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MICROLOCAL ANALYSIS, BILINEAR ESTIMATES AND
CUBIC QUASILINEAR WAVE EQUATION

by

Hajer Bahouri & Jean-Yves Chemin

Abstract. — In this paper, we study the local wellposedness of a cubic quasilinear
wave equation. The Strichartz estimate used for the solutions of linear variable
coefficients wave equations are not relevant here. We prove bilinear estimates for
solutions of linear wave equations with variable coefficients. The main tools are Bony’s
paradifferential calculus and the microlocalization in the sense of Weyl-Hérmander
calculus.

Résumé (Analyse microlocale et équation d’onde quasilinéaire cubique). — Dans cet
article, nous étudions l’existence et 'unicité locale de solutions pour une équation
d’onde quasilinéaire cubique. Les classiques estimations de Strichartz ne sont pas
adaptées dans ce cas. Nous démontrons des estimations bilinéaires pour des solutions
d’équations d’ondes & coefficients variables. Les deux outils principaux sont le calcul
paradifférentiel de Bony et la microlocalisation au sens du calcul pseudodifférentiel
de Weyl-H6rmander.

Introduction

In this paper, our interest is to prove local solvability for equations of the type

fu—Au— Y g*d0u=0
1<5,k<d
(EC) Agi* = Q; 4(du, Bu)

(U, atu)lt:O = (UO, ul)‘
where Q; . are quadratic forms on R, In all this work, we shall state, for a real

valued function u on [0,T] x R?,

Vu dLgf (61'“; e ,Bdu) ) Oou dzef (atu) alua e 7adu) and g‘v2u d:?f Z ngkajaku.
1<j,k<d

2000 Mathematics Subject Classification. — 35L70, 35A07.
Key words and phrases. — Equations d’onde quasilinéaire, estimation bilinéaire, analyse microlocale,
calcul paradifférentiel, calcul pseudodifférentiel de Weyl-Hérmander.
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94 H. BAHOURI & J.-Y. CHEMIN

When no confusion is possible, we shall also state
def
Y =e (VU‘Oaul)'

This problem of course is a model one. The general problem consists in considering
equations of the type

Ofu— Au — Z 97%0,0u = Z Q; k(07" Bu)
1<5,k<d ) 1<j,k<d
Agh* = Q1 (du, Ou)
(u, atu)|t=0 = (uo,u1).

where éj, » are quadratic form on R and where all the quadratic forms are supposed
to be smooth functions of u. This simply complicates a little the estimates without
any relevant new phenomenon. In the frame work of equation (EC), it makes sense
to work with small data and this simplifies the proofs.

Energy methods allow to prove local wellposedness for initial data (ug,u1)
in H2+3 x H2~%. More precisely, we have the following theorem.

Theorem 0.1. — If d > 3, let (uo,u1) be in H5+% x HE=% such that ”’YHH%“ is

small enough. Then, a positive time T exists such that a unique solution u of (EC)

exists in C([0,T); H2+%) N CY([0,T); H5~%). Moreover, a constant C ezists (which
of course does not depend on the initial data) such that

-2

T> i,

Let us recall that H* is the usual Sobolev space on R% and that H* is the homo-

geneous one and we shall state

def S1 T
1% [ lerlf©Pas.
Rd
This is an Hilbert space when s < d/2.

The goal of this paper is to go below the regularity H%/2t1/2 for the initial data.

Let us have a look to the scaling properties of equation (EC). If u is a solution

of (EC), then uy(t, ) def u(At, Az) is also a solution of (EC). The space which is

invariant under this scaling is H%2. So the above theorem appears to require 1 /2
derivative more than the scaling. The goal of this work is to try to go as closed as
possible to the scaling invariant regularity.

Some results in that direction have been proved by the authors (see [4] and [5]) and
also by D. Tataru (see [27] and [28]) for quasilinear wave equations of the following
type

(E) {Bfu — Au — G(u) - V2u = F(u)Q(du, du)
(u, Opu)jp=0 = (uo,u1)
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MICROLOCAL ANALYSIS AND CUBIC QUASILINEAR WAVE EQUATION 95

where G is a smooth function vanishing at 0 and with value in K such that Id +K is
a convex compact subset of the set of positive symmetric matrices. Let us recall this
results. Let us notice that the scaling of the two equations (E) and (EC) is the same.

d 1 1
Theorem 0.2. — Ifd > 3, let (ug,u1) be in H® x H*~1 for s > sq with sq = 3t3tE
Then, a positive time T exists such that a unique solution u exists such that

du € C([0,T); H*~1) n L2([0, T); L™).
Moreover, a constant C exists such that

2 - —
THE=20 > Oly|5L..

This theorem has been proved with 1/4 instead than 1/6 in [4] and then improved
a little bit in [5] and proved with 1/6 by D. Tataru in [28]. Strichartz estimates for
quasilinear equations are the key point of the proofs. Recently, S. Klainerman and
S. Rodnianski have announced a better index. Their proof is based on very different
methods. In this case, the energy methods give the classical index s > d/2 + 1 and

T > Cllvll ggo-1-

The goal of this work is to do the analogous in the case of Equation (EC). The
result will be the following.

1
Theorem 0.3. — If d > 5, let (ug,u1) be in H® x Hs 1 with s > g + 5 such

that ll'y||H 4, 1 small enough. Then, a positive time T exists such that a unique
solution u of (EC) exists such that

.d_1
due C([0,T); H* ') NLE(Bs, *)
where 34%,2_ 3 denotes the Besov space defined in Definition 1.1. Moreover, for any

positive o, a constant C, exists such that

iia -1
Ts™* > Ca”')’lﬂg_g+a'

The case of dimension 4 is a little bit different. The theorem is the following.

Theorem 0.4. — Ifd =4, let (ug,u1) be in H® x H*™! with s > 2+% such that ||7v|| g

is small enough. Then, a positive time T exists such that a unique solution u of (EC)
exists such that

du € C([0,T); H*") N LA(Bgly) and 8g € Lh(L™)
.d_1
where B¢, * denotes the Besov space defined in Definition 1.1. Moreover, for any
positive «, a constant C, exists such that

1 —
T6+a > Ca“’)’“Hl%_%.‘_a'

Remarks
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96 H. BAHOURI & J.-Y. CHEMIN

— If we think in term of small data (i.e. of initial data of the type e(uo,u1)),
then energy methods give a life span in ¢e~2. The above theorem gives a life span of
order e =6+ for any positive a.

— As we shall see, the case when d > 5 can be treated only with Strichartz estimates
simply because laws of product in Besov spaces imply that if du belongs to L%(Bﬁ 5 %)
then g is in LL(L>).

— The case when d = 4 requires bilinear estimates. This fact appears in the
statement of Theorem 0.4 through the following phenomenon: the fact that du is
in L%(Bé{;) does not imply that the time derivative of g belongs to Li.(L*°). Of
course this condition is crucial in particular to get the basic energy estimate. But we
have been unable to exibit a Banach space B which contains the solution u and such
that if a function a is contained in B, then JA~!(a?) belongs to L1.(L>).

— In all that follows, the dimension d will supposed to be greater or equal than 4.

Acknowledgments. — We want to thank S. Klainerman for introducing us to this
problem and also for fruitful discussions. We thank J.-M. Bony for very important
discussions about the concept of microlocalized functions.

1. Method of the proof and structure of the paper

As we shall use Littlewood-Paley theory all along this work, let us begin by recalling
some basic facts and definitions related to it.

1.1. Some basic facts in Littlewood-Paley theory. — Let us denote by C the
ring of center 0, of small radius 3/4 and of big radius 8/3. Let us choose two non
negative radial functions x and ¢ belonging respectively to D(B(0,4/3)) and D(C)
such that

(1) XE)+ ) e2798) =) w(27%) =1,

qeEN q€EZ
(2) lp—gql > 2= Suppp(27%) NSuppp(27?) = 2,
(3) q>1= Supp x NSuppp(2™%) = &,
and if C = B(0,2/3) + C, then C is a ring and we have
(4) lp—ql >5=2PCN29C = @.
Notations

h=F"1p and h= F iy,
Bgu= gDy =2 [ W)z - )iy

Syu= 3 Agu=x@Dju=2 [ R@t)u(e - y)dy.

p<q—1
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MICROLOCAL ANALYSIS AND CUBIC QUASILINEAR WAVE EQUATION 97

We shall often denote Aju by u,. Let us recall the definition of Besov spaces.

Definition 1.1. — Let s be a real number, and (p,) in [1,00]2. Let us state

| (2921 Agul| o)

”““B;,T qczller(zy:

If s < d/p then the closure of the compactly smooth functions with respect to this
norm is a Banach space and we have that H* = B3 , and the norm ||-|| Bs, 18 equivalent
to || - [ls-

Notation. — We shall also state

def def def
llalls = lallsg, > bllzz(m) = bllLecz;my » Ibllzze) = 1bllLeqo.)iE)

def
and 1Bl 2 Bl e .-

Here we want to explain the problems we have to solve in order to prove Theo-
rem 0.4. As in the case of Equation (E), the basic fact is energy estimates. This
implies the control of

T
/O 18g(t, ) v .

In the case of Equation (FE), it is obtained by Strichartz estimates. This will be the
case here when d > 5 but this will not be the case when d = 4. Let us have a look
on a model problem to understand this difficulty. Here we essentially follow ideas of
S. Klainerman and D. Tataru (see [22]).

Let us assume that u is the solution of the constant coefficient wave equation and
let us estimate

T
/ 10A~1(0ju(t, )Oku(t, )| Loodt.

0

As
AT (05ult, )ku(t, ) = AT (8:0;udkul(t, ")) + A7 (8;ubdkult,-)),
we have to control expression of the type
T
/ ”A_l (Gtajuaku(t, )) || Loodt.
0
When d > 3, we have (see Lemma 2.1) that
1A (Bdyudeut, ) e < ClOu(t, MG,

So we get that

T
/ A= (805udkut, ) || e dt < T)0ull?, 4
0 12

—1-
2

SOCIETE MATHEMATIQUE DE FRANCE 2003



98 H. BAHOURI & J.-Y. CHEMIN

Then the proof of Theorem 0.1 is routine. If we want to go below this H §+3 regu-
larity of the initial data, we shall use Strichartz estimates. Let us introduce Bony’s
decomposition which consists in writing

ab~ZSq e b+qu 1bAa+ > Agalg_b.

—1<qg<1
When d > 4, we have
d_1.p_
10%uq]| 13, poy < C2IE=HHR=1) |1y .
Then it is not difficult to prove that

HA—I (; Sq_1(92u3uq)

The symmetric term can be treated exactly along the same lines. The so called

remainder term
2
E 0% uqOuq— j)
~1<j<1
q

Clivllg_,-

L’IT(LOO)

is much more difficult to treat particulary in dimension 4. The reason why is the
following. When d is greater or equal to 5, the Strichartz estimates tells us that

41k
18 gl 23 2y < 22335 oy 2.
So thanks to Bernstein inequality, we infer that

— a_
|48 (X Awtunggou), <) 30 2 el

-1<j<1 -1<5<1
g2p—No 92p—No
<C Y 27 @ P(E-2)20@D oy o lye 2.
—-1<j<1
q2p—No

Convolution and Cauchy-Schwarz inequalities implies that

||A azuau)“Ll Loo) < C”’YHQ%—].

The case of dimension 4 is much more delicate. In dimension 4, the Strichartz estimate
is

181l 13 2oy < 2203 =FF D oy 2.
So the series 02u,0uq—; does not converge in Li.(L3) because the only estimate we
have is
2q8/3||7q”2L2

23, |y} with > dy=1.
q

10%uqBuq—;l L1 (2) < C
<C
To overcome this difficulty, we follow an idea of S. Klainerman and D. Tataru: the

precised Strichartz estimate which will allow to prove bilinear estimates.

ASTERISQUE 284



MICROLOCAL ANALYSIS AND CUBIC QUASILINEAR WAVE EQUATION 99

1.2. Bilinear estimates and precised Strichartz estimates. — To explain the
basic ideas of bilinear estimates, let us consider the case of constant coefficient case.
In this paragraph, we essentially follow the ideas of [22]. What a bilinear estimates
lookes like is described by the following proposition.

Proposition 1.1. — Let u1 and ua two solutions of
{ Bfuj - Au]' =0
(0u;) =0 = V-

Then, if d > 4, we have
10ATQ(Ourduz)ll s, Loy < CeyrllVillg—rpellvella_yse-

Remark. — We find a gain of half a derivative about the regularity of the initial data
compared with purely Strichartz methods.

The precised Strichartz estimates is described by the following proposition proved
in [22].

Proposition 1.2. — A constant C ezists such that for any T and any h < 1, if Supp u;
and Supp F(Ou(t,-)) are included in a ball of radius h and in the ring C, we have

_ 1/2
lull 3 (=) < C(h%~2log(e +T)) "2 (1[u(0) 122 + 19eu(0)]| = + IO Ly (L2))-
To prove Proposition 1.1, let us recall that we want to estimate the

HA,,A-I( > APub,ou)

—-1<551
q2p—No

Lh(L=)’

With a rescaling of the equation, we can assume that ¢ = 1 and let us state h = 2P~9.
Let us define (¢, )1<uv<n, @ partition of unity of the ring C such that

Supp ¢, C B(§V7 h)'

Then, using the fact that the support of the Fourier transform of the product of two
functions is included in the sum of the supports of their Fourier transform, a family
of function (¢,,)1<,,< N,, exists such that Supp ¢, C B(— —&,,2h) and

(5) x(h~1D)(8%vdv) = ZX ~1D)(8%¢, (D)vd¢,(D)v).

Applying Proposition 1.2 gives

Np
Ix (R~ D)(8*v80)| 1.1y < Ch**log(e + T) > _ 6y (D) 22l b (D)l 2.

v=1

SOCIETE MATHEMATIQUE DE FRANCE 2003



100 H. BAHOURI & J.-Y. CHEMIN

The Cauchy Schwarz inequality implies that

IX(h™*D)(8*v0v)|l 3. (1)

Np N 1/2 Ny 1/2
<cm*ﬂ%@+T(§]wxmﬂm> (ZJMADMMJ :
v=1

v=1
The almost orthogonality of (au(D)’)’l)lg,,g N, and (¢, (D)v2)1<v<n, implies that
(6) x(h™'D)(8%v0v)| 11, Ly < Ch**log(e + T)||vl| 2|7l L2-
So after rescaling, we get that

”A,,A—l( 3 qu-)?qu_jau)H

-1<<1
g2p—No

Li(L*)

< 2p(d—4) Z log(e + 277)2%| vl 2 | Yg— ]| £2-
~1<j<1
g2p—No

If v € H%~1%¢ then we have
”A,,A—l( ) Aqazqu_jau)‘Lx . @T)c 3 2-lan-ate
NN 1K1
72p=No a2p—No

x 290871 (29T)¢ ||y, || L2200~ ($ 1) (29T)° |l yy s | 2.

So the series convergences in LL(L>) for large p. The case when p is small (low
frequencies) is nothing but Sobolev embeddings.

The real problem we have to solve in this work is to prove this bilinear estimate in
the context of quasilinear wave equation. To do this, we follow the lines of [4] and [5].
As we shall use geometrical optics technics, we need to deal with smooth functions
in time also. This leads to the following iterative scheme introduced in [5]. Let us
define the sequence (u(™),en by the first term u(®) satisfying
{ 02u® — Au® =0
(u®, 8,u®) ;o = (Souo, Sou1),
and by the following induction
R at2u(n+1) _ Au(n+1) - Gpr - V2u(n+1) =0
(Rn) { (™, 9,u*tV) ;o = (Snt10, Snt1u1)
with
Gur For1)G, with GIFEA-1Q, . (0u™,dum).

where 6 is a function of D(] — 1,1[) whose value is 1 near 0. Let us point out that
the sequence (u("))neN does depend on T. We introduce some notations which will

ASTERISQUE 284



MICROLOCAL ANALYSIS AND CUBIC QUASILINEAR WAVE EQUATION 101

be used all along this work. If a is a (small) positive number, let us define

d 1
Sa def 5 + 5 +a and NZ(v) def
Let us introduce the assertions we are going to prove by induction.

~Ifd > 5,

1
T yllso-1-

ou(™ < CoNZ
) 10w ozt 1y S ONEQ)
n d 1
||3u(")||T,s_1 < e3|]'yus_1 forany se€ [sa -1, 3 + 5],
_ifd =4,

f|ou™)]| 1 < CoNg(7)

20,885 %)
(Pr) & 110GnrllLr(o,1)0) < 2
d 1]

N
3
[l <lls foramy se[2+a 1]

All what follows in this paper consists in proving that if

VIl ¢-2 + N7 ()

is small enough, (Py) is true and (P,,) implies (Pp+1). Then the proof of Theorems 0.3
and 0.4 is pure routine of non linear partial differential equations.

To do this, we shall localize in frequency and transform equation R, into an equa-
tion where the space-time frequencies of the metric which defines the d’Alembertian
are very small with respect to the level frequencies we work with. This is the purpose
of the second section.

In the third section, we show how the proof can be reduced to “microlocal”
Strichartz and bilinear estimates. By microlocal estimates, we mean estimates that
are valid only a time interval whose length depends on the size of the frequencies
we work with. To prove the complete estimates (with a loose of course), we use D.
Tataru’s version of the method we introduced in [4] which consists in a decomposition
of the interval [0, 7] on intervals where microlocal estimates are true.

In the forth section, we recall the method of approximation of solutions of (vari-
able coefficients) wave equation by the method of geometrical optics. This is the
opportunity to study precisely the link between the solutions of the Hamilton-Jacobi
equation

{ 37-(I>(7', Y, ’I]) = F(Tay»ayq)(ﬂ Y, 77))
©(0,y,m) = (yln)

and the flow of Hr and also properties of this flow which will be useful in the seventh
section.

SOCIETE MATHEMATIQUE DE FRANCE 2003



102 H. BAHOURI & J.-Y. CHEMIN

The fifth section is devoted to the following problem: in the proof of the equivalent
of Inequality (6), we use the fact that the support of the Fourier transform is preserved
by the flow of the constant coefficient wave equation; this is no longer true in the
variable coefficient case. So this information is not relevant because it is not preserved
by the flow of the equation. The purpose of this fifth section is to define the concept
of microlocalized function near a point X = (z,£) of the cotangent space T* R¢ (the
cotangent space of R?). This notion is due to J.-M. Bony ([7]) and means that the
function is concentrated in space near the point x and in frequency near the point &
with of course the limit on the uncertainty principle. The good framework of this is a
simplified version of Weyl-Hérmander calculus which is also presented in this section.
Properties of the product of microlocalized functions is also studied.

In the sixth section, we prove that for solutions of a variable coefficients wave
equation, microlocalization properties propagates nicely along the Hamiltonian flows
related to the wave operator.

In the seventh section, we apply the three previous sections to prove the microlocal
bilinear estimates. This proof consists in a second microlocalization, which means
that we have to decompose again the interval on which we work. The reason why is
that interaction in the product and propagation of microlocalization are badly related.

2. Littlewood-Paley theory and Paralinearization of the equation
All along this work, we shall need to study the quadratic operator A~1((Du)2).

Let us summarize now some basic properties of this operator in the following lemma.

Lemma 2.1. — A constant C exists such that

|A~1(0a08) | yarz < Cll9all 5,101,

-1
IVA™(8adb)l| gara < Cllaalle;%H@bllBg;%-

41 and

Moreover, for any o greater than 3/2, a constant C ezists such that

1A71(8a0b)|| 4osy < C(ll0all-1/2110b]l fro-1 + 10all gro-1[10b] -1 /2)-

3 d )
And, for any o greater than R a constant C exists such that

1671 (9adb)]l 1oy < C(l100]]

. d_
14
4,2

3108l o1 + 19l o1 98] 5 3)-
4,2

From this lemma, we give the following corollary.
Corollary 2.1. — A constant C exists such that, if (Py) holds, then
Gnrllze < I
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MICROLOCAL ANALYSIS AND CUBIC QUASILINEAR WAVE EQUATION 103

Moreover, if d > 5, then

18Gn,7ll L1,y < ONE()*.

The proof of this lemma and its corollary is an exercice on Littlewood-Paley theory
and we omit it.

Theorem 2.1. — For any s > 3/2, a constant C exists which satisfies the following
properties. Let us consider two functions u and v whose partial derivatives belong to
the space L (H*~1)NL2(C~Y/?) and a function F in L%(H*'). Let us assume that
Gk (1) A=1Q; (0, 8v) € LL(L™)
and that
Bfu —Au— Gy Viy=F.
Then we have
Otug — Aug — Sg-1Gy 1V = Ry(Vu, ) + F,
with
1R (Vu(t), du(t))ll 2 < Ceq(8)279 D (IIVGo,z ()2 [ Vu(t)l|s-1
+ 100 ls-110v ()| c-1/2 Vet | -1/2) -

with as in all that follows Zcﬁ(t) =1.
q

To prove this theorem, we use paradifferential calculus. More precisely, we apply
Bony’s decomposition which consists in writing
Go1(t)V2u(t) = Ri(t) + R2(t) with
(7) Ri(t) €3 Sy_1GyrV?uy  and
ql

Z Sq/+2V2qul G’U,T'

q

Ra(t) &

The first term R;(t) is easy to estimate. As the support of the Fourier transform of
the function Sy _1G, 7V?u, is included in a ring of type 29'C , we have

ARit) = D Ag(Sy-1GorViuy)
lg—q'|<Ny
(8) = q_lG,,,TV2uq + Z [Aq,Sq/_le,T] V2uq’
lg—q'I<Ny

+ Z (Sq/_le,T - Sq_lG’,,,T)VQAquq/.
lg—g'|<N1

SOCIETE MATHEMATIQUE DE FRANCE 2003



104 H. BAHOURI & J.-Y. CHEMIN

As for instance in [4], we have
1[Ag; Sgr-1Gu.1] Vz“tz’”m <
(Sq=1Gvr — Sq—1Go,1) Vg ||, <
So it turns out that
O [|8gR1(®) = S4-1GurVPug 12 < Ceq2™VNVGur (@) | Valt)lo-1.

The second term is a little bit more delicate to estimate. Because the support of the
Fourier transform of Sy 1 V?uAy G, 7 is included in a ball of center 0 and radius C29',
we have that

cg2 1 VVGy 1 (8)l| oo | Va(t)]ls-1  and

c
Ccg2 " DVG, 1 ()] oo | Vuu(t) | s—1-

AgRo(t) = Y Ag(Sy42V?ulyGyr)

q'29—MN1
By definition of C/2 and using Bernstein inequalities, it is obvious that
1Sq+192ull e < 222 Vut)l|g-72-
Using Lemma 2.1, we get that
18 Gurllze < Ceg (6277 D |00(8) | g-1/21100(2) | 7o
when s is greater than 3/2. So the theorem is proved.

Now we are going to state two corollaries of this theorem.

Corollary 2.2. — If (Py,) is satisfied, then for any s € 13/2,s4], a constant C exists
such that

104 Vlizs 1 < e lrlls1 (14 CCONEM U™ 13 6172))-

To prove it, let us first deduce by standard energy estimates from Theorem 2.1
above applied with u = ©(®*1) and v = «(™ that

d n —2g(s— n
Slou D@2 < €122 (J0Gn (1) 2= |0 D B2,
+ Ol lls=110u™ (®)l| g1/ 1 Ve D () =12 Ilau("“)(t)lls—l)-
By multiplication by 22(*~1) and summation we have that
d
Zlou D@2, < C(10Gn Ol [0u DD
£ O]9 W) 612 IV 0 12 OuD @) 1)

Using Gronwall lemma, it turns out that

t
06D (t) -1 exp(~C / 10G o,z (t') |- dt')
0

t
< lls-2+ C'Ihlls—l/0 10u™ (") g-1/2 I VuTHD (E) | -1 248 -
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MICROLOCAL ANALYSIS AND CUBIC QUASILINEAR WAVE EQUATION 105

Using Cauchy-Schwarz inequality, we get

t
0u D Ols exp(~C [ 190Gz (¢)u=at')
0

< lls=1 + Clvls=1l10u™ | g -1/ IVET D 2 52172y
Using (Pr), we get that

t
0w @)]-s exp(~C [ 10Gn(t) =t
0

< Ylls=1 + CCONEMIs-1 Va2 (¢ -1/)-
The fact that
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together with induction hypothesis and corollary 2.1 implies the result.
The second corollary treats the case of low frequencies.
Corollary 2.3. — A constant C exists such that under the hypothesis (Py), we have,
foranyr > 2,
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Using Bernstein inequalities and Corollary 2.2, we get that
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we have proved the corollary.

Let us now do a precised paralinearization in the spirit of [4].

Theorem 2.2. — A constant C exists which satisfies the foliowz’ng properties. Let us
consider two functions u and v whose partial derivatives belong to L(H**~1) N
LZ(C~'/?) and a function F in LL(H*'). Let us assume that OG,r belongs
to LL(L*) and that
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Then for any d € [0, 1], we have
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The proof dof this theorem is based essentidly on Theorem 2.1 and Corollary 2.2.

Using Theorem 2.1, it is obvious that
R6q(Vu,dv) = Rg{Vu,dv) + (Sq - Sg i)(GWir) +V % .
As we have
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we get the theorem applying Theorem 2.1.

As a corollary, we have
Corallary 24. — A constant C exists such that under the hypothesis (\VVn) we have for
any 0 in the interval [0,1],
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3. Réduction to microlocalized estimates

By microlocalization of the estimétes, we mean that we shal prove estimétes that
are vdid on time intervais whose length dépend on the frequency parameter. These
techniques have been introduced in [4] and used in [5] and improved by D. Tataru
in [28]. For technical reasons, we prefer to work at frequencies of size 1.

3.1. The statement of the microlocal estimates. — In ail that follows, weshall
consder a family of smooth fonctions Q = (GA)A®AO defined on 1A X such that
G A issmal enough and such that, for any k > 0, the following quantities
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