

(TAECp»+f»n~Th Cpn 
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so it remains to calculate (T A T,ECpn)Cpn. We shall use the general fact that for 
arbitrary CP»-spaces X and Y9 

(1.1) MapCpn(X,y A E£Cpn) ~ MapCPN/CP(XCP,YC?) 

by the map which restricts a map / to its C^-fixed set. This follows from equivariant 
obstruction theory upon using that X/XCP is C^-free (in the based sense) and that 
TiECpn is non-equivariantly contractible. Now we have: 

(T A ^ECpn+)Cpn(Ul) = linjMapcpn(5^,T(y 0 Ul) A Y,ECpn) 

~ lin J Map Cpn_1(5^, T ( ^ 0° CP 

- linjMapc ̂ ^ ^ ^ , ^ ^ 0 R1)) 

This concludes the proof. • . 

For a p-cyclotomic spectrum we have the two commuting maps 

D, Ф : Tcr" —* ТСрп~г 

with D being the inclusion of fixed sets, and <& the map from (1.9). 

Definition 1.12. The topological cyclic homology associated to a p-cyclotomic 
spectrum T is the spectrum 

TC (T,p) = (holjm T°pn)h* 

In the above definition the superscript h& indicates homotopy fixed set, i.e. the 
homotopy fiber of 

$ - id : holjm T°rn - » holjm T°pn 

It is easy to see that the role of D and <& can be interchanged, i.e. that 

(holjm TCpn)h® ~ (holjm T°pn)hD 

For a functor F with smash product we have the cyclotomic spectrum T(F) of 
Proposition 1.3 and we define 

(1.13) TC(F,p) = TC(T(F),p)[0,oo) 

the (—1)—connected cover. It is called the topological cyclic homology at p of F. 
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In the above definitions we have singled out a fixed prime p to start with, but there is 
also a topological cyclic homology functor TC(F), defined for so called cyclotomic 
spectra rather than p-cyclotomic spectra, which makes use of all the finite subgroups 
of the circle. This is explained in [22], sect. 2 where it its also proved that one has 
(1.14) T C ( F ) J - T C ( F , p ) J . 
We shall often use the notation TC(F)£ instead of TC(F,p)£. 

In [11] we defined for each functor with smash product a map 
Tic: K(F) ^TC(F,p) 

and showed it was a map of spectra. The spectrum structure on K(F) is constructed 
by giving BGL(F)* a T-structure (in the sense of Segal) and then using the infinite 
loop space machine of [27] or [34]. There is a compatible T-space structure on 
TC(F,p) so that Trc becomes a map of T-spaces, and hence a map of spectra. 
The T-structure on TC(F,p) is induced from a set of Cpn-equivariant T-structures 
(or Tcpn-structures) on THH(F) , one for each n. Thus one must show that these 
equivariant T-space structures lead to Cpn -equivariant spectra, homotopy equivalent 
to the restrictions of the S -̂spectrum T ( F ) . This is explained in [22], sect. 1.6. 

§ 2 Skeleton spectral sequences 
This section presents the spectral sequences on which the rest of the paper is based, 
namely the spectral sequences associated to the terms in the norm fibration of an 
equivariant spectrum. We refer the reader to [23] for questions about the stable G-
category. Our G-spectrum will be indexed on a complete universe, and G will be 
finite unless otherwise specified. 
For a G-spectrum X and a pointed G-space £(with * € EG), we can form the 
G-spectra X A E and M a p ( F , X ) : 

( X A E)w = lim Slv(Xv+w A E), Map(£\ X)w = Map(F, Xw) 
One also has the fixed point - and orbit spectra of X defined by 
(2.1) XG = \X\G , X / G = | X | / G 
where |X | denotes the spectrum indexed by G-trivial vector spaces, also sometimes 
denoted z*X. Following Greenlees and May, [19], one defines 

HT(G,X) = XhG = Map(FG+,X)G (homotopy fixed points) 
(2.2) H.(G, X ) = XhG = \X\ A EG+jG (homotopy orbit) 

H(G, X ) = (E(£G) A Map(FG+, X))G (Tate spectrum) 
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where EG is the free, contractible G-space as usual. The standard cofibration 

EG+ -+ S° -> E ( £ G ) 

then defines a cofibration of spectra (cf. [19]) 

(2.3) XhG Nh Xhg W H (G,X) 

Indeed, one has only to identify [EG+ A Map(J5G_|- , X)] with X^Q. This uses 
the transfer homotopy equivalence 

r : \X\ AG EG+ (u\X\ A EG+)G 

from [23, p.97] or [1], the G-homotopy equivalence 

(2.4) e A 1 : n\X\ A £ G + X A EG+ 

and the G-homotopy equivalence 

£ G + A I ^ £ G + A M a p ( £ G + , X ) , 

induced from the projection EG+ —> 5°. Notice that (2.4) spells out to the assertion 
that 

lim Slv(Sy-VGXVG+Hn A EG+) l imftF(Xy+R» A EG+). 
V \ ' V 

is a G-equivalence in a range n + fe(n) where k ( n ) —> oo. This is the case for 
RG-modules W9 as the structure maps 

SW A XRII —> XRn+W 

are n + \ W\ + k(n + \ W\) connected. This connectivity condition is satisfied when 
\X\ is bounded below (e.g. connected) which we shall always assume. 
It is important to notice for our applications later in the paper that 

NH : XHG XHG 

factors over XG —> XhG\ this follows directly from the definitions. 
For the equivariant sphere spectrum X = Sç, the terms in (2.3) can be evaluated 
from the affirmed Segal conjecture [12] to be 

(2.5) 

XhG = S ° ° 5 G + 

XhG = 
(h) 

Y,°°BWH+ , WH = NQH/H 

H(G:X) = 
(H), H = 1 

ds BW G + 
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where £°°i?G+ etc. denote the suspension spectra, and where the wedge sum runs 
over conjugacy classes of subgroups. 
The homotopy groups of the terms in (2.2) can be approximated by spectral sequences. 
For XhG and XhG we can either filter EG by its skeletons or take a Postnikov 
decomposition of |X | . The resulting spectral sequences have 

(2.6) Es,t(XhG) = Hs(G;7rtX) => 7rs+t(XhG) 
E2sAXhG) = H~s(G^tX) => 7Ts+t(XhG) 

with i£2-terms being the homology (resp. cohomology) groups of the trivial G-
modules ittX = 7rj(|X|). The convergence of the second spectral sequence is 
dependent upon the vanishing of the usual lyn^-term, 

(2.7) l\mW[Sn A EkG+ , X)G = 0 

Our main calculations below are of homotopy groups with finite coefficients where 
Sn in (2.7) gets replaced with the Moore space Sn/p. In this case (2.7) is satisfied 
when X has finite type because lim ^ vanishes on inverse systems of finite groups. 
The homotopy groups of the third term in (2.3) is also approximated by a spectral 
sequence. This follows from Greenlees' "filtration" of the spectrum EG = S EG , 
[18]: There are maps of (suspension) spectra 

(2.8) 
. . . — F-2 - » F-! FQ —• F\ —> i<2 —• • . . 

S° 

with lim Fk = EG. Here Fk is the cofiber of JBjfc_iG+ -* S° for k > 0 andF^ is the 
Spanier-Whitehead dual of E_kG when k < 0 ; EkG C EG denotes the fc-skeleton. 
The successive cofibers of (2.8) are 

i V F * _ ! = G+ A Sk 

and the chain complex of homology of the quotient spectra, 

... - Hk(Fk, F jb_ i ) -> ̂ _ ! (F fc_ ! , Fk_2) -> ... 

is a complete resolution of Z by free Z G-modules in the sense of [13]. 
If M is any ZG-module and Pk = Hk(Fk, i ^ - i ) then the homology of the complex 
P* ®ZG M is by definition the Tate homology groups 

Hk(P*®ZG M) = Hk_1(G-M) 
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These are equal to the usual group homology when k > 1 and are equal to the group 
cohomology H~~k(G; M) when k < 0. We note that H^^G^M) = H~k(G; M) 
for all k. 
We use (2.8) to filter the G-spectrum EG A M a p ( # G + , X) and hence H ( G ; X), and 
get a spectral sequence 

(2.9) H-s{G;ntX) T T 5 + J H ( G ; X ) ) 

It is a whole plane spectral sequence and is not always convergent, even when we 
use homotopy groups with finite coefficients and X has finite type. A general criteria 
for convergence can be found in an unpublished paper by Boardman [3], and in [21] 
where the spectral sequence is studied when G is the circle group and X = JQ is 
the equivariant periodic image of J spectrum. For our use of (2.9), G = Cpn and 
X = THH(Zp), the spectral sequence does in fact converge as we shall see later on. 
To see that the i?2-term is as claimed we use that the functor G+ A ( — ) is right adjoint 
to the functor which forgets the G-action, cf. [23, p.89]. Thus the E1—term is 

TT5+,((F5/F5_I A Map(EG+,X)f) = G 5 _ I ( G ; T T * X ) 

and hence the i?2-term is the Tate homology groups 

Hs-^G^tX) = H-s(G;7rtX) 

as claimed in (2.9). Since in (2.8), Fo = Su the filtration used to define the skeleton 
spectral sequence (2.9) restricts to a filtration 

(2.10) ... - » F_fc -> F_k+1 - ... -> S° 

which in turn induces a filtration on S° A Map(EG+1 X) and hence a spectral 
sequence with abutment 7r*Map(l?G+, X) and i?2-term equal to H~S(G] 7r tX) , s < 
0. Moreover, the map from MapG?(i?G+, X) to H ( G ; X ) induces a map from (2.9) 
to this new spectral sequence which on the E2 -level is the standard homomorphism 

(2.11) H-3(G-irtX) -> H-s(G;7rtX), s < 0 

This homomorphism, we remember, is an isomorphism when 5 < 0, 

Lemma 2.12. The spectral sequence induced from the filtration (2.10) of 
[S° A Map(i?G+, X)] is isomorphic to the spectral sequence (2.6) induced from 
the skeleton filtration E^G^. of EG+ 
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Proof. The spectral sequence (2.6) comes from the exact couple 

(2.13) 
7T* MapG(EkG+,X)7 XhG 7rJM<ipG(Ek_1G +,X)JXhG) 

7rJM<ipG(Ek_1G+,X)JXhG) 
which converges to ir+(XhG). 
The G-homotopy equivalence EkG+ A £ G + ~ EkG+ induces the first equivalence 

G 
m Map(EkG+,X) ~GMap(£JfcG+, Map{EG+X)) 

~ D(EkG+) A Map(EG+,X) 
G 

and the second is a standard tact in Spanier-Whitehead duality theory, since 
D(EkG+) = Map(EkG+yS°). There are cofibration sequences 

S° - EkG - S1 A (£fc_1G+) 

with dual cofiberings 

r>(£fcG) - 5° - D(Ek.1G+) 
With the notation from (2.8), = D(EkG), so we get 
£-1(Map(JEfc_1G+,X)/Map(£G'+,X)) ~ 'E~1(D(Ek_iG+))/S° A Map(£G+,X) 

~GD(EkG)A Map(EG+,X) 

^ F-k A MapCEG+,X) 

This shows that (2.13) is precisely the exact couple coming from the filtration 
f A Map(EG+,X)]G of MapGr(^G+ , X) and establishes the result. • 

The skeleton spectral sequence for calculating the homotopy groups of 

(EG+ A X)G ~ EG+ AG X = XhG 
h a s 

Elt(XhG) = Hs(G;TrtX) =• *,+t(XhG) 
Since i?G+ A X ~GEG+ A F ( £ G + , X ) and EkG+/Ek_xG+ = T,-1Fk+1/Fk the 
map 

Fs+X A Map(£G+,X) -> Fs+1/F0 A Map(JE;G+,X) , s > 0 
* , s < 0 
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induces a map of spectral sequences 

d* : Ers+ht(H(G,X)) - ErStt(XhG) 

which is injective for s > 0 and r > 2. On the E°°-level it is associated to the natural 
map from S~1H(G,X) to X^Q, and the injectivity is in agreement with exactnes in 

7r*XhG 7r*IHI(G,X) ^ TT^-iXhc 

From Lemma 2.12 it follows that there is a map of spectral sequences 

ErSìt(XhG)^Elt(Ù(G,X)) 

which is surjective for s < 0 and all r. An element a E E^s t {XhG} ,s > 0 is 
in the kernel of 

(2.14) £~,,t(tt) : E™j t (XhG) - E™,t (H(G,X)) 

precisely if there exists an r > s and an element 

/3GErr_s.r+1 (H (G,X)) 

with dr(ß) = ÖL. Now 

^ r - * , t - r + i ( H ( G , X ) ) —> E^_s_lt_r+1(XhG) 

and we can consider (3 as an infinite cycle in the skeleton spectral sequence for X^Q. 
We argue below that /3 survives to E°°{XflQ), i.e. that (3 0 Imd171 for any m > r, 
so that ¡3 represents an element of -Kt-s{XhG) which under N+ : 7Tt-s(XhG) —* 
7Tt-s (XhG) is mapped to an element representing a. Thus we can summarize the 
situation in 

Theorem 2.15. Suppose 

a G Ker{E?att(V) : E^t(XhG) - E^t(U(G,X))} 

with s > 0. 77*en f/ẑ re ĵdsto an r > s such that OL belongs to the image of the 
differential 

dT : Err_Sjt_r+1(H(G,X)) - ELs,t(H(G,X)) 

Moreover, if (fr((3) = a then the element d*(/3) associated to (3 under the injection 

Err_Sjt_r+1(H(G,X)) h Err_s_ht_r+1(XhG) 
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survives to E^s_l t_r+1{Xflo) and is represented by an element of-Kt-s{Xflo). The 

representative may be chosen such that it's image under in r t - s (XhG) represents 

a € E~ft(XhG). 

Proof. Let us write 

Js = [Fs A Map(£G+,X)]G 

so that Er(H(G, X)) is the spectral sequence of the exact couple associated with the 
string of cofibrations: 

... —• J—s —• J_5+i — > ... — > JQ —> J\ —> ... —• JS —-> ... 

Then Er{XflG) is the spectral sequence associated with 

E_1Ji /Jo —• E_1J2/Jo —• ... —> E_1J5/Jo —• ... 

The differential d7* is equal to the additive relation 

7T+E «/7—s I Jr—S — \ • H*JR—3 — \ < 7T*J—S > 7T* J—S I J—S — l 

Since 5 > 0,/3 € 7T*E_1 Jr_5/Jr_5_i maps to zero under the composition 

7T*E ^«/7—sIJr—s — \ > 7T**77—s_i • 7T*J>i—s — i/Jg 

The exact homotopy sequence of the cofibration 

YJ ^" Jr—S / JQ • YJ ^Jr—Sj Jr—s — \ • Jr—s — i/J() 

shows that there exist /3 € 7r*S_1 Jr-s/Jo, i.e. an infinite cycle in the spectral 
sequence Er{XflQ). W e have left to show that ¡3 survives to E^s_lt_r+1{Xho). 
Suppose there is a non-trivial differential 

f : Ek+rnJ-rn+l(XhG) ~ > Efl{XhG), k>0 

W e show that the differential 

(Г : E m 
k+m+l,l — m+l 

( Й ( С Д ) ) £ Р + 1 Д Н ( С Д ) ) 

is then non-zero on the corresponding element. 
The two differentials are represented by the additive relations 

d : 7T*E~2 J k + m / 7 r * E - 1 Jk+m/¿0 <~ T T + E - 1 ^ / ^ —• 7r*E 1Jfc/J^_i 

<9 : 7r*E_2Jfc+m/J^+m_i —> 7r*E_1Jfc+m <— 7r*E_1J^ —> 7r*E_1 Jfc/k-1 
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respectively. Since 

jk Jk+m 

Jk/Jo Jk+m/ Jo 

is (co)Cartesian, the indeterminacy on d agrees with the indeterminacy on d. Finally, 
we consider the diagram 

7T*E LJK+M gf 7T*E LJK+M 

7T*E LJK+M 7T*E JK+1 

7r*E JK+M+\/JK+M. 7r*£ 1JK+L/JK 

7T*E 1 JK+M/JO 7r*E JK+I/JO 

7T* Jo 
fd 

7T* Jo 

with exact columns. A simple diagram chase shows that the upper and lower additive 
relation have the same domains of definition, and thus in turn agree. • 

To summarize, the Tate skeleton spectral sequence (2.9) contains both the spectral 
sequences in (2.6). In particular 

Elt(H(G,X)) = Elt{XhG) , s < 0 
E2s+ltt(H(G,X)) = E%{XhG) ,s>l 

The precise relationship for s = 0,1 is governed by 

0 — H-\GwX) — H0(G]irtX) norm H0(G;7TTX) — H{G\ 7TFX) 0 

The differentials in 2£Jt(H(G; X)) which cross over the fiber line 5 = 0 represent 
elements of TT^X^G) and 7r* (XHG) which are connected under NH : X^G —• X ^ , 
of course as always, up to filtration. 
When X is an equivariant ring spectrum so is XHG, and it is well-known that the 
spectral sequence 

E%(XhG) = • 7r.(XftG) 

has a product with cT a derivation in the usual sense, compatible with the obvious 
products on 7r*(XHG) and H*(G;7r*X). Similarly, the Tate spectrum associated to 
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an equivariant ring spectrum is again a ring spectrum. The ring structure is defined 
to be the composition 

H ( G , I ) A H ( G , I ) - * 

[EG A ÉG A F(EG+,X) A F(EG+,X)]G {ipA1 ̂  o 

[EG A F(EG+ A EG+,X A X)]G lAF^ 
[EG AF{EG+,X)]G 

Here ip : S° EG, a is the smash product, d is the diagonal and /ji is the 
ring structure. The Tate skeleton spectral sequence inherits a product, compatible 
with the standard product on Tate cohomology groups, and the differentials become 
derivations. 
We shall occasionally use also the norm cofibering when G is the circle group, 

Ex^^ xhSl ^nfs^x) 

Apart for the changes caused by the extra suspension factor, there are obvious 
analogies of the above for G = S1. The spectral sequences become 

(2.16) 

f3 2 
s,t 

(HlS^X)) = H-s s1; utW 

E 2 
s.t 

xhSl = H-a(s\*tx) 
E 2 

3,t Xhsi) = Hs ( S1: TTTX 

where H* , H* and H* denote group (co)homology i.e. 

H'fs1;*^) = P t,t-1 ® -K*X , deg(i) = - 2 

H*[SX;-K*X = H*iBS L) <8)7r.X 

H* [ S ; n*X = H*iBSL) <8)7r.X 

Let us finally notice that there are commutative diagrams 

(2.17) 
EXhs, - XhS - H ^ j X ) 

J. i I 
XhCpn - XhCr - H(Cpn;X) 

which relate the norm sequence for G = S1 with the norm sequences for the cyclic 
groups of order pn. Moreover we have 
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Lemma 2.18. After completion at p, the restriction maps in (2.17) define a weak 
homotopy equivalence 

xhSl A 

P 
holjm XhCpn ^ 

P 
provided X has finite type. 
Proof. We have 

ick(XhSl)} = [Sk A ESl^Xf1 ®±p = [Sk A ESl,X£]sl 

and similarly with S1 replaced by Cpn, and must check that 

[Sk A ESl,X£]sl lijn [Sk A ES\,X£]°pn 

is an isomorphism. There is an equivariant Postnikov decomposition of X£, 

Xp —+ • • • — » YN —» Yn-i — • • • • — • YQ 

in which each fiber of YN —> YN-\ is an equivariant Eilenberg-MacLane spectrum 
Ha(7rn(Xp),n). The resulting spectral sequences are of the form 

H*(Sk /\BSl;ir*X£) [Sk AESl,X£]sl 
H*(Sk A BCpn+-<K*x£) ^ [Sk A ES%,X£]c*n 

There are no lim t1)-terms in this situation because all groups are compact. The 
lemma now follows because 

fl^BS^Af) ^ l i m H*(BCpn;M) 

for a ̂ -complete compact abelian group M. • 

§ 3 The skeleton spectral sequences for J 
We denote by K the spectrum which represents p-complete periodic complex K-
theory, p an odd prime; its 2n-th space is (BU x Z)p. Let g be an integer which 
generates the units of Z/p2 and let 

1> :K -> K 

be the endomorphism of the spectrum K which on the 2n-th space K2n corresponds 
to g~np9 where ft9 is the Adams operation associated with a generator of (Z/p2)x. 
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The homotopy fixed set of ift is the spectrum 7, 

J = hofib(?/> - 1) 

It is by [31, (8.12)1 the KJ.jp localization of the sphere spectrum. Thus it has a 
natural action of any compact Lie group G arising from the G-equivariant sphere 
spectrum S%. It is a ring spectrum whose mod p homotopy ring is 

(3.1) 7T*(J;Fp) = E{a}® P 6, 6 , 

the tensor product of an exterior algebra with generator a of degree 2p — 3 and the 
algebra of finite Laurant series in a generator b of degree 2p — 2. Moreover, the 
Bockstein operator maps b to a, /3i(6) = a. 
In this section we shall calculate the differentials in the skeleton sequence with 
abutment 7r*(JHCPN; Fp). The E2-term is 

(3.2) 
El* (jhCPn; Fp) = E{un} <g> E{a} ® P[t] ® P [&, 6"1] 

degun = ( -1 ,0 ) , deg* = ( -2 ,0) 
deg a = (0, 2p - 3), deg b = (0, 2p - 2) 

The spectral sequence is situated in the 2. and 3. quadrant. 

Theorem 3.3. The non-zero differentials in El^[JHCPN; Fp) with source E^0 are 

(0 d2(p*+1-i)(fpfc) = 
d2(p*+1-i)(fpfc) = 

pj=1 
p-1 ,0 < < n 

(ii) d2Pn-\un)=^tPnb 
vn-l 
p-1 , Tl > 1 

and multiplicative consequences for ulntJ, where 7 & , 7 £ . 

The rest of the section is spent on the proof of this result. Since SQ is a split spectrum, 
in the sense that its fixed point spectrum contains 5° itself, cf. [28], the same will 
be the case for its iiTZ/p-localization J. Hence 

FG(EG+,J) ~ F (BG +,J) 

has homotopy groups equal to the J-cohomology of BG. The issue of differentials 
in the spectral sequence is then to determine, for a given fc, the maximal /, so that 
the additive relation 

(3.4) J*(BkG, Bk_xG) -> J*{BkG) <- J*(£/_iG) £ r(BtG, B^G) 
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is non-zero (modulo indeterminacy). In the situation of (3.3), G = Cpn and we use 
Fp coefficients. 
The inclusion BCpn —> BS1 induces a map from XhSl to XhCpn and in fact a map 
of spectral sequences 

K,+ (XHS1; Fp) - E% ( x H ( V ; Fp) 

which is an injection on the -level. The differentials in (3.3) (i) can be read of 
from the differentials in (^JhSl; Fp), as it turns out. We have 

(jhS'; Fp) = P[t] ® E{a} ® P [ft, ft"1] 

Theorem 3-5. The non-zero differentials in E* + ^J^1; Fp) are multiplicatively 
generated from 

(0 d2(p*+1-i)(fpfc) = d2(p*+1-i)(fpfc) = 
pk=1 

P - 1 

wiY/i 7fc € F *. 

The skeletons i^fcS'1 and i^fc+iS'1 are both equal to CPfc which has torsion free 
iiT-groups. Hence there are exact sequences 

(3.6) 0 J2s(CPn; Fp) -+ AT25(CPn; Fp) ^ #25(CPn; Fp) -+ J25+1(CPn; Fp) 0 

We have 

(3.7) iT(CPn;Fp) = F p ^ u " 1 ^ ] / ^ ^ 1 ) 

where u G K2(pt) is the Bott class and where A E /^(CP00) is the reduced Hopf 
bundle. Thus 

= <T V V>(A) = (1 + A)* - 1 

The formula (3.7) works with any kind of coefficients. If we replace Fp by Q then 
/(A) = log(l + A) makes sense, and 

<iP(usl(\)s) = usl(X)s 

so that usl(X)s € J2*(CPn;Q) for all n. 
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The next technical lemma is the basis for our proof of (3.5). Let 

V : FP[[A]] - F„[[A]] 

be the ring homomorphism with ip(X) = ( 1 + A)^ — 1 where g generates (Z/p2)x. 
Let v\ : FP[[A]] —• Z U {oo} be the valuation with 

vx(f(X)) = n^f(X) = ^2aiXi 
i>n 

and an 7^ 0. 

Lemma 3.8 There are elements fp»(\) € Fp[[A]] for n > 0 which satisfy 
(«) VX(FPN(\)) = P» 

(H) vx№fp«W) ~ 9fp"W) = Pn+1 +Pn~l 

Proof. The proof is basically induction over n but with n = 0 , 1 , 2 as special cases. 
We begin by explaining these. Consider the following elements of Q[[A]], 

(3.9) 

F1(X) = J(A) ( / (A) = log(l + A)) 
Fp (X)=pl(X) - l(xf -P+1 

FP2(X) = p2l(X) - (pl(X)f-^+1 - li{Xf+P2-2P+1 

We shall see below that 

(3.10) 

* i ( A ) = / i ( A ) + i A * + ... 
P 

FP(X) = fp(X) - ±\P2+P~I + ... 
2p 

Fpi(X) = fp2(X) - ±\P3+P2-I + ... 
Zp 

with fpj(X) E Z [ A ] of degree p3*1 -\-p?' — 1 ; the dots indicate terms of higher degree. 
Since 

^(An) = gnXn + higher terms 
and since %1){FP»(X)) = gFPN(X) we have 

va (Wp»(A)) " 9f p»W) = P n+1 + Pn - 1 
when n < 2 , and in fact 

ip(fpnW) ~~ 9fpnW — apnApn+1+pn""1 + higher terms 
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for integers apn which can be calculated to be 

(3.11) 

ai = (g- 9P)/P = ( - ^ ( Y - 1 - l ) / p 

aP = (ffp2+p-1 -g)/p = 2g(g*>-1 - l)/p 

V = (gP3+P2-* - g)/2p = g ^ ' 1 - l)/p 

Consider the ring homomorphism tpp of Z[[A]] with ^p{X) = (1 + X)p — 1. Modulo 
terms in pZ[[A]] the first non-trivial coefficient of ipp(Fp(X) — fp(X)) is in degree 
p3 + p2 - p > p3 + (p - l)2. Note that uA(Fp2(A) - f^(X)) = p3 + p2 - 1. 
•yA(Fp2(A) - ^ ( ^ ( A ) ) ) = p3 + (p - l)2 by (3.9), and since with Fp coefficients 
^ P ( A ) = Xp, we have in FP[[X]] that 

V2(A) = /p2(A) - / P ( A " ) 

has valuation v\(<P2(X)) > P3- Moreover, 

^ ( ^ 2 ( A ) ) - g<p2(X) = a^+P2-1 - apXp3+p2~p 

We now attempt for n > 3 the inductive definition 

/P»(A) = / p - i ( A " ) + ¥»N(A) 

where </?n(A) is still to be determined. Suppose we have 

V » ( / „ » - i ( A ) ) - ^ / p - i ( A ) = Op»-i • A ^ + p " " 1 - 1 

modulo Âpn_,_p" \ p ) . In order to have the similar equation for fpn(X) the unknown 
</?n(A) must satisfy 

(*) l K v » ( A ) ) - <7*>N(A) = V A ^ 1 - " " - 1 - Opn - iA^1^"-" 

modulo d2(p*+1-i)(fpfc) . But this can be achieved by defining 

(fpfc) CLjjn,— \ 
dp 

d2(p*+1-i)(fpfc) . y2 (A) 

We just use that 

V(A*>2*) =gkXp2k mod (AP2(k+1),p) 
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together with v\(y>2{X)) > p3 to show that (*) is satisfied. This gives the inductive 
determination 

apn = apn-iaP2/ap € Fp 

so that apn = a7^1 /ар~2 , n > 2. Finally, ap and aP2 in (3.11) are non-zero in ¥p 
because g is a generator of (Z/p2)x, so all Ор» are units mod p. This completes the 
proof. • 

Let us comment briefly on (3.10). The first formula is obvious. To prove the second, 
consider the integral power series h(X) = 1(A) — ^l(Xp). We calculate modulo 
(\**+P\ and have 

l(X)p2-p+1 = (Л(Л) + Z(Ap)/p)p2-p+1 

= h(X)p2-p+1 + {p2 - p + l ) / i (A)p2-^(^) /p + 
— p + 1 

2 h{\)p2-p-\i{\p)/pf 

= /ц(Л) -h 1/рЛр2 - l/2P\P^P-1 

with /ii(A) G Z[[A]]. Now the second formula in (3.10) follows. To prove the third 
formula we calculate modulo and use that 

(Pi(X)F-P+1 = (PH(X) + h(>T) + I/P H(XP2) + L/P2H( XP3) 
p2-p+l 

= ^ i (A) + P2 - p + 1 
1 H (XPF - P(I/PH(XP2)) + 

p2 - p + 1 
2 ( / l (AP)f2-^-1( l /p / l (AP2)) 

The second congruence comes from expanding by the multinominal formula with 
terms 

pz + p - 1 
ai, ao, a_i, a_2 

(p/i(A))ai(^(Ap))ao(lM(AP2))°"1(l/p2/i(A^))a"2 

Calculating modulo ^Z[[À]], \P3+P2 j there are only three terms of interest, namely 

(ai, a0, a_i, a_2) = (o,p2 - p, 1, o) , (o,p2 - p - 1, 2, o) , ( l ,p2 - p - 2, 2, o) 

The multinomial coefficient in the third case is divisible by p, so does not count. 
We see that 

{pl{\))p2-p+1 = fc2(A) + 1/pA 3̂ - l/2pA^3+^2-^ 
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with h,2(X) integral. Finally, one checks that 

l(X)p3+p2~2p+1 = h3(X) + l/PXp3+p2-p - l/pX^2-1 

similar to the above evaluation of l(X)p2~p+1. Now the third case of (3.10) follows. 

Proof of Theorem 3.5. Let us first remark that given the differentials 
d2(PK+L-\)TTPK\ for < n _ i, then the formula 

(*) d4pn+1-^(tpn) = (unit)-< d2(p*+1-i) P n - 1 > 

p-i j 

is the first possible non-zero differential on tp . This requires a little calculation, 
which we safely leave to the reader (cf. also sect.4 below). To prove ( * ) , given 
the differentials on tp when k < n, is then equivalent to showing that the additive 
relation d in the diagram 

d2(p*+1-i)(fpfc) d2(p*+1-i)(fpfc) d J2p"+1 / C p p - + i + p » - i ) c p p n + i + p « _ 2 . Fp\ 

J2Pn(CPP";Fp) ppn ícpp^+p"-1-^^ 

is non-trivial; here the lower horizontal arrow is induced from restriction. We use 
(3.6) and (3.7) to evaluate the groups. With notation from (3.8), consider 

fpn(X)-vP eK2Pn (CPPn+s;Fp) 

From (3.8), 

tp (fpn(X)uPn) = gX-pnfpn(X) • uP" + apn • \P"+1+Pn-iuPn + ... 

and since gp = g in Fp, 

fpn(X)uP" eJ2Pn(cpPn+s;Fp) 

for 5 < p71*1 — 1, but not for s = pn+1 — 1. In fact it is easy to see from (2.6), 
aoolied to the terms in 

0 — K*PN ( S2*; Fp ) — K2^(CP*i Fp) — K2Pn (CP*"1; Fp ) — 0 

with q = + pn - 1 that 
d2(p*+1-i)(fpfc) S J*lT + l(S2q\F 

maps fp»(\)upn into cv> G Fp . Since /©"(A) = + this gives the claim. • 
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Remark 3.12. It follows from the proof above that the units 7^ are the numbers 
aPK/g given in (3.11) and towards the end of the proof of (3.8). Concretely, 

70 = (1-9P~1)/P , 71 = 2-
p-1 

P 
, 72 -

9P~1 ~ 1 
P 

and in general 

IN = 
gP-1 - 1 

2n~zp 
,n > 1 

Proof of Theorem 3.3. The differentials on tp follow from (3.5) upon using 
the natural map jhs jhcpn which maps the E2-terms injectively because 
H2(BS1]Fp) = H2(BCpn]Fp), so we have only left to determine the differential 
on un. 
The lens space L2m_1 = S(CM)/Cpn has If-theory 

K* ( L 2 ™ " 1 ) = Z [u, u~\ A] / ( (1 + X)PN - 1, A M ) 

This follows e.g. from the identification of i^L2™"1) with KCPN(S(CM)) 
which can be evaluated from the long exact sequence in KQ » -theory of the pair 
(Z)(Cm),S(Cm)). 
It suffices to show that the additive relation 

d2(p*+1-i)(fpfc) d2(p*+1-i)(fpfc) 6* J2 (L2^1, L2p"_1; Fp) = J2 (s2"" ; Fp) 

is non-zero. There is zero indeterminacy, since the element tp b p-1 is not an earlier 
differential in the spectral sequence. 
There are isomorphisms 

J ^ F p ) = JX{L^¥P) t J 2 ( L 3 ) B ] 

where the bracket [p] indicates elements of order p . Consider the polynomial 
/ ( A ) € Z[A] with 

/ ( A ) + \Pn/p = pn-1log(l + A) m o d ( V + 1 ) 

Then Mf(\)u) = f(Xu) + 1-QP-1 
P 

\Pn so that f(X)u G Ker(^ - 1) = J2(L2P")\p}. 

Moreover, 
pf(X) = p»log(l + A) = log( ( l + X)P " ) = 0 
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as (1 + X)P = 1. Thus /(A)г¿ belongs to the kernel of 

t/> - 1 : K2 [L2^-1) [p] - K2 ( L 2 ^ - 1 ) [p] 

and so to J2^"-1)^]. The image of / (A)u in J3 (L2p"+1, L2^"-1) [p] = 
J3(52p")[p] is ( l — gp~1)/p times the image of the generator under 

P : J2( S2p"; Fp J J3r^")b] 
This completes the proof. • 

§ 4 The skeleton spectral sequences for T H H ( Z ) 

Let FR be the functor with smash product associated to the ring R, that is 

FR(S) = \RA.(S)/RA.(*)\ 

for a based space S. Then Fji(Sn) is the Eilenberg-MacLane space of type (R,n). 
The /^-theory of F r , see e.g [11], sect.5, is homotopy equivalent with BGL(R)* x Z. 
We write T(R) for the cyclotomic spectrum T(FR) defined in sect.l, and THH(i?) 
instead of T H H ( j F r ) for its underlying infinite loop space. If R is finite over Z then 

( 4 . 1 ) T{R)$~T(R®ZP)$ 

In particular, T(Z)£ ~ T(~lp)p. When R is commutative then T(R) and all its fixed 
point spectra are ring spectra. 
The mod p homotopy groups of T(Zp) were calculated in [9] to be 

(4 .2 ) TT*(T(ZP); Fp) = E{e} ® P[f] 

with deg(e) = 2p — 1 and deg(/) =2p. Moreover, the Bockstein operator fii maps 
/ to e. 
The following conjectural structure of the differentials in the skeleton spectral se
quence for T(ZP) with Fp coefficients will be discussed in considerable detail in the 
next section, but we can note right away that the suggested differentials are derived 
from the differentials in Theorem 3.3 by the substitutions a = te and b = tf. 

Conjecture 4.3. The non-zero differentials in E* * (T(Zp)fC>;Fp) with source on 
the base line E^ 0 are multiplicatively generated from 

{%) rf2^fc+1) (tpk) = \ktpk+p(k+1hfpW , o < k < n 

(ii) d2pW+1(un) = A*K")+i/p(n-i)+i , n > i 
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where p(k) = p Pk-l 
p-i ,p(0) = 0 and Xk,X € F* 

The non-zero differentials from the fiber line are generated multiplicatively from (i) 
and the fact that te and tf are permanent cycles. 

In the rest of this section we assume (4.3) and derive the resulting mod p homotopy 
groups of T(ZP)HCPN. The £2-term is 

E2^ = E{un} ® P[t] <g> E{e} ® P[f] 
degun = ( - l ,0 ) ,degt = ( -2 ,0) 

deg e = (0, 2p - 1), deg / = (0, 2p) 

The first differentials are d2p-differentials where we have (when neglecting units in 
Fp): 

d2p(tip) = {i-j)ti+pefi 
This follows from (3.3), (i) and the statement that tf is a permanent cycle. It gives 

^ + 1 = ( < f / J ' M i - j ) > i ) ® 

(u^feplp < i,vp(i - j) > l ) e 

(u*JeP\Q<i<p) 

Here < > means the Fp vector space generated by the listed elements; vp(x) is the 
p-adic valuation and e € {0 ,1} . If n = 1 then 

d2p+1 ( u n t W ) = ti+p+1eef*+1 

and we can list the i?2p+2-term as follows: 

E2p+2 _ ^ * + l / i + l | 0 < i < p,Vp(i - j) > l ) 

© (utfef'V* < i < P,vp(i - j) = o ) 

© (fep | 0 < i < p) 

® (tpefi\vp(j) > l ) 

®(fj \vp (j)> 1) 

© (tip | i > 1) 
© (tipe \ i > 1) 
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For filtration reasons there are no further differentials and hence an isomorphism of 
Fp vector spaces 

7rjT(Zp)hC»;Fp) =£?+2 

If n > 1, a similar calculation gives 

(4.4) 

E2p{n)+2 _ 
n-1 

fc=U 

{tt+1f+1 | p(k) <i<p(k + 1), vp{i - j) > n) 

© 
n—1 

fc=0 
^{unfef | p(fc) < i < p(k + l),n > vp(i - j) > k) 

n - i 

fc=0 
^(feflpik) <i<p(k + 1), - j) > k) 

© (fj I « „ 0 " ) > " ) e (*P<n>e/' I upfj - p(n)) > n ) 

© 
n - l 

fc=0 
(<tlef \ 0<j<p(k),i>p(k + l),vp(i-j) = k) 

© (t*e/' | 0 < j < p(n - 1), i > p(n), vp(i - j) > n) 
© (ff | i > p(n),0 <j< p{n- l),vp{i-j) = n) 
© {t{ | vp(i) > n) 

Again for obvious reasons there can be no further differentials, so 

7r.(T(Zp)ftC,*";F,) = E2$n)+2 

The last 4 summands in (4.4) are concentrated in negative degrees. 
Some extra comments are in order: The summands in row 4 can be rewritten as 

E{s-1(fPn)} ® P{fP''} 

where s~1( ) indicates shift down in degrees by 1. Indeed, if j = p(n — l)+pnv, v > 
0 then t^n)eP = {tpe){tpf)^n-1)pnv has degree 2 p n + V - l . The elements utfeP 
with 0 < j < p(k), i > p(k + 1) and vp(i — j) = k all have negative degrees. The 
terms and unetlfi from the first two vector spaces in (3.4) have the same 
degree, and degree one less than the term tlefi so for each element tlep in the third 
term in (3.4) there is one element of degree one less in the sum of the two first terms. 
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In order to get a better hold of the homotopy groups, we introduce the following 
notation. Write 

r 
p-1 

= 7*1 + 
T2 

1 - P 
, 0 < r2 < p - 1 

oo 

i=0 

OIIP% , 0 < OLi < p 

Then 

r — p 

p-1 

oo 

¿=0 

dip1 with 0 < ao < p, 0 < a,- < p for i > 1 and clq = ao. 

Note that ai = r2 +1 for i sufficiently large. Define classes in 7r2r-i (, 0 < r2 < p - 1) 
by 

(4.5) xr(0) = t a o e / i M r - P + a o ) ? . . .)X7 . ( f c ) = a.r(fc _ l){ff)pk~lak,... 

Of course, the classes are only well-defined modulo terms of lower filtration, i.e. in 
E°°* (T(Zp)hC"n; F p ) . In positive degrees one then has: 

(4.6) 

^ 2 r - l ( T ( Z p ) A C > ; F p ) = 
(xr(0), ...,xr(n - 1)), vp(r)<n 

(xr(0), ...,xr(n — l),xr(n)), vp(r) > n 

•K2r-2(T(2p)hC»n;Fp) = 
(s 1 a ; r ( 0 ) , s 1xr(n — l)s) Vp{r — 1) < n 
(a^XriP)*s^xrin - 1 ) , f(r-i)/Py Vp(r _ 1 ) > n 

Indeed, we have only left to check that s 1yfr/pj = xr(n) when vp(r) > n. So 

suppose r = pn+1u. Then 

r — p 

p - i 

pTi+l _ p 

p-1 + 
(1/ - l)pn+1 

p-1 
= p{n) + an+1pn+1 + an+2pn+2 + ... 

which gives 

x r ( n ) = t ^ n ) e / ( r - ^ ( n ) ) / p 

This is precisely the element denoted s~ above. 
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The skeleton spectral sequence with abutment 7r* [T(Zp)hS ; Fp) is slightly sim
pler than the above. Its E— term is E{e} <g) P[t] ® P[/] and the differentials are 
multiplicatively generated by 4.3(i), as one sees by using the restriction map from 
T(Zp)hSl to T(Zp)fcC>. 

Lçl 
The calculations leading to (4.6) then also calculate the homotopy groups of T(Zp) ; 
the result is: 

(4.7) 

7rjT(Zp)hSl;Fp) = (es(tfy \ i > 0,e = 0 , l ) 

O 

oo 

k=0 
(ëefi I p{k) < i < p(k + 1) , vp(i - j) > 

where the first vector space is E{e} <S) P[tf] and where the second vector space is an 
infinite product of Fp in each odd dimension 2r — 1, with generators xr(0), xr(l), ... 
The spectral sequence (2.9) with abutment 7r*(H(Cp», T(Zp)) has E2—term 

42. = E{un} <S> P[t,t-^ <8> E{e} 0 P[f] 

The differentials are derived from (4.3) by the evident rule: cT (t*t_l) = 0; 

E2p+1 =(untPi+ifi | i € Z ; j > 0 ; e = 0, l ) 

®(uentPi+ief | i e Z ; j > 0 ; £ = 0 , l ) 

For n = 1, the next differential is d2p+1(ui) = tp+1f and we are left with 

E2P+2 = (eHpi | i G Z ; e = 0 , l ) 

This is also the £^°°-term, so 

(4.8) 7r.H(Cp; T(ZP)) = E{e) ® P [tp, t~p] 

For n > 1 the next differential is d2P(2) = itpi+P(V+3ep+p, and then 
d2p{Z) ETC WE GET 

Ê2pW+1 = (untpni+ifi I i € Z ; j > 0 ; e = 0, l ) 

0 /uentpni+Jefi I i € Z ; j > 0 ; e = 0, l ) 

O 

n-1 

fc=l 

Untpki^ep I t/p(») < n - l,p(fc - 1) < j < p(k) ; e = 0, l ) 
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The differential d2P^+1{un) = *p (»* )+ i /p (» - i )+ I gives 

(4.9) 

E2p{n)+2 _ 
n-le 

fc=l 
(tpki+ief I i G Z ; p(k - 1) < j < p(k)) 

© 
n-1 O 

fc=l 
(unetpki+ifi I ^ ( 0 < n - l,p{k - 1) < j < p{k)\ 

© 
n-1 O 

k=X 
Uftpki+Jfi I Vp( i ) > n,p(k ~l)<j< p(k)) 

© (iPni \iGZJ 

0 Ap"i+p(n-l)ey:p(n-l) I i G 2\ 

There are no further differentials since for r > 2p(n) + 2, dr will leave the strip 
0 < j < p(n — 1). Thus we have 

7r.(H(Cp»,r(Zp));Fp) = JE2^)+2 

The two last summands in (4.9) can be rewritten as 

^ i * " 1 ^ " ) } ® P[tp\t-Pn] 

We introduce new names for the generators in degree 2r — 1, similar to (4.5), namely 

yr(0) = tP-r+™er\ ...,yr(k) = yr(k - l){tpffa\ ... 

and note that a"1 (*-*"*') = yr(n - 1) = t-pn("-i)+p(n-i)e_p(n-i) Then we have 
for r € Z: 

(4.10) 

(H (Cpn;T(Zp)) ;Fp) = < S / r ( 0 ) , y r ( n - 2)) , vp(r) < n 
0 / r ( 0 ) , 2 / r ( ^ - 2), ̂ /r(n - 1)) , vp(r) > n 

7r2r-2(H(Cp»;T(Zp));Fp) = ( 5 12/r(0), 1?/r(n-2)> ,vp(r - I) <n 
<5-V(0), V(™ - 2),ir"1) jVp(r - 1) > n 

In particular we note by comparing (4.6) with (4.10) that 

(4.12) TTi (A(Cp»; T(Zp)); Fp) = ^ ( T ( Z p ) ^ - 1 ; Fp) for i > 0 

We shall see in the next section that the ( — 1)-connected coverings of H(Cp»; T(Zp)) 
and T(Zp) V " 1 are indeed homotopy equivalent. 
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Remark 4.13. Assuming Conjecture 4.3 for n = m, the differentials in the spectral 
sequence for T(Zp)hCpm+1 are the stated d2p(-k+1\tPk) as long as k < m. This 
follows easily from the restriction mapping T(Zp)hCpm+1 —• T(Zp)hC"m. Moreover, 
the calculations above show that 

d2p(m+l) (tPm) = \mtPm+P(m+1ìefPW 

d 2 p ( m + l ) + l ( - w + i ) = A £ p ( m + l ) y p ( m ) + l 

for some Am, A G Fp. Thus the proposed differentials are the first possible ones. The 
question is if Am 7̂  0 and A ^ 0. In this respect, Conjecture 4.3 gives the simplest 
possible differentiable structure. 

§ 5 Discussion of conjecture 4.3 

The basic idea is to compare the topological Hochschild homology spectra for the 
identity FSP and for the linear functor FIP(S) = |ZpA.(S) /ZpA.(*) | . The resulting 
cyclotomic spectra will be denoted T ( * ) and T(Zp), respectively. One knows from 
[11], Proposition 4.25, that T ( * ) is G-equivalent to the equivariant sphere spectrum 
S° for every finite subgroup G of S1. More precisely, there is an S1 -equivalent 
map from to T ( * ) which is an ^"-equivalence, where T is the family of finite 
subgroups. The affirmed Segal conjecture, proved in [12], then gives 

X°°B(G/H) + X°°B(G/H) = fdfd 

for G C 5 1 . The fixed point spectrum (SQ) is known by [14] or [35] to be 

X°°B 

HQG 

X°°B(G/H)+ 

Any functor F with smash product gives rise to a ring (pre)spectrum {F(SN)}N, 

whose associated spectrum will be denoted FS, and there is a map of spectra 

a : S\ A F - > T(F) 

This is an S1 -equivariant map when we give the source the extended S1 -structure, 
i.e action in the first factor only. For the functor FR9 associated to a ring, F^ is 
the Eilenberg-MacLane spectrum H(R), so a becomes a map from S\ A H(R) to 
T(R). For R = Z, one knows from [9] that 

TCI) ~ HCl) V 
00 

n=l 

S2n-1if(Z/n) 
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and that the composition 

S\ A H(Z) -> T(Z) T^^HiZ/p) 

represents the suspension of P1(^o), the first mod p Steenrod operation applied to ¿0-
Let us now fix an odd prime p. 
In the rest of this section we shall assume that all spectra are completed at p usually 
without further indication in notation. 
Since T(Z)£ ~ T(ZP)£, 

T(ZV) = H(ZB) V 
oo 

n = l 

E2n"1i3r(Z/n ® Zp) 

and the composition 

(5-D Si A H(ZP) - T(Zp) - , E ^ - ^ Z / p ) 

represents the suspension of P1(to)-
Consider the fiber S° of the map from S° to H(ZP) which represents the generator. 
There is a diagram of cofibrations 

(5.2) 

Ci <?2 C 

T(Zp,*) - T ( . ) - T(Zp) 

01 o cr 
5 | A S " - + 5 | A 5° ->• S \ / \ H{ZP) 

Lemma 5.3. The mapping 

I : Map51(s3,T(*)) - Map5l(i?i,T(Zp)) 

induced from the component map from S° to Zp defines an isomorphism on r^( ; Fp) 
for i = 2p — 3 and for i = 2p — 2. 

Proof. Both range and domain for 7T2p-3(Z; Fp) is a single copy of Fp. In (5.2), 
7r2(C) = Zp and 7r2p-i(C) = Z/p, and it follows from (5.1) that H2p-i(C) = 0. 
Thus the first fc-invariant is non-trivial. Consequently C is homotopy equivalent to 
S2 through dimension Ap - 2, and it follows from the diagram that C\ is (Ap - 2)-
connected. This gives that 

^ M a p 5 i ( 5 j , 5 i A 5°) - 7rzMap51(^ ,T(z ,* ) ) 
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is an isomorphism for i < 4p — 5. From [23], §2, Theorem 6.2 we know that 

Si AS0 ~ 5 i F ( 5 i , E 5 ° ) 

Thus 
Map5i (Si, Si A 5°) ~ Map5i (si A 53., ES°) 

~ Map(s3.,£5°) 
~ E_2S° V ES° 

Now £T ~ T,2P-3H(Z/p) in the relevant range of dimensions, and we get 

7r,Map5l(53;r(Zp,*)) = Z/p i = 2p-5,2p-2 
0 otherwise, i < 4p — 3 

It follows that 7T2p-3(Z; Fp) and 7r2p-2(J; Fp) are isomorphisms. • 

In the skeleton spectral sequence 

JT (BS\7r .(T(Zp),Fp)) 7r.(r(Zp)&5l;Fp) 

the #2 -term is E{e}<S>P[f] <g>P[t\. As a consequence of the previous lemma we have: 

Corollary 5.4 The classes te and tf are permanent cycles in the skeleton spectral 
sequence for T{Zp)hS . 

Proof. We compare with the spectral sequence for T(*). Consider the diagram 

Map5i(£5i ,r ( . ) ) ^ Mapsl(#S|,T(Zp)) 

Map5, ( 5 i , T ( . ) ) h Map5i(5'3,T(Zp)) 

T ( . ) - T(ZP) 
where the vertical maps are induced from restrictions with respect to 

S\ C S% c ES\ 
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The S1 -equivariant map from the sphere spectrum to T ( * ) is a non-equivariant 
homotopy equivalence, so induces a homotopy equivalence of homotopy fixed sets. 
The equivariant sphere spectrum is a split spectrum in the sense that the inclusion 
of its fixed points has a right inverse (up to homotopy). It follows that for every 
fc-skeleton, 

Map5i(^fc5i,T(.)) ~ Map(flfcSi,T(*)) 
In particular, the restriction 

Mapsi(£fcSi,T(*)) - > T ( . ) 

is split, and 

Map5i ( s^_ ,T(* ) ) = T ( * ) V ft2T(*) 

The element a G ^2ps{S°) = Z/p and its preimage v\ G 7 ^ - 2 (S'0; ̂ p) under the 
Bockstein operator give elements in 7r* (Map5i (ES]_y T ( * ) ) ; Fp) which map non-
trivially to 7r*(Mapsi T(Zp)); Fp). The skeleton spectral sequence calculating 
this group has only two non-trivial lines corresponding to filtration degrees 5 = 0 
and s = — 2. The only classes in the £'2-term in these filtrations and in the given 
degrees are te and //"which must then be the images of a and v\, respectively. Thus 
te and tf are permanent cycles as claimed. • 

Consider the cofibration 

Cok Jp — S° -> Im Jp 
where ImJp is the ( — 1)-connected cover of the (p-completed) J-space, i.e. Im J 
is the fiber of 

%l>9 - 1 : (BU x Z) —• BU 

where g is a prime which generates (Z/p2)x. Alternatively Im Jp ~ K(Fg)p by 
[30]. We have 

Map (BCpn+, S°) ~ MapCp»(SCp»+,T(*)) 

and linearization can be considered as a map 

L : Map (5CP»+, 5°) T(Zp)hCi>" 

There is a natural inclusion of S° into Map {BCpn+, S°) and thus also an inclusion 

Cok Jp Map (BCpn+, S°) 
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The arguments in the remainder of this section will be based upon the following 
assertion, which we at the time of writing have not been able to prove. 

Conjecture 5.5. For every n > 0 the composition 

Cok Jp -> Map (BCpn+, S°) L TC(ZP) -> holjm T(Zp)hCpn 

is null-homotopic. 

The reader should note that this is a weak form of the standard conjecture that 

(5.6) Cok Jp S° K(ZP) 

is null-homotopic (as a mapping of spectra). The triviality of (5.6) on the level of 
spaces is known by results from [29]. The composition of (5.6) with the cyclotomic 
trace is the map which we in (5.5) assert is null. 
Given (5.5), the composition 

Map (BCpn+, Cok Jp) Map (BCpn+, S°) T(Zp)hCpn 

is null-homotopic, since the first map is homotopic to 

Map(BCp»+,Cok Jp) -> Map (BCpn x BCpn,S°) A* Map(BCpn+,S°) 

Thus there results a mapping 

(5.7) L : Map (BCpn+, Im Jp) T(Zp)hC?n 

The connected covering map Im Jp —• Jp induces 

Map (5Cpn+, Im Jp) • Map (BCpn+, Jp) 

which becomes a homotopy equivalence of (-l)-connected covers. The skeleton 
spectral sequence of the domain can then be read off from the calculations of sect.3. 
More precisely, 

^ • ( M a p (BCpn+, Im Jp); Fp) = Elj(JhCpn; Fp) for i + j > 0 

We may replace Cpn by 51 everywhere to get 

L : Map(BSl, lmJp) [T(Ip)hSl] 
Elj(Map(BS\ ImJP);FP) = E^J^1 ;FP) 
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Theorem 5.8 
(i) Conjecture 4.3 is true for n = 1 
(ii) Conjecture 5.5 implies Conjecture 4.3 for all n 
Before presenting the argument, we introduce some notation. The free S^-space ES1 
is filtered by its S^-skeleta EkSx = S2k+1 with quotient BjçS1 = CP*. For j < i 
we define 

(5.9) F}(ZP) = TT.( MaPsl(s2i+1/S2i-\T(lp));Fp) 

with a similar notation F!j(*) and i^(ImJp) to indicate the mapping space with T(ZP) 
replaced by T ( * ) = S° and by Im Jp. For j = 0 we interpret 5_1 = 0, so that 
F§°(ZP) = Tr*T(Zp)hSl etc. The map T ( * ) -> T(Zp) induces a homomorphism L 
from to Fj(Zp), and under the assumption of Conjecture 5.5 this factors as 

(5.10) L : F j (*) Fj(Im Jp) L Fi (Zp). 

The spectra T ( * ) , Im Lp and T(ZP) are ring spectra and there are induced graded 
multiplications on F§°(*), F§°(ImJp) and Fg°(Zp)9 and in fact multiplications 

(5.11) Fj x Ff -+ F min + A;) 
+l 

in all three cases, compatible with the maps in (5.10). 
Since 52*+1/S2*~1 — *S+ A S2i as ^-spaces, 

F\{Zp) = 7T* (Map5i (Si A S2\ T(ZP)); Fp) = 7r*+2i(T(Zp); Fp) 

and similarly in the other cases. This is the F22i ,,,-term of the skeleton spectral 
sequence of sect. 4. More generally, the 51-skeleton filtration of 52l+1 induces a 
spectral sequence with abutment FUZP) and 

E-2k,M - Fk(Zp) f°r J<k<i 
E-2k+l,*(Zp) = 0, 

and similarly in the other cases. This spectral sequence is precisely the part of the 
skeleton spectral sequence of sect. 4 lying in the strip between filtration degree — 2i 
and — 2j. There are homomorphisms for r > 0, 0 < s < j 

res* : Fj+r -> FJ, inc* : F) — d* : Fj"1 — Ff° 

induces from the 51-maps 
\{Zp) = 7T* (Map5i (Si A S2\ T(ZP)); Fp) = 7r*+ \{Zp) = 7T* (Ma 
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and from the connected homomorphism in the fibration 

X°°B(G/H) + (G/H)+ inc Mapsi (s00/S2'-1,T res Mapsi (S2 i -7S2 ' - \T ) . 

The d2r-differentials in the skeleton spectral sequences are induced from the additive 
relations 

JPJ res. PJ+R-L D* „00 res. J?J+R 
RJ RJ RJ+R RJ+R ' 

With these notions, Lemma 5.3 and its corollary can be rephrased as follows: the 
composition 

(5.12) 7 r . ( T ( * ) ; Fp) h F0°°(*) r^ F$(*) - F^Zp) ^ F|(ZP) 

maps a and vi non-trivially (into te and £/); the images are infinite cycles because 
L* o res* = res* o L*. Here I is induced from the natural inclusion 

T ( * ) T ( * ) 5 ' - > T(*)/I51 

where the first map is a component of the fixed set, or alternatively the inclusion into 
the mapping space Map(J3S+, T ( * ) ) when one uses the identification T(*)hSl ~ 
Map(BS*_,T(*)). We can then use the product (5.11) to see that the elements 
c*vf _1 are mapped non-trivially into tfce/fc_1 G F£(ZP) under the composition 

(5.13) T T . ( T ( * ) ; Fp) - F0°°(*) ^ F0X(*) ^ F*(Zp) ^ F*(ZP) 

The commutative diagram 

5° #ZP 

T ( . ) Ä T(ZP), 
with the vertical maps being inclusions of the "0—sceleta" in the simplicial spaces 
defining T ( * ) and T(ZP) , shows that S° —• T ( * ) —• T(ZP) is null-homotopic. This 
gives a factorization 

T ( * ) 
i 

T ( * ) ^ -> T(Zp)hSl 

S° —> Map5i(500/51,T(ZP)) 

and hence a natural homomorphism 

X°°B(G/H) + X°°B(G/H) 

This explains the filtration shift in (5.12) and (5.13) for homotopy classes in positive 
degrees: fc-fold product must map into F£°(Zp)k C F£°(ZP). 

99 



M. BOKSTEDT, I. MADSEN 

Proof of Theorem 5.8 (i) We begin by showing that in the skeleton spectral se
quence 

^(s^TT.CZXZp);^)) =• 7T . (T (Zp) ' l 5 l ;Fp ) , 

the d2p-differential sends t into tp+1e. As explained in sect. 4 this implies the 
corresponding result for the skeleton spectral sequence for T(ZP) p. 
We know from Theorem 3.3 that d2p~2t = atp in the spectral sequence for T(*)hSl, 
or in other words that the additive relation 

X°°B(G/H) + X°°B(G/H) + dfd + X°°B(G/H) + dfd 

is non-trivial on 7 r _ 2 ( ; Fp), modulo indeterminacy. In fact there is no indeterminacy 
in this degree: both res* and inc* are injective, since a G 7 T 2 p - 3 ( T ( * ) ; Fp) is the 
first non-trivial homotopy class. 
Let be the additive relation 

( L j ) + : Fpp^)resT^FP+1(*)hFP^(2p)^F^l(Zp). 

Then there is a commutative diagram for comparison of the differentials in T(*)hSl 
and T{Zp)hSl: 

Fp-1 (*) res. * f _ 1 ( . ) d, Fp-1 (*) res. FS(*-\ 
fd fd fd fd ffd 

Fp-1 (*) res* Fp-1 (*) fd Fpp+1 (zp) inc* 
^ J I ( Z P ) 

Thus it suffices to show that (L\)+ (at?) = &+1e. To this end, let (tp)v G ( * ) 
be an element with res*(£ p) v = tp £ Fp(*) ; it exists since d2{tp) = 0 in the 
spectral sequence for T ( * ) ^ 5 1 , and it is unique. Viewing a G FQ°(* ) , the product 
a(tp)v G F$+1(*) restricts to atp G F|*(*). But L* is multiplicative, so 

Mini) = M ( * * ) v ) ' M « ) e • F?(Zp) C ^ ( Z p ) . 

Since L*(a) restricts to te G F}(ZP) and since F ^ + 1 ( Z P ) • F^Zp) C F^(ZP) this 
proves that (Zr£)* maps a£p to etp+1 as required, hence d2p(t) = tp+1e. Finally 
to prove that d2p+1u\ = t p _ f 1 / , we can simply use that d 2 ^ 1 commutes with the 
Bockstein operator, and that ftm = t, /3f = e. • 
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Proof of Theorem 5.8 (ii). The argument is similar in spirit to the argument above. 
We may assume inductively the result for n < m. Then the first possible differential 
on tp™ in the spectral sequence for T(Zp)hS is 

d2p(m+l)̂ >mj = tpm+p{m+l)efp{m) 

where p(m) = p(pp~i)- Let i(m) = pm+1 + pm — 1 and set q(m) = i(m) +p(m) + 
1 = pm + p(jn + 1). Theorem 3.3 tells us that the spectral sequence for (Im J)hSl, 

(*) <*2(Pm+1-l Vm = t*(m)a Vl p(m), 

and we must study the commutative diagram 

F£<JmJp) ^ F;W-\lmJP) b ^ ( I m J , ) ^ ^(Jm Jp) 
tvm {£p) <- i^m —• ^¿( 

i(m) 

tvm {£p) <- i^m —• ^¿(m) (£p) res* tvm {£p) 

Here L? is the additive relation which makes right hand box commutative. In degree 
—2pm the upper row represents cpfa7""1"1-1)̂ ™ in the spectral sequence for (Im J)hSl, 
and the lower row represents d2p^m+1\tp7n ) in the spectral sequence for T(Zp)hS . 
Thus we must show that 

L*(JU • t;*"1) = L.{Ai) • ^(vt1) € F^{ZP) 

Since by Theorem 3.3 t^^a is an infinite cycle in the spectral sequence for 
(Im Jp)hsl, there is an element Ai G i^°°(Im Jp) with res*(a^) = tla. Its image 
L*{Ai) G FP°(ZP) lifts to / ^ ( Z p ) . Moreover, 

L*(JU • t;*"1) = L.{Ai) • ^(vt1) € F^{ZP) . ̂ T(Zp)*"1 C F%k{Zp). 

This has restriction t^ef*'1 G F?+£(Zp). Apply this for z = i(m) and fc = 
p(m) + 1 to get the wanted result, and hence the differential on tp™. To settle the 
differential on um one proceeds analogously, but now using the spectral sequence for 
T(*)hCpm and T(Zp)hôpm. Details are left for the reader. • 

Remark 5.14 In the spectral sequence for T(*)hsl the j£2-term contains as a direct 
summand the F2-term for (Im J)hS but the differentials are different. Do to the 
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affirmed Segal conjecture there are no elements of negative degree in the E^-term. 
For example, cannot survive to E°°. Indeed, one knows that 

d2(P-l)V,K*>+l)-la) = ¿ 2 ^ - 1 ) + ^ 

where f3\ is the first element in 7r*(5°;Fp) outside 7r*(Im Jp;Fp). This influence 
from 7r*(Cok J; F^) makes it impossible to generalize the proof of Theorem 5.8 (i) 
to obtain a proof of Conjecture 4.3 in general. Once one gets out of the range where 
7r*(Cok J, Fp) is known one looses control over the spectral sequence for T(*)hS . 
Enough however is known to prove Conjecture 4.3 for n = 2 in this fashion, and 
one could probably push the argument to affirm also n = 3. 

§ 6 The equivalence between H(Cpn, T(ZP)) and T ( Z p ) / l C ^ - 1 

Assuming Conjecture 4.3, we shall compare the norm cofibration of (2.3) 

nF)hCpn - T(F)hCp" X A(Cp-,T(F)) 

with the cofibration of theorem 1.10. We recall from its proof that we have the Cpn-i 
equivariant homotopy equivalence 

T(F) [T(F) A XECpnfr 

The inclusion 7 of T(F) into Map (ECpn+ , T(F)) as the constant map is Cpn-
equivariant, so induces a CL«-1 -equivariant mapping 

[T(F) A HECpn]CP [Map (ECpn+ ,T(F)) A ESCp»]c* 

The range is H(CP,T(F)) with fixed set 

HiCp.TiF))^-1 = H(Cpn,T(F)) 

We obtain a Cpn-i equivariant map 

7 : T ( F ) ^ H ( C P , T ( F ) ) 

Let f = -yCp"-\ r = 7Ci»" 
f : T{F)Cp"~i - » H (Cp»,T(F)) , r : T(F)C>-" - » T(F)hCfn 
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They fit together in a homotopy commutative diagram of cofibrations of spectra 

(6.1) 
T{F)hCpn N 

T(F)CpU g T(F)CP"-1 

T{F)hCvn ^ T(F)hC»" ^ H ( C P » , T ( F ) ) 
For the functor F with T(F) = T(ZP) we have some control over the homo
topy groups of the lower cofibration of (6.1) by the spectral sequences of Sect.2. 
This will be our main tool for evaluating 7r* (r(Zp)Cpn; and then in turn 
7r*((TC(Zp),p);Fp). 

Remark 6.2. We can note from (6.1) that Nh factors over T. This is quite generally 
true for any G-spectrum T (G finite). Indeed, there is a commutative diagram of 
G-spectra 

Map (EG+, T ) A EG+ ^ Map (EG+, T) A 5° 

7T* A 1 7 A 1 

Map(S°,T) A EG+ TAS° 
where TT : EG+ —• S° is the projection. On fixed sets we get upon identifying T 
with Map (S°,T), respectively T A 5°, the commutative diagram 

[Map (EG+,T) A EG+]G (EG+,T) A E 

(7A1)G T r 

(T A EG+)G ^ TG 

The norm map i s ( l A 7 r ) o ( 7 A l ) composed with the equivalence 

\T\ AG EG+ ~ (T A EG+)G 

and we get the claimed factorization 

ThG £ ThG 
M I r 

ThG £ ThG 
Lemma 6.3. Let T be a G-spectrum (indexed on trivial G-representations) with 
TTiT = 0 for i > m. Then 7Ti(ThG) = 0 for i > m and the restriction map induces 
an isomorphism from 7rm-l{ThG) to 7rm_i(T). 
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Proof- By definition iriThG = [S* A EG+, T] , and the result follows by elementary 
equivariant obstruction theory. Indeed, the obstructions to deform a G-mapping 
equivariantly to zero lie in the Bredon cohomology, 

HjG(sl A E G + , T T J T ) = Hifs1 A B G + , T T J T ) 

cf. [6]. These groups vanish when i > m . For i = m — 1 there is one non-zero 
obstruction group, equal to 7rm_iT, and the isomorphism 

K m - l T h G —• 7Tm_iT 

is induced from the evaluation at G+ C EG+. • 

Corollary 6.4. Suppose f : T\ —» T2 is a G-map between two equivariant spectra, 
which induces isomorphisms in homotopy groups in dimensions larger than or equal 
to m. Then the induced map fhG . ThG _> ThG fas fhe same property. 

Proof. Let T be the homotopy fiber of / . Then 7rzT = 0 for i > m and we can 
apply (6.3). Since taking homotopy fixed sets preserves fibrations, the result follows 
easily. • 

Lemma 6.5. 7* : 7rz-(T(Zp); F P ) —• 71̂  ( H ( C P , T ( Z P ) ) ; Fp^ is an isomorphism for 
i > 0. 

Proof. We already know the homotopy groups involved, namely 

7r*(T(Zp);Fp) = F { e } ® P [ / ] 
TF* (h(CP, T(Zp)) ; Fp) = E { e } ® P [tp, t~p] 

with dege = 2p — 1 and deg/ = degt p = 2p , cf. sect. 4 and (5.11). Thus it 
suffices to check that 7* induces an isomorphism at 7TQ and that 

% ( f ) = t~P, % ( e ) = e 

To check on 7rn we can use the diagram 

T ( . ) 7(.) 
H ( C P , T ( . ) ) 

j j 

T(ZP) H(Cp,T(Zp)) 
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The map 7TQ(1) is an isomorphism, and the same is then the case for 7ro(Z). But 
T ( * ) ~ CP^C anc* ̂ e affirmed Segal conjecture for 5° asserts that JCP and hence 
that 7 ( * ) is a homotopy equivalence. It follows that 7ro(7(Zp)) is an isomorphism. 
We prove in Theorem 10.14 below that the topological Dennis trace map 

Tr : K(ZP) — T{ZP) 

induces a surjection on homotopy groups in degree 2p — 1 where the range is a 
copy of Fp, generated by the element e. Let G K2P-i(Zp) be an element with 
Tr (e^ ) = e. 
The cyclotomic trace is a factorization of the Dennis trace and we have the homotopy 
commutative square 

K(2P) Trc TC(lp,p) 

Tr a 

T(ZP) 
D T(Zpfp 

One knows from the definition of TC (Zp,p) that D o a ~ <fr o a. Here D is the 
inclusion of the fixed set, and $ : T(Zp)Cp —• T(ZP) is the map from (1.9). We 
further have the triangle 

T(Zv)Cp r T(Z^hCp 
D DH 

T{ZP) 

The homotopy groups n*\T(Zp)hCp; F^J were evaluated in (4.6), this used only the 
part of Conjecture 4.3, which is easily proved as explained at the end of sect.5. In 
particular 

7r2p-i(T(Zp)hCp;Fp^ = Fp 

generated by xp(0), and D%(xp(0)) = e by (4.5). 
The map * : T(Zp)hCp -> H(CP,T(ZP)) induces an isomorphism on the E°° of 
the skeleton spectral sequences, so with the notation of (4.10) ty*(xp(0)) = yp(0) in 
K2p-i (^i(Cp, T(ZP)); Fp^. One has T*a*Trc * (e#) = xp(0), since the left hand side 
is mapped to the non-zero element Tr * ( e^ ) under D%. Hence >&*r*a*Trc *(ejf) ^ 0 
and a s ^ o r ~ r o $ b y (6.1), T* maps $*a:*Trc * (e^ ) non-zero. This shows that 
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f*(e) = yp(0). Finally f* commutes with the first Bockstein operator, and since 
/?! ( / ) = e, f . ( / ) ^ 0 . • 

The model for H(Cp,T(Zp)) used in the beginning of this section has an action of 
Cpn-\ whose fixed set is H(Cp»,T(Zp)). 

Lemma 6.6. Assuming (4.3), H^Cpn-i, H(Cp, T ( Z p ) ) ) = 0 for all n. 

Proof. Since the spectrum in question is p-complete, it suffices to show that 

7r*(H(cp„-i ,H(Cp,T(Zp))) ;Fp) = 0 

We use the skeleton spectral sequence with 

El9 = H ~ P ( C > - i ; ^ ( < ? P , T ( Z P ) ) ) 

It converges to the modp homotopy groups of the spectrum under discussion by the 
criteria of Boardman, cf. [3], [21]. If we write 

7T* (h(CP, T(Zp)); Fp) = E{e} ® P [/, Z"1] 

then the JS -̂term is 

El* = Eiun-i} ® P [t, t"1] ® E{e} ® P [/, 

We can use the Cp«-i-equivariant map 7 : T(ZP) —> H(CP,T(ZP)) to compare 
the spectral sequence above with the skeleton spectral sequence with abutment 
7r* ̂ H(Cpn-i, T(ZP)); Fp^. In particular, we get from (4.3) that the non-zero dif
ferentials are generated multiplicatively from the formulas 

d2p(k^l)-l{tp^ = tp*+p(k+l)-lefp(k)^ k<U-l 
d2p{n)-l^Un_^ = tp{n)fP(n-l) 

together with the claim that te and tf are infinite cycles; cf. (4.3) for notation. Now 
it is easy to see that 

FP(n) _ 0 for all (p, q) 

Indeed, one argues as in sect.4 and uses that 

dMn)-l(tP"Un_litf)-p(n-l)\ =1 

This completes the proof. • 
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Theorem 6.7. Assuming conjecture (4.3), the vertical arrows in (6.4) induce 
isomorphisms 

T. : 7ri(r(Zp)c^;Fp) -> m (r(Zp)hC»n ; Fp) 

f . : iri (Tilpfr"-1 ; Fp) — m (fi(cpn, T(Zp)ftC>) ; Fp) 

/or a// i > 0. 

Proof. We use induction over n. For n = 1, it follows from (6.5) and a 5-lemma 
argument. Assuming the result for n < m we proceed to prove it for n — m. We 
use the diagram 

(6.8)n 

T(ZP)C^"-1 r (EG+,T) A E 

(EG+,T) ^hCp„-i 

H(C7P, Til?))0?-1 H(CP, T{l.p))hCr"-1 (n > 2) 

where the horizontal maps are inclusions of fixed sets into homotopy fixed sets. 
We want to prove that f = ^Cvm~l is a homotopy equivalence in non-negative 
degrees. Since 7 is an equivalence in non-negative degrees, so is 7 ^ > m - 1 ac
cording to (6.4). The upper horizontal map in (6.8)m induces an isomorphism 
on 7Ti( —; Fp) for i > 0 by the inductive assumption, so we conclude that 
7Tj(G;Fp) is an epimorphism in the same dimensions. We know from (4.11) that 
7ri(H(Cp™;T(Zp));Fp) and 7̂  ( r ( Z p ) ^ V " - 1 ; Fp) are abstractly isomorphic finite 
dimensional Fp vector spaces. Hence the source and target of 7r^(G; Fp) are isomor
phic, and the epimorphism must be an isomorphism. By (6.8)m, 7r^f;Fp^ is an 
isomorphism. We use (6.1) to show that also 7r^(r; F^) is an isomorphism for n = m 
and i > 0. • 

Remark 6.8 For any ring R which is a module over Zp, T(R) is a module 
spectrum over T(Zp) and hence fi(cp„-i, H(CP, T(R))) is a module spectrum over 
the corresponding spectrum for R = Zp. It follows then from Lemma 6.6 that 
H^Cpn-i, H(Cp, T(R))Sj = 0. This is an interesting special feature for rings which 
are not shared by T(F) for general functors with smach product; F = Id is a counter 
example 
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Remark 6.9 (added in January 1994). Stavros Tsalidis proves in his 1994 thesis 
that the map 

rn : T(Zp)C*>n T(Zp)hC*>n 

induces an isomorphism on mod p homotopy groups in non-negative degrees for all 
n provided this is the case for n = 1. Our Remark 5.12 and Lemma 6.5 give the 
induction start n = 1, cf. the proof of Theorem 6.7. It follows by a five lemma 
argument that 

fn : TiZpfp"-1 ^ H ( C p n , T ( Z p ) ) [ 0 , oo ) 

is also a homotopy equivalence. In particular 

(*) 7rjT(Zp)hCp"-1;Fp) = 7r*(H(Cpn,T(Zp)) ;Fp) 

for all n and * > 0. Tsalidis then uses our Remark 4.13 to show that if the differentials 
are not as claimed in Conjecture 4.3 then (*) cannot be satisfied. 

§ 7 The modulo p homotopy groups of T C ( Z p , p ) 
The results of this section are based upon Conjecture 4.3, and the subsequent 
calculations of the skeleton spectral sequences as summarized in (4.6) and (4.10), 
and upon 
Theorem 6.7. Let TC^(Zpip) be the spectrum which fits into the cofibration 

(7.1) T C ^ ( Z p , p ) — T(Zp,p)Cpn D^ T(Zpfp"-K 

Then we have 

(7.2) TC(Zp,p) = holjm TC(n)(Zp,p) 

and thus 7r*(TC(Zp,p);Fp) = lim 7r* (rC^n\Zp,p); Fp^. 

Lemma 7.3. The group lim 7r2r(T(Zp)hCpn ] Fp) vanishes when r ^ 0 mod (p — 1) 
and is a single copy ofFp when r = 0 mod (p — 1). The generator in the latter case 
is named {tf)1 in lijn £;007r2i(p_1)(T(Zp)^T7; Fp). 

Proof. From (2.18), 

lim 7r2r(T(Zp)hCr>";Fp) = 7r2r(T(Zp)hsl;Fp) 
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so it suffices to look at the skeleton spectral sequence: 

H*(BS1;7r4T(Zp);Fp)) => **(T(Zp)hsl; Fp). 

By (4.7) only the polynomial algebra P[tf] survives to E°°. • 

We now restrict attention to odd dimensions. Here we can begin by observing that 

Dh : T(Zp)hCpn+1 - > T{Zp)hC"n 

D : H(Cpn+i,T(Zp)) -+ H(Cpn,T(Zp)) 

on the E°°-terms are tabulated as 

(7.4) 

(EG+,T) A E xr(i) for 0 < i < n 
0 for i = n 

E°°D{yr{ï)) = yr(i) for 0 < i < n — 1 
0 for i = n — 1 

with the notation from (4.6) and (4.10). The map 

(7.5) F°°#* : E°°ic*(T(ZP)HCPn;Fp) — S°°7r*(H(Cp», T(ZP)); Fp) 

can be calculated from the information of sect.4; this simply amounts to determining 
the coincidence relations between the xr{i)ts and the yr(j)fs when one thinks of 
them as monomials in t,un,e and / . To this end, write 

r — p/p — 1 = ao + aip H- d2p2 + 0 < ao < p, 0 < â  < p for i > 1. 

We call this the p-series for r — p/p — 1. The coefficients are unique and, since 
r — p/p — 1 is a rational number, constant for large i. Let l(r) be the smallest number 
with ai constant for i > l(r). The linear map i?00^* maps each basis element xr(v) 
from (4.6) into a multiplum of a basis element yr(v) from (4.10). 

Lemma 7.6. (i) i?°°\&*(xr(7;)) = yr(v — 1) if and only if v > l(r) 

(ii) E°°ty*(xr(v)) = yr(v) if and only if r = p(p — 1) with r / 1 and v = l(r) — 1. 
(iii)£,00^*(j:r(v)) = 0 in all other cases except that E°°^^{xr{y)) = y(v + k + 1) 

when r = p + pV+k+'l- + (p — l)a with p(v) < a < p(v) and k > 2. 
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Proof. Suppose E°°fy*(xr(v + k)) = yr(v) with k > 1. Looking at the power of t 
which appears in the monomials xr(v + k) and yr(v) we have 

« 0 + aiP + — + av+kPv*k = p — r + aop + aip2 + ... + avpyJtl 

and inserting the p-series for (r — p)/p — 1 we get 

(*) 
i>v+k+l 

A E 
(EG+,T) 

aiPi+1 

But this gives av+\ = p, av+2 = P — 1? • av+h_i = p — 1 and 
= P,Q > v+2 = P ~ 1, av+h-l — P — + 1 = ^+2+1 = ^ +£+2 = ••• 
Thus l(r) = v + fc and az > 1 for i > /(r). It follows that for some a > 1, 

r — p 
p-1 

= ao + ... + avpv + a 
pV+k 
i-p 

< p + ... +pv+1 + a pV+K 
1 - p 

and hence that r < pv~h2 — apv+k. Since r > 0 we must have fc < 1. For k = 1, (*) 
gives a^+i = av+2 = ... so that v + 1 > Z(r). This proves (i) and part of (iii). 
If E°°ty*(xr(v)) = yr(v) then (*) is satisfied for k = 0 and must represent 0. Thus 
r = p(p — 1) and 

â -f i = — 1 = = «^4-3 = ••• 

so that l(r) = v + 1. This proves (ii). We leave the rest of (iii) to the reader.D 

For a given positive number r and for all n Eoc7T2r-i(T(Zp)hCp11'; Fp) and 
£,^7T2r-i(IHI(C'J9»+i,T(Zp)); Fp) have dimension n with basis {xr(i)}f=0 and 
{z/rCOlitTo1' excePt ^ ^e p-adic valuation ^p(r) > n where the dimension is n + 1. 
Suppose vp(r) < n. We choose elements 

4(0),...,x*(n) e 7r2r-i(r(Zp)AC^+1;Fp) 
#r(0),...,yr(n - 1) € 7T2r-i(H(C7p«+i,r(Zp));Fp) 

which represent arr(0), ...,a:r(n) and yr(0), ...yr(n — 1) in the i?00-terms, and such 
that 

(7.7) 
£>*(a;J?(n)) = 0, £>J(a£(*)) = or? fori < n 

D*(yr(n - 1)) = 0, D*(yr{i)) = &•(*) fori < n - 1 
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If vp(r) = n then 

£>* : 7 r 2 r - i ( T ( Z ^ ) ^ " + 1 ; F p ) - > 7r2r_i ( T ^ p ) 7 ^ " ; F p ) 

is an isomorphism. If v p ( r ) > n then we have one more basis element both in the 
source and in the target for D* and £>*, and 

(7.8) DZ(x*(n + 1)) = 0, D*{yr{n)) = 0 

whereas D% and £>* map the other basis elements by the identity. 
The claims (7.7) and (7.8) follow by comparing (4.6) and (4.10) for various values of 
n. Indeed E°°D% and E°°D* do satisfy the analogous claims in E°°iV2r-i{ —; F p ) , 
and we can inductively pick the x%(i) and yr(i) with the listed properties. We are 
interested in large n, and assume from now on that vp(r) < n. Let 

&.(0) , . . . , £ r (n ) e 7 r 2 r _ i ( T ( Z p ) C ^ + 1 ; F p ) 

7 f c . ( 0 ) , . . . , 7 7 r ( n - 1) € 7r2r- i (T(Zp)^B;Fp) 

be the preimages of the x%(i) and £r(z) under the isomorphisms r* and A from 
(6.1). Since Dhor = roDandDof = foD 

D*(£r(n)) = 0 , D*(t;r(i) = £r(i) for i < n 
D*(r)r(n — 1)) = 0 , D*(r)r(i)) = r]r(i) for z < n — 1 

The two bases { £ r ( 0 ) , £ r ( n — 1)} and { ? 7 r ( 0 ) , r } r ( n — 1)} for 
K2r-i{T{l.p)cr"; F p ) are associated by a triangular matrix A = (Xij), that is, 

(7.9) 77r(i) = \u€r(i) + Ai+i,j^r(« + 1) + . . . + A n _ i ^ ( n - 1) 

with Xu G F * . This follows from (7.7). 
Suppose now that v is an index so that xr(v) is in the kernel of i?°°(\&*), i.e. that 
xr(v) is a boundary in the skeleton spectral sequence for H(Cy*+i, T(ZP)) , rrr(v) = 
d5(ar(i?)). By Theorem 1.15 there is an element 

a>r,hiv) € ^ r - i C T C Z p J / j c r ^ j F p ) 

so that the norm map NH from (6.1) has 

(7-10) N?(arth(v)) = x*(v) + n 

fdfd 
(EG+,T) 

for some /xz G F p . Since tp+oJVj = 0 the /x̂  = 0 unless i?°°\[>*(j;r(z)) = 0. Suppose 
< and that both xr(vo) and xr(y\) are in the kernel of E00^*. It is easy to 
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check from the structure of the skeleton spectral sequence for H(Cpn+iy T(ZP)) given 
in sect.4, that the differential killing xr(vo) is shorter than the differential killing 
xr(vi) so that ar(vo) has strictly lower filtration than ar(v{). 
It follows from Lemma 7.6 that 

(7.11) 
(a) l m ( ^ ) = { ^ ( 0 ) , . . . , ^ ( e ( r ) ) ) 

(b) lm(N£) = <**(0), ...,*?(* + l),...,a£(Z(r) - 1)) 

Here (b) corresponds to 7.5 (ii) (with i = l(r) — 1) and to 7.6 (iii). 
We are now ready to evaluate the map 

£>* — <!>*: 7 r2r - i (T (Zp)c^ ;Fp ) — *2R-i(T(Zp)Cr-*; Fp) 

where we have: 

Theorem 7.12. Suppose n > vp{r). 

(i) Ifr^l mod (p — 1) or r = 1 then D* — <&* is surjective and its fiber is a single 
copy of Fp. 

(ii) Ifr = l mod (p — 1) and r ^ 1 f/zen D* — <&* /las kernel Fp © Fp and cokernel Fp. 

Proof. We begin with (i). There are two cases to consider according to Lemma 7.6, 
corresponding to r being of the exceptional form r = pl+1 + p1^^2 + (p — l)ro or 
not. In the former case 
r — p 

v - 1 

i 

i=0 
aip1 +p-Pi+1 + (p- i y + 1 + ... + (p- l)pi+j^ + (p - 2)pi+'+2 + ... 

so l{r) = i + j + 1. We have (7.6) and (7.11): 

(*) 

$*(£r0) ) = Vv-l,v-mr(v ~ 1) + ... + (J>v-l,n-lVr(n - 1) for V > i + j + 2 
**( f r (0 ) = fH+j,i+jVr(i + j ) + ... + ^+^n_i77r(n - 1) 

$*(£r(v)) = Oforv < i + j + 1 and?; ^ i. 

with 7̂  0. We can change basis by (7.9) and replace the r)r(v) in (*) to £r(v)-
This will alter the coefficients p,k,h but the new diagonal coefficients p!k k will still be 
non-zero. Since D*£r(y) = £r(v) for v < n and D* annihilates the obvious 
inductive argument shows that £>* — <&* is surjective, and hence also that its kernel 
is Fp. For later use we note that 

(7.13) Ker(£>* - $*) Ç + j + 1 ) , £ r ( n ) > 

If r is not of the exceptional form, then 

(**) $ * ( £ r ( t / ) ) = p,v-i,v-l&(v ~ 1) + + A*v-l,n-l^r(w ~ 1) for v > l(r) 

3>*(£r(^)) = 0 otherwise 
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Again it is clear that D* — <fr* is surjective, that the kernel is Fp and that 

(7.14) Ker(£>* - $*) C (&(l(r)),fr(n)> 

Finally, the case r = 1 corresponds to l(r) — 0. This prove (i). 
In case (ii) we can argue as above that 

Ker(L>* - H (&(I(r ) ) &(n)) = Fp. 

and we must find a second Fp in the kernel. Write I = l(r) — 1 and note that 

arr(J) = e(i/)?3 G S007r2r-i(T(Zp),lCp"+1;Fp) 

so that the natural candidate for a second Fp is a good choice of £r(0-
Let z : S° —-> A(*) be the unit of the ring structure, split by the topological Dennis 
trace 

Tr : j4(*) -> T ( * ) 
(cf. [35]). Consider the diagram 

5° 

i 
a ur T(*)cp"+1 = T(*)HCrn+1 

i 

K(Z) T(Z)CPV+1 
r 

T(Z)hcpn+1 

By (5.3), vi G 7r2p-2(S°,Fp) is mapped into tf G #^7r2p_2(T(Z)^>"+1; Fp) 
for n > 0. Let G 7r2p_i(i^(Z); Fp) be the element with Tr(e^) = e in 
Tt2p-i{T{Zy, Fp), cf. sect.6, and consider the product 

ek . v 
r-p 
n-1 
1 €7r2r_! ( i i r (Z) ;Fp) 

induced from the module structure S° A K(Z) —• K(Z). We have 

Trc(e^ • t 
A E 
l ) = Trc(e^) • v p-1 

L G 7r2r_!(T(Zp) V^;Fp) 
and in JE007r2r_i(T(Zp) ̂ W+1;FP), 

rncfTrcfe^) • v 
r-p 

l = e It f) P-1 = Xr(l) 

We may choose £r(0 = Trc(e^ • v 
r-l 
p-1 
1 ) . By definition D* is equal to <&* on any 

Trc(^), so £r(l) G Ker(£>* - $*). • 
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The elements ( * / ) * 6 ^007r2z(p_1)(T(Zp)Cpn+1; Fp) can be represented by Trc(u(v[)) 
so lie in the kernel of (D — $)*. We now list the main conclusion of this section in 

Theorem 7.15. 

7T2r-i(TC(Zp,p);Fp) = Fp if r ^ 0,1 mod (p — 1) or if r = 1 
Fp © Fp otherwise 

7r2T-(TC(Zp;p);Fp) = 
Fp 0 Fp if r = 0 mod ( p - l ) , r ^ 0 
Fp ,r = 0 
0 , otherwise 

Proof. Since we are working with finite coefficients there are no lijn (^-terms, and 

7r.(TC(Zp,p);Fp) ^li jn 7T.(Tdn)(Zp,p);Fp) 

Thus we have the exact sequence 

0 lim 7r2r(T(Zp)Cpn;Fp) 
lm(D* - $*) 

7r2r-i(TC(Zp,p);Fp) -> lim Ker(£>* - $*) - » • 0. 

From Theorem 7.12 we see that 

Ker(£>* - : 7r2r-i(T(Zp)^"+1; Fp) -> 7r2r_i(T(Zp)c»n; Fp)) 

is equal Fp if r = 1 or if r ^ 1 mod (p — 1), and is otherwise Fp©Fp. Moreover, D* 
maps the kernel isomorphically when n > vp(r). Finally we can use (7.3) to see that 

lim 
D* 

7r2r(T(Zp)Cp";Fp) 
lm(D* - $*) 

= Fp for r = 0 mod (p — 1) 
0 otherwise 

The even dimensional groups are calculated in a similar fashion • 

§ 8 Periodicity for T C ( Z p , p ) 
Every spectrum is a module over the sphere spectrum and every stable map is a 
homomorphism of modules. In particular, letting v\ be the non-trivial element of 
7r2(p-i) F>)> we have an operator 

(8.1) Vl :7rA;(TC(Zp,p);Fp) -^7rfc+2(p_1)(TC(Zp,p);Fp) 

which commutes with homomorphisms induced from stable maps. In this section 
we show that v\ is an isomorphism. The proof is calculational and does not, at the 
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moment, shed much light on the phenomenon. In fact, the result appears somewhat 
miraculous in that our proof also shows that 

(8.2) v± : <Kk{T{Zp)Cp"; Fp) -+ ^2(p^i)(T(Zp)c^;Fp) 

is not an isomorphism for any specific value of n. Thus T(Zp)CpU is not a K-
local spectrum, or more precisely, is not the connected cover of a K-local spectrum. 
Nevertheless we derive (8.1) by calculation of (8.2) which in turn we study via the 
isomorphism 

r * •• 7rfc(r(Zp)c"";Fp) -5. 7rfc(T(Zp)ftC>;Fp) 

and our calculations in the previous section. 

Lemma 8.3. In even dimensions 

« i : lim7r2r(T(Zp)C,"'l;Fp) — \i™ir2r+2(p-l){T{~lp)CPn; Fp) 

is an isomorphism. 

Proof. Both range and domain are zero unless r = 0 mod (p — 1) and are in this 
case a single copy of Fp. This follows from (7.3). Moreover, the non-trivial Fp is, 
upon applying .T*, represented by 

(tfpP-1 G E°°7r2r(T(Zp)hCpn;Fp) 

It is a consequence of (5.3) that multiplication by v\ on -K2r(T(Zp)hCpnl; Fp) corre
sponds to multiplication by t.f in E°°7r*(T(Zp)hCpn; Fp). This is visibly an isomor
phism on lim£,007r*(T(Zp)/lC^ ; Fp), and the lemma follows. • 

In odd dimensions we study the diagram 

(8.4) 

0 Ker(£>* - $*) 7r2r-i(T(Zp)V'+1;Fp) 7r2r-i(T(Zp)c*";Fp) 

f VI VI 

0 Ker(£>. - 7r2s-i(T(Zp)^"+1;Fp) 7r25_1(T(Zp)^";Fp) 

with s = r + (p — 1). Suppose we have the p-series 

(8.5) r - p/p - 1 = 
g 

¿=0 
*iP* + + qp1*2 + -
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where 0 < ao < p, 0 < d{ < p and 0 < q < p. Actually q must be strictly less than 
p since for q = p we would have 

r — pip — 1 = 
I 

i=0 

dip1 +pl+2/l ~P <P 
pl+l _ 1 

P-1 
+ P1+2/I-P 

and hence r — p < p(p*+1 — l ) — p*+2 or r < 0. In sect.7 we introduced generators 

£r(z), 0 < I < n, for 7T2R-i(T(Zp)Cpn+1 ;Fp) such that in all cases 

(8.6) 
Ker(£>* - $*) n (£r(l + 1), ...,£r(n)> = 0 
Ker(£>* - * „ ) n <&(/), ...,£r(n)> = Fp 

given the p-series (8.5), cf. (7.13) and (7.14). If r = p mod(p — 1) and r > 1 there 
is a further generator of Ker(£>* — <&*), namely 

CR(l - 1) = T r c C e ^ - ^ - 1 ) 

In this case the p-series (8.5) has a\ = p and q = p — 1 and (8.5) gives 

r — p/p — 1 = 
l-i 

i=0 

asp1 

Let us introduce the notation a = a(r) for the sum 
i=0 

dip1 in (8.5) and note that 

1 + 1 = l(r). In ^007r27.-i(T(Zp)/lCp^1;Fp), 

(8.7) 
AÉríO = í«Me/a(r)-gp' = xr(l) 

^*£r(J + *) = I a(r)+qpl+1 (EG+,T) 
p-i (EG+,T) A E fd 

P-I — Xr(l + I) 

and when r = p(modp — 1) and r > 1, 

(8.8) A£r(Z - 1) = f-PLP-^ef-PLP-1 

If 5 = r + (p — 1) then / ( 5 ) = l(r) and a(s) = a(r) +1 except if (8.5) has ao = p — 1 

and di = p for 0 < z < I. In this exceptional case 

r = 1 — p + p/+1(p — g) 

and the p-series for 5 — p / p — 1 is 

(8.5) s - p/p - 1 = 0 + 1 • p + ... + 1 • pl + (q + l ) p ' + W + 2 + ... 
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so in the exceptional case: 

l(s) = l{r) + 1 , a(s) = a{r) + qp1*1 + 1 

Lemma 8.9. Suppose s = r + (p — 1) and l(s) = l(r). Then multiplication with v\ 
maps (£r(l), •••?£r(™)) isomorphically to (s) = l{r) + 1 , a(s) = a 

Proof. We can apply the isomorphism T* and use (8.6). Since a(s) = a(r) + 1 
and vi corresponds to multiplication with t.f in E00-K*(T(Zp)hCpn+l ; Fp) we see that 
(t.f)xr(l + i) = xs(l + i)> so ^ t multiplication by £./ maps (xr(l), ...,xr(n)) iso
morphically to {xs(l),x5(n)). The same statement then follows when xr(v), xs(v) 

are replaced by ^ri^^Csi^)- Q 

Lemma 8.10. Suppose that l(s) = l(r) + 1 and thus r = 1 — p + pl^r\p — q). Then 

vi ' &(Kr) ~ 1) = 0 

Proof. In £ ^ 7 r 2 r _ i ( T ( Z p ) ^ + 1 ; F p ) , 

Xr(l) = tPd+i)-iefP(l+i)-QPl-i 

This is a boundary in the Tate skeleton spectral sequence converging to 
7r*(H(C0rc+i, T (Zp) ; Fr,)). Indeed from sect.4, 

^C+i)(É-i/Pl+1-«Pl-i) = *r(Z), P(l + l)=p 
pl+i - i 

p-1 

The element t^f* ~qp _ 1 e ^ ^ + 1 ) ( H ( C p n + i , T ( Z p ) ; Fp)) represents a non-trivial 
element in E°°7r2r-i(T(Zp)hc n+i 5 Fp) by (2.15). Moreover, as it has minimal 
filtration degree in the given dimension there is a unique element, say 

«r,/i(0 ^ ^ 2 r - i ( T ( Z p ) ^ n + 1 ; F p ) 

represented by £_1 fP^-QP1-1^ and 

NH*rA1)) = 4 ( 0 € ^2r - i (T (Zp ) / iCV+1;Fp) 

represents arr(Z) in E°°7r2r-i(T(Zp)hCpn+1; F p ) , see also (7.11). Since by definition, 
-T*£r(0 = &r(l) we can write this equation as 

^ ^2r-i(T(Zp) ^ ^2r-
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where TV is the norm map from T(Zp)hC to T(Zp)G>+1. Thus vifr(0 = 

N^vua^il)). B u t i n ^ T r s r - i C T C Z p ) ^ ^ ^ ^ , ^ ^ ^ ^ ) = Z ^ 1 - ^ " 1 is equal 
to zero, since it lies to the left of the filtration line s = 1 in the Tate skeleton spectral 
sequence for H(Cpn+i, T(ZP)), cf. the discussion in sect.2. • 

Proposition 8.11. The map 

vi : Trar-iCTCZpJ^jFp) - 7r25_1(T(Zp)C^+1;Fp) 

induces an isomorphism of Ker(D* — 

Proof. If r = l(modp — 1) and r > 1 then the element Trc(e^ • v\ p^ p) maps to 
Trc(ext^~P//1~p), so we have left to check for all r that v\ maps (£r(0> •••>£r(rc)) n 
Ker(D* — <&*) isomorphically. This follows from (8.9) when l(s) = l(r). If 
l(s) = l(r) + 1 then vx • fr - 1) = 0 by (8.10), so 

«1 : (Sr{l{r) - l),...,£r(n)> -> <6(l(s) " l) , . . . ,&(n)> 

We recall from sect.7 that with I = l(r) — 1 : 

* . ( & • ( ' ) ) = 0, *-(&•(* + 0 ) = *itr(l + * - 1) + ... 

for i > 0. Here is non-zero in Fp and the dots indicate a linear combination of 
the elements £r(Z + i ) , . . . ,£r(n) . Also, Z?*(£r(i/)) = £r(") except that r>*£r(n) = 0. 
To show that v\ maps Ker(£>* — <&*) n (£r(0> £r(™)) monomorphically, we can 
compose with £>* o ... o L>* (n — I — 1 factors), or in other words reduce to the case 
n = I + 1 ( = / ( 5 ) - 1). Then 

Ker(£>* - *+) n <&(/), fr(Z + 1)) = (\o&(l) + &(l + 1)> 
Ker(£>* - $*) n <6(/ + 1)> = <&(J + 1)) 

and 
Vl(X0Cr(l) + &(l + 1)) = Vi • Cr(l + 1) = 6(/ + 1) 

The first equality is (8.10), the second follows from (8.7): 

r^r(l + 1) = + e/a(r) 
r . ( & ( l + 1)) = t<s)efa{s)-qP^ 

and a(s) = a(r) + q - p*+1 + 1 , / ( 5 ) = I + 2. • 
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Theorem 8.12. Multiplication by v\ 

V l : 7rfc(TC(Zp,p);Fp) -> ^+2(p- i ) (TC(Zp,p) ; Fp) 

is an isomorphism for all fc. 
Proof. We use the cofibration 

T C W ( Z P , P ) — T(Zpfpn D^ T{Zpfpn-1 

and that 

TC (Zp ,p) = holisiTC(n)(Zp,p) 

In 7r2i(p-i)(T(Zp)Cpn;Fp) we have the element Trc(u(v[)) where t : S° -> K(Zp) 
is the unit, and by (8.3) these are the only elements which contribute to the limit 
over n. Clearly 

vi - T r c ( ^ K ) ) = Trc(^(vJ+1)) 

and as D*Trc(t*(v\)) = $*Trc(£*(v|)), the elements 

Trc(6*(<4)) G lim7r2i(p_1)(TC(n)(Zp,p);Fp) 

9*Trc(6*K)) G lmiTTa^ij . iCTC^HZp^jFp) 

maps to each other under multiplication by v\. For r = 1 mod (p — l ) , r > 1 we 
similarly have 

TtaCe/rvJ-1) G 7r2z-(p_1)+1(T(Zp)c^;Fp) 

with 

Z^Trc t e^"1 ) = ^.TrcCe^vJ"1) = 0 

Moreover, from the proof of (7.12)(ii) we know that 

T r c ^ r 1 ) i Im(D* - *.) 

so that we have non-zero elements 

Trcte^i"1) ^ hm7r2i(j,_1)+1(TC(n)(Zp;p);Fp) 

c ^ T r c ^ i " 1 ) G lim7r2^_1)(TC(n)(Zp,p);Fp) 

which map to each other by multiplication with v\. Finally, we have the elements in 

Fp = Ker(L>* - * * ) H (&(l(r) - 1), ...f£r(n - 1)) Ç 7r2r_1(T(Zp)C^; Fp) 

which account for the remaining elements lim7r2r_i(TC (n)(Zp,p); Fp). They corre

spond under multiplication by v\ according to (8.11). • 
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§ 9 The p-integral homotopy type of TC (Zp,p) 

Let TC (*,p)be the topological cyclic homology for the identity FSP, cf . [ l l ] , sect.5. 
Linearization defines a homotopy commutative diagram 

(9.1) 

aff TC(*,p) 

K{ZP) TC(Zp,p) 

The p-adic completion of TC is known; there is a homotopy Cartesian diagram 
of spectra 

(9.2) 

TC(*,p) A 0 (EG+,T) A E A 
P 

OL trf 

E°°(S0) A 
P 

0 00 (5°) A 
P 

where trf denotes the 51-transfer of the classifying fibration ES1 —> BS19 E + ( X ) = 
Y,(X U { o o } ) , and E°° (Y) is the suspension spectrum of Y. When there is no 
possibility for confusions we sometimes drop E°° from the notation. For example 
5° will always denote the sphere spectrum. We have 

E00(S+(CP00)) = E^S1 V E^ECP00) 

and trf : E00.!?1 —• E°°50 is trivial because it is the S1 -transfer for the restriction of 
the classifying S1 -bundle to a base point. Thus 

(9.3) T C ( . , p ) A 
P - E°°(50) V VE0O(51) A V /iF(E°°(ECPoc) trf S° A 

P 

It will be illuminating in our comparison of TC to TC (Zp,p) to make use of 
localization at (topological) iST-theory, and we begin by recalling some facts about 
the localization of (9.3). Let LXFP( — ) denote the Bousfield localization at mod p 
if-theory, [4]. One has 

(9.4) LKFP(X™(S°] A 
P = J ^ 

V , L ^ F p ( E ° ° ( ^ ) A 
P = EJ A 

V 

where J is the non-connective image of J space, i.e. the homotopy fiber in 

J Kp v-1 K A 
P 
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Here K is the periodic Ä'-theory spectrum with 2n-th space equal to BU x Z. The 
( — 1)-connected cover of J is the spectrum whose bottom space is Im J x Z. This 
spectrum fits into the fibration 

Im J x Zp {BU x Z) A 
P 

ib-1 BU A 
P 

and the localization map {Su)£ —• Jp factors over a map e : (£u)p —» (Im J x Z)£. 
The localization of (the suspension spectrum of) ECP°° is more involved. We have 
the mapping of spaces 

e : ECP°° -> St/ 

whose adjoint is the Hopf bundle CP°° —• PC/. It induces a map of spectra 

(EG+,T) A E (EG+,T) A E 

where we have written bu for the 1-connected cover of K - its 0th space is BU since 
ftSU = BU. Let Im J be the O-connected cover of J (or of Im J x Z). Then we 
have the (co)fibration sequence of spectra 

E&ia —•> E6i( 
T 

Im J —+ bu ib-l 
bu 

where is the stable map which on the 0th space is i\)g : BU —» BU. It follows 
from the appendix of [32] that there is a homotopy commutative diagram of spectra 

(9.4) 

CP00 £ 
bu 

trf T 

°°(5°) e 
Im J x Z 

It is in order to point out that e is not the connected cover of the liTFp-localization 
of the spectrum E00(ECP00). In fact LKFP{CP°°)[0, oo] contains an infinite wedge 
of spectra E-1&uZp°o along with E?m, cf. [21] or [31]. Hence 

LKF (ECP°°)[0 ,oc) = Efax V 
oo 

buZpoo 

where Ẑ oo = ( Q / Z ) ^ and bulpoo = bu A holing S°/pk. 
Localization at KFp is related to v\ -periodicity by the following fundamental result 

(9.5) (EG+,T) A E (EG+,T) A E 
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where S°/p is the mod p Moore spectrum, and 

5°/p [ l /«i] = holim (S°/p % S°/p * ...) 
Since for any spectrum, LKFP(X)/P = LKFP (S°) AX/p, the mod p homotopy groups 
of the localization are vi-periodic. Conversely, if say a ( — 1)-connected spectrum has 
vi periodic homotopy groups then I : X —• LKFP(X) induces an isomorphism on 
mod p-homotopy groups in positive degrees. If X is further p-adically complete, 
X ~ Xp, and of finite p-type, then the localization map 

X LKF(X№oc) 

is a homotopy equivalence. In particular we can reinterpret the main result of the 
previous section to give 

Corollary 9.6. There is a homotopy equivalence 

TC(Zp,p) A 
P -LXFp(TC(Zp,p) ; ) [0 ,oo) 

This result implies that the linearization map in (9.1) after p-adic completion factors 
over LKFP(TC ( * , p ) p )[0, oo ) . In particular we have stable maps 

(9.7) 
(Im J x Z) A 

p 
lo TC(Z,p) A 

P 

BCimj x z; A 
p 

l TC (Z,p) A 
m 

The composition of Trc : A ( * ) —TC (*,p) with a in (9.2) is the topological Dennis 
trace map, and 

(EG+,T) l A ( . ) Trc T C ( . , p ) a (EG+,T) A E 

is homotopic to the identity [8], [39]. We saw in the proof of (8.12) that 

i*(v{) G 7r2i(p-i)(TC(Zp ,p);Fp) 

is non-zero and conclude that 

(¿0)* : 7r2t-(p_i)(Im J x Zp;Fp) -* 7r2i(p_i)(TC(Zp,p);Fp) 

is injective. This proves the first half of 

Lemma 9.8. (i) In degrees 2i(p — l),7r*(Zo; Fp) is a monomorphism. 
(ii) In degrees 2i(p — 1) + l,7r*(Zi; Fp) is a monomorphism. 
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Proof. We have already proved (i). For (ii), consider the cofibration diagram 

n*)hCpn 
N T(*)Crn o T(*)CP"-1 

LN LN Ln-i 

T(zp)hcpn 
N T(Zp)c"n O (EG+,T) 

where T ( * ) is the topological Hochschild homology spectrum of the identity FSP. 
Since T ( * ) = S°,L° is (2p — 3)-connected after p-completion. Induction over n 
shows that Ln is (2p — 3)-connected for all n, and it follows that 

T C W ( . , p ) A 
P TC™(Zp,p) A 

21 
is (2p — 4)-connected for all n. The same is then true for 

£ : T C ( . , p ) A 
P TC(Zp,p) A 

p 
In particular, 

7ri(TC(*,p);Fp) 
= 7ri(TC(Zp,p);Fp) 

But 
TTI(TC(*,p);Fp) = 7Ti(S(Im J x Z) ;FP) = Fp 

so we can conclude that 7ri(Zi;Fp) is an isomorphism. Since multiplication by v\ 
induces isomorphism, 

v i : 7Ti+2z (P - i ) ( s ( Im J x Z) ;FP) -+ 7ri+2(iH-i)(p—l)(B(Im J x Z) ;FP) 

and since 

vi17ri+2»(p-i)(TC(zPiP);Fp) ^ i + 2 ( m ) ( p - i ) ( T C ( z P > p ) ; F p ) 

is a monomorphism, (ii) follows. • 

The stable maps of (9.7) together define a map of (—1)-connected spectra 

l0i : (Im J x Zp) x B(ImJ x Zp) TC (Zp,p)J 

We want to determine the cofibre of /QI- TO this end we first show that 7r*(Zoi) is 
an injection (on integral homotopy groups). Given (9.8) this amounts to showing 
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that the (primary) Bockstein operator of the classes (Zo)*(^i) and v\(l\)+(l\) give 
non-zero elements of 7r2P-3(TC (Zp,p); ¥p) and 7T2P-2(TC {Zp,p)\ Fp), respectively. 
General properties of the Bockstein spectral sequence will then determine all the 
higher Bocksteins because 

(9.9) ^(¿o.(«í t)) = A ( M « i ) ) - i 
pk-l 
1 

(EG+,T) A E = (EG+,T) A E+ dfdfd 7
k-l 

L 

We etablish the non-triviality of /3i(Zo*(^i)) and Pi(vih*(ii)) by evaluating the 
integral homotopy groups of the homotopy fibre TC(Zp,*,p) of 

T C ( * , p ) ; ^ T C ( Z p , p ) £ 

through the range 2p — 2. The idea is due to T. Goodwillie. In fact, the proof of the 
following result was shown to us by Goodwillie during the special year in Topology 
at MSRI , Berkeley in 1989. It was instrumental for arriving at the correct conjecture 
about the structure of T C ( Z p , p ) 

Theorem 9.10. (Goodwillie). The fiber TC (Zp ,* ,p) of the linearization map 
T C (*,p)$ -> T C (Z„ ,p)J is (2p - 3)-connected and 7r2p_2TC (Zp, *,p) = I/p. 

Proof. Let SG be the component of Q(S°) consisting of maps of degree 1. Consider 
the diagram of connected spectra 

(*) 

Q(SG+)£ Q(e) A E 

fd d 

(EG+,T) d HZP, d = degree 

In (*),e : SG+ -> S° collapses SG to a point and 0+ : Q(SG+) QS° is 
essentially the action map of SG considered as an infinite loop space: 

Q(SG+) = Q(SG) x QS° 
9-x.id SG x QSU mult QS° 

After p-completion (*) becomes approximately homotopy Cartesian in the sense that 
the map from Q(5G+) to the homotopy pull-back holim (QS° A H~l QS°)£ 
is (4p — 6)-connected. 
We can of course reinterpret (*) as a diagram of functors with smash products with 
the off-diagonal corners corresponding to the identity and, the left hand upper corner 
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corresponding to the functor X h-* X A SG+ and the lower right-hand corner to 
X i—y ZX. Thus we get a diagram 

TC (BSG,p)£ TC(*,P)£ 

TC(0+) 

TC(*,p)J t c ( Z P , P ) ; 

This diagram is also (4p — 6)-Cartesian. This uses that TC( —,p) is a 7-analytic 
functor in the sense of Goodwillie [16]. We conclude that 

7r;TC(Zp,*,p) ~ 7rm(TC(0+,p)) 

for i < 2p — 2. We can now use the calculation of TC(X,p)£ from [11], sect.5, i.e. 
the homotopy Cartesian diagram 

TC(BSG,p)$ Z^CE+iES1 xsi ABSG))£ 

trf 

X°°(ABSG+)£ I - A „ X°°(ABSG+)£ 
where A indicates the free loop space. Also, since BSG is simply connected 
Proposition 3.9 of [10] shows that 

X°°(ABSG+) 1-Ap Y>°°(ABSG+) 

ev ev 

X°°(BSG+) o £ ° ° ( 5 S G + ) 
is homotopy Cartesian where ev : ABSG —> BSG is the map which evaluates a 
free loop in 1 € S1. Thus 

TC(BSG,p)£ ~ S0O(JB5G+)Px/iF(E0O(S+(JE;51x5iAJB5G)) - » E°°(JB5G+))^ 
This can be compared with (9.2) which we restate as 

t c (* ,p )£~ (EG+,T) x hofib ^(E+SS1) * > ( s ° ) ) J 

It follows that the homotopy fiber of TC(0+,p) is the product of T,°°(BSG) and 
the homotopy fiber X of 

hofib (E°°(E+(JBS1x5iASS,G)) E°°(S5G+)) -> /iF(E00(E+SS1) E ° ° ( s 0 ) ) 
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We claim that this homotopy fiber is (2p — 2)-connected. Let F i and F 2 be the 
homotopy fibers of the two stable maps 

E°° X+iES1 xci ABSG 
A 

P 
f E+BS1 

A 

P 
(EG+,T) fd (EG+,T) 

A 

V 

induced from the projection map of the Borel construction and from the map which 
collapses BSG to one point. Then F i and F 2 are (2p — 3)-connected and 

7l"2p-2F i = Fp , 7T2P-2(P2) = Fp , 7T2p-l(F 2) = 0 

Since X is the homotopy fiber of the map from F i to F 2 induced from the S1 -transfer, 
we just have to prove that 7 T 2 P - 2 ( F i ) —• ^2p-2(p2) is non-trivial or equivalently that 
the composition 

T : S°°(EAfi5G) i E ^ E ^ S 1 x5i ABSG) trf Z+(ABSG) -> E°°AS5G 

maps non-trivially on homotopy in degree 2p—2. Here i is induced from the inclusion 
of the fiber ABSG -• ES1 x 5i ABSG. We first remark that the map 

E : T,(ABSGp) —• BSGÙ , E(t,X) = X(t) 

induces an isomorphism on 7T2p-2(—)• Hence we must show that 

e v o T : E ^ E A B S G ) - » E°°(BSG) 

is homotopic to T,°°(E). Consider the pull-back diagram of 51-fibrations 

(**) 

S1 x ABSG i ES1 x ABSG 

S1 xgi ABSG i ES1 x ei ABSG 

There is an induced homotopy commutative diagram relating the S1 -transfers 

E ^ r s 1 x ABSG) i ^(ES1 x ABSG) 

trfn trf 

E00E+(5'1 x5i ABSG) i E^E+^ES1 x5i ABSG) 

so it suffices to study the transfer on the left. The circle ò acts diagonally on 
S1 x ABSG. This action is homeomorphic to the action completely concentrated on 
the first factor via the homeomorphism 

f : S1 x ABSG -> S1 x ABSG, f{z, A) = zX) 

126 



TOPOLOGICAL CYCLIC HOMOLOGY OF THE INTEGERS 

The bundle S1 x ABSG —> S1 x si ABSG is therefore homeomorphic to the product 
bundle of S1 —• * with ABSG with trivial S1-action. The S1-transfer for S1 —• * is 
just the Thorn collapse map associated with the embedding S1 C C and gives upon 
stabilization the transfer 

trf i : X°°(Sl)£ E°°(5i)P = E00^1)^ V E°°(S°)£ 

which is the identity on the first factor and trivial on the second (as p is odd). From 
the commutative diagram 

E°°(S'1 A ABSG+) trf i A i d E^°(S1 x ABSG) 

(EG+,T) hg 

E°°(51 A ABSG+) trf0 E5°(51 x ABSG) 
it then follows that /?ri o trfo is precisely 

E ° ° / : E°°(S1 A ABSG+) -> E°°(ABSG+) 

Thus 

E°°(S1 A &BSG+) E°°(51 A ABSG+) T E°°(ABSG+) -> E°°(SSG,+) 

is homotopic to the map induced from evaluation / : S1 A QBSG+ —» BSG and 
this, as was already pointed out, induces isomorphism on 7T2P-2( — ) • • 

Let us also notice that since the spectra S° A X and HI. A X are rationally equivalent 
we have: 

Lemma 9.11. The spectrum TC (Zp, *,p) is rationally trivial. • 

We next examine 7r^TC(*,p)£ for i < 2p — 1. The usual map (S°)£ —> -H"Zp is 
(2p — 2)-connected, so induces a(2p — 2) + c connected map 

E°°(X)£ -> HZPAX 

when X is a c-connected spectrum. It follows that 

7rf(E00(ESS1)P) = H^BS1^) 

for i < 2p - 1. The 5x-transfer 

7r,(E00(E+J3S1)P)^7r,(50)^ 
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is surjective for i = 2p — 3, e.g. by the Kahn-Priddy theorem, so (9.2) implies that 

(9.11) TTiTC (*,/>)£ = 

Hi-1(BS1;Zp) ,i<2p-3 
Z/p 0 pZp, ,i = 2p-3 
Z/p ,i = 2p-2 
Zp ,i = 2p-l 

We can then use (9.10) to get the low dimensional homotopy groups of TC(Zp,p)^, 
namely: 

Lemma 9.13. The linearization 

J:TC(*,p)P - T C ( Z p , p ) £ 

induces an isomorphism on homotopy groups in dimensions less than 2p—l. In 
dimension 2p — 1 both homotopy groups are Zp and 7T2P-i(l) is multiplication by p. 

Proof. The spectrum TC (Zp, * , p ) is (2p — 3)-connected, has 7T2P-2TC (Zp, * , p ) = 

Z/p, and 7T*TC (Zp, * , p ) is torsion. Thus we have left to show that in the homotopy 
exact sequence 

... —> 7T2j9-2TC(Zp,*,p) iu 
7 T 2 p - 2 ( * , p ) p 

j* 'K2p-2rTC(Zp,p)p —• ... 

z* is the zero homomorphism. Since 7T2p-3TC (Zp, * , p ) = 0, j * is surjec
tive. By (9.11), 7T2p-2TC ( * , p ) ^ = Z / p so the triviality of i* is equivalent to 
7T2p-2TC (Zp,p)p ^ 0. Consider the Bockstein sequence 

7T2J9-2TC (Zp,p) p 
7T2p-2(TC(Zp ,p);Fp) /3 7T2p-3TC (Zp,p) 

Since 7T2p-3TC(Zp,p)p = 7T2P-3TC(*,p)p has torsion subgroup Z / p and since 
7T2j9-2(TC ( Z p , p ) ; Fp) = Z / p 0 Z / p the image of 7T2p-2TC (Zp ,p) under p is non-
trivial. • 

Corollary 9.14. The mapping 

Zoi : (Im J x Zp) x 5 ( ImJ x Zp) -* TC (Zp,p)J 

induced from linearization is injective on both mod p and on integral homotopy groups. 

128 



TOPOLOGICAL CYCLIC HOMOLOGY OF THE INTEGERS 

Proof. We conclude from (9.13) that 

0i((Joi).(t>i)) # 0 ,0 i (v i (Jo i ) . (n) ) / 0 

and then by (9.9) that 

Pk (EG+,T) L 
(EG+,T) b 

9* 
L l o i ) . ( n ) ) # 0 . 

This is precisely the higher Bockstein structure in the domain. Thus (¿01)* *s injective 
on both mod p and integral homotopy groups. • 

Let TC(Zp,p) be the cofiber (in the category of spectra) of 

/01 : Im J x Zp x B(ImJ x Zp) -> TC(Zp,p)£ 

The combination of (7.15) and (9.14) implies that 

7r,-(TC(Zp,p);Fp) = 
0 for i = 0(mod 2) 
Fp for z = l(mod 2), z > 1 

By (9.11) the rational types of TC(Zp,p) and E ^ E f l S 1 ) agree, 

TC(Zp,p)(0) ~ (E6u)(0). 

Hence 

7rf-(TC(Zp,p)£) -
0 for z* = 0(mod 2) 
Zp for z = l(mod 2),z > 1 

We know from (8.12) that 7r*(TC(Zp,p); Fp) is -periodic. Thus TC(Zp,p)£ is a 
spectrum with the same integral homotopy groups as E6itp and as it is ^i-periodic, 

TC(Zp,p)£ ~ L/cFp(TC(Zp,p)^)[0,oo) 

From [33] we conclude that 

(9.15) TC(Zp,p);~(E&u)£ 

Hence we have a cofibration of spectra 

(9.16) (ImJ x Zp) x B(ImJ x Zp) ¿01 TC(Zp,p); - (E6u)J 

Theorem 9.17. For odd primes p 

TC(Zp,p)£ ~ (E6n)J x (ImJ x Zp) x B(ImJ x Zp) 
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Proof. We must show that (9.16) is a split cofibration or equivalently that the induces 
stable map 

cr : bup —• (Im J x Zp) x B(ImJ x Zp) 

is homotopically trivial. In [1], 6.4.8 Adams proves that the mapping 

[bu,K£] -+ Hom (7r . (6u) ,7r . ( « J ) ) 

is injective. Since 

r - 1 : Kf - K£ 

induces a non-trivial map on all homotopy groups, namely multiplication with gn — 1 
in dimension 2n, no non-trivial stable map from bup to Kp lifts to Jp. Thus 
[bu, Jp] = 0. Standard connectivity arguments show that 

[bu, j£] -> [bu, Im J x Zp] 

is an isomorphism. In contrast the cofibration 

fdb t/>s-l 6uJ S(Im J) 

shows that [bu, B(lm J x Zp)] £ 0. However every non-trivial stable map 

f:bu} 5(ImJ x Zp) 

induces a non-trivial map on some homotopy group, cf. [26], [33]. Since (9.14) 
tells us that the possible 

a : bu^ —> (Im J x Zp) x B(ImJ x Zp) 

is trivial on homotopy groups we conclude that a is homotopically trivial. • 

§ 10 Appendix: The relative trace 
In this appendix we examine the relative topological Dennis trace, and derive as a 
consequence that 

Tr : K(Z) -> T(Z) 

is a surjection on homotopy groups in dimension 2p — 1. This was used in Lemma 6.5 
above. We shall consider if-theory and topological Hochschild homology of general 
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FSP's; the reader is referred to sect. 1, [11], sect. 5 and [22], sect. 1 for background 
material. We only consider FSP's with F(SL) (i — l)-connected. 
An FSP F gives rise to a connected ring spectrum FS, namely the spectrum associated 
with the prespectrum F(SL); the O'th space of FS is denoted M \ ( F ) . The components 
7roMi(F) = TTO(FS) is a ring, and GL\(F) is the union of components which are 
units in 7roMi(F). Given F and an integer k > 1 we have the associated FSP F^ 
with F(k)(X) = Map([k], [k] A F(X)) where [k] = { 0 , 1 , k } with 0 as base point, 
and where Map( , ) denotes based maps. We write MK(F) = Mi(F^) and note that 
-KoMk(F) is the ring of k x k matrices over 7roFs. 

Let I : F\ —•> F2 be an r-connected morphism of FSP's with r > 0, so that 

Z* : 7r$i* i5 
1 gfz s 

2 

is an isomorphism for i < r — 1 and an epimorphism for i = r. In particular 
Tro-Ff = TroPf. Define F0(X) to be the homotopy fiber of Z : Fi(X) -> F2(X), 

F0(X) = {(xuX2) e F±(X) x F2(X)T | l(Xl) = A2(l), A2(0) = * } . 

There are obvious maps 

Fi(X) A F0(Y) -> F0(X A Y) 
F0(X) A F i ( y ) -+ F0(X A y ) 

which makes Fo into a "2-sided Fi-module". The set of all functions from [k] to 
[1] is denoted V[k]. It has a partial ordering where s < t if < for all i. Let 
1 be the constant function with value 1 and let V\[k] = V[k] — {1} . For s G V[n] 
and spaces XQ,...,XK we define 

Fs{X$, • " • 5 -^fc) = ^s (0)№>) A • • • A F ^ p f f c ) 

Let / be the category of finite sets and injective maps, i.e. ob(JT) = N , m) = E m 
as in [11], p. 476. Set 

(10.1) Gk(s;Y) = holiSiMap(5,no A ... A SUk, Fs(Sn°,Snk) A Y) 

where the homotopy limit runs over (no, £ J*-1-1. For s < t, the map from 
Fo to F\ induces a map Gk{s',y) —• Gk{t',Y) , and we set 

Gk(Y) = hoIigiGfcC^y) , s e 7>i[fc]. 
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We see that Gk(l;Y) = THH^(Fi; Y) and that each Gk(s;Y), and hence also 
GK(Y)9 maps to GK(\\Y) by using the map from FQ(X) to Fi(X). The spaces 
GK(Y)9 k = 0,1,... form a simplicial (in fact cyclic) space. We specify the face 
operators and leave for the reader to define the degeneracy (and cyclic) operators. 
Let 

di : Vi[k] -* V\[k - 1], 0 <i <k 

be the function 

di{s){v) = 
s(v), 0 < v < i 
s(i)s(i + 1), v = i 
s(is + 1), i < v < k + 1, 

(EG+,T) a(fc)s(0), v = 0 
0 < i/ < fe - 1. 

Since i*b is a 2-sided Fi-module there are maps 

di : F5(Xo, . . . ,Xfc)Fd . (5) (Xo, A ...,Xjfc), i<k 
dk : FS(X0, ...jXk) —> Fdk(s)(Xk A X0, . . . ,Xfc_i) 

which induce operators 

4 : G f c ( s ; y ) ^ G f c _ i ( * * ; Y ) 

quite similar to the face operators from THHk(Fi;Y) to THHfc_i(Fi; Y). If 5 < t 
then the diagram 

Gk{s;Y) di Gk-^diS-Y) 

Gk{t-Y) di Gk_x(dit;Y) 

is commutative, so one gets the required face operator 

di : Gk(Y) -> Gk-i(Y). 

The topological relation of the cyclic space GM(Y) will be denoted 

T H H ( F ! - > F 2 ; y ) = \G.(Y)\. 

We showed in sect. 1 (see also [22]) how THH(F; Y) leads to an equivalent S1-
spectrum T(F), and quite similarly we obtain an equivariant S^-spectrum T{F\ —» 
JF2) with an S -̂map to a T{F1). 
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Proposition 10.2 There is an S -equivariant cofibration 

T(F1 -> F2) —> T ( F i ) —- T(F2). 

Proof Let F i (X) /F0 (X) denote the cofiber of F0(X) -+ Fx(X). For (N - 1 ) -
connected X , the induced map from Fi(X)/Fq(X) to F2(X) is (2iV +reconnected 
with r being the connectivity of I : F±(X) —• F2(X). 
In general, for a based map / : Zq —* Zi with cofiber Z2, we have a homeomorphism 

conb holim 
(EG+,T) 

zs > z^ (EG+,T) = 2 A(fc+1) 
2 

where Z5 = ^5(o) A ... A Zs^ky Indeed this is easy to check for k = 1 and follows 
in general by induction, based on the fact that homotopy colimits can be described 
iteratively. In particular for Zq = F Q ( X ) , Z\ — F\(X) we get a cofibration 

holim 
s EPn [k] 

FS(SN,...,SN)AY^F1(SN N)AY^F1(SN 
A(fc+1) 

AY —> Fi/Fq[SN] 
A(fc+1) 

A Y". 

In a stable range we may replace Fi/Fo(SN) with F2(SN) in the above. The 
homotopy colimit over Ik+1 in (10.1) was shown in [8] to be well-behaved in the 
sense that a finite stage approximates the limit. In particular 

holim 
(EG+,T) 

n(k+l)N FS[S , S ) AY 

approximates GK(Y) for N —> oo, so we have a cofibration 

Gk(Sm) -> THH*(Fi; Sw) - T H H ^ i ^ ; 5m) 

This proves the non-equivalent part of the proposition, which is all which we shall 
need in the following. We leave for the reader to show, using the subdivision functor, 
and arguments as in sect. 1 and [22] , sect. 1 that 

T(Fi -> F2f -+ T{FX)C -> T(F2f 

is a cofibration for all C Ç S1 • 
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We next consider the simplicial subspace 

THHfc(Fi,F0;Y) = holim 
ik+i 

Map(Sn° A ... A Snk; F0(Sn°) A Fi(Sni) A ... A Fi(Sn*)) 

of Gk(Y). Using the cyclic structure on Gk{Y) the inclusion extends to a map 

(10.3) Ck+1+ A THH*(Fi; F0; Y) -> Gk(Y) 

which becomes a map of cyclic spaces when we give the left hand side the simplicial 
operators 

di(Tk,x) = 
\Tk-\i di+sx), i + s < k 
(^lZ\,di+s-kx\ , i + s > k 

di(Tk,x) = \Tk+vsi+sx)i i + s < k 

(Th£b3i+sx\ i + s > k 

di(Tk,x) = di(Tk,x) gf 

Here rk is the (chosen) generator of Ck+\ and 0 < s < k, cf. [20], sect. 3. The 
topological realization of (10.3) is an S -̂map 

S | A THH(Fi, F0; Y) — THH(Fi -> F2; Y) 

by Lemma 3.2. In particular we get a map of S^-spectra 

(10.4) Si A T(F i , F2) - T(F1 — F2) 

Lemma 10.5 
If I : F\ —> F2 w r-connected then 

Si AT(F i ;F0) ^T(F1F2) 

is IT-connected. 

Proof With our assumptions we have 7TiFo(SN) = 0 for z < N + r9 so that 
7TiGk(S;SN) = 0 for z < N + 2r and all 5 G Pi[fc], except the ones with the 
property that s-1(0) contains precisely one element. There are (k + 1) such, and the 
associated Gk(s; SN) is of the form ( r | ) + A THH^(Fi, F0; SN). It follows that 

Ck+U ATUHk(FuFo;SN) —• Gk[SN) 

is (TV + 2r)-connected, and hence the same is the case for the map from Si A 
THH(Fi, F0; SN) to THH(Fi -> F2; S ^ ) . • 
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For any simplicial space Z9, the skeleton filtration of \Z.\ gives a spectral sequence 
with 

di(Tk,x) = di(Tk,x) di(Tk,x) = 

and abutment Hi+j(\Z»)\). If the individual spaces are all r-connected then in 
total degree r only E%0 ^ 0, and Efj = 0 for i + j < r, so 

Hr(\Z.\)=E%=E*0 = Hr{Zv)ld{Hr{Zx)). 

In the case of Z . = THH.(Fi , F0) we get that T(Fi,F0) is (r - l)-connected; and 
using the Hurewicz theorem, 

(10.7) 7rrT(F1, F0) = TTrFS/[n0Fi, wrF§] 

We next discuss relative .fiT-theory K{F\ —• F2). There is a diagram of homotopy 
fibrations 

(10.8) 
BGL(Fi -.• F2) BGL(Fi) BGL(F2) 

K{FX F2) K(F1) K(F2) 

By definition the two vertical maps to the right are homology isomorphisms. Here 
GL(Fi) is the limit of GLk(Fi) for k —> oo. The homotopy fiber GLk{F\ —• F2) is 
homotopy equivalent to Mk(Fo)9 by the map which adds (in the loop sum) the identity 
matrix to an element of Mk(Fo) = lim Map([fc] A 5m, [k] A F 0 ( S M ) ) . In particular 

T T ^ X B G L ^ F X - > F2) = Mk(7rrFS) 

The next result is a slight variation of [34], proposition 1.2. 

Proposition 10.9 If I : Fi —> F2 is r-connected with r > 0, then 

7rr+1K(Fl - F2) = 7rrFS/[n0Fl,7vrFS]. 

Proof For the convenience of the reader we repeat Waldhausen's argument. He 
studies the Hochschild-Serre spectral sequence of the upper homotopy fibration in 
(10.8) which has F2-term 

Elq = JHp(BGL(F2);^gBGL(F1 - F2)) 

= ^ (BGL^/^-xCMCFo)) ) , q < 2r 
= lim iïp(BGLfc(F2);Jffg_i(Mjfc(Fo))) 

k 
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Here Hp(;) denotes homology with twisted coefficients. We note that 
Hg-tiMkiFo)) = Mfc(iJg_i(F0s)) for g < 2r, and that 

7riBGLA(F2) = ic0GLk{F2) = GLk(x0Fi) = GLk(iv0F{) 

acts by conjugation. 
Clearly Ep+q = 0 for p + q < r + 1, and in total degree r + 1 only 2zy+1 0 an<* 

fd r+1 can be non-zero. We get 

Elr+1 = lim Ho{GLk(iroFi);Mk{*rF§)) 

= Km Mk{irrFQ)/[GLk(-KQF{),Mk{-KrFQ)\ 
k 

For any ring R and bimodule P the trace induces an isomorphism 

Mk(P)/[GLk(R), Mk (P)] - P / [R ,P] 

cf. [41], so 

Eo,r+i= TrFQ/[iroF* ,7rrFo] 

Let be the spectral sequence of the bottom fibration (10.8). Since this is a 
fibration of infinite loop spaces the coefficients are this time untwisted. The spectral 
sequences agree on the base line and on the E°°-terms since K(F) is homology 
equivalent to BGL(F). Hence in the diagram 

0 ^r+2,0 rp2 dr+2 
E0,r+1 ZPOO 0 

0 z?oo ^r+2,0 ^r+2,0 
fd+f 

fp2 
^0,r+l 

^0,r+l 0 

the outer vertical maps are isomorphisms, and so is the map from £y+2 o to ^V+2 o* 
Hence 

Ttr+iK(Fi F2) = Hr+\K(F\ —» F2) = EQr+2 = ^ o , r + i 

• 

Let i7! K F2 be the 'semi-direct' FSP induced from the two-sided Fi -module structure 
on F0, i.e. Fi k F0(X) = F i ( X ) V F0(X), cf. [20], Definition 1.5. It has 
GLk{F\ K F2) = GLk(Fi) x MA.(F0), and from [20], Proposition 2.1 we have the 
decomposition of S1 -spectra 

(10.10) T(Fi x F0) = 
CX) 

a=0 
T«(Fi x F0) 
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with To(Fi K F0) = T ( F i ) and Ti(Fi tx F0) = SjJ. A T(Fi ; F0). Roughly speaking 
Ta(F\ x FQ) is the part of T ( F L K FQ) with a factors FQ. There is a diagram 

*T(Fi K F0 -> Fi ) K(Fi K F0) A-(Fi) 

K(F! - F2) X ( F i ) if(F2) 

and a similar diagram for T (—) . It follows from the proofs of Lemma 10.5 and 
Proposition 10.9 that we have 

Corollary 10.11 The maps 

f : K{FX K F0 -> Fx) - -+ F2) 
/ : T(Fi tx F0 ^ Fx) - T(Fi - , F2) 

are 2r -connected when I : F\ —• F2 is r-connected. • 

Lemma 10.5 shows that 

7rr+1X(Fi — F2) = 7 r r + i ( 5 | A T ( F i , F 0 ) ) = 7rr+iET(Fi, F0) 0 7rr+iT(Fi,F0) 

since £}_ A T(Fi ,F0) = ET(Fi,F0) V T(Fi ,F0) . Writing Kr{-) and T r ( - ) for 
7rrK( —) and 7rrT( —) as usual, here is the main result of the appendix: 

Theorem 10.12 For an r-connected map I : F± —> F2 with r > 0, 

JTr+i(Fi - F2) ^? Tr+i(Fi - F2) p™j Tr(Fi, F0) 

w an isomorphism. 

Proof It suffices to consider the relative situation Fi x FQ —• Fo. We can further 
pass to the setting of simplicial or, as we prefer, topological rings. Let Ri = 7TQF£ 
and Ro = 7rrFQ, and let Ro(r) be the topological bimodule with 7rrRo(r) = Ro 
and 7TiRo(r) = 0 for i ^ r. We can for example take Ro(r) to be the topological 
realization of Ro[Sl]/Ro[*.] where SI is the simplicial r-sphere. Since Ro(r) is an 
Ri -bimodule we can form the semidirect product ring R\ x Ro{r) = R\ © i?o(r). 
In this linear situation there is an isomorphism 

GLk(Ri x R0(r)) = GLk(Ri) x Mk(Ro(r)), 

where the right hand side is the semi-direct product of groups. The proof of 
Proposition 10.9 shows that 

ifr+1(Fi X F0 — FQ) = Kr+^R! x iZ6(r) — R1). 
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The 'linear version' of T(Fi x Fo) is the cyclic complex N^(Ri tx Ro(r)) with 
n-cimplices 

NgiR! K Ro(r))n = ( i l i ix i*o(r))®(n+1>. 

This decomposes into a sum of cyclic sets, similar to the decomposition of 
T(F1 ix F0) in (10.10), and we have 

Here S+AN^(Ri, Ro(r)) is the realization of the cimplicial object with n-simplices 
Cn+i x Ro(r) <g> Rfn. It injects into the n-simplices of N^r(R1,R0(r)) by the map 

(10.13) ( T ^ , ao <g) a\ ® ... (g) an) »—• a5 <8> ... <8> an (g) ao <8> ai <8> ... ® « s - i 

The subset of simplices with 5 = 0 form a sub complex, and we use the quotient 
simplicial set as a model for S1 A N^(Ri,Ro(r)) and similarly for suspensions of 
the other simplicial objects. 
The simplicial map / • which in degree n is the map 

Cn+i A Mk(Ro(r)) - (GLfc(f l i ) K Mfc(i?o(r))r 

given by 

di(Tk,x) 1 (n-s) 
Ik + ¿ 0 , 1 

(s-1) 
k 

where 1̂  G GLK{R\) the identity matrix, gives a map of realizations 

S1 A Mfc(i?o(r)) - » |JV.(GLfc(i2i) k Mfc(/2o(r)) - <3£*(i2i))| 

which can be composed with the map into K(R\ tx RQ —• i?o). The composed map 
becomes the surjection on 7i>+1 given by the canonical projection 

Mk{Ro) -+ MtiRoyiGLkiR^MkiRo)]. 

This follows from the proof of Proposition 10.9. 
The Dennis trace is induced from the following map of simplicial objects: 

N.(GLk{R\ x Ro(r))) h N.y(GLk(Ri x R0(r))) ^ N^(Mk(Ri x flb(r))). 

with 

In(Au...,An) = ((TlAi)-1,A1,...An) 

Sn(A0, • •, An) = j40 <8> • • • ® An. 
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We are only interested in the composition with the projection 

di(Tk,x) = di(Tk,x) = di(Tk,x) fd S1 ANgiM^R^MkiRo)) 

cf. (10.10). 
In simplicial degree n, the composition / . - 5 . - / . maps (r*, AQ) G Cn+i AMfc(i?o(r)) 
into 

(1 - ¿ 0 ) ® 1 di(Tk ® (1 + A0) ® 1 <8>(s-l) 

This expression decomposes into a sum of 4 terms and only the term 
1 <8>(n—s+l; ® An ® 1 Q n̂—i; 

k has a non-zero projection into the relevant component 
Cn+i A (Mjç(Ri), Mh(Ro(r)))n, where it becomes ® A0 ® ljj. ; according 
to (10.13). This shows that proj o S o I o / is the topological realization of 
id A h : Cn+1 A Mk{Ro{r)) -> Cn+± A Ng(Mk(Ri),Mk(Ro(r)))n where h is 
the map from the constant simplicial object into N^(Mk(Ri), Mk(Ro(r)))9 which 
is the identity in simplicial degree 0. 
In conclusion, the Dennis trace maps 7rr-j_i(5'1 A Mk(Ro(r))) surjectively onto 
7rr-i-i(S'1 A T(F i ,Fo) ) . Indeed it is the canonical surjection 

Mk(Ro) - MJfc(i2o)/[MA;(i2i),Aiifc(jR0)] = Ro/[RlfRo]. 

The theorem now follows from (10.7) and Proposition 10.9 • 

We specialize in Theorem 10.12 to the case where F\ = I is the identity FSP and 
i*2 = Z is the FSP associated to the integers Z as in sect. 5 above. Then K(F\) — 
A ( * ) and K{F2) — K(Z). Let G be the monoid self homotopy equivalences of Sn 
for n —> oo and SG the component of maps of degree 1. There is a commutative 
diagram 

BG Bl* 

A ( * ) K(Z) 

where the vertical maps correspond to the inclusions of GL(Fi) into K(F{)9 and 
hence a map 

BSG ^ K (I -> Z) S T(I -> Z ) . 

We are only interested in p-local homotopy groups and can replace J and Z by their 
p-local counterparts. Then I —> Z becomes 2p — 3 connected, and the previous 
theorem applies in dimension 2p — 2. 
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In the special case at hand, 

K 2 P - 2 Ì S 1 AT(Fi ,Fo) ;Z(p)) = 7r2p_3F0s = Z/p 

and the composition 

7T2p-i (T(Z) ;Z(p) fd 7T2P-2(T(Fi ^F2);Z(p) 
proj 

7 T 2 p - 2 ( ^ AT(Fi,F0);Z(p) 

is an isomorphism. If p is odd then proj is an isomorphism. In [40], Corollary 3.7, 
Waldhausen proves 

(a) w2p-2 : 7r2p-2(BSG;Z(p)) —> 7r2p-2 ( ^ ( J - * Z);Z(/?)) is siirjective 

(b) 9* : K2P-i(Z) —> 7T2P-2(K(I —• Z); Zp) maps onto Im w2p-2-

The first statement is easy, and follows readily from the proof of Proposition 10.9. 
The second is not: it is a consequence of one of Waldhausen's main theorems: the 
composition 

BSO BSG -> ^ ( * ) Whdm(*) 

is null-homotopic; the proof requires the manifold approach to ^4(*), the vanishing 
of / / ( * ) and the well-known surjection 7T2p-2BSO —• 7T2p-2BSG. 

The above discussion implies the following unpublished result of the first named 
author 

Theorem 10.14 The trace map Tx2p-i ^2p - i (Z ) —• T2P-i(Z) is surjective. • 
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