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NUMBER FIELDS OF GIVEN DEGREE
AND BOUNDED DISCRIMINANT

Wolfgang M. Schmidt?

1. Introduction. Let N(d;X) be the number of algebraic number
fields of degree d and discriminant A with |A| £ X. It has been conjectured
(but I don’t know to whom to attribute this conjecture) that for each fixed
d > 1 we have N(d; X) ~ ¢4 X as X — oo, with a constant ¢4 > 0. This is
easy to see when d = 2, and has been established for d = 3 by Davenport
and Heilbronn [3]. For d = 4 Bailey [1] could show that X < N(4;X) <
X3/2(log X)*. The goal of the present note is an easy proof of

(1.1) N(d; X) < X(@+2/4,

For d = 4 this improves slightly upon Bailey. In fact, for given d; >
1,...,d; > 1 and a number field L, let N(L;d;,...,d:; X) be the number
of chains of fields L = Ko C Ky C --- C K; = K with degrees [K; :
K;_1] =d; (j =1,...,t) and with discriminant A(K) of modulus < X.
We will show that

(1.2) N(Ljdy,... ,di; X) < (X/|A@L))) DAL=,

where d = max(d,,... ,d;), £ = deg L, and where the constant in < de-
pends only on d,t,£. The case when L = Q, t = 2, d; = dy = 2 is contained
in Bailey’s work [1]. In many cases when d; < d, the exponent (d + 2)/4
could be reduced. The exponent —1/2¢ of |A(L)| could always be reduced;
in fact the main purpose of the factor |A(L)|~'/?¢ will be to be able to
carry out an induction on t.

Related to our topic is the important work of D. J. Wright [4] on
abelian extensions. Given a finite abelian group G of order |G| and with
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@ the smallest prime divisor of |G|, set a(G) = |G|(1 — @~'). Then the
number of abelian number fields with Galois group G and discriminant of
modulus £ X is ~ ¢X!/%(log X)? where ¢ = ¢(G) > 0, 8 = B(G) = 0.
Therefore if the above mentioned conjecture is correct, the main contribu-
tion to the asymptotic formula would come from nonabelian extensions.

2. Geometry of Number Fields. When K is a number field of

degree k and 04,... ,0 are the embeddings of K into C, write k = 7+ 2s
and suppose that ¢y,... ,0, are real, and 0,44, Opysyi fori =1,... s are
pairs of complex conjugates. For a € K set o) = g;(a) (j = 1,... ,k).

Let P be the map K — R* with

_<p_K(Ot) =(aW,..., 0" V2 Rea!™D V2 Im o™V, ... ,v/2 Real™),
V3 Tmalr+9),

Let Ok be the ring of integers in K; then £K(D k) = Ak, say, is a lattice

in R* of determinant

Det Ax = |A(K)|'2.

Finally, let k1,... ,kr be the successive minima of A (with respect to the
Euclidean norm) in the sense of Minkowski. There are a1,... ,o in Ok,
linearly independent over Q, with

2.) o ()l =K  (G=L....k)
where | - | denotes the Euclidean norm. As is well known,
(2.2) K1+ Kk > Det A = |A(K)|Y/?

where the implied constants depend on k only. Each a € Q has
(2.3) e (@) = VEk lal,

in particular |£K(1)| = Vk,*so that k; < vk. On the other hand, a # 0
in Ok has
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laD) oM™+ ... ofr+9)]2 > 1) 50 that by the arithmetic-geometric

inequality
|a(1)l2 4t la(r)lz + 2|a(r+1)|2 4ot 2|a(r+s)|2 z k,

ie., |£K(o:)|2 2 k. We may conclude that

(2.4) k1 =VEk .

Let L be a subfield of K of degree £. Denote the conjugates of o € L
by oll,... olf, (We can’t write them as o, ..., a® since the maps
01,... ,0¢ (among the maps o1,... ,0} given above) do not necessarily give
the distinct embeddings of L into C.) We define @, A7 and successive
minima Aq,...,As in the obvious way. It is easily seen that @ € L has
|£K(a)| =d |£L(a)| where d = [K : L]; this generalizes (2.3). The
image A} = gK(D 1) is therefore isometric to v/d Ap, and the minima

15... Ay of A have

(2.5) Xe=Vd  (j=1,....0).

LEMMA 1.
A—j L Kg—j (075<0).

Proof. Let Tr denote the trace from K to L. It is a Q-linear map whose
image is L, so that its kernel (as a Q-vector space) has dimension deg K —
degL = k —£. Let ay,...,a be as in (2.1). Among B, = Tra, with
g=1,... ,k— j, there must therefore be at least k —j — (k—£) =£—j
linearly independent ones; say for qi,... ,q¢—j. Then By,,... ,5,,_, are
Q-linearly independent elements of 1 with

)] < max|af)| < g (g, = Ko, < k-

Therefore |£L(ﬁqu)| L Kg—j (w=1,... ,£—j), and the lemma follows.

By the argument leading to (2.4) we may set a; = 1, so that oy €
QcCL.
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LEMMA 2. Let m be least with ay,+1 ¢ L. Then

A5y < JAK)[V2.

Proof. ai,... ,am lie in L, and therefore A = x;, hence by (2.5), \; < &;
for j = 1,... ,m. On the other hand, Ap41-+-A¢ € Kk—tpms1-Kr Dy
Lemma 1. Thus

IA(L)ll/z =DetAr KA\ M K (Ktl cee "’\'fm)(ka—£+m+1 cee K',k).

There are exactly k — £ integers strictly between m and k — £+ m + 1, so
that
AL P rpy < k- e < AK)[M2.

3. Proof of the main result. When the chain L = K¢ C --- C
K, = K is refined by inserting extra fields, the quantity d can only decrease.
Therefore we may restrict ourselves to saturated chains, i.e., chains where
there is no field strictly between K;_; and K; (7 =1,... ,t). We will first
deal with the case t = 1. Thus we consider fields K D L with [K : L] =d
and no field strictly between L and K.

The lattice AL hasabasis b ,... ,b, with A; < I_Q_JI <A (F=1,...,9
([2, §VIIL.5.2]), and such a basis has

(3.1) b, |-~ |b,| < DetAr.

Let QI, ,Q; be the dual basis, so that the inner products ng; = 6;j
(1 <4, j £ ¢), with 6;; the Kronecker symbol. Further, with A denoting
the exterior product,

Q*f:([z;l/\.../\g_

) b Ab, A--Ab)/DetAr,

so that
(3.2 |65 < 1, by|/Det Ar < 1
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by (3.1). Let 51,... ,0¢ be the elements in L with ﬁL(ﬁj) = Qj (j=1,...0);
then (;,... ,0; are a Z-basis of O,

As in the last section, let m be least with aun41 € L. Set 8 = Tr a1
and b = ﬁL(’B)' We may write 8 = ¢18 + -+ + ceffe with ¢; € Z (j =
1,...,4), and then

(3.3) b=cib + -+ ceb,.

Since |£K(am+1)| = Km+1, €ach conjugate of @41 has modulus < Kppq1,
therefore each conjugate of B is € Km41, and [B] K Kmy1. The inner
product of (3.3) with Q;‘ gives Q; = ¢;j, so that

(3.4) lej| < ”"m+1|2;| < ’“m+l/|2j| < Kmy1/Aj

by (3.2). Set
= amy1 — [c1/d]Br — -+ — [ce/d]Be,

where [ ] denotes integer parts. Then

(3.5) Tra = (c1 —dle1/d])B1 + -+ + (ce — d[ce/d])Be.
We also note that

(36) £, (@)] < Kt

since [p_(@my)| = K1, since [ _(8)] = Va g (67)] = Va [b,] < I,
and since |c,-||gj| L (km+1/Aj)A; by (3.4).
Now « satisfies

at+7mad 4. 1y =0,

where (—1)77; is the j-th elementary symmetric polynomial in the conju-
gates of o over L. Here 7; is in O, so that we may write

Tj=Cj1ﬂ1+~'~+ng,Bg (j=1,...,d)
with coefficients ¢;;, € Z. Since 1 = —Tra, (3.5) shows that

(3.7) enlSd<1 (1SR
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In view of (3.6), each conjugate of a is < k41, therefore each conjugate
of 75 is € K, , and |£L(Tj)l < K., But

(TJ) = cj1b + - +cied,,
and taking the inner product with Q; we get

(38) el Sle, ()] < Klga/2n 25554, 1

HA

h

A

)

by (3.2).

The number of possibilities for each ¢;; is < 1 by (3.7), and the
number of possibilities for ¢j, with 2 S j S dis <« I‘&'Zn +1> Where we have
not used the extra factor 1/A; in (3.8). The total number of possibilities
for the coefficients c;p, is

24344d)t _ _4(d—1)(d+2)/2
< an ) "(H_ X )/,

and by Lemma 2 this is
(3.9) < (X/|AL) )+,

since k — £ = £(d — 1) and since we consider fields K with |A(K)| = X.
The number of possibilities for « is bounded by (3.9). But since L C K is
saturated and a ¢ L, we have K = L(a), so that K is determined by a.
To get the extra factor |A(L)|~'/?¢ we proceed as follows. Either
k%41 2 A. Then by (3.8) the number of possibilities for can is <
k& 11/An (R =1,... ,£), and altogether we save by a factor (A; -+ Ag)7h <
|A(L)|~/2. Or fc‘fn_l_l < Mg, so that fcfn+1 < A for j = 2,...,d. By

(3.8), the number of possibilities for ¢, is < 1. Thus we save by a factor

( 2434 +d)

Kmt1 , and the total number of possibilities for K is

<K (2+3+ +d)(£— 1)<<(X/|A(L)|)(1-(1/e))(d+2)/4

by Lemma 2. Now it is well known that A(L)? divides A(K), so that (if
there is any field K as required) X = |A(K)| = |A(L)|¢, and we save (from
(3.9)) by a factor

< (X/IAL)]) =D < |A(L)| DDA < AL 7,
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This finishes the case t = 1.

To do an inductive argument from ¢t —1 to ¢, we initially consider only
chains L = Ko C K; C --- C Ky—1 C Ky = K with A < |A(K;-1)| < eA,
where A is given. The number of possibilities for Ki,... ,K;_; is

< (A/|AL)) HDHAL)| .
Given K;_1, the number of possibilities for K; with |A(K:)| < X is
& (X/A)(d+2)/4A—1/2e”
where ¢/ = deg Ki—1 = £d; - - - dy—. Taking the product we get
< (X/|AL)) S AL [T/ AT

Taking the sum over A = e” with v =0,1,... we obtain (1.2).
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