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Tensor products of C(X)-algebras over C(X) 

Etienne Blanchard 

0 Introduction 

Tensor products of C*-algebras have been extensively studied over the last decades 
(see references in [12]). One of the main results was obtained by M. Takesaki in [15] 
where he proved that the spatial tensor product A (ĝ n B of two C*-algebras A and B 
always defines the minimal C*-norm on the algebraic tensor product A ®aig B of A and 
B over the complex field C. 

More recently, G.G. Kasparov constructed in [10] a tensor product over C(X) for 
C(X)-algebras. The author was also led to introduce in [3] several notions of tensor 
products over C(X) for C(X)-algebras and to study the links between those objects. 

Notice that E. Kirchberg and S. Wassermann have proved in [11] that the subcat­
egory of continuous fields over a Hausdorff compact space is not closed under such 
tensor products over C(X) and therefore, in order to study tensor products over C(X) 
of continuous fields, it is natural to work in the C(X)-algebras framework. 

Let us introduce the following definition: 

D E F I N I T I O N 0.1 Given two C(X)-algebras A and B, we denote by I{A,B) the 
involutive ideal of the algebraic tensor product A ®aig B generated by the elements 
(fa) ® 6 - a ® (fb), where f E C(X), a e A and b e B. 

Our aim in the present article is to study the C*-norms on the algebraic tensor 
product (A <g)aig B)/X(A, B) of two C(X)-algebras A and B over C(X) and to see how 
one can enlarge the results of Takesaki to this framework. 

We first define an ideal J (A, B) C A ®aig B which contains 1(A, B) such that every 
C*-semi-norm on A ®aig B which is zero on T(A,B) is also zero on J(A,B) and we 
prove that there always exist a minimal C*-norm || ||m and a maximal C*-norm || \\M 
on the quotient (A ®aig B)/J(A,B). 

We then study the following question of G.A. Elliott ([5]): when do the two ideals 
I(A,B) and J{A,B) coincide? 

The author would like to express his gratitude to C. Anantharaman-Delaroche and 
G. Skandalis for helpful comments. He is also very indebted to S. Wassermann for 
sending him a preliminary version of [11] and to J. Cuntz who invited him to the 
Mathematical Institute of Heidelberg. 
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1 Preliminaries 

We briefly recall here the basic properties of C(X)-algebras. 

Let X be a Hausdorff compact space and C(X) be the C*-algebra of continuous 
functions on X. For x £ X, define the morphism ex : C(X) —> C of evaluation at x 
and denote by CX(X) the kernel of this map. 

DEFINITION 1.1 ([10]) A C(X)-algebra is a C*-algebra A endowed with a unital 
morphism from C(X) in the center of the multiplier algebra M(A) of A. 

We associate to such an algebra the unital C(X)-algebra A generated by A and 
u[C(X)} in M[A 0 C(X)] where u(g)(a 0 / ) = ga 0 gf for a G A and f,g G C(X). 

For x G X , denote by Ax the quotient of A by the closed ideal CX(X)A and by ax 

the image of a G A in the fibre Ax. Then, as 

K | | = i n f { | | [ l - / + /(x)]a||,/eC(Jf)}, 

the map x i-» ||ar|| is upper semi-continuous for all a G A ([14]). 
Note that the map A —> ®AX is a monomorphism since if a G A, there is a pure 

state <j> on A such that <f>(a*a) = \\a\\2. As the restriction of <f> to C(X) C M(A) is a 
character, there exists x £ X such that <f> factors through Ax and so <f>(a*a) — ||ax||

2. 
Let S(A) be the set of states on A endowed with the weak topology and let Sx(A) 

be the subset of states <p whose restriction to C(X) C M(A) is a character, i-e such 
that there exists a n i G l (denoted x = p(y>)) verifying ip(f) = f(x) for all / G C(X). 
Then the previous paragraph implies that the set of pure states P( A) on A is included 
in Sx(A). 

Let us introduce the following notation: if £ is a Hilbert A-module where A is a C*-
algebra, we will denote by CA {£) or simply C(£) the set of bounded A-linear operators 
on £ which admit an adjoint ([9]). 

DEFINITION 1.2 (fSj) Let A be a C(X)-algebra. 
A C(X)-representation of A in the Hilbert C(X)-module £ is a morphism 7r : 

A —• C(£) which is C(X)-linear, i.e. such that for every x G X, the representa­
tion 7rx = 7r ® ex in the Hilbert space £x — £ ® e x C factors through a representation of 
Ax. Furthermore, if TTx is a faithful representation of Ax for every x G X, n is said to 
be a field of faithful representations of A. 

A continuous field of states on A is a C(X)-linear map ip : A —> C(X) such that 
for any x G X, the map <px = ex o ip defines a state on Ax. 

If 7T is a C(X r̂epresentation of the C(X)-algebra A, the map x »—• ||7rx(a)|| is lower 
semi-continuous since (€,n(a)rj) G C(X) for every Ç,n G £. Therefore, if A admits a 
field of faithful representations 7r, the map x »—• ||ax|| = ||7rx(a)|| is continuous for every 
a G A, which means that A is a continuous field of C*-algebras over X ([4]). 

The converse is also true ([3] théorème 3.3): given a separable C(X)-algebra A, the 
following assertions are equivalent: 

1. A is a continuous field of C*-algebras over X, 
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2. the map p : Sx(A) —» X is open, 

3. A admits a field of faithful representations. 

2 C*-norms on (A ®alg B)/J(A, B) 

DEFINITION 2.1 Given two C(X)-algebras A and B, we define the involutive ideal 
J(A, B) of the algebraic tensor product A ®aig B of elements a £ A ®aig B such that 
ax = 0 in Ax ®aig Bx for every x G X. 

By construction, the ideal J(A, B) is included in J(A,B). 

PROPOSITION 2.2 Assume that \\ \\p is a C*-semi-norm on the algebraic tensor 
product A ®aig B of two C(X)-algebras A and B. 

If || \\p is zero on the ideal T(A,B), then 

\\a\\ß = Qfor allaeJ{A,B). 

Proof: Let Dp be the HausdorfF completion of A®a\g B for || ||̂ . By construction, Dp 
is a quotient of A (g)max B. Furthermore, if is the ideal of C(X x X) of functions 
which are zero on the diagonal, the image of Ca in M(Dp) is zero. 

As a consequence, the map from A ®max B onto Dp factors through the quotient 
M 

A®c{X)B of A ®max B by CA x (A ®max B). 
M 

But an easy diagram-chasing argument shows that (A®c{x)B)x = Ax ®m&x Bx for 
every x € X ([3] corollaire 3.17) and therefore the image of J (A, B) C A ®m&x B in 

M 
A®c(X)B is zero. • 

2.1 The maximal C*-norm 
DEFINITION 2.3 Given two C(X)-algebras Ax and A2, we denote by \\ \\M the C*-
semi-norm on Ai ®aig A2 defined for a G A\ ®a\g A2 by 

\\a\\M = sup{||(<7? ® m a x of )(a)||,s G X} 

where af is the map Ai —• (Aì)x. 

As || ||M is zero on the ideal J(Ai,A2), if we identify || ||M with the C*-semi-norm 
induced on (At ®alg A2)/J(A1, A2), we get: 

PROPOSITION 2.4 The semi-norm \\ \\M is the maximal C*-norm on the quotient 
(Ai ®alg A2)IJ(AUA2). 

Proof: By construction, || ||M defines a C*-norm on (A\®aigA2)/J(Ai, A2). Moreover, 
M 

as the quotient A\®c(X)A2 of A\ ®max A2 by Ca x (A\ ®m&x A2) maps injectively in 
M 

e (Ai®C(X)A2)a; = e ( (Ai), <8Wx (A3)«), 
x£X 
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M 
the norm of A\®c{x)A2 coincides on the dense subalgebra (Ai ®aig A2)/J(Ai, A2) 
with || ||M- But we saw in proposition 2.2 that if || \\p is a C*-norm on the algebra 
{A ®aig B)/J(A,B), the completion of (A ®alg B)/J(A,B) for || \\p is a quotient of 

M 
A®C{X)B. 

2.2 The minimal C*-norm 

DEFINITION 2.5 Given two C(X)-algebras Ax and A2, we define the semi-norm 
Il IIm on Ai ®aig A2 by the formula 

IMU = s u p i n e ®mìn *ì)((*)lx e X] 

where erf ¿5 the map Ai —> (Ai)x and we denote by Ai®c(x)A2 the Hausdorff completion 
of Ai ®aig A2 for that semi-norm. 

Remark: In general, the canonical map {Ai®c(x)A2)x —> (i4i)x ®mjn (A2)x is not a 
monomorphism ([11])· 

By construction, y ||m induces a C*-norm on (A\ ®aig A2)/J(Ai, A2). We are going 
to prove that this C*-norm defines the minimal C*-norm on the involutive algebra 
{M ®ai9 A2)/J(AUA2). 

Let us introduce some notation. 
Given two unital C(X)-algebras Ai and A2, let P(Ai) C Sx(Ai) denote the set of 

pure states on At and let P{A\) Xx P{A2) denote the closed subset of P{A\) x P(A2) 
of couples (w\,w2) such that p(w\) — p(^), where p : P(A{) —• X is the restriction to 
P{Ai) of the map p : Sx(Ai) —• X defined in section 1. 

LEMMA 2.6 Assume that || \\p is a C*-semi-norm on the algebraic tensor product 
A\ ®aig A2 of two unital C(X)-algebras A\ and A2 which is zero on the ideal J(A\,A2) 
and define the closed subset Sp C P{Ai) Xx ^ ( ^ 2 ) of couples {w\,w2) such that 

|(u>i ® W2)(a)| < \\a\\ß for all a e Ax ®alg A2. 

If Sp ^ P{Ai) Xx P(A2), there exist self-adjoint elements at- G A, such that ai®a2 

J(A\, A2) but (w\ ® w2)(a\ ® a2) = 0 for all couples (u>i,u>2) € Sp. 

Proof: Define for i = 1,2 the adjoint action ad of the unitary group U{A{) of A{ on 
the pure states space P(A{) by the formula 

[(adu)o;](a) = u{u*au). 

Then Sp is invariant under the product action ad x ad of U(A\) x U(A2) and we can 
therefore find non empty open subsets £/,· C P{Ai) which are invariant under the action 
of U(Ai) such that (Ux x U2) fl Sp = 0. 

Now, if Ki is the complement of U{ in P(Ai), the set 

Kt = {ae Ai I Lj(a) = 0 for all u e Ki} 
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is a non empty ideal of Ai and furthermore, if u G P(Ai) is zero on Kf~, then w belongs 
to I<i ([8] lemma 8,[15]). 

As a consequence, if (<fi,ip2) is a point of U\ Xx U2, there exist non zero self-adjoint 
elements at G Kj- such that <£>t(at) = 1. If x = p(v?»), this implies in particular that 
(a>i)x ® (a2)x 7̂  0, and hence aa ® a2 £ »7(j4i, A2). • 

LEMMA 2.7 f/i5/ theorem 1) Let Ax and A2 be two unital C(X)-algebras. 
If the algebra A\ is an abelian algebra, there exists only one C*-norm on the quotient 

{A1 ®alg A2)/J(AUA2). 

Proof: Let || \\p be a C*-semi-norm on Ai ®aig A2 such that for all a G A\ ®aig A2, 
\\a\\0 = 0 if and only if a € J(AUA2). 

If p G P(Ap) is a pure state on the HausdorfF completion Ap of A\ ®aig A2 for the 
semi-norm || ||̂ , then for every a\ ® a2 G A\ ®aig A2, 

p(ai ® a2) - p(ax ® l)p(l ® a2) 

since Ax ® 1 is included in the center of M(Ap). Moreover, if we define the states u>i 
and LO2 by the formulas u>i(ai) = p(a\ ® 1) and w2(a2) = p(l ®a2), then w2 is pure since 
p is pure, and (u>i,w2) G P(Ai) Xx P(A2). It follows that P(Ap) is isomorphic to Sp. 

In particular, if ai ® a2 G ® a/ 5 2̂ verifies 

(u>i ® uj2)(ai ® a2) = 0 for all couples (u^u )̂ € 

the element a\ ® a2 is zero in Ap and therefore belongs to the ideal J(Ai, A2). Accord­
ingly, the previous lemma implies that P(A\) Xx P(A2) = Sp = P(Ap). 

As a consequence, we get for every a G Ai ®aig A2 

||a||| = sup{p(a*a),PeP(Ap)} 
= supifa ® u2)(a*a), (ui,^) G P(Ai) xx P{A2)} 

But that last expression does not depend on || \\p, and hence the unicity. 

PROPOSITION 2.8 ([15] theorem 2) Let Ax and A2 be two unital C(X)-algebras. 
If || \\p is a C*-semi-norm on Ai ®aig A2 whose kernel is J(A\,A2), then 

Va G Ai ®aig A2, \\«\\ß > Mm-

Proof: If we show that Sp = P{Ai) xx P(A2), then for every p G Sp and every a in 
A\ ®aig A2, we have p(s*a*as) < p(s*s)\\a\\2p for all s G A\ ®aig A2. Therefore 

\\a\\J = sup{||(af Omin Ox)(a)|2, x € X] 

= sup (u>i ® u>2)(s*a*as) 
(ui ®w2)(s*s) 

(̂ 1,̂ 2) € P{A) Xx ^(^2) and 

s G Ai ®aig A2 such that (ui ® u2)(s*s) ^ o} 

< \\°b2. 
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Suppose that Sp ^ P(A\) xx P(A2). Then there exist thanks to lemma 2.6 
self-adjoint elements a, G At and a point x G X such that (ax)x ® (a2)x ^ 0 but 
(u>i ® to2)(ai ® a2) = 0 f° r all couples (u>i,u>2) G Ŝ . 

Let B be the unital abelian C(X)-algebra generated by C(X) and a± in A\. The 
m 

preceding lemma implies that B®c(x)A2 maps injectively into the Hausdorff completion 
Ap of Ax ®aig A2 for II ||^. 

Consider pure states p G P(BX) and w2 G P( (A2)x) such that p(ai) ^ 0 and 
m 

uj2(a2) 7̂  0 and extend the pure state p®u2 on B®c(x)A2 to a pure state w on A/3. If 
we set u>i(a) = w(a ® 1) for a G Ai, then u>i is pure and u;(a) = (u>i ® u>2)(a) for all 
q G Ai (g)a/0 A2 since u> and u;2 are pure ([15] lemma 4). As a consequence, (u>i,u>2) G S/?, 
which is absurd since (u>i ®u>2)(ai ® a2) = />(ai) 2̂(a2) ^ 0. • PROPOSITION 2.9 Given £wo C(X)-algebras Ai and A2} the semi-norm \\ \\m de­
fines the minimal C*-norm on the involutive algebra (A\ ®aig A2)/J(A\, A2). 

Proof: Let || \\p be a C*-norm on (Ai ®alg A2)/J(Ai, A2). Thanks to the previ­
ous proposition, all we need to prove is that one can extend || \\p to a C*-norm on 
Mi ®aig A2)l J(A\,A2)i where A\ and A2 are the unital C(X)-algebras associated to 
the C(X)-algebras Ax and A2 (definition 1.1). 

Consider the HausdorfF completion Dp of (Ai ®aig A 2)/ i7(A 1, A2) and denote by 7i\-
the canonical representation of A, in M(Dp) for i = 1,2. Let us define the representation 
Ki of Ai in M(Dp © Ai © A2 © C(X)) by the following formulas: 

5fi(6i + ti(/))(a © aa © a2 © 0) = (a-i(ti) + flf)a © (61 + f)at © /a 2 © 
2̂(62 + "(/))(« © «1 © «2 © = (̂ 2(62) + flf)a © /ai © (62 + /)«2 © 

For i = 1,2, let Si : *4t —> C(X) be the map defined by 

d[a + tx(/)] = / for a G A, and / G C(X). 

Then using the maps (ei ® £2), (ei (8) id) and (id ® £2), one proves easily that if a G 
•4i <8>a/5 A2, (7fi (8) #2) (a) = 0 if and only if a belongs to J(A\,A2). 

Therefore, the norm of M(Dp © Ax © A2 © C(X)) restricted to the subalgebra 
(Ai ®aig A2)/J(Ai,A2) extends || \\p. 

Remark: As the C(X)-algebra A is nuclear if and only if every fibre Ax is nuclear ([12]), 
A®c(x)B ~ A®c(x)B for every C(X)-algebra B if and only if A is nuclear. 

3 When does the equality I(A,B)=J(A,B) hold? 

Given two C(X)-algebras A and B, Giordano and Mingo have studied in [6] the case 
where the algebra C(X) is a von Neumann algebra: their theorem 3.1 and lemma 1.5 
of [10] imply that in that case, we always have the equality J(A,B) = J(A,B). 

Our purpose in this section is to find sufficient conditions on the C(X)-algebras A 
and B in order to ensure this equality and to present a counter-example in the general 
case. 
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PROPOSITION 3.1 Let X be a second countable Hausdorff compact space and let 
A and B be two C{X)~ algebras. 

If A is a continuous field of C*-algebras over X, then 1(A,B) = J(A,B). 

Proof: Let us prove by induction on the non negative integer n that if 

s = Σ 
l<t<n 

a,(g)òtG J(A,£), 

then s belongs to the ideal J(A, B). 

If n — 0, there is nothing to prove. Consider therefore an integer n > 0 and suppose 
the result has been proved for any p < n. 

Fix an element s = ^ a±; ® 6, G J{A, B) and define the continuous positive 
l<t<n 

function h G C(X) by the formula h(x)10 = £ ||(a/0*||2. 
The element a'k — h~4ak is then well defined in A for every k since a*kak 

Consequently, the function fk(x) = |(ak)x| is continuous. 

For 1 < k < n, let Dk denote the separable C(X)-algebra generated by 1 and the 
ak*a'j ? 1 ̂  i — n-> m the unital C(X)-agebra .4 associated to A (définition 1.1). Then 
Dk is a unital continuous field of C*-algebras over X (see for instance [3] proposition 
3.2). 

Consider the open subset Sk = {il> G Sx(Dk)/ipWk*a'k] > V>(/fc/2)}- If we apply 
lemma 3.6 b) of [3] to the restriction of p : Sx(Dk) —• X to we may construct a 
continuous field of states uik on Dk such that ^[a^*^] > /¿/2. 

Now, if we set s' = 5Z» a \ ® &n a s (ai* ® I) 5' belongs to J(Dk, B), 

(uk ® id)[{a'k* ® l)s'] = ^k[ak*ak]bk + E ^*K*a¿]6j = 0. 

Noticing that is in the ideal of C(X) generated by u>fc[a£*fljt], we get that fkbk belongs 
to the C(X)-module generated by the 6j, j ^ fc, and thanks to the induction hypothesis, 
it follows that (/£ ® l)s' G J(A, 5) for each fc. 

But /i2 = J2k fk a n d so h4 < n Ylk fk is in the ideal of C(X) generated by the /jj?, 
which implies 

s = {h4®l)s' eI{A,B). 

Remarks: 1. As a matter of fact, it is not necessary to assume that the space X satisfies 
the second axiom of countability thanks to the following lemma of [11]: if P(a) G C(X) 
denotes the map x i—• \\ax\\ for a € A, there exists a separable C*-subalgebra C(Y) 
of C(X) with same unit such that if Dk is the separable unital C*-algebra generated 
by C(Y).\ C A and the a'fa], 1 < j < n, then P(Dk) = C(Y). Furthermore, if 
$ : X —• Y is the transpose of the inclusion map C(Y) <—>· C(X) restricted to pure 
states, the map D/(C$(X)(Y)D) —> Ax is a monomorphism for every x G X since .4 is 
continuous. 
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Consider now a continuous field of states wk : Dk —• C(Y) on the continuous field Dk 

over Y; if E c-7 ® eP € <8>a/5 5 is zero in Ax ®alg Bx for i G l , then E«;*(c>)(a04 = 0 

in Bx, which enables us to conclude as in the separable case. 

2. J. Mingo has drawn the author's attention to the following result of Glimm ([7] 
lemma 10): if C(X) is a von Neumann algebra and A is a C(X)-algebras, then P(a)2 = 
min{z G C(X)+, z > a*a) is continuous for every a G A. Therefore we always have in 
that case the equality I(A,B) = J(A,B) thanks to the previous remark. 

COROLLARY 3.2 Let A and B be two C(X)-algebras and assume that there exists 
a finite subset F = {#i, · · ·, xp} C X such that for all a G A, the function x »—• ||ax|| is 
continuous on X\F. 

Then the ideals 2(A, B) and J (A, B) coincide. 

Proof: Fix an element a = Ei<t<n at ® 6, G A ®aig B which belongs to J(A, B). In 
particular, we have Et(at)x ® (b{)x — 0 in Ax ®aig Bx for each x G F. 

As a consequence, thanks to theorem III of [13], we may find complex matrices 
(Ajj)tj G Mn(C) for all 1 < m < p such that, if we define the elements c™ € A and 
d™ G B by the formulas 

cT = £,· Afta,- and dp = bk - £ j \^bh 

we have (c™)^ = 0 and (d™)Xm = 0 for all k and all m. 
Consider now a partition {//}i</<p of 1 G C(X) such that for all 1 < /, m < p, 

fi(xm) = $i,m where 6 is the Kronecker symbol and define for all 1 < k < n the 
elements ck = E m fm^ and dk = Em /m<*m- Thus, 

a = (Et «i ® *) + (E.j,m AJ>' ® / - 6 i ) 
= (E,- a,- ® di) + (E,- c,- ® bj) + (E t J , m A£(at- ® fmbé - fma{ ® 6,·)) 

and there exists therefore an element ¡3 G X(A, B) such that a — /3 admits a finite 
decomposition E. < ® &i with a(- G C 0(X\F) A and 6< G C0(X\F)B. 

But Co^X-FJA is a continuous field. Accordingly, proposition 3.1 implies that 
a-/3e I{C0{X\F)A, C0{X\F)B) C J(A, B). • 

Remark: IfN = NU{oo}is the Alexandroff compactification of N and if A and B are 
two C(N)-algebras, the corollary 3.2 implies the equality 2(A,B) = J(A,B). 

Let us now introduce a counter-example in the general case. 
Consider a dense countable subset X = {a n} n €N oi the interval [0,1]. The C*-

algebra Co(N) of sequences with values in C vanishing at infinity is then endowed with 
the C([0, l])-algebra structure defined by: 

V/GC([0,l]),Va = (a n)GC o(N), (/.a)n = f(an)an for n G N. 

If we call A this C([0, l])-algebra, then Ax = 0 for all x $ X. 
Indeed, assume that x £ X and take a G A. If e > 0, there exists N £ N such 

that \an\ < e for all n > N. Consider a continuous function / G C([0,1]) such that 
0 < / < 1, f(x) = 0 and /(a,-) = 1 for every 1 < i < TV; we then have: 
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K l l < l l ( i - / H l < e . 

Let Y = {6 n} n GN D e another dense countable subset of [0,1] and denote by B the 
associated C([0, l])-algebra whose underlying algebra is Co(N). 

Then, if XC\Y = 0, the previous remark implies that for every x G [0,1], Ax®aigBx = 
0 and hence, J (A, B) = A ®aig B. What we therefore need to prove is that the ideal 

jB) is strictly included in A ®aig B. 

Let us fix two sequences a G A and /3 G B whose terms are all non zero and suppose 
that a ® ft admits a decomposition £i<t<*[(/ia*) ® ft1 — ax ® (fifi1)] in A ®aig B. Then 
for every rc,m G N, 

anßm = £ 4 / t [ ¿ K ) - fi(bm)}. 
l<i<k 

Now, if we set (j>i(an) = al

n/an and ^,(6n) = fixJftn for 1 < i < A: and n G N, this 
equality means that for all (x,y) G X x V, 

i = Ei<¿<*^)v.-(»)1/íW-/<(»)]· 

But this is impossible because of the following proposition: 

PROPOSITION 3.3 Let X and Y be two dense subsets of the interval [0,1] and let 
n be a non negative integer. 

Given continuous functions /,· on [0,1] and numerical functions ipi : X —» C and 
tpi; : Y —> C for 1 < i < n, t/ fftere exists a constant c G C swcA £/&a£ 

V(x,y)€XxF, E ^(*)<^)[¿(z)-/.(í>)]=c 
l<t<n 

¿ften c = 0. 

Proof: We shall prove the proposition by induction on n. 

If n = 0, the result is trivial. Take therefore n > 0 and assume that the proposition 
is true for any k < n. 

Suppose then that the subsets X and Y of [0,1], the functions /,·, and 1 < 
i < n, satisfy the hypothesis of the proposition for the constant c. 

For x G X, let p(x) < n be the dimension of the vector space generated in C n by 

the (¥»,·(!,)[/<(*)-/<(»)])^„.»eK. 

If p(x) < n, there exists a subset F(x) C {1, . . . ,n} of cardinal p(x) such that for 
every j £ F(x): 

V;(y)[/;(*)-/i(y)] = Eí€F(«) AÍ (x)^-(y)L/i(i) - /<(?)] for all y e Y, 

where the A; (x) € C are given by the Cramer formulas. As a consequence, 

£.-6F(«)(tfi(*) + EiíF(»)W(¡e)^i(*)])vi(y)[/i(*) 
- fi(y)] = c. 

89 



E. BLANCHARD 

Now, if p(x) < n for every x E X, there exists a subset F C {1 , . . . , n) of cardinal 
p < n such that the interior of the closure of the set of those x for which F(x) = F is not 
empty and contains therefore a closed interval homeomorphic to [0,1]. The induction 
hypothesis for k = p implies that c = 0. 

Assume on the other hand that x0 G X verifies p(xo) = n. We may then find 
yi,"-yn in У such that if we set 

a*Ax) = <Pi(vj)\fi(x) - Шз)Ъ 
the matrix (dij(xo)) is invertible. There exists therefore a closed connected neighbor­
hood / of x0 on which the matrix (atJ(x)) remains invertible. 

But for each 1 < j < n, J2<iij(x)ipi{x) = c and therefore the wi(x) extend by the 
i 

Cramer formulas to continuous functions on the closed interval / . 
For y £ Y f) / , let q(y) denote the dimension of the vector space generated in C n by 

the (V>,(*)[/.(*) - My)]) 1 ^ B , x € X n /. 
If f̂(y) < n for every y, then the induction hypothesis implies c = 0. But if there 

exists y0 such that q(yo) = n, we may find an interval J C I homeomorphic to [0,1] on 
which the <pt extend to continuous functions; evaluating the starting formula at a point 
(x, x) G J x J, we get c = 0. 

4 The associativity 

Given three C(X)-algebras A l 5 A2 and A3, we deduce from [3] corollaire 3.17: 
M м 

[(А1®с(х)А2)®с(х)Аз]х = 
M 

(А1(8)с(Х)А2)а; 0max(A3)x = 
(Аг)х ®тах(А2)х <8>тах(А3)х, 

M 
which implies the associativity of the tensor product -®c(X)' over 

On the contrary, the minimal tensor product -<S)c(xy over C(X) is not in general 
associative. Indeed, Kirchberg and Wassermann have shown in [11] that if N = NU{oo} 
is the AlexandrofF compactification of N, there exist separable continuous fields A and 
B such that 

m 
(A®£̂ ĵ -B)oo ф Aqq ®min ôo · 

If we now endow the C*-algebra D = C with the C(N)-algebra structure defined by 
f.a = /(oo)a, then for all C(N)-algebra D', we have 

[D®C(^D'U = 
0 if n is finite, 

(D)00 if n — oo. 

Therefore, [(AOc(N)B)OC(N)D]00 = (Ai c ( S ) £)oo whereas [A^^iB^^D)]^ is 

isomorphic to A^ ®min -ßoo-

However, in the case of (separable) continuous fields, we can deduce the associativity 
m 

of '®c(xy from the following proposition: 
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PROPOSITION 4.1 Let A and B be two C(X)-algebras. 
Assume IT is a field of faithful representations of A in the Hilbert C(X)-module £, 

then the morphism a ® b —> 7r(a) ® b induces a faithful C(X)-linear representation of 
m 

A®c(X)B in the Hilbert B-module £ ®c(X) B. 

Proof: Notice that for all x G X, we have (£ ®c(x) B) ®B Bx = £x ® Bx. 
Now, as B maps injectively in B^ = ®x^xBx, CB{£ ®C{X) B) maps injectively in 

®XEXCBX(£X ® Bx) C CBD(£ ®c{X) B ®B Bd) and therefore if a € A ®aig B, we have 
||(TT ® id)(a)\\ = sup IK*, ® id)(ax)\\ = \\a\\m. • 

xex 

Accordingly, if for 1 < i < 3, A{ is a separable continuous field of C*-algebras 
over X which admits a field of faithful representations in the C(X)-module £t, the 

m m TO TO 

C(X)-representations of (Ai®C(x)A2)®c(x)A3 and Ai®c(x){A2®c(x)A3) in the.Hilbert 
C(X)-module (£x ®c(x) £2) ®c(X) £3 = £\ ®c(X) (£2 ®c(X) £3) are faithful, and hence 

TO TO 
the maps Ai ®mln A2 ®mln A3 -> {A1®C(x)A2)®C(x)A3 and Ai ®^n A2 ®mhi A3 -+ 

TO TO 
^4i(S)c(X)(̂ 2®c(X)̂ 43) have the same kernel. 
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