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GEOMETRY OF ¢-HYPERGEOMETRIC
FUNCTIONS, QUANTUM AFFINE ALGEBRAS
AND ELLIPTIC QUANTUM GROUPS

V. Tarasov, A. Varchenko

Abstract. — The trigonometric quantized Knizhnik-Zamolodchikov
(qKZ) equation associated with the quantum group Uy (sl2) is a system of lin-
ear difference equations with values in a tensor product of U,(slz) Verma mod-
ules. We solve the equation in terms of multidimensional g-hypergeometric
functions and define a natural isomorphism of the space of solutions and the
tensor product of the corresponding evaluation Verma modules over the el-
liptic quantum group E,,(slz) where parameters p and ~y are related to the
parameter g of the quantum group Uy (sl2) and the step p of the gKZ equation
via p = €™ and q = e2™.

We construct asymptotic solutions associated with suitable asymptotic zo-
nes and compute the transition functions between the asymptotic solutions in
terms of the dynamical elliptic R-matrices. This description of the transition
functions gives a . connection between representation theories of the quantum
loop algebra Uy(gly) and the elliptic quantum group E, ,(slz) and is analogous
to the Kohno-Drinfeld theorem on the monodromy group of the differential
Knizhnik-Zamolodchikov equation.

In order to establish these results we construct a discrete Gauss-Manin
connection, in particular, a suitable discrete local system, discrete homology
and cohomology groups with coeflicients in this local system, and identify an
associated difference equation with the gKZ equation.
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iv

Résumé. — L’équation de Knizhnik-Zamolodchikov (qKZ) trigonométri-
que quantifiée associée au groupe quantique Uy,(slz) est un systéme linéaire
d’équations aux différences finies & valeurs dans un produit tensoriel de Uy (sl)-
modules de Verma. Nous résolvons cette équation en terme de fonctions g¢-
hypergéométriques multidimensionnelles et définissons un isomorphisme na-
turel entre ’espace des solutions et le produit tensoriel des modules de Verma
d’évaluation correspondants sur le groupe quantique elliptique E,(sl2), les
parametres p et vy étant reliés aux parametres ¢ du groupe quantique ellip-
tique Uy(sl2) et p de I’équation qKZ par les relations p = €™ et g = e~ 2™7.

Nous construisons des solutions asymptotiques associées a des secteurs a-
symptotiques convenables et calculons les fonctions de transition entre les
solutions asymptotiques en fonction des R-matrices elliptiques dynamiques.
Cette description des fonctions de transition relie la théorie des représentations
de l’algebre de lacets quantique Uy(gly) & celle du groupe quantique elliptique
E,(sl2) et est analogue au théoréeme de Kohno-Drinfeld sur le groupe de
monodromie de I’équation différentielle de Knizhnik-Zamolodchikov.

Pour établir ces résultats nous construisons une connexion de Gauss-Manin
discrete, en particulier un systéme local discret convenable, des groupes d’ho-
mologie et de cohomologie & coefficients dans ce systeme local, et identifions
une équation aux différences associée a ces données a l’équation qKZ.
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1. Introduction

In this paper we solve the trigonometric quantized Knizhnik-Zamolodchikov
(qKZ) equation associated with the quantum group Uj(slz). The trigonomet-
ric gKZ equation associated with Ug(slz) is a system of difference equations
for a function ¥(z1,...,2,) with values in a tensor product V1 ®...®V,, of
U, (sl2)-modules. The system of equations has the form
Hpm

U(21,..P%my -y 2n) = Rmm-1(02Zm/2m-1) ... Rm,1(P2m/21) K~ X

X Rmn(Zm/2n) -+ Rmm+1(2m/2m+1) ¥(21,.. ., 2n),

m=1,...,n, where p and k are parameters of the gKZ equation, H is a
generator of the Cartan subalgebra of Ug(sly), Hy, is H acting in the m-th
factor, R;n(z) is the trigonometric R-matrix Ry,v,,(z) € End(V; ® Vi)
acting in the I-th and m-th factors of the tensor product of U,(slz)-modules.
In this paper we consider only the steps p with absolute value less than 1.

The qKZ equation is an important system of difference equations. The
gKZ equations had been introduced in [FR] as equations for matrix elements
of vertex operators of the quantum affine algebra. An important special case
of the gKZ equation had been introduced earlier in [S]| as equations for form
factors in massive integrable models of quantum field theory; relevant solutions
of these equations had been given therein. Later the qKZ equations were
derived as equations for correlation functions in lattice integrable models, cf.
[JM] and references therein.

In the quasiclassical limit the qKZ equation turns into the differential
Knizhnik-Zamolodchikov equation for conformal blocks of the Wess-Zumino-
Witten model of conformal field theory on the sphere.

Asymptotic solutions of the gKZ equation as the step p tends to 1 are
closely related to diagonalization of the transfer-matrix of the corresponding
lattice integrable model by the algebraic Bethe ansatz method [TV2].

We describe the space of solutions of the gKZ equation in terms of repre-
sentation theory. Namely, we consider the elliptic quantum group E, . (sl2)
with parameters p and v defined by p = €2™ | ¢ = e~ 2™ and the E, ,(sl2)
modules V£(z1),...,V,(z,) where V,&(zy,) is the evaluation Verma module
over E, 4(slz) which corresponds to the Uy(slz)-module V;,,. Notice that as a
vector space the evaluation Verma module V£ (z,,) does not depend on z, .
For every permutation 7 € S™ we consider the tensor product VS ®...® V:
and establish a natural isomorphism of the space S of solutions of the qKZ
equation with values in V1 ®...®V,, and the space V; ®...®V? ®F, where
F is the space of functions of z1,...,2, which are p-periodic with respect to



2 1. INTRODUCTION

each of the variables,
Cr:Vi®...0V: ®F — 8§,

cf. (5.32). Notice that if ¥(z) is a solution of the gKZ equation and F(z) is
a p-periodic function, then also F(z)¥(z) is a solution of the gKZ equation.

We call the isomorphisms C, the tensor coordinates on the space of solu-
tions. The compositions of the isomorphisms are linear maps

C.,,Tr(z;l,...,zn):IC,‘?(X)...(X)V,.‘;,1 - Vi®...QV:

depending on z1,...,2, and p-periodic with respect to all variables. We call
these compositions the transition functions. It turns out that the transition
functions are defined in terms of the elliptic R-matrices

ell

Rycy. (z,2) € End (Vi ® V7))

acting in tensor products of E, . (slz)-modules. Namely, for any permutation
7 and for any transposition (m,m + 1) the transition function

Crrmm+1)(21,--,20) 1 VE®..QVE  ®VE ®..0VF - Vi®...QV7

Tm+1

equals the operator

Py, e R:ﬁle Ve (szH/sz,(nH@...®17H®7]_H®...®77_H)77_1n)

Tm+41 Tm Tm+1 Tm m-th

twisted by certain adjusting maps, cf. (5.34) and Theorem 4.16. Here PVleve
is the transposition of the tensor factors.

We consider asymptotic zones |z, /z,..,| <1, m=1,...,n—1, labelled
by permutations 7 € S™. For every asymptotic zone we define a basis of
asymptotic solutions of the gKZ equation. We show that for every permutation
7 the basis of the corresponding asymptotic solutions is the image of the
standard monomial basis in V ® ... ® V? under the map

VE®.. 0V - VE®.. .0Vl = VEw.. .oV F <5 s,

cf. Theorem 6.2. The last two statements express the transition functions
between the asymptotic solutions via the elliptic R-matrices.

The trigonometric R-matrix Ry, (z) € End(V;® V;,) is defined in terms
of the action of the quantum loop algebra U,(gl,) in the tensor product of

Uq(sl2)-modules. The quantum loop algebra Ué(flz) is a Hopf algebra which
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INTRODUCTION 3

contains the quantum group Ug(slz) as a Hopf subalgebra and has a family
of homomorphisms Uy (gl;) — Ug(slz) depending on a parameter. Therefore,

each U,(slz)-module V,, carries a Ué(gfi;)-module structure V,,(z) depend-
ing on a parameter. For Verma modules V}, V;,, over U,(slz) the quantum
loop algebra modules Vj(z) ® Vi, (y) and Vi,(y) ® Vi(z) are isomorphic for
generic z,y. Moreover, for irreducible U,(slz)-modules Vj, V,,, the quantum
loop algebra modules Vi(z) ® Vi, (y) and V;,(y) ® Vi(z) are irreducible and
isomorphic for generic z,y. The map

Py,

l

v. Ry (2/y) : Vi(z) ® Vin(y) — Vin(y) ® Vi(z)

is the unique suitably normalized intertwiner [T], [CP].

The elliptic R-matrix R:/l',lev,; (z,A) € End(Vf ® V,5) is defined in terms
of the action of the elliptic quantum group E, ,(sl2) in the tensor product
of evaluation Verma modules. For evaluation Verma modules V?(z), V5 (y)
over E, . (sl2), the E, (slz)-modules Vi#(z) ® V5 (y) and V5 (y) ® Vi°(x) are
isomorphic for generic z,y. The map

ell

Pyeye Ryeye (2/y,A) : ViE(2) ® Vi (y) — Vin(y) ® V()

is the unique suitably normalized intertwiner [F], [FV].

Our result on the transition functions between asymptotic solutions to-
gether with the indicated construction of R-matrices shows that the gKZ equa-
tion establishes a connection between representation theories of the quantum
loop algebra Uy (g1;) and the elliptic quantum group E, ,(slz). Our result
is analogous to the Kohno-Drinfeld theorem on the monodromy group of the
differential Knizhnik-Zamolodchikov equation [K], [D2]. The Kohno-Drinfeld
theorem establishes a connection between representation theories of a Lie al-
gebra and the corresponding quantum group, see [D2]. Using the ideas of the
Kohno-Drinfeld result it was proved in [KL] that the category of representa-
tions of a quantum group is equivalent to a suitably defined fusion category
of representations of the corresponding affine Lie algebra. Similarly to the
Kazhdan-Lusztig theorem one could expect that our result for the difference
qKZ equation could be a base for a Kazhdan-Lusztig type result connecting
certain categories of representations of quantum affine algebras and elliptic
quantum groups, cf. [KS].

In this paper we consider the trigonometric gKZ equation. There are other
types of the qKZ equation: the rational gKZ equation [FR| and the elliptic
gKZB equation [F]. Here KZB stands for Knizhnik-Zamolodchikov-Bernard,

SOCIETE MATHEMATIQUE DE FRANCE



4 1. INTRODUCTION

and the difference gKZB equation is a discretization of the differential KZB
equation for conformal blocks on the torus.

The rational qKZ equation was considered in [TV3]. It is a system of
difference equations analogous to the trigonometric gKZ equation in which
the role of the trigonometric R-matrix is played by the rational R-matrix de-
fined in terms of the Yangian representations. In [TV3] we solved the rational
qKZ equation in terms of multidimensional hypergeometric integrals of Mellin-
Barnes type, introduced asymptotic zones and described transition functions
between asymptotic solutions in terms of trigonometric R-matrices, thus show-
ing that the rational gKZ equation gives a connection between representations
of Yangians and quantum affine algebras.

The elliptic gKZB equation is an analogue of the trigonometric gKZ equa-
tion in which the role of the trigonometric R-matrix is played by the dynamical
elliptic R-matrix [F]. The dynamical elliptic R-matrix is a matrix acting in
the tensor product of two evaluation modules over the elliptic quantum group
E, (sl2), and the elliptic quantum group is an elliptic analog of the quan-
tum affine algebra U,(sl2) associated with sly [F], [FV]. The elliptic quantum
group depends on two parameters: an elliptic curve C/(Z + pZ) and Planck’s
constant . The elliptic gKZB equation is considered in [FTV1], [FTV2]
where we solve it in terms of multidimensional elliptic g-hypergeometric in-
tegrals. We formulate and solve in [FTV2] a “monodromy” problem for the
qKZB equation analogous to the problem of description of the transition func-
tions for the rational and trigonometric gKZ equations. We describe in [FTV?2]
the “monodromy” matrices of the elliptic gKZB equation associated with the
elliptic quantum group E, ,(sl2) in terms of the elliptic R-matrix associated
with the elliptic quantum group E, ,(slz) where o is the step of the ini-
tial gKZB difference equation, thus showing the symmetric role of the elliptic
curves C/(Z + pZ) and C/(Z + aZ) in the story.

In this paper, in order to establish a connection between representation
theories of the quantum loop algebra U, (gl,) and the elliptic quantum group
E, ,(sl2) we define a discrete analogue of a locally trivial bundle and a local
system on the space of bundle. We define a discrete analogue of the Gauss-
Manin connection for the discrete locally trivial bundle with a discrete local
system and consider the corresponding difference equation. We identify that
difference Gauss-Manin equation with the difference gKZ equation. To realize
this idea we introduce a suitable discrete de Rham complex and its cohomology
group in the spirit of [A], then we define the homology group as the dual space
to the cohomology group and construct a family of discrete cycles, elements
of the discrete homology group, using ideas of [S]. We construct the space of
discrete cycles as a certain space of functions. Having a representative of a
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INTRODUCTION 5

discrete cohomology class (a function) and a discrete cycle (a function again)
we define the pairing (the hypergeometric pairing) between the cohomology
class and the cycle as an integral of their product with a certain fixed “hyper-
geometric phase function” over a certain fixed contour of the middle dimension.
We show that there are enough discrete cycles and they form the space dual
to the quotient space of the space of our discrete closed forms modulo dis-
crete coboundaries. To prove this we compute the determinant of the period
matrix and get an explicit formula (5.9) for the determinant analogous to the
determinant formulae for the hypergeometric functions of Mellin-Barnes type
[TV3] and for the “continuous” hypergeometric functions [V1], cf. Loeser’s
determinant formula for the Frobenius transformation [L].

The form of our discrete cycles suggests a natural identification of the space
of our discrete cycles with a tensor product of E, ,(slz)-modules and this
identification allows us to prove the result on transition functions between
asymptotic solutions.

The paper is organized as follows. Chapters 2—-6 contain constructions and
statements and Chapter 7 contains proofs. We give necessary prelimimnaries,
proofs of technical results and some applications in Appendices.

Parts of this work had been written when the authors visited the University
of Tokyo, the Kyoto University, the Osaka University, the University Paris VI,
the THES at Bures sur Yvette, Ecole Normale Supérieure de Lyon, the MSRI
at Berkeley, the ETH at Ziirich. The authors thank those institutions for
hospitality.

The authors thank G.Felder, P. Etingof and E. Mukhin for valuable discus-
sions. The authors also thank the referee for important comments.

A.Varchenko was supported in part by NSF grant DMS-9501290.
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2. Discrete flat connections and local systems
In this chapter we recall basic notions introduced in [TV3].

Discrete flat connections

Let C*=C)\ {0}. Consider a complex vector space C™ called the base
space. Let C*™ be the complement of the coordinate hyperplanes in the base
space. Fix a complex number p, such that p # 0,1, which is called the step.
The lattice Z™ acts on the base space by dilations:

l:(z1y-00,20) — (P21, .., 0'"2), leZ™.

Let B Cc C*™ be an invariant subset of the base space. Say that there is a
bundle with a discrete connection over B if for any z € B there are a vector
space V(z) and linear isomorphisms

Am (21, oy 20) V(21 s PZmy -y 2n) — V(21,...,2n), m=1,...,n.
The connection is called flat (or integrable) if the isomorphisms Aj,..., A,
commute:

(2.1) Al(z1y .y 2n) Am(21, ., D21,y 20) =

= Am(21,--y20) Al(Z1, -, DZmy -y Zn) -

Say that a discrete subbundle in B is given if a subspace in every fiber is
distinguished and the family of subspaces is invariant with respect to the
connection.

A section s : z — s(z) is called periodic (or horizontal) if its values are
invariant with respect to the connection:

(2.2) Am (21,3 20)8(215 s PZmy -+ oy 2n) = 8(21,...,2n),

m=1,...,n. A function f(z1,...,2,) on the base space is called a quasi-
constant if

f(z1y- s P2Zmy oy 2n) = f(21,..-, 20), m=1,...,n.

Periodic sections form a module over the ring of quasiconstants.
The dual bundle with the dual connection has fibers V*(z) and isomor-
phisms

Ay (Z1yeey2n) i V(215 ooy 2n) = V(21,0 s P2Zmy - oy 20) -
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Let s;1,...,8n be a basis of sections of the initial bundle. Then the isomor-
phisms A,, of the connection are given by matrices A(™) :

N
An(21y oy 20)8k(21, -+ s DZmy - e vy 20) = ZA&T)(zl,...,zn)sl(zl,...,zn).
=1

For any section v : z +— 1(z) of the dual bundle denote by ¥ : z — ¥(z)
its coordinate vector, Ui (z) = (1(2), sk(2)). The section 9 is periodic if and
only if its coordinate vector satisfies the system of difference equations

U(21,. . yP2my -y 2n) = A(m)(zl,...,zn)\P(zl,...,zn), m=1,...,n.

This system of difference equations is called the periodic section equation.

Say that functions ¢i,...,¢, in variables zj,...,z, form a system of
connection coefficients if

Q21 sDZms s 20) P21, 20) =

= om(21,.. - D2y, 2n)Q1(21, ..., 2n)

for all I,m = 1,...,n. These functions define a connection on the trivial
complex one-dimensional vector bundle.

The system of connection coefficients is called decomposable if it has the
form

(Pm(zla---yzn) = K:m|: H ¢lm(p_lzl/zm)]—1 H ¢ml(zm/zl)a

1<li<m m<l<n

m=1,...,n, for certain functions ¢;,,,, [ < m, in one variable and nonzero
complex numbers k,,. The functions ¢, are called primitive factors and
Km are called scaling parameters.

A function ®(z1,...,2,) is called a phase function of a system of connection
coefficients if

D(21,. s PZmy s 2n) = Pm(21, ..y 20) (21, .., 20), m=1,...,n.
Similarly, a function @(z) is called a phase function of a function ¢(z) in

one variable if @(pz) = ¢(z)P(z). Notice that the phase functions are not
unique.

ASTERISQUE 246



DISCRETE GAUSS-MANIN CONNECTION 9
For any function f(21,...,2,) define new functions Q1 f,...,Qnrf and
Diyf,...,D,f by the rule:

@Qmf)(z1y---y2n) = Em(21,--y2n) f(215- -, PZm, ..., 2n) ,

and D, f = Qmf—f, m=1,...,n. The functions D;f,...,D,f are the
discrete partial derivatives of the function f. We have that D;D,, f = D,,,D, f

forany I,m=1,...,n.
Let F be a vector space of functions of z,..., 2z, such that the operators
Q1,...,Q, induce linear isomorphisms of F':
Qn:F — F.
Say that the space F and the connection coefficients ¢4,..., ¢, form a one-

dimensional discrete local system on C*™. F is called the functional space of
the local system.

Define the de Rham complez (Q°(F), D) of the local system in a standard
way. Namely, set

0 = {w: Z fkl,...,ka D,?:k1 /\.../\Dzka}

k1, rka
where Dz,...,Dz, are formal symbols and the coefficients fi, . x, belong
to F. Define the differential of a function by Df = " Dy, f Dz, and the
m=1

differential of a form by

Dw = Z ‘kalyn-yka ADzg, A... A Dzka .
k1,...,ka

The cohomology groups H', ..., H" of this complex are called the cohomology

groups of C*™ with coefficients in the discrete local system. In particular, the
n

top cohomology group is H™ = F/DF where DF = > D, F. The dual

m=1

spaces H, = (H®)* are called the homology groups.

Discrete Gauss-Manin connection

There is a geometric construction of bundles with discrete flat connections,
a discrete version of the Gauss-Manin connection construction.

Let 7 : C#t™ — C™ be an affine projection onto the base with fiber CZ.
C*%*™ will be called the total space. Let z1,...,z, be coordinates on the base,
t1,...,ts coordinates on the fiber, so that ¢1,...,ts, 21,...,2, are coordinates

SOCIETE MATHEMATIQUE DE FRANCE



10 2. DISCRETE FLAT CONNECTIONS AND LOCAL SYSTEMS

on the total space. When it is convenient, we denote the coordinates z1,...,
Zn by tog1,.. o tegn .

Let F, ©1,...,00+n be a local system on C*(¢*™) For a point z € C*™
define a local system F(z), @q(-;2), a=1,...,£, on the fiber over z. Set

F(z) = {f|7r | feF} and ¢a(52) = SOO'IW—I(Z)'

()
The de Rham complex, cohomology and homology groups of the fiber are

denoted by (9°(z),D(z)), H*(z) and H,(z), respectively.
There is a natural homomorphism of the de Rham complexes

(Q°(C*)F), D) — (Q°(2), D(2)), W W10y
where the restriction of a form is defined in a standard way: all symbols Dz,
..., Dz, are replaced by zero and all coefficients of the remaining monomials
Dty, A ... A Dty, are restricted to the fiber.

For a fixed a the vector spaces H*(z) form a bundle with a discrete flat
connection. The linear maps

Am(z1, . 2n) t H*(21,.. ., DZmy .-, 2n) — H%(21,...,2n)
are defined as follows. Define @, : Q2(C*¢+7) F) — Q¢(C*¢+™) F) by

w = Y Qmfry,. ke D2k Ao A Dzy, .
k1, ka

Then @Q,, induces a homomorphism of the de Rham complexes

(Q'(zl,...,pzm,...,zn),D(zl,...,pzm,...,zn)) -

— (Q°(21,...,2n), D(21, ..., 2n)) -
We set A,(z1,...,2,) to be equal to the induced map of the cohomology
spaces. This connection is called the discrete Gauss-Manin connection.

The Gauss-Manin connection on the cohomological bundle induces the dual
flat connection on the homological bundle:

A (21,..y2n) t Ho(21, ...y 2n) = Ha(21,...,DZmy- -+ 2n) -
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CONNECTION COEFFICIENTS OF LOCAL SYSTEMS 11

Connection coefficients of local systems

In this paper we study the Gauss-Manin connection for a class of local
systems with decomposable connection coefficients, namely for trigonometric
sla-type local systems [T'V3], for the rational case see [TV3] and for the elliptic
case see [FTV1], [FTV2].

Primitive factors and scaling parameters of a trigonometric sly-type local
system have the following form:

dap(T) = nxx_—nl for a<b<{,
Pab(z) = Sooer — 1 for a<{<b,
T — e
Pab(z) = 1 for f£<a<hb.
Ko = K for a<¥,
Kg = 1 for ‘4<a.

Such a system of connection coefficients depends on m + 2 nonzero complex

numbers &i,...,&,, n,k. The connection coefficients of a trigonometric sl,
type local system have the form
n
t te — Mt te — Mt
(23) (P K H m a (; ntb H b at ntb ,
me1 ta §mzm <b<l"7a— b 1<b<ap77a— b
a=1,...,¢,
— PémZm
Yotm(t,2) = —_— m=1,...,n.
#m(tr2) = H mta — P2m ’

Let &(x;a) be a phase function of the function (za—1)/(za~! —1). Then
a phase function of the system of connection coefficients is given by

(24) @(tl,...,tg,zl,...,zn) =

= flte,. - te, 21, 20) @1, .-y tey 21, - - -y 20)

where
n J4
(25) (I)(tla""tfazl""azn) = H H ¢(ta/zm’£m) H ¢(ta/tb;n_1)
m=1 a=1 1<a<bge

SOCIETE MATHEMATIQUE DE FRANCE



12 2. DISCRETE FLAT CONNECTIONS AND LOCAL SYSTEMS

and f(t1,...,te,21,...,2n) is an arbitrary function such that
(2.6) @1, . ptay. s te, 21,y 2n) =
£—2a+1 T
= KN ot Hl§71_1,1f(t17"-7tl’z17"'7zn)a
m=

Flt1,yeoote, 21, ey D2Zmy ey 2n) = EE f(try oo te, 21,0 e vy 20) -

Later in this chapter we will describe a convenient space of such functions
called the elliptic hypergeometric space.

The function ®(t1,...,ts, 21,...,2n) will be called a short phase function.
Example. Let 0 < |p| < 1. Let (u),, = [] (1 — p*u). We can take
k=0
-1
b(z;a) = __(wa Joo
(Za) oo

Then the phase function @(z;a) has a symmetry property

za—1) 6(za)
(x—a) ab(z/a)

&(—z;a) = P(z;0) (

where 0(u) = (1) o (Pu™!) o (P) oo is the Jacobi theta-function. The symmetry
property for &(z;a) leads to a symmetry property

(27) @(tl,...,ta+1,ta,...,te,Zl,...,Zn) =
(ta - 77ta+1) 779(77—1ta/ta+1)
(Mta —tat1) O(nta/tat1)

of the short phase function of the system of connection coefficients. This prop-
erty motivates definitions (2.9) and (2.29) of certain actions of the symmetric
group.

= @(tl,...,tg,zl,...,zn)

The functional space of a trigonometric sla-type local system

Define the functional space F of a trigonometric slo-type local system as
the space of rational functions on the total space C*t™ with at most simple
poles at the following hyperplanes:

(28) te = ps+1€;11zm ) te = p—sgmzm ) te = ps+177tb ) ty = Psﬂta )
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THE FUNCTIONAL SPACE OF AN si3-TYPE LOCAL SYSTEM 13

1<a<b<g<¥{, m=1,...,n, s € Zxy, and any poles at the coordinate
hyperplanes t, =0, a = 1,...,¢, and 2, =0, m = 1,...,n. It is easy
to check that the functional space is invariant with respect to all the shift
operators Qi ..., Q1.

Define an action of the symmetric group S¢ on the functional space:

(2.9) o:F - F, F=1[fl,, oe S,
to, — Nio,
(£ @t ste 21,y 2n) = fltoy, - ton 21,--520) ] o
1<a<bge Moy Ca
0a>0p
The operators Q1,...,Q¢+n and Di,...,Detp commute with the action of

the symmetric group.
We extend the Sf-action to the de Rham complex assuming that it respects
the exterior product and

o:Dt, — Dt,,_, o:Dzy — Dz, oe S’

The same formulae define an action of the symmetric group on the de Rham
complex of a fiber. The homomorphism of the restriction of the de Rham
complex of the total space to the de Rham complex of a fiber commutes with
the action of the symmetric group. The action of the symmetric group induces
an action of the symmetric group on the homology and cohomology groups.
The Gauss-Manin connection commutes with this action.

If a symmetric group acts on a vector space V, we denote by Vy the
subspace of invariant vectors and by V,, the subspace of skew-invariant vectors.

In this paper we are interested in the skew-invariant part H%(z) of the top
cohomology group of a fiber. This subspace is generated by forms fDt; A...A
Dt, where f runs through the space j-\;(z) of invariant functions.

Introduce an important trigonometric hypergeometric space F C .7?;; as the
subspace of functions of the form

Y4 n £ tae — tp
(210) P(tlyu-atfvzla"') HtaH H H nt — tr

a=l 01 4 §m Zm 1<a<b4 Mta = to

where P is a polynomial with complex coefficients which is symmetric in
variables t;,...,t; and has degree less than n in each of the variables t;,

te. The restriction of the trigonometric hypergeometric space to a fiber
defines the trigonometric hypergeometric space F(z) C .7/-;(7:) of the fiber
which is a complex finite-dimensional vector space. If required, we will write
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14 2. DISCRETE FLAT CONNECTIONS AND LOCAL SYSTEMS

down explicitly dependence of the trigonometric hypergeometric spaces on 21,
vy Zn, &1,...,&, and £, that is

F = Fla, -y 20361, -, €ni 2]
and
F(z) = Fla1,--- 20361, -+, €ns £](2) .

A form fDt; A... A Dty with the coefficient f in the trigonometric hyper-
geometric space of a fiber is called a hypergeometric form. The subspace
H(z) C H%(z) of the top cohomology group of a fiber generated by the hyper-
geometric forms is called the hypergeometric cohomology group.

The union of the hyperplanes
(2.11) &iéma/zm = D°N", r=0,...,0—1, sEZ,

I,m=1,...,n, |l # m, in the base space C™ is called the discriminant. The
complement to the discriminant in C*" will be denoted by B.

(2.12) Theorem. [V3], [TV1] The family of subspaces {H(z)},p is invari-
ant with respect to the Gauss-Manin connection and, therefore, defines a dis-
crete subbundle.

This subbundle is called the hypergeometric subbundle.

Later on we make the following assumptions. We always assume that the
step p is such that 0 < |p| < 1, and the parameters 7, &, &1,...,&n, 21,
..., %n are nonzero. We often assume that the parameter 7 is such that

(2.13) n" # p®, r=1,...,¢, seZ,
the parameters &i,...,&, are such that

(2.14) £+ p°n’, m=1,....,n, r=1-4,....0—-1, s€EZ,

and the coordinates z,...,2, obey the condition
(2.15) flfilzl/zm # p°n", Im=1,....n, l#m, s€Z,
forany r=1—4,...,£—1 and for an arbitrary combination of signs.
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BASES IN THE TRIGONOMETRIC HYPERGEOMETRIC SPACE OF A FIBER 15

(2.16) Theorem. Let k# p°n " [] &m and K #p~*~!9" Hlé,;l, r =0,
m=

m=1

ooy —1, s€Z>o. Let 0< |p| <1. Let (2.13) —(2.15) hold. Then

dimH(z) = dim F(z) = (":f; 1).

This means that

(2.17) H(z) ~ F(z).

In what follows we will consider in detail only two of the special values of

n
the scaling parameter x mentioned in Theorem 2.16, namely & =n'~¢ [] &»
m=1

n
and k = p~in?~! [] &}, which correspond to the values r = £ — 1 and
m=1
s = 0. In principle, all other special values of the scaling parameter k can be

considered similarly.

n n
(2.18) Theorem. Let either k = n'=¢ [] &, or k = p~int~! Hlf,;l. Let
m=

m=1

0<|p| <1. Let (2.13) — (2.15) hold. If T] &2, #p°n" forall r=4£—1,...,
m=1

n+£— 2)

20 —2 and s € Zg, then dimH(z) = < 09

Theorems 2.16 and 2.18 follow from Theorems 5.9 and 5.10, 5.11, respectively,
and Lemma 7.7.

Theorem 2.16 means that if the value of the scaling parameter x is not
special, then every nonzero hypergeometric form defines a nonzero cohomology
n n
class. If either k =n'~* [[ &n or k=p 9’1 [] &, then Theorem 2.18
m=1 m=1
says that there exist exact hypergeometric forms. We describe them in Lemma,

2.23.

Bases in the trigonometric hypergeometric space of a fiber

The finite-dimensional trigonometric hypergeometric space F(z) of a fiber
has n! remarkable bases. These bases will allow us to identify the geometry of
an sla-type local system with representation theory. The bases are labelled by
elements of the symmetric group S™. First we define the basis corresponding
to the unit element of the symmetric group.
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16 2. DISCRETE FLAT CONNECTIONS AND LOCAL SYSTEMS

Let
(2.19) zZp ={1eZ, | Z[ =/{}.
Set ™ = Z l. In particular, I° = 0, [® = ¢. For any [ € Z} define a
rational functlon wy € F as follows:

(220) w((tl,...,te,zl,...,zn) =

T2 ST M T 2222,

oeSt m=1 a€l',, 1<l<m

where 'y, = {1+ 1™t ... ,I™}, m=1,...,n. The functions w; are called
the trigonometric weight functions.

(2.21) Lemma. Let [ € Z}. Then

ta — tp
w[(tl,...,tg,zl,...,zn) = H —ta——t X
1<a<bge Ma —

< S IO (e T 825) T el

m=1 a€l,, 1<l<m 1I<i<m<n
a€li,bely,
where the summation is over all n-tuples I4,...,I, of disjoint subsets of

{1,...,¢} such that I, has |, elements.
The lemma is proved in Appendix A.

Example. For ¢ =1 the trigonometric weight functions have the form

Wem (t1, 2 o) = 131 §it1 — 2
e(m b 17"’7 n - 7 S -
_gmzm 1<l<mt _élzl
where ¢(m)=(0,..., 1,...,0), m=1,...,n
m-th

Example. For n =1 the function w) has the form
¢

ta ta — tp
ti,...,te, = —_— —_—.
w(l)( 1y )y UL zl) H ta — 121 H Nta — to

a=1 1<a<bsl
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Example. For £ =2 and n =2 the functions w; have the form

w(a.0y(t1,t2,21,22) = fats t =t
GOV 2L 2] T 4 — &z (b2 — E1z1) Mt — 2
w(y,1)(t1, t2, 21, 22) = tata Sit2 — 21
(LD 72 =) =2 (t1 — & 21) (t2 — &o22) ta — 121
i 312) &t — 21 t1 — i
(t2 — &121) (t1 — &222) 81 —&121 Mty — t
tito (&1t1 — z1) (&ate — 21) t1 —t2

w t1,t2,21,22) = .
©2)(hyt2 21, 22) (t1 — &222) (t2 — €222) (t1 —&121) (b2 — &121) Mty — t2

(2.22) Lemma. The functions wy, | € Z7, restricted to a fiber over z form
a basis in the trigonometric hypergeometric space F(z) of the fiber provided
that & émzm/z #n", 1<l<m<n forany r=0,...,£—1.

Lemma 2.22 is proved in Chapter 7.

Let e¢(m)=(0,..., 1,...,0), m=1,...,n.
m-th

n
(2.23) Lemma. Let k= n'~* ]‘_[lgm. Then for any [ € Z} | the following
relation holds:

1<I<m

3 Wipetm) (L =0 (€m — 00 TT 776 =
m=1

= (1 - 77) Z Da [w((t2v s ate)](lﬂ) )

a=1

where (1,a) € S¢ are transpositions. Moreover, if R(z) is the subspace in
F(z) generated by the elements in the left hand side of the relations, then

n+£€—2
n—2

dim F(2)/R(z) = (

provided that & &mzm/zi #1n7, 1<l<m<mn, forany r=0,...,£—1.
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18 2. DISCRETE FLAT CONNECTIONS AND LOCAL SYSTEMS

(2.24) Lemma. Let k = p~int! Hlﬁ;ll. Then for any | € Z} | the fol-
m=
lowing relation holds:

D Wiy (L= 1" (Em —n'E) 2m T 0"E" =

£
— (1 — 7,) Z D, [t1wr(t2, v ,tf)](l,a) ’
a=1

where (1,a) € S® are transpositions. Moreover, if R'(z) is the subspace in
F(z) generated by the elements in the left hand side of the relations, then

n—2

dim F(2)/R/(2) = ("’ - 2)

provided that & &mzm/z1 #n", 1<I<m<n, forany r=0,...,£4—1.
Lemmas 2.23 and 2.24 are proved in Chapter 7.
The subspaces R(z),R'(z) C F(z) are called the coboundary subspaces.

For k =n'"¢ [] &, relations (2.23) induce the relations

m=1

n

> Lwtreem Dt A+ A Dte) (L= (gm —n'6.1) TT 076 = 0,

m=1 1<Ii<m

Le Z?—lv

in the cohomology group H*(z), where |a| denotes the cohomological class
of a form a. Under assumptions of Theorem 2.18 we have

(2.25) H(z) ~ F(z)/R(z).

n
Similarly, for &k = p~1n®~! [] &} relations (2.24) induce the relations
m=1

n
D | wirem) Dt Ao A Dte] (1 =" *) (€m — 1€ ) 2 TT 0"&7 =0,

m=1 1<l<m

le 24,
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THE ELLIPTIC HYPERGEOMETRIC SPACE 19

in the cohomology group H*(z), and under assumptions of Theorem 2.18 we
have

(2.26) H(z) ~ F(2)/R'(2).

For any permutation 7 € 8" we define a basis {w] } zp in the trigono-

metric hypergeometric space of a fiber by formulae similar to (2.20). Namely,
set

(2.27) wi (t1y-. - te, 215y 20381y, E&n) =
= Wr(t1y- ey bey Zryyevos 2 &ry o Emn)
where (= ([;,...,[;).
Example. For /=1 and a permutation 7= (n,n—1,...,1) the trigono-

metric weight functions have the form

131 &t — 2

.
t .. = — .
Wem (P12 21, 20) t1 —&mzm t1 — &z

m<l<n

The elliptic hypergeometric space

In our study of the Gauss-Manin connection for the discrete local system
(2.3) an important role is played by the following elliptic hypergeometric space.
The elliptic hypergeometric space is an elliptic counterpart of the trigonometric
hypergeometric space introduced above.

All over this section we assume that 0 < |[p| < 1. Let
0(1) = (43P)oo (PU™"5 Poo (P Ploo

be the Jacobi theta-function.

The elliptic hypergeometric space J;, is the space of functions of variables
t1,...,te,21,...,2, spanned over C by functions which have the form

Y(zl,...,zn)Q(tl,...,te,zl,..., H H H 0(t /tb)

m=1 a=1 €m1ta/zm) 1<a<bge e(nta/tb) ’

Here Y is a meromorphic function on C*™ and © is a holomorphic function on
C*(+n)  symmetric in the variables tq,...,ts; we assume that the functions
Y and © have the properties
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20 2. DISCRETE FLAT CONNECTIONS AND LOCAL SYSTEMS

n

O(t1, ..y Dtay - stey 21,y 2n) = (—ta) "k [ 2m O(t1,---,te, 21, -, 2n),

Y(21,--3D2Zmy-e320)O1, - b0, 21, - s D2Zmy e ooy 2n) =
)
= (=p/zm)” [[ ta Y(21,---,20)O(t1, - te, 21,y Zn) .
a=1

The restriction of the elliptic hypergeometric space to a fiber defines the elliptic
hypergeometric space %,(z) of the fiber. The elliptic hypergeometric space
Eu(z) is a complex finite-dimensional vector space of the same dimension as
the trigonometric hypergeometric space of the fiber, see Appendix B.

All elements f(t,z) of the elliptic hypergeometric space satisfy the period-
icity conditions

(2.28)  f(t1,.--,Ptay---ste, 215y 2n) =

n
= Kne—2a+1 1_,[ 5;1,1 f(tlv' . ',te7zlv' . ’zn)7
m=1

flt1, .oy tey 21, s DZmy oy 2n) = §fnf(t1,...,tg,zl,...,zn).

(cf. (2.6)). Therefore, if ®(t,z) is a short phase function given by (2.5) and
f(t,2) is any element of the elliptic hypergeometric space, then ®(t,z)f(t,2)
is a phase function of our discrete local system.

Transformation properties (2.28) also mean that the elliptic hypergeometric
spaces of fibers over z and 2’ are naturally identified if the points z and 2z’
lie in the same orbit of the Z™-action on the base space.

We give basic facts about the elliptic hypergeometric space in Appendix B.

If required, we will write down explicitly the dependence of the elliptic
hypergeometric spaces on K, 21,...,2n, &1,...,&, and £, that is

-E.ll = .7;_—,1[5;21,...,zn;§1,...,§n;€]
and
Fu(2) = Fulks 21,y 2036150 -+, 6ni £](2) -

Introduce a new action of the symmetric group S* on functions,

(2.29) f- 11, oeSt

,’70(7’ tab/taa)
[[f]la(tla"->t£,zla"'7z'n) = f(ta' yoo s logs 21y zn) I I .
1 1<a<be o(nt"b/t"a)

0a>0p
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The elliptic hypergeometric space is invariant with respect to this action. The
action commutes with the restriction of functions to a fiber.

The elliptic hypergeometric space of a fiber has n! remarkable bases. The
bases are labelled by elements of the symmetric group S™. First we define
the basis corresponding to the unit element of the symmetric group. For any
[ € Z} define a function Wi(t, z) as follows:

T T 6
(2.30) Wi(t1,...,te,21,...,2n) = H 7L x

o o( 2a—e_l"?;zlta/zm) 0(&ita/21)
> IIH H( ne(frilta/zm) 11 9(51_!1%/;) )]]0

ceSt m=1 a€l'y, 1<l<m

where T, = {14+1™"1,...,I™} and k= [[ & [I &' m=1,...,
1<li<m m<i<n

n. The functions W) are called the elliptic weight functions.

(2.31) Lemma. Let [ € Z}. Then

0(ta/ts)
Wilts,.oterzrynm) = [ wenlil
1<a<bst 0(nta/ts)

2 0(kimta/2m) 6(&ita/=) 0(nta/ts)
<AL I Gegers I aenrs) L 566y )

I'y,....,l', ~m=1 a€ly, <l<m 1<l<m<n
aer,beFm
where km =k [I n7% TI n“&t
1<i<m m<ign

and the summation is over all n-tuples Ii,...,I, of disjoint subsets of
{1,...,¢} such that I, has |, elements.
The lemma is proved in Appendix B.

Let Y((z) be any meromorphic function such that
(2.32) Yi(z1,- . 1P2m, -y 2n) = om Yi(21,...,2n)
where am = £ I] p7vmgren T1 nmgment,

1<i<m m<l<n
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22 2. DISCRETE FLAT CONNECTIONS AND LOCAL SYSTEMS

m = 1,...,n. Then the product Y{(z)Wi(t,z) is an element of the elliptic
hypergeometric space. The function Y; will be called an adjusting factor for
the weight function W;. The adjusting factors can be chosen to be meromor-
phic functions in parameters 7, &,...,£, and k.

Example. Let c;,...,c, be arbitrary nonzero complex numbers. Let a1,
..,y be the same as in (2.32). Then the function

n

0szm QL m
}f[(zl,...,zn) = H —-—(—-o(cm—im)’2

is an adjusting factor for the weight function Wy.

m=1

Notice that an adjusting factor is not unique. In what follows we never need
to know the adjusting factors explicitly.

Example. For £ =1 the elliptic weight functions have the form
_ O(smita/2m) 0(&t1/2)
a(faltl/z’m‘) 1<i<m 0(§l—lt1/zl)

where K, =k [[ & [I &' m=1,...,n.

1<l<m m<Ii<n

We(m) (tl) Zlyeeey Z'n.)

Example. For n =1 the function W, has the form

0(k ta/21) H 0(ta/ts)

£
Wg (tl,...,tg,zl)-_— — .
© rzll 0(67  ta/21) 1 pomee O0Tta/ts)

Example. For £ =2 and n = 2 the functions W; have the form

O(k1Eat1/21) 0(k1Eata/21) O(t1/t2)
0(&7 ' t1/21) 0(&7 HHa/z1)  O(nta/t2)

W2,0)(t1,t2,21,22) =

O(n k=2&at1/21) O(nk ™1 b2/ 220) 0(Eata/ 1)
(&7 1 /21) 0(&5 M2/ 22) 0(€7 1t/ 1)

O(ns=1€ 11 /20) 0(n~ K Eata )/ 21) 0(Ext1/ 1) mO(n~ 41 /t2)
(& M1/ 21) 0(65 11/ 22) (€7 M E2/ 1) O(nt1/t2)

Wi (t, t2, 21, 22) =

+

Wio,2)(t1,t2, 21, 22) =

_ 0(k™1E7 1/ 22) 0(k™1E7 't/ 22) 0(E1ta /21) 0(Eata/z1) O(t1/t2) .
(€5 1t1/22)0(5 M2/ 22) 0(E7 M1 /21) 0(&r M2/ 21)  O(nt1/ta)
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(2.33) Lemma. The functions Wy, | € Z, restricted to a fiber over z form
a basis in the elliptic hypergeometric space %,(z) of the fiber, provided that
&lmazm/z £ 0°0", 1<l<m<mn, forany r=0,...,0—-1, s€Z, and

k I1 & 1 &'#pn" foranym=1,...,n—-landr=1-4¢,...,0—1,
1<I<m m<i<n
se’.
Lemma, 2.33 is proved in Chapter 7.
Let Q(z) be the space of functions of the form
S [Wita, .., t)],

oSt

where W € Ey[n~tk;21,. .., 20581, .-, &n; £ — 1](2) . Let Q'(2) be the space
of functions of the form

Z [[W(tl, 1) te—lﬁ O(Emte/2m) ]]a’

seSt 0(§m1te/zm)

where W € Ey[nk;21,...,2n; 81, .., &n; £ — 1](2) . In general, the spaces Q(z)
and Q'(z) are not subspaces of the elliptic hypergeometric space of the fiber
Zu(2) , because their elements do not have the required quasiperiodicity prop-

n
erties. However, if k = n'~¢ [] &, , then the space Q(z) is a subspace of
m 1

Eu(2), and if K = p~int? H {m , then the space Q’(z) is a subspace of
E.(z). The spaces Q(z), Q' (z) are called the boundary subspaces.

For any function f(¢1,...,t¢) and a point t* = (ti,...,t;) we define the
multiple residue Res f (t)lt_t* by the formula

(2.34) Res f(t)|,_,. = Res (... Res f(t1,...,te)

|te=t; ”')ltl:t;'

For any [ € Z} define the points z>1, y<[ € C*¢ as follows:

(2.35) x>l = (""" 21, 0?2, . .. b2, P 26020, . bz,

1-1,
n fnzna“')gnzn%

[1—1g-1 [1—2¢—1 -1 lp—1pg—1 -
y<1[: (771 61 31,771 51 zl»--wél 21,772 62 22,...,52122,...,

[h—1¢—1 -
n" én zna"'vsnlzn)-
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Example. Let {=1 and [=(0,..., 1,...,0). Then zbl = £,2, and
m-th
y<][=§;zlzm-
(2.36) Lemma. Let n"# p° forany r=1,...,£—1, s € Z. Assume that
{l_lfmzl_lzm #p*n", Im=1,...,n,l#m, forany r=0,...,4—1,
s €Z. Then Res f (t)|t:xm= 0 for any f € Q(z) and m € Z}. Moreover, if

n
k=nt"*t ]:[lfm and n'# p°, s € Z, then
9(z) = {f € Eu(2) | Res f#)|,_,,, =0 forany me Z]'}.

(2.37) Lemma. Let n"# p® forany r=1,...,£—1, s € Z. Assume that
{lfm"lzl_lzm #p°n", Im=1,...,n,l#m, forany r=0,...,£—1,
s € Z. Then f(y<am) =0 for any f € Q'(z) and m € Z}. Moreover, if

n
k=p int? Hlf;ll and 1nt# p°, s € Z, then
m=

Q'(z) = {feF(z)| flysm)=0 forany me Z}}.

Lemmas 2.36, 2.37 are proved in Appendix B.

Example. Let £ = 1. Then the spaces Q(z) and Q’(z) are one-dimensional.
The space Q(z) is the space of constant functions in one variable, and the

n
space Q'(z) is spanned by the function W (t;) = ¢]* H g(—%—’_n—lt—:-z/z—"%
m U1/ 2Zm

m=1
n
Let « = [] & . Then functions of the elliptic hypergeometric space of a
m=1
fiber %,(z) are p-periodic. The space %,(z) has a one-dimensional subspace
of constant functions which is the boundary subspace Q(z). The constant
functions are the only functions in %;(z) which are regular in C*. The

regular elliptic weight function is W) =1, ¢(1) = (1,0,...,0).

n
Let k = p~ 1] &,}. Then the elliptic weight function Wio,...,0,1) equals
m=1
—£,.12, W and generates the boundary subspace Q'(z) C %;(z). The function
W is the only function in ,(z) which vanishes at all the points & 'z,...,

&1z,
n
(2.38) Lemma. Let Kk = ' * [[ &n. Let n"# p° forany r = 2,...,¢,
m=1
s €Z. Then

amzE/eE = ("1157).

n—2
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Moreover, the equivalence classes of functions Wy, 1, =0, [ € Z}, restricted
to a fiber over z form a basis in the space F%,(z)/Q(z), provided that
&bmzm/z £ p°n", 1<l<m<n, for any r=0,...,4—1, s€Z, and

1<1l1 E&#pn", m=1,...,n—1,forany r=0,...,20—2, s€ L.
M

n
2.39) Lemma. Let x =p~lnt~1 [[ &1, Let " # p® forany r=2,...,¢,
1 m
m=
s €Z. Then
n—2

dim £,(2)/Q () = <"”“2).

Moreover, the equivalence classes of functions Wy, [, =0, | € Z7, restricted
to a fiber over z form a basis in the space %,(z)/Q'(z), provided that
&bémazm/z £ p°n", 1<l<m<n, for any r=0,...,4—1, s€Z, and

& #p°n", m=1,...,n—1, forany r=0,...,20 -2, s€Z.
l
m<Il<n

Lemmas 2.38, 2.39 are proved in Appendix B.

For any permutation 7 € S™ we define a basis {W[" } . zp in the elliptic
hypergeometric space of a fiber by formulae similar to (2.30). Namely, set

(240) W[T(tl,. . .,te,Zl,. . ,Zn;€17~~~>€n) =
= Wr(t1,. s te, 2ryy ooy 203 €0y o5 €r)

where T = (I;,...,[.).

Example. For £{=1 and a permutation 7 = (n,n—1,...,1) the elliptic
weight functions have the form

; _ 0(R 1/ zm) 0(&it1 /1)
We(m)(tl, Zlyeeny Zn) - 0(&711t1/2m) m<izn 9(€f1t1/zz)

where &m=x [[ &' [I &, m=1,...,n.
1<l<m m<l<n
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3. R-matrices and the qKZ connection

Highest weight Uy (sly)-modules

Let ¢ be a nonzero complex number which is not a root of unity. Con-
sider the quantum group Ug(slz) with generators E, F, ¢*H and relations:

qu—H: q——HqH: 1’
g"E =qEq", g"F =q'Fg¥,
2H _ —2H
EF =1 —1
a—q

Let the coproduct A : Uy(slz) — Ug(slz) ® Uy(slz) be given by
A(g") =q"®q", Ag M) =q¢Hoq",
AE)=E®q¢ H+¢"QE, AF)=FQq¢ H+¢iQF.
The coproduct defines a Ug(slz)-module structure on a tensor product of
Uq(sl2)-modules.
For a Uy(slz)-module V let V = @V, be its weight decomposition. Let
A
V* =@ VY be its restricted dual. Define a structure of a Uy(sl2)-module on
X
V* by
(Bp,z) =(p,Fz),  (Fp,z)=(p,Bz),  (¢*Fp,2) = (p,¢*"z).
This Uy (sl2)-module structure on V* will be called the dual module structure.

For any U, (slz)-modules Vi, Va2, the tautological map Vi* ® V5 — (V4 ® Va)*
is an isomorphism of U, (slz)-modules.

[e o]

Let V be the Uy(slz)-module with highest weight ¢®. Let V = @ Vy_;
1=0

be its weight decomposition. For any nonzero complex number u define an

operator uA~H € End(V) by v*~Hy =vlv for any v € Vj_;.

Let Vi,...,V, be Uy(slz)-modules with highest weights ¢%1,..., g%, re-
spectively. We have the weight decompositions

Ve..eVh=Pne.. o),
£=0
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and oo
Ve..0V.) =PWhe..oW);
£=0
T Am—t
where (), denotes the eigenspace of g™ with eigenvalue gm=1

Let FV1®...0V,);_; C (Vi ®...®V,); be the image of the operator

F.Let (1 ®...® Vn)jmg CVi®...®V, be the kernel of the operator E.
There is a natural pairing

31) M®.0V)N™eWie.. 0V /Fie.. .®V,);, — C.

Let 21,...,2, be nonzero complex numbers. Set

n
E.=)Y ¢%®..® 2nE ®...0¢"

m-th

fa

3

and

n
F, = Zq‘H@) .® znpF ®.. ®q

m-th

—

3

Let F,(Vi®...0V,);_; C(V1®...QV,); be the image of the operator F,.
Let (1 ®...0V, )smg C V1 ®...9V, be the kernel of the operator E, .

There is a natural pairing
32 WVe®...9V, )“"g OWV®..0V);/FEWie...e9V,);,_, — C.

Let Vi,...,V, be Verma modules, then pairings (3.1) and (3.2) are nonde-

generate provided
H H (1 4A —25 0

m=1 s=0

The trigonometric R-matrix

Let Vi,Va be Verma modules for U,(slz) with highest weights g1, ¢/
and generating vectors vy, vs , respectively. Consider an End (V3 ® V2)-valued

meromorphic function Ry, y,(z) with the following properties:

(33) Ryyu@F®¢ T +¢"0F) = (Fod"+ 7 7®F)Ry,,,(2),

Ry, (@)(Fod"+2¢ " @ F) = (Foq¢ "+ 2¢" @ F)Ry,, ()
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in End (Vi1 ® V2) and
(3.4) RV1V2 (fL‘) V1 QU2 =11 QUsa.

Such a function Ry, y,(z) exists and is uniquely determined. Ry, ,(z) is
called the sly trigonometric R-matriz for the tensor product V3 ® V5.

The trigonometric R-matrix Ry, y,(z) also satifies the following relations:
(35) Ry, (@) (E® T+ ¢ QE) = (E®d "+ ¢ E) Ry v, (2),
Ry,y, () @E®q¢" + ¢ " ® E) = @E®q "+ ¢" ® B) Ry, (2),
Ry, v, () "ed"=¢"® qHRV1V2 (z)-

In particular, Ry, y, () respects the weight decomposition of V1 ® V3.

R, . (z) satisfies the inversion relation
ViV

_ -1
(3.6) Pvlv2 RV1V2("E) = (szvl(ﬂC 1)) PV1V2

where PV1 v, i1 ® Ve — Vo ® V; is the permutation map.

o0
Let V1 ® Vo = @ VY be the decomposition of the U,(slz)-module V; ®
1=0
Vo into the direct sum of irreducibles, where the irreducible module V® is
generated by a singular vector of weight gA1+42=!, Let II) be the projector
onto V) along the other summands. Then we have

0 o -1 T — q23—2A1—-2A2
(3.7) vavz (z),= vavz(oo) Z - H T — g2Ai2h2—2s
=0 s=0

where

0 k
RVIVZ(OO) — q2A1A2—2H®H Z(qZ _ 1)2k Hl(l _ q2s)—1 (q—HE ® qHF)k .
k=0 8=

Let V4, Vo, V3 be Verma modules. The corresponding R-matrices satisfy
the Yang-Baxter equation:

(3.8) RV1 Va (z/y) va Vs () sz Va (y) = sz,v3 (v) RV1 Va () RV1 Va (z/y).

All of the properties of Ry.y,(z) given above are well known (cf. [T], [D1],
[91, [CP]).
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The quantum loop algebra Ué(g/\[;)

The trigonometric R-matrix is connected with an action of the quantum
loop algebra Ug(gly) in a tensor product of Uy(slz)-modules. The quantum

loop algebra Ué(g’[:,) is a Hopf algebra which contains U,(slz) as a Hopf
subalgebra. We give the necessary facts about U, (;[2) in this section.

Let q be a complex number, q # +1. The quantum loop algebra Uq(g’i;)
is a unital associative algebra with generators Lg;fo), L;i_o), 1<j<K<1<K2,

and LYY, i,j=1,2, s = +1,%2,..., subject to relations (3.9) [RS], [DF].
Let e;;, 4,5 = 1,2, be the 2x2 matrix with the only nonzero entry 1 at

the intersection of the i-th row and j-th column. Set
R(z) = (zg— g ') (e11®e11 +ex2 ®ezn) + (z—1)(e11 ®ezz + e ®enn) +

+z(g—qg e2®ear + (g— g ')ea Qeiz.

Introduce the generating series L;tj (u) = Lz(-;-to) + X ngis)uis. The relations
in Ug(gl,) have the form s=1

(3.9) LFOLGY =1,  L{OLYO =1, i=1,2,
R(z/y) Ls)(@) Ly () = Lisy () Ls (@) R(z/y).
R(w/y) L{1)(2) Lz () = Lz (¥) Ly () R(z/y),
R(z/y) L3y(2) Lig)(y) = L)) Ly () R(z/y)
j

where L{}(u) = %:eij®1®L;~’-(u) and L{,)(u) = % 1®e;;®LY;(u), v==.

Elements L(JO)L%'O), L§§°)L§’{°), L(IIO)Lg;O), Lé;O)LSO) are central in

U, (gly) . Impose the following relations:

rOr” =1, LGOIV =1,
-0 -0 -0 -0
L(u )ng ) = 1, ng )L§1 ) = 1,

in addition to relations (3.9). Denote the corresponding quotient algebra by
U, é(ﬂ[z) .

ASTERISQUE 246



THE QUANTUM LOOP ALGEBRA U (si) 31

The quantum loop algebra U, (gl,) is a Hopf algebra with a coproduct
A - UY(al) — Uy(al) ® Uy(ah):

A Li(u) — %L;’k(u)@)LZj(u), v==.

There is an important one-parametric family of automorphisms p; : U, (gfi;) -
Ué CIYE

pz : Li;(u) — Li;(u/z), v==+,
that is

Pz Lg;:o) — Lg;to) and L(s) >z L)

) SEZ;eo.

The quantum loop algebra Ué(g/[;) contains Uy(sly) as a Hopf subalgebra;
the embedding is given by

Ew —L§%/(q-¢Y), FeL3"/@-q", 7~ L1{2.

There is also an evaluation homomorphism € : Ué(;[;) — Uy(slp):

e: Lh(w) = ¢ ¥ — glu, e L) — ~F(g—q)u,
€: Li(u) —» —E(@—q7"), e: Li(u) = ¢ — ¢ u,
e: Ly(u) = g7 — ¢ Hut, e: L(u) = Flg—q7"),
€:Ly(u) —» E(g—q Hut, €: Ly(u) — ¢ 7 —qul,
that is
G T eI e gt e L) P,
e: Li{Y = —E(g-q7"), e: LG m g, e L) > —q 77,
LG o gF, e LD o g H, e LG9 o F(g—gD),
e: Ly — Blg—q7"), e: LGY - a7 ", e LY s ="

and € : Lg;) — 0 for all other generators L(s).
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Both the automorphisms p, and e restricted to the subalgebra U,(sl;)
are the identity maps.

For any U,(slz)-module V' denote by V(z) the Ué(gA[;,)-module which is
obtained from the module V via the homomorphism €o p,. The module
V(z) is called the evaluation module.

Let V1,V2 be Verma modules for Ug(sl;) with generating vectors vy, vz,

respectively. For generic complex numbers x,y the U, (gAI;)-modules Vi(z) ®
Vo(y) and Vi(y) ® Vi(z) are isomorphic and the trigonometric R-matrix

Py v, Ry.v,(z/y) intertwines them [T], [CP]. The vectors v; ® vz and vz ® v
are respective generating vectors of the Ué(g,f;)-modules Vi(z) ® Va(y) and

Va(y) ® Vi(z) . The trigonometric R-matrix Ry, v, (z/y) can be defined as the
unique element of End (V3 ® V2) with property (3.4) and such that

(310) Py, Ry, (e/y) : (@) © Valy) - Valy) @ Vi(a)
is an isomorphism of the Uy (gf\[;)-modules.

The trigonometric gKZ connection associated with sl

Let V4,...,V, be Uy(slz)-modules. The qgKZ connection is a discrete con-
nection on the trivial bundle over C*™ with fiber V1 ® ... ® V,,. We define it
below.

Let Vi,...,V, be Verma modules with highest weights ¢%1,...,¢%", re-
spectively. Let Ry (z) be the trigonometric R-matrices. Let R;;(z) €
End(V; ®...®V,) be defined in a standard way:

(3.11) Rij(z) = Zid@...®r(w)®...®r’(:ﬁ)®...®id
i-th -t

provided that Ry,y, (z) = 3 r(z)®r'(z) € End (V;®V}). For any X € Uy(sl2)
set
Xpm=d®...0 X ®...Q0id.

m-th

Let p,x be complex numbers. For any m =1,...,n set

(3.12) Km(21,---,20) = Rmm-1(pZm/2m-1) .- Rm1(p2m/21) K" 7Hm x

X Rmn(zZm/2n) ..« Rmm+1(Zm/Zm+1) -
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(3.13) Theorem. [FR| The linear maps K,,(z) obey the flatness conditions

Ki(21,..yP2my -3 2n) Km(21,...,20) =

= Km(21,.--,021,---,2n) Ki(21,...,21),

Im=1,...,n.

The maps Ki(z),...,Kn(z) define a flat connection on the trivial bun-
dle over C*™ with fiber V1 ® ... ® V,,. This connection is called the qKZ
connection.

By (3.5) the operators K, (z) commute with the action of ¢ in V1®...®
Va:
[Km(21,-..,20),4%] =0, m=1,...,n,

and, therefore, preserve the weight decomposition of V; ® ... ® V,,. Hence,
the gKZ connection induces the dual flat connection on the trivial bundle over
C*™ with fiber (V1 ®...®V,)*. This connection will be called the dual gKZ

connection.

(3.14) Lemma. For any z € C*™ such that q?+2Am=2ry /5., +# p® for all
r=0,...,4—1,and I, m=1,...,n, l #m, s € Z, the linear maps Kj(z),
..., K} (z) define isomorphisms of (V1 ®...® V,); .

This statement follows from formulae (3.7) and (3.12).

2% Am—2+42 . ‘ R
If Kk =¢q ™= , then the dual gKZ connection admits a trivial discrete

subbundle with fiber F(V; ® ... ® V,,);_; and, therefore, it induces a flat
connection on the trivial bundle with fiber (V1 ® ...® V,.);/F(Vi ® ... ®
Va)ioa-

| —2% Apt2e-2 ) ) )
If k=p q m=t , then the dual gKZ connection admits a discrete

subbundle with fiber F,(V1 ® ... ® V,,);_; and, therefore, it induces a flat
connection on the discrete vector bundle with fiber (V1 ®...® V,); / FEW®
@ Vn)pq-

Let Vi,...,V, be Uy(slz)-modules. The qKZ equation fora Vi ® ... @V,
valued function ¥(z1,...,z,) is the following system of equations

U(z1y. oy PZmy -y 2n) = K21,y 20) ¥(21,...,20), m=1,...,n.

The gKZ equation is a remarkable difference equation, see [S], [FR], [JM],
[Lu].
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Modules over the elliptic quantum group E,.(sl;) and
the elliptic R-matrices

In this section we recall the definitions concerning the elliptic quantum
group E, . (sl2), E, ,(slz)-modules and the R-matrices associated with tensor
products of E, . (slz)-modules. For a more detailed exposition on the subject
and proofs see [F], [FV].

Fix two complex numbers p,~ such that Im p > 0. Set p = 2" and n =
e 4™ Let O(u) = (u;P)o (PU™Y;P) o (P;P)os be the Jacobi theta-function
and

n8(z) 6(A/n)
O(nx)6(A)

0(n) 0(zX)

@A) = Bnn)B()

Bz, N) =

Let e;;, 4,7 = 1,2, be the 2x2 matrix with the only nonzero entry 1 at the
intersection of the i-th row and j-th column. Set

R(z,)\) = e11 ®e11 + €22 ez + a(z,A)e1n ® ez +

+ a(z, A" ez ®@e1r + B(z,\) ez ® ez + Bz, A ea ®era.

Remark. In [FV] the elliptic quantum group E, . (slz) is described in terms
of the additive theta-function

Ou) = — Y exp(mi(m +1/2)%p + 2mi(m + 1/2)(u + 1/2)),
which is related to the multiplicative theta-function 6(x) by the equality
O(u) = iexp(mip/4 — miu)H(e* ™).
Let h be the one-dimensional Lie algebra with the generator H. Let V

be an h-module. Say that V is diagonalizable if V' is a direct sum of finite-
dimensional eigenspaces of H :

V=P, Hu=pv forveVv,.
"

For a function X(u) taking values in End (V) we set X(H)v = X (pu)v for
any veEV,.
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Let V4,...,V, be diagonalizable h-modules. We have the decomposition

e..8Vh= P Wwe...® Vo),

H1s--osMn

Set Hp, =id®...® H ®...®id. For a function X(ui,...,u,) taking

m-th

values in End(V1 ® ...® V,,) we set X(Hi,...,Hp)v = X(p1,...,un)v for
any v€ V1), ® ... ® (Vo) un -

By definition [FV], a module over the elliptic quantum group E, . (sl) is
a diagonalizable h-module V together with four End(V)-valued functions
Tij(u,A), 4,5 = 1,2, which are meromorphic in u,A € C* and obey the
following relations

[T;‘](u’A)’H] = (J_Z)Hv i,j=1,27

R(z/y,n"®*®2H2) Ty (2, X) Tz (, n*HE1E1N) =

= T(ay(y, \) T(1) (%, 0" ®*HEN) R(z [y, ) .

Here T(l) (u, )\) =) eij ®id ® Tj; (u,A), T(z) (u, ) = Z id®e;; ® T3 (u, A),
ij ij

and H actsin C? as (e11 — e22)/2.

Example. Fix a complex number A. Consider a diagonalizable h-module

A= @ Co*, such that
k€Z3>o
HolM = (A= k)olt].
Let z be a nonzero complex number. Set

0(n™~*u/x)6(n~* )

(k] — k., (k]

Il AV = T erurmey T
8(n "+ hu/z)8(n)

k] — [k+1]

TV = T emmey
A—k+1 2A—k+1 k

r _ wb(n Az/u)8(n )0(n°)  k—1-a plk=11
Tr (s Ao PGSV B
Toa(u, \) ¥l = 00" /) B> 7EA)

0(n"u/z)6())
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These formulae make VA into an E,,(slz)-module VA(z), which is called

the evaluation Verma module with highest weight A and evaluation point x
[FV].

For any complex vector space V' denote by Fun(V) the space of V-valued
meromorphic functions on C*. The space V is naturally embedded in Fun(V)
as the subspace of constant functions.

Let V1, V2 be complex vector spaces. Any function ¢ € Fun(Hom (V1,V3))
induces a linear map

Fun, . Fun(Vy) — Fun(Va), Fung 2 F(A) = (M) F().

For any E,, ,(sl2)-module V we define the associated operator algebra act-
ing on the space Fun(V'). The operator algebra is generated by meromorphic
functions in A, n¥ acting pointwise,

(3.15) oA n™) s F(A) = oA n™)F(N),

and by values and residues with respect to z of the operator-valued meromor-
phic functions T;;(z), %,j = 1,2, defined below:

Tu(z) : fN) = Talz,\)f(nN), Tia(2) : f(N) = Taa(, A f (™A

The relations obeyed by the generators of the operator algebra are described
in detail in [FV].
Let Vi,V; be E, ,(slz)-modules. An element ¢ € Fun (Hom (", Vz)) such

that the induced map " intertwines the actions of the respective operator
algebras is called a morphism of E, (slz)-modules Vi, V2. A morphism ¢ is

called an isomorphism if the linear map () is nondegenerate for generic .

Example. Evaluation Verma modules V*(z) and VM(z) are isomorphic if
n™ = nM with the tautological isomorphism.

The elliptic quantum group E, ,(slz) has the coproduct A

AN"H— HR1+1QH,

A T (u, A) = (1@ Tk (uy n?HEMN)) (Thej (u, \) ® 1)
k
The precise meaning of the coproduct is that it defines an E, ,(slz)-module
structure on the tensor product Vi ® V2 of E, . (slz)-modules Vi, V,. If
V1, V2, V3 are E, ,(slz)-modules, then the modules (V; ® V2) ® V3 and V1 ®
(V2 ® V3) are naturally isomorphic [F].
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Remark. Notice that we take the coproduct A®' which is opposite to the
coproduct used in [F], [FV], [FTV1]. The coproduct A* is in a sence opposite

to the coproduct A taken for the quantum loop algebra Ué(g,\[;) .

(3.16) Theorem. [FV], [FTV1] Let VA(z), VM(y) be evaluation Verma
modules. Then for any A,M and generic x,y there is a unique isomor-
phism R(:c ) of E, . (sly)-modules VA(z) ® VM(y) VM(y) ® VA(z) such
that R, .y (\)v!% @ vl = v[% @ v[% . Moreover, R(x y) has the form

ell

R(m,y) ()‘) VA VM RVAVM (.’L‘/y, )‘)
where R:;;VM (u,\) is a meromorphic function of u,\ € C* with values in
End(VA®VM) and Ppyyu : VAQVM - VM@VA is the permutation map.

(3.17) Corollary. The function Rij,l\VM (z, \) satisfies the inversion relation
e e — 1
Pyaysa Ronym (2,2) = (Rynaya (@75 0) 7 Pyayar

The function R;l.,l\ ym(x, A) is called the sly dynamical elliptic R-matriz for
the tensor product VA @ VM,

(3.18) Theorem. [FV], [FTV1] For any complex numbers A,M,N the cor-
responding elliptic R-matrices satisfy the dynamical Yang-Baxter equation in
the space End (VA ®@ VMg VN):

Ry na (/5,0 2 HN) Ry o (3, N) Rppnayn (3, n2HO1O1N) =
= Rmyn (¥, A) Ryayn (2,0 E2HOIN) RUL e (2/3, N) -

One can associate a discrete flat connection with the dynamical elliptic
R-matrix. This connection is studied in [FTV1], [FTV2].
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4. Tensor coordinates on the hypergeometric spaces

In this chapter we identify the Gauss-Manin connection and the qKZ con-
nection.

Tensor coordinates on the trigonometric hypergeometric
spaces of fibers

Let Vi,...,V, be Uy(sly) Verma modules with highest weights ¢%1,..., g%
and generating vectors vy, ..., v, , respectively. Consider the weight subspace
(V1®...®V,), with a basis given by monomials F"'v; ®...Q@ F'v,, l € Z}.
The dual space (V1 ®...®V,,); has the dual basis denoted by (F'v1 ®...®
Flny,)*, e Z7.

Consider the trigonometric sly-type local system with connection coeffi-
cients (2.3) where the parameters &i,...,&, and n are related to the param-
eter ¢ and the highest weights ¢%1,...,¢%" as follows:

77:(12, fmZQZAm, m=1,...,n.

Let F = Flz1,...,2n;&1,--.,&n; €] be the corresponding trigonometric hyper-
geometric space. For any z € C*" and for any 7 € S™ denote by B,(z) the
following linear map:

(4.1) B:(2): (V[ ®...0 V., ); — F(z),
By(2) : (F'o, ®...® Fmuy, )" o b (t,2),
where F(z) is the trigonometric hypergeometric space of the fiber and

b = ﬁ g (i =1)/2 4l A
m=1
(cf. (2.20), (2.27)). The linear maps B, (z) are called the tensor coordinates
on the trigonometric hypergeometric space of a fiber. The composition maps
Brr(2): (Vi ®..0Ve)g = (Vn,®...0 Ve )z,
Br(2) = B7'(2) 0 Byi(2),
are called the transition functions, cf. [V3], [TV3].

(4.2) Lemma. Let ¢?A+2Am=2ry /5 #1 for any 7 = 0,...,£ — 1, and
I,bm=1,...,n, l #m. Then for any permutation 7 the linear map B (z):
(Vi ®...® V., ); — F(2) is nondegenerate.
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The statement follows from Lemma 2.22 since &;&,,21/2m # 0" for any r =0,
L€—1,and Im=1,...,n, Il #m.

Consider a tensor product Vi, (27,) ®...® V;, (2r,) of evaluation modules
over U,(gly) coinciding with V;, ® ... ® V,,, as a U,(slz)-module.

(4.3) Lemma. Forany o€ (V;, ®...QV,,); we have

(0, L (t1) ... L (te) v, ® ... Q@ vr,) = (Br(2)9)(t1,. .., te) %
£ n

m te —t
ITIT 6 tefem) TI P2t

a=1 m=1 1<a<bs’t

L, e(1-8)/2— e): A
x (g—q71)q

(ps Lig(t1) .. Lig(te)vr, ® ... @ vr,) = (Br(2)9)(t1,. .., te) X

o(1-)/2-£% A

x (g—q g m=1 mH H (1—&mzm/ta) ] % — —tb .

a=1 m=1 1<a<be

It is easy to see that the right hand sides of the formulae above are polynomials
in t1,...,t, and tl_l,...,tl_l, respectively, cf. (2.10) and (4.1). So both the
formulae make sense without additional prescriptions.
Lemma 4.3 is proved in Chapter 7.
(4.4) Theorem. [V3] For any 7 € S™ and any transposition (m,m + 1),
m=1,...,n—1, the transition function

Brrmm+1)(2) : (Vr, ®...0V,, ., ®V,, . ®...0 V. ); —

= (Vn®...0 V., );

equals the operator (P, V. (2r,,/2r4,))" acting in the m-th

Ry, v,
Tm+41
and (m + 1)-th factors.

™m "'m+1

The theorem follows from Lemma 4.3 and formula (3.10).

Each B.(z) induces a linear map (V,, ® ...® V;,); — H(z) which also
will be denoted by B,(z).

n
(4.5) Theorem. Let k # p*n~"[] &m and Kk # p~*~ 9" H &Y forany r =

m=1
0,...,£—1, s€Zxo. Let 0 < |p| < 1. Let (2.13) —(2.15) hold. Then for
any 7 € S™ the map B;(z): (V;; ®...®V;,); — H(2) is an isomorphism.
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This statement follows from Theorem 2.16 and Lemma 4.2. The assumption

2£ A —27 —2£ A +2r
of the theorem means that « # p°q m=1 and kK #p " lq m=1 for

any 1 =0,...,/—1, s€Zx.
It is easy to see that for any 7 € S™ the images of F(V,,®...QV,,);_; and
F,(V:, ®...Q V;,);_, under the map B,(z) coincide respectively with the

coboundary subspaces R(z) and R’'(z) in the trigonometric hypergeometric
space of the fiber F(z).

(4.6) Theorem. Let 0 < |p| < 1. Let (2.13) —(2.15) hold. Let [] &2, #

m=1

n
p*n” forany r=£—1,...,20—2, s€Zco. If s =n*"*[] &, that is k =
n m=1
2% Am—20+2 . . .
q ™=1 , then for any T € S™ the map B,(z) induces an isomorphism

(Vi ®...®Vr )i [F(Vr, ®...® Vs, )i — H(2).

n 2% Ap+20-2
Similarly, if k = p~ 't~ [] €.}, that is kK =p~1q m=1 , then for any
=1

T € S™ the map B.(2) induces an isomorphism
(Vn ®...® an)z/Fz(Vn ®...0 V5, )i-1 — H(z).
The statements follow from Theorem 2.18 and Lemmas 2.22 — 2.24. The as-
4T Ap—

2r
sumption of the theorem means that g m=: #p° forany r=£-1,...,
20 — 2, s € Z<0 .

Taking into account formulae (3.1) and (3.2) we get an isomorphism
(Vi ®...@V5,)™)" - H(z)

n
for k = n*~¢ [] &m and an isomorphism
m=1

(Vi ®...®V5)52?)" — H(z)
for k = p~1lnt1 ]__Il§,7ll.

(4.7) Theorem. [V3], [TV1] For any m = 1,...,n, the following diagram is
commutative:
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K, T1s+ 1 %Tn *
(Vn®...0V,); —mbnind, (v g . oV,);

Br(z1,.--yPZm,- -+, 2n) l l B (21,...,2n)

H(z1y---3PZmy -y 2n) H(z1,- -y 2n)

Am(z1,.--,2n)

Here A,,(z) are the operators of the Gauss-Manin connection, K} (z) are the
operators dual to Kpn,(2), and K,,(z) are the operators of the qKZ connection

in (V;,®...®V,,), defined by (3.12).

(4.8) Corollary. The construction above identifies the qKZ connection and
the Gauss-Manin connection restricted to the hypergeometric subbundle.

Tensor coordinates on the elliptic hypergeometric spaces of
fibers

Let V£(z1),...,V,f(2,) be evaluation Verma modules over E, . (slz) with
highest weights Aj,..., A, and evaluation points z1,..., 2y , respectively. Let
VE, ..., V,¢ be the corresponding h-modules. The weight subspace (V®...®
V,¢), has a basis given by the monomials vl ®...® v, 1€ Zp.

Let E, = Fulk; 21, -5 2n; &1, - -+, &n; £] be the elliptic hypergeometric space
where the parameters &£;,...,&, and the highest weights A;,..., A, are re-

lated as follows:
Em = 0P, m=1,...,n
For any z € B and for any 7 € S™ denote by C,(z) the following linear map:

Cr(2): (VE®...0VE), — Fulz),
Cr(z) vl @ .. @ullml o W (t,2).

Here %,(z) is the elliptic hypergeometric space of the fiber and ¢f = c-((ér,,
., &) where = (I;,,...,[; ) and

1 —s5¢2
(4.9) cl&,...6) = H H ém) H n~tm g2l

m=1 s=1 1<I<mgn

(H‘9 se_lHﬁm)H (es~1H§m)

s=1

n—1 Imt+1

-1
% 0(n®k—1 L e—1 -1 )
7r]):—=[1 sglm (77 " 1<ll_£"? ~ mLISZ] &)

s#0
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The linear maps C,(z) are called the tensor coordinates on the elliptic
hypergeometric space of a fiber. The composition maps

Cr(2): (V8.8 VE), = (VE®... 8 VE),,
C‘r,‘r’(z) = C‘r_l(z) o CT'(Z) ’

are called the transition functions, cf. [V3], [TV3].

Example. For £ =1 the coefficients ¢; have the form

ce(m)(&lr"a{’n) =
=0 (0 TT &' T &)0( T & 1 &) I &

1I<IKm  m<ign 1<l<m mgIKn m<l<n
where ¢(m) =(0,..., 1,...,0), m=1,...,n
m-th

Example. For £ =2 and n = 2 the coeflicients ¢; have the form

49(77)
29()

x (0(k™6:162)0(n K 16062) O(k 1€ ) BT e ER)) T
e, (€, &2) = 07165 0(£3)0(&3) x
x (B K7616) 0k e 6) 0(n T T IE T E) BT ET S Y)) T

co)(En,€2) = "(( )) B(E2)0(n"€2)

c(2,0)(é1,62) = 0(€3)0(n~1€3) x

x (0(k™1Er ) (n~ e e ) O(k TR ) O e e ) T

(4.10) Lemma. Let n"# p° forany r=2,...,£, s€Z. Let

n
Al+Amzl/zm ?é psnr and KZ:H H nAm 75 psnr

m=1

Ui

for any I,m =1,...,n,and r =0,...,£ -1, s € Z. Assume that for a

permutation T we have k [[ n?n [[ 5% # p°n" forany m =1,...,
1<i<m m<l<n
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n—1,and r=1-¥,...,£~1, s € Z. Then the map Cr(z): (VS ®...®
Ve )y — Fu(z) is an isomorphism.

The statement follows from Lemma 2.33.

Remark. The map C,(z) considered as a function of x has a simple pole at

k =n'"* T] & because of the factor §(n'~*x~! [ &) in formula (4.9) for
m=1 m=1
the coeflicients ¢, and

(4.11) Ker (Rest C;(2)) = v @ (VE®...0VE),,
Im (Res™ C;(2)) = Q(2),

where Rest C;(z) is the residue of C,(z) at kK = n'~* [[ &, and Q(z) is
the boundary subspace. m=1

Similarly, the map C;(z) has asimple poleat = p~in®~! [] £.! because
m=1

of the factor 6(n*~'xk~! [ &,!) in formula (4.9) for the coefficients ¢, and
m=1

(4.12) Ker (Res™ Cr(2)) = (V2 ®...Q VS _),® vl

Tn-—1

Im (Res™ C;(2)) = Q'(2),

where Res™ C,(z) is the residue of C,(2) at k= p~in®*~! [] &' and Q'(2)
is the boundary subspace. m=1

n
(4.13) Lemma. Let x =n'"* [[ nA~. Let n"# p°® for any r = 2,...,¢,

m=1
s € Z. Let n™tAmz /2, # p°n" for any I,m = 2,...,n, and r = 0,...,
¢—1, s € Z. Let n?** #p°y" forany r = 0,....,£ —1, s € Z. Let

n
[T n?A=# p*n" for any 7 = £—1,...,20 — 2, s € Z. Assume that for a

m=1

permutation T we have [[ n?n# p°n" for any m = 2,...,n — 1, and
1<I<m

r=0,...,2—2, s € Z. Then the linear map C,(2) : V9 ® (V2 ®...®
VE ) — Fu(2)/Q(2) is an isomorphism.

The statement follows from Lemma 2.38.
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n
(4.14) Lemma. Let k = p~in*~! [[ n~A=. Let n"# p® for any r = 2,

m=1
. b, s € L. Let nNthmzy /2, # p°n" for any I,m = 1,...,n — 1, and
r=0,....,4—1, se€Z. Let n?Ar £p°n" forany r =0,...,£—1, s € Z.
n
Let [ n*A~#p°n" forany r = £—1,...,20 -2, s € Z. Assume that
m=1

for a permutation T we have [ n?An# p*n” forany m =1,...,n —2,
m<l<n

and r =0,...,20 —2, s € Z. Then the linear map C-(z) : (V5 ®
Ve _)e® 'U[O] — Fu(2)/Q'(2) is an isomorphism.

The statement follows from Lemma 2.39.

Consider a tensor product V£ (z,)® ... ® an (zr,) of evaluation Verma
modules over E, ,(slz) coinciding with V7 ® ... ® V2 as an h-module.

(4.15) Lemma. Let A =& H &7t Then forany ve (Vi ®...Q V7)), we
have

To1(t1, A) - Tor(te, n* N w = (Cr(2)v) (ta, - .-t H9 ° _1H fml) X

W, . vl

ﬁ ln—[ im a//zzm)) (gﬁ%//:b)
a=1 m=1 m“m1<<b<e a/th)
The lemma, is proved in Chapter 7.
(4.16) Theorem. For any T € S™ and any transposition (m,m+1), m =1,
.,n — 1, the transition function

Crr(mm+1)(2) 1 VS ®VE L OVE ®..QVS - V[ ®...0V,

equals the operator

ell

Pye ye Rye e (zrm+1/zrma(7lH®-~-®77H®77_H®---®77_H)77_1/€)-

Tm+1 ™m "'m+1 m-th

The theorem follows from Lemma 4.15 and Theorem 3.16.

Remark. The elliptic R-matrix in Theorem 4.16 has an operator

K=0%2..enen¥e...9nH)n~lk

m-th

at the place of the second argument, and R:/”e Rz (z,\) commutes with K
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for any values of z,A. The operator R;;'e ve (z, K) is understood in the
Tm+1 ™m

standard way:
ell ell

Rve Vi (z,K)v = RVe ve (@, A)v
+1 ™m
forany ve Vi ®...QV:  ®VZ ®...® V7 suchthat Kv = Av.

Tensor products of the hypergeometric spaces

Let ]:[zlv re 7z'rn;§la s ’g'rnvl] and -Eu[a;zh s 7z'rn;§lv v ,gm)l] be re-
spectively the trigonometric and the elliptic hypergeometric spaces defined for
the projection C!*™— C™. In particular, in our previous notations we have

F=Flz1,.-y2n3€1,--,&n; €]  and  E, = Fulk;21,-. 520380, -,€n 4]
There are maps
(417) X:f[zlv""zk;gl,""gk;j] ®

® Flaka1s-- s 2ktm;Ehtly s Ektmil] —

— Flzr, .oy 2k4mi €1y o Ekms J + 1]
and

m
Xt Fulon TT €55 21, - 23 €1b - €k ] (2, - -5 2k)) ®
=1

k
® Fulan™ T &; 2k41, - - > Zhami Eea1y - - - Ekami L ((Zha1s - -5 Zham)) —
i=1

- ell[a; Z1y-- '7zk+m;€17" . 7§k+m;j +l]((21,. .. ,Zk+m))

which are respectively defined by x: f®g+— fxg and x,,: f®g+— f*g
where

(fxg)(tr,. . tjm) =
k l

- 'Ll' Z [f(tl""vtj)g(tjﬂ, ) H H E‘ atj &:]

T oeSitt i=1 a=1
and

(f*g)(ts,...,tj) =
!

= Ll Z lIf(th Ht)g(tisn, .. tJ-H)H H 0(&itasrs/2i) )]]

1
oeSi+l i=1 a=1 9(5 ta""J/z"
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‘We have the next lemmas.

(4.18) Lemma. Assume that & &jk2j+k/2 # 0" forany i=1,...,k, j=
1,...,m, r=0,...,l—1. Then the map

X: @‘F[zlv'")Zk;€l>'",gk;i]((zlr"azk)) ®
it+j=l
® Flaktt, - s Zhtms bty -+ s Ekmi 1 ((2ht1, - Zhym)) —

- f[zla' . ,Zk+m;§17---a€k+m;l]((zl,- . wzk—}-m))

defined by linearity is bijective.

k m
(4.19) Lemma. Assume that &€ 1k2j+x/2 # p°n" and o [] & I:[l §a—_ﬁk #

a=1
p*nt" forany i=1,...,k, j=1,...,m, r=0,...,1—1, s € Z. Then the
map

. m _1 .
Xeu : @ FEulan’ H1§a+k;z1,---,z;c;&,---,{k;Z]((zl,---,zk)) ®
a=

i+j=l
.k .
® Fulan™ Hlfa;zkﬂ,---,Zk+m;§k+1,---,§k+m;J]((zk+1,---,Zk+m)) —
a=

— Falos 21,y 2kgmi €1 - o5 Ehami L (21, - - 5 Zkgm))

defined by linearity is bijective
Lemmas 4.18 and 4.19 are proved in Chapter 7.

It is clear that for any functions f,g,h we have (fxg)xh = fx(g*h)
and for any functions f,g,h we have (f*g)*h = fx(g=*h). Lemmas 4.18,
4.19 can be extended naturally to an arbitrary number of factors.

The map yx,, admits the following generalization. Fix a nonnegative integer
k. Let ng,...,ng be integers such that

O=ng<nm <...<ng.
Fix nonnegative integers [y,...,lx. Let

-EZ = ‘El[ai; Zni_14+1y- - 1zni;€’ni_1+1’ o afm;li]
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Xli-2 1 -1
where o; =an’>* <[] & [[ & Let h(z1,...,2n,) be a meromor-
J<ni—1 J>ni

phic function on C*™* such that

Jz<:ilj_1§ilj
h(z1y...,DP%iy- .1 2n,) = & h(z1y...,2n,)
for any i =1,...,ng. Then we have a well defined map

(4.20) Fl®...FF = Elojz,... €l onbnili+ oo+ k],
fi®...®fk = (fix...x fi)h
of the elliptic hypergeometric spaces. We call the function h(z;,...,2,,) an

adjusting factor for the tensor product of the elliptic hypergeometric spaces
Fl®...® FF.
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5. The hypergeometric pairing and
the hypergeometric solutions of the gKZ equation

In this chapter we define the main object of this paper, the hypergeometric
pairing. We define a pairing between the trigonometric and the elliptic hyper-
geometric spaces of a fiber.

The hypergeometric integral

For any functions w € F(z) and W € %,(z) we define the hypergeometric
integral by

(5.1) 1W,0) = [ @@)uw) W (/1)
T¢
¢
where (dt/t)¢ = [] dt./ts, ®(t) is the short phase function defined in (5.2)
a=1

and T is a suitable deformation of the torus

']I‘ez{te(Ce| |t1|=1, ,|tg|=1}.

Recall that we always have 0 < |p| < 1. Let (u)y, = [] (1 — p*u). We
k=0

-1
take P(z;0) = &%20_0 in (2.5) so that the short phase function has the
oo

form

n £ 1
(5.2) ®(tr,-.osteszn,yz) = [ H Em ta/2m)oo I (7ta/tb)oc

m=1 a gm a/zm)oo 1<a<b<e( _lta/tb)

We define the hypergeometric integral as follows. Assume that || > 1 and
lzm| =1, [€n] <1, m=1,...,n. Set

(5.3) [(W,w) = / B(t) w(t) W (t) (dt/t)".

T¢
Notice that the integrand has simple poles at the hyperplanes

(5.4) a/zm:(sf ):E].’ a:l,...,e, m:l,‘_',n,
ta/te = (p°n~")*', 1<a<b<d,
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for s € Z3o and essential singularities at the coordinate hyperplanes. The
set of hyperplanes (5.4) could be decomposed into subsets corresponding to
couples {a,m} or {a,b}. Under the above assumptions for each subset of the
hyperplanes the torus T* separates the hyperplanes corresponding to different
choices of the sign.

The hypergeometric integral for generic &i1,...,&., 21,...,2, and arbi-
trary 7 is defined by analytic continuation with respect to &1,...,&,., 21,
...,2n and n. This analytic continuation makes sence since the integrand is
analytic in &,...,&,, 21,...,2, and 7, cf. (2.5), (2.20), (2.30). More pre-
cisely, first we define the hypergeometric integral for basis functions wy;, Wiy
and then extend the definition by linearity to arbitrary functions w € F(z),
W € Eu(2). The result of the analytic continuation can be represented as an
integral of the integrand over a suitably deformed torus. Namely, the poles
of the integrand of the hypergeometric integral I(W, wy) are located at the
hyperplanes

(5.5)  ta=D%mzm, ta=D0 €3 2m, ta=pN"'ty, ta=p ntp,

1<b<a<?t, m=1,...,n, s € Zzy. We deform &,...,&, 21,...,2n
and 7 in such a way that the topology of the complement in C*¢ to the
union of hyperplanes (5.5) does not change. We deform accordingly the torus
T¢ so that it does not intersect the hyperplanes (5.5) at every moment of
the deformation. The deformed torus is denoted by T?. Then the analytic
continuation of the integral (5.3) is given by formula (5.1).

(5.6) Theorem. For any [,m € Z}' the hypergeometric integral I(Wi, we)
can be analytically continued as a holomorphic univalued function of complex

variables n, &€1,...,&n, 21,...,2n to the region:

n#0, Em #0, Zm # 0, m=1,...,n,
77T+1#ps, &'?n #psnr’ m:]‘?""n7
gl:tlgrzj':blzl/zm #psnr7 lvm:]-v"wn, l7ém»
where r =0,...,£—1, s € Z, and the combination of signs +1 can be arbi-

trary (cf. (2.13) —(2.15)).
The proof of the theorem is the same as the proof of Theorem 5.7 in [TV3].

Let R(z), R'(z) C F(z) be the coboundary subspaces and let Q(z), Q'(z) C
Z:(2) be the boundary subspaces.
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n
(5.7) Lemma. Let k =n'"¢ ] &, . Let (2.13) — (2.15) hold. Then

m=1
a) For any w € R(z) and W € E,(z) the hypergeometric integral I(W,w)
equals zero.
b) For any w € F(z) and W € Q(z) the hypergeometric integral I(W,w)
equals zero.
n
Example. Let £=1 and k= [] &, . Then the space Q(z) is one-dimen-
m=1
sional and is spanned by the function W (t;) = 1. Assume for simplicity that
|zm| =1, |€m| <1 for any m = 1,...,n. Then the hypergeometric integral

I(W,w) is given by

I(W,w) = / w(ty) H Em't1/2m)oo dt1 '

ol t1/2m) t1
1

Since w(0) = 0 for any w € F(z), the integrand is regular in the disk |¢;| < 1
Hence, I(W,w) =0 for any w € F(z).

(5.8) Lemma. Let k =p~'n*1 [] &1, Let (2.13) — (2.15) hold. Then
m=1

a) For any w € R'(z) and W € %,(z) the hypergeometric integral I(W,w)
equals zero.

b) For any w € F(z) and W € Q'(z) the hypergeometric integral I(W,w)
equals zero.

n
Example. Let /=1 and « = H 5;11 Then the space Q’(z) is one-dimen-

sional and is spanned by the functlon W(t1) =ty ! H 0(5 mlttl //Zm ) Assume
m U1/Zm

for simplicity that |z, | =1, |{m] <1 for any m = 1, ...,n. Then the hyper-
geometric integral I(W,w) is given by

n

Z /tl) dtl
I(W,w) = / (t1) T foo .
( ) ftrl=1 ' ’ITLHZ]. p{mzm/tl)oo tl
1

Since w(t1) = O(1) as t; — oo for any w € F(z), the integrand is regular in
the domain |t;| > 1 and behaves as O(t]?) as t; — co. Hence, I(W,w) =0
for any w € F(z).

Lemmas 5.7 and 5.8 are proved in Chapter 7.
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Determinant formulae for the hypergeometric pairing
The hypergeometric integral defines the hypergeometric pairing
I:%,(2)®@F(z) - C

which induces the hypergeometric pairings
I°: %u(2)/Q(2) ® F(2)/R(z) — C
n
for K =n'~¢ [] &n and
m=1

Ta(2)/ Q' (2) ® F(2)/R/(z) — C
for k=p "1 [] &:}. According to (2.17), (2.25) and Lemmas 2.38, 2.39
m=1

this can be respectively written as
I:F%(2)®H(z) — C,

I': E,(2)/Q(2) ® H(z) — C and I': B (2)/Q(2) @ H(2) — C.

m—1+¢\ fn—m—-1+4+j
Set d(n,m,£,s) = Z ( )( >
730 m—1 n—m-—1
i+j<e
i—j=s

(5.9) Theorem. Let k # p*n~ " [] &m and k #p~°~n" 1115;11, r=0,...,

m=1

£—1, s€Zxo. Let (2.13) — (2.15) hold. Then the hyperge;metric pairing

I E(2)QF (z) — C is nondegenerate. Moreover,
+£-1 +£-1
" _n(nn+1 ) X

N
(mezp = (2mi) (a1 )K!

(n+€—1)

det [I(Wy, wm)] n

x ng(:_m)( n H H 0(773"“3_1 H gl—l H &)d(n,m,l,s) 5

1I<I<Em  m<Ign

X

x“l[(n*)m(“” " ém)oe (0™ R TT &m)eos
o (>0, )2~ TI(1°€2)os
y (0°6 et 21/ 2m)oo 1 (Tt )
H (n_sglgmzl/zm)oo ]

1<li<mgn
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(5.10) Theorem. Let k =n'~* H &m - Let (2.13) —(2.15) hold. If 1‘[ gm
p°n” forall r=40—1,...,20-2 and § € Z<g, then the hypergeometnc pa1r1ng
I':E(2)/Q(z) @ F (z) / R(z) — C is nondegenerate. Moreover,

(n:ﬁ;Z) (1-n )(n+2 2)

£—2
(n+ ) n y

det [I(Wy, wm)] (mezp = (2m) 2!

[1 =m3 =0

n+£— 2) -1 n-1

- (n—m){ ", _ S4f— _ond(n—1,m—1,¢,s
TLen ™7 I L otr g1 77 »
=1 s=1—f m=2 1<lsm
O (ot 21 €2) o (1°67 D)oo
(="1)n=T1(p)2=3 ] (17°€2)w0

s=0 1<m<gn

X

n+€—s—3)

(nsgl_lg;llzl/zm)oo ( n—2
H (n—sglgmzl/zm)oo ]

1<I<mgn

(5.11) Theorem. Let x=p n®~! [[ &1 Let (2.13) —(2.15) hold. If
n m=1
IT1& #p°n" forall r =£—1,...,20 —2 and s € Z<o, then the hyper-

geometric pairing I': E,(2)/Q'(z) ® F(z)/R'(z) — C is nondegenerate.
Moreover,

n+€—2 n+€—2 n+£—2
det[I(Wi, wn)] ez = — (mi)t (52 (27 yu-m (77

[p=m,=0
n—1 n+4—2\ £—1 n-—-2
("_m_l)( -1 ) _ d(n—1,m,£,s)
x [ ém " IT II 611 &) X
m=1 s=1—¢ m=1 m<l<n

() (" 221 €2) 00 (1°67 %) o
<11 T3 11 (1°€2)w

s=0 1<m<n

n+l—s—3)

M7 0 21 2m) o0 1 (s
H (n_sglfmzl/zm)oo ]

1<i<mgn

n

In Theorems 5.9 — 5.11, the product [[ without limits stands for [] .

m=1

Theorems 5.9 — 5.11 are proved in Chapter 7.
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Example. Theorem 5.9 for n =1, £ =1 gives

/ 0(ct) dt _ o . (pa/c)ss (b€) oo
(at) oo (b/) oo (ab)oo

Here C is an anticlockwise oriented contour around the origin ¢t = 0 separat-
ing the sets {p°/a | s € Z¢o} and {p®b | s € Zxo}.

Example. Theorems 5.10 and 5.11 for n =2, £ =1 give particular cases of
the Askey-Roy formula [GR, (4.11.2)]

0(pt/c) 6(abet) a . (abaf) . (ac) B(bc)
512 [ @ 0Doa(@/Doa(B0oa £ " (0)on(00)on (aB) oo (b0) o (5o

Here C is an anticlockwise oriented contour around the origin ¢ = 0 separat-
ing the sets {p*/a, p°/b| s € Zgo} and {p°a, p°B | s € Zxo}.

Example. There are p-analogues of the gamma-function and the power func-
tion:

Lp(z) = (1 =)' " (P)oo/ (P™)oo » (1= u);” = (P™"W)oo/ (P*U)oo

Introduce new functions {—u}2* = 6(p~u)/0(pu) and

. _ ™ _ m6(p®)
sin (rz) = L(z)L(1-2) (1-p)@3 "
We have (1 —u)2® = {—u}2®(1 —pu=')2®

Theorems 5.10 and 5.11 for ¢ =1 give respectively the following formulae:
2 3 A

2A; _ n > A
det[ /p 1 1 (1 —t/2m) 2Am{ D Gk t/z 1<J<k
C

t— pAl 2l m=1

< T {=t/5"" [ 3=

t—pBiz; dt ]"
1<5< 1<5<i

PRz p=1 ],

n n

= L1+2Y An) [ B +24m) J[ (- a/zm)2 4 x

m=1

m=1 1<I<Km<n
n—1
x ] 2ising(—2r 3 Aj)
m=1 <Ijsm
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and
AV Aj -2 3 A

A — " > :
‘_p_._—p__ — 2A _ k<j<n J k<j<n
det[ / t/z — pA mH=1(1 t/2m)y {-p* t/ 2 }p x

—24, t—pRig; dt n-1
S| s

1<5< 1<5<l k=1

n n
=LA+2Y An) !t [[ LA +24m) J] (- o) 2AHAR)
m=1

m=1 = 1<l<m<n

n—1
X H 2isin, (2 Y Aj)
m=1

m<j<n

where C' is an anticlockwise oriented contour around the origin ¢ = 0 sepa-
rating the sets {p*~2mz, |m=1,...,n, s € Zgo} and {p*t2mz, |m =1,
.y, 8 € Zxo}. These formulae are analogues of the next formula [V1]:

Zk41
det[ /

2k

IT (t = 2m)™" dt]k;l1 =

t— 21 m=1
= P(l + f: )\m)_l f[ F(l +)‘m) H(zl - zm)’\m'

m=1 m=1 l#£m

Example. Theorem 5.9 for n =1 and arbitrary ¢ gives the following g-beta
integral

- B(cts) o (/)
(5:13) /]‘;[ (atk) ,(cb/tk) l;l L (@t5/tk) oo a

#i

Eolkol

(2mi) £! H (x°bc) o (Pxta/c) oy

.’L'3+1 wsab)

where |a| < 1, |b| < 1, |z| < 1. In Chapter 7 we use this formula to prove
Theorems 5.9 — 5.11. We give a proof of the formula in Appendix D and show
there that the calculation of the integral by residues inside the torus T¢ implies
the formula for the g-Selberg integral proved by Aomoto [AK, Theorem 3.2],
see formula (D.9).
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Example. The formulae of Theorems 5.10 and 5.11 for n = 2 are particular
cases of the following formula

8(pti/c) 8z’ abety,) N (77, I
(5.14) / H tk<atk)w<btk)(a/tk>w<ﬁ/tk>ooE kH @t i) ©!

k#j

‘ (%) oo (zt*Labapf) ., O(z°ac) O(z>be)
= (amiy el H @) (°00) 0 (@) o (@°5) 0 (°00) o0 (P

where |a| <1, |b| <1, |a] <1, |B] <1, |z| < 1. This formula is a mul-
tidimensional generalization of the Askey-Roy formula (5.12). In Appendix E
we give a proof of this formula and show that the calculation of the integral
by residues outside the torus T implies the formula for the most general
multidimensional g-beta integral conjectured by Askey [As, Conjecture 8], see
formula (E.8).

Remark. It is plausible that the assumptions on p, &;,...,&., 21,...,2, Of
Theorems 5.9 — 5.11 as well as of Theorems and Lemmas 2.16, 2.18, 4.5, 4.6,
5.7, 5.8, 6.2, 6.5, 6.6 could be replaced by the following weaker assumptions:
the step p and the parameter n are such that (2.13) holds, and the parameters
&1,...,&, and z1,...,2, are such that

glé.mzl/zm ?é ps77r7 lvmzlv"wn’ SEZ»
forany r=0,...,£—1 and s€Z.

The hypergeometric solutions of the gKZ equation

Let W be any element of the elliptic hypergeometric space %,. The re-
striction of the function W to a fiber defines an element W|, € E,(z) of the
elliptic hypergeometric space of the fiber. The hypergeometric pairing allows

us to consider the element W/, € %,;(2) as an element sy, (2) of the space
‘H*(z) dual to the hypergeometric cohomology group H(z). This construction
defines a section of the bundle over C*™ with fiber H*(z).

There is a simple but important statement.

(5.15) Theorem. Let &,...,€&, obey (2.14). Then the section sy, is a
periodic section with respect to the Gauss-Manin connection.

The theorem is proved in Chapter 7.

Consider the hypergeometric pairing as a map I(z) : £i(2) — (F(2))” so
that for any W € E, we have sy, = I(2)W|,. Let Vi,...,V,, be Verma
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modules over U,(slz) with highest weights ¢, ...,q*. Recall that

q2=n, nA'"=§m, m=1,...,n.

The map I(z) and the tensor coordinates B.(z) induce a map

(B-(2)) 0 I(2) : Fa(2) = (Vr, ®...® Vi),

(5.16) Lemma. Let k = n*~¢ [] &m - Let (2.13) — (2.15) hold. Then for any

m=1

W € E(z) we have that (B-(z)) 0I(z)-We (V,®...® v, )5,

5.17) Lemma. Let k = p~1nt~1 [] &;1. Let (2.13) — (2.15) hold. Then for

any W € E,(z) we have that (B(z)) 0I(z)-We (V,®...® VTn)szg.

Lemmas 5.16, 5.17 follow from Lemmas 5.7, 5.8, respectively.

A section sy, and the tensor coordinates B, induce a section
(5.18) U, 1z Bz sy ) eWVn®...0V,.),

of the trivial bundle with fiber (V;, ®...®V;,),. Here 27 = (25,,...,%0,) -
If 7 is the identity permutation, then we write ¥y instead of \Ilivc[l, .

Theorems 5.15, 4.7 and Lemmas 5.16, 5.17 imply the following statement.

(5.19) Corollary. The section ¥, is a solution of the gKZ equation with
values in (V;, ®...® V,,),. Moreover,

i) if k=n""¢]] &m, then U3, takes valuesin (Vy, ®...® V;, )™
m=1

n .
ii) if k=p 9’1 [ &}, then U7, takes valuesin (Vo ®...Q Vy, )00,
m=1 '

We call solutions ¥, the hypergeometric solutions of the gKZ equation.

Let Spmr(21,..320) V5 ®...0V,, = V5, ®..0V,,.,, 0V, ®...0V,,

equal the operator Py, . »

Ry . +1(zm/ Zm+1) acting in the m-th and
(m + 1)-th factors. Define operators A,,T/ acting on functions of z,...,z2,

SOCIETE MATHEMATIQUE DE FRANCE



58 5. THE HYPERGEOMETRIC PAIRING

by the following formulae:
(5.20)  (Sr-(mmt1)r ) (21, s 2n) =
= S (Z1y oy Zma1y Zmy ooy 2n) F(Z1y o oy Zma1y Zmy - -5 20)

where (m, m+ 1) is a transposition, m=1,...,n—1, and 7,7,7” € S™ are
arbitrary permutations. The operator S; .,/ acts on a function taking values
nViy®...0Vx and the result is a function taking valuesin V;, ®...®V, .

(5.21) Lemma. Formulae (5.20) define operators S,/ selfconsistently.

The statement follows from the inversion relation (3.6) and the Yang-Baxter
equation (3.8).

The gKZ equation has the following important property.

(5.22) Theorem. The qKZ equation is functorial. Namely, for any permu-
tations 7,7 € S™ and any solution ¥ of the qKZ equation with values in
Vi ®...Q®Vy; , the function S’T,T/\Il is a solution of the qKZ equation with
valuesin V;, ® ...QV, .

(5.23) Theorem. The hypergeometric solutions ¥7;, of the qKZ equation
are functorial. Namely, for any permutations T, 7/ € S™ and any function
W € E, we have that S, . U%, = U7, .

The statement follows from Theorem 4.4.

The hypergeometric map

Let V(z1),...,V,(2,) be evaluation Verma modules over E, . (slz) with
highest weights A;,...,A, and evaluation points zj,...,2,. Let V¢, ...,
V¢ be the corresponding h-modules. The tensor coordinates B,(z), Cr(2)
induce the hypergeometric map

(5.24) Iz (2) - (Vi ®...0V5), » (Vn®...0 V),

I (2) = (BT(Z))*O I(2) 0 Cri(2).

n
(5.25) Theorem. Let (2.13) —(2.15) hold. Let s*! [] nAm# p*n" for

m=1
any r=0,...,£—1, s€Z. Assume that for a permutation ™ we have

k 11 nA’z' I1 n_A’tlyépsnT forany m=1,...,n—1,and r=1—-4,...,
1<I<m m<l<n
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£—1, s € Z. Then the hypergeometric map I ,(z) is well defined and
nondegenerate.

The statement follows from Lemmas 4.2, 4.10 and Theorem 5.9.

n
(5.26) Theorem. Let (2.13) — (2.15) hold. Let [] n?A=# p*n" for any
m=1

r=4-1,...,20 —2, s € Z. Assume that for a permutation 7" we have

2 p’n" forany m=1,...,n—1,and r=0,...,20 -2, s€Z.
n n Ly
1<I<m

Then the hypergeometric map I, ,/(z) is well defined and nondegenerate for

n
any k in the punctured neighbourhood of n*~¢ [[ n= . Moreover, I . (2)
m=1 n
considered as a function of k has a finite limit as xk — n*=¢ [[ n®~ and the
m=1
limit lim I, ;/(z) is nondegenerate.

n
Define the hypergeometric map I,,(z) at x = n'=¢ [[ n®» by the ana-
m=1
lytic continuation with respect to k. Notice that the restriction of the map
n
I ;/(2) to the subspace 'U{O]®(VTZ®. ..®Vy), isregularat k = nt=¢ 1 nh~,

m=1
since in this case all the maps involved in definition (5.24) are well defined at

n
k=n'"¢T] n'.

m=1
(5.27) Corollary. Let xk = n*~¢ [[ n®™ and the assumptions of Theo-
m=1
rem 5.26 hold. Then

IT,T' (z) ('U[O] X (V.,Z ®R...Q V:;l)e) = (VT1 ®...® VTn)Zing.

The statement follows from Lemma 5.16.

n
(5.28) Theorem. Let (2.13) —(2.15) hold. Let [] n?m# p*y" for any
m=1

r=4-1,...,20 — 2, s € Z. Assume that for a permutation 7' we have

I1 n2A’t'7épsn’" forany m=1,....n—1,and r=0,...,20 -2, s€Z.
m<il<n

Then the hypergeometric map I .(z) is well defined and nondegenerate

n
for any k in the punctured neighbourhood of p~1n®~! [] n~A= . Moreover,
m=1

n
I, +1(2) considered as a function of k has a finite limit as xk — p~1n¢t~! [[ n=4=

and the limit lim I, ,(z) is nondegenerate. m=1
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n
Define the hypergeometric map I, ./(z) at & = p~n®~! [[ =2~ by the

m=1
analytic continuation with respect to x. Notice that the restriction of the
map I, (z) to the subspace (V:’{ ®...0Vs 1)2 ® v is regular at K =

n
p~Int=1 ] n~A=, since in this case all the maps involved in definition (5.24)
m=1

n
are well defined at xk = p~int=1 [] n=An.
m=1

(5.29) Corollary. Let k =p~'n*~! [[ n~*~ and the assumptions of Theo-
m=1
rem 5.28 hold. Then

L@ ((VeE®...0Ve_),®v%) = (V, ®...0 V., )i

The statement follows from Lemma 5.17.
Theorems 5.26 and 5.28 are proved in Chapter 7.

Therefore, we constructed the hypergeometric maps
Irr(2) : Vi(er) ® ... Q Vi (2r) = Vii(2r) ® ... ® Vi, (2r,)

from modules over the elliptic quantum group to modules over the quantum
loop algebra. The maps have the following properties:

(5.30) I (mma1),m (2) = Py v

et 1 RV,mV,mH(sz /sz+1 ) L7 (2),

IT,T’-(m,m—}-l)(Z) = IT,T/(Z) X

X Pye e R;;lel ve (ZT,',,+1/Z7'1'7L’(T]H ®...0n" @ "®...0n H)n71k)
"m+1 Tm Tm+1 Tm m-th

where (m,m + 1) is a transposition.

For any elliptic weight function W{ (¢,2) let Y{"(z) be the corresponding
adjusting factor. Recall that this means that the product Y{"(2)W[ (t, z) is an
element of the elliptic hypergeometric space. Define amap Y7 (z) € End (VS ®
...® Vg ) by the rule:

Y7 (2) : viml@. . @l 5 v (2)ull @ @ultsl,
The map Y7 (z) is called an adjusting map for the tensor product V2 ®...®
Ve .
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If veV;®...Q0V5, then the hypergeometric map I, ;/(z) and the

’
Tn?

adjusting map Y7'(z) define a section

\Il:’yfl tz L (z"'—l)YTI(zT_l)- veEV,®...0V,,

where 27 = (24,,.-+,%0,) -

(5.31) Theorem. For any adjusting map Y7 (z) and any v € (VTe{ ®...0

V&), the section ¥T , is a solution of the gKZ equation with values in
Tn £ ’U,YT

(V. ® ...® V;,.),. Under assumptions of each of the Theorems 5.9-5.11 all
solutions are constructed in this way.

The theorem is proved in Chapter 7.
Remark. Theorem 5.31 can be reformulated as follows. For a given adjusting
map Y7(z) the assignment v — Widy . defines an isomorphism of the space

S of solutions of the gKZ equation with values in V; ®...®V,, and the space
VeE®...®V: ®F, where F is the space of functions of z1,..., 2, which are
p-periodic with respect to each of the variables,

(5.32) C,:Vi®..9V: ®F — S.
The compositions of the isomorphisms: C,, = C;!C,/, define linear maps
(5.33) Crr(2):VE®..9V5 - VE®...0 V]

depending on zi,...,2z, and p-periodic with respect to all the variables. We
call these compositions the transition functions. Theorem 6.2 in the next chap-
ter shows that C, ,/(2) is a transition function from the asymptotic solution
of the gKZ equation in the asymptotic zone A, to the asymptotic solution in
the asymptotic zone A, , cf. (6.1).

Notice that C, ,(z) differs from the transition function C; ,/(z) defined
in Chapter 4, namely

(5.34) Crr(2) = (Y7(2) ' Crr(2) YT (2).

Let S, ., be operators defined by formulae (5.20). We extend their action
to matrix-valued functions in a natural way.

The maps I,(z) = I -(z7 ) Y7(2" ) satisfy the gKZ equations with val-
ues in V,, ®...® V,, , respectively. The following theorem describes their
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“monodromy” properties with respect to permutations of the variables 2z,
..., 2n in terms of the elliptic R-matrices.

(5.35) Theorem. For any permutation 7 € S™ and any transposition (m,
m+1), m=1,...,n—1, we have that

(Srr-mimet) Ir-(maman) (2) = L(2) (Y7 (27 )7 %

ell
x PVe Ve RVe
T™m

Tm+1 ™m

(2mt1/2m; (7@ ... @ P @...0n")n7 k) x

Ve
+1° Tm m-th

x Y'7"(m,m+1)(2:(m,m+1)-‘r“1 ) .

The statement follows from formulae (5.30).
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6. Asymptotic solutions of the gKZ equation

One of the most important characteristics of a differential equation is the
monodromy group of its solutions. For the differential KZ equation with values
in a tensor product of representations of a simple Lie algebra its monodromy
group is described in terms of the corresponding quantum group. This fact
establishes a remarkable connection between representation theories of simple
Lie algebras and their quantum groups, see [K], [D2], [KL], [SV2], [V2], [V4].

The analogue of the monodromy group for difference equations is the set of
transition functions between asymptotic solutions. For a difference equation
one defines suitable asymptotic zones in the domain of the definition of the
equation and then an asymptotic solution for every zone. Thus, for every pair
of asymptotic zones one gets a transition function between the corresponding
asymptotic solutions, cf. [TV3].

In this chapter we describe asymptotic zones, asymptotic solutions, and
their transition functions for the gKZ equation with values in a tensor prod-
uct of Uy(slz)-modules. A remarkable fact is that the transition functions are
described in terms of the elliptic R-matrices acting in the tensor product of
the corresponding E,, ,(slz2)-modules. This fact establishes a correspondence
between representation theories of quantum loop algebras and elliptic quan-
tum groups, since the qgKZ equation is defined in terms of the trigonometric
R-matrix action in the tensor product of Ug(slz)-modules (and, therefore, in
terms of the quantum loop algebra action), and the elliptic R-matrix action
in the tensor product of E, - (slz)-modules is defined in terms of the action of
the elliptic quantum group.

Consider the qKZ equation with values in (V; ® ... ® V,,),. For every
permutation 7 € S™ we consider an asymptotic zone A, in C*™ given by

(6.1) Ar ={2€C"| |21, /21| €1, m=1,...,n—1}.
Say that z tends to limit in the asymptotic zone, z = A, , if 2, /2., — 0
forall m=1,...,n—1.

Say that a basis ¥;,..., ¥y of solutions of gKZ equation form an asymp-
totic solution in the asymptotic zone A, if

Tj(2) = hy(2) (v +o0(1)),
where hi(z),...,hn(z) are meromorphic functions such that

hj(zl,.. yPRmy - ,Zn) = ajmhj(zl,. ..,Zn)
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for suitable numbers a;m, , v1,...,vNn are constant vectors which form a basis
in(V1®...0V,),,and o(1) tends to 0 as z 3 A,.

For every permutation 7 € S” we constructed the functions W[, [ € Z7,
whose restriction to a fiber gives a basis in the elliptic hypergeometric space
of the fiber. Let Y|, [ € Z7*, be the corresponding adjusting factors so that
the functions Y,"W are in the elliptic hypergeometric space. These functions
define a basis Yy w;, [ € Z, of solutions of the gKZ equation, cf. (5.18).

Recall that "t= ([,,...,[;,) for any [ € Z}. For [[m € Z} say that
l<mifl[#mand Y <Y m; forany m=1,...,n—1.
i=1

=1
(6.2) Theorem. Let the parameters &;,...,&, obey condition (2.14). Then
for any permutation 7 € S™ the basis Yyrw:, | € Zj, is an asymptotic
solution in the asymptotic zone A, . Namely,

Uyrwy(2) = Y7 (2) (27 + (1))

as z tends to limit in the asymptotic zone, z = A, , so that at any moment
assumption (2.15) holds. Here

[ =E[F'v®...0 Frv, + Y NLF™u®...0 F™ v,
Tm>7l

for suitable constant coefficients N{, and Z[, and the constant Z={ is given
by

n
cHENCOWIE | ICRCAR el | (Nl | I
m=1

1<li<m 1<l<m
o1<O0m o1 >0m

Bl (17 0o (72 (KT 1) ™ em)oo (P17 ° K] n€m) oo
g (7 Voo (M7%¢2) 00 (P) oo )

where o =77! and k], =« [] 77" Il nhet

1<o<om Om<oI<n
The theorem is proved in Chapter 7.

Remark. The trigonometric R-matrix R(z) has finite limits as = tends to
zero or infinity, cf. (3.7). Thus, the gKZ operators Ki(z),...,K,(z) have
finite limits as z tends to limit in an asymptotic zone:

Kn(2) = K7, (1+0(1)), 233 A, m=1,...,n.
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where K are some operators independent of z. The vectors 2/ form an
eigenbasis of the operators K, with eigenvalues af,,, cf. (6.3).

Remark. Recall that the adjusting factors Y|"(z) have the following proper-
ties:

(6.3) Y (21,--,P%my -1 %) = a1 Y( (21,---,20),
I —ln ¢lm I = Um =1
U = K Il n ! & §r[h I1 n" & ™Emts
1<oi<om om<oI<n
forany 7 €8¢, 1€ 2}, m=1,...,n. Here c =771,

Remark. If the absolute value of k is sufficiently small, then the relation
Y7 (2) = o(Y{ (2)) as z tends to limit in the asymptotic zone, z =3 A, , implies
that "m > [, cf. (6.3). Similarly, if the absolute value of & is sufficiently large,
then the relation Y (2) = o(¥;"(z)) as z tends to limit in the asymptotic
zone, z =3 A, , implies that "m < 1.

For example, assume that |n| =1, |{n] =1, m=1,...,n, |k| <1, and
all the adjusting factors Y,7(z) are regular at point (1,...,1) € C*™. Let
z = (p°**,...,p°") where sy,...,s, are integers. Then the relation Y (z) =

n

o(Y(T(z)) as z =3 A, implies that the sum ) s;(m; — [;) is large positive
i=1

if all the differences s, —s;,.,,, m =1,...,n—1 are large positive. Since

n

n
> ;=Y  m; we have that
i=1 i=1

n n—1 %
Z Si(mi - (z) = Z (ST,‘ - 87i+1) Zl(m’rj - ["'J') :
i=1 i=1 =

i

i

Therefore, m. > > I, forany i =1,...,n—1, and m # [, that is
=1

m> "l

J

J=1

Remark. The qKZ equation depends meromorphically on parameters «, &,
...,&n . Let the adjusting factors Y,” depend meromorphically on &, &i,...,
&n - Then the basis of solutions Yy wr-, [ € Z;° also depends meromorphically
on k, &1,...,& - The asymptotics of the basis Wy w;, [ € Z*, described
in Theorem 6.2 determine the basis uniquely. Namely, if a basis of solutions
meromorphically depends on the parameters «, &,...,&, and has asymp-
totics in A, described in Theorem 6.2, then such a basis coincides with the
basis Wyrw;. In fact, elements of any such a basis are linear combinations
of the functions Wy-w- with coefficients meromorphically depending on &,
&1,...,&, and p-periodic in zp,...,2,. To preserve the asymptotics one can
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add to an element Wy-wr any other functions Wyrw- having smaller asymp-
totics. If the absolute value of « is sufficiently small, then one can add only
the functions Wyrw-r with "m > "I, and if the absolute value of & is suffi-
ciently large, then one can add only the functions ¥y-w- with "m < 71, see
the previous Remark. Since the coefficients of added terms are meromorphlc
they have to be zero.

Remark. The asymptotic solution ¥yrw-, [ € Z7, in the asymptotic zone

A, of the gKZ equation with values in (V1 ® ... ® V;,),, cf. Theorem 6.2, is
an image of the monomial basis vl ® ... ®vl'™l, 1€ 2} of (Ve ®...®

V<), under the composition Iigr(2)Y"(2) of the hypergeometric map and
the adjusting map, cf. Theorem 5.31. The transition functions between the
asymptotic solutions are linear maps C, ./, see (5.33). Formula (5.34) and
Theorem 4.16 show that the transition functions between asymptotic solutions
corresponding to neighbouring asymptotic zones are given by the dynamical
elliptic R-matrices twisted by the corresponding adjusting maps.

Example. Theorem 6.2, formula (5.34) and Theorem 4.16 allow us to write an
elliptic R-matrix as an infinite product of trigonometric R-matrices. Namely,
consider the qKZ equation with values in the tensor product of two U,(sly)
Verma modules V; ® V2 with highest weights ¢!, ¢%?, respectively. Then
there are two asymptotic zones |z;/2z2] > 1 and |21/22| < 1. Our result on
the transition function from the first asymptotic zone to the second one is the
following statement.

Let V¢,Vy be the evaluation Verma module over E, ., (slz) with highest
weights A, As, respectively. Then we have

(6.4) (Rijleve (x) H ’f—H®ldRVIVQ(P ),

§=—00

provided the infinite product in the right hand side is suitably regularized and
the factors of the product are ordered in such a way that s grows from the
right to the left, see the example below. The restriction of formula (6.4) to
the weight subspace (Vi ® V), of weight ¢A1tA2~1 can be transformed into
the infinite product formula for 2x2 matrices, which looks as follows.

Let a,b,c,d,a,é,p be nonzero complex numbers such that |p| <1 and

a/é # p, a/d # p°, be # (1 —p°) (p™°ad — ba)

a— au bu

for any s € Z. Set A(u) = ( c d— 6u

) . Let A, u be two solutions
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of the quadratic equation det A(u) = 0. Then

—S8 8 —S
. a 0 r —a b —s,.s(s+1)/2 __
tm (¢09) (IT40m) (37 5) ws =

1 0
= c X
a—d
a6(0u/a) (PA3/0)es (P0/0)s,  bub(u~'a/0) (PAa/a)es (PLi/0)os
) (Pd/0)o (03/0) s (P)oo (0d/0)os (@/8)o0 (P)oo )
cB(au/d) (pA3/d)og (pud/d)ey  dO(u/d) (e/d)os (1er/d)oq
(0/d) o0 (P6/@) oo (P)oo (0/d) o0 (2/5) 0 (P)oo
b
S IR g
0 1

where the factors of the product are ordered in such a way that r grows from
the right to the left.

Theorem 6.2 admits the following generalization. Fix a nonnegative integer
k not greater than n. Fix nonnegative integers ny,...,n; such that

O=np<m<...<nx=n
and consider an asymptotic zone in C*™ given by

A ={z2eC*"| |zm;/2miy, | K1 forall mq,...,mg
such that n;_; <m; <n;, 1 =1,...,k}.
We say that z tends to limit in the asymptotic zone, z =3 A, if z,/2,, — 0 for
all I,m such that n;,_; <l <n; <m << nyjy; forsome ¢ =1,...,k—1, and

|21/2m| remains bounded for all I,m such that n;,_; < l,m < n; for some
i=1,...,k.

k
Fix nonnegative integers ¢1,...,€; such that Y ¢; =¢. Let

=1

P[el] = f[z'ni—1+l>°~~,Zni;§ni_1+17"'7€ni;ei]
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and )
E[ei] = *7-;11["'?:; Zni_14+1ly--. 7zni;§'ni—1+17 co ,én,i;ei]

2 b= -1 -
where k; =rkn?> <t [[ & [ & . Let Y(z1,...,2,) be an adjusting
I<ni—1 I>n;

factor for the tensor product Fi[f1]®...® EF[£;], cf. (4.20). Then we have
linear maps

FUO®... @ F* ] — F FH0]®...@ o) = E
an

f1®...®fkl—)f1*...*fk f1®®fkl—)(f1**fk)y

with respect to the tensor products introduced in Chapter 4.
i
Let m € Z7. Say that m > (4y,...,4) if Zml Z ¢; for any i =1,

.,k —1, and at least one of the inequalities is strlct.

For any W € Ei[4;] let Uy (2n,_,+1,---,2n;) be the solution of the gKZ
equation with values in (Vy,_,+1®...®Vy,),. correspondingto W (cf. (5.18)).

(6.5) Theorem. Let the parameters &,...,€, obey condition (2.14). Let

W; € Eilt;], i=1,....,k. Let W =W x...«Wy and let Y be an adjust-
ing factor for the tensor product Ei[¢1]®...® EF[¢x]. Then the solution

Uyw(21,...,2n) of the gKZ equation with values in (V1 ®...®V,,), has the
following asymptotics as z tends to limit in the asymptotic zone, z = A, so
that at any moment assumption (2.15) holds:

\wa(z) = A ‘H H § Y QW(z)_"O(l))

fi=1 1€ i<

where

Rw(z1y-oy2n) = Yy (215005 2n) @ . @ U, (Zng_y 41y -+ -2 2n) +

+ Z H N&,m (Zni_1 415+ 2n;) FM1 ® ... @ F™

m> (0, 0li)
for suitable coeflicients N&,?m(zm_l.u, ceeyZng) -

Theorem 6.5 follows from Theorem 6.6 below which describes asymptotics of
the hypergeometric pairing.
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k
Let ¢1,...,¢, be nonnegative integers such that ) ¢, = ¢. Say that

i i i=1
(O, 0)> (b, b)) if Y £5> > 4 forany i=1,...,k—1,and (£,
j=1 j=1
76;9) # (617"'aek)'
(6.6) Theorem. Let the parameters &1,...,&, obey condition (2.14). Let
w; € Fi[£}] and W; € Ei[;], i=1,...,k. Let w= 1wy *...xw, and W =
Wy *...* Wy . Then the hypergeometric integral I(W,w) has the following

asymptotics as z tends to limit in the asymptotic zone, z =3 A, so that at
any moment assumption (2.15) holds:

k
IW,w) = 37— H IT & (I1I(Wi,wi) +o(1))
1”' ti=1 1< j<ni—1 =1
for (¢4,...,¢,) = (f1,...,4x) and
I(W,w) = 0(1) for (61,...,0,)> (1,...,4k),

I(W,w) = o(1), otherwise .

The theorem is proved in Chapter 7.
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7. Proofs

This chapter contains proofs of the statements formulated in Chapters 2—-6.
Basic facts about the trigonometric and elliptic hypergeometric spaces are
given in Appendices A and B, respectively. In particular, we give there proofs
of Lemmas 2.21, 2.31, 2.36 —2.39.

Proof of Lemmas 2.22, 2.33. The statements immediately follows from
Theorems A.7, B.8, respectively. O

Proof of Lemmas 2.23, 2.24. The first claims of the lemmas are respec-
tively equivalent to the first and second formulae in (A.5). The second claims
of the lemmas are the same as Corollary A.8. O

Lemma 4.3 follows from formula (A.3) in [IK] and the definition of the
evaluation modules by induction with respect to the number of factors in the
tensor product. Nevertheless, we give here an independent proof of Lemma 4.3
which is similar to the proof of Lemma 4.15 in the elliptic case.

Proof of Lemma 4.3. Without loss of generality we can assume that 7 is
the identity permutation. We give a proof of the second formula of the lemma.
The proof of the first formula is similar.

It suffices to prove the formula for generic values of parameters 7, &i,...,
&n, 21,...,2n, since both sides of the formula are analytic functions of the
parameters.

Define functions X((t1,...,te), | € Z}, by the rule:

Ll—z(tl) c. L1_2(tg)1j1 K...0v, =

I3
=Y Xita,oote) J gttt [T P g @ P,

lezZp 1<l<mgn a=1

The claim of the lemma means that for any [ € Z7 the function X coincides
with the polynomial P; defined by formula (A.9).

m m
For [me Z} saythat [Kmif Y [ <> m; forany m=1,...,n—1.
= i=1 i=1
Say that [<m if [#m and [ < m.
By the definition of functions X, they are symmetric polynomials in £
variables of degree less than n in each of the variable. Hence, they are linear
combinations of polynomials P;:

Xi(t) = (@-q 1 Y. UmPal), e Zp.

mezZgp
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By Lemmas 7.1, A.12 the matrix U is upper triangular: Uy, = 0 unless
| < m, as a ratio of upper triangular matrices, and simultaneously lower
triangular: Upy = 0 unless [ 3> m, as a ratio of lower triangular matrices.
Therefore, the matrix U is diagonal. Moreover, by the same lemmas Uy = 1
for any [ € Z} . Hence, U is the unit matrix. Lemma 4.3 is proved. O

For any [ € Z} let b1, yal € C** be the following points:

1-1 2—1 -
zol = (' "&2, P "o, . b2, ' T %2, 2,

nl_[né'nznr ce aEnz'rL) )

[1—1¢s-1 [1—2¢—1 -1 [o—1¢#—1 -1
y4[: (771 61 21,771 51 Z17'~'7£1 zlanz §2 227“'162 22y v eny

N 2, 6 )
of. (2.35), (A.11).

(7.1) Lemma. X;(z>m)=0 unless | K m. X((y<dm) =0 unless [ > m.
Moreover,

—1\¢
Xi(zpl) = (g—q71) x
[m—1

X H H( H (n_sé‘mzm_gl_lzl) H (n[l—sfmzm_glzl))~

1<l<m m<l<n

Proof. The proof is given by the straightforward calculation based on the

definition of the coproduct in the quantum loop algebra U, é(gf\[;) . We illustrate
the calculation by the following example.

Let n =3. Let A®) = (A®id)o A: Ué(g/\[;) — Ué(g’i;)‘g’?’ be the iterated
coproduct. We have that

(7.2)  AY(I5(t) = L1 (6) © L5 () ® Lip(6) + L1y () © Liz(t) ® Lay(t) +
+ L15(t) @ Ly(t) @ Lay(t) + L15(t) ® Ly () ® Lip(t) .

Let £=4, m=(1,1,2). Recall that n = ¢ and &, = ¢*~.
We have to calculate the following expressions

(7.3) L15(€121) L5 (&222) Lo (0™ €323) L15(€323) v1 @ v2 @ v3,

(7.4) Lip(&7 " 21) L (&5 M 22) Lip(n€s '23) Lip(65 ' 23) v1 @ va @ vs .
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To compute Li,(n™ €s323) L1,(£323) v1 ® v2 ® v3 we need only the first term
in the right hand side of formula (7.2), since all other terms vanish. Then to
compute Li,(€222) L15(n 1€323) L15(€323) v1 ® v2 ® v3 we need only the first
and second terms in the right hand side of formula (7.2) for the same reason.
Finally, at the last step we have to use all four terms in (7.2) and we find that
expression (7.3) is a linear combination of vectors

Fui ® Fuo @ F?u3, Fv; Qua ® F3us,
v1®F2v2®F2v3, v1®F'u2®F3v3, v1®vz®F4v3.

The coefficient of vector Fv; ® Fvy ® F2v3 can be easily calculated and it
has the prescribed form.

To calculate expression (7.4) we first use the commutativity of the factors
in the product and transform the expression as follows:

Li,(n€5 " 23) L5 (&5 23) Lo (&5 ' 22) Lp (€7 P 21) v ® v2 @ w3 .

Then to compute Li,(£;'21)v1 ® v ® v3 we need only the third term in the
right hand side of formula (7.2), and to compute Li,(&; " 22) Lo (&7 21)v1 ®
v @ vg we need only the second and third terms. The rest of the calculation
is clear.

The general case can be considered similarly. O

Proof of Lemma 4.15. The proof is similar to the proof of Lemma 4.3. So
we give only the main points of the proof.

Without loss of generality we can assume that parameters n, &,...,&,,
21,...,2n are generic, and 7 is the identity permutation. Define functions
E(t1,...,te), L€ Z}, by the rule:

(7.5)  Toults,\)...Tor(te,n" N oM @ ... @l =

= Z(t1,...,te He(nsn—lng D H H €10/ 2m) 00 ® ... @0

a=1 m=1

n
Here A = & [] &,,' . We have to show that =y = ¢ J; for any [ € Z7, where
m=1

the constant ¢, and the function J; are given by formulae (4.9) and (B.9),
respectively.

By the definition of functions =y, they are holomorphic function on C*¢
having the property

Zm (—ta)_nE[(tl, e ,tg) .
1

E((tl,...,pta,...,tg) = K

=t
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Therefore, they are linear combinations of the functions Ji:

Et) = ) UinJn(t), (e 2},

mezZp

Lemmas 7.6 and B.10 imply that the matrix U is diagonal and Uy = cp,
le Z;. Lemma 4.15 is proved. O

(7.6) Lemma. Zy(z>m) =0 unless [ <K m. S(y<m) =0 unless [ > m.
Moreover,

Eeel) = J[ o7& x

1<i<mgn
n  In— s
Tl Hl( 0(n*) (' —*€2)
AN O(ns et TT ot TT n&)
- 1<I<m m<l<n
x T 60 "6Emzm/z) [T 00" enm/a) ).
1<l<m m<l<n

Proof. The proof is similar to the proof of Lemma 7.1 and is given by the
straightforward calculation based on the definition of the coproduct in the
elliptic quantum group E, (slz). Two remarks on the calculation is to be
done.

The calculation becomes more transparent if it is done in the dual picture,
that is if we replace formula (7.5) by the dual one

(Tor(t1, V) - Taa (e, 71N) " (0 @ ... @ 0%)" =

=) &, 1:[ L li&;ﬁ) x

leZy

2 n
< 1 IT o650/ (0 00"

The factors in the product in the left hand side of this formula should be
put in the suitable order, which can be done using commutation relations in
the elliptic quantum group E, (sl2). For instance, if £ =4 and m = (1,1,2),
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then for the point z>m the suitable form of the corresponding product is

To1 (€323, N) Tor (N €323, 0 \) Ta1 (€222, 0°N) To1 (€121, 7°) =
= To1 (€121, N) To1 (€222, 0 ) To1 (™ €323, 1 X\) Ton (€323, 1 N)

and for the point y<m the suitable form of the corresponding product is

To1 (&7 21, A) To1 (€5 Y22, mN) Ton (€3 P23, 12 A) To1 (0 €5 M 23, m3 A) =
= To1 (€7 21, A) Ton (65 22, ) Tor (€3 23, m2 N) Toa (€5 L 23,13 N)

The necessary transformation of the product in the general case is similar. [

Proof of Lemmas 4.18, 4.19. The statements follow from the definition of
the weight functions, cf. (2.20), (2.30), and Theorems A.7, B.8, respectively.
O

We extend the notion of the hypergeometric integral I(W,w) and consider
the hypergeometric integral for any function w in the functional space F(z)
of a fiber. Namely, let w(t,z) € F(z) be a function of the form

P(tl)-",t€7z17‘",znvélv"'vg'n»n) X

T 4

- 1
X sl:—IO [ H H (psta _ émzm) (fmta __ps+1zm) X

m=1 a=1
; )
X
1<}—<Ib<e (p*nta —ty) (ta — p*tinty)
where P is a Laurent polynomial. If |z,| = 1 for any m = 1,...,n, the
absolute values of the parameters &1, .. .,&, are small and the absolute value of

the parameter 7 is large, then we define the hypergeometric integrals I(W;, w)
by formula (5.3). For generic 0, &1,...,&n, 21,-..,2n we define the hyper-
geometric integrals I(Wy,w) by the analytic continuation with respect to 7,
&,...,&n, 21,...,2, . Similar to Theorem 5.6 one can show that this hyper-
geometric integrals can be analytically continued as holomorphic univalued
functions of complex variables n, &1,...,&,, 21,..., 2, tothe region described
in Theorem 5.6. For arbitrary functions w € F(z), W € E,(z) we define the
hypergeometric integral I(W,w) by linearity.

Let DF(z) = {Dw | we F(2)}.
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(7.7) Lemma. Let 0 < |p| < 1. Let (2.13) —(2.15) hold. Then the hyper-
geometric integral I(W,w) equals zero for any function w € DF(z).

Proof. The claim is clear if |z,,| =1 for any m = 1,...,n, the absolute values
of the parameters &;,...,&, are small and the absolute value of the parameter
n is large. For general 7, &,...,&,, 21,...,2n the claim is proved by the
analytic continuation. [

Proof of Lemvma 5.7. The first claim of the lemma follows from Lemma 2.23
and 7.7.

It suffices to prove the second claim under the assumptions that |z,,| =1,
m=1,...,n, |p| > 1 and the absolute values of &j,...,&, are small, when
the hypergeometric integral I(W,w) is given by formula (5.3).

Let W € Q(z), that is
W(ty,... te) = > [W(ta,...,t0)],

oSt

for a suitable function W’ € Ey [0 [[ &€m;21,-- s 2n; €1, -5 En; € — 1](2).
m=1
Due to formula (2.7), we have that

(78)  I(W,w) = ¢! /<I>(t1, Wt )W g, 1) (d/1)!
T¢
because the torus T¢ is invariant under permutations of the variables ¢, ...,
te.
Since w(0,tz,...,t) =0 for any w € F(z), the integrand @(¢)w(t) W'(t)
considered as a function of ¢; is regular in the disk |t1| < 1. Hence, I(W,w) =
0 for any w € F(z). O

Proof of Lemma 5.8. The proof is similar to the proof of Lemma 5.7. For
the proof of the first claim Lemma 2.23 is to be replaced by Lemma 2.24. In
the proof of the second claim the corresponding integrand is regular outside
the disk |to| > 1 decreasing as O(t;?) at infinity. O

The hypergeometric integral defines linear functionals I(W,-) on the func-
tional space of a fiber. Lemma 7.7 means that these linear functionals can
be considered as elements of the top homology group Hp(z), the dual space
to the top cohomology group of the de Rham complex of the discrete local
system of the fiber.

Proof of Theorem 5.15. Recall, that in general the definition of the hyper-
geometric integral depends on z . In this proof we will indicate this dependence
explicitly as a subscript: I(-,") = I,(-,).
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The section sy, is defined by sy, (2) = I,(W|,,-) where W|, € Ey(2)
denotes the restriction of the function W € %, to the fiber over z. The
theorem is a direct corollary of the quasiperiodicity of the function W with
respect to each of the variables zy,...,2,:

Wt 21, D2my s 2n) = ELSW(t, 21,.. ., 2n), m=1,...,n.

Namely, the periodicity of the section sy, with respect to the translation
Zm > Pz, means that

(7.9) LWy w) = L(Ws, (Petrm)|: w)

for any w € j-\'(z’). Here 2’ = (z1,...,0Zm,---,2n) and @pim, is the corre-
sponding connection coefficient of the sly-type local system, see (2.3).

Without loss of generality we can assume that both w and W are mero-
morphic function of the parameters £;1,...,£, and n. So it suffices to prove
(7.9) under the assumption that the absolute values of &;,...,&, are small
and the absolute value of n is large. Then, the hypergeometric integral is
given by formula (5.3) and we have

Lo (W, w) = / B(t, 2 )w(t) W(t, 2') (dt/t)t =

= / B(t, 2) peam (t, 2) wt) W (t, 2) (dt/)" = LWz, (Pesm)]-w)

The middle equality reflects the fact that the product ® W is a phase function
of system of connection coefficients (2.3). O

Proof of Lemmas 5.16, 5.17. We give here a proof of Lemma 5.16. The
proof of Lemma 5.17 is similar.
Without loss of generality we can assume that 7 =1id. Let

'U[ = F[l’U]_ ®...®F["Un, b[ = ﬁ q[m([m_l)/2+[m1\m,

m=1

BE(t,z) = (g—q7") D bowi(t,2) Ev' € F(2) ® (Vi ®...® Va),_; -
lezy

Here FE is a generator of U(slz) actingin V1 ®...Q V.
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_ By the definition of the tensor coordinates Biq(2), cf. (4.1), and the map
I(z), the claim of Lemma 5.16 is equivalent to the following statement:

I(W,BE) = 0.

Let ¢(m)=(0,..., 1,...,0), m=1,...,n. Since

m-th

n

(=g VBV = ) (g —q ) (g* 7 ImHt — g2t

m=1
% l_[ qu—[[ I‘I q—Al+[l ,U[-e(m)’
1<I<m m<Il<n
and recalling that n = ¢%, &n = ¢*A~, m =1,...,n, we obtain
=13 Am

X Z ( Z_l Wite(m) (1- ,’7(,,,+1) (ém — 77[m§ l_[ n [lfz) b[v

(-9 1<i<m

Therefore, BE € R(2) ® (V1 ®...® V;.),_; , see Lemma 2.23, and applying
Lemma, 5.7 we complete the proof. O

Our further strategy is as follows. First we prove Theorem 6.6 which, to-
gether with formula (5.13), implies Theorem 6.2. Using Theorem 6.2 we prove
that the hypergeometric pairing is nondegenerate, cf. Theorems 5.9-5.11.
At last, we prove Theorems 5.26, 5.28.

Proof of Theorem 6.6. To simplify notations we give a proof only for the
case k =n, so that n,, =m, m =1,...,n. The general case is similar.

Let w™ € Flzm;€m;l] and W, m)[a] € Fulc; 2m;€m;l] be the following

0] )
functions:

(710) gl) )(th y U, zm)

— fmzm ]g’

s=1 O'ES’
l l 0(n2a—l—1 —14 o/ %m)
Z [[al;[l 0(ém'ta/zm) ]]

Wil (ts, -ty 2m)
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cf. (2.20), (2.30). We have the equalities
wy = wgl)) *wE?)) and W( = W(([ll)) [KJ[’I] * . ([ )[I‘.‘,[ n]

where Kim =k [] n%¢ 1 n“& ! Therefore, we have to study the
1<i<m m<ign

asymptotics of the hypergeometric integrals I(Wy, wy,) .

Consider the hypergeometric integral I(Wy, wr). Due to property (2.7) all
the terms in formula (2.30) for the function W; give the same contribution to
the integral. So we can replace the integrand ®(t) w (t) Wi(t) by the following
integrand

F(t) = wa() ] (nta/th)oo

-1
1<a<b<e (™ ta/ts)oo

no fml a/%m)
X H (H ( H p)oo fm /zm)oo(pgmzm/t ) 8

m=1 a€lm,

x H pﬁl "21/ta) oo H (fz_lta/zl)oo>
where T, = {1+1m"1 .1}, m=1,...,n.
Assume that 7 > 1 and |§,| <1 forany m =1,...,n. If |z,| =1 for
all m=1,...,n, then we have

I(Wi,we) = /F(t) (dt/t)*.
’]I‘l

The analytic continuation of I(Wy, wy) to the region |z1| < ... < |z,| is given
by

[(Wiwa) = / F(t) (dt/1)"

Ty! X...xTH
where

i = {(trsmes, .o tim) €C™ | Jta] = [zm|, ™' <a <)

since the integrand has no poles at the hyperplanes t, = p‘sfl_lzl , SEZ, for
m-! <a< [m, m > [, has no poles at the hyperplanes t, = p*¢2;, s € Z,
for =1 < a < 1™, m <1, and has no poles at the hyperplanes t, = p*nty,
s€Z,for a>b.
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Let 2z tends to limit in the asymptotic zone, z =3 A, that is
|2m/2m+1] — 0 foral m=1,...,n—1.

Consider the case | = m. Transform the hypergeometric integral I (W, wy)
as above and replace the integrand by its asymptotics as z =3 A. Since

n
(711)  wilts,-te) = [ & T wi™)tmori, - tim) + (1)
m=1

1<l<m<n

as 23 A and t € T x...x T, we obtain that

n [
I(W[,w[ = ];[ ( ( ) / ([ )(t(m 141, - 7t[7n) X

t
T"TT

< T1 ((nta/mlo tmzntao) ™ 1 s 52 )) (14 000)

(=14, /+ )
a€l,, n tb/ta)
bEF

as z 3 A. Due to (2.7) the integrals over Th» are the hypergeometric in-
tegrals I(W, ([ )[m,m],wga))) up to simple factors. Hence, we finally obtain
that

2! n m m
IWiw) = oy [ & (I IV lkuml w() +0(1) -

T Il<mgn

The hypergeometric integral I (Wi, wy) for [ # m can be treated similarly to
the hypergeometric integral I(W;,w;) considered above. The final answer is

I(Wi,wy) = O(1) for [« m,
I(W,we) = o(1), otherwise,

which completes the proof if n > 1 and |§,| <1, m=1,...,n

For general &;,...,£, and n the proof is similar. The analytic continuation
of I(Wi, wy) to the region |z1] < ... < |z,| is given by

I(Wi,wg) = / F(t) d%

4 [
T X...xT
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where T' is the respective deformation of T'» . On every contour Tm the
quantities t,/z,, remain bounded and separated from zero as z tends to limit,
z=3 A, for all a such that [™~! < a < I™, and the rest of the proof remains
the same as before.

Theorem 6.6 is proved. ()

(7.12) Theorem. Let the parameters &1, ...,&, obey condition (2.14). Then
for any permutation T € S™ the hypergeometric integral I(W[,wy) has the
following asymptotics as z tends to limit in the asymptotic zone, z = A, , so
that at any moment assumption (2.15) holds:

I(WlTa U)m) =

14 _ n m) . m
= o L & I ne (1 1OVt l w(T)) +0(1),

|
Gl 1! 1<l<m  1<I<m
o1<oOm o1>0m
I(W wn) = 0O(1) for T < m,
I(W[,wn) = o(1), otherwise.

Here o =171, the functions w((::)) and W(([’: )) [k],] are defined by formulae
(7.10), = (lry,- -, br,) and w7, =x I 77 TI ntgt.

1<o1<om om<oI<n
The proof is similar to the proof of Theorem 6.6.

Proof of Theorem 6.2. The statement follows from Theorem 7.12 and for-
mula (5.13). O

Proof of Theorem 5.9. Since both sides of formula (5.9) are analytic func-
tions of &;,...,&, and 7, it suffices to prove the formula under the assumption
that [n| >1 and || <1, m=1,...,n.

Denote by F(z) the determinant det[I(Wi, wm)] [meZp and by G(z) the
right hand side of formula (5.9). Let Y; be an adjusting factor for the elliptic
weight function W) and oy,, be the corresponding multipliers defined by
formulae (2.32).

Since for every [€ Z7' the section Uy, is a (V1 ®...® V},),-valued
solution of the gKZ equation, F(z) solves the following system of difference
equations:

®
F(z1,...,D%m,...,2n) = det Kpp(21,...,2n) [] a[;lF(zl,...,zn).
€zp
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Q)
Here det K,(z) stands for the determinant of the operator K,,(z) (3.12)

acting in the weight subspace (V1 ®...®V,),. Using either formula (3.7) or
Theorem A.7 we see that

() —
det Ko (21,...,2n) [1 al,;z =

lezp
-1 —1 4 _ n+l—s—2
_ H ( bZm — 7735[ fmlzl 21— sf[émzm )( n—1 )
- —1¢4-—1
5=0 ‘1<i<m PZm —N7°§€m m<ign 2T n°¢ Em 2

Therefore, the ratio F'(z)/G(z) is a p-periodic function of each of the variables
Zlyeee9ln -

F F
5(21,...,pzm,...,zn) = E(zl,...,zn).

Theorem 6.6 implies that the ratio F'(z)/G(z) tends to 1 as z tends to limit
in the asymptotic zone, z = A. Hence, this ratio equals 1 identically, which
completes the proof of the determinant formula.

Let functions Gy, | € Z}, be defined by formula (B.3). They form a basis
in the elliptic hypergeometric space of the fiber %,(2). Using Theorem B.8
we have that

det[I(G[,wm)](,mez? =&~ (27”) ("+e 1) K!(n:ﬁl) n_n(n:{f—;l) .
(n—-m)("TE7) T Jo (P 6 T Em) oo T K [T Em) oo
g H l;[[ (= )% (P2 TI(n°€%) 0 8
< TI 1 ]("Jrf;:i_z)
1<l<m<n (P)oo (N™2&&m 21/ 2m) 0o (PN %616m2m [ 21) 0o

where = is the constant given in Theorem B.8. Under the assumptions of
Theorem 5.9 we have that det [I (G[,wm)][m czr # 0 which means that the
) 2

hypergeometric pairing I : %, (z) ® F(z) — C is nondegenerate. Theorem 5.9
is proved. O

Proof of Theorem 5.10. Since both sides of formula (5.9) are analytic func-
tions of &1,...,&, and n, it suffices to prove the formula under the assumption
that [p|>1 and |§n| <1, m=1,...,n
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Consider the determinant det[I(Wi,wm)], czn as a function of £ and
’ £

denote it by Det(k;€). Set € = (1 —k~n'¢ [] &n) . We will show that
m=1

T omiet (1-n) 6m) ("R
(7.13) Det(k;€) = SIJ(; ((1 =08 (=) 6(n3+1)) X

x (Det(n™* ﬁ[lgm;e — 1) det[I(Wi, wm)] (mezp T o(1))

[1 =ﬂ‘11=0

as € — 0, thatis k — 7' ™% [] & . This equality and the determinant formula
m=1
(5.9) imply the determinant formula (5.10).
Let e¢(m)=(0,..., 1,...,0), m=1,...,n. Introduce a new basis wy,
th

le Z7, of the trigono%etric hypergeometric space of a fiber by the rule:
wy=w; for [; =0 and

wi = w(l-n")(1-n"""&) -

= Wieerem) A= 0" ) (Em — €S TT n7"&

m=2 1<i<m

for [; > 0. We have that

£-1 B (n+e—s—3)
Det(k;2) = H (L=t (1 —n°¢})) n=2 J det[I(W, wp,)] LmezZp
s=0

The main property of the new basis follows from Lemma 5.7. Namely, we have
that I(Wi, wn) = O(e) as € — 0, if either [; > 0 or m; > 0. Therefore,

det [I(Wr, wy,)] (mezp =

n+£—2))

= det[[(W;,wm)] [meZ] det[I(Wl’w;‘)][,meZ? + 0(5( n—1

[1=m;=0 [1>0,m; >0
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If m; >0, then by Lemmas 2.23 and A.5

wfn(tl,. . .,tg) =
4

£
=€ Z [wm—e(l)(tZa . ,te)] (1,a) +(1-¢) Z D, [wm_e(l) (ta,... ,tg)] (1,0)

a=1 a=1

where (1,a) € S¢ are transpositions. Then using Lemma 7.7 we see that
I(Wi, wy) = e I(Wi,wy_,(;y) Where

£
(714) ’w,’:(tl,...,tg) = Z [w"(tz""’tf)](l,a,)’ ne Zen_l.

a=1

The next step is to calculate the hypergeometric integral I(Wi, w! _ e(l))

n
at kK = '~ ¢ [] & . We will indicate explicitly the dependence of the ellip-
m=1
tic weight functions on x. Namely, the elliptic weight function Wi[«] is an
n
element of the elliptic hypergeometric space of a fiber ZE,[x, > ln](2).
m=1

If [; >0, then

6(n)
8(n")

Wiln' fllsm](tl,...,te) = > Wiy H Eml(te,- . te) ],

oeS?

and due to formula (2.7) we have that

6(n)
¢ 8(n")

IWil* T ). wl) =

x / Bt ) s b1, ) Wil T] (b, ) (at/0)"

T¢

because the torus T* is invariant under permutations of the variables ti,. ..,
te. Substitute formula (7.14) into the above integral. Similar to the proof of
the second claim of Lemma 5.7 we obtain that

/(I)(tla .oy te) [wm—e(l)(tz’ SRR tg)] (1,a) W[—e(l)[n_e l]lé.m](t% oy te) (dt/t)e
T B

= 271 610, I(W[—e(l) 9 wm—e(l)) .
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Hence,

6(n)
8(n")

n n
I(WI [nl—lf Hlfm], w;{;—e(l)) = 2mil I(W[—t(l) [n—é Hlé.mL wm—e(l))

and finally

, L orietf(n)y ("R
det[I(W"wm)]I,meZ? = H (20(;S+1()n))( ’ )

[1>0,m;>0 s=0

X

x (Det(n~* ﬁlgm;e —1) +0(1))

as € — 0. Formula (7.13) is proved.

The rest of the proof is similar to the end of the proof of Theorem 5.9.
Consider the space Eulkéi; 22, ... 2n;€2, ..., €n; £](2) . It has a basis given by
functions Gi(t), [ € 2}, defined similarly to formula (B.3). Set

£

Git) = Gt) []

a=1

0(&1ta
—(6_11 /21) : le Zpt.
0(51 ta/ Zl)
The functions Wi[k] such that [; =0, [ € Z}, are linear combinations of the
functions G,, m € Z;~". Formula 5.10 and Theorem B.8 imply that

m

det [I(Gf, w(O,m))] [

mezp~t T

n+£—2 n+£—2 n+f—2\ "N n—m n4+4—2
— K(Qm'gl)e( n—2 )g!( n—2 ),7—"( n ) H zfn ("ai77) y

m=2

[ e )6 e [ (065 " )
LU= 020z T &) o, (r€éma/on)e

1<mgn m=2

1 (")

< 11 (P)oo (M 2&1€m21/ 2m) 00 (PN *E1ém2m/ 21) 0

2<Il<mgn

)

n—2 2mim/(n—1) _ 1 *—m—1 (
_ n(n—2) € 1
where K = [(p)oo r;l;[l ( 0(621rim/(n—1)) )
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Under the assumptions of Theorem 5.10 we have that
det [1(G1, w(o,m))] Lmezp? 70
which means that the hypergeometric pairing
I': Ju(2)/Q(2) ® F(2)/R(2) —» C

is nondegenerate. Theorem 5.10 is proved. O

Proof of Theorem 5.11. The proof is similar to the proof of Theorem 5.10.
|

Proof of Theorem 5.26. Under assumptions of the theorem, for any  in

n
the puctured neighbourhood of n'~* [] n®m the assumptions of Theorem 5.25

m=1
are valid. Therefore, the hypergeometric map I, ./(z) is well defined and
nondegenerate for any such k.
Introduce a matrix X by the rule:

IT,T:(z)v[[’{] ®...0vlm = Z X F™" v, @ ...Q FM o, le Z7.
mezZp

n
We have to show that the matrix X has a finite limit as x — n!=¢ [] n~
and limdet X #0. m=1
Consider the hypergeometric integral I (W[T', w],) . It is a holomorphic func-
tion of k since the corresponding integrand is a holomorphic function of £ and
the integration is over a compact contour. Hence, Lemmas 5.7 and 2.38 imply
n n
that (k—n'~¢ [] nAM)_l I(W{',w?) has a finite limit as & — n~¢ [] phn
m=1 m=1

if I[; > 0. Therefore, the entries X, with [; > 0 have finite limits and the

n
entries X, with [; = 0 are regular at k = n!~¢ 11 n’m . That is the matrix
n m=1
X has a finite limit as &k — n*~¢ [] n?~.
m=1

The explicit formula for the determinant det X for general k can be easily
obtained using Theorems 5.9, A.7, B.8, formula (4.9) and the definition of the
hypergeometric map I, ,/(z). It follows from the obtained expression that
under the assumptions of Theorem 5.26 the limit of the determinant det X as

n
k — n'~¢ ] n®™ is not equal to zero. The theorem is proved. O
m=1
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Proof of Theorem 5.28. The proof is similar to the proof of Theorem 5.26.
|

Proof of Theorem 5.31. Without loss of generality we can assume that the
adjusting map Y7 (z) analytically depends on . Hence, the same do the
section W7 y+'. The qKZ operators analytically depend on « as well.

For general x the section W7 i solves the qKZ equation with values in
(Vi ®...9V;,), due to Corollary 5.19. For special values of x:

n n
k=n"CI] n*r and k=p gt [] n~Am,
m=1 m=1

the qKZ equation remains valid by the analytic continuation.
Theorems 5.25, 5.26 and 5.28 imply that under the assumptions of each

of Theorems 5.9—-5.11 the sections \Il:)yy,,, v E (Vf{ ®...® V5 ),, span the

space of solutions of the qKZ equation over the field of p-periodic functions
(quasiconstants). Theorem 5.31 is proved. O

SOCIETE MATHEMATIQUE DE FRANCE






A. Basic facts about
the trigonometric hypergeometric space

Let F = Flz1,-..,2n;&1,..-,&n;£] be the trigonometric hypergeometric
space.

By construction, the trigonometric hypergeometric space of a fiber has the
same dimension as the space of symmetric polynomials in ¢ variables of degree
less than n in each of the variables, that is

dim F(z) = <n+€— 1) .

n—1
(A.1) Lemma. For any | € Z} the trigonometric weight function wy is in
the trigonometric hypergeometric space F .

Proof. 1t is clear from definiton (2.20) that the function w(t,z) has the form

n 14

Qtr, .- te, 21,y 2n) ﬁta H H

a=1

1 H 1
m=1 a=1 ta — gmzm 1<a<bge ta =t

where ) is a polynomial which has degree less than n + ¢ — 1 in each of

the variables t1,...,t;. Furthermore, by construction the function w; as

a function of t;,...,t, is invariant with respect to the action (2.9) of the

symmetric group S¢, which means that the polynomial Q is skewsymmetric

with respect to the variables tq,...,%,. Hence, the polynomial @ is divisible

by H (ta—t») and the ratio is a polynomial which is symmetric in variables
1<a<bse

t1,...,ts and has degree less than n in each of the variables ti,...,%s; that
is the function w; is in the trigonometric hypergeometric space. O
(A.2) Corollary. Let n=1. Then

¢

t to —t
w(f)(tly‘--)tbzl) = H — H 2

asi ta =121 1<a<bge Mta =t

Proof. Denote by f(t,21) the ratio

L

ta ta—1tp 171
woto [ —oe [ L]
(e)( 1) Hta"glzl H enta—tb

a=1 1<a<bg
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Since for m =1 the trigonometric hypergeometric space of a fiber is one-
dimensional, f(t,21) does not depend on t. Let t* = (t1,n7  t1,...,7 %)
Only the term corresponding to the identity permutation in the right hand
side of (2.20) contributes to w(t*,21) and by a straightforward calculation we
get f(t2z1)=1. O

(A.3) Lemma. Let n=1. Then

(1 - ne) (nl—lé.l - ffl)w(é)(tla C 7tf7 Zl) -

_ (1 — 7’) Z [( gflf; H nntltl — U 1) ’LU(g_l)(tz, .. ,te)] (L) R

TR by

(1 - ne) (61 - ne_lfl_l)w(f)(tlv s te, zl) =

4 -1 /4
t1 =& 21 — Nty
- (1- [ — 1) tywee_p (ta, . .. ] .
( 71); ( PR H ey ) 1W(e—1)(t2,...,te) (L)

Here (1,a) € S* are transpositions.

Proof. Similar to the proof of Lemma A.1 one can show that the right hand
sides of the both above formulae are elements of the trigonometric hyper-
geometric space. The rest of the proof is similar to the proof of Corollary A.2.

a

(A.4) Lemma. Let n=1. Then
¢

w(g)(tl,...,tg,zl) = Z [H -i.a__—Tt_a;__]a.

oeSt a=1 Mta—1
Here to=n"1€12 .

Proof. The right hand side of the above formula is an element of the trigono-
metric hypergeometric space. Comparing residues of both sides at ¢ = (£ 21,
..,n*"1€121) completes the proof. O

Proof of Lemma 2.21. Let S x ... x 8" C S* be the subgroup of permu-
tations preserving the subsets I',, = {1 +I™"1 ...}, m=1,...,n. The
coset space S¢/(S" x ... x S™) is in one-to-one correspondence with the set of
all n-tuples I,..., I, of disjoint subsets of {1,...,£¢} such that I}, has [,
elements. Namely, a permutation o € S¢ corresponds to an n-tuple o(T;),
...,0(I'n), and the n-tuple depends only on the coset of the permutation o .

ASTERISQUE 246



BASIC FACTS ABOUT THE TRIGONOMETRIC HYPERGEOMETRIC SPACE 91

Perform the summation in the right hand side of formulae (2.20) in two
steps. First take a sum over the subgroup S“x...x S'=. This can be
done explicitly using Corollary A.2. The remaining sum over the coset space
S%/(S" x ... x S') is equivalent to the right hand side of formula (2.21). The

lemma is proved. O

(A.5) Lemma. For any [ € Z} , the following relations hold:

D wige(m) (1= 0" (G — 0" Ern 1) H g =
m=1

\\m

1_17)2[(1—[ Emt1 — Zm Nt —ty —1)w[(t2,...,te)](1’a),

it — Zm po Mt — b

3 Wre(my (1= 040 (6 — ") 2 TT 06
m=1

1<I<m

14

ot €7z ot Nty
1= m m 1~
- - 1)t to,. ..t
( Z [( H t1 — EmzZm s t, — 77_1tb 1’UJI( 2 Z)](l,a)

a=1 m=1

where (1,a) € S* are transpositions.

The proof is similar to the proof of Lemma 2.21 using Lemma A.3 instead of
Corollary A.2.

For any [ € Z} denote by Qi(t1,...,ts) the following symmetric polyno-
mial:

(A.6) Q(t1,...,te) = [ A Z H H tm 1
oeSt m=1 a€l'y,

where Iy, = {1+ ™71 ..., I™}, m=1,...,n. Consider a basis in the space
F(z) given by functions

at2) = Quleryeot) e [ [ I 22,

to — Emz t
a = &mZm 1<a<b<€ﬂ a

o=l ;=1 a=1
le Z7.
Define a matrix M(z) by the rule:
wi(t, z) = Z M (2) gm(t, 2), le Z}.
mezZp
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(A.7) Theorem.

-1 (n+€—s—2)
det M = H H (nszl "‘glgmzm) n—1

s=0 1<l<m<gn

The theorem is equivalent to Lemma 2.2 in [T]. Nevertheless, we give below
another proof of Theorem A.7 which is similar to the proof of Theorem B.8
in the elliptic case.

(A.8) Corollary. Let R(z), R'(z) be the coboundary subspaces. Then

dim F(2)/R(z) = dim F(2)/R'(z) = (" e 2)

n—2
provided that & émzm/zi #n7, 1<l<m<n, forany r=0,...,£—1.

Proof. Under assumptions of the corollary, both spaces F(z)/R(z) and
F(2)/R/(z) have bases induced by the set {w((t,z) |l € 2}, [, =0}. O

Proof of Theorem A.7. For any | € Z}' define a symmetric polynomial Pi(ti,
te) by the rule:

(Ag) ’LU[(t, z) = P[(tl, . tg) X

<t 1 €z“HH -

to —tb
H nta‘tb

z
a=l j<mgn  m=1 a=1 ta = &m2m 1<a<b<e
Introduce new variables zi,...,Zn, Y1,...,Yn:
— ¢l —
x'm:gmzmy y'rn—&mz'mv m—-l,...,n.

Then the polynomial Pi(t) has the form:

P[(tl,...,te): Z { H (ta_xl) H (ta_yl) H %a__-—tzb}

I,....[ ~ 1<m<i<n 1<l<mgn 1<li<mgn
aGI"m aEFm aGFz,bGFm
where the summation is over all n-tuples I1,...,I, of disjoint subsets of

{1,...,£} such that I}, has [, elements.
Define a matrix N by the rule:

P(t) = Y NimQnu(t), le 2D,

mezZg
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Then the claim of the theorem takes the form

£-1 (n+€—s—2)
(A.10) detN =[] ] rwi—am) !

s=0 1<I<m<n

For [me Zp say that [<Km if Y} ;<> m; forany m=1,...,n—1.
i=1 i=1
Say that [<m if [#m and [ < m.

For any z,y € C™ and [ € Z7 set

(A.11) el = (nt~ey, n? ey, 2, T2, T,
nl_[nxn,' ,xn) )
yal = (" 'y, 0" Py, y,n e, 0,

n‘""lym cesYn) -

(A.12) Lemma. P(z>m)=0 unless < m. P(ydm)=0 unless [>m.
Moreover,

n -1
P(z>l) = H H( H n °zm —y,) H (n[’_sxm—wz)),
m=1 s=0 1<I<m m<Ilg<n
n [nh-1
Py« = [ H( IT @*ym—n"w) ]I (nym—wz))
m=1 s=0 1<I<m m<il<n

The proof is straightforward.

Set D(n,0,5) = Z (n+€—|8|;2r—3).

T‘EZ;O n=
2r<e—|s|—-1

(A.13) Lemma.
det[Pi(z >m)] (mezp =

-1 'n,+£ s— 2 —

- D(n,¢,
“TI I @-nen) o H I rzm—a)®™,
§=0 1<I<mgn s=1-£ 1<I<m<n
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n+£€—1
det[P(y am)] (mezp = 77n(n—l)/z.( M
D V4
X H H (77 yl_xm) H H ("7 Ym — yl s S)
s=0 1<l<m<n s=1—£ 1<I<m<n

Proof. Lemma A.12 implies that

det[P(zpm)] = H P(z>l) and det[P(y<am)] = H P(y«l).
€2y leZp

The rest of the proof consists of several applications of identity (G.1).

Consider two more determinants,

det [Q[(.’L’ > m)] [ meZp and det [Q[(y < m)] LmeZy *
Since
det[P(z>m)] = det N - det[Q((z >m)]
and
det[Pi(yam)] = det N - det[Qi(yam)],
we have

det[P(z>m)]  det[Qi(z>m)]
det[P(yam)]  det[Qi(yam)]’

and by standard arguments of the separation of variables we obtain that

(A.14) det [Q[(:c >m)] (mezp =

n+l—1) £-1

= Cn’n(l—n)/Z'( n+1 H (nsxm - xl)D(n’l,S),

s=1-£ 1<I<mKn

det [Q((y < m)] (mezp =

_ Cnn(n—-l)/2-( A
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where C' is a nonzero constant which does not depend on z1,...,Z,, y1,---,
yn . Formulae (A.13), (A.14) imply formula (A.10) up to a factor:

1 n+l—s—2
(A.15) @tN=c"T[ [I @u-zm) i)

s=0 1<I<m<n

To calculate the constant C' we consider its dependence on 7. The left
hand side of formula (A.15) is a polynomial in 7 of degree
n+f-1
—-1)/2.
nn-n/2-(" 171,

the same as the double product in the right hand side. Thus, C is a rational
function in n with no pole at infinity. Moreover, since C does not depend on
T1,..+,%n, Y1,---,Yn, it has no zeros as a function of 1. Hence, C' does not
depend on 7 at all.

Let n =1, z,, = 1, ym = 0, m = 1,...,n, and consider the limit
1 — 0o. In this limit

B(t) = (~z1)=" """ (Qult) + o(1)) .

Therefore, C = 1. The theorem is proved. O
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B. Basic facts about
the elliptic hypergeometric space

Let w = exp(27mi/n) all over the appendix. Fix a complex number o
such that o™ =p. Let 0(u) = (U,P)oo(P/U, D)oo (P, D)o be the Jacobi theta-
function.

n
Let A=k [] zm. Fix a complex number ¢ such that (" = (—1)""1A~L
m=1
Let £[A] be the space of holomorphic functions on C* such that f(pu) =
A(—u)""f(u). It is easy to see that dim £[A] = n, say by Fourier series. Set

H(u) = u'? H 8(Ca'tw™u), I=1,...,n.

m=1
(B.1) Lemma. The functions ¥1,...,Y, form a basis in the space E[A].
Proof. Clearly, ¥, € £[A] for any | =1,...,n. Moreover,

H(wu) = wl_lﬁl(u),

that is the functions ¥,...,9, are eigenfunctions of the translation operator
with distinct eigenvalues. Hence, they are linearly independent. U
Let &¢[A] be the space of symmetric functions in variables ¢i,...,t, which

are holomorphic on C*# and have the property
f(tlv' -y Play .- ,tf) = A(—ta)_nf(tla s 7t€) .

In particular, £[A] = £[A]. The space £;[A] has dimension <" ,:: f; 1) - A

basis in the space &£[A] is given by functions ©((t1,...,te), L€ Z:

(B.2) Oulte, ... 1) = YI'—I—In' S IT IT 0mtten)-

oceSt m=1 a€l’y,

Here I, = {1+ ™1 ..}, m=1,...,n.

Let £, = Eulk; 21, - - 2n; &1, - - -, &n; £] be the elliptic hypergeometric space.
The elliptic hypergeometric space %,(z) of a fiber is isomorphic to the space
&u[A] by definition. Therefore

dim %, (2) = (n+€— 1> .

n—1
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Set

(B.3)  Gi(t,2) = O(t1,...,te) H H

m=1 a=1

H O(ta/ts)

9(§m1ta/zm) 1<a<b<t O(nta/ts)

The functions Gy, [ € Z} form a basis in %;(z).

(B.4) Lemma. For any (€ Z} and z € C*™ the elliptic weight function
Wi(t, z) is in the elliptic hypergeometric space JE,(z) of the fiber.

Proof. 1t is clear from definiton (2.30) that the function Wi(t,z) has the form

1
Q(tl,...,te,zh .y Zn) H H afml/zm) 1<H G(nta/tb)

m=1 a=1 a<bs?
where Q is a holomorphic function on C*+") with the properties
Q(tl,...,pta,...,te,zl,...,zn) =

/4 n
= (_ta)_e—n H tb 'pl—a"? H Zm Q(t17 e 7te7 Zlyee- ,zn) 9

a = 1,...,¢. Furthermore, by construction the function W; as a function

of ¢1,...,t¢ is invariant with respect to the action (2.29) of the symmetric

group S%, which means that the holomorphic function Q is skewsymmetric

with respect to the variables t;,...,t;. Hence, the ratio © of the function @

and the product H 6(ta/ts) is a holomorphic function on C*¥+™) which
1<a<bge

is symmetric in the variables ti,...,%; and has the properties

Zm @(tl,...,tg,zl,...,zn),
1

O(t1y. .y Play. s tey 21,0y 2n) = (—ta) " K

et

a=1,...,¢; that is the function W is in the elliptic hypergeometric space

of the fiber. O
(B.5) Corollary. Let n=1. Then
¢
O(k~te/21) 0(ta/ts)
Wg (tl,...,te,Z1): —_— —_— .
“ W Sy a S e

The proof is similar to the proof of Corollary A.2.
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(B.6) Lemma. Let n=1. Then

-1 _ -1

O(n°k& )

Wg (tl,...,te,zl) = P
© s];!) g(ns(s—e)ne—sgl ‘3)

0(n1+(a 1)(a—1-£) At~ a+1€a 1- eta l/ta,)
x> [[H 0(nta_/ta) ]]a

c€eSt  a=1
Here to=n"1£12;.
The proof is similar to the proof of Lemma A.4.

Proof of Lemma 2.31. The proof is similar to the proof of Lemma 2.21.
The summation over the subgroup 8" x ... x S'» C S¢ can be done explicitly
using Corollary B.5. a

ell

Let Wi, L€ Z7, be the elliptic weight functions. Define a matrix M by
the rule:

(B.7) Wi(t,2) = Y Min(2)Gult,2), le Zp.
mezZp
_ m—14+1¢\ [n—m-—1+4+7
Set d(n,m,¥,s) = Z ( o 1 )( n—m— 1 >
1,720
i+ji<t
1—j=s

(B.8) Theorem.

£—1 n-1
de tMeu( H H 0 - H gl)d(n,m,&s) »
s=1—£ m=1 1<l<m m<i<n

+€ 1 — n+£—s—2)

x H(ﬁm o)™ H I eoreieiam) nt

s=0 1<l<m<n

where n+e—1)

- [ T (2270

Proof. For any [ € Z} define a function Ji(t1,...,t;) by the rule:

(B9) Wilt2) = Jitr,..., H H H Oltafts)

Nie—1p /.

(1]
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so that Ji(t,2) = Z M (2)On(t,2), L€ Zp. Introduce new variables
mezZp
Aa TlyeesTny Y1y:osYn'

n
A=K'Hzm, mm=§mzma y‘ng;zlzma m=1,...,n,

and for any z,y € C", [ € Z}, define z> [, y< [ by formulae (A.11).

(B.10) Lemma. Ji(z>m) =0 unless [ m. Ji(y<m) =0 unless [ >m.
Moreover,

n [nh-—1

Ji(zpl) = H H( (n°ttA- 1<H ny, II n7"a) x

m=1 s=0 1<l<m m<Ig n,
< [T 0*wm/v) 1 00" *am/en),
1<i<m m<I<n
n In—1
J<en = [ »* II II (0 LAty T1 n7ha)
1<li<m<n m=1 s=0 1<lism m<l<n

x I 60 "ym/w) I OC*vm/z0)) -

1<Il<m m<i<n
The proof is straightforward.

The rest of the proof is similar to the proof of Theorem A.7. Using
Lemma B.10 we calculate the determinants det[Ji(z >m)], det[Ji(y<m)],
cf. Lemma A.13. Then by the separation of variables we obtain the following
formulae

"'H 1 n n+f—1
(B.11) det[6((z Dm)]lmez; — Knn(l—n)/2 il H (m (" )><
m=1

n+s—1 £-1

x II@ (a7 M) ™) T T otan/om)”™,

=1 s=1-L 1<I<m<n

n(n-1)/2-("F47Y) T (n-m) (")

det [O(y am)] (mezp = K1 n+1 Yrm N
m=1
-1 n n4s—1 -1
—_ D )e»
x T] 604~ 1 ym)\2-1) T 06 um/u)”"”
s=0 m=1 s=1—£ 1<I<m<n
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as well as the required formula for det M*(z) with the constant = replaced by
K~!. Here functions ©; are given by formula (B.2), K is a nonzero constant

which does not depend on z1,...,Zn, ¥Y1,--.,Yn and
n+fl—|s|—2r—3
Dot = T (MHELT),
T€ZL3o
2r<l—|s|—-1

To calculate the constant K we consider its dependence on 7. Any of
formulae (B.11) shows that K is a holomorphic function in 7 on C* and
K(pn) = K(n) . Hence, K does not depend on 7 at all.

Let w = exp(27mi/n). Take n =1, Ty =Ym =w™ 'z, m=1,...,n. In
this case we have

Oi(z>m) = Quzvm) [] (21 ™ Om(z1))™

for any [,m € Z}', where the function Q is defined by (A.6). Hence, com-
paring formulae (A.14) and (B.11) we find that K = Z~!. In calculations we
use Lemma B.12 and the equality

s=1-¢
following from (G.1). The theorem is proved. O
n n 2_
(B.12) Lemma. Let a™ =p. Then H H 0(ctw™u) = (P)oo 10(u").
=1 m=1

The proof is straightforward using the definition 6(u) = (u)s (P/%)oo (P) oo

Proof of Lemma 2.38. We will indicate explicitly the dependence of the
elliptic weight functions on x. Namely, the elliptic weight function Wi[x] is

an element of the elliptic hypergeometric space of a fiber [k, > I](2).
m=1
n
Under the assumptions of the lemma, the functions Wi[n'=* ] &,.], 1 € 27,

m=1

form a basis of the space E,(z) = E[n'~* H §m,f](z) and the functions
Win~* H {m] [€ Zp ., form a basis of the space Euln~t H Em; € —1](2).

m=1
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Since "
Wl[nl_e Ulgm](tla cee atl) =

9 n
= w.?.rn! 0(5771)) > [[W‘-dl)["_eml—:[lfm](t%---’te)]]a’

oeSt

n
for any (€ Z} such that [; >0, the functions Wi[n'=* [] &n], L >0,
1

[ € Z}, form a basis of the boundary subspace Q(z) C E,(z) , and the equiv-

alence classes of the functions Wi[n'=¢ [] &n], 1 =0, [ € Z2, form a basis

of the quotient space E,(z)/Q(z).

Recall that the space %;[a;1](2) is naturally isomorphic to the space &;[A]
of symmetric functions in variables ¢;,...,#; which are holomorphic on C*!
and have the property

f(tl,. . ,pta,. . .,tl) = A(—ta)_nf(tl,.. . ,tl) )

n

where A = o [] 2y . Using this isomorphism we observe that the rank of the
=1

map m

n
-E;l[n—en €m;zl9-'-)Zn;gla"'agn;e_ 1](’2) -

m=1

— Fu[nt~* l'_Ilﬁm;zl,--.,zn;fl,---,Sn;Z](Z),

W(tl,...,te_l) s Z [[W(tz,---,te)]]a,

oEeSt

n—1

£—2
dim %, (2)/Q(z) = <n:_ 5 ) provided that n"# p® for any r =2,...,¢,

s € Z. Lemma 2.38 is proved. d

£—2
does not depend on &i,...,£,. Therefore, dim Q(z) = (n+ ) and

Proof of Lemma 2.39. The proof is similar to the proof of Lemma 2.38. [
Proof of Lemma 2.36. Let f(t) = Z [[W(tz, . ,te)]]a be an element of

oes?t
the boundary subspace Q(z). One can see that the term of the sum corre-
sponding to a permutation o does not contribute to Res f (t)|t_m>m unless
Omkg1 > «o. > Okt > 1, k=0,...,n—1.
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‘ i
Here m* = ) m,;. Since no permutation satisfies above conditions, the first
i=1
claim of the lemma is proved.

Consider the determinant det|Res G[(t)|t:wm] where functions Gy

LmeZp
are given by (B.3). Under assumptions of the lemma the first of formulae
(B.11) implies that the determinant as a function of x is not zero for generic

. . . . n + e - 2 1—¢ T
k and it has a zero of multiplicity 1 at k =n'"°[] & . Hence,
n —

n m=1
for k =n** [] &, we have

m=1
. _ n n+f—2
dim {f € Eu,(2) | Resf(t)|t:wm—0, me 27} < ( ne 1 )
Let k =n'~¢ [] &m . We have proved already that
m=1
Q(z) C {f € Eu(?) | Resf(t)| =0, me Z}}.

t=zbdm

Since dim Q(z) = <n +f; 2

2.36 is proved. O

) by Lemma 2.38, the second claim of Lemma

Proof of Lemma 2.37. The proof is similar to the proof of Lemma 2.36. [J
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C. The Shapovalov pairings of the hypergeometric
spaces of fibers

In this appendix we define pairings of the hypergeometric spaces of fibers
which provides a geometric interpretation for the coefficients ¢f, cf. (4.9),
used in the definition of the tensor coordinates on the elliptic hypergeometric
space of a fiber, see formula (C.5).

In this appendix we always suppose that assumptions (2.13) — (2.15) hold.
Set

(C1)  Qultr,...,te) =

z (e 0(nta/ts)
— I—I ta_l m a m _O. .
H 1 e(émta/zm) 1<a<bse "70("7 lta/tb)

m=1 a=

Let zpl and y<l, [ € Z7, be the points defined by (2.35). Recall that we
define the multiple residue Res f (t)|t=t* by formula (2.34).

Consider the elliptic hypergeometric spaces of a fiber Zi(z) = Zu[x; £](2)
and E,(z) = Ey[s71;£](z). For any functions W € E,(2)A and W € E,(2)
set

(C.2) Su(W,W) = > Res (Qe,,(t)W(t)W(t))h:wm.

mezZp

(C.3) Lemma. For any functions W € %,(z) and W € %,(z) we have that

Su(W,W) = (=1)* 3 Res(Qu(®)W ()W ()

mezZp

) |t=y<1m ’

The statement follows from Lemma C.11.

The pairing S, : £, (2) ® ]E,,(z) — C is called the Shapovalov pairing of
the elliptic hypergeometric spaces of a fiber.

We will indicate explicitly the dependence of the elliptic weight functions
on x. Namely, the elliptic weight function W[ [k] is an element of the elliptic
hypergeometric space of a fiber E,[x;£](2).

(C:4) Theorem. Let w € S™ be the permutation of the maximal length. Let
(2.13) - (2.15) hold. Then for any permutation T € S™ and any [,m € Z}} we
have that

Seu(W[‘r[/‘C],W;‘w[n_l]) - 6[mN[T.
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Here 61y is the Kronecker symbol and Ny = N (¢r,,...,&;,) where [ = (I,
..., lr.) and

nolm 6(n)
Ni(&1,...,6n) = H H (9'(1)0(778)0(771‘357271) *

m=1 s=1

x 0(n"x ™ TT n“e " T1 n7"¢) 8(n's IT n7"¢, IT n"&™")),

1<l<m m<i<n 1<i<m m<l<n

01) = S0, = (%

m m
Proof. For L m € Z} say that [<m if > <> m; forany m=1,...,
- ' i=1

=1
n—1. Formulae (2.31) and (2.40) for the elliptic weight functions imply that

Res (Qu(t) W7 [s](6) Wi ™)) |, = 0,

Res (9 (6) Wi ls)()) W15 1) _, .. = 0,
unless [ < n < m, and

Res (Qu(6) W7 6] (6) W[5 1)())],__, = N7 -

Therefore, by formula (C.2) we have that S., (W[ [k], W7“[s™']) = 0, unless
[<m and

Sau(W{ [6], W(“[k™1]) = N{ .

Similarly, by formula (C.3) we have that S, (W[ [«], W7*[x7!]) = 0, unless

[>m. The theorem is proved. O
Remark. The coefficients ¢(({1,...,&,) defined by formula (4.9) are inverse to
the coefficients Ni(&1,...,&,) defined in Theorem C.4 up to a common factor.
Namely,

nt=0/2 ct

c((gl,...,gn) = (p)gf,N[(Elv"’é")

(C.5) I ¢

m=1
The Shapovalov pairing of the trigonometric hypergeometric spaces of a

fiber is defined similarly to the Shapovalov pairing of the elliptic hypergeomet-
ric spaces of a fiber. Assumptions (2.13) — (2.15) can be replaced by weaker
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assumptions
(C.6) n"#1, r=1,...,¢,
2+, m=1,...,n, r=1—4,...,0—1,
l o) em # 07, Ilm=1,...,n, l#m, r=1—4...,0—1.

Let

n £
(C.7) Q(t1,...,te ﬁ[ H Ht — &mzm H Nta —tp

— Z
™ 1<a <b<e —nty

For any functions w,w in the trigonometric hypergeometric space of a fiber
F(z) set

Z Res (Q(t) w(t) w(t))

mezZp

|t=zbm'

(C.8) Lemma. For any functions w,w € F(z) we have that

S(w,w) = Z Res (Q(t) w(t) w(t)

mezZyp

|t=y<m.

Proof. Due to Lemma 2.22 it suffices to prove the statement if both functions
w, W are trigonometric weight functions. Moreover, since S(wi, wn) depends
analytically on parameters n, &1,...,€,, 21,...,2n, it is enough to prove the
lemma under the assumptions: |p| > 1 and |z,| =1, [€n] <1, m=1,...,
n.

Consider the integral /Q(t) w(t)w(t) dt where T¢ = {t e C*| |t;| =1,

, |te] =1} . Similarly to Theorems F.1 and F.2 one can show that under
the above assumptions

/ Q) wt)m(t) dt = @mi)tel 3 Res () w(t)@(t))

mezp

|t=z>m

and

/ Q) w(t)b(t) d't = (=2mi) 0! > Res (Qt)w(t)d(t))

Te mEZF

't=y<m'

The lemma, is proved. O
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(C.9) Theorem. Let w € S™ be the permutation of the maximal length. Let
assumptions (C.6) hold. Then for any permutation 7 € S™ and any [,m € Z}!
we have that

Stwi ) = 6 ] 11 (T Ty

m=1 s=1

where 6y, is the Kronecker symbol.
The proof is similar to the proof of Theorem C.4.

The pairing S : F(2) ® F(z) — C is called the Shapovalov pairing of the
trigonometric hypergeometric spaces of a fiber.

The trigonometric Shapovalov pairing S can be considered as a degenera-
tion either of the elliptic Shapovalov pairing S., or the hypergeometric pairing
I:%E,(2)®F(z) —» C. Namely, let p — 0 and after that kK — oo. Then in
this limit we have that

(U)o = 1 —u, O(u) - 1—u, (P)o — 1,

the elliptic weight functions tend to the respective trigonometric weight func-

tions:
n

Wilsl(®) — wi(®) (- fﬁltglnzi;: I &,

1<i<mgn
W) - wi@) [ &h
1<l<mgn

the function €., defined in (C.1) and the short phase function ® defined in
(5.2) turn into the function 2 given by (C.7):

4 n ? n
Qui(t) — Q(t) Hl ta [] &' o(t) — Q1) n" V2 IT ta I] &
a= m=1 a= m=1

and both the elliptic Shapovalov pairing and the hypergeometric pairing be-
come the trigonometric Shapovalov pairing:

n

//,;—Z Seu(W[[H],Wm[n_I]) — S(wlvwm) (_1)@ H Z,,[,;" H é-:::l—[l,

m=1 1<l<m<n

I(Wi[k], wm) — S(wy, we) (—1)fpfe-1)/2 H 2km H &l

1<Ii<m<n
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In the rest of the appendix we formulate and prove Lemma C.11 which
implies Lemma C.3.

Let wuj,...,ux be nonzero complex numbers. Consider a function F'(ti,
..., t¢) which is quasiperiodic with respect to each of the variables t;,...,t;:

F(ti,...,pta,...,te) = p 1F(t1,...,t),

and which has the form

©10)  fetnetd [TT] o TT T 2ol
' Dot AL A B fuy) 1L B(nta/t)
b#a
where f(t1,...,t;) is a symmetric holomorphic function on C*¢. We call the
points uq,...,ur the “root” singularities of the function F'.

k
For any [ € Zgo, 3 L, = £, introduce the points u >, ual € C*¢ by
the rule: 3=1

1 21 1—1 1-1
ubl = (0" tug, YT g, UL, T U, Uy e T R U L, U )

_ (-1 -2 lp—1 le—
udl = (NPt T UL, U, T Uy Uy e T Uy, Uk

cf. (2.35). Forany i =1,...,k let

k
Zf ={1€Z8 | ija=...=Lk=0, > =¢}
j=1
and X
Z; ={leZt | h=...==0, Y ;=¢}.
j=1

k
In particular, Zg =27, =2 and Z,': =2y ={[€Z’;O | Y =4},
i=1

(C.11) Lemma. For any i =1,...,k we have that
Y ResF(t)|,_ = (-1)! Y ResF(t)]_
mez; meZz;

provided that the singularity hyperplanes

ta=Uj, a=1,...,€, jzl,...,k,
te =ty , a,b=1,...,0, a#b,
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have no multiple intersections at the points ubm, m € Z;', and at the points
udm, me Z; .

Proof. We prove the lemma by induction with respect to ¢. For ¢ = 1 the
statement is standard, which provides the base of induction.

Let ¢ > 1. To avoid complicated notations we first give the idea of the
proof in the general case and then explain technical details for the example
£=3,k=3,i=1.

The function F' considered as a function of t5,...,t, for a fixed t; has a
form similar to (C.10) with the “root” singularities at the points nt;, n~t,
Ui, ...,Uk. Using the induction assumption we apply the lemma in this case
taking in the left hand side of the formula the sum of residues corresponding
to the “root” singularities wuy,...,u;, n~'t; and taking in the right hand side
of the formula the sum of residues corresponding to the “root” singularities
Uit1,- - -, Uk, Nt1. To complete the proof we apply the lemma to the function
of t; given by the sum of residues in the left hand side of the formula obtained
at the previous step.

Consider the example £ =3, k=3, ¢ =1. At the first step we get

Res ( Res F(t)lt _. + Res(Res F(t)|
3 ul

=uy |t2=n tz=u1 |t2=77_1t1

~1t1)|t2 =n"2%t;

+ Res(Res F(t)l

= Res (Res F()], + Res(Res F(t)], _,.

3=u2 |t2=17u2 |t2=’r]u3

+ Res (Res F(t)lt + Res (Res F(t)|t3=u2

3=usg |t2=u2 |t2=TIt1

+ Res(Res F(t + Res(Res F(t)], ot
3=Tt1

|t3 =u3 |t2 =nty |tz=‘r]2t1

Denote by G(t1) the sum of residues in the left hand side of the above
formula, or equivalently, the sum of residues in the right hand side of the
above formula. The function G can have poles only at the following points:
p°n~"uy, p°n"ug, p°n"us, r=0,1,2, s € Z, because at any other point at
least one of the defining expressions for the function G has no pole. Hence,
we have that

)

s
1=1n"u3

2 2
_Z Res G(t1)|t1:n ZO (Res G(t)| trmntus T Res G(t1)|t

s=0
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Substituting respectively the left (right) hand side definition of the function
G into the left (right) hand side of the above formula, we obtain that

t3 = uy t3 =up t3=n"1H
—Qta=n"tuy p — S ta=n"t — S to=n"2 =
t1 =n"2u t1 =n"tu t1 =wu
t3=u2 t3=u2 t3=U3 t3:U3
= 4 t2 =1nug + qte=nux p + { ta=nuz p + § t2 =nus +
t1 = n?uy t1 = us t1 = u2 t1 = n?us
t3=U3 t3=U,3 t3:U2 t3=U2
+ tz = U2 + tz = U2 + t2 = ’I’]tl + tz = 17t1 +
t1 = nug t1 =nug t1 = nuz t; = us
i3 = u3 t3 = ug t3 =nty t3 =nt1
+ qta=mnt1 p + { t2=nt1 + { tg = 772t1 + < ty = 772t1
t1 = ug t1 = nug t; = ug t1 = u3

where we use the notation

t3 =cC
to=0b p = Res(Res(Res F(t)|ts:c) |t2:b) |t1=a .
tl =a

To complete the proof we have to transform the multiple residues to the
form (2.34). This is straightforward under the assumptions of the lemma
because at each step we have to calculate residues only at simple poles and
the function F' is symmetric. The transformation can be done term by term,
for instance,

Res ( Res ( Res F(t) l,

3=U2) |t2=77t1) |t1=u3

= Res( Res ( Res F(t)|t3:uz) |t1=u3) |t2=77u3

= Res(Res(Res F(t)|

t3=u3) |t2=77U3) |t1 =uq ’

The lemma, is proved. O
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D. The g-Selberg integral

In this appendix we give proofs of formulae (5.13) and (D.9). The last for-
mula is equivalent to the formula for the g-Selberg integral, see [AK, Theorem
3.2].

Denote by F(ti,...,ts;a,b,c) the integrand of the integral (5.13):

4

) _ Ct ) J/t )oo
(D.1)  F(ty,...,te;0,b,c) = H £ (atk) oo ’(cb/tk)oo H H (xt; /:k)oo

k=1 =1 k=1
k#j

Proof of formula (5.13). Consider the integral in the left hand side of
(5.13) as a function of ¢ and denote it by S(c). Let f(c) be the ratio of S(c)
and the right hand side of formula (5.13).

The function S(c) satisfies a difference equation

gy | —z%afc
(D.2) S(pc) = S(c) H 1 _z%c '

s=0

cf. Corollary D.6. The right hand side of formula (5.13) solves the same
difference equation with respect to ¢. Therefore, f(c) is a p-periodic function:
f(pe) = f(o).

S(c) is a holomorphic function of ¢ on C*, since the integrand F(t,...,
te;a,b,c) is a holomorphic function of ¢ on C* and the integration contour
is compact. So, the function f(c) is regular in the annulus |pa| < |c| < [b]7}
of width greater than |p|. Hence, f(c) is a holomorphic function of ¢ on C%,
and therefore, f(c) is a constant function.

We will show that f =1 by induction with respect to £. We will indicate
the dependence of ¢ explicitly, that is S(c) = Se(c) and f = f;. The trivial
case £ =0 provides the base of the induction.

Formulae (2.30) and (B.5) after a suitable change of notation give the fol-
lowing identity:

) o(z) ¢ ket 0(xto, /to;)
H O(ctx) = H 0(x*) Z (H b= ets,) H _(m>

o(t
oc€St k=1 1<5<kge

Replace the product H O(cty) in the integrand F(ti,...,t;) by the right

hand side of the 1dent1ty Since the rest of the 1ntegrand is a symmetric
function in ¢;,...,t; and the integration contour is invariant with respect to
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permutations of the variables t1,...,ty, we can keep in the sum only the term
corresponding to the identity permutation and then multiply the result of the
integration by £!. Therefore, we have that

£

Se(c) = £ H :((xs))
gt~ cty) (1 —t5/te) (pT™ 5 /th) oo
'ﬂl H tk atk (b/tk)oo 1< k<t (a:t /tk)oo d‘t.

Let ¢ = pr'~%b~!. Then the integrand of the above integral is regular in
the punctured disk 0 < |t;] < 1 and has a simple pole at ¢t; = 0. Perfoming
the integration with respect to t; we obtain

Suptb7Y) = 2l (s iy Secalp 7).

The right hand side of formula (5.13) satisfies the same recurrence relation
with respect to ¢. Hence, f; = f¢—1, which completes the proof. O

(D.3) Lemma. Let Xj :/tl...th(tl,...,tg;a,b,c)det, k=0,...,¢.
T¢

The following recurrence relation holds:

k(l _ wé—k+1) (p _ $k_1bc)

X = X1 —k+1)(1—zF)(prt-Fa—c)’

k=1,...,0.

Proof. Consider the integrals

CL‘tl — tj

£
D.4) X, = [(1—aty)ts,...
(D.4) k /( aty)tz, ’tkjl;lz P

T¢

F(ty,...,te;a,b,c)d,
J

k=1,...,£. Notice that the integrands are regular on T¢ since F(ti,...,ts;
a,b,c) vanishes at all diagonals ¢; =¢;.

Replacing t; by t;/p in the integrand and using the explicit formula for
F(t1,...,ts;a,b,c) we obtain that

~ t
X, = / ple(b—t)t,... tkH L. JF(tl, . te;a,b,c)dt
TpXxTé—1
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where T, = {¢t1 € C| |t1|/=p}. The integrand considered as a function of
t1 is regular in the annulus p < |t;] < 1. Therefore, we can replace the
integration contour T, x T*~! in the above integral by T* without changing
the integral:

£

(D5) Xk =/p_1c(b——t1)t2,...,tk H

T i=2

t1 - l'tj

F(t1,...,te;a,b,c)d'.
t —t

Since the integration contour T* is invariant with respect to permutations of
the variables t1,...,t,, we can symmetrize the integrands in the formulae for
Xo,..., X, and X 1y---,X¢. Then formula (D.4) and the first two identities
(D.7) imply that

£—k+1 l—k £

1__
z Xp1 — Z "% oXy, k=1,....0,

(1=2) Xk = 537

and formula (D.5) and the last two identities (D.7) imply that

k-1 Y k
= T - 1—2

1-2) Xy = ————p tbe X1 — “lex k=1,...,¢
( $)k E—k+1p CAEk—1 A b cAg, ) IR)
because the function F(t1,...,t¢;a,b,c) is symmetric in the variables ti,...,
ty. The rest of the proof is obvious. The lemma is proved. O

(D.6) Corollary. The difference equation (D.2) holds.
Proof. The statement is clear since S(c) = Xo and S(c/p) = (—¢/p)¢*X,. O
(D.7) Lemma. The following identities hold:

£
Ite, — to,
k(].—.’l,') E (tal"'takllﬁ—?ﬂ>: E t0‘1-~ ok )
j=2 o1 [<F]

oS¢ oSt
ot —t
ag (o}
(f—k)(l—:c) Ze(tal...takﬂm) 1'—.'1/' Ztal.. )
o€S Jj=1 oeSt
Lty —at
k=) 3 (to ot [] 772) = 0=ah) 2t ot
oest j=2 9 ocest
oyt
-k1-z) 3 (tal...tak II —"——”) = (@ =2 Yty by -
sest jo1 b T oy oest
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Proof. The left hand sides of the above formulae are homogeneous symmetric

polynomials in the variables ¢;,...,¢; of the homogeneous degree k& and of
degree one in each of the variables ¢;,...,t,. Hence, they are proportional to
Z to'l . U'k
g€St

Restrict the polynomials in question to the line t; = 2971, j=1,...,¢,
and use the following identity

k-1 28 x[
riteFre —
(D-8) >, =l —5-
0<r1<..<rp <l s=0

Then the calculation of the proportionality coefficients is straighforward. Iden-
tity (D.8) can be proved by induction with respect to £. O

Let

L 1 .
S&h”ngljgzww [[ Qi) em i/t
k=1 <j<k<e

(xtk/tj)oo

(D.9) Theorem. Let |u| < min (1,|z¢"!|). Then

£ oo £ )
—i+1l)r; — - i
Z Z uié:l(e s T ,g(l D(e=it1)ri (pm pr1+7’2m pr1+...+rgwl—1) —
9 IR

k=1 r=0
l:[ (z°0t) o (P)oo
wﬂ o (@ 0) o (70

provided the parameters o and x are such that all the terms of the sum are
regular.

Proof. The sum in the left hand side of the formula is absolutely convergent
and, hence, defines an analytic function of the parameters «,u,x. Therefore,
it suffices to prove the formula under the assumption |o| <1, |z| < 1.
Under this assumption formula (D.9) follows from formula (5.13) and
Lemma D.10, since the sum in formula (D.9) is proportional term by term
to the sum in formula (D.10) if we identify o = ab, u=pb~lc~! and the

-
proportionality coefficient equals H ((p)2,/0(z~*u)) . O

s=0
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(D.10) Lemma. Let |a| <1, |b| <1, |z| <1 and |z*"'bc| > |p|. Then

/F(tl,...,te;a,b,c)det = (2mi)te x

T¢

£ [e9)
X Z Z Res(Res(... Res F(t1,--~,tl§a’b>c)|tl=p

£=0

7

e
I
—
<

o ) |t2=p"2xt1 ) |t1=p"'lb )

Proof. We begin the proof with the next identity which follows from formulae
(B.5), (B.6) after a suitable change of notations:

: O(ctk) = 6(pz°be)
H 0(tx/b) H 0(z5(=0 (bc)s—t)

% Z ( ﬁ 9(331+(k—1)(k_1_e)(bc)k_l_etak_l/tak) H O(xtgj/tak))

O(xtak—1/t0k) 1<j<k<t O(taj/tak)

where o¢ = 0. Here and below we set to = ~'b. Using the identity we obtain
that

(D.ll) /F(tl,...,tg;a,b,c)det = e!/ﬁ(tl,...,te)det,
T
-1
~ _ 6(px°be)
F(tl"' ) ( b H 0 xs(s— Z)(bc s— E)

X f[ O = DE=1=6) (he)k=1=Ly, ) /1) (ptr/b) oo

paie e(xtk_l/tk)(atk)oo

< I (1= te/t)) Pw‘ltk/tj)oo_

1<j<k<e C(th/t )°°

This step is similar to the transformation of the integral in the proof of formula
(5.13).
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Suppose that the variables ti,...,t,—1 are fixed and [tx] = 1, k = 1,
.,£ — 1. Then poles of the function F(t;,...,t;) in the punctured disk
0 < |t¢] < 1 form the following set: {p"b | r € Z>o}. Hence,

/ﬁ(tl,...,te)det = / F(ty,... to)d +
T¢

Te—lXTpsze
+ 273 Z / Res F(tl"”’te)ltg=prxt,_,_lde_lt
= 1

where Ty = {t, € C| |ty =y}, € is an arbitrary positive number between
|p| and 1, and the residues are calculated with respect to the variable t;, all
other variables being fixed. Due to the functional relation

F(ty,... te_1,pt t te — pte) (te — xt
(1~, yte—1,pte) — 21 (be) ! af H (te — pte) (tk wle)
F(ti,...,t) 1—Pb te (tk — te) (t — Pz~ 1)

we see that F(t1,...,t) = O((z®~1bc)=*) uniformly at T¢"! X Tpeze and

Res ﬁ(tl,..., = O(ps(a:e"lbc)_s)

te) | te=pxte_1

as s — oo. Therefore,
/F t1,...,te)d = 2mi Z /ResF (t1,.- e)lt ot a1t
L= £—1
T¢—

Similarly to the previous consideration we transform the integrals in the
right hand side of the above formula and obtain that

/ Flta, ... to)d% = (2mi)? x

T

o0 o0
x>y / Res (Res F(t1, o te)|, _rore oo Corecime, &t
-2

r¢=0 19_1=0 T
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It is clear that the order of summation is irrelevant. Repeating the procedure
¢ times we get the following formula

/ﬁ(tl,...,te)d”t -
'H‘l

)4 00
= (2mi)* Z ZRes(Res(... Res ﬁ(tl,...,tg)|te

k=1 r=0

=pTexte_;

) |t2=pr2 xtq ) |t1=pr1b

which is equivalent to formula (D.10) because of relation (D.11) and the equal-
ity

Res(Res (... Res F(t1,...,te;a,b,c

)ltgzprfxtg_l T ) |t2:pr2zt1 ) ltlzprlb

= Res(Res(... Resﬁ(tl,...,te”t .
=

Texty_y ) |t2=pr2$t1 ) |t1=Pr1b )

The lemma. is proved. O
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E. The multidimensional Askey-Roy formula and
Askey’s conjecture

In this appendix we give proofs of formula (5.14) and Askey’s conjecture
[As, Conjecture 8], see formula (E.8).

Proof of formula (5.14). Let n = 2 and & = p~ln¢~1¢;1¢; . Assume
that parameters £1,&2,21,22 and 7 are generic. Consider formula (5.11). It
takes the form

—l)oo (pns+2_e€%£§)oo (77362_2)00 (ns§;1€;1z1 /zz)oo
(17° oo (P)oo (1757 ) o0 (M°61€221/22) '

-1 (
(E1) I(Wo,w) = [ 2
s=0

Here and after we use the simplified notations: wy = w0y, Wik = Wi k),
k=0,...,£, and I denotes the hypergeometric integral (5.1) as usual.

In the case in question the quotient space %,(z)/Q’(z) is one-dimensional
and is spanned by the equivalence class of the function Wy, see Lemma 2.39.
Let y € C*¢ be the following point:

y = (N a0 e, ).

Lemma 2.37 means that for any element W (t) of the elliptic hypergeometric
space J,(z) of a fiber the function W (t) Wy (y) — Wo(t) W (y) is an element of
the boundary subspace Q’(z). Therefore, by Lemma 5.8 for any W € E,(2)
we have that

W(y)

(E.2) I(W,w,) = I(Wo,w,) Wo—(y_) .

Let ¢ be a nonzero complex number. The next function is an element of
the space %, (z):

(E3)  W(t,...,ty) =

_ ﬁ O(pn'~4162¢ " Mta/21) 0(Cta/22) [ e/t
ami 0T te/2) 06 e/ 22) | g, Otalth) |

In particular, for { = &5 1 we get the function W .
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Let |z1] = |22| =1, |&1] <1, |p€2] <1 and |n| > 1. Under these assump-

tions for any function W € %,(z) the hypergeometric integral I(W,w,) is
given by formula (5.3):

IW,w0) = [ @) un)W () @/t

’]I‘!

Calculating the hypergeometric integral I(W,w,) for a function W of the
form (E.3) via formulae (E.1) and (E.2) we obtain formula (5.14) for generic
values of parameters a,b,c,a, 3,z up to a change of notations:

(E.4) a=&/z1, b=E&/z, c=pz/(,

O‘:glzl? ﬁ:p§2z2a 33:77_1-

Formula (5.14) extends to arbitrary values of parameters a,b,c, a, 3,z by the
analytic continuation. O

Formula (5.14) admits the following modifications.

(E.5) Lemma. Let |a| <1, |b| <1, |o|<1, |8l <1, |z|<1. Then

/ ﬁ 8(pti/c)O(x*"abety) 0(t;/tk)oo dlt —

k (@tk)oo (V1K) (@/th)oo (B/tk)oo 1 o 2p ey (BFi/th)oo (PTER/t5)o0

B 0(e-3)) (PT) o (2"~ LabaB) o, O(x*ac) 6(xbc)
= (@) () H (77 ) o (5700) o (5708) o (27000, (2705

(E.6) Lemma. Let |a| <1, |b| <1, |a| <1, |B| <1, |z| <1. Then

/ H 0(ptr/c)O(x* Labcty) 0(tk/ti)oo dl =

tk (atk)oo (btk) (@/th)oo (B/tk)oo | ipey (Fth/ti)o0 (PTEj/tk)oo

_ ol (pT) oo (x4 Labaf) o O(zac) (zbe)
= (2mi)* (p)X¢—3)/2 H (pxstl) (:csaa) (z%af)., (z°ba),, (z°bf).,
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Proof of Lemma E.5. Denote by f(t1,...,t;) the integrand in formula (5.14).
Then the integrand in the first formula of the lemma equals

_ ti — xty
f(tl, ey te) (P)ﬁge /2 H Z——t— .
1<j<kge 3Tk

Since the integration contour T is invariant with respect to permutations of
the variables ti,...,ts, the first formula follows from formula (5.14) and the
next identity:

3

It I

oeSt 1<j<k<e Lo,

The identity is equivalent to Corollary A.2 up to a change of notations. [
The proof of Lemma E.6 is similar.

Introduce points vy € C, s € Z, by the rule:
(E.7) vs = p°b for s>0, vs=p °la for s<0.
Set

Aluny. ) = ] M@/ /B (p2” u,c/u])

(Quk) oo (BUk) 0o (pTuk /U)o

k=1 1< <k<e

(E.8) Theorem. Let m be a nonnegative integer. Then
¢

Z Z sgn(rg) A(vry, ..., Ury; ™) H ,U2m(€ k) =

k=1 ry€Z

_ H m+1) ( m(l+s—1)abaﬂ)oo( ab)msbo(a/b)
v (pm<s+1>+1) (P 40) oy (17°8) o0 (P*b2) g (P0B) o

provided the parameters a,b,a,3 are such that all the terms of the sum are
regular. Here sgn(r) =1 for r >0, and sgn(r) = —1 for r <0.

Remark. The above formula was conjectured by Askey [As, Conjecture 8|.
There is the following correspondence of notations:

p=q, a=-c, b=d, a=-¢"%/c, B=¢%d, m=k, L=n
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where notations in the left hand side are from this paper and notations in the
right hand sides are from [As]. The above formula differs from the conjectured

2(f m\ (£
formula in [As] by the factor p™ ()-(2) (2)

Remark. After this paper was written we found out that formula (E.8) was
proved in [E].

Proof of Theorem E.8. The sum in the left hand side of the formula is abso-
lutely convergent since

A(vrla coyUrgs D )Hv2m(€ k) = ( |T1|+m+|”|)

as |ri|+ ...+ |re] = oo. Hence, the sum defines an analytic function of the
parameters a,b,a, 3. Therefore, it suffices to prove the formula under the
assumptions |a| <1, || <1, || <1, |B<1].

Consider the integral in the left hand side of formula (E.6) for = p™, and
denote the integrand by f(t1,...,t¢). The poles of the integrand are located
at the hyperplanes

tj = p—sa—l ) t] = p_sb_l ) t] = Psa, t] = ps/Ba

j=1,...,¢, s € Z>o. Due to Lemma E.6 the formula (E.8) is equivalent to
the next formula

(E.9) f(ty,... te)d' = (—2mi)¢ x
/

T1

¢
x Z ZRes (Res ( Resf(tl"“’tf)he:u L )|t2 . |t1 ot
k=1 r€Z Te

since the sum of residues in the right hand side coincides with the sum in
the left hand side of formula (E.8). Formula (E.9) can be proved by standard

arguments, cf. definition (E.7) of points vs, s € Z. The theorem is proved.
O
Theorem E.8 admits the following generalization. Set

A(uy,.. ., upz) =

ug (Puk/ @)oo (PUK/b) oo I (1 — ug/u;) (P up/U)) oo

k=1 (aUk (ﬁuk)oo 1<j<k<£ (xuk/uj)oo

':]N
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(E.10) Theorem. Let |pz‘~!| < 1. Then
£ o .
> 2.2 (Y x

z(e i) (e—i+1)ri — (E~j- 1)<e—a)<1+2zn>/ 11[ 6(z7*%a/b)
6(

X a;t_
o 6(zi—sa/b)

x A(p™a,p*za, ... ,prttigiT g pritip, L privitetregt=i=lp ) =

I O WL W)
z2+1) o (2%00) o, (2°08) o (T2bt) o, (22D0) o

provided the parameters a,b,a, 3,z are such that all the terms of the sum
are regular.

Proof. The proof is similar to the proof of the previous Theorem. The terms
of the sum behave as O((pme“l)“+"'+”) for r1 + ...+ r¢ going to infinity.
Hence, the sum is absolutely convergent and defines an analytic function of
the parameters a,b,a,3,x. Therefore, it suffices to prove the formula under
the assumptions |a| <1, |b| <1, |a| <1, |B<1], |z|<1.

Consider the integral in the left hand side of formula (5.14) and denote
the integrand by f(t1,...,t¢). The poles of the integrand are located at the
hyperplanes

l; = p—sa—l ’ tj = P_sb_l ’ tj = pa, t; = p°B,

j=1,...,¢, s € Zxo, and at the hyperplanes

=p’xty, jhk=1,...,¢, j#k, s € Ly
Moreover, the integrand vanishes at the hyperplanes

t; = p°ty, jk=1,...,0, j#k, SEZ,

and it is a symmetric function of the integration variables t;,...,t;. Using
these properties of the integrand by standard arguments we obtain the follow-
ing formula
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(E.11) /f(tl,...,te)dft = (2mi)* 0! x
Tl

4 J4 o)
X Z Z Z Res( ... Res(Res(... Res f(tl,...,te)ltFp_rem_lte_1

k=0

S
Il
o
>
I
-
S

T ) ltj+1=p_rj+lb—l ) |tj=p_rjw_1tj_1 Tt ) |t1=p_'"1a_1) ’

Formula (E.11) is a particular case of formula (F.2). We will give a detailed
proof of a more general formula in Appendix F.

Due to formula (5.14) the formula (E.10) is equivalent to formula (E.11)
since the sum of residues in the right hand side of formula (E.11) coisides with
the sum in the left hand side of formula (E.10). O

ASTERISQUE 246



F. The Jackson integrals via the hypergeometric
integrals

In this appendix we present two theorems which connect the hypergeometric
integrals described in this paper with symmetric A-type Jackson integrals.

Let s = (s1,...,8¢) be a vector with integer components. For any [ € Z}
define the points z > ([,s), y< (I,s) € C** as follows:

D> ([, S) — (psl+...+s[1 nl-llé-lzl’ psz+...+s;1 772—[1512:17 . ,ps'1§1z1,
ps‘1+1+"'+s[1+‘2 771_[26222, ceey ps[1+;2 5222, ey
pSg_[n+1+...+34n1—ln§nzn, . pseé.nzn) ,
4 ([, S) — (psl+...+s[1n[1—lé-l—lzl, p32+..,+s(1n[1-2€1—1z1’ . psllél—lzl’
ps(1+1+...+s(1+(2,'7[2—152—122, o 7p-‘111+(2 52_122, e
pse_["'H+"'+se77["_1§;125n, . ,p3¢€;1zn) ,

cf. (2.35). In particular, for s = (0,...,0) we have z > ([,s) = > [ and
ya(l,s) =y«l.

Recall, that the short phase function ®(t,z) is given by formula (5.2) and
we define the multiple residue by formula (2.34). Set

B(t,z) = t7*... 1,1 B(t,2).

(F.1) Theorem. Let |px H €1 < min (1,|n]*~%). Let (2.13) —(2.15) hold.
Then for any functions w E .7-' (2) and W € %,(z) we have that

I(Wyw) = 2ri)*e! 3 Y Res (@) wOW)|,_, 0y

mEZe sGZéO

(F.2) Theorem. Let |k H &m| > max (1,|n]"1). Let (2.13) - (2.15) hold.
=1
Then for any functions w E F(z) and W € %E,(z) we have that

I(W,w) = (—2mi) 0 Y " Res(D(t)w(t) W(t)) limya(ms)

mezZp SGZ[go
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Proof of Theorem F.1. We prove the theorem assuming that the functions w
and W are the trigonometric and elliptic weight function, respectively. For
arbitrary functions w and W the statement holds by linearity.

n
Let ¢ =max (1, 1) |pk [] &;1|, that is 0 < ¢ < 1 under the assump-
m=1

tions of the theorem. Using the functional relation

q)(tl,.. . ,pta,. ..,tg)W(tl,... ,pta,... ,te)

F.3 _
( ) (p(th"*’tl)W(tl,...,te)
n
Emta — Zm ta — Mo ta — Pty
-~ 1l ~&m2 Mta =t Hpn — b
m=1"%  SMIM gcpge 1T 1<b< a
a=1,...,¢, we estimate the residues:
ReS (i(t) 'u)(t) W(t))l — 0((31-{—...-{-33) ,

t=x>(m,s)

and obtain that the sum is absolutely convergent. Therefore, the sum defines
an analytic function of the parameters 7, &1,...,&., 21,..., 2, , and it suffices
to prove the formula under the assumptions that |[n| > 1 and |z,,| =1, |€n] <
1, m=1,...,n.

Under these assumptions the hypergeometric integral I(W,w) is given by
formula (5.3) and the claim of the theorem is equivalent to Lemma F.4 for
f=1. Theorem F.1 is proved. O

(F.4) Lemma. Let |p|>1 and |§2i] < |£ 2m| for all m = 1,...,n.
Let |pk [] &3t < 1. Let (2.13) — (2.15) hold. Let o be a real number such

m=1

that max (|&121], ..., |€nznl) < @ < min (&7 21],. .., |&7 2,|) - Then,

/ S(t)w(t)W(t) f(t) (dt/t)t =

TS

= (2mi)te! Z Z Res(5(t)w(t)W(t)f(t))ltzw(mys)

mezZp seZ‘3> o
for any symmetric function f(t) regular inside the torus

Te={teC’| [til=a, ..., |t = a}.
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Proof. We prove the lemma by induction with respect to ¢, the number of

integrations.
Notice that the integral does not change if we replace the integration contour
in the integral by Ty, X ... X Ty, , where o, ..., are pairwise distinct real

numbers close to «.

Similar to the proof of Theorem F.1 we see that the sum of residues is
absolutely convergent. Hence, the sum defines a holomorphic function of the
parameters n, &1,...,&n, 21,...,2n, and the same does the integral in the
left hand side of formula (F.4). Therefore, without loss of generality we can
assume that all the numbers |p*anm|, |P°Emezm|, m=1,...,n, s € Zx, are
pairwise distinct.

Replace the integration contour in the integral by Teq, X ... X Teq, for
real €, so that at ¢ = 1 we have the initial integral. If € is decreasing
starting from 1, the integral is not changing until the integration contour
touches one of the hyperplanes where the integrand has a pole. And every
time when the integration contour crosses the singularity hyperplane we pick
up the integral of dimension £ — 1 of the corresponding residue. Notice that
during the described deformation the integration contour can touch only the
singularity hyperplanes of the form t, = p°$m2m, s € Zyo. Finally, for any
positive integer r we get

Jewuowe o @t = [ ewuowe e @ +

T, T,
+2mi Y ) / Res (t; 1 @(t) w(t) W (¢) f(t))|ta=p3£mzm(dt/t)f*1,

where each term of the sum Z(T) corresponds to a passing of the integration
contour through a singularity hyperplane when € goes from 1 to p".
Using relation (F.3) it is easy to show that

[ 20wowo so @pt = o(peI] &)

T

pTa
as r — oo. Hence, the integral disappears as 7 — 0o.

All integrals of smaller dimension in the sum }_, are of the same form as
the initial integral and can be replaced by the sums of residues according to
formula (F.4) because of the induction assumption. Since ®(t)w(t) W (t) f(t)
is a symmetric function of t,...,t., it is straightforward to show that the
resulting sum of residues can be transformed to the sum in the right hand side
of formula (F.4). The lemma is proved. a
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130 APPENDIX F

The proof of Theorem F.2 is similar to the proof of Theorem F.1.

The sums of residues in formulae (F.1) and (F.2) coincide with symmetric
A-type Jackson integrals, see for example [AK]|. This means that the tran-
sition functions between asymptotic solutions of the gKZ equation coincide
with the connection matrices for symmetric A-type Jackson integrals. The
Gauss decomposition of the connection matrices studied in [AK] is related to
Lemmas B.10 and 7.6 in this paper.
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G. One useful identity

Particular specializations of the following identity:

l . .
Jjta\(jtk+a\(l+m—-a) _
R 9 (0 [ A
itk (it+tk+i+m+1
T\ k j+k+m+1 )’

are often used in the paper. The identity can be proved by induction with
respect to [ and m.
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