Operads, algebras, modules and motives
Astérisque, no. 233 (1995) , 149 p.
@book{AST_1995__233__1_0,
     author = {K\v{r}{\'\i}\v{z}, Igor and May, J. P.},
     title = {Operads, algebras, modules and motives},
     series = {Ast\'erisque},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {233},
     year = {1995},
     zbl = {0840.18001},
     mrnumber = {1361938},
     language = {en},
     url = {http://archive.numdam.org/item/AST_1995__233__1_0/}
}
TY  - BOOK
AU  - Kříž, Igor
AU  - May, J. P.
TI  - Operads, algebras, modules and motives
T3  - Astérisque
PY  - 1995
DA  - 1995///
IS  - 233
PB  - Société mathématique de France
UR  - http://archive.numdam.org/item/AST_1995__233__1_0/
UR  - https://zbmath.org/?q=an%3A0840.18001
UR  - https://www.ams.org/mathscinet-getitem?mr=1361938
LA  - en
ID  - AST_1995__233__1_0
ER  - 
%0 Book
%A Kříž, Igor
%A May, J. P.
%T Operads, algebras, modules and motives
%S Astérisque
%D 1995
%N 233
%I Société mathématique de France
%G en
%F AST_1995__233__1_0
Kříž, Igor; May, J. P. Operads, algebras, modules and motives. Astérisque, no. 233 (1995), 149 p. http://numdam.org/item/AST_1995__233__1_0/

[1] J. F. Adams. A variant of E. H. Brown's representability theorem. Topology 10 (1971), 185-198. | DOI | Zbl | MR

[2] L. Avramov and S. Halperin. Through the looking glass : A dictionary between rational homotopy theory and local algebra, in Springer Lecture Notes in Mathematics Vol. 1183. Springer, 1986. | Zbl | MR

[3] A. A. Beilinson, J. Bernstein, and P. Deligne. Faisceaux pervers. Astérisque 100 (1982), 5-171. | Numdam | Zbl | MR

[4] A. Beilinson and V. Ginzburg. Infinitesimal structures of moduli space of g-bundles. Duke Math. J. 66 (1992), 63-74. | MR | Zbl

[5] J. Bernstein and V. Lunts. Equivariant sheaves and functors. Preprint, 1992. | Zbl | MR

[6] S. Bloch and I. Kriz. Mixed Tate motives. Annals of Math. To appear. | Zbl | MR

[7] S. Bloch. Algebraic cycles and higher K-theory. Adv. Math. 61 (1986), 267-304. | DOI | Zbl | MR

[8] S. Bloch. Letter to Kriz and May, June 1992.

[9] S. Bloch. The moving lemma for higher Chow groups. Preprint, 1993. | MR | Zbl

[10] J. M. Boardman. Conditionally convergent spectral sequences. Johns Hopkins Univ. Preprint, 1982. | MR | Zbl

[11] J. M. Boardman and R. M. Vogt. Homotopy invariant structures on topological spaces. Springer Lecture Notes in Mathematics Vol. 347. Springer, 1973. | Zbl | MR

[12] W. Browder. Homology operations and loop spaces. Illinois J. Math. 4 (1960), 347-357. | Zbl | MR

[13] E. H. Brown, Jr. Abstract homotopy theory. Trans. Amer. Math. Soc. 119 (1965), 79-85. | DOI | Zbl | MR

[14] H. Cartan and S. Eilenberg. Homological Algebra. Princeton University Press, 1956. | Zbl | MR

[15] F. R. Cohen. PhD thesis, University of Chicago, 1972.

[16] F. R. Cohen, T. J. Lada, and J. P. May. The Homology of Iterated Loop Spaces. Springer Lecture Notes in Mathematics Vol. 533. Springer, 1976. | Zbl | MR

[17] P. Deligne. A quoi servent les motifs ? In Proc. Symp. in Pure Math. Vol. 55, Part I, 143-161. Amer. Math. Soc., 1994. 1994. | DOI | Zbl | MR

[18] P. Deligne. Letter to Beilinson dated December 6, 1989.

[19] P. Deligne. Catégories tannakiennes. In The Grothendieck Festschrift, Volume 2, 111-195. Birkhauser, 1990. | Zbl | MR

[20] P. Deligne. Letters to Bloch and May dated March 19, March 20, April 25, and May 2, 1990.

[21] P. Deligne and J. S. Milne. Tannakian categories, Springer Lecture Notes in Mathematics Vol. 900. Springer, 1982. | Zbl

[22] A. Dold and D. Puppe. Homologie nicht-additiver Functoren. Ann. Inst. Fourier 11 (1961), 201-312. | DOI | Numdam | EuDML | Zbl | MR

[23] A. Dold and D. Puppe. Duality, trace, and transfer. In Proc. International Conference on Geometric Toplogy, 81-102. PWN - Polish Scient. Publishers, 1980. | Zbl | MR

[24] A. Elmendorf, J. P. C. Greenlees, I. Kriz, and J. P. May. Commutative algebra in stable homotopy theory and a completion theorem. Mathematical Research Letters 1 (1994), 225-239. | DOI | Zbl | MR

[25] A. Elmendorf, I. Kriz, M. A. Mandell, and J. P. May. Rings, modules, and algebras in stable homotopy theory. Preprint, 1995. | Zbl

[26] Z. Fiedorowicz and J. P. May. Homology operations revisited. Canadian J. Math. 3 (1982), 700-717. | DOI | Zbl | MR

[27] E. Getzler. Batalin-Vilkovisky algebras and two-dimensional topological field theories. Comm. Math. Phys. 159 (1992), 265-285. | DOI | Zbl | MR

[28] E. Getzler and J. D. S. Jones. n-Algebras and Batalin-Vilkovisky algebras. Preprint, 1992.

[29] V. A. Ginzburg and M. M. Kapranov. Koszul duality for operads. Duke Math. J. 76 (1994), 203-272. | DOI | Zbl | MR

[30] V. K. A. M. Gugenheim and J. P. May. On the theory and applications of differential torsion products. Memoirs A.M.S. Vol 142. A.M.S., 1974. | Zbl | MR

[31] V. A. Hinich and V. V. Schechtman. On homotopy limit of homotopy algebras, in Springer Lecture Notes in Mathematics Vol 1289. Springer, 1987. | Zbl | MR

[32] V. A. Hinich and V. V. Schechtman. Homotopy Lie algebras. Advances in Soviet Mathematics, 16 (1993), 1-27. | Zbl | MR

[33] Y-Z Huang and J. Lepowsky. Operadic formulation of the notion of vertex operator algebra. Contemporary Math. Vol. 175, 131-148. Amer. Math. Soc. 1994. | DOI | Zbl | MR

[34] Y-Z Huang and J. Lepowsky. Vertex operator algebras and operads. The Gelfand Mathematial Seminars, 1990-1992, 145-161. Birkhäuser. 1993. | DOI | Zbl | MR

[35] G. M. Kelly. On the operads of J. P. May. Preprint, January 1972. | MR | Zbl

[36] G. M. Kelly and S. Maclane. Coherence in closed categories. J. Pure and Applied Algebra, 1 (1971), 97-140. | DOI | Zbl | MR

[37] I. Kriz and J. P. May. Differential graded algebras up to homotopy and their derived categories. Preprint, 1992.

[38] I. Kriz and J. P. May. Derived categories and motives. Mathematical Research Letters, 1 (1994), 87-94. | DOI | Zbl | MR

[39] M. Levine. Bloch's higher Chow groups revisited. Preprint, 1993. | Numdam | Zbl | MR

[40] L. G. Lewis, Jr., J. P. May, and M. Steinberger (with contributions by J. E. McClure). Equivariant stable homotopy theory. Springer Lecture Notes in Mathematics Vol. 1213. Springer, 1986. | Zbl | MR

[41] S. Maclane. Homology. Springer-Verlag, 1963. | MR | Zbl

[42] S. Maclane. Categorical algebra. Bull Amer. Math. Soc., 75 (1965), 40-106. | DOI | Zbl | MR

[43] S. Maclane. Categories for the Working Mathematician. Springer-Verlag, 1976. | Zbl

[44] J. P. May. Simplicial objects in algebraic toplogy, 1967. Reprinted by the University of Chicago Press, 1982 and. | MR | Zbl

[44] J. P. May. Simplicial objects in algebraic toplogy, 1967. Reprinted by the University of Chicago Press, 1992. | Zbl | MR

[45] J. P. May. A general approach to Steenrod operations, in Springer Lecture Notes in Mathematics Vol 168. Springer, 1970. | Zbl | MR

[46] J. P. May. The Geometry of Iterated Loop Spaces. Springer Lecture Notes in Mathematics Vol. 271. Springer, 1972. | Zbl | MR

[47] J. P. May. E ring spaces and E ring spectra. Springer Lecture Notes in Mathematics Vol. 577. Springer, 1977. | Zbl | MR

[48] J. P. May. The spectra associated to I-monoids. Math. Proc. Camb. Phil. Soc., 84 (1978), 313-322. | DOI | Zbl | MR

[49] J. P. May. Multiplicative infinite loop space theory. J. Pure and Applied Algebra, 26 (1982), 1-69. | DOI | Zbl | MR

[50] J. P. May. The dual Whitehead theorems. London Math. Soc. Lecture Note Series, 86 (1983), 46-54. | Zbl | MR

[51] J. P. May Derived categories in algebra and topology. In Proceedings of the Eleventh International Conference on Topology, Rendiconti dell Istituto Matematico dell Università di Trieste, to appear. | Zbl | MR

[52] J. P. May and R. W. Thomason. The uniqueness of infinite loop space machines. Topology, 17 (1978), 205-224. | DOI | Zbl | MR

[53] Amnon Neeman. On a theorem of Brown and Adams. Preprint, 1995. | Zbl | MR

[54] S. Priddy. Primary cohomology operations for simpicial Lie algebras. Illinois J. Math., 14 (1970), 585-612. | Zbl | MR

[55] D. G. Quillen. Homotopical algebra. Springer Lecture Notes in Mathematics Vol. 43. Springer, 1967. | Zbl | MR

[56] A. Roig. Minimal resolutions and other minimal models. Publicacions Matemàtiques, 37 (1993), 285-303. | DOI | EuDML | Zbl | MR

[57] A. Roig Modèles minimaux et foncteurs dérivés. J. Pure and Applied Algebra 91 (1994), 231-254. | DOI | Zbl | MR

[58] G. Segal. Categories and cohomology theories. Topology, 13 (1974), 293-312. | DOI | Zbl | MR

[59] J. Stasheff. Closed string field theory, strong homotopy Lie algebras, and the operad actions of moduli spaces. Preprints, 1992-93. | Zbl | MR

[60] R. Steiner. A canonical operad pair. Math. Proc. Camb. Phil. Soc., 86 (1979), 443-449. | DOI | Zbl | MR

[61] D. Sullivan. Infinitesimal computations in topology. Publ. Math. IHES, 47 (1978), 269-331. | DOI | Numdam | EuDML | Zbl | MR

[62] A. Suslin. Higher Chow groups of affine varieties and étale cohomology. Preprint, 1993. | MR

[63] J. L. Verdier. Catégories dérivées, in Springer Lecture Notes in Mathematics Vol 569. Springer, 1971. | MR

[64] R. J. Wellington. The unstable Adams spectral sequence for free iterated loop spaces. Memoirs of the Amer. Math. Soc. Vol. 258, 1982. | Zbl | MR