Astérisque

Florin RǎDULESCU
 A type $I I I_{\lambda}$ factor with core isomorphic to the von Neumann algebra of a free group, tensor $B(H)$

Astérisque, tome 232 (1995), p. 203-209
http://www.numdam.org/item?id=AST_1995__232__203_0
© Société mathématique de France, 1995, tous droits réservés.
L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

A TYPE $I I I_{\lambda}$ FACTOR WITH CORE ISOMORPHIC TO THE VON NEUMANN ALGEBRA OF A FREE GROUP, TENSOR $B(H)$.

Florin Rădulescu

In this paper we obtain a type $I I I_{\lambda}$ factor by using the free product construction from $[\mathrm{Vo} 1, \mathrm{Vo} 2]$ and show that its core $([\mathrm{Co}])$ is $\mathcal{L}\left(F_{\infty}\right) \otimes B(H)$. We will prove that

$$
M_{2}(\mathbb{C}) * L^{\infty}([0,1], \nu)
$$

is a type $I I I_{\lambda}$ factor if $M_{2}(\mathbb{C})$ is endowed with a nontracial state. Moreover we will show that the core ([Co]) of this type $I I I_{\lambda}$ factor (when tensorized by $B(H)$) is $\mathcal{L}\left(F_{\infty}\right) \otimes B(H)$ and we will give an explicit model for the associated (trace scaling) action of \mathbb{Z} on the core (cf. [Co], [Ta]). Here $B(H)$ is the space of all linear bounded operators on a separable, infinite dimensional Hilbert space H.

Recall from [Vo1], that a family $\left(A_{i}\right)_{i \in I}$ of subalgebras in a von Neumann algebra M with state ϕ, is free with respect to ϕ if $\phi\left(a_{1} a_{2} \ldots a_{k}\right)=0$ whenever

$$
\phi\left(a_{i}\right)=0, a_{i} \in A_{j_{i}}, i=1,2, \ldots k, j_{1} \neq j_{2}, \ldots j_{k-1} \neq j_{k} .
$$

Reciprocally given a family $\left(A_{i}, \phi_{i}\right), i \in I$ of von Neumann algebras with faithful normal states ϕ_{i}, one may construct (see[Vol]) the (reduced) free product von Neumann algebra $* A_{i}$, which contains $A_{i}, i \in I$ and has a faithful normal state ϕ so that $\left.\phi\right|_{A_{i}}=\phi_{i}$ and so that the algebras $\left(A_{i}\right)_{i \in I}$ are free with respect to ϕ.

The aim of this paper is to show the following result.
Theorem. Let $\mathcal{E}=M_{2}(\mathbb{C}) * L^{\infty}([0,1], \nu)$ be endowed with the free product state ϕ where $M_{2}(\mathbb{C})$ is endowed with the state ϕ_{0} which is subject to the condition

$$
\phi_{0}\left(e_{11}\right) / \phi_{0}\left(e_{22}\right)=\lambda \in(0,1) \text { and } \phi\left(e_{12}\right)=\phi\left(e_{21}\right)=0,
$$

while $L^{\infty}([0,1], \nu)$ has the state given by Lebesgue measure on $[0,1]$. With these hypothesis, $M_{2}(\mathbb{C}) * L^{\infty}([0,1], \nu)$ is a type $I I I_{\lambda}$ factor and its core is isomorphic to $\mathcal{L}\left(F_{\infty}\right) \otimes B(H)$.

In the proof of the theorem we will also obtain a model for the core of $\mathcal{E} \otimes B(H)$ and for the corresponding (dual) action on the core, of the modular group of the weight $\phi \otimes \operatorname{tr}(t r$ is the canonical semifinite trace on $B(H))$. This model will be a submodel of the one parameter action of $\mathbb{R}_{+} /\{0\}$ on $\mathcal{L}\left(F_{\infty}\right) \otimes B(H)$, that we have constructed in [Ra].

The model. Model for the core of $\left(M_{2}(\mathbb{C}) * L^{\infty}([0,1], \nu)\right) \otimes B(H)$ and of the corresponding dual action on the core for the modular group of automorphism for the weight $\phi \otimes t r$:

Let \mathcal{A}_{0} be the subalgebra in the algebraic free product

$$
L^{\infty}(\mathbb{R}) *(\mathbb{C}[X] * \mathbb{C}[Y])
$$

generated by $\left\{p X p, p Y p, p \mid p\right.$ finite projection in $\left.L^{\infty}(\mathbb{R})\right\}$ where $L^{\infty}(\mathbb{R})$ is endowed with the Lebesgue measure.

Let τ be the unique trace on \mathcal{A}_{0} defined by the requirement that the restriction τ_{p} to the algebra generated in $p \mathcal{A} p$ by $p X p, p Y p, p L^{\infty}(\mathbb{R})$ is subject to the following conditions:
(i) The three algebras generated respectively by $p X p, p Y p, p L^{\infty}(\mathbb{R})$ are free with respect to τ_{p}
(ii) $\tau(p)^{-1 / 2} p X p, \tau(p)^{-1 / 2} p Y p$ are semicircular (with respect τ_{p})(see [Vo1] for the definition of a semicircular element).

Such a construction is possible because of the Theorem 1 in [Ra].
Assume that $p X p, p Y p$ are selfadjoint and let \mathcal{A} be the weak completion of \mathcal{A}_{0} in the G.N.S. representation for τ. Then (cf. [Ra]), \mathcal{A} is a type $I I_{\infty}$ factor isomorphic to $\mathcal{L}\left(F_{\infty}\right) \otimes B(H)$ and the trace τ extends to a semifinite normal trace on \mathcal{A} (which we also denote by τ).

Recall (by [Ra]) that in this case, there exists a one parameter group of automorphism $\left(\alpha_{t}\right)_{t \in \mathbb{R}_{+} \backslash\{0\}}$ on \mathcal{A}, scaling trace by t, for each $t \in \mathbb{R}_{+} \backslash\{0\}$, which is induced by $d_{t} * M_{t}$ on $L^{\infty}(\mathbb{R}) *(\mathbb{C}[X] *[Y])$ where d_{t} is dilation by t on $L^{\infty}(\mathbb{R})$, while $M_{t}(X)=t^{-1 / 2} X ; M_{t}(Y)=t^{-1 / 2} Y, t>0$.

Let \mathcal{B} the von Neumann subalgebra of \mathcal{A} generated by

$$
q_{n}=\chi_{\left[\lambda^{n-1}, \lambda^{n}\right]}, n \in \mathbb{Z}
$$

the characteristic functions of the intervals $\left[\lambda^{n-1}, \lambda^{n}\right]$ and by the following subsets of \mathcal{A} :

$$
\begin{gathered}
\tilde{X}=\left\{q_{n} X q_{m}|n, m \in \mathbb{Z},|n-m| \leq 1\}\right. \\
\tilde{Y}=\left\{q_{n} Y q_{n} \mid n \in \mathbb{Z}\right\}
\end{gathered}
$$

Clearly \mathcal{B} is invariant under $\left\{\alpha_{\lambda^{n}}\right\}_{n \in \mathbb{Z}}$ and by Lemma 3 in [Ra], \mathcal{B} is isomorphic to $\mathcal{L}\left(F_{\infty}\right) \otimes B(H)$. Let $\beta_{n}=\alpha_{\lambda^{n}} \mid \mathcal{B}$.

Let $\mathcal{D}=\mathcal{B} \rtimes_{\beta} \mathbb{Z}$ be the cross product of \mathcal{B} by the action \mathbb{Z} given by β. Then by $[\mathrm{Co}], \mathcal{D}$ is a type $I I I_{\lambda}$ factor. Let $u \in \mathcal{D}$ be the unitary implementing the cross
product. Moreover let ψ be the normal semifinite faithful weight on \mathcal{D} obtained as the composition expectation from \mathcal{D} onto \mathcal{B}.

We will prove that \mathcal{B}, with the action of \mathbb{Z} given by $\left(\beta_{n}\right)_{n \in \mathbb{Z}}$ is isomorphic to the core of $\mathcal{E} \otimes B(H)$, with the dual action (on the core) for the modular group of automorphisms of the weight $\phi \otimes \operatorname{tr}$ on $\mathcal{E} \otimes B(H)$. Our main result will be a consequence of the following proposition:

Proposition.

Let \mathcal{E} be the von Neumann algebra free product $M_{2}(\mathbb{C}) * L^{\infty}([0,1], \nu)$, with the free product state $\phi=\phi_{0} * \nu$, where $M_{2}(\mathbb{C})=\left(e_{i j}\right)_{i, j=1}^{2}$ is endowed with the normalized state ϕ_{0} with $\phi\left(e_{11}\right) / \phi\left(e_{22}\right)=\lambda$ and $\phi\left(e_{12}\right)=\phi\left(e_{21}\right)=0$. Then, with the above notation \mathcal{E} is isomorphic to $\left(q_{o}+q_{1}\right) \mathcal{D}\left(q_{0}+q_{1}\right)$.

Moreover the state ϕ on \mathcal{E} is (via this identification) the (normalized) restriction of ψ to $\left(q_{o}+q_{1}\right) \mathcal{D}\left(q_{0}+q_{1}\right)$.
(Here $\mathcal{D}=\mathcal{B} \rtimes_{\beta} \mathbb{Z}$, where \mathcal{B} is the von Neumann subalgebra in \mathcal{A} generated by $\tilde{X}=\left\{q_{n} X q_{m}|n, m \in \mathbb{Z},|n-m| \leq 1\}, \tilde{Y}=\left\{q_{n} Y q_{n} \mid n \in \mathbb{Z}\right\}\right.$ and the characteristic functions $q_{n}=\chi_{\left[\lambda^{n-1}, \lambda^{n}\right]}, n \in \mathbb{Z}, q_{n} \in L^{\infty}(\mathbb{R}) \subseteq \mathcal{A}$. Moreover $\beta_{n}=\alpha_{\lambda^{n}}, n \in \mathbb{Z}$.)

Recall from above that the von Neumann algebra \mathcal{A} is a type $I I_{\infty}$ factor isomorphic to $\mathcal{L}\left(F_{\infty}\right) \otimes B(H)$ and \mathcal{A} is generated by

$$
\left\{p X p, p Y p, p \mid p \text { finite projection in } L^{\infty}(\mathbb{R})\right\}
$$

Here $\alpha_{t}, t>0$ acts as dilation by t on $L^{\infty}(\mathbb{R})$ and multiplies X, Y by $t^{-1 / 2}$. The trace on \mathcal{A} is subject to the above conditions (i), (ii) and it is scaled by the automorphisms $\alpha_{t}, t>0$.

This proposition will be a consequence of the following two lemmas.

Lemma 1.

With $\mathcal{A}, \mathcal{B}, \mathcal{D}, \psi, \tau$ and u as before let

$$
e_{11}=q_{1} u=u q_{0} ; e_{11}=q_{0} ; e_{22}=q_{1}
$$

Let $a=x+y$, where

$$
\begin{gathered}
x=\left(q_{0}+q_{1}\right) X\left(q_{0}+q_{1}\right)-q_{0} X q_{0} \\
y=q_{0} Y q_{0} .
\end{gathered}
$$

Then $M_{2}(\mathbb{C})=\left(e_{i j}\right)_{i, j=1}^{2}$ is free with respect to

$$
\psi_{1}=\left.\left(\psi\left(q_{0}+q_{1}\right)\right)^{-1} \psi\right|_{\left(q_{0}+q_{1}\right) \mathcal{D}\left(q_{0}+q_{1}\right)}
$$

to the semicircular element a, in the algebra $\left(q_{0}+q_{1}\right) \mathcal{D}\left(q_{0}+q_{1}\right)$ with unit $q_{0}+q_{1}$.
Proof. We have to check freeness, which means that the value of ψ_{1} on certain monomials in a, u, e_{11}, e_{22} is null. Since by definition, ψ_{1} vanishes the monomials containing a different number of u 's and u^{*} 's, we have only to check this if the number of occurrences for u is equal to the one for u^{*}.

Let $p_{n}=q_{n}+q_{n+1}=\chi_{\left[\lambda^{n-1}, \lambda^{n+1}\right]}$.
Using the fact that u implements β_{1} on \mathcal{D} it follows that we only have to check $\psi_{1}(m)=0$ if

$$
m=p_{0} f_{1} q_{i_{1}} f_{2} q_{i_{2}} f_{3} \ldots q_{i_{n}} f_{n+1} p_{0}
$$

where the following conditions are fulfilled:
(a) i_{j+1} is either i_{j} or $i_{j} \pm 1$.
(b) Card $\left\{s \mid i_{j}=s, j=1,2, \ldots, n\right\}$ is even for every s.
(c) f_{k} is a product

$$
f_{1}^{k} a_{1}^{k} \ldots f_{n_{k}-1}^{k} a_{n_{k}-1}^{k} f_{n_{k}}^{k}, n_{k} \geq 1
$$

where $f_{s}^{k}, s=1,2,3 \ldots n_{k}$, is an element of null value under the state ψ_{1} in the algebra generated by $\alpha_{j}(a)$ while a_{s}^{k} is an element of null trace in the algebra generated by q_{j}, q_{j+1}. Here j is an integer which is completely determined, for each k. If $i_{k} \neq i_{k+1}$ then j is the minimum of the i_{k} and i_{k+1}. If $i_{k}=i_{k+1}$ then j is either i_{k} if $i_{k-1} \leq i_{k}$ or either $i_{k}-1$ if $i_{k-1}>i_{k}$.

To see that those are all the monomials of null state that may appear in the algebra generated by $M_{2}(\mathbb{C})$ and a it is sufficient to note that any string

$$
\begin{aligned}
& f_{1} e_{21} f_{2} e_{21} \ldots f_{p} e_{21} f_{p+1} e_{12} f_{p+2} e_{12} \ldots e_{12} f_{2 p+1}= \\
= & f_{1}\left(q_{1} u\right) f_{2} q_{1} u \ldots f_{p} q_{1} u f_{p+1}\left(u^{*} q_{1}\right) \ldots\left(u^{*} q_{1}\right) f_{2 p+1}
\end{aligned}
$$

after cancelation, is equal to

$$
\begin{aligned}
& f_{1}\left(q_{1} u\right) f_{2} \ldots q_{1} u f_{p} q_{1} \beta_{1}\left(f_{p+1}\right) q_{1} f_{p+2}\left(u^{*} q_{1}\right) \ldots\left(u^{*} q_{1}\right) f_{2 p+1}= \\
= & f_{1}\left(q_{1} u\right) f_{2} \ldots q_{1} \beta_{1}\left(f_{p}\right) q_{2} \beta_{2}\left(f_{p+1}\right) q_{2} \alpha_{1}\left(f_{p+2}\right) q_{1} \ldots\left(u^{*} q_{1}\right) f_{2 p+1}= \\
= & f_{1} q_{1} \alpha_{1}\left(f_{2}\right) q_{2} \ldots \beta_{p-1}\left(f_{p}\right) q_{p} \beta_{p}\left(f_{p+1}\right) q_{p} \beta_{p-1}\left(f_{p+2}\right) \ldots q_{1} f_{2 p+1}
\end{aligned}
$$

and similarly for a string in which each $q_{1} u$ is replaced by $u^{*} q_{1}$ and conversely.
Here the f_{i} 's are products of the form $f_{1}^{i} a_{1}^{i} f_{2}^{i} a_{2}^{i} \ldots f_{n}^{i}$ where f_{j}^{i} are elements of null trace in the algebra generated by $a=\left(q_{0}+q_{1}\right) a\left(q_{0}+q_{1}\right)$, while a_{j}^{i} are elements of null trace in the algebra generated by q_{0}, q_{1}.

The monomials in the algebra generated by $M_{2}(\mathbb{C})$ and a that are to be checked for having zero value under ψ_{1} are obtained by replacing certain f_{j} by other strings of this form, or by putting together such strings.

To show that the value of $\psi_{1}(m)$ is zero we will use the following observation which is a consequence of Lemma 3.1 in [Vo2]. This observation will be used to replace the elements f_{1}, \ldots, f_{n+1} in the monomial m by elements of null trace.

Observation. Let B be a W^{*}-algebra with trace τ, let X be a semicircular element and p a nontrivial projection that is free with X. Then any element of null trace in the algebra (with unit p) generated by $p X p$ is a sum of monomials which are products either of elements of null trace in the algebra generated by $p X p$ or either of the form $p-\tau(p)$, but no such monomial is $p-\tau(p)$ itself.

Proof. Indeed if x is such an element then $p x p=x$, and moreover any other such monomial, which is different from $p-\tau(p)$, when multiplied with p, preserves the property of having null trace.

On the other hand

$$
\tau(p(p-\tau(p)))=1-\tau(p) \neq 0
$$

This ends the proof of the observation.

To conclude the proof of Lemma 1 we let p a projection which is greater than the supremum of all the projections $\left\{q_{i} \mid i \in I_{m}\right\}$ that are involved in m.

We may then assume by construction that we are given a finite family of semicircular elements z^{j} so that $z^{j}=p z^{j} p$ and so that (modulo a multiplicative constant) $\alpha_{j}(a)=\left(q_{j}+q_{j+1}\right) z^{j}\left(q_{j}+q_{j+1}\right)$ for j in I_{m}.

Using the above observation we may express $f_{k}=f_{1}^{k} a_{1}^{k} \ldots f_{n_{k}-1}^{k} a_{n_{k}-1}^{k} f_{n_{k}}^{k}$ as a sum of products of null trace in the algebras generated by $\left\{q_{j}\right\}$ and $\left\{z_{j}\right\}$ (adjacent elements are allways in different algebras).
(Note that $\left(q_{j}+q_{j+1}\right)\left(q_{j}-\tau\left(q_{j}\right)\left(\tau\left(q_{j}+q_{j+1}\right)\right)^{-1}\left(q_{j}+q_{j+1}\right)\right.$ has always null trace).
Again the above observation shows that each of these monomials must contain at least on term in z^{j}. Since consecutive f^{i} involve different elements in the set $\left\{z^{j}\right\}$ it follows that $\psi_{1}(m)=0$.

This ends the proof of Lemma 1.

Lemma 2. With \mathcal{B}, \mathcal{D} as before we have that $\left(q_{0}+q_{1}\right) \mathcal{B}\left(q_{0}+q_{1}\right)$ coincides with the von Neumann subalgebra $\mathcal{C} \subseteq\left(q_{0}+q_{1}\right) \mathcal{D}\left(q_{0}+q_{1}\right)$ (with unit $\left.q_{0}+q_{1}\right)$ that is generated by the monomials with an equal number of e_{12} 's and e_{21} 's.

Proof. We have to show that the subalgebra $\left(q_{0}+q_{1}\right) \mathcal{B}\left(q_{0}+q_{1}\right)$ coincides with the subalgebra $\mathcal{C} \subseteq\left(q_{0}+q_{1}\right)\left(\mathcal{B} \rtimes_{\beta} \mathbb{Z}\right)\left(q_{0}+q_{1}\right)=\left(q_{0}+q_{1}\right)\{\mathcal{B}, u\}^{\prime \prime}\left(q_{0}+q_{1}\right)$ that is generated by monomials in a and $\left(e_{i j}\right)_{i, j=1}^{2}$ containing an equal number of e_{12} 's and e_{21} 's.

Clearly \mathcal{C} is invariant under the action of \mathbb{R} (or \mathbb{T}) on \mathcal{D} given by the modular group of ψ which acts by $\sigma_{t}^{\psi}(u)=\lambda^{i t} u,\left.\sigma_{t}^{\psi}\right|_{\mathcal{B}}=I d_{\mathcal{B}}$ so that $\mathcal{C} \subseteq\left(q_{0}+q_{1}\right) \mathcal{D}^{\mathbb{R}}\left(q_{0}+q_{1}\right)=$ $\left(q_{0}+q_{1}\right) \mathcal{B}\left(q_{0}+q_{1}\right)$.

Hence we have to only prove the reverse inclusion. But due to the specific form of the generators in \mathcal{B}, we obtain that \mathcal{B} is generated by elements of the form

$$
m=f^{1} q_{i_{1}} f^{2} q_{i_{2}} \ldots f^{n} q_{i_{n}} f^{n+1}
$$

where the conditions on i_{1}, \ldots, i_{n} are

$$
\text { a) } i_{j+1} \in\left\{i_{j}, i_{j}-1, i_{j}+1\right\}, j=1,2, \ldots, n, i_{0}, i_{n} \in\{0,1\}
$$

$b) \operatorname{card}\left\{j \mid i_{j}=s\right\}$ is even,
while f is one of the elements

$$
\alpha_{s}\left(q_{0} X q_{0}\right) ; \alpha_{s}\left(q_{0} X q_{1}\right) ; \alpha\left(q_{1} X q_{0}\right) \text { or } \alpha_{s}\left(q_{1} Y q_{1}\right)
$$

where s is either i_{j} or i_{j+1} if $i_{j} \neq i_{j+1}$. If $i_{j}=i_{j+1}$, then either $s=i_{j}$ and $f^{j}=$ $\alpha_{s}\left(q_{0} X q_{0}\right)$ or either $s=i_{j-1}$ and $f^{j}=\alpha_{s}\left(q_{1} Y q_{1}\right)$.

The assumptions we made are sufficient to show that in such a monomial we have some symbols corresponding to $\alpha_{s}(a)$ which are then necessary followed by symbols corresponding to $\alpha_{s+1}(a)$ (or to $\alpha_{s-1}(a)$). Moreover in m this sets of symbols are always separated by one of the projections $q_{p}(p \in\{s, s \pm 1\})$.

If we replace in m any such q_{p} by $q_{1} u$ (or respectively by $u^{*} q_{1}$) and we replace the symbols from $\alpha_{s}(a)$ by the corresponding symbols in a we get the same m, but this time expressed as an element in the subalgebra of \mathcal{C}, generated by monomials with equal occurrence number of e_{12} 's and e_{21} 's. This ends the proof of Lemma 2.

To conclude the proof, we note the following observation:

Remark.

Let $\mathcal{B}, \mathcal{D}=\mathcal{B} \rtimes_{\beta} \mathbb{Z}$ and $u,\left\{q_{i}\right\}_{i \in \mathbb{Z}}$ be as before. Then $\left(q_{0}+q_{1}\right) \mathcal{D}\left(q_{0}+q_{1}\right)$ coincides with the algebra generated by $\left(q_{0}+q_{1}\right) \mathcal{B}\left(q_{0}+q_{1}\right)$ and $e_{12}=q_{1} u=u q_{0}$.

Proof. With q_{0}, q_{1} as before we have to show that $q_{0}\left(u^{*}\right)^{n} b q_{0}=q_{0}\left(u^{*}\right)^{n} q_{n} b q_{0}$ is contained in the algebra generated by $\left(q_{0}+q_{1}\right) \mathcal{B}\left(q_{0}+q_{1}\right)$. Assume $n>1$; we may express $q_{n} b q_{0}$ as

$$
q_{n} b_{n} q_{n-1} b_{n-1} q_{n-2} \ldots q_{1} b_{1} q_{0}
$$

Then

$$
\begin{gathered}
q_{0}\left(u^{*}\right)^{n} b q_{0}=q_{0}\left(u^{*}\right)^{n} q_{n} b_{n} q_{n-1} \ldots q_{1} b_{1} q_{0}= \\
=q_{0} u^{*} \alpha_{n-1}\left(b_{n}\right) q_{0} u^{*} \alpha_{n-2}\left(b_{n-1}\right) q_{0} \ldots q_{0} u^{*} b_{1} q_{0}
\end{gathered}
$$

which is an element in the algebra generated by $\left(q_{0}+q_{1}\right) \mathcal{B}\left(q_{0}+q_{1}\right)$ and $u q_{0}$.

Proof of the theorem.

Clearly the subalgebra generated by e_{12} and all the elements in

$$
M_{2}(\mathbb{C}) * L^{\infty}([0,1], \nu)
$$

with equal occurrence number of e_{12} 's and e_{21} 's coincides with the algebra itself. Thus $M_{2}(\mathbb{C}) * L^{\infty}([0,1], \nu)$ with the free product state ϕ is identified with $\left(q_{0}+\right.$ $\left.q_{1}\right) \mathcal{D}\left(q_{0}+q_{1}\right)$ with the restriction of ψ (which is generated by $u q_{0}=q_{1} u$, and a). In particular the modular group of ϕ is $\sigma_{t}^{\phi}\left(e_{i j}\right)=\lambda^{i t} e_{i j}$ and σ_{t}^{ϕ} is the identity on $L^{\infty}([0,1], \nu)$.

References

[Co] A. Connes,, Une classification des facteurs de type III,, Ann. Scient. Ecole Norm. Sup. , 4eme Serie , tome 6, 133-252..
[Vo1] D.Voiculescu,, Circular and semicircular systems and free product factors, Operator Algebras, Unitary Representations, Enveloping Algebras,, Progress in Math., vol 92, Birkhauser, (1990,), 45-60.
[Vo2] D.Voiculescu,, Limit laws for random matrices and free product factors,, Invent. Math., 104 (1991,), 201-220..
[Ra] F. Rădulescu, A one parameter group of automorphisms of $\mathcal{L}\left(F_{\infty}\right) \otimes B(H)$ scaling the trace by t,, C. R. Acad. Sci. Paris, t.314, Serie I, (1992), 1027-1032..
[Ta] M. Takesaki,, Duality in cross products and the structure of von Neumann algebras of type III,, Acta Math. 1312 (1973,), 249-310..

This work was elaborated during the time the author was a Miller Research Fellow at U.C. Berkeley.

Florin Rădulescu
Present Address:
Department of Mathematics, U.C. Berkeley Berkeley, CA. 94709, U.S.A.
Permanent Address:
Institute of Mathematics of the Romanian Academy
Str. Academiei 14 Bucharest, Romania.

