A. Granville
 §7. Appendix : the density of fugitive sets

Astérisque, tome 228 (1995), p. 99-100
http://www.numdam.org/item?id=AST_1995__228__99_0
© Société mathématique de France, 1995, tous droits réservés.
L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

$\mathcal{N u m d a m}^{\prime}$

Article numérisé dans le cadre du programme

§7. Appendix: The density of fugitive sets.
 By A. Granville

Theorem. Let $F\left(X_{1}, X_{2}, \ldots, X_{n}\right) \in \mathbf{Z}\left[X_{1}, X_{2} \ldots, X_{n}\right]$ be a homogeneous, non-zero polynomial of degree D, say. For any given prime q, pick a primitive root $g(\bmod q)$, and define $\log a$ to be that power of g that gives $a(\bmod q)$. We call q a 'fugitive' prime if $F\left(\log 2, \log 3, \ldots, \log p_{n}\right) \equiv 0(\bmod q-1)$. There are $O(x \log \log \log x / \log x \log \log x)$ fugitive primes $q \leq x$.

Proof. We first deal with those primes $q \leq x$, for which $q-1$ does not have a prime factor in the interval $I=\left(\log \log x,(\log x)^{1 /(n+2)}\right)$. The number of primes q that do not have such a prime factor, (where m is the product of the primes in I), is given by

$$
\begin{aligned}
\sum_{q \leq x} \sum_{\substack{d|q-1 \\
d| m}} & =\sum_{d \mid m} \mu(d) \pi(x ; d, 1) \\
& =\sum_{d \mid m} \mu(d) \frac{\pi(x)}{\phi(d)}+O\left(\sum_{d \leq x^{1 / 3}}\left|\pi(x ; d, 1)-\frac{\pi(x)}{\phi(d)}\right|\right) \\
& =\pi(x) \prod_{p \mid m}\left(1-\frac{1}{p-1}\right)+O\left(\frac{x}{\log ^{2} x}\right) \gg \frac{x}{\log x} \frac{\log \log \log x}{\log \log x}
\end{aligned}
$$

using the Bombieri-Vinogradov Theorem (see section 28 of [Da]), Mertens' Theorem and the Prime Number Theorem. Thus these primes may be included amongst the candidates for fugitive primes.

We shall show that for any prime p in the interval I, the number of 'fugitive' primes $q \leq x$, which are $\equiv 1(\bmod p)$ is $\ll x / p^{2} \log x$. But then the number of fugitive primes $q \leq x$ for which $q-1$ has a prime factor in the interval I, is

$$
\ll \sum_{p \in I} \frac{x}{p^{2} \log x} \ll \frac{x}{\log x \log \log x},
$$

and the Theorem follows.
So fix a prime p in the interval I, and let α be a primitive p th root of unity. Once x is sufficiently large (so that p is), one has, as a trivial consequence of Legendre's theorem, that there are $\leq D p^{n-1}$ solutions a $=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in$ $\mathbf{Z} / p \mathbf{Z}^{n}$ to $F\left(a_{1}, a_{2}, \ldots, a_{n}\right) \equiv 0(\bmod p)\left(\right.$ call the set of such solutions $\left.S_{p}\right)$.

Now, for each fugitive prime $q \leq x$ which is $\equiv 1(\bmod p)$, we must have $F\left(\log 2, \log 3, \ldots, \log p_{n}\right) \equiv 0(\bmod p)$, since p divides $q-1$, and so $\log p_{j} \equiv a_{j}$ $(\bmod p)$ for $1 \leq j \leq n$, for some $a \in S_{p}$. Therefore the number of such fugitive primes is \leq the sum, over each $a \in S_{p}$, of the number of primes $q \leq x, q \equiv 1$ $(\bmod p)$, for which

$$
p_{j}^{(q-1) / p} \equiv \alpha^{a_{j}}(\bmod \mathbf{q}) \quad \text { for } 1 \leq j \leq n
$$

where \mathbf{q} is a fixed prime ideal divisor of q in $\mathbb{Q}(\alpha)$.
If p were fixed and x were sufficiently large then the number of such primes q (for each given $a \in S_{p}$) would be $\sim x / p^{n+1} \log x$ (by the Cebotarev density theorem). However, we have x as a function of p (in fact, $x \geq e^{p^{n+2}}$), and since the discriminant of the field $\mathbb{Q}\left(\alpha, 2^{1 / p}, 3^{1 / p}, \ldots, p_{n}^{1 / p}\right)$ divides $(2 \times$ $\left.3 \times \ldots \times p_{n} \times p^{n+1}\right)^{p^{n+1}}$, we deduce immediately from Theorem 1.4 of [LMO] that the number of such primes q, is $O\left(x / p^{n+1} \log x\right)$. Then, from the above, the number of fugitive primes, for given prime p, is $\ll\left|S_{p}\right| x / p^{n+1} \log x \ll$ $D p^{n-1} x / p^{n+1} \log x \ll x / p^{2} \log x$. This completes the proof.
[Da] H. Davenport, Multiplicative Number Theory, Grad. Texts in Math. 74, 2nd edn., (Springer-Verlag, 1980).
[LMO] J.C. Lagarias, H.L. Montgomery and A.M. Odlyzko, A bound for the least prime ideal in Chebotarev density theorem, Inventiones Math. 54 (1979), 271-296.

Andrew Granville Department of Mathematics University of Georgia
Athens, GA 30602

