Astérisque

FLORIN P. BOCA

Ergodic actions of compact matrix pseudogroups on C^* -algebras

Astérisque, tome 232 (1995), p. 93-109 <http://www.numdam.org/item?id=AST 1995 232 93 0>

© Société mathématique de France, 1995, tous droits réservés.

L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Ergodic Actions of Compact Matrix Pseudogroups on C*-algebras

Florin P. Boca

Dedicated to Professor Masamichi Takesaki on the ocasion of his 60th birthday

Let G be a compact group acting on a unital C^* -algebra \mathcal{M} . The action is said to be ergodic if the fixed point algebra \mathcal{M}^G reduces to scalars. The first breakthrough in the study of such actions was the finiteness theorem of Høegh-Krohn, Landstad and Størmer [HLS]. They proved that the multiplicity of each $\pi \in \hat{G}$ in \mathcal{M} is at most dim (π) and the unique G-invariant state on \mathcal{M} is necessarily a trace. When combined with Landstad's result [L] that finite-dimensionality for the spectral subspaces of actions of compact groups implies that the crossed product is a type $I C^*$ -algebra (and in fact, as pointed out in [Wa1] is a direct sum of algebras of compact operators), the finiteness theorem shows that the crossed product of a unital C^* -algebra by an ergodic action of a compact group is necessarily equal to $\oplus_i \mathcal{K}(\mathcal{H}_i)$.

The study of such actions was essentialy pushed forward by Wassermann. He developed an outstanding machinery based on the notion of multiplicity maps, establishing a remarkable connection with the equivariant K-theory. This approach allowed him to prove, among other important things, the strong negative result that SU(2) cannot act ergodically on the hyperfinite II_1 factor [Wa3].

The aim of this note is to study ergodic actions of Woronowicz's compact matrix pseudogroups on unital C^* -algebras, extending some of the previous results. In this insight we prove in §1 the analogue of the finiteness theorem. More precisely, if G =(A, u) is a compact matrix pseudogroup acting ergodically on a unital C^* -algebra by a coaction $\sigma : \mathcal{M} \to \mathcal{M} \otimes A$ such that $\sigma(\mathcal{M})(1_{\mathcal{M}} \otimes A)$ is dense in $\mathcal{M} \otimes A$, then there is a decomposition of the *-algebra of σ -finite elements into isotypic subspaces $\mathcal{M}_0 = \bigoplus_{\alpha \in \widehat{G}} \mathcal{M}_{\alpha}$, orthogonal with respect to the scalar product induced on \mathcal{M} by the unique σ -invariant state ω . Moreover, the spectral subspaces \mathcal{M}_{α} are finite dimensional and dim $(\mathcal{M}_{\alpha}) \leq M_{\alpha}^2$, \mathcal{M}_{α} being the quantum dimension of $\alpha \in \widehat{G}$. If the Haar measure is faithful on A, then \mathcal{M}_0 is dense in the GNS Hilbert space \mathcal{H}_{ω} .

Although ω is not in general a trace, we prove the existence of a multiplicative linear map $\Theta : \mathcal{M}_0 \to \mathcal{M}_0$ such that $\omega(xy) = \omega(\Theta(y)x)$ for all $x \in \mathcal{M}, y \in \mathcal{M}_0$ and Θ is a scalar multiple of the modular operator F_{α} when restricted to each irreducible σ -invariant subspace of the spectral subspace \mathcal{M}_{α} .

The crossed products by such coactions are studied in §2 where we prove, using the Takesaki-Takai type duality theorem of Baaj and Skandalis [BS], that they are isomorphic all the time to a direct sum of C^* -algebras of compact operators. As a corollary, if a compact matrix pseudogroup with underlying nuclear C^* -algebra acts ergodically on a unital C^* -algebra \mathcal{M} , then \mathcal{M} follows nuclear.

We are grateful to Masamichi Takesaki for discussions on [BS] and [Wor], to Gabriel Nagy for valuable discussions on this paper and related topics and to the referee for his pertinent considerations. Our thanks go to Magnus Landstad for his remarks on a preliminary draft of this paper. After a discussion with him, I realized that the dimension of the spectral subspace of α is bounded by M^2_{α} , improving a previous rougher estimation.

§1. The isotypic decomposition and finiteness of multiplicities for ergodic actions

We start with a couple of definitions.

Definition 1 ([BS]) A coaction of a unital Hopf C^* -algebra (A, Δ_A) on a unital C^* algebra \mathcal{M} is a unital one-to-one *-homomorphism $\sigma : \mathcal{M} \to \mathcal{M} \otimes A$ (the tensor product will be all the time the minimal C^* -one) that makes the following diagram commutative

$$\begin{array}{cccc} \mathcal{M} & \stackrel{\sigma}{\longrightarrow} & \mathcal{M} \otimes A \\ \sigma \uparrow & \uparrow & id_{\mathcal{M}} \otimes \Delta_{A} \\ \mathcal{M} \otimes A & \stackrel{\sigma \otimes id_{A}}{\longrightarrow} & \mathcal{M} \otimes A \otimes A \end{array}$$

A C^{*}-algebra \mathcal{M} with a coaction σ of (A, Δ_A) is called an A-algebra if σ is one-toone and $\sigma(\mathcal{M})(1_{\mathcal{M}} \otimes A)$ is dense in $\mathcal{M} \otimes A$.

Definition 2 The fixed points of the coaction $\sigma : \mathcal{M} \to \mathcal{M} \otimes A$ are the elements of $\mathcal{M}^{\sigma} = \{x \in \mathcal{M} \mid \sigma(x) = x \otimes 1_A\}$. The coaction σ is called ergodic if $\mathcal{M}^{\sigma} = C1_{\mathcal{M}}$.

We denote by \mathcal{M}^* the set of continuous linear functionals on \mathcal{M} .

Definition 3 $\phi \in \mathcal{M}^*$ is called σ -invariant if $(\phi \otimes \psi)(\sigma(x)) = (\phi \otimes \psi)(x \otimes 1_A) = \psi(1_A)\phi(x)$ for all $\psi \in A^*$.

Let G = (A, u) be a compact matrix pseudogroup group with comultiplication $\Delta_A : A \to A \otimes A$, smooth structure \mathcal{A} and coinverse $\kappa : \mathcal{A} \to \mathcal{A}$ (cf [Wor]). Then A^* is an algebra with respect to the convolution $\phi * \psi = (\phi \otimes \psi) \Delta_A$, $\phi, \psi \in A^*$ and there exists a unique state h on A, called the Haar measure of G, so that $\phi * h = h * \phi = \phi(1_A)h$ for all $\phi \in A^*$. Let \mathcal{M} be a unital C^* -algebra which is an A-algebra via the coaction $\sigma : \mathcal{M} \to \mathcal{M} \otimes A$ and consider $\theta = (id_{\mathcal{M}} \otimes h)\sigma$. **Lemma 4** i) $\theta(x) \in \mathcal{M}^{\sigma}$ for all $x \in \mathcal{M}$. Moreover θ is a conditional expectation from \mathcal{M} onto \mathcal{M}^{σ} .

ii) If σ is ergodic, then $\theta(x) = \omega(x) \mathbf{1}_{\mathcal{M}}$ and ω is the only σ -invariant state on \mathcal{M} .

Proof. i) Note that

$$\begin{aligned} \sigma(\theta(x)) &= \sigma((id_{\mathcal{M}}\otimes h)(\sigma(x)) = (\sigma\otimes h)(\sigma(x)) \\ &= (id_{\mathcal{M}}\otimes id_{A}\otimes h)(\sigma\otimes id_{A})(\sigma(x)) \\ &= (id_{\mathcal{M}}\otimes id_{A}\otimes h)(id_{\mathcal{M}}\otimes \Delta_{A})(\sigma(x)) \\ &= (id_{\mathcal{M}}\otimes (id_{A}\otimes h)\Delta_{A})(\sigma(x)), \qquad x\in\mathcal{M}. \end{aligned}$$

Since $(id_A \otimes h)(\Delta_A(a)) = h * a = h(a)1_A$, $a \in A$ ([Wor, 4.2]), we obtain further :

$$\begin{aligned} (\psi_1 \otimes \psi_2)((id_{\mathcal{M}} \otimes (id_A \otimes h)\Delta_A)(y \otimes a)) \\ &= (\psi_1 \otimes \psi_2)(y \otimes (id_A \otimes h)(\Delta_A(a))) \\ &= (\psi_1 \otimes \psi_2)(y \otimes h(a)1_A) = \psi_1(y)\psi_2(1_A)h(a) \\ &= (\psi_1 \otimes \psi_2)((id_{\mathcal{M}} \otimes h)(y \otimes a) \otimes 1_A), \end{aligned}$$

for all $y \in \mathcal{M}, a \in A, \psi_1 \in \mathcal{M}^*, \psi_2 \in A^*$. Therefore for $x \in \mathcal{M}, \psi_1 \in \mathcal{M}^*, \psi_2 \in A^*$ we have :

$$(\psi_1 \otimes \psi_2)(\sigma(\theta(x)) = (\psi_1 \otimes \psi_2)((id_{\mathcal{M}} \otimes h)\sigma(x) \otimes 1_A) = (\psi_1 \otimes \psi_2)(\theta(x) \otimes 1_A)$$

and consequently $\sigma(\theta(x)) = \theta(x) \otimes 1_A$ for all $x \in \mathcal{M}$. θ is a norm one projection since

$$heta(x) = (id_{\mathcal{M}}\otimes h)(\sigma(x)) = (id_{\mathcal{M}}\otimes h)(x\otimes 1) = x, \qquad x\in \mathcal{M}^{\sigma}.$$

ii) Let $\psi \in A^*$. Then we get for all $x \in \mathcal{M}$:

$$\begin{aligned} (\omega \otimes \psi)(\sigma(x)) &= ((id_{\mathcal{M}} \otimes h)\sigma \otimes \psi)(\sigma(x)) \\ &= (id_{\mathcal{M}} \otimes \psi)((id_{\mathcal{M}} \otimes h)\sigma \otimes id_{\mathcal{A}})(\sigma(x)) \\ &= (id_{\mathcal{M}} \otimes \psi)(id_{\mathcal{M}} \otimes h \otimes id_{\mathcal{A}})((\sigma \otimes id_{\mathcal{A}})\sigma(x)) \\ &= (id_{\mathcal{M}} \otimes \psi)(id_{\mathcal{M}} \otimes h \otimes id_{\mathcal{A}})((id_{\mathcal{M}} \otimes \Delta_{\mathcal{A}})\sigma(x)) \\ &= (id_{\mathcal{M}} \otimes \psi)(id_{\mathcal{M}} \otimes (h \otimes id_{\mathcal{A}})\Delta_{\mathcal{A}})(\sigma(x)) \\ &= \psi(1_{\mathcal{A}})(id_{\mathcal{M}} \otimes h)(\sigma(x)) = \psi(1_{\mathcal{A}})\omega(x), \end{aligned}$$

therefore ω is a σ -invariant state on \mathcal{M} . Finally, assume that ϕ is a σ -invariant state on \mathcal{M} . Then for all $x \in \mathcal{M}$:

$$\phi(x) = (\phi \otimes h)(\sigma(x)) = \phi((id_{\mathcal{M}} \otimes h)(\sigma(x))) = \phi(\theta(x)) = \phi(\omega(x)1_{\mathcal{M}}) = \omega(x). \quad \Box$$

Remarks. 1). The proof of the previous statement doesn't use the faithfulness of σ but only the equality $(\sigma \otimes id_A)\sigma = (id_{\mathcal{M}} \otimes \Delta_A)\sigma$.

2). Since the tensor product of two faithful completely positive maps is still faithful [T], it follows that if σ is one-to-one and h is faithful on A, then ω is a faithful state on \mathcal{M} .

3). Although one can easily pass from a compact matrix pseudogroup to the reduced one, which has faithful Haar measure, as indicated at page 656 in [Wor], it turns out that the Haar measure is faithful in several important examples (e.g. on commutative CMP, on reduced cocommutative CMP or, cf. [N], on $SU_{\mu}(N)$).

Denote by \mathcal{H}_{ω} the completion of \mathcal{M} with respect to the inner product $\langle x, y \rangle_2 = \omega(y^*x)$ and let \mathcal{M} acting on \mathcal{H}_{ω} in the GNS representation. Consider the C^* -Hilbert module $\mathcal{H}_{\omega} \otimes A$ with the A-valued inner product $\langle x_{\omega} \otimes a, y_{\omega} \otimes b \rangle_A = \omega(y^*x)b^*a$, for $x, y \in \mathcal{M}, a, b \in A$, which can be viewed as $\mathcal{M} \otimes A$ in the Stinespring representation of the completely positive map $\omega \otimes id_A$. Define also $V : \mathcal{H}_{\omega} \otimes A \to \mathcal{H}_{\omega} \otimes A$ by :

$$V(\sum_{i} (x_i)_{\omega} \otimes a_i) = \sum_{i} \sigma(x_i)(1_{\omega} \otimes a_i), \quad x_i \in \mathcal{M}, a_i \in A$$

Lemma 5 V is a unitary in $\mathcal{L}(\mathcal{H}_{\omega} \otimes A) = M(\mathcal{K}(\mathcal{H}_{\omega}) \otimes A)$ (the multipliers of the C^{*}-algebra $\mathcal{K}(\mathcal{H}_{\omega}) \otimes A$) and $\sigma(x) = V(x \otimes 1_A)V^*$, $x \in \mathcal{M}$.

Proof. For any $\phi \in A^*, a, b \in A$, denote by $\phi(a \cdot b) \in A^*$ the linear functional $\phi(a \cdot b)(x) = \phi(axb), x \in A$. The σ -invariance of ω yields :

$$\begin{aligned} \phi((\omega \otimes id_A)((1_{\mathcal{M}} \otimes b^*)\sigma(x)(1_{\mathcal{M}} \otimes a)) &= (\omega \otimes \phi(b^* \cdot a))(\sigma(x)) \\ &= \phi(b^* \cdot a)(1_A)\omega(x) = \phi(b^*a)\omega(x), \quad x \in \mathcal{M}, a, b \in A, \phi \in A^*, \end{aligned}$$

therefore we have for all $a, b \in A, x, y \in \mathcal{M}$:

$$\begin{array}{l} \langle V(x_{\omega}\otimes a), V(y_{\omega}\otimes b)\rangle_{A} = \langle \sigma(x)(1_{\omega}\otimes a), \sigma(y)(1_{\omega}\otimes b)\rangle_{A} \\ = (\omega\otimes id_{A})((1_{\mathcal{M}}\otimes b^{*})\sigma(y^{*}x)(1_{\mathcal{M}}\otimes a)) = \omega(y^{*}x)b^{*}a = \langle x_{\omega}\otimes a, y_{\omega}\otimes b\rangle_{A} \end{array}$$

and V follows isometry on $\mathcal{H}_{\omega} \otimes A$. Furthermore V is unitary since $\sigma(\mathcal{M})(1_{\mathcal{M}} \otimes A)$ is dense in $\mathcal{M} \otimes A$ and the relation $V(x \otimes 1_A) = \sigma(x)V, x \in \mathcal{M}$, is obvious. \Box

Definition 6 ([BS]) A corepresentation of the Hopf C^* -algebra (A, Δ_A) is a unitary $V \in \mathcal{L}(\mathcal{H}_V \otimes A) = M(\mathcal{K}(\mathcal{H}_V) \otimes A)$ such that

$$V_{12}V_{13} = (id_{\mathcal{L}(\mathcal{H}_V)} \otimes \Delta_A)(V).$$

All the corepresentations throughout this paper will be unitary unless specified otherwise. Note that in the case when $\dim \mathcal{H}_V < \infty V$ is called in [Wor] a (finite dimensional) representation of the quantum matrix pseudogroup G = (A, u). Thus the representations of the quantum matrix pseudogroup G = (A, u) are the corepresentations of (A, Δ_A) and we will call them simply the corepresentations of A.

Lemma 7 The unitary V from Lemma 5 is a corepresentation of A.

Proof. Let $T = (id_{\mathcal{L}(\mathcal{H}_{\omega})} \otimes \Delta_A)(V) \in \mathcal{L}(\mathcal{H}_{\omega} \otimes A \otimes A) = M(\mathcal{K}(\mathcal{H}_{\omega}) \otimes A \otimes A)$. Since $1_{\omega} \otimes 1_A$ is fixed by V, then $\langle V(1_{\omega} \otimes 1_A), x_{\omega}^* \otimes 1_A \rangle_A = (\omega(x \cdot) \otimes id_A)(V) = \omega(x)1_A$ and consequently :

$$\begin{aligned} (\omega(x\cdot)\otimes id_{A\otimes A})(id_{\mathcal{L}(\mathcal{H}_{\omega})}\otimes \Delta_{A})(V) &= (\omega(x\cdot)\otimes \Delta_{A})(V) \\ &= \Delta_{A}((\omega(x\cdot)\otimes id_{A})(V)) = \Delta_{A}(\omega(x)1_{A}) = \omega(x)1_{A\otimes A}, \quad x\in\mathcal{M}. \end{aligned}$$

Then, for any $a, a', b, b' \in A$:

$$\begin{aligned} \langle T(1_{\omega} \otimes a \otimes b), x_{\omega} \otimes a' \otimes b' \rangle_{A} &= (\omega \otimes id_{A \otimes A})((x^{*} \otimes a'^{*} \otimes b'^{*})T(1_{M} \otimes a \otimes b)) \\ &= (a'^{*} \otimes b'^{*})((\omega(x^{*} \cdot) \otimes id_{A \otimes A})(T))(a \otimes b) \\ &= \omega(x^{*})a'^{*}a \otimes b'^{*}b = \langle 1_{\omega} \otimes a \otimes b, x_{\omega} \otimes a' \otimes b' \rangle_{A}, \end{aligned}$$

therefore $T(1_{\omega} \otimes a \otimes b) = 1_{\omega} \otimes a \otimes b$. Furthermore, since T is unitary, we also have $T^*(1_{\omega} \otimes a \otimes b) = 1_{\omega} \otimes a \otimes b$ and for any $x \in \mathcal{M}, a, b \in A$:

$$V_{12}V_{13}(x_{\omega} \otimes a \otimes b) = V_{12}(\sigma(x)_{13}(1_{\omega} \otimes a \otimes b)) = (\sigma \otimes id_A)(\sigma(x))(1_{\omega} \otimes a \otimes b)$$

= $(id_{\mathcal{M}} \otimes \Delta_A)(\sigma(x))(1_{\omega} \otimes a \otimes b)$
= $T(x \otimes 1_A \otimes 1_A)T^*(1_{\omega} \otimes a \otimes b) = T(x_{\omega} \otimes a \otimes b).$

Remark 8 Let $W \in \mathcal{L}(\mathcal{H}_W \otimes A)$ be a corepresentation, $\mathcal{H}_V \subset \mathcal{H}_W$ be a closed subspace of \mathcal{H}_W and denote by P the orthogonal projection from \mathcal{H}_W onto \mathcal{H}_V . If $(P \otimes id_A)W =$ $W(P \otimes id_A)$, then $V = W(P \otimes id_A) \in \mathcal{L}(\mathcal{H}_V \otimes A)$ is by definition a subcorepresentation of W. Clearly $V^{\perp} = W(P^{\perp} \otimes id_A)$, where $P^{\perp} = I_{\mathcal{L}(\mathcal{H}_W)} - P$, is also a subcorepresentation of W.

For $V \in M(\mathcal{K}(\mathcal{H}_V) \otimes A)$ and $\rho \in A^*$ define as in [Wor] $V_{\rho} = (id_{\mathcal{L}(\mathcal{H}_V)} \otimes \rho)V \in \mathcal{L}(\mathcal{H}_V)$. Then Lemma 6 yields for any $\rho, \rho' \in A^*$:

$$V_{\rho}V_{\rho'} = (id \otimes \rho)(V)(id \otimes \rho')(V) = (id \otimes \rho \otimes \rho')(V_{12}V_{13}) = (id \otimes \rho \otimes \rho')(id \otimes \Delta_A)(V) = (id \otimes (\rho * \rho'))(V) = V_{\rho * \rho'}.$$

One checks immediately as in [Wor, 4.3] that $E = V_h$ is the projection of \mathcal{H}_V onto the subspace $\{\xi \in \mathcal{H}_V \mid V_\rho \xi = \rho(1_A)\xi, \forall \rho \in A^*\}$ of all V-invariant vectors of \mathcal{H}_V .

The tensor product of the corepresentations $V \in \mathcal{L}(\mathcal{H}_V \otimes A)$ and $W \in \mathcal{L}(\mathcal{H}_W \otimes A)$ is defined as in the finite dimensional case by $V \odot W = V_{13}W_{23} \in \mathcal{L}(\mathcal{H}_V \otimes \mathcal{H}_W \otimes A)$ and is still a corepresentation since

$$\begin{array}{ll} (id \otimes \Delta_A)(V \odot W) &= (id \otimes \Delta_A)(V_{13})(id \otimes \Delta_A)(W_{23}) \\ &= (V_{13}W_{23})_{12}(V_{13}W_{23})_{13} = (V \odot W)_{12}(V \odot W)_{13}. \end{array}$$

When dim $\mathcal{H}_W < \infty$, W^c denotes as in [Wor] its contragradient corepresentation, acting on the conjugate Hilbert space \mathcal{H}'_W .

Lemma 9 If the Haar measure is faithful on A and $V \in M(\mathcal{K}(\mathcal{H}_V) \otimes A)$ is a corepresentation of A such that $(V \odot \alpha^c)_h = 0$ for all $\alpha \in \widehat{G}$, then V = 0.

Proof. Denote $d_{\alpha} = \dim(\alpha)$. Then $\alpha = \sum_{i,j=1}^{d_{\alpha}} e_{ij} \otimes u_{ij}^{\alpha}, u_{ij} \in \mathcal{A}$, where $\{e_{ij}\}_{1 \leq i,j \leq d_{\alpha}}$ is the matrix unit of $\mathcal{L}(\mathcal{H}_{\alpha})$ and $\alpha^{c} = \sum_{i,j=1}^{d_{\alpha}} e_{ij}^{T} \otimes u_{ji}^{\alpha*} \in \mathcal{L}(\mathcal{H}_{\alpha}') \otimes \mathcal{A}$. If ϕ_{ij} denotes the linear functional on $\mathcal{L}(\mathcal{H}_{\alpha}')$ defined by $\phi_{ij}(e_{kl}^{T}) = \delta_{ik}\delta_{jl}$ we obtain for all $\phi \in \mathcal{L}(\mathcal{H}_{V})_{*}$:

$$(\phi \otimes \phi_{ij} \otimes id_A)(id_{\mathcal{L}(\mathcal{H}_V \otimes \mathcal{H}'_{\alpha})} \otimes h)(V \odot lpha^c) = h((\phi \otimes id_A)(V)u_{ji}^{lpha*})$$

Since $\{u_{ij}^{\alpha}\}_{1\leq i,j\leq d_{\alpha},\alpha\in\widehat{G}}$ is a linear basis in \mathcal{A} , then $h((\phi\otimes id_A)(V)a)=0$ for all $a\in\mathcal{A}$ and therefore for all $a\in\mathcal{A}$. But h is faithful on A hence $(\phi\otimes id_A)(V)=0$ for all $\phi\in\mathcal{L}(\mathcal{H}_V)_*$ and therefore V=0. \Box

Corollary 10 i) If the Haar measure is faithful on A, then there are no irreducible infinite dimensional corepresentations of A.

ii) All the finite dimensional corepresentations (not necessarily unitary) of A are smooth (compare with a related question at page 636 in [Wor]).

Proof. i) Let V be an infinite dimensional corepresentation of A on \mathcal{H}_V . By the previous Lemma, there exists $\alpha \in \widehat{G}$ such that $(V \odot \alpha^c)_h \neq 0$. Pick a nonzero element $S \in \operatorname{Ran}(V \otimes \alpha^c)_h$. Since α is finite dimensional, $S \in \operatorname{Mor}(\alpha, V)$. But KerS is α -invariant and α irreducible, thus S is one-to-one and we get the V-invariant finite-dimensional subspace $\operatorname{Ran} S \subset \mathcal{H}_V$, contradicting the irreducibility of V.

ii) Consider now a finite dimensional corepresentation V of A, not necessarily unitary. The statement in the previous Lemma holds true, thus either V is completely degenerate or there exists $\alpha \in \hat{G}$ such that $(V \odot \alpha^c)_h \neq 0$ and $0 \neq S \in \operatorname{Mor}(\alpha, V)$. It follows that \mathcal{H}_V contains a V-invariant subspace $\mathcal{K} = \operatorname{Ran}S$ and $V \mid_{\mathcal{K}}$ is equivalent to α , therefore it is smooth, irreducible and nondegenerate. By [Wor, Prop.4.6] \mathcal{K} has a V-invariant complement and the process continues until we write \mathcal{H}_V as a direct sum of linear subspaces $\mathcal{H}_V = \bigoplus_i \mathcal{H}_i \oplus \mathcal{H}_0$, each subspace being V-invariant, $V \mid_{\mathcal{H}_i}$ being equivalent to a corepresentation from \hat{G} and $V \mid_{\mathcal{H}_0}$ completely nondegenerate. \Box

The statements in the previous Corollary are implicit in S. L. Woronowicz, Tannaka-Krein duality for compact matrix pseudogroups, *Invent. Math.* 93(1988), 35-76, as the referee informed as.

For any $\alpha \in \widehat{G}$ consider as in [Wor, §5] $\rho_{\alpha} \in A^*$, $\rho_{\alpha}(a) = M_{\alpha}h((f_1 * \chi_{\alpha})^*a)$. Then $\rho_{\alpha} * \rho_{\beta} = \delta_{\alpha\beta}\rho_{\alpha}$ for all $\alpha, \beta \in \widehat{G}$. Therefore, if $U \in M(\mathcal{K}(\mathcal{H}_U) \otimes A)$ is a representation of A, $P_{\alpha} = U_{\rho_{\alpha}} = (id_{\mathcal{L}(\mathcal{H}_U)} \otimes \rho_{\alpha})(U)$ are mutually orthogonal projections, but they are not self-adjoint in general. Consider also the bounded linear maps $P_{\alpha} : \mathcal{M} \to \mathcal{M}$, $P_{\alpha}(x) = (id_{\mathcal{M}} \otimes \rho_{\alpha})(\sigma(x))$. Then we have for all $x \in \mathcal{M}$:

$$\begin{aligned} P_{\alpha}P_{\beta}(x) &= (id_{\mathcal{M}} \otimes \rho_{\alpha})(\sigma((id_{\mathcal{M}} \otimes \rho_{\beta})(\sigma(x))) \\ &= (id_{\mathcal{M}} \otimes \rho_{\alpha})((id_{\mathcal{M} \otimes \mathcal{A}} \otimes \rho_{\beta})(\sigma \otimes id_{\mathcal{A}})(\sigma(x))) \\ &= (id_{\mathcal{M}} \otimes \rho_{\alpha})((id_{\mathcal{M} \otimes \mathcal{A}} \otimes \rho_{\beta})(id_{\mathcal{M}} \otimes \Delta_{\mathcal{A}})(\sigma(x))) \\ &= (id_{\mathcal{M}} \otimes \rho_{\alpha}(id_{\mathcal{A}} \otimes \rho_{\beta})\Delta_{\mathcal{A}})(\sigma(x)) \\ &= (id_{\mathcal{M}} \otimes (\rho_{\alpha} * \rho_{\beta}))(\sigma(x)) = \delta_{\alpha\beta}P_{\alpha}(x). \end{aligned}$$

We denote by \mathcal{M}_{α} the closed subspace $P_{\alpha}(\mathcal{M})$ of $\mathcal{M}, \alpha \in \widehat{G}$ and call it the *spectral* subspace associated with α .

The following lemma contains a couple of properties of the functionals $\rho_{\alpha} \in A^*$, $\alpha \in \hat{G}$.

Lemma 11 i) $\mathcal{M}_{\alpha^c} = \mathcal{M}^*_{\alpha}$ for all $\alpha \in \widehat{G}$. ii) $(h \otimes \rho_{\beta^c} \otimes \rho_{\alpha})(\Delta_A(a)_{12}\Delta_A(b)_{13}) = 0$ for all $a, b \in A, \alpha \neq \beta$ in \widehat{G} .

Proof. i) Let $x \in \mathcal{M}_{\alpha}$. Then $x = (id_{\mathcal{M}} \otimes \rho_{\alpha})(\sigma(x))$ and we have to check that $x^* = (id_{\mathcal{M}} \otimes \rho_{\alpha^c})(\sigma(x^*))$. Obvious computations which are implicit in [Wor, 5.6] show that $(f_1 * \chi_{\alpha^c})^* = \chi_{\alpha} * f_{-1}$ and $M_{\alpha} = M_{\alpha^c}$, where $M_{\alpha} = f_{-1}(\chi_{\alpha}) = f_1(\chi_{\alpha})$, therefore we have for any $a \in A$:

$$\overline{\rho_{\alpha}(a)} = M_{\alpha}\overline{h((f_{1} * \chi_{\alpha})^{*}a)} = M_{\alpha}h(a^{*}(f_{1} * \chi_{\alpha}))
= M_{\alpha}h(a^{*}(f_{1} * \chi_{\alpha} * f_{-1} * f_{1})) = M_{\alpha}h((\chi_{\alpha} * f_{-1})a^{*})
= M_{\alpha}h((f_{1} * \chi_{\alpha^{c}})^{*}a^{*}) = M_{\alpha^{c}}h((f_{1} * \chi_{\alpha^{c}})^{*}a^{*}) = \rho_{\alpha^{c}}(a^{*}).$$

This shows that $x^* = (id_{\mathcal{M}} \otimes \rho_{\alpha})(\sigma(x))^* = (id_{\mathcal{M}} \otimes \rho_{\alpha^c})(\sigma(x)^*) = (id_{\mathcal{M}} \otimes \rho_{\alpha^c})(\sigma(x^*)).$

ii) Since $span\{u_{ij}^{\gamma}\}_{1 \le i,j \le d_{\gamma}, \gamma \in \widehat{G}}$ is norm dense in A it is enough to take $a = u_{ij}^{\gamma}, b = u_{kl}^{\theta}$ for some $\gamma, \theta \in \widehat{G}$ and to remark that :

$$(h \otimes \rho_{\beta^c} \otimes \rho_{\alpha})(\Delta_A(u_{ij}^{\gamma})_{12}\Delta_A(u_{kl}^{\theta})_{13}) \\ = (h \otimes \rho_{\beta^c} \otimes \rho_{\alpha})(\sum_{r=1}^{d_{\gamma}} \sum_{s=1}^{d_{\theta}} u_{ir}^{\gamma} u_{ks}^{\theta} \otimes u_{rj}^{\gamma} \otimes u_{sl}^{\theta}) \\ = \sum_{r=1}^{d_{\gamma}} \sum_{s=1}^{d_{\theta}} h(u_{ir}^{\gamma} u_{ks}^{\theta}) \delta_{\beta^c \gamma} \delta_{rj} \delta_{\alpha \theta} \delta_{sl} \\ = h(u_{ij}^{\beta^c} u_{kl}^{\alpha}) = h(u_{ij}^{\beta^*} u_{kl}^{\alpha}) = 0. \quad \Box$$

Corollary 12 $\omega(P_{\beta}(y)^*P_{\alpha}(x)) = \omega(P_{\alpha}(x)P_{\beta}(y)^*) = 0$ for all $x, y \in \mathcal{M}, \alpha \neq \beta$ in \widehat{G} .

Proof. Denote $x_0 = P_{\alpha}(x), y_0 = P_{\beta}(y)$. By the previous lemma $x_0^* \in \operatorname{Ran} P_{\alpha^c}$ and $y_0^* \in \operatorname{Ran} P_{\beta^c}$. Then we obtain :

$$\sigma(x_0) = \sigma((id_{\mathcal{M}} \otimes \rho_{\alpha})(\sigma(x))) = (id_{\mathcal{M} \otimes \mathcal{A}} \otimes \rho_{\alpha})(id_{\mathcal{M}} \otimes \Delta_A)(\sigma(x)) = (id_{\mathcal{M}} \otimes (id_A \otimes \rho_{\alpha})\Delta_A)(\sigma(x))$$

and the similar relations for the pairs $(x_0^*, \alpha^c), (y_0, \beta), (y_0^*, \beta^c)$. The σ -invariance of ω and the previous relations yield :

$$\begin{array}{ll} \omega(y_0^*x_0) &= (\omega \otimes h)(\sigma(y_0^*)\sigma(x_0)) \\ &= (\omega \otimes h)((id_{\mathcal{M}} \otimes (id_A \otimes \rho_{\beta^c})\Delta_A)(\sigma(y^*))(id_{\mathcal{M}} \otimes (id_A \otimes \rho_{\alpha})\Delta_A)(\sigma(x))), \end{array}$$

which is equal to 0 by Lemma 11 ii) since we have for any $a, b \in A$:

$$h((id_A\otimes
ho_{eta^c})(\Delta_A(a))(id_A\otimes
ho_lpha)(\Delta_A(b))=(h\otimes
ho_{eta^c}\otimes
ho_lpha)(\Delta_A(a)_{12}\Delta_A(b)_{13})=0.$$

The equality $\omega(x_0y_0^*) = 0$ follows similarly. \Box

The previous corollary actually shows that the spectral subspaces \mathcal{M}_{α} , $\alpha \in \widehat{G}$ are mutually orthogonal with respect to both scalar products $\langle x, y \rangle_{2,\omega} = \omega(y^*x)$ and $\langle x, y \rangle_{1,\omega} = \omega(xy^*)$ on \mathcal{M} .

The next statement is the analogue of the decomposition of a representation of a compact Lie group into isotypic subrepresentations.

Proposition 13 i) The spectral subspaces \mathcal{M}_{α} , $\alpha \in \widehat{G}$ are σ -invariant. Moreover

$$\sigma(\mathcal{M}_{\alpha}) \subset \mathcal{M}_{\alpha} \otimes \mathcal{A}_{\alpha} = span\{x_{ij} \otimes u_{ij}^{\alpha} \mid x_{ij} \in \mathcal{M}_{\alpha}, \quad 1 \leq i, j \leq d_{\alpha}\}$$

and if V is a finite dimensional σ -invariant subspace of \mathcal{M}_{α} , then α is the only irreducible subcorepresentation of $\sigma \mid_{V}$.

ii) Any finite dimensional subspace of \mathcal{M}_{α} is contained in a finite dimensional σ invariant subspace of \mathcal{M}_{α} .

iii) If the Haar measure is faithful on A, then $\mathcal{M}_0 = span\{\mathcal{M}_\alpha \mid \alpha \in \widehat{G}\}$ is dense in the Hilbert space \mathcal{H}_ω .

Proof. i) Remark first that

$$\begin{aligned} \sigma(P_{\alpha}(x)) &= \sigma((id_{\mathcal{M}} \otimes \rho_{\alpha})(\sigma(x))) = (id_{\mathcal{M} \otimes \mathcal{A}} \otimes \rho_{\alpha})(id_{\mathcal{M}} \otimes \Delta_{A})(\sigma(x)) \\ &= (id_{\mathcal{M}} \otimes (id_{A} \otimes \rho_{\alpha})\Delta_{A})(\sigma(x)), \qquad x \in \mathcal{M}. \end{aligned}$$

Since $(id_A \otimes \rho_\alpha)(\Delta_A(A)) \subset \mathcal{A}_\alpha$ it follows that $\sigma(\mathcal{M}_\alpha) \subset \mathcal{M} \otimes \mathcal{A}_\alpha$. Using again the density of $span\{\mathcal{A}_\beta \mid \beta \in \widehat{G}\}$ in A and the equality

$$(
ho_lpha\otimes id_A)(\Delta_A(u_{ij}^eta))=\delta_{lphaeta}u_{ij}^eta=(id_A\otimes
ho_lpha)(\Delta_A(u_{ij}^eta)),$$

we obtain $(\rho_{\alpha} \otimes id_A)\Delta_A = (id_A \otimes \rho_{\alpha})\Delta_A$ and furthermore

$$\begin{array}{ll} (P_{\alpha}\otimes id_{A})(\sigma(x)) &= ((id_{\mathcal{M}}\otimes \rho_{\alpha})\sigma\otimes id_{A})(\sigma(x)) \\ &= (id_{\mathcal{M}}\otimes \rho_{\alpha}\otimes id_{A})(\sigma\otimes id_{A})(\sigma(x)) \\ &= (id_{\mathcal{M}}\otimes \rho_{\alpha}\otimes id_{A})(id_{\mathcal{M}}\otimes \Delta_{A})(\sigma(x)) \\ &= (id_{\mathcal{M}}\otimes (\rho_{\alpha}\otimes id_{A})\Delta_{A})(\sigma(x)) = \sigma(P_{\alpha}(x)), \qquad x \in \mathcal{M}. \end{array}$$

This shows in particular that $\sigma(\mathcal{M}_{\alpha}) \subset \mathcal{M}_{\alpha} \otimes \mathcal{A}_{\alpha}$. If $V \subset \mathcal{M}_{\alpha}$ is finite dimensional and σ -invariant, then $\sigma \mid_{V}$ contains only copies of α since $(id_{\mathcal{M}} \otimes \rho_{\alpha})(\sigma(x)) = x, x \in V$.

ii) It is enough to prove that for any $x \in \mathcal{M}_{\alpha}$, there exists $V_x \subset \mathcal{M}_{\alpha}$ finite dimensional σ -invariant space that contains x. Set $V_x = \{(id_{\mathcal{M}} \otimes \rho)(\sigma(x)) \mid \rho \in A^*\}$, subspace of \mathcal{M}_{α} which contains x since $x = (id_{\mathcal{M}} \otimes \rho_{\alpha})(\sigma(x))$ and is finite dimensional since

 $\sigma(x) = \sum_{i,j=1}^{d_{\alpha}} x_{ij} \otimes u_{ij}^{\alpha} \text{ for some } x_{ij} \in \mathcal{M}_{\alpha}. \text{ Therefore } V_x \subset span\{x_{ij} \mid 1 \leq i, j \leq d_{\alpha}\} \text{ and finally } V_x \text{ is } \sigma\text{-invariant since for any } \rho, \rho' \in A^*, x \in \mathcal{M} \text{ we have :}$

$$\begin{aligned} (id_{\mathcal{M}} \otimes \rho')(\sigma((id_{\mathcal{M}} \otimes \rho)(\sigma(x))) &= (id_{\mathcal{M}} \otimes \rho')((id_{\mathcal{M} \otimes \mathcal{A}} \otimes \rho)(id_{\mathcal{M}} \otimes \Delta_{\mathcal{A}})(\sigma(x))) \\ &= (id_{\mathcal{M}} \otimes \rho'((id_{\mathcal{A}} \otimes \rho) \circ \Delta_{\mathcal{A}}))(\sigma(x)) = (id_{\mathcal{M}} \otimes (\rho' * \rho))(\sigma(x)). \end{aligned}$$

iii) One can easily check as in the case when both corepresentations are finite dimensional that for any $\alpha \in \hat{G}$ and any corepresentation $V \in \mathcal{L}(\mathcal{H}_V \otimes A)$ of A we still have:

$$Mor(\alpha, V) = \{\xi \in \mathcal{H}_V \otimes \mathcal{H}'_{\alpha} = \mathcal{L}(\mathcal{H}_{\alpha}, \mathcal{H}_V) \mid (V \odot \alpha^c)_{\rho} \xi = \rho(1_A) \xi, \quad \forall \rho \in A^* \} \\ = (V \odot \alpha^c)_h (\mathcal{H}_V \odot \mathcal{H}'_{\alpha}).$$

Assume now that $\overline{\mathcal{M}_0} \neq \mathcal{H}_{\omega}$. Then, since $U \mid_{\overline{\mathcal{M}_0}}$ is a subcorepresentation of U it follows that there exists $V \in \mathcal{L}(\mathcal{H}_V \otimes A)$ corepresentation of A with $0 \neq \mathcal{H}_V \subset \mathcal{H}_{\omega} \ominus \overline{\mathcal{M}_0}$. By Lemma 9 there exists $\beta \in \widehat{G}$ such that $(V \odot \beta^c)_h \neq 0$ and we find a nonzero $S \in \mathcal{L}(\mathcal{H}_\beta, \mathcal{H}_V)$ with $(S \otimes id_A)\beta = V(S \otimes id_A)$. Since KerS is β -invariant and β irreducible, S follows one-to-one. But RanS is a finite dimensional V-invariant subspace of \mathcal{H}_V , thus $\beta \preceq V$. Since \mathcal{H}_V is orthogonal to \mathcal{M}_0 we have $(id_{\mathcal{L}(\mathcal{H}_\beta)} \otimes \rho_\alpha)(\beta) = 0$ for all $\alpha \in \widehat{G}$, therefore $\beta = 0$ by [Wor, 5.8]. But σ is one-to-one, thus V is nondegenerate and we get a contradiction. Consequently $\overline{\mathcal{M}_0} = \mathcal{H}_{\omega}$. \Box

Proposition 14 \mathcal{M}_0 is a *-algebra and $\mathcal{M}_{\alpha}\mathcal{M}_{\beta} \subset span\{\mathcal{M}_{\gamma} \mid \gamma \preceq \alpha \odot \beta\}$ for all $\alpha, \beta \in \widehat{G}$.

Proof. Fix $\alpha, \beta \in \hat{G}, u^{\alpha} \in \alpha, u^{\beta} \in \beta$ and $\mathcal{H}_{\alpha} \subset \mathcal{M}_{\alpha}, \mathcal{H}_{\beta} \subset \mathcal{M}_{\beta}$ irreducible finite dimensional σ -invariant subspaces. Let $\{e_i\}_{1 \leq i \leq d_{\alpha}}$ and $\{f_r\}_{1 \leq r \leq d_{\beta}}$ be orthonormal basis in \mathcal{H}_{α} and respectively \mathcal{H}_{β} such that $\sigma(e_i) = \sum_{j=1}^{d_{\alpha}} e_j \otimes u_{ji}^{\alpha}$ and $\sigma(f_r) = \sum_{s=1}^{d_{\beta}} f_s \otimes u_{sr}^{\beta}$. The restriction of σ to \mathcal{H}_{α} (respectively to \mathcal{H}_{β}), $\hat{V}_{\alpha} : \mathcal{H}_{\alpha} \to \mathcal{H}_{\alpha} \otimes A$ (respectively $\hat{V}_{\beta} : \mathcal{H}_{\beta} \to \mathcal{H}_{\beta} \otimes A$) implements u^{α} (respectively u^{β}). Then $\hat{V} : \mathcal{H}_{\alpha} \otimes \mathcal{H}_{\beta} \to \mathcal{H}_{\alpha} \otimes \mathcal{H}_{\beta} \otimes A$, $\hat{V}(x \otimes y) = \hat{V}_{\alpha}(x)_{13}\hat{V}_{\beta}(y)_{23} = \sigma(x)_{13}\sigma(y)_{23}$ implements $u^{\alpha} \odot u^{\beta}$. Consider the onto linear operator $S : \mathcal{H}_{\alpha} \otimes \mathcal{H}_{\beta} \to span\mathcal{H}_{\alpha}\mathcal{H}_{\beta}, S(x \otimes y) = xy$. Since :

$$\widehat{V}(e_i \otimes f_r) = \sum_{j=1}^{d_\alpha} \sum_{s=1}^{d_\beta} e_j f_s \otimes u_{ji}^{\alpha} u_{sr}^{\beta} = (\sum_{j=1}^{d_\alpha} e_j \otimes u_{ji}^{\alpha}) (\sum_{s=1}^{d_\beta} e_s \otimes u_{sr}^{\beta})$$

= $\sigma(e_i) \sigma(f_r) = \sigma(e_i f_r) = \sigma S(e_i \otimes f_r),$

the following diagram is commutative

$$\begin{array}{cccc} \mathcal{H}_{\alpha}\otimes\mathcal{H}_{\beta}&\stackrel{\widehat{V}}{\longrightarrow}&\mathcal{H}_{\alpha}\otimes\mathcal{H}_{\beta}\otimes\mathcal{A}\\ S\uparrow&&\uparrow S\otimes id_{A}\\ span\mathcal{H}_{\alpha}\mathcal{H}_{\beta}&\stackrel{\sigma}{\longrightarrow}&span\mathcal{H}_{\alpha}\mathcal{H}_{\beta}\otimes A. \end{array}$$

Therefore $S \in Mor(u^{\alpha} \odot u^{\beta}, \sigma \mid_{span\mathcal{H}_{\alpha}\mathcal{H}_{\beta}})$ and any irreducible subcorepresentation of $\sigma \mid_{span\mathcal{H}_{\alpha}\mathcal{H}_{\beta}}$ should appear in $\alpha \odot \beta$, hence decomposing the last corepresentation into irreducible components we get $\mathcal{M}_{\alpha}\mathcal{M}_{\beta} \subset span\{\mathcal{M}_{\gamma} \mid \gamma \preceq \alpha \odot \beta\}$. \mathcal{M}_{0} is *-closed since $\mathcal{M}_{\alpha^{c}} = \mathcal{M}_{\alpha}^{*}$ by Lemma 11. \Box

Denote by \mathcal{H}_h the completion of A with respect to the scalar product $\langle a, b \rangle_{2,h} = h(b^*a)$, $a, b \in A$ and consider $W(x_{\omega} \otimes a_h) = (\sigma(x)(1_{\mathcal{M}} \otimes a))(1_{\omega} \otimes 1_h)$, $x \in \mathcal{M}$, $a \in A$. Clearly $W \in \mathcal{L}(\mathcal{H}_{\omega} \otimes \mathcal{H}_h)$ is a unitary. Since $\rho_{\alpha} = M_{\alpha}h((f_1 * \chi_{\alpha})^* \cdot)$ and $f_1 * \chi_{\alpha} \in A$, it follows that $\rho_{\alpha} \in \mathcal{L}(\mathcal{H}_h)_*$ and ρ_{α} coincides on $\mathcal{L}(\mathcal{H}_h)$ with the vector form $M_{\alpha} \langle -1_h, (f_1 * \chi_{\alpha})_h \rangle_{2,h}$. Therefore it makes sense to consider $p(\alpha) = (id_{\mathcal{L}(\mathcal{H}_{\omega})} \otimes \rho_{\alpha})(W) \in \mathcal{L}(\mathcal{H}_{\omega})$. A straightforward computation yields for any $x, y \in \mathcal{M}$:

$$\begin{split} \langle P_{\alpha}(x)_{\omega}, y_{\omega} \rangle_{2} &= \omega(y^{*}P_{\alpha}(x)) = \omega(y^{*}(id_{\mathcal{M}} \otimes \rho_{\alpha})(\sigma(x))) \\ &= \omega((id_{\mathcal{M}} \otimes \rho_{\alpha})((y^{*} \otimes 1_{A})\sigma(x))) \\ &= (\omega \otimes \rho_{\alpha})((y^{*} \otimes 1_{A})\sigma(x)) = (\omega(y^{*} \cdot) \otimes h(M_{\alpha}(f_{1} * \chi_{\alpha})^{*} \cdot))\sigma(x) \\ &= \langle \sigma(x)(1_{\omega} \otimes 1_{h}), y_{\omega} \otimes M_{\alpha}((f_{1} * \chi_{\alpha})^{*})_{h} \rangle_{2,\omega \otimes h} \\ &= \langle W(x_{\omega} \otimes 1_{h}), y_{\omega} \otimes M_{\alpha}((f_{1} * \chi_{\alpha})^{*})_{h} \rangle_{2,\omega \otimes h} \\ &= \langle (id_{\mathcal{L}(\mathcal{H}_{\omega})} \otimes \rho_{\alpha})(W)x_{\omega}, y_{\omega} \rangle_{2} = \langle p(\alpha)(x_{\omega}), y_{\omega} \rangle_{2}. \end{split}$$

We obtain :

Remark 15 P_{α} extends to the bounded operator $p(\alpha) \in \mathcal{L}(\mathcal{H}_{\omega})$ and $p(\alpha)$ is a projection from \mathcal{H}_{ω} onto $\mathcal{H}_{\alpha} = \{x_{\omega} \mid x \in \mathcal{M}_{\alpha}\}$. Moreover, it is easy to see that $p(\alpha)$ is self-adjoint.

Lemma 16
$$\sum_{i=1}^{d_{\alpha}} u_{pi}^{\alpha^*} \kappa^2(u_{qi}^{\alpha}) = \delta_{pq} 1_A = \sum_{i=1}^{d_{\alpha}} \kappa^2(u_{ip}^{\alpha}) u_{iq}^{\alpha^*}$$
 for all $\alpha \in \widehat{G}, 1 \le p, q \le d_{\alpha}$.

Proof. Using the antimultiplicativity of κ and $\kappa(u_{ij}^{\alpha}) = u_{ji}^{\alpha^*}$ we obtain :

$$\sum_{i=1}^{d_{\alpha}} u_{pi}^{\alpha^*} \kappa^2(u_{qi}^{\alpha}) = \sum_{i=1}^{d_{\alpha}} \kappa(u_{ip}^{\alpha}) \kappa^2(u_{qi}^{\alpha}) = \sum_{i=1}^{d_{\alpha}} \kappa(\kappa(u_{qi}^{\alpha})u_{ip}^{\alpha}) = \kappa(\sum_{i=1}^{d_{\alpha}} \kappa(u_{qi}^{\alpha})u_{ip}^{\alpha}) = \delta_{pq} \mathbf{1}_A$$

$$\sum_{i=1}^{a_{\alpha}} \kappa^2(u_{ip}^{\alpha}) u_{iq}^{\alpha^*} = \sum_{i=1}^{a_{\alpha}} \kappa(u_{qi}^{\alpha} \kappa(u_{ip}^{\alpha})) = \delta_{pq} \mathbf{1}_A.$$

Theorem 17 If G = (A, u) is a compact matrix pseudogroup and \mathcal{M} is a unital C^* algebra with an A-algebra structure given by the ergodic coaction $\sigma : \mathcal{M} \to \mathcal{M} \otimes A$, then the spectral subspaces \mathcal{M}_{α} are finite dimensional and $\dim \mathcal{M}_{\alpha} \leq M_{\alpha}^2$. *Proof.* Let $\alpha \in \hat{G}$ and fix $u^{\alpha} \in \alpha$ acting on \mathcal{H}_{α} and an orthonormal basis $\xi_1, ..., \xi_{d_{\alpha}}$ in \mathcal{H}_{α} such that $u^{\alpha}(\xi_i) = \sum_{r=1}^{d_{\alpha}} \xi_r \otimes u_{ri}^{\alpha}$. Let $V_1, ..., V_N \subset \mathcal{M}_{\alpha}$ be mutually $\langle , \rangle_{2,\omega}$ orthogonal irreducible σ -invariant subspaces and let $U_k \in \mathcal{L}(\mathcal{H}_{\alpha}, V_k), 1 \leq k \leq N$ be unitaries such that $\sigma U_k = (U_k \otimes id_A)\alpha$. Denoting $e_i^{(k)} = U_k\xi_i$ it follows that $e_1^{(k)}, ..., e_{d_{\alpha}}^{(k)}$ is an orthonormal basis in V_k and

(1)
$$\sigma(e_i^{(k)}) = \sum_{r=1}^{d_\alpha} e_r^{(k)} \otimes u_{ri}^{\alpha},$$

thus

$$\sigma(\sum_{i=1}^{d_{\alpha}} e_i^{(k)} e_i^{(l)*}) = \sum_{i,r,s=1}^{d_{\alpha}} e_r^{(k)} e_s^{(l)*} \otimes u_{ri}^{\alpha} u_{si}^{\alpha*} = \sum_{r=1}^{d_{\alpha}} e_r^{(k)} e_r^{(l)*} \otimes 1_A$$

and $\sum_{i=1}^{d_{\alpha}} e_i^{(k)} e_i^{(l)*} \in \mathbf{C1}_{\mathcal{M}}$. Moreover, the equality $(F_{\alpha} \otimes id_A)\alpha = \alpha^{cc}F_{\alpha}$ and the previous Lemma yield :

$$\begin{aligned} \sigma(\sum_{i=1}^{d_{\alpha}} (e_i^{(k)*} U_l F_{\alpha}^{-1} U_l^*(e_i^{(l)})) &= \sigma(\sum_{i=1}^{d_{\alpha}} e_i^{(k)*} U_l F_{\alpha}^{-1}(\xi_i)) \\ &= \sum_{i=1}^{d_{\alpha}} \sigma(e_i^{(k)*}) (U_l F_{\alpha}^{-1} U_l^* \otimes id_A) \alpha^{cc}(\xi_i) \\ &= \sum_{i=1}^{d_{\alpha}} \sigma(e_i^{(k)*}) \sum_{s=1}^{d_{\alpha}} U_l F_{\alpha}^{-1} U_l^*(e_s^{(l)}) \otimes \kappa^2(u_{si}^{\alpha}) \\ &= \sum_{r,s=1}^{d_{\alpha}} e_r^{(k)*} U_l F_{\alpha}^{-1} U_l^*(e_s^{(l)}) \otimes \sum_{i=1}^{d_{\alpha}} u_{ri}^{\alpha*} \kappa^2(u_{si}^{\alpha}) \\ &= \sum_{r=1}^{d_{\alpha}} e_r^{(k)*} U_l F_{\alpha}^{-1} U_l^*(e_r^{(l)}) \otimes 1_A, \end{aligned}$$

thus

(2)
$$\sum_{i=1}^{d_{\alpha}} e_i^{(k)*} U_l F_{\alpha}^{-1} U_l^*(e_i^{(l)}) = \omega (\sum_{i=1}^{d_{\alpha}} e_i^{(k)*} U_l F_{\alpha}^{-1} U_l^*(e_i^{(l)})) 1_{\mathcal{M}}$$
$$= \sum_{i=1}^{d_{\alpha}} \langle U_l F_{\alpha}^{-1} U_l^*(e_i^{(l)}), e_i^{(k)} \rangle_{2,\omega} 1_{\mathcal{M}} = \delta_{kl} Tr(F_{\alpha}^{-1}) 1_{\mathcal{M}} = \delta_{kl} M_{\alpha} 1_{\mathcal{M}}.$$

Since the modular operator F_{α} associated with u^{α} is positive ([Wor, 5.4]), the matrix $C = (\langle F_{\alpha}^{-1}\xi_i, \xi_j \rangle)_{ij} \in Mat_{d_{\alpha}}(\mathbf{C})$ is positive definite.

Denote
$$C^{1/2} = (\lambda_{ij})_{ij}, x_{rl} = \sum_{j=1}^{d_{\alpha}} \lambda_{rj} e_j^{(l)}$$
 and $X = (x_{rl})_{rl} \in Mat_{d_{\alpha},N}(\mathcal{M})$. Then

$$\sum_{i=1}^{d_{\alpha}} e_i^{(k)*} U_l F_{\alpha}^{-1} \xi_i = \sum_{i,j=1}^{d_{\alpha}} \langle F_{\alpha}^{-1} \xi_i, \xi_j \rangle e_i^{(k)*} e_j^{(l)} = \sum_{r,i,j=1}^{d_{\alpha}} \overline{\lambda_{ri}} \lambda_{rj} e_i^{(k)*} e_j^{(l)} = \sum_{r=1}^{d_{\alpha}} x_{rk}^* x_{rl},$$

or in other words $X^*X = M_{\alpha}I$ in $\mathcal{M} \otimes Mat_N(\mathbb{C})$. This yields $XX^* \leq M_{\alpha}I$ in $\mathcal{M} \otimes Mat_{d_{\alpha}}(\mathbb{C})$.

Consider the positive linear functional $\phi \in Mat_{d_{\alpha}}(\mathbf{C})_{*}, \phi(Y) = Tr(C^{-1}Y), Tr$ being the normalized trace on $Mat_{d_{\alpha}}(\mathbf{C})$. Then

$$\|\phi\| = \phi(I) = Tr(C^{-1}) = \sum_{i=1}^{d_{\alpha}} (C^{-1})_{ii} = \sum_{i=1}^{d_{\alpha}} \langle F_{\alpha}\xi_i, \xi_i \rangle = Tr(F_{\alpha}) = M_{\alpha}$$

and the last inequality yields :

$$\begin{split} M_{\alpha}^{2} &\geq \|\omega \otimes \phi\| \cdot \|XX^{*}\| \geq (\omega \otimes \phi)(XX^{*}) = \sum_{i,j=1}^{d_{\alpha}} \sum_{k=1}^{N} \phi(e_{ij})\omega(x_{ik}x_{jk}^{*}) \\ &= \sum_{k=1}^{N} \sum_{i,j,r,s=1}^{d_{\alpha}} \lambda_{sj}(C^{-1})_{ji}\lambda_{ir}\omega(e_{r}^{(k)}e_{s}^{(k)*}) = \sum_{k=1}^{N} \sum_{r=1}^{d_{\alpha}} \omega(e_{r}^{(k)}e_{r}^{(k)*}) \\ &= \sum_{k=1}^{N} \sum_{r=1}^{d_{\alpha}} \|e_{r}^{(k)}\|_{1,\omega}^{2}. \end{split}$$

This inequality plays a crucial role since it shows that if $W_{\alpha} \subset \mathcal{M}_{\alpha}$ is a σ -invariant subspace and $A_{W_{\alpha}}$ the positive invertible operator on W_{α} (with respect to $\langle , \rangle_{2,\omega}$) such that $\langle A_{W_{\alpha}}(x), y \rangle_{2,\omega} = \langle x, y \rangle_{1,\omega}, x, y \in W_{\alpha}$, then

$$(3) Tr(A_{W_{\alpha}}) \le M_{\alpha}^2.$$

Consider now a finite-dimensional σ -invariant subspace $W \subset \mathcal{M}_0$ and let A_W be the unique positive invertible operator on W with $\langle A_W(x), y \rangle_{2,\omega} = \langle x, y \rangle_{1,\omega}, x, y \in W$. Since $\langle \mathcal{M}_{\alpha}, \mathcal{M}_{\beta} \rangle_{1,\omega} = 0$ for $\alpha \neq \beta$, it follows that A_W invariates each spectral subspace W_{α} of W and

(4)
$$Tr(A_W) = \sum_{\alpha \prec W} Tr(A_{W_\alpha}) \leq \sum_{\alpha \prec W} M_\alpha^2.$$

If in addition A_W is *-invariant and $Jx = x^*, x \in \mathcal{M}$, then

$$\langle JA_W^{-1}Jx, y \rangle_{2,\omega} = \langle y^*, A_W^{-1}(x^*) \rangle_{1,\omega} = \langle y^*, x^* \rangle_{2,\omega} = \langle x, y \rangle_{1,\omega} = \langle A_W(x), y \rangle_{2,\omega}, \quad x, y \in W.$$

Therefore $JA_W^{-1}J = A_W$ and in particular if λ is an eigenvalue of A_W with multiplicity m_{λ} , so is λ^{-1} with the same multiplicity. It follows that

(5)
$$Tr(A_W) = \sum_{\lambda} m_{\lambda} \lambda = m_1 + \sum_{\lambda > 1} m_{\lambda} (\lambda + \lambda^{-1}) \ge m_1 + \sum_{\lambda > 1} 2m_{\lambda} = dim(W).$$

Finally let $V \subset \mathcal{M}_{\alpha}$ be a finite-dimensional σ -invariant subspace. Since $V^* \subset \mathcal{M}_{\alpha^c}$ it follows that $W = V + V^*$ is σ -invariant. If α is self-conjugate, then $W \subset \mathcal{M}_{\alpha}$, $W = W^*$ and therefore $\dim(V) \leq \dim(W) \leq M_{\alpha}^2$. In the case when $\alpha \neq \alpha^c$ in \widehat{G} the sum $V + V^*$ is orthogonal and by (4) and (5) we get $2\dim(V) = \dim(W) \leq M_{\alpha}^2 + M_{\alpha^c}^2 = 2M_{\alpha}^2$. \Box

The next statement describes the modularity of ω .

Proposition 18 There exists $\Theta : \mathcal{M}_0 \to \mathcal{M}_0$ linear multiplicative map such that $\omega(x\Theta(y)) = \omega(yx), x \in \mathcal{M}, y \in \mathcal{M}_0$. Moreover Θ invariates all the irreducible σ -invariant subspaces of \mathcal{M}_0 and is a scalar multiple of the modular operator F_α on such a subspace of \mathcal{M}_α for all $\alpha \in \hat{G}$.

Proof. Let $V_1, ..., V_N$ be the mutually orthogonal irreducible σ -invariant subspaces of \mathcal{M}_{α} and let $e_1^{(k)}, ..., e_d^{(k)}$ be an orthonormal basis in V_k $(d = dim(\alpha))$ such that $\sigma(e_i^{(k)}) = \sum_{r=1}^d e_r^{(k)} \otimes u_{ri}^{\alpha}, 1 \leq i \leq d, 1 \leq k \leq N$. Then $\sum_{i=1}^d e_i^{(k)} e_i^{(l)*} \in \mathcal{M}^{\sigma}$, therefore there exist $\lambda_{kl} \in \mathbb{C}, 1 \leq k, l \leq N$ such that $\sum_{i=1}^d e_i^{(k)} e_i^{(l)*} = \lambda_{kl} 1_{\mathcal{M}}$. The matrix $\Lambda = (\lambda_{kl})_{1 \leq k, l \leq 1, N}$ is positively definite, hence there exists a unitary $S = (s_{kl})_{1 \leq k, l \leq N} \in Mat_N(\mathbb{C})$ and $\lambda_1, ..., \lambda_N > 0$ such that $S\Lambda S^* = diag(\lambda_1, ..., \lambda_N)$. Replacing $e_i^{(k)}$ by $\sum_{r=1}^N s_{kp} e_i^{(p)}$ we get :

(6)
$$\sum_{i=1}^{d} e_i^{(k)} e_i^{(l)*} = \delta_{kl} \lambda_k 1_{\mathcal{M}}, \quad 1 \le k, l \le N.$$

Fix now $1 \leq k, l \leq N$ and consider $T_{kl}: V_k \to V_l, T_{kl}(x) = \sum_{j=1}^d \omega(xe_j^{(l)})e_j^{(l)}, x \in V_k$. Combining the σ -invariance of ω , the orthogonality relations (5.25) in [Wor] and (6) we get for $1 \leq i \leq d$:

$$\begin{split} T_{kl} e_i^{(k)} &= \sum_{j=1}^d \omega(e_i^{(k)} e_j^{(l)*}) e_j^{(l)} = \sum_{j,p,q=1}^d (\omega \otimes h) (e_p^{(k)} e_q^{(l)*} \otimes u_{pi}^{\alpha} u_{qj}^{\alpha*}) e_j^{(l)} \\ &= \sum_{j,p,q=1}^d \omega(e_p^{(k)} e_q^{(l)*}) \frac{\delta_{pq}}{M_{\alpha}} f_1(u_{ji}^{\alpha}) e_j^{(l)} = \sum_{j,p=1}^d \omega(e_p^{(k)} e_p^{(l)*}) \frac{f_1(u_{ji}^{\alpha})}{M_{\alpha}} e_j^{(l)} \\ &= \frac{\delta_{kl} \lambda_k}{M_{\alpha}} \sum_{j=1}^d f_1(u_{ji}^{\alpha}) e_j^{(k)} = \frac{\delta_{kl} \lambda_k}{M_{\alpha}} (id_{\mathcal{M}} \otimes f_1) (\sigma(e_i^{(k)})), \end{split}$$

thus $T_{kl} = \frac{\delta_{kl}\lambda_k}{M_{\alpha}}(id_{\mathcal{M}} \otimes f_1) \circ \sigma$. We check now that $T_k = T_{kk} \in Mor(\sigma \mid_{V_k}, \sigma^{cc} \mid_{V_k})$. The previous formula for T_k yields :

$$\sigma T_k = \frac{\lambda_k}{M_\alpha} \sigma((id_{\mathcal{M}} \otimes f_1)\sigma) = \frac{\lambda_k}{M_\alpha} (id_{\mathcal{M}} \otimes ((f_1 \otimes id_A)\Delta_A))\sigma$$

and

$$(T_k \otimes id_A)\sigma = \frac{\lambda_k}{M_\alpha}((id_\mathcal{M} \otimes f_1)\sigma \otimes id_A)\sigma = \frac{\lambda_k}{M_\alpha}(id_\mathcal{M} \otimes ((f_1 \otimes id_A)\Delta_A))\sigma.$$

Since $\kappa^2(a) = f_{-1} * a * f_1, a \in \mathcal{A}$ we also have :

$$\begin{aligned} (id_{\mathcal{M}} \otimes \kappa^2)(id_{\mathcal{M}} \otimes (id_A \otimes f_1) \circ \Delta_A)(y \otimes a) &= y \otimes \kappa^2(f_1 * a) = y \otimes (a * f_1) \\ &= (id_{\mathcal{M}} \otimes (f_1 \otimes id_A) \circ \Delta_A)(y \otimes a), \qquad y \in \mathcal{M}, a \in \mathcal{A}, \end{aligned}$$

hence $(T_k \otimes id_A)\sigma = (id_{\mathcal{M}} \otimes \kappa^2)\sigma T_k = \sigma^{cc}T_k$ on V_k .

But $Mor(\alpha, \alpha^{cc}) = \{\lambda F_{\alpha} \mid \lambda \in \mathbf{C}\}$, therefore $\omega(e_i^{(k)}e_j^{(l)*}) = \delta_{kl}\lambda'_k(F_{\alpha})_{ji}$. Comparing the previous relation with (7) we get :

$$\langle e_i^{(k)}, e_j^{(l)} \rangle_{1,\omega} = \omega(e_i^{(k)} e_j^{(l)*}) = \frac{\delta_{kl} \lambda_k}{M_\alpha} (F_\alpha)_{ji} = \frac{\delta_{kl} \lambda_k}{M_\alpha} \langle F_\alpha(e_i^{(k)}), e_j^{(l)} \rangle_{2,\omega},$$

thus $\omega(xy^*) = \delta_{kl}\omega(y^*\Theta(x)) = \omega(y^*\Theta(x))$ for all $x \in V_k, y \in V_l$, where we let $\Theta \mid_{V_k} = \frac{\lambda_k}{M_\alpha} F_\alpha \in \mathcal{L}(V_k)$. The orthogonality of the spectral subspaces \mathcal{M}_α implies now that $\omega(xy) = \omega(y\Theta(x))$ for all $x \in \mathcal{M}_0, y \in \mathcal{M}$. Clearly Θ is linear by definition and follows multiplicative by the previous equality. \Box

$\S2$. The structure of the crossed product

Using the finite dimensionality of the spectral subspaces \mathcal{M}_{α} we prove that the reduced C^* -crossed product $\mathcal{N} = \mathcal{M} \times_{\sigma} \hat{A}$ (as defined in [BS]) of a unital C^* -algebra \mathcal{M} by an ergodic coaction of a compact matrix pseudogroup G = (A, u) with faithful Haar measure h on A, turning \mathcal{M} into an A-algebra, is isomorphic to a direct sum of algebras of compact operators, generalizing Proposition 2 in [L] and Corollary 2 in [Wa1, §1.4]. The main ingredient is the Takesaki-Takai duality type theorem of Baaj and Skandalis and the line of the proof follows Wassermann's one for the case when A = C(G), the commutative C^* -algebra of continuous functions on a compact group G and $\mathcal{N} = \mathcal{M} \times_{\sigma} G$.

Remark first that A is an A-algebra via the comultiplication $\Delta_A: A \to A \otimes A$, that Δ_A is ergodic and that h is the Δ_A -invariant state on A. Denote $\mathcal{H} = \mathcal{H}_h$ and consider as in Remark 15 the operator $V \in \mathcal{L}(\mathcal{H} \otimes \mathcal{H}), V(a_h \otimes b_h) = (\Delta_A(a)(1_A \otimes b))(1_h \otimes 1_h),$ $a, b \in A$. Then V is a biregular irreducible multiplicative unitary. Moreover, the partial isometry U (no relationship with the unitary associated to the coaction σ in §1) in the polar decomposition T = U | T | of the closure of the preclosed operator T_0 defined by $T_0(a_h) = \kappa(a)_h, a \in \mathcal{A}$ is a unitary on \mathcal{H} with $U^2 = I_{\mathcal{H}}$. In fact $Ux_h = (f_1 * \kappa(x))_h$, $x \in \mathcal{A}$ and (\mathcal{H}, V, U) is a Kac system (see [BS, §6]). Consider the reduced C^{*}-crossed product $\mathcal{N} = \mathcal{M} \times_{\sigma} \widehat{A}$, defined in [BS, §7] as the C^{*}-algebra generated by products of type $\sigma_L(x)(1_A \otimes \rho(\omega)), x \in \mathcal{M}, \omega \in \mathcal{L}(\mathcal{H})_*$. Then, there exists a dual coaction $\hat{\sigma} = \sigma_{\mathcal{M} \times \pi \hat{A}}$ on \mathcal{N} , which transforms this way into an \hat{A} -algebra. Let A acting in the GNS representation of h on \mathcal{H} and denote $\sigma_R(x) = (id_{\mathcal{M}} \otimes AdU)(\sigma(x)), x \in \mathcal{M}$, $\lambda(\omega) = (id_{\mathcal{L}(\mathcal{H})} \otimes \omega)(V), \ \omega \in \mathcal{L}(\mathcal{H})_*$. Then, by Theorem 7.5 in [BS], $\mathcal{M} \times_{\sigma} \widehat{A}$ identifies with the norm closure of $span\{\sigma_R(x)(1_{\mathcal{M}}\otimes\lambda(\omega))\mid x\in\mathcal{M},\omega\in\mathcal{L}(\mathcal{H})_*\},\ \mathcal{M}\otimes\mathcal{K}(\mathcal{H})$ with the closure of $span\{\sigma_R(x)(1_{\mathcal{M}}\otimes\lambda(\omega)a) \mid x\in\mathcal{M}, \omega\in\mathcal{L}(\mathcal{H})_*, a\in A\}$ and denoting $\sigma'(x \otimes k) = V_{23}\sigma(x)_{13}(1_{\mathcal{M}} \otimes k \otimes 1_A)V_{23}^*, x \in \mathcal{M}, k \in \mathcal{K}(\mathcal{H}), \text{ the double crossed-product}$ $((\mathcal{M} \times_{\sigma} \widehat{A}) \times_{\widehat{\sigma}} A, \widehat{\sigma})$ is isomorphic to $(\mathcal{M} \otimes \mathcal{K}(\mathcal{H}), \sigma')$ as A-algebras. Moreover, the last two equalities in the proof of that theorem show that via the previous identification $\mathcal{M} \times_{\sigma} \overline{A} \subset (\mathcal{M} \otimes \mathcal{K}(\mathcal{H}))^{\sigma'}.$

The proof of the structure of the crossed-product will make use of the next Lemma:

Lemma ([Wa1, §1.4]). Let A be a (not necessarily unital) C^{*}-algebra with an approximate identity $p_1 \leq p_2 \leq \dots$ consisting of finite rank projections (i.e. $dim(p_iAp_i) < \infty$). Then A is isomorphic to a direct sum of algebras of compact operators.

Theorem 19 Let G = (A, u) be a compact matrix pseudogroup and let \mathcal{M} be a unital C^* -algebra which is an A-algebra via the ergodic coaction $\sigma : \mathcal{M} \to \mathcal{M} \otimes A$. Then $\mathcal{M} \times_{\sigma} \hat{A} \simeq \bigoplus_i \mathcal{K}(\mathcal{H}_i)$.

Proof. Replacing A by its reduced C^{*}-algebra, the crossed product $\mathcal{M} \times_{\sigma} \widehat{A}$ is still unchanged (we owe this remark to the referee), thus one may assume that that the Haar measure is faithful on A. For each $\alpha \in \widehat{G}$ consider the projections $p(\alpha)$ from \mathcal{H} onto \mathcal{H}_{α} defined in Remark 15. Since $p(\alpha) = (id_{\mathcal{L}(\mathcal{H})} \otimes \rho_{\alpha})(V)$ and $\rho_{\alpha} \in \mathcal{L}(\mathcal{H})_*$ it follows that $p(\alpha) \in \widehat{A}$. But \mathcal{M} is unital, therefore $1_{\mathcal{M}} \otimes p(\alpha) \in \mathcal{N} = \mathcal{M} \times_{\sigma} \widehat{A}$. Since $\sum_{\alpha \in \widehat{G}} p(\alpha) = 1_{\widehat{A}}$

in the strict topology, it follows that writing $\hat{G} = \bigcup_n F_n$ with $card(F_n) < \infty$ we get an approximate unit $p_n = p(F_n) = \sum_{\alpha \in F_n} p(\alpha), n \ge 1$ of \mathcal{N} . Finally we check that each

 $p(F_n)$ has finite rank, or equivalently that $dim(p(\alpha)\mathcal{N}p(\pi)) < \infty$ for all $\alpha, \pi \in \widehat{G}$. Since $1_{\mathcal{M}} \otimes p(\alpha) \in \mathcal{N}$ and $\mathcal{N} \subset (\mathcal{M} \otimes \mathcal{K}(\mathcal{H}))^{\sigma'}$, we obtain :

$$p(\alpha)\mathcal{N}p(\pi) \subset p(\alpha)(\mathcal{M}\otimes\mathcal{K}(\mathcal{H}))^{\sigma'}p(\pi) \subset (\mathcal{M}\otimes p(\alpha)\mathcal{K}(\mathcal{H})p(\pi))^{\sigma'} = (\mathcal{M}\otimes\mathcal{L}(\mathcal{H}_{\pi},\mathcal{H}_{\alpha}))^{\sigma'}.$$

If $\alpha_0 \in \widehat{G}$ is fixed, then $\sigma' \mid_{\mathcal{M}_{\alpha_0^c} \otimes \mathcal{L}(\mathcal{H}_{\pi}, \mathcal{H}_{\alpha})}$ is a corepresentation of A that coincides with the tensor product corepresentation $\sigma \mid_{\mathcal{M}_0^c} \odot \sigma_0 \mid_{\mathcal{L}(\mathcal{H}_{\pi}, \mathcal{H}_{\alpha})}$ and therefore

$$\begin{array}{l} (id_{\mathcal{M}\otimes\mathcal{L}(\mathcal{H})}\otimes h)(\sigma'(\mathcal{M}_{0}^{c}\otimes\mathcal{L}(\mathcal{H}_{\pi},\mathcal{H}_{\alpha}))) = Ran(\sigma\mid_{\mathcal{M}_{0}^{c}}\odot\sigma_{0}\mid_{\mathcal{L}(\mathcal{H}_{\pi},\mathcal{H}_{\alpha})})_{h} \\ = Mor(\sigma\mid_{\mathcal{M}_{0}^{c}},\sigma_{0}\mid_{\mathcal{L}(\mathcal{H}_{\pi},\mathcal{H}_{\alpha})})^{T}. \end{array}$$

Since there are only finitely many $\alpha_0 \in \widehat{G}$ that appear in $\sigma_0 \mid_{\mathcal{L}(\mathcal{H}_{\pi},\mathcal{H}_{\alpha})}$, the space $(\mathcal{M} \otimes \mathcal{L}(\mathcal{H}_{\pi},\mathcal{H}_{\alpha}))^{\sigma'} = (id_{\mathcal{M}} \otimes h)(\sigma'(\mathcal{M} \otimes \mathcal{L}(\mathcal{H}_{\pi},\mathcal{H}_{\alpha})))$ follows finite dimensional. \Box

Remark 20 Although we didn't use it in proving the last theorem, it is easy to check that in fact $\mathcal{M} \times_{\sigma} \hat{A} = (\mathcal{M} \otimes \mathcal{K}(\mathcal{H}))^{\sigma'}$ via the realization of the crossed-product in $\mathcal{M} \otimes \mathcal{K}(\mathcal{H})$.

This is the case since the canonical conditional expectation $E = (id_{\mathcal{M}\otimes\mathcal{K}(\mathcal{H})}\otimes h)\sigma'$ carries total sets in $\mathcal{M}\otimes\mathcal{K}(\mathcal{H})$ onto total sets in $(\mathcal{M}\otimes\mathcal{K}(\mathcal{H}))^{\sigma'}$. In particular the set

$$\mathcal{S} = \{ E(\sigma_R(x)(1_{\mathcal{M}} \otimes \lambda(\omega)a)) \mid x \in \mathcal{M}, \omega \in \mathcal{L}(\mathcal{H})_*, a \in A \}$$

is total in $(\mathcal{M} \otimes \mathcal{K}(\mathcal{H}))^{\sigma'}$. But the formula for σ' and $(id_A \otimes h)\Delta_A(a) = h(a)1_A$, $a \in A$, yield for any $x \in \mathcal{M}, \omega \in \mathcal{L}(\mathcal{H})_*, a \in A$:

$$E(\sigma_{R}(x)(1_{\mathcal{M}} \otimes \lambda(\omega)a)) = (id_{\mathcal{M} \otimes \mathcal{K}(\mathcal{H})} \otimes h)((\sigma_{R}(x)(1_{\mathcal{M}} \otimes \lambda(\omega)) \otimes 1_{A})(1_{\mathcal{M}} \otimes \Delta_{A}(a))) = \sigma_{R}(x)(1_{\mathcal{M}} \otimes \lambda(\omega))(1_{\mathcal{M}} \otimes (id_{\mathcal{L}(\mathcal{H})} \otimes h)\Delta_{A}(a)) = h(a)\sigma_{R}(x)(1_{\mathcal{M}} \otimes \lambda(\omega)),$$

therefore $\mathcal{S} \subset \mathcal{M} \times_{\sigma} \widehat{A}$. \Box

Let B and C be unital C^* -algebras, G = (A, u) be a compact matrix pseudogroup with A nuclear and $\sigma: C \to C \otimes A$ be a unital *-morphism. By the associativity of the maximal tensor product and the nuclearity of A, the diagram :

$$B \otimes_{\max} C \qquad \qquad \tilde{\sigma} = \underbrace{id_B \otimes_{\max} \sigma} \qquad \qquad B \otimes_{\max} (C \otimes A) = (B \otimes_{\max} C) \otimes A$$

$$\tilde{\sigma} \uparrow \qquad \qquad \uparrow id_{B \otimes_{\max} C} \otimes \Delta_A = id_B \otimes_{\max} (id_C \otimes \Delta_A)$$

$$B \otimes_{\max} (C \otimes A) = (B \otimes_{\max} C) \otimes A \qquad \qquad \underbrace{id_B \otimes_{\max} (\sigma \otimes id_A)} \qquad \qquad (B \otimes_{\max} C) \otimes A \otimes A = B \otimes_{\max} (C \otimes A \otimes A) ,$$

is commutative although $\tilde{\sigma}$ may not be one-to-one in general (note that $\tilde{\sigma} \otimes_{\max} id_A = id_B \otimes_{\max} (\sigma \otimes id_A)$). But Lemma 4.1 i) holds true in such a case, thus $\tilde{E} = (id_{B \otimes_{\max} C} \otimes h)\tilde{\sigma}$ is a conditional expectation from $B \otimes_{\max} C$ onto $(B \otimes_{\max} C)^{\tilde{\sigma}}$ and it turns out that $\tilde{E} = id_B \otimes_{\max} E$, where $E = (id_C \otimes h)\sigma$ is conditional expectation from C onto C^{σ} . In particular, this shows

Remark 21 $(B \otimes_{\max} C)^{\tilde{\sigma}} = B \otimes_{\max} C^{\sigma}$.

The next statement, whose proof follows the line of [Wa2, Lemma22], shows that if A is nuclear, then \mathcal{M} itself follows nuclear.

Proposition 22 Let (\mathcal{M}, σ) be an A-algebra such that $\mathcal{M} \times_{\sigma} \hat{A}$ and A are nuclear C^* -algebras. Then \mathcal{M} is nuclear.

Proof. We prove that given any unital C^* -algebra B, the natural *-morphism θ that maps $B \otimes_{\max} \mathcal{M}$ onto $B \otimes \mathcal{M}$ is one-to-one.

Consider the coaction $\sigma' : \mathcal{M} \otimes \mathcal{K}(\mathcal{H}) \to \mathcal{M} \otimes \mathcal{K}(\mathcal{H}) \otimes A$ and define as in the previous remark $\tilde{\sigma'} : B \otimes_{\max} (\mathcal{M} \otimes \mathcal{K}(\mathcal{H})) \to B \otimes_{\max} (\mathcal{M} \otimes \mathcal{K}(\mathcal{H})) \otimes A$.

The map $\Theta = \theta \otimes id_{\mathcal{K}(\mathcal{H})} : B \otimes_{\max} (\mathcal{M} \otimes \mathcal{K}(\mathcal{H})) \to B \otimes \mathcal{M} \otimes \mathcal{K}(\mathcal{H})$ is A-equivariant, i.e. $(id_B \otimes \sigma')\Theta = \Theta \tilde{\sigma'}$ and using the canonical conditional expectations onto fixed point algebras

$$E^{\widetilde{\sigma'}}: B \otimes_{\max} (\mathcal{M} \otimes \mathcal{K}(\mathcal{H})) \to (B \otimes_{\max} (\mathcal{M} \otimes \mathcal{K}(\mathcal{H})))^{\widetilde{\sigma'}} = B \otimes_{\max} (\mathcal{M} \otimes \mathcal{K}(\mathcal{H}))^{\widetilde{\sigma'}}$$

and

$$E^{id_B\otimes\sigma'}:B\otimes\mathcal{M}\otimes\mathcal{K}(\mathcal{H})\to(B\otimes\mathcal{M}\otimes\mathcal{K}(\mathcal{H}))^{id_B\otimes\sigma'}=B\otimes(\mathcal{M}\otimes\mathcal{K}(\mathcal{H}))^{\sigma'},$$

we get $\Theta E^{\widetilde{\sigma'}} = E^{id_B \otimes \sigma'} \Theta$. Consequently

$$(Ker\theta \otimes \mathcal{K}(\mathcal{H}))^{\sigma'} = Ker(B \otimes_{\max} (\mathcal{M} \otimes \mathcal{K}(\mathcal{H}))^{\sigma'} \xrightarrow{\Theta} B \otimes (\mathcal{M} \otimes \mathcal{K}(\mathcal{H}))^{\sigma'}).$$

Since $(\mathcal{M} \otimes \mathcal{K}(\mathcal{H}))^{\sigma'} \simeq \mathcal{M} \times_{\sigma} \hat{A}$ is nuclear, it follows that $(Ker\theta \otimes \mathcal{K}(\mathcal{H}))^{\hat{\sigma'}} = 0$ and therefore $Ker\theta = 0$. \Box

Corollary 23 If G = (A, u) is a compact matrix pseudogroup, the C^{*}-algebra A is nuclear and \mathcal{M} is a unital C^{*}-algebra which is an A-algebra via an ergodic coaction, then \mathcal{M} is nuclear.

References

- [BS] S. Baaj, G. Skandalis, Unitaires multiplicatifs et dualité pour les produits croisés de C^{*}-algèbres, Ann. Sci. Ec. Norm. Sup. 26(1993), 425-488.
- [HLS] R. Høegh-Krohn, M. Landstad, E. Størmer, Compact ergodic groups of automorphisms, Ann. Math. 114(1981), 75-86.
- [L] M. Landstad, Algebras of spherical functions associated with covariant systems over a compact group, Math.Scandinavica 47(1980), 137-149.
- [N] G. Nagy, On the Haar measure of the twisted SU(N) group, Comm. Math. Phys. 153(1993), 217-228.
- [T] M. Takesaki, Theory of Operator Algebras I, Springer-Verlag, New York, 1979.
- [Wa1] A. Wassermann, Ergodic actions of compact groups on operator algebras: I. General theory, Ann. Math. 130(1989), 273-319.
- [Wa2] A. Wassermann, Classification of full multiplicity actions, Can. J. Math. 40(1988), 1482-1527.
- [Wa3] A. Wassermann, Classification for SU(2), Invent. Math. 93(1988), 309-355.
- [Wa4] A. Wassermann, Coactions and Yang-Baxter equations for ergodic actions and subfactors, L.M.S. Lecture Notes 136(1988), 202-236.
- [Wor] S. L. Woronowicz, Compact matrix pseudogroups, Comm. Math. Phys. 111(1987), 613-665.

Florin P. Boca Department of Mathematics University of California, Los Angeles Los Angeles, CA 90024-1555

Institute of Mathematics of the Romanian Academy P.O. Box 1-764, 70700 Bucharest Romania

Department of Mathematics University of Toronto Toronto, Ontario M5S 1A1 Canada