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N U M B E R FIELDS O F GIVEN D E G R E E 
A N D B O U N D E D D I S C R I M I N A N T 

Wolfgang M. Schmidt$$ 

1. I n t r o d u c t i o n . Let N(d', X) be the number of algebraic number 

fields of degree d and discriminant A with |A | ^ X. It has been conjectured 

(but I don ' t know to whom to a t t r ibu te this conjecture) t h a t for each fixed 

d > 1 we have N(d; X) ~ c^X as X —• oo, with a constant Cd > 0. This is 

easy to see when d = 2, and has been established for d = 3 by Davenpor t 

and Heilbronn [3]. For d = 4 Bailey [1] could show that X < N(44\ X) < 

X 3 / 2 ( l o g X ) 4 . T h e goal of the present note is an easy proof of 

(1.1) i V ( d ; X ) < X ( d + 2 ) / 4 . 

For d = 4 this improves slightly upon Bailey. In fact, for given d\ > 

1 , . . . , dt > 1 and a number field L, let N(L] d\,..., dt; -X") be t he number 

of chains of fields L = K0 C i f i C • • • C Kt = K wi th degrees [ifj : 

Kj-1] = dj (j — 1 , . . . ,£) and with discriminant A(K) of modu lus ^ X. 

We will show t h a t 

(1.2) N(L;du... ,dt; X) < C X / I A ^ ) ! ) ^ 2 ) / 4 ^ ) ! " 1 / 2 ' , 

where d = m a x ( d i , . . . , d*), H = degX, and where the constant in <C de­

pends only on d, t, L T h e case when L = Q, £ = 2, di = d2 = 2 is contained 

in Bailey's work [1]. In many cases when dt < d, t he exponent (d + 2 ) /4 

could be reduced. T h e exponent —1/21 of |A (£ ) | could always be reduced; 

in fact t he main purpose of the factor |A(L) | -1 /2^ will be to be able to 

carry out an induct ion on t. 

Related to our topic is the impor tan t work of D. J . Wright [4] on 

abelian extensions. Given a finite abelian group G of order |G| and with 
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Q the smallest prime divisor of |G|, set a(G) = |G|(1 — Q l). Then the 
number of abelian number fields with Galois group G and discriminant of 
modulus S X is ~ cX1/a(logX)^3B where c = c(G) > 0, /? = 0(G) ^ 0. 
Therefore if the above mentioned conjecture is correct, the main contribu­
tion to the asymptotic formula would come from nonabelian extensions. 

2. Geometry of N u m b e r Fields. When if is a number field of 
degree k and <7i,... , <rfc are the embeddings of K into C, write k = r + 2s 
and suppose that cr i , . . . , ar are real, and 0y+t, &r+s+i for z = 1 , . . . ,5 are 
pairs of complex conjugates. For a G K set a(j) = <Tj(a) (j — 1 , . . . ,fc). 
Let P 

=K 
be the map K —• Rfc with 

p 
=K 

(a) = (a(1), . . . , a ^ , v ^ R e a ( r + 1 ) , V ^ I m a ( r + 1 ) , . . . ,V2 Rea(r+5\ 

V2 Ima(r+5)). 

Let OK be the ring of integers in K\ then p 
=K 

(OK) = AK, say, is a lattice 

in Rfc of determinant 

Det A * = | A (1T)I1/2-

Finally, let / c i , . . . , ftfc be the successive minima of AK (with respect to the 
Euclidean norm) in the sense of Minkowski. There are o?i, . . . ,Qf̂  in D ^ , 
linearly independent over Q, with 

(2.1) P 
=K 

(<*j)\ = KJ (j = 1,. . . ,k) 

where | • | denotes the Euclidean norm. As is well known, 

(2.2) KI • • • KFC X Det A * = \&AA(K)\1/2 

where the implied constants depend on k only. Each a e Q has 

(2.3) Q=K (Q/)| = Vfc|aa| 

in particular Q 
=K 

(1)| = >/fc,*so that /ci ^ vfc. On the other hand, a ^ 0 
in OJC has 
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| a ( l ) . . . a ( - ) | | a ( r + l ) . . . a ( r + 5 ) | 2 ^ ^ 
so t h a t by the ar i thmet ic -geometr ic 

inequali ty 

|a(D|2 + . . . + |a(r)|2 + 2\a(r+V\2 + ••• + 2\a(r+s)\22 Z k, 

i.e., Q 
= K 

(a)\22 ^ k. We may conclude t h a t 

(2.4) k1 = Vk . 

Let L be a subfield of K of degree L Denote the conjugates of a € L 

by a t 1 ' , . . . , a ^ l . (We can ' t write t h e m as a ^ \ . . . , a(l) since the m a p s 

c r ! , . . . , da (among the m a p s cr1?... , crfc given above) do not necessarily give 

the dist inct embeddings of L into C.) We define <pL , Ax, and successive 

min ima A i , . . . , Â  in the obvious way. It is easily seen t h a t a € L has 

Q 
=K 

(a)\ = Vd Q 
=l 

fa)I where d = [K : L\\ this generalizes (2.3). T h e 

image A'L = ip^A(DLL) is therefore isometric to y d Ax,, and the min ima 

X[,... , Â  of A'L have 

(2.5) a;. = y/d \j 0' = i , - - - , / ) . 

L E M M A 1. 

Al - j << KK - j (0 ^ j < T). 

Proof. Let Tr denote the trace from K to L. It is a Q-linear map whose 

image is L, so that its kernel (as a Q-vector space) has dimension deg iif — 

deg L = k — £. Let ctu... , ak b e as in (2.1). A m o n g /?9 = T r a ^ w i t h 

q = 1 , . . . , & — j , there m u s t therefore b e at least k — j — (k — t) = £ — j 

l inearly i n d e p e n d e n t ones; say for g i , . . . , ql - j. T h e n / ? g i 5 . . . ^Pqt_i are 

Q-l inearly i n d e p e n d e n t e l e m e n t s of £>L w i t h 

\ß 
[i] 
Qu < m a x 

t 
a (*) 

Qu 
< Q 

=K 
(a qu) = K qu < 

K>k—j* 

Therefore Q 
=l 

{ßqu)\ < K F C _ J (u = l,... , i - j) and t he l e m m a follows. 

By t he a rgument leading to (2.4) we may set a\ — 1, so that a± € 

Q C L. 
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LEMMA 2 . Let m be least with a m + i £ L. Then 

\A(L) 1/2 K h-l 
m + 1 « |A(if) 1/2 

Proof. c* i , . . . , am am lie in L, and therefore A^ = ftj, hence by (2.5), Xj ^ Kj 
for j = 1 , . . . , ra. On the other hand , Am+i • • • Xe < ttfc_^+m+i • • • /Cfc by 
L e m m a 1. T h u s 

A(L) |1 /2 = D e t A L < Ai Al << (/ci • • • tfm)(«fc-*+m+i • • • kk) 

T h e r e are exact ly k — £ integers str ict ly between m and k — £ + m + 1, so 
that 

|A(L) 1/2 
K K - L 

m + 1 << K1 ..... kK << |A(K)|1/2 

3 . P r o o f of the m a i n r e s u l t . W h e n the chain L = Ko C • • • C 
Kt = K is refined by insert ing ex t ra fields, t he quant i ty d can only decrease. 
Therefore we may restrict ourselves to sa tu ra t ed chains, i.e., chains where 
the re is no field str ict ly between Kj- i and Kj (j = 1 , . . . , t). We will first 
deal wi th t he case t = 1. T h u s we consider fields K D L wi th [K : L] = d 
and no field str ict ly between L and K. 

T h e la t t ice Ax, has a basis b , . . . ,6 wi th Xj ^ |bj| <C Aj (j = 1 , . . . ,^) 
([2, §VIII.5.2]), and such a basis has 

(3.1) l^l — i y « D e t AL. 

Let 6 * , . . . ,&* be t he dual basis, so that the inner p roduc t s b r f j = % 
(1 = h j = l), with Sij t he Kronecker symbol . Fur ther , wi th A denot ing 

t h e exterior p roduc t , 

6* = (b A... Ab. , A 6 . ^ A • • • A 6 )/Det A^ , 
= 7 V=l = 7 - 1 = 7 + 1 

so t h a t 

(3.2) | f c | | f c ; i ^ | | 1 | . - | y / Det AL < l 
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by (3.1). Let B1, .....,, Pt be the elements in L with <p (pj) = k- (j = 1 , . . . / ) ; 

t hen fa, . . . , B1 are a Z-basis of O ^ . 

As in t he last section, let m be least with <*m+i ^ L. Set /? = Tr am+i 

and k = ¥ (/?). We may write /? = ci/?i + • • • + ciPi wi th cj G Z ( j = 

1 , . . . , ^ ) , and then 

(3.3) k — C\kx H h Qèr 

Since |Q=K ( a m + i ) | = ^rn+i? each conjugate of am+i has modu lus ^ ttm+i5 

therefore each conjugate of P is <C ^m+i? and |£| <C ttm+i- T h e inner 

p roduc t of (3.3) with bj gives bb* = C j , so t h a t 

(3.4) | C j | < K m + l | è * | < K m + l / l ^ l < K m + l / A j 

by (3.2). Set 

a = am+1 - [ci/d]ßx [ce/d]ße, 

where [ ] denotes integer pa r t s . Then 

(3.5) Tr a = (ci - d[ci/ef])/?i + • • • + (ct - d [ce/d])ße. 

We also note t h a t 

(3.6) \<p (a)\ < KM+1, 
—1\ 

since \cp (aTO+i)| = «m+i , since | £ (/%)| = Vd \QL(Pj)\ = a / 5 |bj| < |bj|, 

and since | c j | | £ | < (/cm+i/Aj)Aj by (3.4). 

Now a satisfies 

ad + r i a d - 1 + . . . + rd = 0? 

where (—l)JVj is t he j - t h elementary symmetr ic polynomial in the conju­

gates of a over L. Here r,- is in £>L, SO that we may write 

Tj = CjiPx + • • • +DcjcQ ( i = 1 , . . . ,d) 

with coefficients Cjh G Z. Since T\ = — T r a , (3.5) shows t h a t 

(3.7) |clh| ^ d < 1 1 < h < lL 
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In view of (3.6), each conjugate of a is <C Km+i, therefore each conjugate 
of TJ is < K3M+1, and \g(Tjj)\ < KJM+V B u t 

gL(Tj) = cjik1 + --- + cjekf,, 

and tak ing t h e inner p roduc t with 6* we get 

(3.8) |cjh| < |Q=L (tj) || b=h < «m+l/A* (2 ^ j S d, l ^ h ^ i) 

by (3.2). 

The number of possibilities for each cih is <C 1 by (3.7), and the 
number of possibilities for Cjh with 2 ^ j ^ d is << Kjm+1, where we have 

not used the extra factor l/ \ h in (3.8). The total number of possibilities 
for the coefficients Cjh is 

< к (2+3+..+d)ll 
m+1 = AC *(d-l)(d+2)/2 

m+1 

and by L e m m a 2 this is 

(3.9) < (X/ |A(L)|)(d+2)/4, 

since k — £ = £(d — 1) and since we consider fields K with | A ( l f ) | ^ X . 

The number of possibilities for a is bounded by (3.9). But since L C K is 

saturated and a £ L, we have i f = £ ( a ) , so that i f is determined by a. 

To get the extra factor lA(L)!""1/2^ we proceed as follows. Either 

K,fn+1 ^ A .̂ Then by (3.8) the number of possibilities for Cdh is <C 

Km+i/^hh (h = 1,... ,^) , and altogether we save by a factor (Ai • • • A^)-1 <C 

\A {L)\-1/22. Or Kdm+l < \t, so that < + 1 < A* for j = 2 , . . . ,d. By 

(3.8), the number of possibilities for Cjt is <C 1. Thus we save by a factor 

(^m+i1"*"+d)~1, and the total number of possibilities for K is 

< AC 
(2+3+...+d)(£-l) 
m+1 

< ( X / I A Í L ) ! ) ^ - ^ ) ^ 2 ) / 4 

by L e m m a 2. Now it is well known t h a t A(L)dd divides A(K), so that (if 

there is any field K as required) X ^ |A(-K")| ^ |A(L) |d , and we save (from 

(3.9)) by a factor 

< (XX /\ AAAA(L)\)-(d+2»u << |A(L)| (d-1(d+2)/4lgf4gl Ú \MA(L)\-1/e. 
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This finishes t h e case t = 1. 

To do an inductive argument from t — 1 to t, we initially consider only 
chains L = K0 C KX C • • • C K t - i 1 C Kt = K wi th A ^ \A(Kt-i1))\ < eA, 
where A is given. T h e number of possibilities for Ki,... , Kt-i is 

< (Л/|Д(£)|)(<и"2)/4|Д(£)Г1/2<. 

Given üTt- i , the number of possibilities for Kt with | A ( Ä t ) | ^ X is 

< ( X / A ) ( D W + W A - 1 ' * ' , 

where <£' = deg K t - i = ld\ • • • dt-1. Taking the produc t we get 

<(X/|A(L)|)(d+2)/4|A(L)|-1/2^-1/2^. 

Taking t he sum over A = e" with 1/ = 0 , 1 , . . . we obtain (1.2). 
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