Astérisque

WOLFGANG M. SCHMIDT Number fields of given degree and bounded discriminant

Astérisque, tome 228 (1995), p. 189-195

<http://www.numdam.org/item?id=AST_1995_228_189_0>

© Société mathématique de France, 1995, tous droits réservés.

L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

NUMBER FIELDS OF GIVEN DEGREE AND BOUNDED DISCRIMINANT

Wolfgang M. Schmidt[†]

1. Introduction. Let N(d;X) be the number of algebraic number fields of degree d and discriminant Δ with $|\Delta| \leq X$. It has been conjectured (but I don't know to whom to attribute this conjecture) that for each fixed d > 1 we have $N(d;X) \sim c_d X$ as $X \to \infty$, with a constant $c_d > 0$. This is easy to see when d = 2, and has been established for d = 3 by Davenport and Heilbronn [3]. For d = 4 Bailey [1] could show that $X \ll N(4;X) \ll$ $X^{3/2}(\log X)^4$. The goal of the present note is an easy proof of

(1.1)
$$N(d;X) \ll X^{(d+2)/4}.$$

For d = 4 this improves slightly upon Bailey. In fact, for given $d_1 > 1, \ldots, d_t > 1$ and a number field L, let $N(L; d_1, \ldots, d_t; X)$ be the number of chains of fields $L = K_0 \subset K_1 \subset \cdots \subset K_t = K$ with degrees $[K_j : K_{j-1}] = d_j$ $(j = 1, \ldots, t)$ and with discriminant $\Delta(K)$ of modulus $\leq X$. We will show that

(1.2)
$$N(L; d_1, \ldots, d_t; X) \ll (X/|\Delta(L)|)^{(d+2)/4} |\Delta(L)|^{-1/2\ell},$$

where $d = \max(d_1, \ldots, d_t)$, $\ell = \deg L$, and where the constant in \ll depends only on d, t, ℓ . The case when $L = \mathbb{Q}$, t = 2, $d_1 = d_2 = 2$ is contained in Bailey's work [1]. In many cases when $d_t < d$, the exponent (d+2)/4 could be reduced. The exponent $-1/2\ell$ of $|\Delta(L)|$ could always be reduced; in fact the main purpose of the factor $|\Delta(L)|^{-1/2\ell}$ will be to be able to carry out an induction on t.

Related to our topic is the important work of D. J. Wright [4] on abelian extensions. Given a finite abelian group G of order |G| and with

AMS Classification Number: 11R04 (Algebraic Number Theory: general)

Q the smallest prime divisor of |G|, set $\alpha(G) = |G|(1 - Q^{-1})$. Then the number of abelian number fields with Galois group G and discriminant of modulus $\leq X$ is $\sim cX^{1/\alpha}(\log X)^{\beta}$ where c = c(G) > 0, $\beta = \beta(G) \geq 0$. Therefore if the above mentioned conjecture is correct, the main contribution to the asymptotic formula would come from nonabelian extensions.

2. Geometry of Number Fields. When K is a number field of degree k and $\sigma_1, \ldots, \sigma_k$ are the embeddings of K into C, write k = r + 2s and suppose that $\sigma_1, \ldots, \sigma_r$ are real, and $\sigma_{r+i}, \sigma_{r+s+i}$ for $i = 1, \ldots, s$ are pairs of complex conjugates. For $\alpha \in K$ set $\alpha^{(j)} = \sigma_j(\alpha)$ $(j = 1, \ldots, k)$. Let $\underline{\varphi}_{\kappa}$ be the map $K \to \mathbb{R}^k$ with

$$\underline{\underline{\varphi}}_{K}(\alpha) = (\alpha^{(1)}, \dots, \alpha^{(r)}, \sqrt{2} \operatorname{Re} \alpha^{(r+1)}, \sqrt{2} \operatorname{Im} \alpha^{(r+1)}, \dots, \sqrt{2} \operatorname{Re} \alpha^{(r+s)},$$

$$\sqrt{2} \operatorname{Im} \alpha^{(r+s)}).$$

Let \mathfrak{O}_K be the ring of integers in K; then $\underline{\varphi}_K(\mathfrak{O}_K) = \Lambda_K$, say, is a lattice in \mathbb{R}^k of determinant

$$\operatorname{Det} \Lambda_K = |\Delta(K)|^{1/2}.$$

Finally, let $\kappa_1, \ldots, \kappa_k$ be the successive minima of Λ_K (with respect to the Euclidean norm) in the sense of Minkowski. There are $\alpha_1, \ldots, \alpha_k$ in \mathfrak{O}_K , linearly independent over \mathbb{Q} , with

(2.1)
$$|\underline{\varphi}_{K}(\alpha_{j})| = \kappa_{j} \qquad (j = 1, \dots, k),$$

where $|\cdot|$ denotes the Euclidean norm. As is well known,

(2.2)
$$\kappa_1 \cdots \kappa_k \gg \ll \operatorname{Det} \Lambda_K = |\Delta(K)|^{1/2}$$

where the implied constants depend on k only. Each $\alpha \in \mathbb{Q}$ has

(2.3)
$$|\underline{\varphi}_{K}(\alpha)| = \sqrt{k} |\alpha|,$$

in particular $|\underline{\varphi}_{K}(1)| = \sqrt{k}$, so that $\kappa_{1} \leq \sqrt{k}$. On the other hand, $\alpha \neq 0$ in \mathfrak{O}_{K} has

 $|\alpha^{(1)}\cdots\alpha^{(r)}||\alpha^{(r+1)}\cdots\alpha^{(r+s)}|^2 \ge 1$, so that by the arithmetic–geometric inequality

$$|\alpha^{(1)}|^2 + \dots + |\alpha^{(r)}|^2 + 2|\alpha^{(r+1)}|^2 + \dots + 2|\alpha^{(r+s)}|^2 \ge k,$$

i.e., $|\underline{\varphi}_{K}(\alpha)|^{2} \geq k$. We may conclude that

(2.4)
$$\kappa_1 = \sqrt{k} \; .$$

Let L be a subfield of K of degree ℓ . Denote the conjugates of $\alpha \in L$ by $\alpha^{[1]}, \ldots, \alpha^{[\ell]}$. (We can't write them as $\alpha^{(1)}, \ldots, \alpha^{(\ell)}$ since the maps $\sigma_1, \ldots, \sigma_\ell$ (among the maps $\sigma_1, \ldots, \sigma_k$ given above) do not necessarily give the distinct embeddings of L into \mathbb{C} .) We define $\underline{\varphi}_L$, Λ_L and successive minima $\lambda_1, \ldots, \lambda_\ell$ in the obvious way. It is easily seen that $\alpha \in L$ has $|\underline{\varphi}_K(\alpha)| = \sqrt{d} |\underline{\varphi}_L(\alpha)|$ where d = [K : L]; this generalizes (2.3). The image $\Lambda'_L = \underline{\varphi}_K(\mathfrak{O}_L)$ is therefore isometric to $\sqrt{d} \Lambda_L$, and the minima $\lambda'_1, \ldots, \lambda'_\ell$ of Λ'_L have

(2.5)
$$\lambda'_{j} = \sqrt{d} \lambda_{j} \qquad (j = 1, \dots, \ell).$$

LEMMA 1.

$$\lambda_{\ell-j} \ll \kappa_{k-j} \qquad (0 \le j < \ell).$$

Proof. Let Tr denote the trace from K to L. It is a Q-linear map whose image is L, so that its kernel (as a Q-vector space) has dimension deg K deg $L = k - \ell$. Let $\alpha_1, \ldots, \alpha_k$ be as in (2.1). Among $\beta_q = \text{Tr } \alpha_q$ with $q = 1, \ldots, k - j$, there must therefore be at least $k - j - (k - \ell) = \ell - j$ linearly independent ones; say for $q_1, \ldots, q_{\ell-j}$. Then $\beta_{q_1}, \ldots, \beta_{q_{\ell-j}}$ are Q-linearly independent elements of \mathfrak{O}_L with

$$|\beta_{q_u}^{[i]}| \ll \max_t |\alpha_{q_u}^{(t)}| \leq |\underline{\varphi}_K(\alpha_{q_u})| = \kappa_{q_u} \leq \kappa_{k-j}.$$

Therefore $|\underline{\varphi}_{L}(\beta_{q_{u}})| \ll \kappa_{k-j} \ (u = 1, \dots, \ell - j)$, and the lemma follows.

By the argument leading to (2.4) we may set $\alpha_1 = 1$, so that $\alpha_1 \in \mathbb{Q} \subset L$.

LEMMA 2. Let m be least with $\alpha_{m+1} \notin L$. Then

$$|\Delta(L)|^{1/2} \kappa_{m+1}^{k-\ell} \ll |\Delta(K)|^{1/2}.$$

Proof. $\alpha_1, \ldots, \alpha_m$ lie in L, and therefore $\lambda'_j = \kappa_j$, hence by (2.5), $\lambda_j \leq \kappa_j$ for $j = 1, \ldots, m$. On the other hand, $\lambda_{m+1} \cdots \lambda_{\ell} \ll \kappa_{k-\ell+m+1} \cdots \kappa_k$ by Lemma 1. Thus

$$|\Delta(L)|^{1/2} = \operatorname{Det} \Lambda_L \ll \lambda_1 \cdots \lambda_\ell \ll (\kappa_1 \cdots \kappa_m)(\kappa_{k-\ell+m+1} \cdots \kappa_k).$$

There are exactly $k - \ell$ integers strictly between m and $k - \ell + m + 1$, so that

$$|\Delta(L)|^{1/2}\kappa_{m+1}^{k-\ell} \ll \kappa_1 \cdots \kappa_k \ll |\Delta(K)|^{1/2}.$$

3. Proof of the main result. When the chain $L = K_0 \subset \cdots \subset K_t = K$ is refined by inserting extra fields, the quantity d can only decrease. Therefore we may restrict ourselves to saturated chains, i.e., chains where there is no field strictly between K_{j-1} and K_j $(j = 1, \ldots, t)$. We will first deal with the case t = 1. Thus we consider fields $K \supset L$ with [K : L] = d and no field strictly between L and K.

The lattice Λ_L has a basis $\underline{\underline{b}}_1, \ldots, \underline{\underline{b}}_\ell$ with $\lambda_j \leq |\underline{\underline{b}}_j| \ll \lambda_j \ (j = 1, \ldots, \ell)$ ([2, §VIII.5.2]), and such a basis has

$$(3.1) |\underline{\underline{b}}_1| \cdots |\underline{\underline{b}}_\ell| \ll \operatorname{Det} \Lambda_L.$$

Let $\underline{b}_1^*, \ldots, \underline{b}_{\ell}^*$ be the dual basis, so that the inner products $\underline{b}_i \underline{b}_j^* = \delta_{ij}$ $(1 \leq i, j \leq \ell)$, with δ_{ij} the Kronecker symbol. Further, with \wedge denoting the exterior product,

$$\underline{\underline{b}}_{j}^{*} = (\underline{\underline{b}}_{1} \wedge \dots \wedge \underline{\underline{b}}_{j-1} \wedge \underline{\underline{b}}_{j+1} \wedge \dots \wedge \underline{\underline{b}}_{\ell}) / \text{Det} \Lambda_{L},$$

so that

(3.2)
$$|\underline{\underline{b}}_{j}||\underline{\underline{b}}_{j}^{*}| \leq |\underline{\underline{b}}_{1}| \cdots |\underline{\underline{b}}_{\ell}|/\mathrm{Det}\,\Lambda_{L} \ll 1$$

by (3.1). Let $\beta_1, \ldots, \beta_\ell$ be the elements in L with $\underline{\varphi}_L(\beta_j) = \underline{b}_j$ $(j = 1, \ldots, \ell)$; then $\beta_1, \ldots, \beta_\ell$ are a \mathbb{Z} -basis of \mathfrak{O}_L .

As in the last section, let m be least with $\alpha_{m+1} \notin L$. Set $\beta = \operatorname{Tr} \alpha_{m+1}$ and $\underline{b} = \underline{\varphi}_{\underline{L}}(\beta)$. We may write $\beta = c_1\beta_1 + \cdots + c_\ell\beta_\ell$ with $c_j \in \mathbb{Z}$ $(j = 1, \ldots, \ell)$, and then

(3.3)
$$\underline{\underline{b}} = c_1 \underline{\underline{b}}_1 + \dots + c_\ell \underline{\underline{b}}_\ell.$$

Since $|\underline{\varphi}_{K}(\alpha_{m+1})| = \kappa_{m+1}$, each conjugate of α_{m+1} has modulus $\leq \kappa_{m+1}$, therefore each conjugate of β is $\ll \kappa_{m+1}$, and $|\underline{b}| \ll \kappa_{m+1}$. The inner product of (3.3) with \underline{b}_{j}^{*} gives $\underline{b}\underline{b}_{j}^{*} = c_{j}$, so that

(3.4)
$$|c_j| \ll \kappa_{m+1} |\underline{\underline{b}}_j^*| \ll \kappa_{m+1} / |\underline{\underline{b}}_j| \ll \kappa_{m+1} / \lambda_j$$

by (3.2). Set

 $\alpha = \alpha_{m+1} - [c_1/d]\beta_1 - \cdots - [c_\ell/d]\beta_\ell,$

where [] denotes integer parts. Then

(3.5)
$$\operatorname{Tr} \alpha = (c_1 - d[c_1/d])\beta_1 + \dots + (c_{\ell} - d[c_{\ell}/d])\beta_{\ell}.$$

We also note that

$$(3.6) \qquad \qquad |\underline{\varphi}_{K}(\alpha)| \ll \kappa_{m+1},$$

since $|\underline{\varphi}_{K}(\alpha_{m+1})| = \kappa_{m+1}$, since $|\underline{\varphi}_{K}(\beta_{j})| = \sqrt{d} |\underline{\varphi}_{L}(\beta_{j})| = \sqrt{d} |\underline{\underline{b}}_{j}| \ll |\underline{\underline{b}}_{j}|$, and since $|c_{j}||\underline{\underline{b}}_{j}| \ll (\kappa_{m+1}/\lambda_{j})\lambda_{j}$ by (3.4).

Now α satisfies

$$\alpha^d + \tau_1 \alpha^{d-1} + \dots + \tau_d = 0,$$

where $(-1)^{j} \tau_{j}$ is the *j*-th elementary symmetric polynomial in the conjugates of α over *L*. Here τ_{j} is in \mathfrak{O}_{L} , so that we may write

$$au_j = c_{j1}eta_1 + \dots + c_{j\ell}eta_\ell \qquad (j = 1, \dots, d)$$

with coefficients $c_{jh} \in \mathbb{Z}$. Since $\tau_1 = -\text{Tr} \alpha$, (3.5) shows that

$$(3.7) |c_{1h}| \leq d \ll 1 (1 \leq h \leq \ell).$$

In view of (3.6), each conjugate of α is $\ll \kappa_{m+1}$, therefore each conjugate of τ_j is $\ll \kappa_{m+1}^j$, and $|\underline{\varphi}_L(\tau_j)| \ll \kappa_{m+1}^j$. But

$$\underline{\underline{\varphi}}_{L}(\tau_{j}) = c_{j1}\underline{\underline{b}}_{1} + \dots + c_{j\ell}\underline{\underline{b}}_{\ell},$$

and taking the inner product with $\underline{\underline{b}}_{\underline{b}}^*$ we get

(3.8)
$$|c_{jh}| \leq |\underline{\varphi}_{L}(\tau_{j})||\underline{b}_{h}^{*}| \ll \kappa_{m+1}^{j}/\lambda_{h} \quad (2 \leq j \leq d, \ 1 \leq h \leq \ell)$$

by (3.2).

The number of possibilities for each c_{1h} is $\ll 1$ by (3.7), and the number of possibilities for c_{jh} with $2 \leq j \leq d$ is $\ll \kappa_{m+1}^{j}$, where we have not used the extra factor $1/\lambda_{h}$ in (3.8). The total number of possibilities for the coefficients c_{jh} is

$$\ll \kappa_{m+1}^{(2+3+\dots+d)\ell} = \kappa_{m+1}^{\ell(d-1)(d+2)/2},$$

and by Lemma 2 this is

(3.9)
$$\ll (X/|\Delta(L)|)^{(d+2)/4},$$

since $k - \ell = \ell(d - 1)$ and since we consider fields K with $|\Delta(K)| \leq X$. The number of possibilities for α is bounded by (3.9). But since $L \subset K$ is saturated and $\alpha \notin L$, we have $K = L(\alpha)$, so that K is determined by α .

To get the extra factor $|\Delta(L)|^{-1/2\ell}$ we proceed as follows. Either $\kappa_{m+1}^d \geq \lambda_\ell$. Then by (3.8) the number of possibilities for c_{dh} is $\ll \kappa_{m+1}^d/\lambda_h$ $(h = 1, \ldots, \ell)$, and altogether we save by a factor $(\lambda_1 \cdots \lambda_\ell)^{-1} \ll |\Delta(L)|^{-1/2}$. Or $\kappa_{m+1}^d < \lambda_\ell$, so that $\kappa_{m+1}^j < \lambda_\ell$ for $j = 2, \ldots, d$. By (3.8), the number of possibilities for $c_{j\ell}$ is $\ll 1$. Thus we save by a factor $(\kappa_{m+1}^{2+3+\cdots+d})^{-1}$, and the total number of possibilities for K is

$$\ll \kappa_{m+1}^{(2+3+\dots+d)(\ell-1)} \ll (X/|\Delta(L)|)^{(1-(1/\ell))(d+2)/4}$$

by Lemma 2. Now it is well known that $\Delta(L)^d$ divides $\Delta(K)$, so that (if there is any field K as required) $X \ge |\Delta(K)| \ge |\Delta(L)|^d$, and we save (from (3.9)) by a factor

$$\ll (X/|\Delta(L)|)^{-(d+2)/4\ell} \ll |\Delta(L)|^{-(d-1)(d+2)/4\ell} \leq |\Delta(L)|^{-1/\ell}.$$

This finishes the case t = 1.

To do an inductive argument from t-1 to t, we initially consider only chains $L = K_0 \subset K_1 \subset \cdots \subset K_{t-1} \subset K_t = K$ with $A \leq |\Delta(K_{t-1})| < eA$, where A is given. The number of possibilities for K_1, \ldots, K_{t-1} is

$$\ll (A/|\Delta(L)|)^{(d+2)/4}|\Delta(L)|^{-1/2\ell}.$$

Given K_{t-1} , the number of possibilities for K_t with $|\Delta(K_t)| \leq X$ is

$$\ll (X/A)^{(d+2)/4} A^{-1/2\ell'},$$

where $\ell' = \deg K_{t-1} = \ell d_1 \cdots d_{t-1}$. Taking the product we get

$$\ll (X/|\Delta(L)|)^{(d+2)/4}|\Delta(L)|^{-1/2\ell}A^{-1/2\ell'}.$$

Taking the sum over $A = e^{\nu}$ with $\nu = 0, 1, \dots$ we obtain (1.2).

References.

- A. M. Bailey. On the density of discriminants of quartic fields, J. Reine Angew. Math. 315 (1980), 190-210.
- [2] J. W. S. Cassels. An Introduction to the Geometry of Numbers, Springer Grundlehren 99 (1959).
- [3] H. Davenport and H. Heilbronn. On the density of discriminants of cubic fields II. Proc. Roy. Soc. London A322 (1971).
- [4] D. J. Wright. Distribution of discriminants of abelian extensions, Proc. London Math. Soc., (3) 58 (1989), 17-50.

Wolfgang M. Schmidt University of Colorado Department of Mathematics Boulder, Colorado 80309–0395 U.S.A.