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APPENDIX 

§7. Appendix: The density of fugitive sets. 
By A. Granville 

Theorem. Let F(Xi,X2,... ,Xn) € 1\X\, X2 ...., Xn] be a homogeneous, 
non-zero polynomial of degree D, say. For any given prime q, pick a primitive 
root g (mod q), and define log a to be that power of g that gives a{mod q). 
We call q a 'fugitive' prime if F(log 2, l o g 3 , . . . , logpn) = 0(mod q — 1). There 
are 0(x log log log x/ log x log log x) fugitive primes q < x. 

Proof. We first deal with those primes q < x, for which q — 1 does not have 
a prime factor in the interval J = (loglogx, (logar)1^n+2^). The number of 
primes q that do not have such a prime factor, (where m is the product of the 
primes in J), is given by 
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using the Bombieri-Vinogradov Theorem (see section 28 of [Da]), Mertens' 
Theorem and the Prime Number Theorem. Thus these primes may be in
cluded amongst the candidates for fugitive primes. 

We shall show that for any prime p in the interval / , the number of 
'fugitive' primes q < x, which are = l(mod p) is <C x/p2log x. But then the 
number of fugitive primes q < x for which q — 1 has a prime factor in the 
interval J, is 

< 
pel 

x 
p2 log x < 

x 
log x log log X , 

and the Theorem follows. 
So fix a prime p in the interval J, and let a be a primitive pth. root of unity. 

Once x is sufficiently large (so that p is), one has, as a trivial consequence of 
Legendre's theorem, that there are < Dpn~l solutions a = (ai ,a2, . . . ,an) € 
Z/pZn to F(ai,ct2,... ,an) = 0 (mod p) (call the set of such solutions Sp). 
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Now, for each fugitive prime q < x which is = 1 (mod p), we must have 
.F(log 2, l o g 3 , . . . , logpn) = 0 (mod p), since p divides q — 1, and so logpj = ctj 
(mod p) for 1 < j < n, for some a G Sp. Therefore the number of such fugitive 
primes is < the sum, over each a G 5P, of the number of primes q < x, g = 1 
(mod p), for which 

P) 
( « - i ) / p = aaj (mod q) for 1 < j < n, 

where q is a fixed prime ideal divisor of q in Q(a). 

If p were fixed and x were sufficiently large then the number of such 
primes q (for each given a G Sp) would be ~ x/pn+l logx (by the Cebotarev 
density theorem). However, we have x as & function of p (in fact, x > epW+2), 
and since the discriminant of the field Q(a, 2^p, 3 ^ , . . . ,pl/p) divides (2 x 
3 x . . . x pn x j9n+1)Pn+1, we deduce immediately from Theorem 1.4 of [LMO] 
that the number of such primes q, is 0(x/pn+1 log a;). Then, from the above, 
the number of fugitive primes, for given prime p, is <C |5p|a;/pn+1 log a: <C 
Dpn~1x/pn+1 logx <C x/p2 logx. This completes the proof. 
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