Astérisque

FLORIN RĂDULESCU

A type III_{λ} factor with core isomorphic to the von Neumann algebra of a free group, tensor B(H)

Astérisque, tome 232 (1995), p. 203-209 <http://www.numdam.org/item?id=AST_1995_232_203_0>

© Société mathématique de France, 1995, tous droits réservés.

L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

A TYPE III_{λ} FACTOR WITH CORE ISOMORPHIC TO THE VON NEUMANN ALGEBRA OF A FREE GROUP, TENSOR B(H).

FLORIN RĂDULESCU

In this paper we obtain a type III_{λ} factor by using the free product construction from [Vo1,Vo2] and show that its core ([Co]) is $\mathcal{L}(F_{\infty}) \otimes B(H)$. We will prove that

$$M_2(\mathbb{C}) * L^{\infty}([0,1],\nu)$$

is a type III_{λ} factor if $M_2(\mathbb{C})$ is endowed with a nontracial state. Moreover we will show that the core ([Co]) of this type III_{λ} factor (when tensorized by B(H)) is $\mathcal{L}(F_{\infty}) \otimes B(H)$ and we will give an explicit model for the associated (trace scaling) action of \mathbb{Z} on the core (cf. [Co], [Ta]). Here B(H) is the space of all linear bounded operators on a separable, infinite dimensional Hilbert space H.

Recall from [Vo1], that a family $(A_i)_{i \in I}$ of subalgebras in a von Neumann algebra M with state ϕ , is free with respect to ϕ if $\phi(a_1a_2...a_k) = 0$ whenever

$$\phi(a_i) = 0, a_i \in A_{j_i}, i = 1, 2, \dots, k, j_1 \neq j_2, \dots, j_{k-1} \neq j_k.$$

Reciprocally given a family $(A_i, \phi_i), i \in I$ of von Neumann algebras with faithful normal states ϕ_i , one may construct (see[Vo1]) the (reduced) free product von Neumann algebra $*A_i$, which contains $A_i, i \in I$ and has a faithful normal state ϕ so that $\phi|_{A_i} = \phi_i$ and so that the algebras $(A_i)_{i \in I}$ are free with respect to ϕ .

The aim of this paper is to show the following result.

Theorem. Let $\mathcal{E} = M_2(\mathbb{C}) * L^{\infty}([0,1],\nu)$ be endowed with the free product state ϕ where $M_2(\mathbb{C})$ is endowed with the state ϕ_0 which is subject to the condition

$$\phi_0(e_{11})/\phi_0(e_{22}) = \lambda \in (0,1)$$
 and $\phi(e_{12}) = \phi(e_{21}) = 0$,

while $L^{\infty}([0,1],\nu)$ has the state given by Lebesgue measure on [0,1]. With these hypothesis, $M_2(\mathbb{C}) * L^{\infty}([0,1],\nu)$ is a type III_{λ} factor and its core is isomorphic to $\mathcal{L}(F_{\infty}) \otimes B(H)$.

In the proof of the theorem we will also obtain a model for the core of $\mathcal{E} \otimes B(H)$ and for the corresponding (dual) action on the core, of the modular group of the weight $\phi \otimes tr$ (tr is the canonical semifinite trace on B(H)). This model will be a submodel of the one parameter action of $\mathbb{R}_+/\{0\}$ on $\mathcal{L}(F_\infty) \otimes B(H)$, that we have constructed in [Ra]. The model. Model for the core of $(M_2(\mathbb{C}) * L^{\infty}([0,1],\nu)) \otimes B(H)$ and of the corresponding dual action on the core for the modular group of automorphism for the weight $\phi \otimes tr$:

Let \mathcal{A}_0 be the subalgebra in the algebraic free product

$$L^{\infty}(\mathbb{R}) * (\mathbb{C}[X] * \mathbb{C}[Y])$$

generated by $\{pXp, pYp, p | p \text{ finite projection in } L^{\infty}(\mathbb{R})\}$ where $L^{\infty}(\mathbb{R})$ is endowed with the Lebesgue measure.

Let τ be the unique trace on \mathcal{A}_0 defined by the requirement that the restriction τ_p to the algebra generated in $p\mathcal{A}p$ by $pXp, pYp, pL^{\infty}(\mathbb{R})$ is subject to the following conditions:

(i) The three algebras generated respectively by pXp, pYp, $pL^{\infty}(\mathbb{R})$ are free with respect to τ_p

(ii) $\tau(p)^{-1/2}pXp, \tau(p)^{-1/2}pYp$ are semicircular (with respect τ_p)(see [Vo1] for the definition of a semicircular element).

Such a construction is possible because of the Theorem 1 in [Ra].

Assume that pXp, pYp are selfadjoint and let \mathcal{A} be the weak completion of \mathcal{A}_0 in the G.N.S. representation for τ . Then (cf. [Ra]), \mathcal{A} is a type II_{∞} factor isomorphic to $\mathcal{L}(F_{\infty}) \otimes B(H)$ and the trace τ extends to a semifinite normal trace on \mathcal{A} (which we also denote by τ).

Recall (by [Ra]) that in this case, there exists a one parameter group of automorphism $(\alpha_t)_{t \in \mathbb{R}_+ \setminus \{0\}}$ on \mathcal{A} , scaling trace by t, for each $t \in \mathbb{R}_+ \setminus \{0\}$, which is induced by $d_t * M_t$ on $L^{\infty}(\mathbb{R}) * (\mathbb{C}[X] * [Y])$ where d_t is dilation by t on $L^{\infty}(\mathbb{R})$, while $M_t(X) = t^{-1/2}X; M_t(Y) = t^{-1/2}Y, t > 0.$

Let \mathcal{B} the von Neumann subalgebra of \mathcal{A} generated by

$$q_n = \chi_{[\lambda^{n-1}, \lambda^n]}, n \in \mathbb{Z},$$

the characteristic functions of the intervals $[\lambda^{n-1}, \lambda^n]$ and by the following subsets of \mathcal{A} :

$$egin{aligned} & ilde{X} = \{q_n X q_m | n, m \in \mathbb{Z}, |n-m| \leq 1\}, \ & ilde{Y} = \{q_n Y q_n | n \in \mathbb{Z}\}. \end{aligned}$$

Clearly \mathcal{B} is invariant under $\{\alpha_{\lambda^n}\}_{n\in\mathbb{Z}}$ and by Lemma 3 in [Ra], \mathcal{B} is isomorphic to $\mathcal{L}(F_{\infty})\otimes B(H)$. Let $\beta_n = \alpha_{\lambda^n}|\mathcal{B}$.

Let $\mathcal{D} = \mathcal{B} \rtimes_{\beta} \mathbb{Z}$ be the cross product of \mathcal{B} by the action \mathbb{Z} given by β . Then by [Co], \mathcal{D} is a type III_{λ} factor. Let $u \in \mathcal{D}$ be the unitary implementing the cross product. Moreover let ψ be the normal semifinite faithful weight on \mathcal{D} obtained as the composition expectation from \mathcal{D} onto \mathcal{B} .

We will prove that \mathcal{B} , with the action of \mathbb{Z} given by $(\beta_n)_{n \in \mathbb{Z}}$ is isomorphic to the core of $\mathcal{E} \otimes B(H)$, with the dual action (on the core) for the modular group of automorphisms of the weight $\phi \otimes tr$ on $\mathcal{E} \otimes B(H)$. Our main result will be a consequence of the following proposition:

Proposition.

Let \mathcal{E} be the von Neumann algebra free product $M_2(\mathbb{C}) * L^{\infty}([0,1],\nu)$, with the free product state $\phi = \phi_0 * \nu$, where $M_2(\mathbb{C}) = (e_{ij})_{i,j=1}^2$ is endowed with the normalized state ϕ_0 with $\phi(e_{11})/\phi(e_{22}) = \lambda$ and $\phi(e_{12}) = \phi(e_{21}) = 0$. Then, with the above notation \mathcal{E} is isomorphic to $(q_o + q_1)\mathcal{D}(q_0 + q_1)$.

Moreover the state ϕ on \mathcal{E} is (via this identification) the (normalized) restriction of ψ to $(q_o + q_1)\mathcal{D}(q_0 + q_1)$.

(Here $\mathcal{D} = \mathcal{B} \rtimes_{\beta} \mathbb{Z}$, where \mathcal{B} is the von Neumann subalgebra in \mathcal{A} generated by $\tilde{X} = \{q_n X q_m | n, m \in \mathbb{Z}, |n-m| \leq 1\}, \tilde{Y} = \{q_n Y q_n | n \in \mathbb{Z}\}$ and the characteristic functions $q_n = \chi_{[\lambda^{n-1},\lambda^n]}, n \in \mathbb{Z}, q_n \in L^{\infty}(\mathbb{R}) \subseteq \mathcal{A}$. Moreover $\beta_n = \alpha_{\lambda^n}, n \in \mathbb{Z}$.)

Recall from above that the von Neumann algebra \mathcal{A} is a type II_{∞} factor isomorphic to $\mathcal{L}(F_{\infty}) \otimes B(H)$ and \mathcal{A} is generated by

 $\{pXp, pYp, p \mid p \text{ finite projection in } L^{\infty}(\mathbb{R})\}.$

Here $\alpha_t, t > 0$ acts as dilation by t on $L^{\infty}(\mathbb{R})$ and multiplies X, Y by $t^{-1/2}$. The trace on \mathcal{A} is subject to the above conditions (i), (ii) and it is scaled by the automorphisms $\alpha_t, t > 0$.

This proposition will be a consequence of the following two lemmas.

Lemma 1.

With $\mathcal{A}, \mathcal{B}, \mathcal{D}, \psi, \tau$ and u as before let

$$e_{11} = q_1 u = u q_0; e_{11} = q_0; e_{22} = q_1$$

Let a = x + y, where

 $x = (q_0 + q_1)X(q_0 + q_1) - q_0Xq_0$ $y = q_0Yq_0.$

Then $M_2(\mathbb{C}) = (e_{ij})_{i,j=1}^2$ is free with respect to

$$\psi_1 = (\psi(q_0 + q_1))^{-1} \psi|_{(q_0 + q_1)\mathcal{D}(q_0 + q_1)},$$

to the semicircular element a, in the algebra $(q_0 + q_1)\mathcal{D}(q_0 + q_1)$ with unit $q_0 + q_1$.

Proof. We have to check freeness, which means that the value of ψ_1 on certain monomials in a, u, e_{11}, e_{22} is null. Since by definition, ψ_1 vanishes the monomials containing a different number of u's and u^* 's, we have only to check this if the number of occurrences for u is equal to the one for u^* .

Let $p_n = q_n + q_{n+1} = \chi_{[\lambda^{n-1}, \lambda^{n+1}]}$.

Using the fact that u implements β_1 on \mathcal{D} it follows that we only have to check $\psi_1(m) = 0$ if

$$m = p_0 f_1 q_{i_1} f_2 q_{i_2} f_3 \dots q_{i_n} f_{n+1} p_0$$

where the following conditions are fulfilled:

- (a) i_{j+1} is either i_j or $i_j \pm 1$.
- (b) Card $\{s|i_j = s, j = 1, 2, ..., n\}$ is even for every s.
- (c) f_k is a product

$$f_1^k a_1^k \dots f_{n_k-1}^k a_{n_k-1}^k f_{n_k}^k, \ n_k \ge 1$$

where f_s^k , $s = 1, 2, 3...n_k$, is an element of null value under the state ψ_1 in the algebra generated by $\alpha_j(a)$ while a_s^k is an element of null trace in the algebra generated by q_j, q_{j+1} . Here j is an integer which is completely determined, for each k. If $i_k \neq i_{k+1}$ then j is the minimum of the i_k and i_{k+1} . If $i_k = i_{k+1}$ then j is either i_k if $i_{k-1} \leq i_k$ or either $i_k - 1$ if $i_{k-1} > i_k$.

To see that those are all the monomials of null state that may appear in the algebra generated by $M_2(\mathbb{C})$ and a it is sufficient to note that any string

$$f_1e_{21}f_2e_{21}...f_pe_{21}f_{p+1}e_{12}f_{p+2}e_{12}...e_{12}f_{2p+1} =$$

= $f_1(q_1u)f_2q_1u...f_pq_1uf_{p+1}(u^*q_1)...(u^*q_1)f_{2p+1}$

after cancelation, is equal to

$$f_1(q_1u)f_2...q_1uf_pq_1\beta_1(f_{p+1})q_1f_{p+2}(u^*q_1)...(u^*q_1)f_{2p+1} =$$

= $f_1(q_1u)f_2...q_1\beta_1(f_p)q_2\beta_2(f_{p+1})q_2\alpha_1(f_{p+2})q_1...(u^*q_1)f_{2p+1} =$
= $f_1q_1\alpha_1(f_2)q_2...\beta_{p-1}(f_p)q_p\beta_p(f_{p+1})q_p\beta_{p-1}(f_{p+2})...q_1f_{2p+1}$

and similarly for a string in which each q_1u is replaced by u^*q_1 and conversely.

Here the f_i 's are products of the form $f_1^i a_1^i f_2^i a_2^i \dots f_n^i$ where f_j^i are elements of null trace in the algebra generated by $a = (q_0 + q_1)a(q_0 + q_1)$, while a_j^i are elements of null trace in the algebra generated by q_0, q_1 .

The monomials in the algebra generated by $M_2(\mathbb{C})$ and a that are to be checked for having zero value under ψ_1 are obtained by replacing certain f_j by other strings of this form, or by putting together such strings.

To show that the value of $\psi_1(m)$ is zero we will use the following observation which is a consequence of Lemma 3.1 in [Vo2]. This observation will be used to replace the elements f_1, \ldots, f_{n+1} in the monomial m by elements of null trace.

Observation. Let B be a W^{*}-algebra with trace τ , let X be a semicircular element and p a nontrivial projection that is free with X. Then any element of null trace in the algebra (with unit p) generated by pXp is a sum of monomials which are products either of elements of null trace in the algebra generated by pXp or either of the form $p - \tau(p)$, but no such monomial is $p - \tau(p)$ itself.

Proof. Indeed if x is such an element then pxp = x, and moreover any other such monomial, which is different from $p - \tau(p)$, when multiplied with p, preserves the property of having null trace.

On the other hand

$$\tau(p(p-\tau(p))) = 1 - \tau(p) \neq 0.$$

This ends the proof of the observation.

To conclude the proof of Lemma 1 we let p a projection which is greater than the supremum of all the projections $\{q_i | i \in I_m\}$ that are involved in m.

We may then assume by construction that we are given a finite family of semicircular elements z^j so that $z^j = pz^jp$ and so that (modulo a multiplicative constant) $\alpha_j(a) = (q_j + q_{j+1})z^j(q_j + q_{j+1})$ for j in I_m .

Using the above observation we may express $f_k = f_1^k a_1^k \dots f_{n_k-1}^k a_{n_k-1}^k f_{n_k}^k$ as a sum of products of null trace in the algebras generated by $\{q_j\}$ and $\{z_j\}$ (adjacent elements are allways in different algebras).

(Note that $(q_j + q_{j+1})(q_j - \tau(q_j)(\tau(q_j + q_{j+1}))^{-1}(q_j + q_{j+1})$ has always null trace).

Again the above observation shows that each of these monomials must contain at least on term in z^{j} . Since consecutive f^{i} involve different elements in the set $\{z^{j}\}$ it follows that $\psi_{1}(m) = 0$.

This ends the proof of Lemma 1.

Lemma 2. With \mathcal{B}, \mathcal{D} as before we have that $(q_0 + q_1)\mathcal{B}(q_0 + q_1)$ coincides with the von Neumann subalgebra $\mathcal{C} \subseteq (q_0 + q_1)\mathcal{D}(q_0 + q_1)$ (with unit $q_0 + q_1$) that is generated by the monomials with an equal number of e_{12} 's and e_{21} 's.

F. RĂDULESCU

Proof. We have to show that the subalgebra $(q_0 + q_1)\mathcal{B}(q_0 + q_1)$ coincides with the subalgebra $\mathcal{C} \subseteq (q_0 + q_1)(\mathcal{B} \rtimes_\beta \mathbb{Z})(q_0 + q_1) = (q_0 + q_1)\{\mathcal{B}, u\}''(q_0 + q_1)$ that is generated by monomials in a and $(e_{ij})_{i,j=1}^2$ containing an equal number of e_{12} 's and e_{21} 's.

Clearly \mathcal{C} is invariant under the action of \mathbb{R} (or \mathbb{T}) on \mathcal{D} given by the modular group of ψ which acts by $\sigma_t^{\psi}(u) = \lambda^{it} u, \sigma_t^{\psi}|_{\mathcal{B}} = Id_{\mathcal{B}}$ so that $\mathcal{C} \subseteq (q_0 + q_1)\mathcal{D}^{\mathbb{R}}(q_0 + q_1) = (q_0 + q_1)\mathcal{B}(q_0 + q_1).$

Hence we have to only prove the reverse inclusion. But due to the specific form of the generators in \mathcal{B} , we obtain that \mathcal{B} is generated by elements of the form

$$m = f^1 q_{i_1} f^2 q_{i_2} \dots f^n q_{i_n} f^{n+1}$$

where the conditions on $i_1, ..., i_n$ are

a) $i_{j+1} \in \{i_j, i_j - 1, i_j + 1\}, \ j = 1, 2, ..., n, \ i_0, i_n \in \{0, 1\}$

b) card
$$\{j|i_j = s\}$$
 is even,

while f is one of the elements

$$\alpha_s(q_0Xq_0); \ \alpha_s(q_0Xq_1); \alpha(q_1Xq_0) \text{ or } \alpha_s(q_1Yq_1),$$

where s is either i_j or i_{j+1} if $i_j \neq i_{j+1}$. If $i_j = i_{j+1}$, then either $s = i_j$ and $f^j = \alpha_s(q_0 X q_0)$ or either $s = i_{j-1}$ and $f^j = \alpha_s(q_1 Y q_1)$.

The assumptions we made are sufficient to show that in such a monomial we have some symbols corresponding to $\alpha_s(a)$ which are then necessary followed by symbols corresponding to $\alpha_{s+1}(a)$ (or to $\alpha_{s-1}(a)$). Moreover in *m* this sets of symbols are always separated by one of the projections q_p ($p \in \{s, s \pm 1\}$).

If we replace in m any such q_p by q_1u (or respectively by u^*q_1) and we replace the symbols from $\alpha_s(a)$ by the corresponding symbols in a we get the same m, but this time expressed as an element in the subalgebra of C, generated by monomials with equal occurrence number of e_{12} 's and e_{21} 's. This ends the proof of Lemma 2.

To conclude the proof, we note the following observation:

Remark.

Let $\mathcal{B}, \mathcal{D} = \mathcal{B} \rtimes_{\beta} \mathbb{Z}$ and $u, \{q_i\}_{i \in \mathbb{Z}}$ be as before. Then $(q_0 + q_1)\mathcal{D}(q_0 + q_1)$ coincides with the algebra generated by $(q_0 + q_1)\mathcal{B}(q_0 + q_1)$ and $e_{12} = q_1u = uq_0$.

Proof. With q_0, q_1 as before we have to show that $q_0(u^*)^n bq_0 = q_0(u^*)^n q_n bq_0$ is contained in the algebra generated by $(q_0 + q_1)\mathcal{B}(q_0 + q_1)$. Assume n > 1; we may express $q_n bq_0$ as

$$q_n b_n q_{n-1} b_{n-1} q_{n-2} \dots q_1 b_1 q_0$$

Then

$$q_0(u^*)^n bq_0 = q_0(u^*)^n q_n b_n q_{n-1} \dots q_1 b_1 q_0 =$$

= $q_0 u^* \alpha_{n-1}(b_n) q_0 u^* \alpha_{n-2}(b_{n-1}) q_0 \dots q_0 u^* b_1 q_0$

which is an element in the algebra generated by $(q_0 + q_1)\mathcal{B}(q_0 + q_1)$ and uq_0 .

Proof of the theorem.

Clearly the subalgebra generated by e_{12} and all the elements in

 $M_2(\mathbb{C}) * L^{\infty}([0,1],\nu)$

with equal occurrence number of e_{12} 's and e_{21} 's coincides with the algebra itself. Thus $M_2(\mathbb{C}) * L^{\infty}([0,1],\nu)$ with the free product state ϕ is identified with $(q_0 + q_1)\mathcal{D}(q_0 + q_1)$ with the restriction of ψ (which is generated by $uq_0 = q_1u$, and a). In particular the modular group of ϕ is $\sigma_t^{\phi}(e_{ij}) = \lambda^{it}e_{ij}$ and σ_t^{ϕ} is the identity on $L^{\infty}([0,1],\nu)$.

References

- [Co] A. Connes, Une classification des facteurs de type III, Ann. Scient. Ecole Norm. Sup., 4eme Serie, tome 6, 133-252.
- [Vo1] D.Voiculescu,, Circular and semicircular systems and free product factors, Operator Algebras, Unitary Representations, Enveloping Algebras,, Progress in Math., vol 92, Birkhauser, (1990,), 45-60.
- [Vo2] D.Voiculescu, Limit laws for random matrices and free product factors, Invent. Math., 104 (1991,), 201-220..
- [Ra] F. Rădulescu, A one parameter group of automorphisms of L(F_∞) ⊗B(H) scaling the trace by t,, C. R. Acad. Sci. Paris, t.314, Serie I, (1992), 1027-1032..
- [Ta] M. Takesaki, Duality in cross products and the structure of von Neumann algebras of type III, Acta Math. 1312 (1973), 249-310.

This work was elaborated during the time the author was a Miller Research Fellow at U.C. Berkeley.

Florin Rădulescu Present Address: Department of Mathematics, U.C. Berkeley Berkeley, CA. 94709, U.S.A. Permanent Address: Institute of Mathematics of the Romanian Academy Str. Academiei 14 Bucharest, Romania.