Astérisque

Wolfgang M. Schmidt
 Number fields of given degree and bounded discriminant

Astérisque, tome 228 (1995), p. 189-195
http://www.numdam.org/item?id=AST_1995__228_189_0
© Société mathématique de France, 1995, tous droits réservés.
L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme

NUMBER FIELDS OF GIVEN DEGREE AND BOUNDED DISCRIMINANT

Wolfgang M. Schmidt ${ }^{\dagger}$

1. Introduction. Let $N(d ; X)$ be the number of algebraic number fields of degree d and discriminant Δ with $|\Delta| \leqq X$. It has been conjectured (but I don't know to whom to attribute this conjecture) that for each fixed $d>1$ we have $N(d ; X) \sim c_{d} X$ as $X \rightarrow \infty$, with a constant $c_{d}>0$. This is easy to see when $d=2$, and has been established for $d=3$ by Davenport and Heilbronn [3]. For $d=4$ Bailey [1] could show that $X \ll N(4 ; X) \ll$ $X^{3 / 2}(\log X)^{4}$. The goal of the present note is an easy proof of

$$
\begin{equation*}
N(d ; X) \ll X^{(d+2) / 4} \tag{1.1}
\end{equation*}
$$

For $d=4$ this improves slightly upon Bailey. In fact, for given $d_{1}>$ $1, \ldots, d_{t}>1$ and a number field L, let $N\left(L ; d_{1}, \ldots, d_{t} ; X\right)$ be the number of chains of fields $L=K_{0} \subset K_{1} \subset \cdots \subset K_{t}=K$ with degrees $\left[K_{j}\right.$: $\left.K_{j-1}\right]=d_{j}(j=1, \ldots, t)$ and with discriminant $\Delta(K)$ of modulus $\leqq X$. We will show that

$$
\begin{equation*}
N\left(L ; d_{1}, \ldots, d_{t} ; X\right) \ll(X /|\Delta(L)|)^{(d+2) / 4}|\Delta(L)|^{-1 / 2 \ell} \tag{1.2}
\end{equation*}
$$

where $d=\max \left(d_{1}, \ldots, d_{t}\right), \ell=\operatorname{deg} L$, and where the constant in \ll depends only on d, t, ℓ. The case when $L=\mathbb{Q}, t=2, d_{1}=d_{2}=2$ is contained in Bailey's work [1]. In many cases when $d_{t}<d$, the exponent $(d+2) / 4$ could be reduced. The exponent $-1 / 2 \ell$ of $|\Delta(L)|$ could always be reduced; in fact the main purpose of the factor $|\Delta(L)|^{-1 / 2 \ell}$ will be to be able to carry out an induction on t.

Related to our topic is the important work of D. J. Wright [4] on abelian extensions. Given a finite abelian group G of order $|G|$ and with

[^0]Q the smallest prime divisor of $|G|$, set $\alpha(G)=|G|\left(1-Q^{-1}\right)$. Then the number of abelian number fields with Galois group G and discriminant of modulus $\leqq X$ is $\sim c X^{1 / \alpha}(\log X)^{\beta}$ where $c=c(G)>0, \beta=\beta(G) \geqq 0$. Therefore if the above mentioned conjecture is correct, the main contribution to the asymptotic formula would come from nonabelian extensions.
2. Geometry of Number Fields. When K is a number field of degree k and $\sigma_{1}, \ldots, \sigma_{k}$ are the embeddings of K into \mathbb{C}, write $k=r+2 s$ and suppose that $\sigma_{1}, \ldots, \sigma_{r}$ are real, and $\sigma_{r+i}, \sigma_{r+s+i}$ for $i=1, \ldots, s$ are pairs of complex conjugates. For $\alpha \in K$ set $\alpha^{(j)}=\sigma_{j}(\alpha)(j=1, \ldots, k)$. Let $\underline{\underline{\varphi}}_{K}$ be the map $K \rightarrow \mathbb{R}^{k}$ with
\[

$$
\begin{aligned}
\underline{\underline{\varphi}}_{K}(\alpha)= & \left(\alpha^{(1)}, \ldots, \alpha^{(r)}, \sqrt{2} \operatorname{Re} \alpha^{(r+1)}, \sqrt{2} \operatorname{Im} \alpha^{(r+1)}, \ldots, \sqrt{2} \operatorname{Re} \alpha^{(r+s)},\right. \\
& \left.\sqrt{2} \operatorname{Im} \alpha^{(r+s)}\right) .
\end{aligned}
$$
\]

Let \mathfrak{O}_{K} be the ring of integers in K; then $\underline{\underline{\varphi}}_{K}\left(\mathfrak{O}_{K}\right)=\Lambda_{K}$, say, is a lattice in \mathbb{R}^{k} of determinant

$$
\operatorname{Det} \Lambda_{K}=|\Delta(K)|^{1 / 2}
$$

Finally, let $\kappa_{1}, \ldots, \kappa_{k}$ be the successive minima of Λ_{K} (with respect to the Euclidean norm) in the sense of Minkowski. There are $\alpha_{1}, \ldots, \alpha_{k}$ in \mathfrak{O}_{K}, linearly independent over \mathbb{Q}, with

$$
\begin{equation*}
\left|\underline{\underline{\varphi}}_{K}\left(\alpha_{j}\right)\right|=\kappa_{j} \quad(j=1, \ldots, k) \tag{2.1}
\end{equation*}
$$

where $|\cdot|$ denotes the Euclidean norm. As is well known,

$$
\begin{equation*}
\kappa_{1} \cdots \kappa_{k} \gg \ll \operatorname{Det} \Lambda_{K}=|\Delta(K)|^{1 / 2} \tag{2.2}
\end{equation*}
$$

where the implied constants depend on k only. Each $\alpha \in \mathbb{Q}$ has

$$
\begin{equation*}
\left|\underline{\underline{\varphi}}_{K}(\alpha)\right|=\sqrt{k}|\alpha|, \tag{2.3}
\end{equation*}
$$

in particular $\left|\underline{\underline{\varphi}}_{K}(1)\right|=\sqrt{k}$, so that $\kappa_{1} \leqq \sqrt{k}$. On the other hand, $\alpha \neq 0$ in \mathfrak{O}_{K} has
$\left|\alpha^{(1)} \cdots \alpha^{(r)} \| \alpha^{(r+1)} \cdots \alpha^{(r+s)}\right|^{2} \geqq 1$, so that by the arithmetic-geometric inequality

$$
\left|\alpha^{(1)}\right|^{2}+\cdots+\left|\alpha^{(r)}\right|^{2}+2\left|\alpha^{(r+1)}\right|^{2}+\cdots+2\left|\alpha^{(r+s)}\right|^{2} \geqq k,
$$

i.e., $\left|\underline{\underline{\varphi}}_{K}(\alpha)\right|^{2} \geqq k$. We may conclude that

$$
\begin{equation*}
\kappa_{1}=\sqrt{k} . \tag{2.4}
\end{equation*}
$$

Let L be a subfield of K of degree ℓ. Denote the conjugates of $\alpha \in L$ by $\alpha^{[1]}, \ldots, \alpha^{[\ell]}$. (We can't write them as $\alpha^{(1)}, \ldots, \alpha^{(\ell)}$ since the maps $\sigma_{1}, \ldots, \sigma_{\ell}$ (among the maps $\sigma_{1}, \ldots, \sigma_{k}$ given above) do not necessarily give the distinct embeddings of L into \mathbb{C}.) We define $\underline{\underline{\varphi}}_{L}, \Lambda_{L}$ and successive minima $\lambda_{1}, \ldots, \lambda_{\ell}$ in the obvious way. It is easily seen that $\alpha \in L$ has $\left|\underline{\underline{\varphi}}_{K}(\alpha)\right|=\sqrt{d}\left|\underline{\underline{\varphi}}_{L}(\alpha)\right|$ where $d=[K: L]$; this generalizes (2.3). The image $\Lambda_{L}^{\prime}=\underline{\underline{\varphi}}_{K}\left(\mathfrak{O}_{L}\right)$ is therefore isometric to $\sqrt{d} \Lambda_{L}$, and the minima $\lambda_{1}^{\prime}, \ldots, \lambda_{\ell}^{\prime}$ of Λ_{L}^{\prime} have

$$
\begin{equation*}
\lambda_{j}^{\prime}=\sqrt{d} \lambda_{j} \quad(j=1, \ldots, \ell) . \tag{2.5}
\end{equation*}
$$

LEMMA 1.

$$
\lambda_{\ell-j} \ll \kappa_{k-j} \quad(0 \leqq j<\ell) .
$$

Proof. Let Tr denote the trace from K to L. It is a \mathbb{Q}-linear map whose image is L, so that its kernel (as a \mathbb{Q}-vector space) has dimension $\operatorname{deg} K-$ $\operatorname{deg} L=k-\ell$. Let $\alpha_{1}, \ldots, \alpha_{k}$ be as in (2.1). Among $\beta_{q}=\operatorname{Tr} \alpha_{q}$ with $q=1, \ldots, k-j$, there must therefore be at least $k-j-(k-\ell)=\ell-j$ linearly independent ones; say for $q_{1}, \ldots, q_{\ell-j}$. Then $\beta_{q_{1}}, \ldots, \beta_{q_{\ell-j}}$ are \mathbb{Q}-linearly independent elements of \mathfrak{O}_{L} with

$$
\left|\beta_{q_{u}}^{[i]}\right| \ll \max _{t}\left|\alpha_{q_{u}}^{(t)}\right| \leqq\left|\underline{\underline{\varphi}}_{K}\left(\alpha_{q_{u}}\right)\right|=\kappa_{q_{u}} \leqq \kappa_{k-j} .
$$

Therefore $\left|\underline{\underline{\varphi}}_{L}\left(\beta_{q_{u}}\right)\right| \ll \kappa_{k-j}(u=1, \ldots, \ell-j)$, and the lemma follows.
By the argument leading to (2.4) we may set $\alpha_{1}=1$, so that $\alpha_{1} \in$ $\mathbb{Q} \subset L$.

LEMMA 2. Let m be least with $\alpha_{m+1} \notin L$. Then

$$
|\Delta(L)|^{1 / 2} \kappa_{m+1}^{k-\ell} \ll|\Delta(K)|^{1 / 2}
$$

Proof. $\alpha_{1}, \ldots, \alpha_{m}$ lie in L, and therefore $\lambda_{j}^{\prime}=\kappa_{j}$, hence by (2.5), $\lambda_{j} \leqq \kappa_{j}$ for $j=1, \ldots, m$. On the other hand, $\lambda_{m+1} \cdots \lambda_{\ell} \ll \kappa_{k-\ell+m+1} \cdots \kappa_{k}$ by Lemma 1. Thus

$$
|\Delta(L)|^{1 / 2}=\operatorname{Det} \Lambda_{L} \ll \lambda_{1} \cdots \lambda_{\ell} \ll\left(\kappa_{1} \cdots \kappa_{m}\right)\left(\kappa_{k-\ell+m+1} \cdots \kappa_{k}\right) .
$$

There are exactly $k-\ell$ integers strictly between m and $k-\ell+m+1$, so that

$$
|\Delta(L)|^{1 / 2} \kappa_{m+1}^{k-\ell} \ll \kappa_{1} \cdots \kappa_{k} \ll|\Delta(K)|^{1 / 2} .
$$

3. Proof of the main result. When the chain $L=K_{0} \subset \cdots \subset$ $K_{t}=K$ is refined by inserting extra fields, the quantity d can only decrease. Therefore we may restrict ourselves to saturated chains, i.e., chains where there is no field strictly between K_{j-1} and $K_{j}(j=1, \ldots, t)$. We will first deal with the case $t=1$. Thus we consider fields $K \supset L$ with $[K: L]=d$ and no field strictly between L and K.

The lattice Λ_{L} has a basis $\underline{\underline{b}}_{1}, \ldots, \underline{\underline{b}}_{\ell}$ with $\lambda_{j} \leqq\left|\underline{\underline{b}}_{j}\right| \ll \lambda_{j}(j=1, \ldots, \ell)$ ([2, §VIII.5.2]), and such a basis has

$$
\begin{equation*}
\left|\underline{\underline{b}}_{1}\right| \cdots\left|\underline{\underline{b}}_{\ell}\right| \ll \operatorname{Det} \Lambda_{L} . \tag{3.1}
\end{equation*}
$$

Let $\underline{b}_{1}^{*}, \ldots, \underline{b_{\ell}}$ be the dual basis, so that the inner products $\underline{b}_{i} \underline{b}_{j}^{*}=\delta_{i j}$ $(1 \leqq i, j \leqq \ell)$, with $\delta_{i j}$ the Kronecker symbol. Further, with \wedge denoting the exterior product,

$$
\underline{\underline{b}}_{j}^{*}=\left(\underline{\underline{b}}_{1} \wedge \cdots \wedge \underline{\underline{b}}_{j-1} \wedge \underline{\underline{b}}_{j+1} \wedge \cdots \wedge \underline{\underline{b}}_{\ell}\right) / \operatorname{Det} \Lambda_{L}
$$

so that

$$
\begin{equation*}
\left|\underline{\underline{b}}_{j}\right|\left|\underline{\underline{b}}_{j}^{*}\right| \leqq\left|\underline{\underline{b}}_{1}\right| \cdots\left|\underline{\underline{b}}_{\ell}\right| / \operatorname{Det} \Lambda_{L} \ll 1 \tag{3.2}
\end{equation*}
$$

by (3.1). Let $\beta_{1}, \ldots, \beta_{\ell}$ be the elements in L with $\underline{\underline{\varphi}}_{L}\left(\beta_{j}\right)=\underline{\underline{b}}_{j}(j=1, \ldots, \ell)$; then $\beta_{1}, \ldots, \beta_{\ell}$ are a \mathbb{Z}-basis of \mathfrak{O}_{L}.

As in the last section, let m be least with $\alpha_{m+1} \notin L$. Set $\beta=\operatorname{Tr} \alpha_{m+1}$ and $\underline{\underline{b}}=\underline{\underline{\varphi}}_{L}(\beta)$. We may write $\beta=c_{1} \beta_{1}+\cdots+c_{\ell} \beta_{\ell}$ with $c_{j} \in \mathbb{Z}(j=$ $1, \ldots, \ell)$, and then

$$
\begin{equation*}
\underline{\underline{b}}=c_{1} \underline{\underline{b}}_{1}+\cdots+c_{\ell} \underline{\underline{b}} . \tag{3.3}
\end{equation*}
$$

Since $\left|\underline{\underline{\varphi}}_{K}\left(\alpha_{m+1}\right)\right|=\kappa_{m+1}$, each conjugate of α_{m+1} has modulus $\leqq \kappa_{m+1}$, therefore each conjugate of β is $<\kappa_{m+1}$, and $\mid \underline{\underline{b}} \ll \kappa_{m+1}$. The inner product of (3.3) with $\underline{\underline{b}}_{j}^{*}$ gives $\underline{\underline{b}}_{j}^{*}=c_{j}$, so that

$$
\begin{equation*}
\left|c_{j}\right| \ll \kappa_{m+1}\left|\underline{\underline{b}}_{j}^{*}\right| \ll \kappa_{m+1} /\left|\underline{\underline{b}}_{j}\right| \ll \kappa_{m+1} / \lambda_{j} \tag{3.4}
\end{equation*}
$$

by (3.2). Set

$$
\alpha=\alpha_{m+1}-\left[c_{1} / d\right] \beta_{1}-\cdots-\left[c_{\ell} / d\right] \beta_{\ell},
$$

where [] denotes integer parts. Then

$$
\begin{equation*}
\operatorname{Tr} \alpha=\left(c_{1}-d\left[c_{1} / d\right]\right) \beta_{1}+\cdots+\left(c_{\ell}-d\left[c_{\ell} / d\right]\right) \beta_{\ell} . \tag{3.5}
\end{equation*}
$$

We also note that

$$
\begin{equation*}
\left|\underline{\underline{\varphi}}_{K}(\alpha)\right| \ll \kappa_{m+1} \tag{3.6}
\end{equation*}
$$

since $\left|\underline{\underline{\varphi}}_{K}\left(\alpha_{m+1}\right)\right|=\kappa_{m+1}$, since $\left|\underline{\underline{\varphi}}_{K}\left(\beta_{j}\right)\right|=\sqrt{d}\left|\underline{\underline{\varphi}}_{L}\left(\beta_{j}\right)\right|=\sqrt{d}\left|\underline{\underline{b}}_{j}\right| \ll\left|\underline{\underline{b}}_{j}\right|$, and since $\left|c_{j}\right|\left|\underline{\underline{b}}_{j}\right| \ll\left(\kappa_{m+1} / \lambda_{j}\right) \lambda_{j}$ by (3.4).

Now α satisfies

$$
\alpha^{d}+\tau_{1} \alpha^{d-1}+\cdots+\tau_{d}=0,
$$

where $(-1)^{j} \tau_{j}$ is the j-th elementary symmetric polynomial in the conjugates of α over L. Here τ_{j} is in \mathfrak{D}_{L}, so that we may write

$$
\tau_{j}=c_{j 1} \beta_{1}+\cdots+c_{j \ell} \beta_{\ell} \quad(j=1, \ldots, d)
$$

with coefficients $c_{j h} \in \mathbb{Z}$. Since $\tau_{1}=-\operatorname{Tr} \alpha$, (3.5) shows that

$$
\begin{equation*}
\left|c_{1 h}\right| \leqq d \ll 1 \quad(1 \leqq h \leqq \ell) . \tag{3.7}
\end{equation*}
$$

In view of (3.6), each conjugate of α is $\ll \kappa_{m+1}$, therefore each conjugate of τ_{j} is $\ll \kappa_{m+1}^{j}$, and $\left|\underline{\underline{\varphi}}\left(\tau_{j}\right)\right| \ll \kappa_{m+1}^{j}$. But

$$
\underline{\underline{\varphi}}_{L}\left(\tau_{j}\right)=c_{j 1} \underline{\underline{b}}_{1}+\cdots+c_{j \ell} \underline{\underline{b}}_{\ell},
$$

and taking the inner product with $\underline{\underline{b}}_{h}^{*}$ we get

$$
\begin{equation*}
\left|c_{j h}\right| \leqq\left|\underline{\underline{\varphi}}_{L}\left(\tau_{j}\right)\right|\left|\underline{\underline{b}}_{h}^{*}\right| \ll \kappa_{m+1}^{j} / \lambda_{h} \quad(2 \leqq j \leqq d, 1 \leqq h \leqq \ell) \tag{3.8}
\end{equation*}
$$

The number of possibilities for each $c_{1 h}$ is $\ll 1$ by (3.7), and the number of possibilities for $c_{j h}$ with $2 \leqq j \leqq d$ is $\ll \kappa_{m+1}^{j}$, where we have not used the extra factor $1 / \lambda_{h}$ in (3.8). The total number of possibilities for the coefficients $c_{j h}$ is

$$
\ll \kappa_{m+1}^{(2+3+\cdots+d) \ell}=\kappa_{m+1}^{\ell(d-1)(d+2) / 2}
$$

and by Lemma 2 this is

$$
\begin{equation*}
\ll(X /|\Delta(L)|)^{(d+2) / 4} \tag{3.9}
\end{equation*}
$$

since $k-\ell=\ell(d-1)$ and since we consider fields K with $|\Delta(K)| \leqq X$. The number of possibilities for α is bounded by (3.9). But since $L \subset K$ is saturated and $\alpha \notin L$, we have $K=L(\alpha)$, so that K is determined by α.

To get the extra factor $|\Delta(L)|^{-1 / 2 \ell}$ we proceed as follows. Either $\kappa_{m+1}^{d} \geqq \lambda_{\ell}$. Then by (3.8) the number of possibilities for $c_{d h}$ is \ll $\kappa_{m+1}^{d} / \lambda_{h}(h=1, \ldots, \ell)$, and altogether we save by a factor $\left(\lambda_{1} \cdots \lambda_{\ell}\right)^{-1} \ll$ $|\Delta(L)|^{-1 / 2}$. Or $\kappa_{m+1}^{d}<\lambda_{\ell}$, so that $\kappa_{m+1}^{j}<\lambda_{\ell}$ for $j=2, \ldots, d$. By (3.8), the number of possibilities for $c_{j \ell}$ is $\ll 1$. Thus we save by a factor $\left(\kappa_{m+1}^{2+3+\cdots+d}\right)^{-1}$, and the total number of possibilities for K is

$$
\ll \kappa_{m+1}^{(2+3+\cdots+d)(\ell-1)} \ll(X /|\Delta(L)|)^{(1-(1 / \ell))(d+2) / 4}
$$

by Lemma 2. Now it is well known that $\Delta(L)^{d}$ divides $\Delta(K)$, so that (if there is any field K as required) $X \geqq|\Delta(K)| \geqq|\Delta(L)|^{d}$, and we save (from (3.9)) by a factor

$$
\ll(X /|\Delta(L)|)^{-(d+2) / 4 \ell} \ll|\Delta(L)|^{-(d-1)(d+2) / 4 \ell} \leqq|\Delta(L)|^{-1 / \ell} .
$$

This finishes the case $t=1$.
To do an inductive argument from $t-1$ to t, we initially consider only chains $L=K_{0} \subset K_{1} \subset \cdots \subset K_{t-1} \subset K_{t}=K$ with $A \leqq\left|\Delta\left(K_{t-1}\right)\right|<e A$, where A is given. The number of possibilities for K_{1}, \ldots, K_{t-1} is

$$
\ll(A /|\Delta(L)|)^{(d+2) / 4}|\Delta(L)|^{-1 / 2 \ell} .
$$

Given K_{t-1}, the number of possibilities for K_{t} with $\left|\Delta\left(K_{t}\right)\right| \leqq X$ is

$$
\ll(X / A)^{(d+2) / 4} A^{-1 / 2 \ell^{\prime}}
$$

where $\ell^{\prime}=\operatorname{deg} K_{t-1}=\ell d_{1} \cdots d_{t-1}$. Taking the product we get

$$
\ll(X /|\Delta(L)|)^{(d+2) / 4}|\Delta(L)|^{-1 / 2 \ell} A^{-1 / 2 \ell^{\prime}} .
$$

Taking the sum over $A=e^{\nu}$ with $\nu=0,1, \ldots$ we obtain (1.2).

References.

[1] A. M. Bailey. On the density of discriminants of quartic fields, J. Reine Angew. Math. 315 (1980), 190-210.
[2] J. W. S. Cassels. An Introduction to the Geometry of Numbers, Springer Grundlehren 99 (1959).
[3] H. Davenport and H. Heilbronn. On the density of discriminants of cubic fields II. Proc. Roy. Soc. London A322 (1971).
[4] D. J. Wright. Distribution of discriminants of abelian extensions, Proc. London Math. Soc., (3) 58 (1989), 17-50.

Wolfgang M. Schmidt
University of Colorado
Department of Mathematics Boulder, Colorado 80309-0395 U.S.A.

[^0]: AMS Classification Number: 11R04 (Algebraic Number Theory: general)
 ${ }^{\dagger}$ Supported in part by NSF grant DMS-9108581.

