Rational parameter rays of the Mandelbrot set
Géométrie complexe et systèmes dynamiques - Colloque en l'honneur d'Adrien Douady Orsay, 1995, Astérisque, no. 261 (2000), pp. 405-443.
@incollection{AST_2000__261__405_0,
     author = {Schleicher, Dierk},
     title = {Rational parameter rays of the {Mandelbrot} set},
     booktitle = {G\'eom\'etrie complexe et syst\`emes dynamiques - Colloque en l'honneur d'Adrien Douady Orsay, 1995},
     editor = {Flexor Marguerite and Sentenac Pierrette and Yoccoz Jean-Christophe},
     series = {Ast\'erisque},
     pages = {405--443},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {261},
     year = {2000},
     mrnumber = {1755449},
     zbl = {0941.30015},
     language = {en},
     url = {http://archive.numdam.org/item/AST_2000__261__405_0/}
}
TY  - CHAP
AU  - Schleicher, Dierk
TI  - Rational parameter rays of the Mandelbrot set
BT  - Géométrie complexe et systèmes dynamiques - Colloque en l'honneur d'Adrien Douady Orsay, 1995
AU  - Collectif
ED  - Flexor Marguerite
ED  - Sentenac Pierrette
ED  - Yoccoz Jean-Christophe
T3  - Astérisque
PY  - 2000
SP  - 405
EP  - 443
IS  - 261
PB  - Société mathématique de France
UR  - http://archive.numdam.org/item/AST_2000__261__405_0/
LA  - en
ID  - AST_2000__261__405_0
ER  - 
%0 Book Section
%A Schleicher, Dierk
%T Rational parameter rays of the Mandelbrot set
%B Géométrie complexe et systèmes dynamiques - Colloque en l'honneur d'Adrien Douady Orsay, 1995
%A Collectif
%E Flexor Marguerite
%E Sentenac Pierrette
%E Yoccoz Jean-Christophe
%S Astérisque
%D 2000
%P 405-443
%N 261
%I Société mathématique de France
%U http://archive.numdam.org/item/AST_2000__261__405_0/
%G en
%F AST_2000__261__405_0
Schleicher, Dierk. Rational parameter rays of the Mandelbrot set, in Géométrie complexe et systèmes dynamiques - Colloque en l'honneur d'Adrien Douady Orsay, 1995, Astérisque, no. 261 (2000), pp. 405-443. http://archive.numdam.org/item/AST_2000__261__405_0/

[Bo] T. Bousch: Sur quelques problèmes de la dynamique holomorphe. Thèse, Université de Paris-Sud (1992).

[CG] L. Carleson, T. Gamelin: Complex dynamics. Universitext, Springer Verlag (1993). | MR | Zbl

[DH1] A. Douady, J. Hubbard: Étude dynamique des polynômes complexes. Publications mathématiques d'Orsay 84-02 (1984) (première partie) | MR | Zbl

A. Douady, J. Hubbard: Étude dynamique des polynômes complexes. Publications mathématiques d'Orsay 85-04 (1985) (deuxième partie). | Zbl

[DH2] A. Douady, J. Hubbard: On the dynamics of polynomial-like mappings. Ann. Scient. Ec. Norm. Sup. 18 (1985), 287-343. | DOI | EuDML | Numdam | MR | Zbl

[ES] D. Eberlein, D. Schleicher: Rational parameter rays of Multibrot sets. Manuscript (1999). | Zbl

[GM] L. Goldberg, J. Milnor: Fixed points of polynomial maps I. Ann. Scient. Ec. Norm. Sup. 25 (1992). | Numdam | MR | Zbl

L. Goldberg, J. Milnor: Fixed points of polynomial maps II. Ann. Scient. Ec. Norm. Sup. 26 (1993), 51-98. | DOI | EuDML | Numdam | MR | Zbl

[HS] J. Hubbard, D. Schleicher: The spider algorithm. In: Complex dynamics: the mathematics behind the Mandelbrot and Julia sets. AMS, Proceedings in Applied Mathematics 49 (1994), 155-180. | MR | Zbl

[Ke1] K. Keller: Symbolic dynamics for angle-doubling on the circle III. Sturmian sequences and the quadratic map. Ergod. Th. Dyn. Sys. 14 (1994), 787-805. | MR | Zbl

[Ke2] K. Keller: Invariante Faktoren, Juliaäquivalenzen und die abstrakte Mandelbrotmenge. Habilitationsschrift, Universität Greifswald (1996).

[La1] P. Lavaurs: Une description combinatoire de l'involution définie par M sur les rationnels à dénominateur impair. Comptes Rendus Aca. Sci. Paris (4) 303 (1986) 143-146. | MR | Zbl

[La2] P. Lavaurs: Systèmes dynamiques holomorphes: explosion de points périodiques paraboliques. Thèse, Université de Paris-Sud (1989).

[LS] E. Lau, D. Schleicher: Internal addresses in the Mandelbrot set and irreducibility of polynomials. Preprint, Institute for Mathematical Sciences, Stony Brook, #19 (1994). | MR

[M1] J. Milnor: Dynamics in one complex variable: introductory lectures. Vieweg Verlag (1999). | MR | Zbl

[M2] J. Milnor: Periodic orbits, external rays and the Mandelbrot set; an expository account. In this volume, 277-333. | Numdam | MR | Zbl

[McM] C. Mcmullen: The Mandelbrot set is universal. Preprint (1997). | MR | Zbl

[NS] S. Nakane, D. Schleicher: On multicorns and unicorns I: antiholomorphic dynamics and hyperbolic components. In preparation. | Zbl

[Pr1] C. Penrose: On quotients of the shift associated with dendrite Julia sets of quadratic polynomials. Thesis, University of Coventry (1990).

[Pr2] C. Penrose: Quotients of the shift associated with dendrite Julia sets. Manuscript (1994).

[S1] D. Schleicher: Internal addresses in the Mandelbrot set and irreducibility of polynomials. Thesis, Cornell University (1994). | MR

[S2] D. Schleicher: On Fibers and Local Connectivity of the Mandelbrot and Multibrot Sets. Preprint, Institute for Mathematical Sciences, Stony Brook, #13 (1998). | MR | Zbl

[T] W. Thurston: On the geometry and dynamics of iterated rational maps. Preprint, Princeton University (1985). | MR | Zbl

[TY] Tan Lei and Yin Yongcheng: Local connectivity of the Julia set for geometrically finite rational maps. Science in China (Series A) 39 1 (1996), 39-47. | MR | Zbl