A rigid analytic approximation theorem
Rings of separated power series and quasi-affinoid geometry, Astérisque, no. 264 (2000), pp. 151-168.
@incollection{AST_2000__264__151_0,
     author = {Robinson, Zachary},
     title = {A rigid analytic approximation theorem},
     booktitle = {Rings of separated power series and quasi-affinoid geometry},
     editor = {Lipschitz, L\'eonard and Robinson, Zachary},
     series = {Ast\'erisque},
     pages = {151--168},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {264},
     year = {2000},
     mrnumber = {1758887},
     language = {en},
     url = {http://archive.numdam.org/item/AST_2000__264__151_0/}
}
TY  - CHAP
AU  - Robinson, Zachary
TI  - A rigid analytic approximation theorem
BT  - Rings of separated power series and quasi-affinoid geometry
AU  - Collectif
ED  - Lipschitz, Léonard
ED  - Robinson, Zachary
T3  - Astérisque
PY  - 2000
SP  - 151
EP  - 168
IS  - 264
PB  - Société mathématique de France
UR  - http://archive.numdam.org/item/AST_2000__264__151_0/
LA  - en
ID  - AST_2000__264__151_0
ER  - 
%0 Book Section
%A Robinson, Zachary
%T A rigid analytic approximation theorem
%B Rings of separated power series and quasi-affinoid geometry
%A Collectif
%E Lipschitz, Léonard
%E Robinson, Zachary
%S Astérisque
%D 2000
%P 151-168
%N 264
%I Société mathématique de France
%U http://archive.numdam.org/item/AST_2000__264__151_0/
%G en
%F AST_2000__264__151_0
Robinson, Zachary. A rigid analytic approximation theorem, dans Rings of separated power series and quasi-affinoid geometry, Astérisque, no. 264 (2000), pp. 151-168. http://archive.numdam.org/item/AST_2000__264__151_0/

[1] M. Artin. - On the solutions of analytic equations. Invent. Math., 5 (1968), 277-291. | DOI | EuDML | MR | Zbl

[2] W. Bartenwerfer. - Die Beschränktheit der Stückzahl der Fasern K-analytischer Abbildungen. J. reine angew. Math., 416 (1991), 49-70. | EuDML | MR | Zbl

[3] R. Berger, R. Kiehl, E. Kunz and H-J. Nastold. - Differential Rechnung in der Analytischen Geometrie. Springer Lecture Notes in Math, 38, 1967. | MR | Zbl

[4] S. Bosch. - A rigid analytic version of M. Artin's theorem on analytic equations. Math. Ann., 255 (1981), 395-404. | DOI | EuDML | MR | Zbl

[5] S. Bosch, B. Dwork and P. Robba. - Un théorème de prolongement pour des fonctions analytiques. Math. Ann., 252 (1980), 165-173. | DOI | EuDML | MR | Zbl

[6] S. Bosch, U. Güntzer and R. Remmert. - Non-Archimedean Analysis. Springer- Verlag, 1984. | MR | Zbl

[7] R. Elkik. - Solutions d'équations à coefficients dans un anneau Hensélien. Ann. Scient. Éc. Norm. Sup., 4e série, 6 (1973) 553-604. | DOI | EuDML | Numdam | MR | Zbl

[8] R. Kiehl. - Ausgezeichnete Ringe in der nicht-Archimedischen analytischen Geometrie. J. Reine Angew. Math., 234 (1969), 89-98. | EuDML | MR | Zbl

[9] S. Lang. - On quasi-algebraic closure. Ann. Math., 55 (1952), 373-390. | DOI | MR | Zbl

[10] L. Lipshitz. - Isolated points on fibers of affinoid varieties. J. reine angew. Math., 384 (1988), 208-220. | EuDML | MR | Zbl

[11] L. Lipshitz and Z. Robinson. - Rings of separated power series. This volume.

[12] H. Matsumura. - Commutative Ring Theory. Cambridge University Press, 1989. | MR | Zbl

[13] M. Raynaud. - Anneaux Locaux Henséliens. Springer Lecture Notes in Mathematics, 169, 1970. | MR | Zbl

[14] M. Spivakovsky. - A new proof of D. Popescu's theorem on smoothing of ring homomorphisms. J. Amer. Math. Soc., 12 (1999), 381-444. | DOI | MR | Zbl

[15] L. Van Den Dries. - A specialization theorem for p-adic power series converging on the closed unit disc. J. Algebra, 73 (1981), 613-623. | DOI | MR | Zbl