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DUALITY FOR SMOOTH FAMILIES IN EQUIVARIANT
STABLE HOMOTOPY THEORY

Po Hu

Abstract. — 1In this paper, we formulate and prove a duality theorem for the equivari-
ant stable homotopy category, using the language of Verdier duality from sheaf the-
ory. We work with the category of G-equivariant spectra (for a compact Lie group G)
parametrized over a G-space X, and consider a smooth equivariant family f : X — Y,
which is a G-equivariant bundle whose fiber is a smooth compact manifold, and with
actions of subgroups of G varying smoothly over Y. Then our main theorem is a nat-
ural equivalence between a certain direct image functor f. and a “direct image with
proper support functor” fi, in the stable equivariant homotopy category over Y. In
particular, the Wirthmiiller and Adams isomorphisms in equivariant stable homotopy
theory turn out to be special cases of this duality theorem.

Résumé (Dualité pour les familles lisses en théorie de I’homotopie stable équivariante)
Dans cet article, nous énongons et démontrons un théoréme de dualité pour la
catégorie de ’homotopie stable équivariante, en utilisant le langage de la dualité de
Verdier provenant de la théorie des faisceaux. Nous travaillons avec la catégorie des
spectres G-équivariants (pour un groupe de Lie compact G) paramétrés par un G-
espace X, et nous considérons une famille lisse équivariante f : X — Y, c’est-a-dire
un fibré G-équivariant de fibre une variété lisse compacte, et avec des actions de
sous-groupes de G variant de maniére lisse sur Y. Notre résultat principal est alors
une équivalence naturelle entre un foncteur image directe f. et un foncteur « image
directe & support propre fi », dans la catégorie de I’homotopie stable équivariante
sur Y. Les isomorphismes de Wirthmiiller et Adams en théorie de ’homotopie stable
équivariante apparaissent comme des cas particuliers de ce théoréme de dualité.
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INTRODUCTION

The purpose of this paper is to formulate and prove a stable homotopy duality
theorem for smooth equivariant families of manifolds, using a relationship of the sta-
ble homotopy language with sheaf theory. We work with G-equivariant spaces and
spectra parametrized over G-equivariant spaces, where G is a compact Lie group.
To relate this to the language of sheaves and Verdier duality from algebraic geom-
etry (see e.g. [2, 6]), we introduce the notions of sheaves of spaces and of spectra.
The Grothendieck site we use here is the most basic case, where the category is the
comma category GTop /X of all G-equivariant topological spaces mapping to a given
G-equivariant base space X. The coverings in this category are all colimits. This
makes the results of this paper more directly related to classical stable homotopy
theory [8] than its generalizations (e.g. [1, 12]), although our methods in principle
also seem to apply to those more general contexts.

In our context, the main theorem is that for a map f : X — Y of base spaces
satisfying certain conditions, there is a natural equivalence in the stable homotopy
categories

(01) f*’:f!

between a certain direct image functor f. and a direct image with proper support
functor fi. This is an analogue of a classical result for proper maps of schemes, and
abelian sheaves. A complementary statement for smooth maps relate the inverse
image functor f* to f', an inverse image with proper support functor in the derived
category of abelian sheaves. We also have an analogue of this statement. As one would
expect, our theorem implies Poincaré duality for equivariant manifolds (see [8]). It
may perhaps be more surprising that it also includes other results of equivariant stable
homotopy theory, namely the Wirthmiiller and Adams isomorphisms [8].

We will work with maps f that are what we call equivariant smooth families of
manifolds. Essentially, a G-equivariant map f : X — Y is an equivariant smooth
family if it is an equivariant bundle whose fiber is a smooth compact manifold, and



2 INTRODUCTION

actions of subgroups of G on the fiber vary smoothly over the base space Y in a
suitable sense (See Definition 4.2).

It turns out that in our case, instead of directly describing the direct image with
proper support functor fi, it is easier to define a left adjoint fy to the inverse image
functor f*, and identify fi with fj up to a shift by the dualizing object associated
to the equivariant smooth family f : X — Y. The dualizing object is a spectrum
parametrized over X, which is invertible under the smash product in the homotopy
category. A main part of the content of the theorem is to identify this dualizing object
as the stable tangent bundle of X in the parametrized category over Y.

Another ingredient on which the meaning of our theorem depends heavily is the
closed model structure on the categories of parametrized G-spaces and G-spectra.
The duality theorem takes place in the homotopy category associated with the model
structure on parametrized G-spectra. In Chapter 3, we give definitions of the model
structures in detail. An important aspect of the model structure on parametrized
spaces is that a G-space Z parametrized over X is fibrant if and only if the structure
map Z — X is a fibration in the standard model structure on G-equivariant spaces
(i.e. for fibrations, use Serre fibrations on H-fixed point sets for all closed subgroups
H of G). A similar statement holds for parametrized G-spectra. Thus, one can think
of the homotopy categories of parametrized G-spaces and spectra as dealing with
objects that are in some sense bundle-like over the base space. (In particular, it does
not capture objects such as skyscraper sheaves.)

We will show that the Wirthmiiller and Adams isomorphisms are special instances
of our duality theorem. Recall from [8] Theorem II.6.2 that for a (closed) subgroup
H of G, the Wirthmiiller isomorphism is that for an H-equivariant spectrum E

(0.2) Gxg X LE~Fy[G,E)

in the homotopy category of G-equivariant spectra. The two sides of the equivalence
are the left and right adjoints to the forgetful functor from G-spectra to H-spectra,
and the H-representation L is the tangent space of G/H at eH, with H-action by
translation. If H is a normal subgroup of G, then the Adams isomorphism ([8]
Theorem I1.7.1) states that for an H-free G-spectrum E indexed on the H-fixed
points UH of a complete G-universe U,

(0.3) E/H ~ (i,EAS~4)H

in the homotopy category of G/H-equivariant spectra. Here, the two sides are the left
and right adjoints to the functor from G/H-spectra to G-spectra that takes a G/H-
spectrum to be an H-fixed G-spectrum. An H-free G-spectrum is a G-spectrum
which has a cellular approximation, such that every cell is H-free, i.e. of the form
G/N4 AS™, where N is a subgroup of G such that NN H = {e}. The functor ¢, from
G-spectra indexed on U¥ to G-spectra indexed on U is the universe change functor
associated to the inclusion of universes i : UH — U (see [8] Section II.1). Also, A is
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INTRODUCTION 3

the adjoint representation of G, i.e. the tangent space of H at e, with G-action by
conjugation.

The statement (0.2) of Wirthmiiller isomorphism translates to the case of our
duality theorem for the equivariant smooth family f : G/H — x, via an equivalence
of categories between H-equivariant spectra and G-equivariant spectra parametrized
over G/H. The case of the Adams isomorphism is more complicated. The equivariant
smooth family to which the duality theorem applies is the quotient map f : EF —
EF/H, where EF is the universal contractible H-free G-space, and EF/H its orbit
space by H ([8] Section II.2). The closed model structures give an equivalence of
homotopy categories between H-free G-spectra and G-spectra parametrized over EF.
Via this equivalence and composition with certain other functors, the duality theorem
gives (0.3).

The organization of the paper is as follows. In Chapter 1, we give a formulation
of Verdier duality from the theory of sheaves, to give motivations for bringing in the
language of sheaves. The next two chapters give the foundations on G-equivariant
spaces and spectra over a base space that we need for the main theorem. Namely,
in Chapter 2, we recall the definitions of G-equivariant spaces and spectra over a
base space X, and show that they are equivalent to the categories of sheaves on
GTop /X. We also give certain basic constructions such as the smash product, and
define the base change functors, which are associated with a map f: X — Y of base
spaces. Chapter 3 gives a self-contained definition of the closed model structures on
the categories of G-spaces and spectra parametrized over X.

In Chapter 4, we state the main theorem of the paper, given in terms of equivalences
between base change functors in the stable homotopy categories, up to a shift by a
certain dualizing object, for a class of “good” maps f : X — Y. This class of maps is
the class of smooth families, which are G-equivariant bundles whose fibers are smooth
manifolds. We also define the dualizing object, and prove some preliminary results
towards proving the main theorem. The main part of the proof of the theorem is given
in Chapter 5. For a smooth family f : X — Y where Y is compact, we define natural
transformations between the base change functors on the level of spaces, which turn
out to be homotopy inverses. Stabilizing gives the theorem in the case of a compact Y,
and the general case is obtained via a colimit argument. In Chapter 6, we show that
both the Wirthmiiller and the Adams isomorphisms are examples of the main duality
theorem. Finally, in Chapter 7, we give the proofs of some technical results on the
closed model structure for G-spectra parametrized over X.
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CHAPTER 1

MOTIVATION

We begin by recalling the classical statements of duality in the theory of sheaves
(see for instance [2, 6]). Let X,Y be schemes, with a suitable topology, e.g. etale,
Nisnevich, analytic, etc., and let A be a tensor category. Let Sh(X) and Sh(Y") denote
the categories of sheaves on X and Y into A, respectively. For a map f: X — Y of
schemes, there are various functors associated with f between the categories Sh(X)
and Sh(Y'), defined in the standard theory of sheaves. Specifically, there is the pullback
or inverse image functor

f*:Sh(Y) — Sh(X).
Its right adjoint is the direct image functor
fi 1 Sh(X) — Sh(Y).

In addition to the pair of adjoints (f*, f«), we also have the direct image “with

proper support”

fr:Sh(X) — Sh(Y)
whose right adjoint is

f':Sh(Y) — Sh(X).

One way to phrase the statements of duality is as follows. Consider D(Sh(X)) and
D(Sh(Y)), the derived categories of chain complexes of sheaves into 4 on X and Y.
Let Cy denote the constant sheaf on Y into the unit object of A. Then in these
derived categories:

(1) If f is a smooth map of schemes, then for any Z € Sh(Y),

(1.1) 7(2)~*(2) ® f(Cy).
(2) If f is a proper map of schemes, then for any 7' € Sh(X),
(1.2) AT) =~ £u(T).

The sheaf f'(Cy) over X is called the dualizing object associated with f.

Our purpose is to replace the abelian category A by the equivariant stable ho-
motopy category, and give general conditions for analogous statements to hold in
topology.






CHAPTER 2

SPACES AND SPECTRA OVER A BASE SPACE

Let G be a compact Lie group, and let X be a compactly generated weak Hausdorff
G-space. For simplicity, denote by GTop the category of compactly generated weak
Hausdorff G-spaces and continuous G-maps (called GU in [8] Section I.1). Consider
the comma category GTop /X, an object of which is a compactly generated weak
Hausdorff G-space Z, together with a given G-map p : Z — X. The morphisms
of GTop /X are continuous G-maps that commute with the maps to X. We can
give GTop /X the structure of a Grothendieck site, by defining the coverings to be
given by all colimits. Namely, if Z is a diagram in GTop /X, and Z is an object,
such that Z = colimz, then Z is a covering diagram of Z. Let Sh(GTop /X) be the
category of sheaves of sets over GTop /X with this topology. It is however not a
small site. So a sheaf of sets over this Grothendieck site is a contravariant functor
F : GTop /X — Sets, which takes all colimits to inverse limits. By Freyd’s adjoint
functor theorem, modulo set-theoretical difficulties, such a functor has a left adjoint
L : Sets — (GTop /X)°P. In particular, F is represented by the object L(x), in the
sense that for any Z € GTop(X),

F(Z) = Homgets(*, F'(Z))
= Hom(GTop /X)op (L(*)7 Z)
= HomGTop /X (Za L(*))
Conversely, for any T' € GTop /X, the contravariant functor
Z— HomGTop /X(Zv T)

takes all colimits to inverse limits, so representable presheaves on GTop /X are
sheaves. Hence, our definition of Sh(GTop /X) with respect to this topology is just
GTop /X itself. Thus, in discussing sheaves of sets on the site GTop /X, we are just
considering the parametrized, or fiberwise homotopy theory of G-spaces over X.
The based version of the above also holds: recall that a based G-space over X is
a G-space Z with maps p: Z — X and i : X — Z, such that p-7 = Idx. The
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constant sheaf Cx of sets on GTop /X, given by Cx(Z) = * for every Z € GTop /X,
is represented by X € GTop/X. So by arguments similar as above, the category
GTop, /X of based G-spaces over X is naturally equivalent to the category of sheaves
F of sets over GTop /X, together with a morphism of sheaves Cx — F. This is also
equivalent to the category of sheaves of based sets over GTop /X . Therefore, we can
work with parametrized homotopy theory over X. In particular, a sheaf of spectra on
GTop /X is a spectrum parametrized over X, where suspensions and loops are done
in GTop,(X).

In a sense, this is the simplest example of a category of sheaves. However, we will
find the language of sheaves and their standard functors, closely analogous to the
case of derived abelian sheaves, helpful even in this basic case. It seems that a large
part of this paper might apply to more advanced categories of sheaves. For instance,
Voevodsky’s category of algebraic spaces behaves in many ways similar to topological
spaces, but algebraic spaces are defined as Nisnevich sheaves over schemes, which is
the reason behind many of their properties [12].

We recall certain basic constructions in the category of based G-spaces over X.
For an unbased G-space Z over X, we write Z, for Z Il X, which is a based G-space
over X, where the basepoint maps into the disjoint copy of X by the identity. If Z, T
are unbased G-spaces over X, and j : Z — T is a map over X, then their quotient
T/xZ over X is a based G-space over X defined by the following pushout diagram:

Z
W
X——)T/XZ

where pz is the structure map of Z. Also, if Z,T are based G-spaces over X, with
basepoints iz : X — Z, i7 : X — T, then the wedge sum of Z and T over X is a
based G-space over X defined by the following pushout diagram:

iz
X—7

T——ZVxT.

The G-space Z maps to itself by the identity and to 7' by Z — X 2z, T, so we have
amap Z — Z xx T over X. Likewise, T maps to Z x x T over X. This gives a map
ZNx T — Z xx T. The smash product of Z and T over X is

ZAxT=(ZXXT)/X(Z\/XT).

The 0-dimensional sphere over X is S = X, = X II X. It is the unit object in the
category of based G-spaces over X with respect to the smash product. Finally, by [7],
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CHAPTER 2. SPACES AND SPECTRA OVER A BASE SPACE 9

if the structure map Z — X is open, then the functor Z Ax — has a right adjoint
functor Hom y(Z, —). For a G-space T over X,

as a set. Here, Z, and T, are the fibers of Z and T over x respectively, and
Hom(Z,,T,) is the set of nonequivariant maps from Z, to T,. The group G acts
on the set of partial maps that make up Hom  (Z, T') by conjugation.

Recall that for a compact Lie group G, a G-universe is an infinite-dimensional
G-representation U which contains the trivial representation, and if V' is a finite-
dimensional subrepresentation of U, then U contains infinitely many copies of V. A
G-universe is said to be complete if it contains every irreducible representation of G,
and it is said to be trivial if it is a direct sum of infinitely many copies of the trivial
representation. Let U be a G-universe. A parametrized G-prespectrum E over X is
a collection {Ev } of based G-spaces over X, together with structure maps over X

(X X SW_V) Ax By — Ew

for all finite-dimensional representations V' C W in Y. Here, W — V denotes the
orthogonal complement of V' in W, and X x S~V is a based G-space over X via the
first projection map and the basepoint of SW~V. Since the map

XxS —X
is open for each V, the functor ©% = (X x SV) Ax — has a right adjoint
Q% = Homy (X x SV, -).

A prespectrum E over X is a spectrum over X if for every pair of finite-dimensional
representations V. C W in U, the adjoint structure map

(2.1) Ey — Q¥ VEw

is a homeomorphism over X. Similarly as for prespectra and spectra over a point,
there is a spectrification functor L from prespectra over X to spectra over X, which
is the left adjoint to the forgetful functor (see [8], Section 1.2). In particular, a
prespectrum D over X is an inclusion prespectrum over X if for every pair of finite-

dimensional representations V' C W in U, the adjoint structure map 2.1 is an inclusion
map. When D is an inclusion prespectrum over X, its spectrification LD is given by

(LD)y = colimy Q% ~V Dw

for each finite-dimensional representation V in U, where the colimit is taken over the
finite-dimensional representations W in U containing V.

In particular, for each x € X, let G; C G be the isotropy subgroup of z. If F is a
G-spectrum parametrized over X, then for each z € X, we have Ey =, QE(V_VEW
for all finite-dimensional V' C W in U, so

(Bv)e — (X (Ew))e-

SOCIETE MATHEMATIQUE DE FRANCE 2003



10 CHAPTER 2. SPACES AND SPECTRA OVER A BASE SPACE

But
QY VEw = Homy (X x SW~V, By) = e xHom(SYV, (Ew)s)

so (WY VEwW): = QY~V(Ew),. Thus, the fibers {(Ey),} form a Gg-spectrum in
the classical sense.

Let f: X — Y be an open map. Then the base change functors can be described
simply in the fiberwise context. For the inverse image functor f*, we have that

f(2)=XxyZ

for a based G-space Z over Y, and the basepoint of f*(Z) is the pullback along f of
the basepoint of Z. The right adjoint of f* is

f*ZTOp./X—'*TOP./K

For T € Top, /X, f«(T) is the G-space of sections from X to T, fiberwise over the
points of Y. Namely, consider X as a G-space over Y via f. Recall from [7] that by
the openness of f, X Xy —, as a functor from G-spaces over Y to itself, has a right
adjoint Hom, (X, —), which is the space of nonequivariant partial sections from the
fibers of X over Y. For Z a space over Y, Homy (X, Z) = lI,cy Hom(X,, Z,) as a
set, but with an appropriate topology, where X, and Z, are the fibers over y in X
and Z respectively. The G-action on this space is induced by the conjugation of G on
the partial sections from X, to Z,. There is a map o : Y — Homy (X, X), which is
adjoint to the identity on X. For a G-space T over X, with structure mapp: T — X,
we can think of T' as a G-space over Y by f-p. Then f.(T) is defined by the following
pullback square in the category of G-spaces over Y.

fu(T) Y

| o

Hom, (X,T) ——— Hom, (X, X).
Hotny (X,T) e Homy (X, X)

Thus, we have that f,(T) = Hyey Sec(Xy,T,) with an appropriate topology, where
Sec(Xy,Ty) € Hom(X,,Ty) are the sections of p|r, : Ty — X,. If i : X — T is the
basepoint of T, then there is a natural basepoint Y — f,(T"), which takeseach y € Y
to i|x, : Xy — Ty. From now on, we always assume that f : X — Y is an open
G-map.

Rather than fi and f', it is more natural in this case to define fi, the left adjoint
to f*. In the unbased case, fj is just the forgetful functor, i.e. for an unbased G-space
T over X with structure map p: T — X, fy(T) is T thought of as a G-space over Y’
via f-p. In the based category, fy is given by collapsing the basepoint. Namely, if
i : X — T is the basepoint of T over X, then fy(T') is given by the following pushout
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CHAPTER 2. SPACES AND SPECTRA OVER A BASE SPACE 11

diagram
x—t 7
|

Y —— f(T).

We also have the stable versions of these functors. For a spectrum D over Y, f*(D)
is obtained by applying f* on the category of based G-spaces to each space of D.
Likewise, for a G-spectrum E over X, f.(E) is obtained by applying f. spacewise.
For fy(E), one first applies fy to each space of E to get a prespectrum over Y,
then apply the spectrification functor from the category of prespectra over Y to the
category of spectra over Y (see [8], Section 1.2).

We record the following lemma.

Lemma2.2. — Let f: X — Y be a map of G-spaces, and ix : K — Y an inclusion
(not necessarily open). Consider the pullback diagram

FHK) o x

g | lf

K—]——Y.
0%

Then for a spectrum E over X, we have natural isomorphisms
i}/ B2 fii'E

and
G FiE 2 fryi™E.

Proof. — Let Z be a based G-space over X. We have that f.(Z) is
Uyey Sec(Xy, Zy)

with an appropriate topology. Then

ixf+(Z) = K xy (Uyey Sec(Xy, Zy)) = Uyek Sec(Xy, Zy)
as a subspace of f.(Z) (with an appropriate topology), whereas
fxi"(Z) = fr. (fTHK) xx Z)

= Uyex Sec(f~H(K)y, (f7(K) xx Z)y)
= I ek Sec(Xy, Zy).

Hence, the first statement holds on the level of based G-spaces. Thus, it holds for
spectra over X as well, since the functors i, f«, fk, and ¢* on spectra are all defined
by just applying the corresponding functors spacewise.

SOCIETE MATHEMATIQUE DE FRANCE 2003
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For the second statement, again consider a based G-space Z over X. Then f;(Z)
is defined by the pushout square

X—7Z7

|

Y — fi(2).
Since i} is a left adjoint, it commutes with pushouts, so
ik fy(2) = (Z xy K)/zxyv(Z xy X) = (i*(2))/2f~(Z)

which is just fxyi*(Z). Hence, the second statement holds on the level of G-spaces.
For a spectrum E, f3(E) is defined by first applying f; on each space of E, then
applying the spectrification functor L. Consider the diagram of categories

Forget
Spectra/ K ————— Prespectra/K

()| [

Spectra/X ——— Prespectra/X.
Forget

This diagram commutes since (ix ). on spectra is just applied spacewise. Hence, the
left adjoints i} and L commute. Therefore, the functors 1% fy and fxyi* on spectra
are obtained by first applying i} fy and fxyi* spacewise, then applying L to both
sides. Hence, the second statement also holds on the level of spectra. O

To define smash products of spectra over X, we need to give some consideration to
change of universe functors for spectra over X. For G-universes i and V, let Z(U, V)
be the space of linear isometries from & to V, not necessarily G-equivariant. Then
G acts on Z(U,V) by conjugation. A G-linear isometry over X is an X-point of the
space of linear isometries Z(U, V), i.e. a G-map

a: X —IWU,YV).
Equivalently, it is a G-map over X
a: X — X xIU,V)

where the target is a G-space over X via the first projection. By abuse of notation,
we use a for both formulations. So for every point z € X, a(z) is a G,-fixed point
of Z(U, V), where G, denotes the isotropy subgroup of . This is the same as a G-
equivariant linear isometry from U to V, where i and V are G -universes by forgetting
the G-actions on them to G,. For such an a, we define the universe change functors
with respect to a

a* : G-Spectra/X on V — G-Spectra/X on U
a. : G-Spectra/X on U — G-Spectra/X on V.

ASTERISQUE 285



CHAPTER 2. SPACES AND SPECTRA OVER A BASE SPACE 13

These functors will have the property that for G-spectra E over X indexed on U, E’
over X indexed on V, and any z € X, we have

(2.3) (axE)z = a(z)«(Ex)
and
(2.4) (a*E'); = a(z)"(Ey)

as Gg-equivariant spectra. On the right hand side, a(z). and a(z)* are the universe
change functors with respect to the G-linear isometry a(z) : U — V.

To define the universe change functors, we use methods analogous to those of [4].
We first consider the case where X is compact. By adjunction, a : X — Z(U,V) can
also be written as a G-map over X

a: X xU — X xV.

Let U C U be a finite-dimensional G-representation. Since X is compact, there is
some finite-dimensional G-representation V in V, such that a(X xU) C X x V, i.e. a
gives an embedding of bundles over X from X x U into X X V. Let vyy be the
orthogonal complement of a(X x U) in X x V, and let S(vy,v) be the sphere bundle
of this bundle over X, which is a based G-space over X. For any finite-dimensional G-
representation U in U, suppose that V C W are finite-dimensional G-representations
contained in V, and @(X x U) C X x V C X x W, then we have

SYVSuy) — Suw).

Hence, {S(vy,v)} form a G-prespectrum over X indexed on V. Let My be the
spectrification of this prespectrum. In particular, My = 33 S(vy,v) canonically for
every finite-dimensional V' C V such that a(X x U) C (X x V). If U C U’ are
finite-dimensional G-representations in ¢, then there is a canonical isomorphism of
G-spectra over X indexed on V'

(2.5) Y Y My 5 My.

In (2.5), Z)U('_U denotes smashing with S)[{“U. Namely, for each finite-dimensional
representation V in V, such that a(X x U) Ca(X x U’) C X x V, we map

2% "YS(vurv) = (X x SY7Y) Ax S(wurv) — S(vuy)

by applying the map @ to X x SU'~U. Since a(X x U)®a(X x (U'—U)) = a(X x U'),
this is an isomorphism for every such V. Therefore, (2.5) is an isomorphism (see
also [4], Appendix, Section 2). Hence, for a G-spectrum E over X indexed on U,
define
axFE = colimycyFy ANx My.
Here, the colimit ranges over all finite-dimensional G-representations U contained
inU: for U C U’ in U, the map is

Ey Ax My & By Ax ES](,_UMU/ = Z%,—UEU Ax My — Eyr Ax My:.
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14 CHAPTER 2. SPACES AND SPECTRA OVER A BASE SPACE

For its right adjoint, we define for a G-spectrum E’ over X indexed on V
(a*E")y = Homx (My, E')

for any finite-dimensional G-representation U that is contained in U, where
Homx (My, E') denotes the based G-space over X of (nonequivariant) morphisms of
spectra over X indexed on V. (This is defined similarly as Hom y(—, —) of G-spaces
over X: as a set, it is the disjoint union of the maps on the fibers over all z € X,
with an appropriate topology and G-action by conjugation.) In particular, for every
finite-dimensional representation V' contained in V such that (X x U) C X x V, we
have a canonical isomorphism

(a"E')y = Homy (S(vu,v), Ev)

by adjunction. For finite-dimensional representations U C U’ in U, choose a finite-
dimensional representation V' C V such that

(X xU)Ca(X xU)CT X xV.

We define the structure isomorphism of a*E’ to be
(a"E')y = Homx (S(vv,v), Ev)

= Homy (X x 8~") Ax S(vur.v), BY)

~ QY ~YHomy (S(vu.v), Ey)

= Q%I_U(G*EI)U/.
It is easy to check that this is independent of the choice of V', via the structure maps
of E’, and that a, is the left adjoint of a*.

We need to check that the functors satisfy conditions (2.3) and (2.4). Let z € X.

For (2.4), let U and V be finite-dimensional representations in ¢/ and V respectively,
with a(X x U) C X x V. Then we have canonical isomorphisms

((a"E")v)s = (Homy (S(vu,v), Ey))e = Hom, ((S(vu,v )z, (B ))-
But the fiber over z of S(vy v) is SV~4®)U) g0 this is
Qv—a(z)(U)(E;)V = (Ea,c)a(z)(U)'

This gives that the fiber of a*E’ over z is a(z)*(E.). For (2.3), note that for each
z € X, finite-dimensional U C U, and finite-dimensional V' C V such that a(X xU) C
X x V, we have

(2.6)

Mu)e = (E¥S(vu,v))e = Zc\)/O'S’V—a(w)(U)
canonically. So for a G-spectrum F over X indexed on U,
(axE)z = (colimycuMuy Ax Eu)s
= colimycu((Muv)z A (Eg)v)

= colimycy, a(xxvycxxv(EFSY 4@ A (Ey)y).
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In the last line, the colimit ranges over all finite-dimensional representations U C U
and V C V such that a(X x U) C X x V. On the other hand, a(z).F is obtained by
applying the spectrification functor on the universe V to the inclusion G-prespectrum
indexed on V whose V-th space is

-1
EV—G(Z)(G(?)) (V))Ea(a:)_l (V)-

The spectrification functor takes colimits over finite-dimensional representations
V CV, so comparing the colimits, we see that the two are canonically isomorphic.
For general X, we will glue a* and a, over a covering of X by compact subspaces.
Given a : X — Z(U,V), for any compact G-subspace K C X, we get a|x : K —
Z(U,V). We will show that the functors (a|x)« and (a|x)* are natural with respect
to K. Suppose K C K’ are compact G-subspaces of X. For finite-dimensional G-
representation U in U, let My (K) and My (K') be the spectra respectively over K
and K’ indexed on V constructed above. Then for large enough finite-dimensional
G-representation V in V, we have that a(K' xU) C K' xV,soa(K xU) C K xV as
well. In particular, the orthogonal complement of a(K x U) in K x V is the restriction
to K of the orthogonal complement of a(K’ x U) in K’ x V over K'. Hence, after
taking spectrifications over K and over K’, we get a canonical map of G-spaces

Muy(K))y — (Mu(K'))v
over the inclusion K — K’ for any finite-dimensional G-representation V' in V. We
define
(My(X))v = colimxcx compact(Muv(K))v
over all compact G-subspaces K of X and their inclusions. Then My(X) is a G-
spectrum over X indexed on V, and for all U C U’ in U, there is a canonical isomor-
phism
=% Y Mo (X) = My(X).
Therefore, we can define for a G-spectrum E over X indexed on U
a+E = colimyey By A My (X).
For a G-spectrum E’ over X indexed on V, define
(a*E")y = Hom(My(X), E')
for every finite-dimensional G-representation U contained in Y. Equivalently, let
ik : K — X be the inclusion of K in X for each compact subspace K of X. Then
axE = colimgc x (alk)« (1% E)
and
a*E’ = lingx(a}K)*(i;{E,).
It is again straightforward to check that (a«,a*) form a pair of adjoint functors. The
fact that they satisfy conditions (2.3) and (2.4) follows from the compact case.
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16 CHAPTER 2. SPACES AND SPECTRA OVER A BASE SPACE

Example 2.7. — Suppose that the G-linear isometry ¢ : X — Z(U,V) is a constant
map into a point a € Z(U,V). Then for a G-spectrum E’ over X indexed on V, the
G-spectrum over X a*E’ indexed on U is just given by

(2.8) (a*E")y = E('I(U)

for each finite-dimensional representation U C Y. Similarly, if £ is a G-spectrum
over X indexed on U, then a.FE is the spectrification of the G-prespectrum a} °E
over X indexed on V given by

(2.9) (@E)y =5 g
for each finite-dimensional representation V' contained in V.

More generally, suppose A is a G-space over X such that the structure map A — X
is open, and

a:A— X xIU,V)

is a G-map over X. Equivalently, this is just any G-map A — Z(U, V). Then we can
define the twisted half-smash product

A X4 — : G-spectra over X on U — G-spectra over X on V
and its right adjoint, the twisted function spectrum functor
F,[A, ) : G-spectra over X on V — G-spectra over X on Y.

For each point z € X, consider the map a; : Az — Z(U,V), on the fibers over z.
This is equivariant with respect to the isotropy subgroup G, of x. For a G-spectrum
E over X indexed on U*, the functor A x, — will have the property that

(2.10) (Axg E)y = Az Xqo, E;

where the right hand side is the twisted half-smash product of G, -spectra defined
in 8], Chapter VI, and [4]. Likewise, for a G-spectrum E’ over X indexed on U, the
twisted function spectrum functor will have the property that

(211) Fa[A» E,):c = Faz[Ax’ E;)

If A= X, then a: A — I(U,V) is a G-linear isometry over X, and we will have that
AXy— =y, Ful4,-) = ao*.

The construction of Ax,— and F,[A, —) are similar to that of [5]. Let pq : A —» X
be the structure map of A over X. The map o : A — X x Z(U, V) is equivalent to
any G-map A — Z(U,V), so it also corresponds to a G-map over A

a:A— AXIU,V).

Note that by an abuse of notation, we will denote this map also by a. Then our
definition is as follows.
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Definition 2.12. — For o : A — X x I(U,V), as above, define the functor A x4 — to
be the composition
(pa)*
A X, — : Spectra/X on Y ————— Spectra/A on U

*

L SN Spectra/A on V

ﬂ Spectra/X on V.

Here, (pa)y and (pa)* are the base change functors with respect to p4a : A — X, and
o, is the universe change functor of spectra over A with respect of o thought of as a
G-map over A. Similarly, define the functor F,[A, —) to be the composition

(pa)”

F,[A,-) : Spectra/X on V Spectra/A on V

— 2 , Spectra/A on U

——(%—» Spectra/X on U.

From the definitions, it is clear that when A = X, the twisted half-smash product
and the twisted function spectrum functors are just the change of universe functors.
The proofs of (2.10) and (2.11) are similar as for (2.3) and (2.4).

Also, the twisted half-smash product and twisted function spectrum are functorial
with respect to A in the following sense. Suppose that A and B are spaces over X, with
open structure maps p4 : A — X and pp : B — X respectively. Also, let g: A — B
be a (not necessarily open) G-map over X. Suppose that ap : B — I(U,V) is any
G-map, and let ay4 = ap-g: A — I(U,V). Then we claim that there are natural
transformations

gX —: AXg, — — B Xy —
Flg,=) : Fag|B,—) — Fa,lA,—)

that are compatible with respect to compositions of G-maps over X. For the first
statement, note that ps = pp - ¢g. So we have for a G-spectrum E over X indexed
onlU,

Axa, = (pa)i(aa)«(pa)"E = (p)igs(aa)«g*(pB)"E.

It is straightforward to check that the diagram of functors

QB )«
Spectra/B on U —(—B—)——> Spectra/B on V

| ls

Spectra/A on U T) Spectra/A on V
QaA )«
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18 CHAPTER 2. SPACES AND SPECTRA OVER A BASE SPACE

commutes up to natural isomorphism. Hence, we get a canonical map

g% E: Axa, E=(pp)ygig"(0)«(pB) E — (pp)y(a5)+(pB)*E = B Ko, E.

Here, the map c is the counit of the adjunction pair (gy, g*). The map F[g, —) on the
twisted function spectra follows by adjunction. More specifically, for any G-spectrum
E over X indexed on U, and G-spectrum E’ over X indexed on V, there is a canonical
map of morphism sets of spectra
HomSpectra on u(E, Fop [B, E/)) = HomSpectra on V(B Xap E, El)
— HomSpectra on V(A Yo, E, EI)
= HomSpectra on L{(E7 FaA [A’ El))

where the middle map is induced by g x E. Setting E = F, (B, E’) and starting with
the identity map on F, ,[B, E’) gives F[g, E’) in

HomSpectra on u(FaB [B7 E,), FaA [Aa E,))

Now for G-spectra E and E’ over X indexed on U, we can define the external
smash product EAE’ as a G-spectrum over X indexed on U & U. Namely, for finite-
dimensional representations V and V' in U, we define

(EKE,)VQ;VI =FEy A E(//

Choose a G-linear isometry a : X — Z(U & U,U) over X. Then define the internal
smash product of E and E’ to be

EAE' =a,(EAE).

Let L(n) = Z(U®™,U). In [8], Lemma II.1.5, it is shown that £ is a contractible
G-equivariant operad. Hence, the internal smash product of G-spectra over X is
well-defined up to coherent homotopies.

Similarly, given a spectrum F indexed on U/ and a spectrum E” indexed on U ® U,
we can define the external function spectrum F(E, E”), which is a spectrum indexed
on U. Namely, for a finite-dimensional representation V' contained in I/, we have that

F-(E, E”)V = Hom(u@u)-spectra(zooSVKEa E”)

where Hom y/g)-spectra(—» —) denotes the G-space of maps in the category of spectra
indexed on U @ U. Then for spectra E and E’ indexed on U, the (internal) function
spectrum F'(E, E') is defined as

F(E,E'Y=F(E,a*E’)

for a linear isometry a: X — Z(U & U, U).

The proof of the following lemma is similar to the case of G-spectra over a point ([8],
I1.3.12). For a finite-dimensional G-representation V, we let X¢° denote the V-th
shift desuspension of the suspension spectrum functor, and let E;I‘i’ft denote the shift
desuspension spectrum functor, similar to those defined in (8], Section I.4.
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Lemma 2.13. — If E is a G-spectrum over X indered on U, and Z is a based G-space
over X, then for any finite-dimensional G-representation V contained in U, there is
a natural homotopy equivalence

EANx 397 ~ 530 (E Ax Z).

Here, the right hand side is the smash product of a spectrum with a space, which has
a canonical definition, and the left hand side is the smash product of spectra indezed
on U, using any linear isometry X — T(U®%,U) over X.
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CHAPTER 3

CLOSED MODEL STRUCTURE ON SPECTRA
OVER A BASE

The model category structure on spectra parametrized over a base G-space X is
defined in [11], similarly as for unparametrized spectra (for basic definitions on model
categories, see [3], see also [4]). In this chapter, we give a self-contained description of
the model structure. First, we define the model structure on the category of G-spaces
over X. We begin by recalling the model structure on the category of G-spaces. A
map f : X — Y of G-spaces is a weak equivalence in the category of G-spaces if
for every closed subgroup H of G, the map f¥ : Xf — Y is a weak equivalence
nonequivariantly. The map f is a fibration if f¥ is a Serre fibration for every H. It
is a cofibration if it is a retract of relative G-cell complexes, which are obtained by
attaching cells of the form G/H x D™*1 along G/H x S™. In particular, the acyclic
cofibrations are retracts of deformation retracts obtained by attaching cells of the
form (G/H x D"*1) x I along G/H X Dp41.

Recall that a map of nonequivariant spaces is a (Serre) fibration if and only if it
has the right lifting property with respect to the inclusions S™ — D"*! for all n. So
the G-equivariant map f : X — Y is a fibration if and only if for all subgroups H in
G, the dotted arrow exists for all squares of the form

S —— xH

b
Ll

Dn+1 —_— YH

in the category of nonequivariant spaces. The functor (—)¥ from the category of H-
spaces to nonequivariant spaces has a left adjoint, which is regarding a nonequivariant
space as a fixed H-space. So this is equivalent to having the dotted arrow in all squares
of the form

St ——X

A

Dn+1 —Y.
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in the category of H-spaces, for all closed subgroups H of G, where S™ and D™*! are
regarded as fixed H-spaces. Also, f : X — Y is a map of H-spaces by forgetting the
actions on X and Y from G to H. The forgetful functor from G-spaces to H-spaces
has a left adjoint G/H x —, so the above diagram is in turn equivalent to

G/HxS"———;[X

|

G/H x D"t! —— vy

in the category of G-spaces. Hence, the map f is a fibration of G-spaces if and
only if it has the right lifting property with respect to all inclusions of the form
G/H x S™ — G/H x D"*!, for all subgroups H of G.

For based G-spaces over X, we define the model category structure as follows.

Definition 3.1. — A map g : T — Z of based G-spaces over X is a cofibration/weak
equivalence/fibration if it belongs to the corresponding class of maps in the category
of unbased G-spaces.

It is easy to see that this gives the structure of a model category to GTop, /X.
We include the following result for motivation and future reference.

Lemma3.2. — For f : X — Y, suppose Zy,Z5 are fibrant G-spaces over Y, and
g:Z1 — Z3 is a weak equivalence over Y. Then

g f*(Z1) — *(Z2)
is a weak equivalence over X.

We defer the proof of Lemma 3.2 to Chapter 7.

For f : X — Y, by Lemma 3.2, f* preserves fibrations and weak equivalences
between fibrant objects. Thus, the functors (fy, f*) form a pair of Quillen adjoint
functors, so they pass to a pair of adjoint functors on the homotopy categories of
based G-spaces over X and Y. If Y is a cell complex, and f : X — Y is a fiber
bundle whose fiber is also a cell complex, then f* preserves attachment of cells, so it
preserves cofibrations and acyclic cofibrations in addition. In that case, the adjoint
functors (f*, f.) are also a pair of Quillen adjoint functors.

We define the following model structure on the category of parametrized spec-
tra over X. We say that a map ¢ : £ — E’ of parametrized G-spectra over X
is a relative G-cell complex if Y is obtained by attaching cells of the form
(EZ)x ((G/H x D)1 X) to X along (X5°)x((G/H x S™) I X) in the category
over X. Here, (£{°)x denotes the V-th shift desuspension of the suspension spectrum
in the category of spectra over X. As a based G-space over X, (G/H x D"*1) 11 X
may have structure map induced by any map G/H x D"*! — X, and (G/H x S™)[1X
is a based G-space over X via the restriction.
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Definition 3.3. — Let f : E — E' be a map of parametrized G-spectra over X.

(1) f is a fibration if for every finite-dimensional V' C U, fy : Ey — Ej, is a Serre
fibration of G-spaces;

(2) f is a weak equivalence if for every finite-dimensional V' C U, fv : Ev — Ey,
is a weak equivalence of G-spaces;

(3) f is a cofibration if f is a retract of a relative G-cell complex.

The following proposition is an analogue of Proposition 6.9 of [10].

Proposition 3.4. — The classes of cofibrations, weak equivalences and fibrations, as in
Definition 3.3, define a closed model structure on the category of parametrized spectra
over X.

Proof. — We will first define cofibrations and weak equivalences of spectra over X
as in Definition 3.3, and define a class of “R-fibrations” by the right lifting property
with respects to all acyclic cofibrations, and show that this is a model structure by
arguments similar to those of [4] and [10]. By definition, we have the lifting axiom
for a square with an acyclic cofibration and an R-fibration. By the small object
argument (see [3]), for any map f : E — E’, we can attach cells of the form

(E¥)x(G/H x D)1 X — (7)) x (((G/H x D*) L X) Ax (X x I) I X))

and factor f to a composition of an acyclic cofibration and an R-fibration. For the
other factorization, we again use the small object argument and attach cells of the
form
(Z¥)x(G/H x SHYII X — () x(G/H x D" 11 X.

This factors f into a composition of a cofibration and a map that has the right lifting
property with respect to all cofibrations.

Now let p : E — B be any map that has the right lifting property with respect to
all cofibrations. Then p is certainly an R-fibration. Also, for any V, the diagram of
G-spectra over X

EP)x(G/H x SM)II X —:—/; E
| ]
(£59)x(G/H x D)1 X —— B
is equivalent to a diagram in the category of G-spaces
(G/Hx SM I X -——))(EV
l -7 -7 lpv
(G/H x D)l X —— By.

The dotted arrow exists in the diagram of spectra, so it exists in the diagram of
G-spaces as well. Hence py is an acyclic fibration of G-spaces, and thus a weak
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equivalence of G-spaces, for each V. This gives that p is an acyclic R-fibration. The
lifting axiom for a square with a cofibration and an acyclic R-fibration follows formally.

Now we will show that the class of R-fibrations is exactly the same as the class of
fibrations as given in Definition 3.3. Let f : E — E’ be a map of spectra over X. If
f has the right lifting property with respect to all acyclic cofibrations over X, then
for any finite-dimensional V' in the universe, we can consider the lifting diagram of f
with any map from the acyclic cofibration

(E¥)x(G/H x DY) I X — () x((G/H x DML X Ax ((X x I) 11 X)).

Then by applying the adjunction between (X¢°)x and taking the V-th space, we
see that fy is a fibration of G-spaces for every finite dimensional V' in the universe.
Conversely, if f is fibration of G-spaces on each finite-dimensional V', then each testing
diagram of spectra of the form

(29)x(G/Hx D)1 X ———— 3 F

(3.5) l T lf

E)x(G/HxDMIOX Ax (X xI)IX)—— B
is equivalent by adjunction to a diagram of G-spaces of the form

(G/Hx D" IX ————— Ey

(3.6) | jn

((G/H x D™ L X) Ax (X x ) I1 X) —— Ei,.

The dotted arrow exists in the diagram of G-spaces, so it exists in the diagram of
spectra as well. It is easy to check that it is automatically a map of spectra over X.
Thus, a map of spectra over X has the right lifting property with respect to all relative
cell complexes over X which are also weak equivalences if and only if it is a fibration
on each space. This gives Proposition 3.4. O

We also have a parametrized version of the relative Whitehead theorem. We state
it as a parametrized version of the HELP (homotopy extension and lifting property)
lemma (Theorem 1.5.9 of [8]).

Lemma3.7. — Let j : E — E' be a relative G-cell complex over X, and let e :
N — P be a weak equivalence of fibrant spectra over X. We can write E A I as the
parametrized spectrum EAx (X x )ILX) over X. Then if we have maps f : E' — P,
g:E— Nandh: ENIy — P over X such that f-j=h-iy ande-g = h-iq,
then there are maps G: E' — N and h: E' A I, — P over X such that the following
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diagram commutes.

E—"0 LEALL«2 F
h , g
J

(3.8) j P € N j

K _— X —

A

N AN

N N
E——— EN+—— F'

20 11

Again, we will prove Lemma 3.7 in Chapter 7. The parametrized version of the
Whitehead theorem follows from Lemma 3.7, similarly as in the classical case.

Proposition 3.9. — Let X be a cell complex. If E is a relative cell spectrum over X,
and e : N — P is a weak equivalence of fibrant spectra over X, then in the homo-
topy category of spectra over X, the induced map of morphism sets Hom(E,N) —
Hom(E, P) is a bijection. In particular, a weak equivalence between relative cell spec-
tra over X which are also fibrant over X is a homotopy equivalence.

We will show that the model structure given by Definition 3.3 is equal to the model
structure of [11], where the class of stable fiberwise weak equivalences of parametrized
spectra over X is defined as follows. For each z € X, let G, C G be the isotropy
subgroup of z. Let E is a parametrized spectrum over X. For x € X, the fibers
{(Ev)s} over z form a G -spectrum in the classical sense. If E, E’ are fibrant (in
the sense of Definition 3.3) parametrized G-spectra over X, a map f : E — E’ is
said to be a stable fiberwise weak equivalence if for every x € X, the map on fibers
fz : Ex — E! is a weak equivalence of Gy-spectra. For maps f : E — E’ between
general parametrized G-spectra over X, f is a stable fiberwise weak equivalence if it
is a stable fiberwise weak equivalence after we apply fibrant replacement to F and E’
in the model structure of Definition 3.3. Together with the same cofibrations as those
given in Definition 3.3 and fibrations determined by the right lift property, this gives
a closed model structure on parametrized spectra.

Proposition 3.10. — A map f : E — E' of parametrized G-spectra over X is a stable
fiberwise weak equivalence in the sense of [11] if and only if it is a weak equivalence
in the sense of Definition 3.3.

We will need the following lemma.

Lemma 3.11. — Let f : E — E' be a map of parametrized G-spectra over X , which are
fibrant in the sense of Definition 8.3. Then fis a stable fiberwise weak equivalence if
and only if for every finite-dimensional V. C U and x € X, the map (fv)z : (Ev)z —
(EY )z is a weak equivalences of based G -spaces.
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Proof. — For each x € X, the fiber spectra E, and E! are just taken spacewise, so
it suffices to show that for any subgroup H of G, a map of H-spectra g : D — D’ is
a weak equivalence if and only if for every finite-dimensional V C U, gv : Dy — Dy,
is a weak equivalence of based H-spaces. This follows from Theorem 3.4 of [9]. Now
we apply it to the case where H = Gy, D = E; and D' = E., for all z € X. a

Given Lemma 3.11, to show that stable fiberwise weak equivalences are the same
as weak equivalences of Definition 3.3, it suffices to work on the level of fibrant based
G-spaces.

Lemma 3.12. — Let f : T — Z be a map of fibrant parametrized G-spaces over X.
Then f is a weak equivalence in the category of G-spaces if and only if for every
z € X, the map on fibers over x

fa:Ta:‘—’Zz

1s a weak equivalence in the category of Gz-equivariant spaces, where G, is the isotropy
subgroup of x.

Proof. — Themap f : T — Z is a weak equivalence of G-spaces if and only if for every
subgroup H C G, fH : TH — ZH is a nonequivariant weak equivalence. Likewise, for
z € X, the map on fibers f, : T, — Z, is a weak equivalence of G -spaces if and only
if for every H C Gy, (f2)® : (Tw)¥ — (Z,)¥ is a nonequivariant weak equivalence.
But note that (T)¥ = (TH),, (Z,)? = (Z¥),, and

(fw)H = (fH):c : (TH)I - (ZH)Z'

Also, for a pair (x € X, H C G), the condition that H C G, is equivalent to the
condition that z € X¥. So it suffices to show that each of the nonequivariant maps
fH . TH — ZH over X# is a weak equivalence if and only if for every x € XH, (fH), :
(TH), — (ZH), is a nonequivariant weak equivalence. Note that as nonequivariant
spaces, TH and Z¥ are fibrant over BH. The fact that fH is a weak equivalence
implies that (f), is a weak equivalence for all z follows from Lemma 3.2. The
converse statement follows from standard arguments using the long exact sequence in
homotopy groups. O

Lemmas 3.11 and 3.12 show that between parametrized G-spectra over X whose
spaces are all fibrant, stable fiberwise weak equivalences are the same as weak equiv-
alences given in Definition 3.3. Let I be the fibrant replacement functor with respect
to the model structure given in Definition 3.3, For a general map f : E — E’, the
diagram

E—TFE

1

E' —TE
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commutes. By the above argument, f is a stable fiberwise weak equivalence if and
only if I'y is a weak equivalence on each space. But the maps E — I'E and E’ — I'E’
are weak equivalences on each space. So f is a stable fiberwise weak equivalence if
and only if it is a weak equivalence on each space.

Similarly as in the case of G-spaces over X, for a map f : X — Y, the functors
(fy, f*) on the categories of G-spectra over X and Y form a Quillen adjoint pair.
This is because the functor f* for parametrized G-spectra is defined spacewise, and
so are fibrations and weak equivalences of parametrized G-spectra. If Y is a G-cell
complex, and f is a fiber bundle whose fiber is also a G-cell complex, then the functors
(f*, f«) on the level of parametrized G-spectra also form a Quillen adjoint pair, again
since f, for parametrized G-spectra is defined spacewise, as are fibrations and acyclic
fibrations of parametrized G-spectra.

We record the following lemma, whose proof we will defer to Chapter 7.

Lemma 3.13. — Let X — Y be a map of G-spaces, and let T and Z be fibrant and
cofibrant based G-spaces over X, with structure maps pr : T — X and pz : Z — X.
Suppose f : T — Z is a map of based G-spaces over X, such that f forgets to a
homotopy equivalence over Y. Then f is a homotopy equivalence over X.

The proof of the following lemma is similar to that of Proposition 7.1 in the Ap-
pendix of [4].

Lemma 3.14. — Suppose that X is a G-cell complez, and a : X — IT(U,V) is a G-
map. Then the adjoint functors (a«,a*) on the categories of G-spectra over X indezxed
onU and on V form a Quillen adjoint pair. Hence, they pass to an adjoint pair of
functors on the homotopy categories of G-spectra over X indexed on U and on V.
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CHAPTER 4

THE EQUIVARIANT DUALITY THEOREM

The goal of this chapter is to formulate and prove a general duality theorem that
combines (1.1) and (1.2) in the context of equivariant topology. Foramap f: X —»Y
of G-spaces, it is more natural in topology to define fy, the left adjoint to f*, than f :
and fi directly. So for an appropriate condition of smoothness of f, if we can define
the dualizing object Cy of f, (1.1) states that we can define

= (=)rCs.

If in addition, we have that Cy is invertible in the stable homotopy category over X,
then — A C is an invertible functor on the stable homotopy category over X, so we
can define f; in the stable homotopy categories to be

f! = fu(— A C;l).

Then f; is the left adjoint functor to f' in the stable homotopy categories. Thus, the
appropriate statement of duality, which puts together (1.1) and (1.2), is that for the
right class of maps f : X — Y, with conditions that are analogous to smoothness and
properness for schemes, we can define an invertible spectrum Cy over X, such that
for a spectrum E over X

(4.1) f(ENCEY) x fu(E)

in the stable homotopy category over Y.

We now consider more precisely the conditions in the equivariant context in order
for (4.1) to hold. Let G be a fixed compact Lie group. Let f : X — Y be a map
of G-spaces. Assume that Y is a cofibrant G-space, i.e. a G-cell complex. If Y is
a single point, then “smoothness” and “properness” say that X is a smooth compact
G-manifold. This suggests that (4.1) should hold for a class of “families of manifolds”,
which are some kind of fiber bundles whose fiber is a compact smooth manifold. We
give the following definition.
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Let M be a compact C*°-manifold, not necessarily with a G-action. Let S =
Diff (M) be the group of diffeomorphisms of M, with the C*-topology (see [13]). We
will define the universal equivariant smooth family with fiber M. Define the family
Fsm of subgroups of G “with smooth action on M”, a member of which is a closed
subgroup K C G, together with a group homomorphism 6 : K — S such that K
acts smoothly on M via 6. For (K, ) € Fsy, we can also think of K as a subgroup
in the cartesian product G x S via k — (k,0(k)) € G x S for each k € K. So
equivalently, Fm is the collection of subgroups K C G x S, such that K NS = {e},
and the second projection map K — S gives a smooth action of K on M. For such
a subgroup K C G x S, the first projection map K — G is injective, and makes K
into a subgroup of G, and the smooth action § of K C G on M is induced by the
section projection to S. We can make Fgpn, into a topological category by defining the
morphisms to be subconjugations, similarly as in the definition of the orbit category
of a compact Lie group (see [8], V.9). The topology on the object set of Fyy, is the
discrete topology. There is a functor

Orb : Fomn — (G x S)-spaces

which sends an orbit (G x §)/(K, 8) to itself as a (G x S)-space. Then by taking the
simplicial (G x S)-space B(*, Fsm, Orb), where B denotes the 2-sided bar construction,
with a (G x 8)-action induced by the action of G x S on the last coordinate, we obtain
a universal (G x S)-space EFgy,, which depends on G and M, although we suppress
them in the notation here.

Recall that the 2-sided bar construction of a category, originally introduced by
J.P. May, is defined as follows. Let C be a small category, D : C — Sets, € : C°P — Sets
be functors, then the simplicial set B(E,C, D) (the 2-sided bar construction) is defined
to have the n-th stage

€ Xobj(c) Mor(C) xobj(c) * -+ Xobj(c) Mor(C) Xobjc) P
(with n copies of Mor(C)). The degeneracies are provided by inserting the map Id :
Obj(C) — Mor(C), and faces are given by structure maps

Mor(C) X opj(c) Mor(C) — Mor(C) (composition)
Mor(C) Xopjicy P — D (functoriality)
C X obj(c) Mor(C) — C (functoriality)

where D is identified with Hcopjc)P(z), and similarly for £. In our setting, we
need the generalization of this concept to (equivariant) topological categories, which
is standard when Obj(C) is discrete and D, £ are continuous functors.

The (G x S)-space EFyn is not necessarily a (G x S)-cell complex. However, we
can factor out the action of S, and apply G-cell approximation. So as a G-space, the
G-cell approximation of EFgy, /S is constructed from cells of the form

(G x S/(K,0))/S x 8™ = G/K x 8"
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where (K,0) € Fom. We are using the fact that the Diff (M )-conjugacy classes of the
pairs (K, 6) form a discrete set [14]. In particular, the G-orbits of EFyn, /S are of the
form G/K, where (K,0) € F,. We define the universal equivariant smooth family
with fiber M to be the G-equivariant map

Y(G,M) : EFgy Xxs M — EFsn/S.

Over each orbit G/K = ((G x §)/(K,6))/S (this is a canonical isomorphism) of
EFsn/S, the fiber of v(G, M) is

(G xS/(K,0)) xs M =G x k) M.
So as a G-space, EFs, Xs M is constructed as a colimit of strata of the form

(G x(k.9) M) x 8" = (G/K x S™) x(k,0) M.

Definition 4.2. — We say that a G-equivariant map f : X — Y, where Y is a G-cell
complex with countably many cells, is an equivariant smooth family of manifolds if
it is a pullback of the universal equivariant smooth family v(G, M) via some G-map
Y — EFyn/S, for a smooth compact manifold M.

Lemma 4.3. — A smooth family of manifolds, as in Definition 4.2, is a fibration of
G-spaces as defined above in Chapter 3.

Proof. — Since fibrations are closed under pullbacks, it suffices to show the universal
family of manifolds

V(GaM):E]:sm XSM_’E]:sm/S

is a G-equivariant fibration. Note that whether a map f : X — Y of G-spaces is a
fibration in our sense can be tested by diagrams of the form

G/HxD'— X
L]
G/HxD"xI——Y

for all closed subgroups H of G. By the adjunction between G/H x — and the forgetful
functor, this is equivalent to a square in the category of H-spaces

Dr"— X
D'x ] ——Y

where D™ and D™ x I are fixed H-spaces. Then by the adjunction between giving
a fixed action to a nonequivariant space and (—)#, this is in turn equivalent to the
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square in the category of nonequivariant spaces

Dr —— xH

L]

D" x I ——YH,
It follows that f is a fibration if and only if for each closed subgroup H of G, the map
of H-fixed points fH : X# — YH is a fibration of nonequivariant spaces.

Now by arguments similar as above, we can consider EF,/S as the simplicial
G-space B(x,Fom,Orb’), where Orb’ is a functor from the topological category Fym
to the category of G-spaces, which takes an orbit (G x 8)/(K,#) to G/K. Although
G/K does not take into account the map # : K — S, a copy of it occurs for every
smooth action of K on M 6 : K — S. Again, the G-action on B(*, Fyy, Orb’) is
induced by the action on G on the last coordinate Orb’. Then to show that the map

B(*, Fom, Orb) — B(x, Fomm, Orb")#
is a nonequivariant fibration, consider the map for a given (K, 6)
(G x 8)/(K,0)" = Orb(G x S/(K,0))¥ — Orb'(G x S/(K,0)¥ = (G/K)!.

Recall that (G/K)¥ is equal to the space of maps G/H — G/K in the orbit category,
so it is empty if H is not subconjugate to K in G. If H is subconjugate to K in G,
then
(G/K)" = {g9K | g'Hg C K}.

For any such g, we have (hg) 'H(hg) = ¢g"'Hg C K, so hgK = gK in (G/K)¥ for
any h € H. We have a canonical embedding H C G C G x S, by embedding H into
the first variable. Then ((G x S)/(K,6))¥ is empty if H is not subconjugate to (K, 6)
in G x S, if we think of (K, #) as a subgroup of G x S via 6. For any (g,s) € G x S,
(g9,8)"'H(g,s) = g"'Hg x {e} in G x S, where e € S is the unit element. So (g, s)
takes H into (K,6) in G x S if and only if g7 Hg C K in G, and 6|,-1, is the trivial
map into S. Thus, if H is subconjugate to (K, 8) in G x S, then

(4'4) ((G X 8)/(K’ 6))H = {(g,s)(K, 0) l g_ng CK, 0|g—1Hg =e: g_ng - S}
Note that if gK = ¢’K in (G/K)¥, and Olg-1pg = €, then g = g’k for some k € K,
and for any h € H,

0(g™ hg) = 0(k™'g' " hg'k) = 0(k)~'0(g'~"hg')0(k) = 0(k) " ef(k) = e.

So 0|y-1pry = €. The map ((G x 8)/(K,0))¥ — (G/K)¥ takes the class of (g, s) to
the class of g. The fiber over the class of g in (G/K)¥ is thus either empty or S.
Furthermore, the condition of (4.4) clearly remains unchanged when K is replaced by
K’ with some ¢” € G such that ¢" 'Kg¢" C K'.

Thus, we only need to show that for gK and ¢’K in (G/K)¥, if the fiber over gK
in (G xS)/(K,6))! is nonempty and the fiber over g’K is empty, then gK and ¢'K
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are in different components of (G/K)*. Suppose they are in the same component of
(G/K)H, then the path between gK and ¢'K in (G/H)¥ breaks up into paths in G
and multiplications by elements of K. So without loss of generality, we can assume
there exists a path {g;} in G, such that for every t € I, g;'Hg C K, and go = g,
g1 = g'. Further, 6|4-1, is the trivial map into S, whereas 6|g/-1 54 : ¢ 'Hy - S
is a nontrivial map. So we can define a continuous path of smooth actions

ptH— S
by
pe(h) = 0(g; ' hge)-
Then po : H — S gives the trivial action of H on M, whereas p; : H — S gives a
nontrivial smooth action of H on M. However, recall that the smooth actions of the
compact Lie group H on M, modulo conjugations by elements of S = Diff (M), form a

discrete set [14]. Since the trivial action of H on M is in its own conjugation class, it
cannot be continuously deformed to any nontrivial action. This is a contradiction. 0O

Given a smooth family of manifolds f : X — Y, we define the dualizing object Cf
as follows. Let A : X — X Xy X be the diagonal map. We think of X xy X as a
G-space over X by w1, projection to the first coordinate. Then A is a map over X.
Then we would like to put

“Cp=X xy X/x(X xy X N A).

To make Cy Hausdorff, we need to replace X xy X N~ A by X xy X \ U, where U
is a G-equivariant tubular neighborhood of A in X xy X. We require A C U to be
a G-deformation retract over X via the first projection m;. This exists when Y is
compact. Then Cy is independent of the choice of U up to homotopy. Alternatively,
we can define a model of Cy to be

(X Xy X) HXXyX\A C(X XyX\A)

i.e. attaching a cone onto X xy X \ A, in the category of G-spaces over X, which
gives a homotopy equivalent construction which is also canonical. In fact, when Y = «
and X is a G-equivariant smooth manifold, Cy is naturally equivalent to the sphere
bundle of the tangent bundle 7x of X.

We have the following essential fact about the dualizing object when f is a smooth
equivariant family of manifolds as above.

Lemma 4.5. — LetU be a complete G-universe. Let f : X — Y an equivariant smooth
family of manifolds, where Y is compact. Then there exists a spectrum Cf‘1 over X
indexed on U, such that C; Ax C;l is homotopy equivalent to the sphere spectrum
Sx over X. (Here, Cy is thought of as a based G-space over X, so Cy Ax C'f‘1 i
well-defined on the point-set level category of spectra.) For general smooth family of
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manifolds f : X =Y, 8P Cy is invertible in the homotopy category of spectra over X
indexed on U, with respect to the model structure of Definition 3.3.

Remark 4.6. — By formal arguments, the inverse C'f‘1 of Cy in the stable homotopy
category over X must be DCy = F(Cy,S°), the Spanier-Whitehead dual of Cj.
On the point-set level, the function spectrum functor depends on a linear isometry
a: X — Z(U®% U). Hence, for each such linear isometry, we get a model for C;l in
the point-set category of spectra over X.

We will postpone the proof of Lemma 4.5. First, note that the functor fy has the
following property. For any finite-dimensional representation V' C U, let Zglm and
Es_h‘ifct denote the shift suspension and desuspension functors by V on the category of
spectra parametrized over a G-space Y.

Lemma 4.7. — For any G-spectrum Z over Y, based G-space T over X, and finite-
dimensional G-representation V. C U, there is a natural isomorphism

(4.8) Saee(Z Ny HT) = Sk i (F1(2) Ax T).

Proof. — Recall that the functor f* is defined spacewise, and the functor f; is defined
by first taking fy spacewise, then taking the spectrification functor L. We first consider
the level of based G-spaces. Let Z be a based G-space over Y, and T a based G-space
over X. Then

f(FZAx T) = fjf(X xy Z) Ax T)
=fiil((X xy Z) xxT/x(X xy Z)UT)
= (X Xy Z) X x T/y(X Xy Z)UT)
Here, (X xy Z) xx T is a G-space over Y via

(XXyZ)XxT—ﬁx—f>Y.

On the other hand,

Z Ny fu(T) =7Z ANy (T/yX)
— (Z xy T)/y((Z xy X)UT).

Here, in the numerator Z xy T', T is thought of as a G-space over Y via the structure
map T — X L, ¥. There is a natural isomorphism over Y

(X xy Z)xxT — ZxyT

which takes ((z, z),t) to (2,t), whose inverse takes (z,t) € Z xy T to ((pr(t), 2),t) €
(X Xy Z) xx T. It induces a natural isomorphism

Z Ay ff(T) = fy)(f*Z Ax T).

ASTERISQUE 285



CHAPTER 4. THE EQUIVARIANT DUALITY THEOREM 35

Now for any spectrum Z over Y and finite-dimensional W C U, the natural iso-
morphism over Y

Zw Ny T = 3(f 2w Ax T)

commutes with the adjoint prespectrum structure maps, so the prespectrum over Y
consisting of the G-spaces {Zw Ay fyT'} is isomorphic to the prespectrum over Y’
consisting of the G-spaces {fy(f*Zw Ax T)}. Applying the spectrification functor
L from prespectra over Y to spectra over Y to both sides gives the isomorphism of
spectra

Z hy fi(T) = L{fy(f* 2w Ax T)}.
Now the spectrum fy(f*Z Ax T) is given by

fi(£*Z nx T) = L(f(L{f* 2w Ax T})).
The diagram of functors

Forget
Spectra/Y ————— Prepectra/Y

/| 5

Spectra/ X ——— Prespectra/X
Forget

commutes, since f* is just defined spacewise on prespectra and on spectra. Thus, the

left adjoints fy and L commute, so fy(f*Z Ax T) is isomorphic to L{fy(f*Zw Ax

T)}. Now applying the shift desuspension functor E;l‘i/ft to the isomorphism gives the

statement of the lemma. 0O

In particular, for the case where T = S% = X II X, f(T) = X IIY, so for a
spectrum Z over Y, Lemma 4.7 gives that fyf*(Z) ~ (X II'Y) Ay Z naturally in the
category of spectra over Y.

The following is our main duality theorem in the equivariant topological context.

Theorem 4.9. — Let f : X — Y be a smooth family of manifolds, and U be a complete
G-universe. Then in the category of spectra over Y indexed on U, for any fibrant and
cofibrant spectrum E over X, we have a natural weak equivalence in the category of
spectra over Y indezxed on U

f«(E) = fy(E nx CFY).

Here, Cf_1 is given in Lemma 4.5, using any choice of linear isometry a : X —
(U U).

Remark 4.10. — This is how, in the present language, one arrives at the concept of
equivariant orientations and Poincaré duality as given in [8], Section III.6. Assume
for simplicity that Y is a point, and X is a smooth G-manifold, with f: X — x. We
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write C for Cy. Let e be a cofibrant and fibrant G-spectrum which is a ring spectrum,
and V a G-representation. Then an e-orientation of X in dimension V is a map

n: fy(C) — »We

satisfying the following condition. (Note that since fy(C) is the Thom space of the
tangent bundle 7x of X, 7 is a V-dimensional class in the e-cohomology of the Thom
space of 7x.) We have that

fi(CAx fre) ~ fyC Ne
naturally by Lemma 4.7. Define the composition

n A lde
—y

(4.11) fi(C Ax f*e) ~ fyC Ae YWene—xVe

where the last map is the ring structure on e. Our condition for 7 to be an e-orientation
is that the adjoint map to (4.11)

(4.12) CAx fre— f*(zVe)

be a weak equivalence of spectra over X.

A V-dimensional e-orientation 1 of X determines a Poincaré duality isomorphism
as follows. Since fy preserves weak equivalences between spectra over X that are
cofibrant and fibrant, by Theorem 4.9 and the discussion after Lemma 4.19 below, so
does f.. Hence, applying f. to (4.12) gives a weak equivalence of G-spectra

1(f*(ZVe) = fu(f*e Ax C).
By Theorem 4.9, the right hand side is weakly equivalent to fy(f*e). Thus, we have

F(F*(ZVe) = fyf*(e).

By Lemma 4.7, the right hand side is just Xt A e, whereas the right hand side is
F(X+,%Ve), so we get a weak equivalence

F(X;,%Ve)~ X4 Ae.
To prove Theorem 4.9, we begin with the following lemmas.

Lemma 4.13. — For a G-equivariant space X, let g : E — E’ be a map of spectra
over X. For a G-subspace K C X, let ix : K — X be the inclusion map. If for
a cover {K,} of X by G-subspaces, i} g : i} E — i} E' is a weak equivalence of
spectra, over K, then g is a weak equivalence of spectra over X.

Proof. — By Proposition 3.10, a map of G-spectra over X is a weak equivalence if
and only if for every x € X, the map on fibers f, is a weak equivalence of G;-spectra.
The condition that i}, g is a weak equivalence for a cover {K,} of X clearly implies
this fiberwise condition. |
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Lemma 4.14. — Let U be a G-universe. Let E be a cofibrant and fibrant G-
spectrum over X, such that for a cover {K,} of X by G-equivariant subspaces, with
ik, : Ky — X the inclusion for each K., i} (E) is invertible in the stable homotopy
category of spectra over K indexed on U. Then E is invertible in the stable homotopy
category over X indexed on U.

Proof. — Let Dx E denote the Spanier-Whitehead dual of E in the category of spectra
over X. Recall that the internal smash product of two spectra F and E’ indexed on U
is given by first taking the external smash product EAE’, which is a spectrum indexed
on U @ U, then applying a change of universe functor coming from a chosen linear
isometry a : X — Z(U®2,U). For cofibrant E and E’, this is independent of the choice
of linear isometry, up to weak equivalences with all coherences. Likewise, the linear
isometry determines a point-set model for Dx E = F(E, S%), the Spanier-Whitehead
dual of E in the category of spectra over X. Then E is invertible if and only if the
evaluation map
EX:EAxDxE—MS?(

is an isomorphism in the homotopy category of G-spectra over X. Since i* is a left
adjoint for any ¢ = ik, it commutes with smash products of G-spaces. Also, for any
given linear isometry a : X — Z(U®2,U), i* commutes with the change of universe
functor a, : Spectra on U U — Spectra on U. Hence, if we define the internal smash
product of spectra and the Spanier-Whitehead dual using a, then

i*(EAx DxE) 2i{"E Nk, i*(Dx E).
Similarly, ¢* commutes with the external function spectrum functor and with a*, so
i*(DxE) = i*Fx(E, S%) & Fx(i*E,i*S%) = Dxi*E
since i*S% = S%. By the naturality of the evaluation map, we get the map over K,
ix.ex = &ik E Ak, Dx(ix, E) — Sk,

This is a weak equivalence for every K,. Thus, ex is itself a weak equivalence over X
by Lemma 4.13. O

We now use Lemma 4.14 to prove Lemma 4.5.

Proof of Lemma 4.5. — We first assume that Y is compact. We will embed X in V' x
Y in the category of G-spaces over Y, for some finite dimensional G-representation V.
The map f is given by the pullback square

X —— EFuy xs M
fl 17(63, M)
Y —— EFgn/S.
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The image of Y in EF,/S is contained in a finite G-cell subcomplex of EFgy,/S.
Denote the preimage of this finite G-cell subcomplex in EFg, by Z. So it suffices to
consider the pullback square

X——ZxsM

|

Yy —— Z/S.

If we have an embedding Z xs M — V x Z/S over Z/S, applying Y x 5,5 — gives an
embedding over Y

X=Yxz/s(ZxsM)—Y xz/5(VxZ/S)=V xY.

Thus, it suffices to consider the universal case, for f = vz(G,M): Z xs M — Z/S.
We first consider an orbit G/K in Z/S, where K C G xS, KNS = {e}, and K
acts smoothly on the fiber M. Again, we can equivalently consider K as a subgroup
of G, with a smooth action § : K — S on M. Also, the fiber over G/K in Z xs M
is G xxg M. We can embed M K-equivariantly into a K-representation W gy, and
embed Wk g) into a G-representation V g). Then we get G-equivariant embeddings

(4.15) G xx M —S G xx Wikg) —— G xk Vikg) = G/K x Vig).

Now using the (G x S)-cell structure of Z, each (G x S)-orbit (G x §)/K of Z has an
open (G x S)-invariant neighborhood U such that (G x S)/K is a (G x S)-equivariant
retract of U (this is a general property of equivariant cell complexes). Using the
compactness of Z/S, we can cover Z by finitely many such neighborhoods Uy, ..., U,.
Now using the retractions, each U; xs M embeds G-equivariantly into U;/S x V; for
some finite-dimensional G-representation V;. Using a G-equivariant partition of unity,
we can then embed Z xs M into Z/S x (&7, V;).

Let SV be the one-point compactification of V' = @2_,V;. It can be shown that
Z/S x SV has a structure of a G-cell complex, Z xs M is a G-cell subcomplex, and
is Spanier-Whitehead dual to its complement. So let v be the normal bundle of the
embedding of Z xs M into Z/S x V. Then the sphere bundle S(v) of v, when smashed
with Cf over Z xs M, is homotopy equivalent to the based space (Z xs M) x SV
over Z xs M. Since (Z xs M) x SV is invertible in the stable homotopy category
over Z xs M, so is C¢. Specifically, define

C;l =S Z>S(v)
where Es_h‘i/ft is the V-th shift desuspension functor in the category of spectra over
Z xs M. Then Cf Agxsm C;' =~ S3%(Cr Azxsm £°5(v)), by Lemma 2.13, is
naturally homotopy equivalent to ES—}X&Z“((Z xs M) x SV)=5%., M-
This gives that Cf is invertible for a smooth family of manifolds f : X — Y, where

Y is compact. For a general smooth family f: X — Y, let K — Y be a compact G-
subspace, so f|x : f7'K — Y, and let ix : f~}(K) — X be the inclusion. We claim
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that i} (Cy) is naturally homotopy equivalent to Cf|f_1K, the dualizing object with
respect to flg-1(x) : fT1(K) — K, as a spectrum over f~1(K). Thus, Lemma 4.14
and the compact case give the the invertibility of Cf, since the equivariant smooth
family f : X — Y is surjective, so {X xy K} over all compact subspaces K C Y gives
a covering of X. To see the claim, recall that up to natural homotopy equivalences,
Cf is the suspension spectrum of the G-space over X

(X xy X)/x(X xy X N A(X))

which means that one attaches a cone of X xy X \ A (in the category of G-spaces
over X) on X xy X, where A : X — X xy X is the diagonal. The functor i* =
f1(K) xx — commutes with colimits, so i} Cy is obtained by attaching a cone
of f7HK) xx (X xy X ~ A(X)) (in the category of G-spaces over f~*(K)) on
FYK) xx (X xy X). We have the obvious isomorphism

FUEK) xx (X xy X) = f74K) xy X.
But if (z,2') € f~1(K) xy X, then f(z') = f(z) e K CY,s0 2z’ € f~}(K), and so
FHE) xx (X xy X) 2 f7H(K) xx f7Y(K)

as G-spaces over f~1(K). Similarly, the G-subspace f~}(K) xx (X xy X \ A(X))
is isomorphic to f~1(K) xx f~HK) ~ A(f71(K)) over f~1(K). Thus, i}(Cs) is
obtained by attaching a cone of f~(K) xx f~1(K) ~ A(f~!(K)) in the category of
G-spaces over f~'(K) on f~!(K) xk f~'(K), which is the definition of Cy _, . . O

We will need the following notion of bundle-like objects over a base space. As
we will see, in some situations, it is better behaved than the notion of cofibrant and
fibrant objects.

Definition 4.16. — Let X be a G-space. A G-space Z over X, with structure map
p: Z — X, is said to be a homotopy cell bundle over X if for every subgroup H of
G, every point & € X has a nonequivariant open neighborhood U in X#, and an
H-space Fy with the homotopy type of an H-cell complex, such that

p Y U)=U x Fy

as H-spaces over U. Here, U is thought of as a fixed H-space, and U x Fy is an
H-space over U via the first projection.

In the based category, we say that a based G-space Z over X is a based homotopy
cell bundle if the same condition is satisfied, but Fy is now a based H-space with the
homotopy type of a based H-cell complex.

By adjunction, a nonequivariant map U — X¥ is equivalent to an H-equivariant
map U — X, where U is thought of as a fixed H-space. In turn, this is equivalent to
a G-equivariant map

G/HxU=GxgU— X.
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Likewise, a point in X# corresponds to a G-orbit G/H in X. We have G-equivariant
maps G xgp }(U) > Z and G xpgp: G xgp ' (U) — G/H x U, which agree when
we map Z and G/H x U to X, so we get a G-equivariant map

Gxgp Y(U)— (G/H xU) xx Z.

This takes a point (g,z) € G xg p~*(U), where z € p~1(U) C Z, to ((g,p(2)),92) €
(G/H xU) xx Z, where (g,p(2)) € G/H x U, and gz € Z. It is routine to check that
this map is in fact a G-equivariant isomorphism. Therefore, the square

Gxgp ' (U)— 2

[ ]
G/HxU—X

is a pullback in the category of G-equivariant spaces. Hence, the condition of Defi-
nition 4.16 is equivalent to the condition that for every G-orbit G/H in X, there is
some G-equivariant open neighborhood of the form G/H x U of G/H in X, such that

(G/HxU)xx Z=G xg (Fy xU)

as G-spaces over G/H x U, where U is thought of as a fixed H-space.

In particular, by equivariant cell subdivision, a homotopy cell bundle Z over a
G-cell complex X is both fibrant and cofibrant in the category of based G-spaces
over X. Similarly as in the case of based spaces, we can also define homotopy cell
bundle spectra over X.

Definition 4.17. — For a G-space X, a G-spectrum FE over X indexed on a G-universe
U is a homotopy cell bundle spectrum if for every subgroup H of G and z € XH,
z has a nonequivariant open neighborhood U in X¥, and an H-spectrum Ey of
the homotopy type of a cell H-spectrum (indexed on U which is thought of as an
H-universe), such that for the inclusion i : U — X and 7 : U — *,

i*"(E) 27" (Ey)
as H-spectra over U. Here, U is thought of as a fixed H-space.

Again, this is equivalent to the condition that for every G-orbit G/H in X, there
is a G-equivariant open neighborhood of the form G/H x U of G/H in X, such that
if we write ¢ : G/H x U — X for the inclusion, and 7 : G/H x U — *, then

i*"(E) 2 G xyg (" Ey)

as G-spectra over G/H x U. If X is a G-cell complex, then a homotopy cell bundle
spectrum E over X is cofibrant and fibrant in the category of G-spectra over X.
We have the following special case of homotopy cell bundles.

Lemma 4.18. — LetY be a G-cell complex, and f : X — Y be an equivariant smooth
family of manifolds. Then X is a homotopy cell bundle over Y.
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Proof. — Let the fiber of the smooth family be the manifold M. It is easy to see
that the condition that a map be a homotopy cell bundle is closed under pullbacks.
So it suffices to consider the universal case f : EFom Xpig(m) M — EFom/ Diff(M).
Locally, if H is a subgroup of G, and 6 : H — Diff (M) is a smooth action of H on
M, then we have a cell G/H x D" in EFgy,/ Diff (M), and the map f over this cell is

(G X (mg) M) x D" — G/H x D".

By [14], for each H, the space of smooth H-actions on M is discrete after we take
the orbit space of the action of Diff (M) by conjugation. Hence, for each 8 giving a
smooth H-action on M, let Diff(M)g be the isotropy subgroup of 6 in Diff (M) with
respect to the conjugation action, i.e. Diff(M)y is the subgroup of H-equivariant
diffeomorphisms on M when H acts on M by 6. Then

Diff (M) — Diff(M)/ Diff (M),

is a fibration. The target of this map is the component of 8 in the space of smooth
H-actions on M. Hence, suppose we have a given H and an H-fixed point z in
Y = EFym/S, such that the fiber over z is M with a smooth H-action via 6. Then
by taking a section of the fibration from Diff (M) to the space of smooth H-actions
on M, we can find an open neighborhood U of z in Y such that for every y € U,
the fiber over U is M with a smooth H-action by ay6c; !, where a,, € Diff(M) varies
continuously with y. This allows us to define an H-equivariant isomorphism between
X xy U and U x M over U, where M is an H-space via 6, by conjugating by 1 on
the fiber over y for each y € U. O

We will also need the following result.

Lemma 4.19. — Let X be a G-cell compler, p : Z — X a based homotopy cell
bundle over X. Then for any cofibrant spectrum E over X indexed on a complete
G-universe U, E Nx Z is cofibrant.

Proof. — A cofibrant spectrum F is the retract of a G-cell spectrum over X. Since
— Ax Z preserves retracts, we can assume that E is a G-cell spectrum over X, i.e. it
is constructed by attaching cells of the form X{°(G/H x D™) I1 X onto X, where V
can be any finite-dimensional G-representation in U, and (G/H x S™) II X can be
a based space over X via any map G/H x S™ — X. Since cofibrancy is preserved
by pushouts and directed colimits, by gluing the cells of E, it suffices to show that
E Ax Z is cofibrant for the the case of E = L((G/H x D™) I X). In this case,
E Ax Z is naturally homotopy equivalent to X5°(((G/H x D™) I X) Ax Z). Hence,
it suffices to show that if T is a based space over X, such that the basepoint X — T'
is a relative cell complex over X, then T Ax Z is cofibrant as a based space over X.

In this case, X is a G-cell complex, and T is a relative cell complex over X, so T
is a G-cell complex as well. Let i : X — Z be the basepoint of Z, then i is also
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homotopy equivalent a relative cell complex. We have the pullback maps over X

T ; T x
Tﬂ)TXXZ-—X—p)T

w T

X ; A 7 > X

where T x x p is the pullback bundle of p, with the same fibers as p : Z — X. By
subdividing X and T to make the cells of X and the cells of T over X small enough,
we can assume that the bundle T' x x p is of the form

(G XHFc) an——>G/H><Dn

when restricted to each cell C = G/H x D™ of the G-cell complex T, where Fg,
the fiber over C, is a based H-space of cell homotopy type. Since the fiber Fc has
cell homotopy type, by equivariant cell subdivision, we can give a G-cell structure to
(G xg Fc) x D™ = (G/H x D™) xx Z, such that

(G/H x D) xx i

(G/H x D™

is homotopy equivalent to a relative G-cell complex. After gluing together the cells of
T, we get a G-cell structureon T'x x Z,suchthat T xx i : T — T x x Z is a relative
G-cell complex. We can do the cell subdivision over the cells of X and the cells of T
over X separately, so after gluing the cells of ', Z — T x x Z is again a relative cell
complex. Hence, the top map of the pushout diagram

‘(GXHFc)XD"

TVxZ——T xx 2

|

X—TNx2Z

is also a relative G-cell complex over X. Hence, the bottom map is a relative G-cell
complex over X as well. But this is the basepoint of TAx Z, i.e. T Ax Z is a cofibrant
based space over X. O

The case in which we are interested is the following. Let f : X — Y be a G-
equivariant smooth family of manifolds, where Y is a compact G-cell complex. Con-
sider the model of the dualizing object C given by

(X Xy X) HXXyX\A C(X XyX\A),

i.e. attaching a cone onto the complement of the diagonal A in X xy X. Since
f: X =Y is a G-bundle whose fiber is a cell complex, X is a G-cell complex by equiv-
ariant cell subdivision. So Cf is homotopy equivalent to the sphere bundle S(7|x) of
the tangent bundle of X. Choose any linear isometry a : X — Z(U®2,U{). As shown
in the proof of Lemma 4.5, by the compactness of Y, the spectrum C'f‘1 = DCy is
homotopy equivalent to ¥ ' S(v|x) for some finite-dimensional G-representation Y,
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where v|x is the normal bundle of an embedding of X into V x Y over Y. As the
sphere bundle of a G-equivariant vector bundle, the map S(v|x) — X is a cell homo-
topy bundle over X. So for any cofibrant spectrum E over X indexed on U, we have
a natural homotopy equivalence

E Ax C7' = S50 (E Ax S(vIx))

where the right hand side is the smash product of a spectrum with a space over X.
By Lemma 4.19, E Ax S(v|x) is cofibrant. Hence, E Ax C'f‘1 is naturally homotopy
equivalent to a cofibrant G-spectrum over X.
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CHAPTER 5

PROOF OF THE MAIN THEOREM

We will now proceed with the proof of Theorem 4.9. We first prove the theorem in
the case where Y is compact. The general case follows from applying Lemma 4.14 to
the dualizing object Cy, and a colimit argument. We will write C for the dualizing
object Cy. For the compact case, we will define inverse natural equivalences between
fv and fy(= Ax C71).

We first define the maps on the level of based G-spaces. Let f : X — Y be an
equivariant smooth family of manifolds, with Y compact. Fix an embedding of X
into Y x SV for some G-representation V as in the proof of Lemma 4.5. Let S(7x)
denote the sphere bundle of the tangent bundle 7x of X, and let S(vx) denote the
sphere bundle of the normal bundle vx of X in Y x SV. By the proof of Lemma 4.5,
for any choice of linear isometries a : X — Z(U®%,U), C~! is naturally homotopy
equivalent to X3, 5% S(vx). In particular, fy(S(vx)) = Th(vx) is the Thom space
of vx in the category of based G-spaces over Y, so fj(C~!) is naturally homotopy
equivalent to zs—h‘i’ftzoo Th(rx ). The Pontryagin-Thom construction gives a map

(5.1) Sy — Th(vx)

which collapses a complement of a normal tubular neighborhood of X in Y x V to Y.
For a cofibrant and fibrant based G-space T over X, by smashing (5.1) with f.(T),
we get the map of G-spaces over Y

(5:2) ¢ TYLAT) — Fu(T) A i(SW)) = fo(T Ax 2 feS(w)) — fH(T AS®)).

Here, the isomorphism is by Lemma 4.7, and the last map is the counit of the adjunc-
tion pair (f*, fi).

We will also give the “inverse” ¢ to ¢. let T be a cofibrant and fibrant G-space
over X, with structure map pr : T — X and basepoint ir : X — T. We would like
to define a natural map

E: f*fu(T) — T Ax C

in the category of G-spaces over X. Then the adjoint to ¢ would give
P fn(T) _— f*(T Ax C)

in the category of G-spaces over Y.
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To define 1, we give some consideration to its source and target spaces. Recall
that fy(T') is defined as a based G-space over Y by the following diagram

i
x L ,p PT . x

|

Y — fi(T) —Y

where the left hand side square is a pushout, and the top and bottom compositions
are identities. Since f* preserves colimits, applying f* to this diagram gives

1d xi 1d x
Xxy X —2 oy T—PT v x

T

X— /() ——— X.

Again, the left hand side square is a pushout, and the top and bottom compositions
are identities. So f* fy(T') is naturally isomorphic over X to (X Xy T')/x(X xy X), the
quotient in the category of G-spaces over X of f*(T) = X xy T by f*(X) = X xy X,
both of which have structure maps via the first projection .

On the other hand, recall that in the category of based G-spaces over X, the
dualizing object C' can be defined up to homotopy equivalence to be

C=Xxy X/x(X xy X\U)
where A is the image of the diagonal X — X xy X, and U is a G-equivariant tubular
neighborhood of A. The smash product T'Ax C is defined to be
T/\XC:(T ch)/x(TVX C)
=T xx (X xy X))/x(T xx (X xy X \U)Uir(X) xx (X xy X)).

There is a natural map from X xy T to T xx (X Xy X), which takes (z,t) to
(t,pr(t), ). At first glance, one might want to define v as the map on the quotients
induced by this map. However, this is not a map over X. As a G-space over X, the
structure map of X xyT = f*(T') is just the first projection, whereas T'x x (X xy X) &
T xy X as a G-space over X, where the structure map is via pr. The two are in
general not isomorphic.

To overcome this problem, we will “thicken” T as a G-space over X by making
the following construction. The product X xy X is a G-space over X by the first
projection 7r;. Assume that the closure of the tubular neighborhood U of A in X xy X
over X is contained in another such G-equivariant tubular neighborhood U’. We also
assume that for each z € X, the fiber U, = U’ N7 '(x) over z in U’ is an open
contractible neighborhood of z in 77 !(z). Such tubular neighborhoods U and U’
exist if Y is compact. We define the following unbased G-space T over X.

T= {((L‘,t) eX xy T |pr(t) e U;}
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The structure map T — X is just the first projection, i.e. (x,t) — z. Since U’ is
G-equivariant, so is T. There is a natural G-map over X

gr: T —T
which takes t to (pr(t),t).

To handle the basepoint, we also define the following based G-space T over X.
There is an injective G-map U’ — T over X, which takes (z,z') to (z,ir(z’)) Define
the based space T over X by

T=T/xU"
If T is cofibrant in the category of based G-spaces over X, then the basepoint map
ir : X — T is a closed injection. Thus, so is the inclusion Idx xyir : X xy X —
X Xy T. So
U'=Tn (Idx XyiT)(X Xy X)
is closed in T, which gives that T is a weak Hausdorff G-space. We define in the based
category over X
gr: T —T — T

to be the composition of the unbased gr and the quotlent map T — T. Since the
unbased gr : T — T and the quotient map T — T are G-maps over X, gr : T — T

is a G-map over X. It is straightforward to check that it is a based map over X.
We make the following observation.

Lemma 5.3. — If T is a fibrant based G-space over X, then gr : T — T is a weak
equivalence over X. If T is also cofibrant or of G-cell homotopy type, then gr is a
homotopy equivalence over X. In particular, suppose T = f*(T") for some fibrant T"
over Y. Definerr : T — T by (z,(z',t')) — (z,t') for (z',') € X xy T' =T. Then
rr 1S a homotopy inverse to gr over X.

Proof. — We first consider the unbased g7 : T — T. Consider the diagram over X

X — U’

A

XXyX

where X xy X is a G-space over X by the first projection. Then A : X — U’ is a
weak equivalence since it is the inclusion of a G-equivariant deformation retract. Also,
consider Idx xypr : X xy T — X xy X. This is a fibration since pr is a fibration.
We have that

T (X XyT) XXnyX

via the G-equivariant isomorphism ¢ — ((pr(t),t), pr(t)), and
T~ (X XyT) XXXyXU/
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via the G-equivariant isomorphism (z,t) — ((z,t), (z,pr(t))) for (z,t) € T C X xyT.
The map g7 : T — T is obtained by pulling back A : X — U’ along Idx xypr. Since
pulling back along fibrations preserve weak equivalences, gr is a weak equivalence.
Also, the quotient map T — T is a weak equivalence over X, since the tubular
neighborhood U’ is G-equivariantly homotopy equivalent to X. Thus, g7 : T — Tis
a weak equivalence over X.

Now suppose the basepoint map i : X — T is a cofibration. We claim that after
forgetting to the category of unbased G-spaces over Y, gr : T — Tis a homotopy
equivalence. To see this, we first consider the unbased gy : T — T. Define sy : T — T
over Y by (z,t) — t. Then st -gr = Idr. Also, let mp : U’ — X be the second
projection. It is not a map over X, but as a G-space over Y, we have

T%JUXXT

where U’ — X by m,. The isomorphism is (z,t) — ((z,pr(t)),t). Also, we have that
T=X xxT,and sy =my xx Idr Ty Xx T — T. The composition

71-2 X A UI

UI
is homotopic to the identity on U via a homotopy H : U’ x I — U’, such that for
everyr € I,

commutes. So H xx Idy : T x I — T is a homotopy over Y between gr - sT and the
identity on T. Thus, gr : T — T is a homotopy equivalence over Y. Further, if we
consider the map X — T which takes € X to (z,ir(x)), then for each r € I, the
map H, xx Idy : T — T is the identity on X.

For the quotient map T — T, note that X is a G-deformation retract of U’, via
a homotopy U’ x I — U’ that preserves the diagonal for all r € I. Now since X is
a homotopy cell bundle over Y, X xy — preserves cofibrations by Lemma 4.19. So
Idx xyir : X xy X — X xy T is a cofibration. Also, X is a G-cell complex. Since
U’ is the total space of the tangent bundle of X, U’ is also a G-cell complex, as is
X xy X. We can divide the cells of U’ and X xy X so that the inclusion U’ — X xy X
is a relative G-cell complex. Thus, the map Idx xyir : U’ — T is a cofibration, so
the quotient map T — Tisa homotopy equivalence, via homotopies that preserves
XinTand T forallr e I.

Thus, the composition gr : T — Tis a homotopy equivalence in the unbased
category over Y, via homotopies that is the identity on the basepoint copies of X in
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T and T for all r € I. Also, the basepoint of T = T/xU' is given by the pushout
diagram
U ——T

o

X—T

The top map is a cofibration, so T is cofibrant over X. Thus, by Lemma 3.13, we can
lift the homotopy inverse of g7 over Y to a based homotopy inverse of gr over X.

In particular, suppose T = f*(T") = X xy T’ for some fibrant G-space T" over Y.
Then we have

T={(z,(a",t) € X xy (X xyT') | o' €U} =U" xy T’

where U’ is thought of as a G-space over Y by U’ =% X — Y. Then by the methods
of Lemma, 3.13, we can choose the lifting of the homotopy inverse sr to a map over X
to be

rp T =UxyT —T=Xxy T

by 1 : U' — X, so (z,(z',t")) v (z,t'). Then rp-gr =Idr. Also, If H : U'xI - U’
is a homotopy over X between 71 : U’ — X and the identity on U’, then H xy Idp
gives a homotopy over X between gr - r7 and the identity on T. For the basepoint,
note that r : T — T passes to a based map rr : T — T over X. One can check
that the homotopy between gr - r7 and the identity on T passes to a based homotopy
over X between g7 - rr and the identity on T. Thus, for T = f *(T"), rr is an explicit
based homotopy inverse to gr over X.

Finally, suppose T is of G-cell homotopy type over X. So there is some based space
To over X, such that the basepoint X — Ty of Ty is a relative G-cell complex, and
there is a G-equivariant homotopy equivalence f : T — Tj over X. The thickening
construction taking T to T = (X xy T) X xx,x U’ is functorial on the category of
unbased G-spaces over X. For a based G-space T over X, T =T/ x (Idx xyir)(U’),
so it is also functorial on the category of based G-spaces over X. Thus, we have a
commutative diagram of G-spaces over X

f

T"—>T0

o |

Tv—,v)ﬁ.

By the above, g7, is a homotopy equivalence. The functor T' — T preserves ho-
motopies, so f is a homotopy equivalence as well. Hence, gr is also a homotopy
equivalence. O

SOCIETE MATHEMATIQUE DE FRANCE 2003



50 CHAPTER 5. PROOF OF THE MAIN THEOREM

The following lemma gives the relation between the thickening of G-spaces over X
with smash products.

Lemma 5.4. — Let T and Z be fibrant based G-spaces over X.

(1) There is a natural weak equivalence over X
a: T//_\\;Z =TA X Z.

If T is also cofibrant over X, and Z is a homotopy cell bundle over X, then o is a
homotopy equivalence over X .
(2) If T = f*(T") for some fibrant based G-space T' over Y, then there is a natural
isomorphism
TAx Z 2T Ay 2.

Proof. — The based G-space T//\}/Z is obtained as a quotient space of the unbased
G-space T' xx Z = {(z,(t,2)) € X x (T xx Z) | pr(t) = pz(z) € Uz}. Similarly,
T Ax Z is a quotient space of T xx Z = {((z,t), (z,2)) | pr(t) € Uz, pz(2) € Uy}
So define the map

a:TxxZ—TxxZ
by (z,(t,2)) — ((z,t), (z,2)). It is routine to check that this map induces a based
G-map on the quotient spaces

—~—

a:T/\XZ——af/\XZ.

This is a weak equivalence by the following commutative diagram, where the two
vertical arrows are weak equivalences by Lemma 5.3, and the top arrow is the identity
map.

TAx Z ——TAx Z

QT/\xZ‘l lgT Ax 9z
T X x ZT)TXX Z.

If T is also cofibrant over X and Z is a homotopy cell bundle over X, then by
Lemma 4.19, T Ax Z is cofibrant over X. So by Lemma 5.3, the two vertical maps of
the diagram are homotopy equivalences. Hence, so is a.

Now suppose that T = f*(T") = X xy T for some fibrant based G-space T” over Y.
We define a map of unbased G-spaces

a:TxX—Z_—»TxXZ.

A point of T xx Z is of the form ((z,t'), (z, 2)), where (z,t) € X xy T' = T, and
pz(z) € Uy. We define the map a to take this point to (z,((pz(2),t’),2)), where
(pz(2),t') € T, so ((pz(2),t'),z) isin T xx Z. One can check that this map induces
a map of based G-spaces on the quotient spaces

a:TAx Z — T Ax Z.
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The inverse of a is induced by the following unbased map
b:Txx Z—TxxZ.

A point of T xx Z is of the form (z,((y,t'),z)), where (y,t') € T = X xy T,
y = pz(z) € U,. We define b to take this point to ((z,t'),(z,2)) € T xx Z. Again, it
is straightforward to check that this gives a based map on the quotient spaces

b:TAx Z — T Ax Z.
It is now easy to check that a and b are inverse maps of based G-spaces over X. [

Now we can define the map v on the level of based G-spaces as follows. We define
the model of the dualizing object C to be C = X xy X/x(X xy X \U). We first
define 1 on the level of G-spaces. For a based G-space T over X, define a map over X

Po: X xy T — (XxyT/xU')Ax C

~ (X xy T/xU')Ax (X xy X/(X xy X \U))
~ (X xy T) xx (X xy X)
T (U xx (X xy X)U(X xy T) xx (X xy X \U))

(Here, the last quotient is in the category over X). Namely, 9o : (z,t) —
((z,t), (z,pr(t))) in the numerator of the target (X xy T) xx (X xy X). This
is a continuous map over X, and for (z,t) € X Xy T, such that pr(t) ¢ U.,
(z,t) lands in (X xy T) xx (X xy X N\ U), so its image is in fact = in the base-
point X — (X xy T/xU’) Ax C. Hence, the image of 1o is in fact contained in
(T/xU’') Ax C =T Ax C. Also, suppose t = ir(z’) for some 2’ € X. If 2’ ¢ UL, the
image of (z,ir(z')) is = in the basepoint X — T Ax C by the above. If 2’ € U., then
o takes (z,ir(z')) to ((z,ir(z'),z,z) € U xx (X xy X). Hence, (z,ir(z’)) also
maps to z in the basepoint. So ¥, factors through a based map over X

(5.5) D R(T) = (X xy T)/x(X xy X) — T Ax C.

If T is cofibrant and fibrant, then the target TAx Cis naturally homotopy equivalent
to T Ax C, since by Lemma 5.3, g7 : T — Tisa homotopy equivalence.

Our strategy for proving Theorem 4.9 is as follows. We will show that ¢ and ¢ are
“homotopy inverses” to each other on the level of G-spaces in a certain sense, in the
case when Y is compact. Then we will define ¢ and 1 on the level of spectra, still
for the case when Y is compact, and prove that the homotopy inverses on the level
of spaces give that the spectra-level ¢ and ¢ are inverse weak equivalences in this
case. Finally, for general f : X — Y where Y is not necessarily compact, we cannot
define the inverse map v since there may not be a suitable tubular neighborhood U’
of the diagonal in X xy X. But we can define ¢ on the level of spectra by a colimit
argument over the compact skeleta of Y, and show that it is a weak equivalence of
spectra over Y.
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We have the natural homotopy equivalence
SY =X x 8V = S(v) Ax S(7).
Also, recall that by Lemma 3.13, for T cofibrant and fibrant over X, the maps
gr: T — T
and
9raxsw) i TAx S(v) — T /\/X\§(V)
are natural homotopy equivalences over X. The statement on the level of spaces is

the following proposition.

Proposition 5.6. — Let f : X — Y be an equivariant smooth family of manifolds,
where Y is compact. Let T be a cofibrant and fibrant based G-space over X.

(1) The composition

S5 Fu(T) = P8 1T) L0 1 R Ak 5@) Y (1 Ax S0) Ax S(7)
is naturally homotopic to the composition

|4 9TAxS(v) e
—_—

SV P LT —X SY(T) =5 TAxS()AxS(7) (T Ax S())AxS(7).

Here, c¢: f*f.(T) — T is the counit of the adjunction pair (f*, f.).
(2) The composition

A%
SYAT) XY Y1 (T Ax S()) —P f(T Ax S(7) Ax SW))

= f(EXT) = DX f(T)
s naturally homotopic to
Ex filor) - BX f(T) — SXfy(D).

Proof. — We first consider the case where Y = x is a point, so X is a G-equivariant
smooth manifold, and f : X — . To prove statement (1) of the proposition, we need
to show that in the diagram

f*E"f*T\—L 1 3T Ax S(w) —2s (T Ax S(v)) Ax S(7)

S~ TQT/\XS(V)

= T Ax S(U) Ax S(T)
sy

the dotted arrow h exists such that the diagram commutes up to homotopy, and A is
homotopic to the counit of the adjunction pair (f*, f«). By Lemma 5.3, the vertical
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map graxs(v) is @ homotopy equivalence. Now by Lemmas 5.3 and 5.4, we have the
natural homotopy equivalences over X

—— P

o:T Ax S(v) =5 T Ax S(v)
and
g7 Ax Id: T Ax S@) — T Ax S@).
We also define a map
’y:S)‘é:XxSV——)g'_(\u/)/\XS(T)

as follows. We have the embedding of X inside S V. Let U be a G-equivariant normal
tubular neighborhood of X in SV, so we have a G-map p: U & E(v) — X, and S(v)
is the one-point compactification of U in the category of G-spaces over X.

Also, we define the dualizing object C to be S(7) ~ (X x X)/x(X x X \U’),
where U’ is a tubular neighborhood of the diagonal in X x X, chosen as follows.
Since X is a compact smooth manifold, there is an equivariant Riemannian metric p
on X. By the compactness of X, there is some € > 0, such that

U'={(z,y) € X x X | p(x,y) <e}

is a tubular neighborhood of the diagonal in X x X. In particular, consider X x X
as a G-space over X via the first projection. Then U’ has the property that for any
z € X, the fiber U, is a contractible neighborhood of z in X.

Let U’ be a G-equivariant tubular neighborhood of the diagonal in X x X, such
that for every x € X, the fiber U, over = via the first projection is a contractible
neighborhood of  in X. We have that

S(r) 2 (X x X)/x(X x X \U").

We define the thickening §(\I//) of S(v) using the tubular neighborhood U’. For x € X
and v € SV, suppose v € U and p(v) € U,, then we define v to take (z,v) €
X x SV =S¥ to ((z,v), (z,p(v))). In the target, (z,v) is a point in S(v), which is
a quotient of S(v) C X x S(v), and (z,p(v)) is a point of S(7), which is a quotient
of E() 2 U’ C X x X. If p(v) ¢ UL, then we define y(z,v) to be z in the basepoint
copy of X in S(v) A S(7). It is straightforward to check that v is a continuous G-
equivariant map over X. By arguments similar to that of Lemma 5.4, Idp Ax7 is
naturally homotopic to the composition of homotopy equivalences

IdAxgsw) —
— ey

Ey(Ti)T/\X S(v) Ax S(T) T Ax S(v) Ax S(7)
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over X. The diagram of homotopy equivalences

Id Axgsq) —
T Ax S(v) =T Ax S(v)

9T N\x 9s(v)
9T Ax S(v) gr Ax 1d

T Ax S(V)a'——)j:/\xg—(\l_//)

commutes. Hence, it suffices to show that the dotted arrow h exists making the
following diagram commute up to homotopy.

11T Ax Sw) —s (T Ax S(v)) Ax S(7) —=— T Ax S(v) Ax S(r)

ZTQT AX 95(v)

gr Nx Y

f*o . T Ax S(v)Ax S(T)

rPevVaT------- YT
The top row of the diagram is

SY S Fu(T) 2 f Sy £(T) L2 £ 1T Ax S()

67) o (T AXS0)) Ax S(7)
—2, T Ax 8(v) Ax S(7).
Since the target of f is a single point, f«(T") = Sec(X,T) is the G-space of sections
from X toT. Let ¢ : X — T be the basepoint of T', and let ¢ : T' — X be the structure
map of T'. We have the normal tubular neighborhood U of X in V, so the sphere
bundle S(v) of v is the one-point compactification of U in the category of G-spaces
over X. Also, let X" be the Thom space of v, so X¥ = f4(S(v)). Then f*yp is
(8V ASec(X,T)) x X — (XY ASec(X,T)) x X

= fyS(v) ASec(X,T) x X
(5.8) = fiy(S(v) Ax X x Sec(X,T)) x X

— fl(SW)AxT) x X

=(Sw) xxT)/((SW)\U) xx TUS(v) xx i(X)) x X.
The first map is induced by the Pontryagin-Thom map SV — X". For the second map

that is not an isomorphism, consider the projection p : S(v) — X. By Lemma 4.7,
for v € S(v) and a € Sec(X,T), the natural isomorphism

fyS(W) ASec(X,T) = fy(S(v) Ax X x Sec(X,T))
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takes (v,a) to (v,p(v),a). Thus, the second map of the composition evaluates the
section a at p(v). The last copy of X carries along identically. Thus, for v € SV, a €
Sec(X,T) and = € X, the composition (5.8) takes ((v,a),z) € (S¥ A Sec(X,T)) x X
to (v,a(p(v)),z) in f(S(v) Ax T) x X if v € U, and to z in the basepoint copy of X
ifvegU.

We have that C is the sphere bundle of the tangent bundle 7-/gf_;X .Let j: X —
S(v)Ax T be the basepoint map over X. Recall the thickening S(v) Ax T of S(W)Ax T
used to define 9, with

SW) Ax T ={(z,(v,1)) € X x (S(v) Ax T) | p(v) = q(t) € Uz}
which is a G-space over X by the first projection, and

——

S(l/) Ax T = S(l/) Ax T/x(X X j(X))
The second map % of (5.7) is

F(S@) Ax T) x X — (S@) Ax T) Ax C
(S() Ax T) xx (X x X)

— .

B (SW)AxT) xx (X x X\U')

Here, the last quotient is taken in the category of G-spaces over X. Forv € SV, a €
Sec(X,T), and z € X, if v € U, then 9 takes ((v, a(p(v))),) € fi(SW)Ax T) x X to
((z,v,a(p(v))), (z,p(v))) € (S¥) Ax T)Ax (X xX/x(XxX\U")). Here, (v, a(p(v)))
is a point of S(v) Ax T, so (z,v, a(p(v))) is an element of S(v) Ax T, and (z, p(v)) is
inC=(XxX)/x(X x X/\\U/’) If v ¢ U, then 1 takes ((v,a(p(v))),z) to = in the
basepoint copy of X in (S(v) Ax T) Ax C. Also, foranyt € T and z € X, if t ¢ Uy,
then ¥ maps ((v,t),z) to x in the basepoint of S(V/)\/\; TAxC. Sincea: X - T
is a section, for any z € X, g(a(z)) = z. In particular, for v € S(v), and z € X, if
q(a(p(v))) = p(v) &€ U,, then (5.7) maps ((v,a),x) to x in the basepoint.
Also, by Lemma 5.4, the homotopy equivalence

a: 5(17)7\;( T — §(\I//) Ax T
takes (z, (v,)) to ((z,v), (z,t)), where (z,v) € S(v), and (z,t) € T. Thus, (5.7) is
(5.9) (S ASec(X,T)) x X — (S(v) Ax T) Ax S(r) =5 S(u) Ax T Ax S(r)

which takes ((v,a),z) to ((z,v), (z, a(p(v))), (z,p(v))) if v € U and p(v) € U, (i.e. if
veUNp 1(UL) in SY). Here, (z,v) € §(\I//), (z,a(p(v))) € T, and (z,p(v)) € S(7) =
X x X/(X x X \U’). Otherwise, the map takes ((v, a), z) to = in the basepoint copy
of X. By contracting the tubular neighborhood U’ to X, the map (5.9) is homotopic
to a map

(5.10) (SY ASec(X,T)) x X — S(v) Ax T Ax S(7)
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which takes ((v, a),z) to ((z,v), (z,a(z)), (z,z)) if v € UNp~1(UL), and to z in the
basepoint copy of X otherwise. Namely, let H : U’ x I — U’ be a linear homotopy
over X, where Hy is the identity on U’, and H; is the first projection onto X. Then
the homotopy between (5.7) and (5.10) is given by applying H to p(v). The map (5.10)
factors through to

(S¥ ASec(X,T)) x X —Po (X x SY) Ax T
(5.11) = T Ax S(v) Ax S(r)

—%, T Ax S) Ax S(7)

where h takes ((v,a),z) to ((z,v),a(z)) if v € UNp~1(U.), and to z in the base-
point otherwise. This is first evaluating the section a at z, then factoring out the
complement of U Np~1(U~) in SY. The tubular neighborhood U of X is isomorphic
to the total space E(v) of the normal bundle v of X in V. So for each z € X,
Unp U, = E(v|y,) is the total space of v restricted to the contractible neighbor-
hood U, of z in X, so it is a contractible neighborhood of z in SY. Hence, collapsing
its complement is naturally homotopic to the identity on SY. These homotopies vary
continuously with respect to . Hence, the map h is homotopic to just evaluating
the section a at x, which is the counit of adjunction for (f*, fi). This gives the first
statement of Proposition 5.6 for the case where Y = x.

The proof of statement (2) of Proposition 5.6 is similar, for the case where Y = .
We need to show that the dotted arrow h exists making the following diagram com-
mute, such that h is naturally homotopic to XV fy(g7).

v =Yy ~ @ ~
by fﬁ(T) \—-) Evf*(T Ax S(T)) E— fﬂ(T Ax S(T) Ax S(v))

~
~
~ ~
~ =
~
~

PR H(EXT)
] :
BV fy(T).

There is an equivariant Riemannian metric p on X, and as in the proof of statement
(1) of Proposition 5.6, we can define the tubular neighborhood U’ of the diagonal in
X x X so that for every z € X, the fiber U, is an open ball in X centered at z. We
have C = S(1) 2 X x X/(X x X \U’) as before. Also, we have the G-equivariant
tubular neighborhood U of X in SV, and the projection map p : U — X. Also, let
q: T — X be the structure map of T. Forx € X andt € T,

¥ f*HT — T Ax S(7)
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takes (z,t) € f*fy(T) = (X xT)/x(X x X) to ((z,t), (z,q(t))) if ¢(t) € U, and to x
in the basepoint copy of X otherwise. Here, (z,t) is thought of as a point in T, which
is a quotient of T C X x T, and (z,¢(t)) is a point in S(7), which is a quotient of
E(1)2U'C X x X. Thus, for v € SV and t € T, £V of its adjoint is

Ve BV {T — BV Sec(X, T Ax S(7)).

For v € SV and t € T, this takes (v,t) to (v,%(t)), where ¥(t) : X — T Ax S(7) is
a section which takes z € X to ((z,t),z,q(t)) if ¢(t) € U., and to z in the basepoint
copy of X otherwise.

Now the composition XV (¢ - 1) is

sV /T IRACN Sec(X,T Ax S(7))
— XY ASec(X, T Ax S(1))
= f4(S()) A Sec(X, T Ax S(7))
= f,(S(v) Ax (X x Sec(X,T Ax S(7))))
Sw) xx (T Ax 8(r))
(Sw)\U) xx (T Ax S(7))
= i(S8®) Ax (T Ax S(7))).

The second map is induced by the Pontryagin-Thom map SV — X*. By Lemma 4.7,
for v € S(v) and a € Sec(X,T Ax S(7)), the isomorphism

FiS(W) ASec(X,T Ax S(7)) — fi(S() Ax (X x Sec(X,T Ax S(7))))

(5.12)

takes (v, a) to (v, (p(v),a)). The last map is induced by evaluating the sections

X x Sec(X,T Ax 8(1)) — T Ax S(r).
Thus, for v e SV and t € T, if v € U and ¢(t) € Up(v)» the composition (5.12) takes
(v,t) to (v, (p(v),t), (p(v),q(t))) € f(S(¥)Ax T Ax S(7)), where v is thought of as an

element in S(v), (p(v),t) is in T, and (p(v), q(t)) is in S(7). Otherwise, (5.12) takes
(v, t) to the basepoint.

By the definition of U’, for each v € U and t € T, the condition that q(t) € U;,;(u) is
equivalent to the condition that p(q(t),p(v)) < € for a fixed € > 0. This is symmetric

with respect to p(v) and ¢(t), so we have that p(v) € U;(t) if and only if g(t) € U,

By contracting U’ to X, we get that the composition (5.12) is homotopic to a map
(5.13) 2V T — fi(S(w) Ax T Ax S(7))

which takes (v,t) to (v, (p(v),t), (p(v),p(v))) if v € U and p(v) € B(q(t),¢), and to
the basepoint otherwise. The map 5.13 factors through to

(5.14) SV f(T) — SV A(T) = (X x SYV) Ax T) =5 £(SW) Ax T Ax S(7))
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where h takes (v,t) to (v, (p(v),t)) if v € U and p(V) € U ;(t), and to the basepoint
otherwise. By collapsing U’ to the diagonal, we get that h is homotopic to a map h’
that takes (v,t) to (v,(q(t),t)) if v € U and p(v) € Uity and to the basepoint
otherwise. So over each t € T, h’ collapses the complement in SV of the open
neighborhood U N p~}(U ;(t)) of g(t), then applies gr. Again, U, U’ are defined in
a way such that U N p~}(U é(t)) is a contractible neighborhood, so collapsing the
complement of U Np~ (U é(t)) is naturally homotopic to the identity on SV. Also, U
and U é(t) vary continuously with respect to v and ¢, so A’ is homotopic to =V fy(gr).

This gives the proof of Proposition 5.6 in the case where Y = . Now suppose
f:X —Y is an equivariant smooth family of manifolds, where Y is compact. Then
we can divide the cells of Y such that for each cell G/H x D™ of Y, the fiber of f
over G/H x D™ is (G xg M) x D™, where M, the fiber of f, is a smooth compact
manifold with some smooth H-action (depending on the cell of Y). For any point
y € G/H x D™, the proof for the case Y = x gives H-equivariant homotopies between
the maps in the statement of the proposition, for f, : M — {y}, the restriction
of f to the fiber over the point y. These are in fact independent of the choice of
y € G/H x D™. By applying (G xyg —) x D™ to the homotopies, we get that the
proposition holds for the map

(G xg M) x D" — G/H x D™.

These homotopies are natural over the cells of Y, so by gluing the homotopies over
the cells of Y, we get that Proposition 5.6 holds for any equivariant smooth family of
manifolds where Y is compact. O

We now define the natural maps ¢ and i on the level of spectra, again for the
case where Y is compact, and show that Proposition 5.6 implies that the spectra-level
versions of ¢ and 1 are inverse weak equivalences. Let E be a cofibrant and fibrant
spectrum over X. Recall the Pontryagin-Thom map (5.1). In the category of spectra
over Y, taking the shift desuspension by V gives

(5.15) t: 8y = Y50 Sy — Tov. Th(vx) & fy(C71).

Here, the isomorphism Z;V Th(rx) = f(C~') comes from Lemma 4.7. We define
the natural transformation ¢ : f. — fy(— A C~!) as follows. Let E be a spectrum
over X. In the homotopy category of spectra over Y, smashing the map t with f.(F)
gives
¢E : [+(B) — fo(E) Ay f1(C7Y)
(5.16) = B f(B) Ax C7Y)
— fu(E Nx C—l).
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Here, the first map is Ids, (g) Ayt, the equivalence is by Lemma 4.7 (since C1 is
homotopy equivalent to the shift desuspension of the suspension spectrum of a space),
and the last map is the counit of the adjunction pair (f*, f).

Note that since the smash product of spectra is only defined up to weak equiva-
lences, the map (5.16) is only defined uniquely in the homotopy category of spectra
over Y. We would like to have a model of it that is defined on the point-set level. One
way to do this is to take a choice of linear isometry a : X — Z(U®?,U), so the point
set level model of smash product is defined via a. We also give a canonical model for
fi(E Ax C~1). To this end, we take the map (5.1) of G-spaces, and smash it with
f+«(E) to get the map in the point-set category of spectra

(5.17) SV fu(E) = fo(B) Ay Th(vx) = fy(f* fu(B) Ax S(vx)) — fi(E Ax S(vx))-
Since F is cofibrant, we can take the model
EAx C7' =331 (E Ax S(vx)).
Then the target of (5.17) is naturally homotopy equivalent to
fi(Shhie B Ax C71) = Efin fy(BE Ax C71).

However, f.(E) may not be cofibrant, so we do not have homotopical control on the
source of (5.17). To remedy this, we use the cofibrant replacement functor I' on the
category of spectra over Y, with respect to the model structure given in Definition 3.3.
We have natural maps

(5.18) SY Ay Tf.(B) =% SY Ay £u(B) 2200 %0 (B Ax C7Y).

Here, a is an acyclic fibration, and the source of (5.18) is naturally homotopy equiv-
alent to T'(SY f.(E)). Recall that for a cofibrant spectrum D, there is a natural
homotopy equivalence between -Y .. (D) and SV A D. So we can replace Sy Ay —
in (5.18) by Z¥;s to get

shlfth*( ) — Egﬂ&fﬂ(E Nx C_l)'
Taking Y, then gives
(5.19) O :Tf(E) — fy(EAx CTY).

The following diagram commutes after we pass to the homotopy category of spectra
over Y for any choice of linear isometry a : X — Z(U®?, ).

Tf.(E) 25 fy(E Ax CY)
(5.20) al

f«(E)
So (5.19) is a point-set model of the map ¢g.

YE
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For the inverse map 1, note that by part 2 of Lemma 5.4, the thickening construc-
tion 7' +— T on G-spaces commutes with the suspension functor £¥ = (X x SV)Ax —
for all finite-dimensional V' C Y. This allows us to define the thickening on the cate-
gory of spectra. Let E be a spectrum over X. Then for all finite-dimensional VC W
inU, let p¥¥ : 2%~V Ey — Ew be the structure map. Then we have

W

WY VE, S sVVE, YL By

To check that the composition of these maps are compatible for finite-dimensional
representations V' C W; C W, in U, we need the following diagram of isomorphisms
to commute:

Wa—V o =
- —
Yx* "By EE}VZ VEV

|

EB’(Vz—Wl 2)‘/}/1 —VEV

+| |

S (8 By) o SRS By

IR

It is routine to check that this diagram commutes by the definition of the isomorphisms
in the proof of Lemma 5.4. Thus, {Ey} form a prespectrum over X. Applying the
spectrification functor gives the thickening E of F in the category of spectra.

Lemma 5.21. — If E is a cofibrant and fibrant G-spectrum over X, then we have a
natural weak equivalence of G-spectra over X

geg ' E — E
induced by the maps gg, on the level of spaces.

Proof. — For E a fibrant spectrum, each space of F is fibrant over X. So we have
a weak equivalence of based G-spaces gg, : Ev — Ey over X for every finite-
dimensional V' C U. Note that for all finite-dimensional V' C W in U, the diagram

sW-VEy,
Egg—vy %"Ev
E;&(’—VE; =~ ’ EK{V_VEV

commutes, so the maps give a spacewise weak equivalence from F to the prespectrum
{Ev}.

Now suppose F is also cofibrant over X. Since the map gg is natural with respect
to retracts, we can assume without loss of generality that F is a G-cell spectrum
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over X. Then by arguments similar to those of 1.8.14 of [8], each space Ey of E
has the homotopy type of a relative G-cell complex over X. So by Lemma 5.3, each
9ey : By — EV is a homotopy equlvalence over X, and we get a spacewise homotopy
equivalence of prespectra g : E — {EV} over X. Also, the prespectrum {Ev} is an
inclusion prespectrum, and taking the spectrification functor from inclusion prespectra

to spectra takes a spacewise homotopy equivalence to a weak equivalence of spectra.
O

With the thickening of a cofibrant and fibrant spectrum E over X, we can now
define the inverse map % to ¢ on the level of G-spectra. To define 1 for spectra,
let E be a cofibrant and fibrant spectrum over X indexed on the universe i{. By the
definition of the model structure on the category of parametrized spectra, Ey is a
fibrant G-space over X for every finite-dimensional V' C Y. We define E by taking Ey
spacewise, and we define ¥ on the spectra level first, then taking its adjoint. More
specifically, we define the map ¥ on a spectrum E by applying 1 for spaces, as in (5.5),
to Ey for each finite-dimensional representation V' C Y. To make this work, we need
to check that the following diagram commutes for all finite-dimensional V. C W in U.

I
Z&V_Vf*fu(Ev) —_— EX{V_VEV Ax C

% |

FREX Y Ey) E¥VEy)Ax C
f*fﬂpvvvl J/;;‘E/'/V Ax C
f*fiEw ——;z——) E\u// Ax C.

Going back to the definition of 1) for spaces and using the fact that the structure map
pY is a map over X, one checks that this diagram commutes. By taking ¢ from (5.5)
spacewise, we get a map of prespectra

¥ {f* fy(Bv)} — {Ev Ax C}.

Applying the spectrification functor to both the source and the target gives the
map of spectra

D f*fy(E) — EAx C.
Now taking the adjoint gives the map of spectra
b : fy(B) — fu(E Ax O).
Also, if we take
v fy(Bv) — fu(By Ax C)
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on each space Ey of E, and then spectrify, we get a map

'@bspacewise : fﬂ(E) I L{f*(ET/ Ax C)}

Since the functor f. does not commute with the spectrification functor L, the target
is not the same as f.(E Ax C).

We will now show that Proposition 5.6 implies that the spectra-level maps ¢ and
9 are inverse weak equivalences. Since the map ¢ is natural on spectra over X, it is
preserved by retracts. So it suffices to consider the case where F is a fibrant G-cell
spectrum over X. Note that the space-level homotopies constructed in Proposition 5.6
only depend on a deformation retraction of the tubular neighborhood U’ onto X, all
the maps and homotopies are natural, they commute with suspensions and loops.
Thus, for a cofibrant and fibrant spectrum E over X, by applying Proposition 5.6 to
each space of E, and checking that the homotopies commute with the structure maps,
we get that the statements of Proposition 5.6 still hold if we replace the based G-
space T over X by the spectrum F. However, again since f, F may not be a cofibrant
spectrum, we do not have homotopical control over ¥ f.(E).

To solve this problem, we consider the cofibrant replacement functor I' in the
category of spectra over Y. For any spectrum D over Y, there is a cofibrant spectrum
I'D over Y, such that there is an acyclic fibration a : I'D — D. We can make I into
a functor, and a into a natural transformation I' — Id. For E a cofibrant and fibrant
spectrum over X, the V-th suspension of the map (5.19) is

>Va
(5.22) ¢ : SYT fu(B) —— Y fo(E) — fi(E Ax S(v))

where the second map is obtained by taking the space-level ¢ on each space Ew of
E, then spectrifying both source and target. We also define

(5.23) V' fj(E) — Tf.(E Ax S(1)).

Namely, ¢’ is the lifting in the square

* ——— Tf,(E Ax S(7))

'»[)I/ _ P la
fi(B) T fu(B Ax 8(r)

which exists since fy(E) is cofibrant, and T'f.(E Ax S(1)) — f+(E Ax S(7)) is an
acyclic fibration. Similarly, from ¥spacewise : fi(E) — L{f«(Ev Ax S(7))}, we get

w;pacewise : fﬁ(E) - PL{f*(E;/ Nx S(T))}

ASTERISQUE 285



CHAPTER 5. PROOF OF THE MAIN THEOREM 63

The diagram

INATY ~ IAAY ~
G102 L SYLfu(E Ax S(7)) S oY fu(E)

\4
Ey% lzya%

SV f.(E Ax S(7))
commutes, so the second statement of Proposition 5.6 gives that

Vo v,
(5:24)  SUAE) —XY SYDL(E Ax S(r)) —XP Y fy(B)

is homotopic to E¥ fi(gE). Likewise, we have the commutative diagram

Vi ZVI

Y ¥spacewise —~ Ygospacewise
Sy fi(E) SYTL{f.(Bv Ax S(7))} Zy fi(E)
>Ya
Z}‘i'll)spacewise Jv Y E)‘f(;ospacewise

SYL{f.(Ev Ax S(7))}
Hence, we also get from Proposition 5.6 that

Vot \ 7P,
Z:Y Y EY Pspacewise
- _

spacewise 2¥I‘L{f*(ﬁ//\xs(7))} E¥fﬁ(E)

is homotopic to XY fij(gr). Now gg : E — E is the spectrification of a spacewise
homotopy equivalence of prespectra. The functors E¥ and f; commute with the
spectrification functor and preserve spacewise homotopy equivalences of prespectra.
Hence, &V fi(ge) is the spectrification of a spacewise homotopy equivalence of pre-
spectra, so it is a weak equivalence of spectra. This gives that (5.24) and (5.25) are
weak equivalences of spectra over Y.

Next, we would like to desuspend (5.25) by V. Recall that if D is a cofibrant
spectrum, then there is a natural homotopy equivalence between £V D and the shift
suspension Y .. D of D. A similar statement holds for cofibrant spectra over Y.
In (5.24), the spectra XY fy(E) and SYTL{f.(Ev Ax S(7))} are cofibrant, since SY
is a homotopy cell bundle over Y. However, we do not know about -V fn(E). To
get around this problem, recall the cylinder construction K [8] Section 1.6 and [4],
which replaces a prespectrum by one that is X-cofibrant. There is an analogous
construction in the category of prespectra over Y. (For more details on the cylinder
construction over a base space, see Chapter 6 below.) For any prespectrum D over Y,
we have a functorial map rp : KD — D, where KD is a X-cofibrant spectrum
over Y. Define the cylinder construction functor Z on spectra over Y to be LD,
where L is the spectrification functor from G-prespectra over X to G-spectra over X.
Applying L to the natural transformation r : K — Id on prespectra gives a natural
transformation Z — Id on the category of spectra over Y, which we will denote also

(5.25) Sy fy(E)
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by . By arguments analogous to those of Proposition X.5.4 of [4], smashing with S}/
commutes with K on the level of G-prespectra over Y. So it commutes with Z as
well. Hence, we have the commutative diagram of G-spectra over Y

SV Zfy(E) —— SYZTL{f.(Bv Ax 8(1))} —— SV Z fy(E)
(5.26) E¥rl JZ,‘% lZ)‘fT
SV f3(B) —— SYTL{f.(Bv Ax S(1))} —— SY f(E)

where the bottom row is (5.25), and the top row is Z applied to it. By arguments
similar to that of Proposition 1.8.14 of [8], the left vertical map of this diagram is a
homotopy equivalence, since fy(E) is a G-cell spectrum over Y. Now the bottom right
corner of the diagram is the spectrification of the prespectrum {XY, f”(ﬁ/)} over Y.
By arguments similar to that of Construction 1.6.8 of [8], the map

r: K{SY fy(Bv)} — {Y fy(Ev)}

is a spacewise homotopy equivalence. Passing to spectra gives that the right vertical
map of diagram (5.26) is a weak equivalence of spectra over Y. Hence, the top row
of (5.26) is a weak equivalence of G-spectra over Y.

Now by choosing G-cell decompositions of the tubular neighborhood U’ of the
diagonal in X xy X so that the inclusion U’ C X xy X is a relative G-cell complex,
one sees that the thickening of a relative G-cell complex over X is also a relative
G-cell complex over X, so each E’?\‘// is also of G-cell homotopy type. Therefore, each
space fﬁﬁ/ is of G-cell homotopy type over Y. This gives that the upper right corner
of diagram (5.26) is of the homotopy type of a G-cell spectrum over Y. Hence, in the
top row of (5.26) we can replace the =¥ by %Y .. up to homotopy equivalences. But
E;{lm is an invertible functor, which gives that

’ /
Z wspacewise <Pspacewise

Z fy(E)

is a weak equivalence of G-spectra over Y. But we also have the commutative diagram

(5.27)  Zfy(E) ZUL{f.(Ey Ax S(7))}

/

/
spacewise Sospacewise

7 ~ ~
Zfy(E) ZVL{ f.(By Ax S(1))} — > Zfy(E)

| JT L

ft(B) —————— TL{{.(Ey Ax S(r))} —— fi(E).

spacewise spacewise

The top row and the vertical maps of this diagram are weak equivalences, so we get
that the composition

/

(5.28)  fy(E) —2X D pef By Ax S(r))) —LRREe L g ()
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is a weak equivalence of G-spectra over Y. Now we substitute EAx C~! for E, where
c!= Es_h‘i/ftS(u). Since by Lemma 4.5, E Ax C~! Ax S(7) is homotopy equivalent
to E as spectra over X, we get that

/
<rospacewise

(5.29)  fy(E Ay C1) PR pps () (B A C-Y)

is a weak equivalence of spectra. But now we have a spacewise homotopy equivalence
of prespectra f.(9g) : {f« (Ev)} — f.«(E), where the source is an inclusion prespec-
trum, and the target is a spectrum. Hence, applying the spectrification functor and
then I' gives a weak equivalence of spectra

TL{f.(Ev)} — Tf.(E).
By similar arguments, we have a weak equivalence of spectra
fﬂ(E Ax C~1) — fn(E Nx C_l).

By the definition of ¢ and ¢ ,cewise> the diagram

!

/
spacewise wspacewise

f(E Ax C71) TL{f.(Ev)} f(E Ax C-1)
(5.30) :j lr_v lg
fi(E) >I‘f*(E)———(—p,——+fu(E/\X C‘l)

commutes. Hence, the bottom row of the diagram is a weak equivalence of spectra,
and we get that ¢’ : Tf.(E) — fy(E Ax C™!) has a left inverse in the homotopy
category of G-spectra over Y.

For the other composition, consider the map

¢: TV fu(E) — fu(ZXE)
adjoint to the counit of adjunction
£V fu(B) 22X f.B - SKE.

We have the square

* grfxsz)

w T
(5.31) - a

YT 1 (B) —— SV (B) —— (5K ).
Y

Since YT f.(E) is cofibrant and a : Tf.(SX E) — f.(E%E) is an acyclic fibration,
the dotted arrow u exists. The adjoint to the first statement of Proposition 5.6 gives
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that the diagram in the category of G-prespectra over Y

Y f.(E) 4 » [i(E Ax S())

(5.32) EJV j{ﬂ’spacewise
f(E%E) » fo({Bv Ax SW)} Ax S(7)

Fe(9EAxSW))

commutes up to homotopy. The bottom map is a spacewise homotopy equivalence of
prespectra. Again, let K be the cylinder construction in the category of prespectra
over X, and Z = LK be the cylinder construction in the category of spectra over X.
Then we have a spacewise homotopy equivalence of prespectra

a: Kf.({Bv Ax S)} Ax S(r)) — fu({Bv Ax S(v)} Ax S(7)).

Applying the prespectra-level cylinder construction to %spacewise gives a map of G-
prespectra over Y

K("//’spacewise) : Kfn(E Ax S(V)) B Kfﬂ({EV Nx S(V)} Ax S(T))
It follows from a diagram chase, using diagrams (5.31) and (5.32), as well as the
definitions of ¢’ and 1, that the big square of the following diagram in the category
of G-prespectra over Y commutes up to homotopy.

|4 / . P
KSUT () ——Y 58 K (B Ax S()) —epacemise KLEy 1 S0)

u !

KDL o KL (B Ax )} Ax S(r) —g— TV 0x S0

Since the map a is a spacewise homotopy equivalence, we can lift the homotopy to

Kf.({Ev Ax S®)} Ax S(r)).

Hence, the composition of prespectra
(5.33)

Vo' K spacewise -
KEYTL.(B) —22, (B nx S(v)) —225 e b ((By Ay S0} Ax S(7)

is naturally spacewise homotopic to the composition of prespectra
(5.34)

KYYTf.(E) L(“L

K fu(9ErxS(v))

KT f.(E%E) K f.({Bv Ax SW)}Ax S(T)).

Since K preserves spacewise homotopy equivalences of prespectra, the second map
of (5.34) is a spacewise homotopy equivalence. The functor I" also commutes with
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shift suspensions. So we can take u to be the composition
SYTfu(B) = Sl fo(E)
= TS5 f-(E)
= Tf. (S E)
= Tf.(ZXE).

All the maps of this composition are isomorphisms or homotopy equivalences, so u is a
homotopy equivalence. Thus, the first map Ku of (5.34) is also a spacewise homotopy
equivalence. Hence, (5.33) is a spacewise homotopy equivalence of prespectra. Now all
the spectra concerned in (5.33) are inclusion prespectra, so applying the spectrification
functor to it gives a weak equivalence of spectra
VY ANAY VA . —_—

IR (E) —22X7 ., 7 (B S(v)) 22w | 76 ((By Ax S(1)} Ax S(r)).
But since SV f.(E) and fy(E Ax S(v)) are cofibrant, each is naturally homotopy
equivalent to its cylinder construction. Hence, we get that the composition of spectra

EV ! Z spacewise -
SYLF(E) —X2 fy(E Ax S(v)) —22B 75 ((By Ax S()} Ax S(7)

is a weak equivalence.
This gives that

EY¢: EVTfu(B) — fi(E Ax S(v)) = Eqiefs(E Ax C7Y)

has a right inverse in the homotopy category of G-spectra over Y. But since both its
source and target are cofibrant spectra, we can replace ¥V in the source by TY ..
Now taking shift desuspension gives that

¢ Tf.(B) — fy(EAx CY)

has a right inverse in the homotopy category of G-spectra over Y. But also, by (5.30),
it also has a left inverse in the homotopy category of G-spectra over Y. Therefore,
we get that the map (5.19)

¢ : Tfu(B) — S5 fi(E Ax SO) = fi(BEAx C7Y)

is a natural weak equivalence of spectra. By the commutative diagram (5.20) this
gives that ¢ : f«(E) — fy(E Ax C~1) is a natural weak equivalence of spectra, for all
equivariant smooth families of manifolds f : X — Y, Y compact, and all cofibrant
and fibrant spectra F over X.

For general equivariant smooth family of manifolds f : X — Y, where Y is any
G-cell complex with countably many cells, we use a colimit argument on the finite
subcomplexes of Y. We observe the following fact. Suppose i : K/ C K are compact
G-cell complexes, and f : Xg — K is a smooth family of manifolds over K. Let
Xy = X xg K' = f~Y(K'). Also, write f' = f|x,, : Xx» — K', making Xk’ a
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smooth family of manifolds over K’. Let i : Xx» — Xk be the inclusion map. For a
cofibrant and fibrant spectrum Ex over X g, we defined

¢xx ¢ fo(Bx) = fy(Bx Ax C7Y).
By Lemma 2.2, the map i*(¢x, ) is a map
1i*(Bx) 2 i* fu(Ex) — i fy(Ex Axy CF 1)
= fyi*(Ex Axy CF )
~ fi(i*Ex Ax, C7')

where the last map is a homotopy equivalence natural in K’, with respect to inclusions.
By the naturality of the construction of ¢, one can check that this is just ¢x,,, with
respect to the map f’': Xg — K’. The diagram

. 4 X _
foi*(Br) =25 fyi*(Bx Axye C7Y)

| |

f*(EKI) m fﬁ(EK’ /\XK' Cf_l)

commutes. So given a general G-cell complex Y, with f : X — Y a smooth family
of manifolds, for each compact G-subcomplex K C Y, let fg : X xy K — K be the
pullback of f with respect to the inclusion K C Y. We have a stable map

ti 2 Sy — fu(c—};l) = fi(i"C7 ).

Now let f : X — Y be any equivariant smooth family of manifolds, and let K be a
finite subcomplex of Y, with inclusion ig : K — Y. By equivariant cell subdivision,
Xk = X Xy K is also a finite subcomplex of X. We will denote the inclusion X — X
also by ¢x. We have that for each ix : K — Y,

(ir)y(Sk) = Sk Ik X
as spectra over Y. Hence, we in fact have
S?/ = COlimK(iK)nS%

as spectra over Y, over all finite subcomplexes K C X. Similarly, defining C’;l = DCf
by any choice of linear isometry X — Z(U®?,U), we get that

fu(Cf—l) = fKn(ColimK(iK)ﬂC_Kl) =~ COlimK(iK)u(fKu(C;KI)).
So passing to the colimits, we get a stable map in the category of spectra over Y
ty : Sy — f(CFY).

This allows us to define the natural map px : f«(E) — fj(EAx C;l) for E a cofibrant
and fibrant spectrum over X, similarly as in the case when Y is compact.
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Now suppose E a cofibrant and fibrant spectrum over X. For any finite subcom-
plex K of Y, we now denote both the inclusion maps K — Y and Xg — X by ik, and
the restriction Xx — K of f by fx. By Lemma 2.2, we have natural isomorphisms

ix fo(B) = (fK)«ik (E)
and
i3 fi(E Ax C7Y) = (fr)pis (B Ax CFY).
Since i} commutes with external smash products of spectra, and i}{(C’;l) is naturally
homotopy equivalent to Cijl, we get that for any choice of linear isometry
X — IU®% u),

(Fr)yiy (ENx Cf_l) is naturally homotopy equivalent to (fx)j(tk (E) Axy C’f_Kl) By
the definition of ¢ x for the noncompact case, it is straightforward to check that the
diagram

[ (i E) T fii%E Ax, CF))

commutes for every finite subcomplex K of Y. However, although i} (F) is a fibrant
spectrum over X g, it is not necessarily cofibrant, so we do not have that the bottom
map of the diagram is a weak equivalence. To solve this problem, we make the
following construction.

Definition 5.35. — Let K' be a G-cell complex, and K a subcomplex, with inclusion
1: K — K'. For a G-spectrum E’ over K’ and a G-spectrum F over K indexed on a
G-universe U, a map g : E — i*E’ gives a map of unbased G-spaces

-
gv : Ey — i*Ey, — Ey,

for each finite-dimensional representation V' C U. We say that a map g : E — *F’
of G-spectra over K is a map over ¢ : K S, K , and for every finite-dimensional
representation V' contained in i, the diagram of unbased G-spaces

K__Z__.)KI

|

!/
Ef T ‘T

KoK
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commutes. We write a map of spectra over the inclusion K C K’ just asg: E — E’,
even though strictly speaking, E and E’ are in different categories. A map of spectra
over the inclusion K C K’ is an inclusion over K C K’ if it is a spacewise inclusion.

For our G-cell complex Y, let {K;} be an increasing sequence of finite subcom-
plexes, such that ¥ = Uj K;. For the equivariant smooth family of manifolds
f:X =Y, write X; for Xg;, = X xy Kj, and f; : X; — Kj for the restric-
tion of f. Then {X;} is also an increasing sequence of finite subcomplexes of X, and
X = Uj X;. If E is a spectrum over X, then for every j, we have an inclusion of
spectra over the inclusion X; C X4

. C .
i1(B) —= i%,,(E).

In particular, for each finite-dimensional representation V. C U, Ev = |J,i;(Ev). In
this situation, we say that

is the (spacewise) union of the spectra i;(E) over the sequence of inclusions X; C
Xj+1. Conversely, suppose we have a sequence of inclusions of spectra D; — D;y1
over the inclusions X; C X1, where D; is a spectrum over X;. Then their spacewise
union forms a spectrum D over X, and we write

D=UD;.
J

We will use the following lemma to show that the compact case of Theorem 4.9
leads to the general case.

Lemma 5.36. — Suppose E is a cofibrant and fibrant G-spectrum over X. Then there
is some cofibrant and fibrant spectrum E' over X, such that E is weakly equivalent to
E', and
E' =|E]
J
where each E; is a cofibrant and fibrant spectrum over X;, with an inclusion of spectra
E; — Ej. over the inclusion X; — X1 for every j.
Given the lemma, we will show that
(537) o1 [-(B') — fi(E' Ax CFY)

is a weak equivalence of spectra over Y. To this end, we will show that both f, and
fi(— Ax Cf‘l) commutes with unions of spectra. Namely, we claim that

(5.38) £.(8) = £:(UE;) = U()- (')
and
639 5E nx 07 = H((UE) Ax O7) = U (UDs(E; Ax, C7Y)
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is a natural homotopy equivalence. For (5.38), note that since f. is taken spacewise,
it suffices to show that if T' is a based space over X, such that T' = |J; T for an
increasing sequence of based spaces T over X, such that the diagram

-
Xj— Xjn

T; —=—Tin
Xk —‘? X
commutes for every j, then f.(T) = U;(f;)«(T;). We have
f«(T) = Secy (X, Z) = Uyey Sec(Xy, Ty)

as sets, where X, and T, are the fibers of X and T over a point y of Y, and Sec(X, Ty)
denotes the space of (nonequivariant) sections to the structure map T, — X, with
G-action by conjugation. Again, here Il cy Sec(Xy,T}) is topologized as in 7]. Note
that since X — Y is an equivariant smooth family of manifolds, X, = M as nonequiv-
ariant spaces for every y € Y. So f.(Y) is (G-equivariantly) the same as

yey Sec(M,Ty) = yey Sec(M,U(T})y)-
j

But M is compact, and for every j, (T})y — (Tj+1)y is an inclusion. Hence, we also
have a G-equivariant isomorphism

Sec (M, U((T2)y)) 2 Sec(M, (T;),)
where for each r, Sec(M, (T}),) — Sec(M, (Tj+1)y) is an inclusion. Hence, we get
£(7) = Uyey (USec(M, (1))
On the other hand,

LJ_J(fj)*(Tj) = L]J(Hyexj Sec(M, (T;)y))

where the right hand side is given an appropriate topology. It is easy to see that these
two are G-equivariantly isomorphic, which gives (5.38). To prove (5.39), note that up
to natural homotopy equivalences, we can define Cf_j1 to be z;(Cf_l) Then

-1 __ -1
Cf - LJ.Jij

is a union of spectra over the sequence of inclusions X; C X;;,. By arguments similar
as above, unions of spaces over the sequence of inclusions X; — X1 commutes with
taking loops. As a directed colimit, it also commutes with colimits. Hence, unions of
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spectra commutes with the spectrification functor. So again, it suffices to show that
for a based G-space T over X, such that T' = y Tj; for an increasing sequence T of
based G-spaces over Xj,

F(T Ax CF1) 2 U fu(Ty Ax, CF1).
J

Now if Z is a based G-space over X, it is easy to see that

T Ax Z = U(T; Ax, i5(2))
J

G-equivariantly. This is because for each j, there is an inclusion
TiNx; ;2 —TAx Z

over the inclusion X; C X. This induces a map (,(T; Ax, ijZ) — T Ax Z, which
is an G-equivariant isomorphism. But C};l =1} (Cf_l) is obtained by applying i} to
C'f“1 spacewise, so we get that

(5.40) T Ax C;' = (T Ax, CF).
J

Similarly, since X = {J; X;, ¥ = U, Kj;, and the union commutes with pushouts,
we get that for a space T = UTJ, as above, fy(T') = |J;((f;)4T;). Passing to spectra,
we get that for any spectrum D = Uj D; over X which is a union of an increasing
sequence of spectra D; over X; over the inclusions X; C X1, fy(D) = U,((f;)4D;)-
Applying this to (5.40) gives (5.39).

This gives the commutative diagram in the category of G-spectra over Y

Yx

f(E") » fy(B' Ax CFY)

(5.41) gJ lﬁ

U, (f)+(E}) ———— U,;(Fi)i(E] Ax, CJTJ,I)-
Uj PX;

Each px; : (f;)«(E}) — (fi)1(Ej Ax; C’f'jl) is now a weak equivalence of G-spectra
over K, so on each space, px; is a weak equivalence of unbased G-spaces. The union
of weak equivalences of unbased G-spaces is a weak equivalence, so the bottom map
U; ex; of (5.41) is a weak equivalence of unbased G-spaces, i.e. a weak equivalence of
G-spectra over Y. Therefore, the top map of (5.41) is a weak equivalence of G-spectra
over Y, which gives Theorem 4.9 for E’.

Hence, we have that

¢ f(E) — fi(B' Ax CFY)
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is a weak equivalence of spectra over Y. But we have the following diagram in the
homotopy category of spectra over Y.

Fo(B) —2 fy(B Ax CFY)

| |

1.(B) —5= H(E Ax C7).

By the functoriality of the constructions to obtain £’ and the definition of ¢, it is
routine to check that this diagram commutes. But E and E’ are now both cofibrant
and fibrant over X. Since f, preserves weak equivalences of fibrant spectra, the
left vertical map of this diagram is an isomorphism in the homotopy category of
spectra over Y. Also, since Cf_1 is a homotopy cell bundle spectrum over X, both
EAx C'f_1 and E'Ax C’f_1 are cofibrant over X by Lemma 4.19. Since fy preserves weak
equivalences between cofibrant spectra, the right vertical map is also an isomorphism
in the homotopy category of spectra over Y. Hence, the bottom map of the diagram is
an isomorphism in the homotopy category of spectra over Y, i.e. a weak equivalence
of spectra over Y.
To finish the proof of Theorem 4.9, it remains to prove Lemma 5.36.

Proof of Lemma 5.86. — For each j and any finite-dimensional representation V' in
the universe U, the diagram of unbased G-spaces

C
Xj——— Xjn

|

i (Ev) —E—) i;+1(EV)
Xj — Xjn
commutes. Hence, we have an inclusion of spectra ijE — 1}, E over the inclusion
X; € Xj41,and E = U ; z;E is the union over the sequence of these inclusions. Let
I'; be the cofibrant replacement functor of spectra over X;. Then the functors I';
are also natural with respect to inclusions of spectra over the inclusions X; C Xj41.
To see this, note that the functor I'; is obtained by attaching to X; all cells of the

form X9 ((G/H x D™) I X;) such that there is a commutative diagram of G-spectra
over X

LP(G/H x S H D X,;) —— X;

| l

$2((G/H x D) 11 X;) —— i3 E.
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By adjunction, this is equivalent to the diagram in the category of unbased G-spaces

G/H x "1 —— X

l |

G/H x D" —— i%(Ey).

By composing with the inclusion i} (Ev) — i},,(Ev) over X; C X1, we get a
diagram of unbased G-spaces

G/H x Sl —y Xj+1

| |

G/H x D" —— 1} ,,(Ev)

which gives a cell X3°((G/H x D™) 1 K;;1) in the category of G-spectra over X 1.
(Note that here, ¥¢? now denotes shift desuspension of the suspension spectrum
over X1 instead of over X;.) Therefore, each stage of the small objects constructions
constructing I'; and I';;; are natural with respect to the inclusion of spectra ;E C
541 £. This gives that I'; is natural with respect to inclusions of spectra. For every j,
we have a map of spectra I';ifE — I'j4195,, E over the inclusion X; — Xj4;, and
each I'ji7E is a cofibrant spectrum over X;. It is also in fact fibrant over Xj, since
i; takes a fibrant spectrum over X to a fibrant spectrum over Xj, and LjiE— i E
is an acyclic fibration.

Now for each j, let E;(0) be the telescope of the sequence of maps of spectra

- - -
Xo » X1 R —

L

LoigE — T'1i{E —— - —— T

|

X » X >
0T ¢ 177¢ C

2

it E

Y

ke

over the inclusions X, C X,4;, with » < j. This is obtained by taking the tele-
scope construction spacewise (in the category of unbased G-spaces), then taking the
spectrification functor over X;. Then E;(0) is cofibrant over X;, E;(0) is weakly
equivalent to ijE, and we have an inclusion of spectra E;(0) — E;1(0) over the
inclusion X; C X;41. Let I'E be the telescope of the infinite sequence of maps of
spectra

FolaE — FliIE — legE _ e
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over the infinite sequence of inclusions

- -
Xo— X5 = Xo —— -+

Then I'E is a cofibrant spectrum over X, and 'E — F is a weak equivalence of
spectra over X. Also, TE = |J; E;(0).

However, I'E and the E;(0)’s are now no longer fibrant, so we need to apply
fibrant replacement to them again. We will use the fibrant replacement functors on
the E;(0)’s to obtain the E’’s inductively. Since Eo(0) = I'oigE, it is fibrant over Xo,
so we define Ej; = Ey(0). Now suppose we have constructed spectra E{,,...,E;
over Xo,...,X;, such that each E/ is cofibrant and fibrant over X,, E.(0) — E;
is an acyclic cofibration. Also, suppose we have cofibrant spectra E.(j) over X, for
every r > j, with acyclic cofibrations E,(0) — E.(j), such that there is the following
diagram of inclusions of spectra over the inclusions Xy C X; C --- C Xj.

C C C C C
Xo—— X1 —— - —— Xj ——— Xjp1 ——— X2
~ C <+ C C ~ C <+ C
Ey(0) —— E1(0) — - -+ — E;(0) — Ej41(0) — Ej42(0) - -
(5.42) =~ ~ ~ ~ ~
\r, . v, . (_: \EI . v B -
By —=— Bl —= > » Ej1(7) —=2 Ejr2() -+
X, >v oo X >X\'l X;
Xo—e X1 c T At

Here, all the horizontal maps are spacewise inclusions. The first row of vertical maps
are cofibrations, the second row of vertical maps are acyclic cofibrations, and the
first § maps of the bottom row of vertical maps are fibrations. We construct E; 41 to
be the fibrant replacement of Ej;;(j), obtained by attaching to E;;1(j) all cells of
the form X ((G/H x D™ x I) I X;11) such that there is a commutative diagram of
the form

EP(G/H x D") I Xj41) — Ejy1(d)

| l

2%/0((G/H X D™ x I) HXJ'.H) e Xj+1

in the category of G-spectra over X;;q. So E; 41 is a fibrant spectrum over X1,
and there is an acyclic cofibration of spectra Ej1(j) — Ej;;. Composing with the
acyclic cofibration E;11(0) — E;11(j) gives an acyclic cofibration Ej;1(0) — E7 ;.
Also, an acyclic cofibration of spectra is a spacewise inclusion. So we also have the
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composition
C N C
E; — Ej11(j) — Ejy,

which is an inclusion of spectra over the inclusion X; C Xji;. Therefore, we can
replace Ej1(j) in diagram (5.42) by E7 ;. The first j+ 1 maps in the bottom row of
the diagram are now fibrations. We still need to construct E,.(j + 1) for all r > j + 2.
For such an r, we have the acyclic cofibration Ej;11(j) — Ej;, and the inclusion of
spectra F;1(j) — Er(j) over the inclusion X;1; C X,. Define the spectrum E, (j+1)
over X1 to be the spectrification of the prespectrum EP*(j + 1) over X1, whose
V-th space is the pushout in the category of unbased G-spaces given by

Ei1(j)v —— E.(§)v

| |

(Ejp)v —— EF*(j + 1)v.

Then it is straightforward to check that we have an acyclic cofibration E.(j) —
E,(j+ 1) of spectra over X,. Also, there are inclusions of spectra £, — E.(j + 1)
over the inclusions X1 C X,, as well as inclusions of spectra E,.(j+1) — Er+1(j+1)
over the inclusions X, C X, 1, which are compatible with each other. This allows us
to replace Er(j) by E,(j + 1) in the third row of diagram (5.42) for r > j + 2, which
gives the inductive step.

Finally, we define E' = | ; Ej}. Then we have maps of spectra over X

(5.43) re - g -2, x.

The first map is the union over j of the acyclic cofibrations E;(0) — E7, so it is
an acyclic cofibration. Thus, E’ is cofibrant and weakly equivalent to E. Also, the
second map of (5.43) is the union over j of the fibrations £} — X;. We claim that p
is a fibration. To see this, suppose that we have a testing diagram of the form

%% ((G/H x DY) 11 X) — E

(5.44) l lp

SR(G/H x D" x )T X) —— X

in the category of G-spectra over X. By adjunction, this is equivalent to a diagram
in the category of unbased G-spaces

G/H x D" —— Ey, = U;(Ej)v

l |

G/HxD"x] —— 5 X.
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Since the union FY, is the colimit of the (E;)y over a sequence of inclusions, and X
is the colimit of the X; over a sequence of inclusions, this factors to

G/H x D" —— (Ej)v
P
(5.45) l 7 l
G/H x D" x I —— X

for some j. The right vertical map of (5.45) is a fibration, so a dotted arrow exists
in (5.45) making the diagram commute. Therefore, a lifting exists in (5.44) as well. [

This concludes the proof of Theorem 4.9.
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CHAPTER 6

THE WIRTHMULLER AND ADAMS ISOMORPHISMS

In this chapter, we will show that the Wirthmiiller and Adams isomorphisms in
equivariant homotopy theory are instances of the duality theorem 4.9. We begin with
the Wirthmiiller isomorphism.

Let G be a compact Lie group, and H a closed subgroup of G. Let L denote the
tangent space of G/H at eH. The group G acts on G/H by translation, inducing an
action on the tangent bundle of G/H. The subgroup H fixes the fiber at eH, which
is L. Hence, L is an H-representation via the translation action. The Wirthmiiller
isomorphism [8] Theorem I1.6.2 states that for an H-spectrum E of H-cell homotopy

type,
(6.1) Gxy(EAS™L)~ Fy[G,E)

in the category of G-spectra. To see this as an example of Theorem 4.9, consider
the G-orbit G/H. There is a natural equivalence between the categories of based H-
spaces and based G-spaces over G/H. For a based H-space Z, G x g Z is a G-space,
with a natural map G xg Z — G/H induced by the collapse map Z — x. Likewise,
the basepoint G/H — G xy Z is induced by the basepoint of Z. Conversely, if
G/H LA N G/H is a based G-space over G/H, then the fiber p~!(eH) is an
H-space, with the basepoint i(eH). It is easy to check that these two functors are
inverse to each other. Stabilizing, we get an equivalence of categories between H-
spectra indexed on a G-universe U, thought of as an H-universe, and G-spectra over
G/H over U. Also, this equivalence of categories takes H-spectra of H-cell homotopy
type to G-spectra of G-cell homotopy type over G/H.

We claim that the map f : G/H — x* is a family of manifolds in the sense defined
above. In fact, for any compact manifold M with a smooth G-action, consider the
map of G-spaces

f:M — x.
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By the G-action on M, G is contained in the family Fy,, so EFyy, has a cell of
the form (G x S)/G. In the G-space EFyn,/S, therefore, there is a cell of the form
G/G = x, giving a canonical map iy : * — EFy,/S. The following square is a
pullback

M—> EFgn Xxs M

1| |

¥ —— EFun/S.
M

Hence, f is an equivariant smooth family of manifolds, so Theorem 4.9 holds for f.
In particular, for M = G/H, by Theorem 4.9, we have

f(E A Cf_l) ~ f.(E)

as G-spectra, for a G-spectrum E over G/H. It is straightforward to check that the
composition functor

G-spectra —f—> G-spectra/(G/H) — H-spectra

is just the forgetful functor, so the right adjoint Fy|[G,—) coincides with f., and
the left adjoint G x g — coincides with fy, via the equivalence of categories between
H-spectra and G-spectra over G/H. Recall also that the dualizing object Cy is the
sphere bundle of the tangent bundle of G/H, which is in this case

G xy L — G/H.

Thus, by definition, Cf_1 corresponds to the H-spectrum S~ by the equivalence
of categories between H-spectra and G-spectra over G/H, and the duality theorem
gives (6.1) exactly. One can say a map from a G-manifold M to a single point is
the simplest kind of equivariant smooth family of manifolds, and a single orbit G/H
is the simplest manifold in the equivariant world. In this sense, the Wirthmiiller
isomorphism is the simplest case of the general equivariant duality theorem.

A more interesting example is that of the Adams isomorphism. Let H be a normal
(closed) subgroup of G, and let J = G/H. Let A be the adjoint representation,
i.e. the tangent space of H at e, with a G-action by conjugation. Also, let I be a
complete G-universe. Let i : U — U be the inclusion, and i, i* denote the change of
universe functors between G-spectra indexed on 4 and on #. (Unfortunately, there
is some opportunity for confusion from the similarity between the classical notation
for the universe change functors and the base change functors. Note that for a map f
of base spaces, f. is the right adjoint to f*, but for a linear isometry ¢ of universes,
the universe change functor i, is the left adjoint to i*.)

Recall from [8], Section II.2 that a G-equivariant spectrum FE is said to be H-
free, if E has a G-cell approximation F’, such that the cells of E’ are of the form
Y5YG/Ny A D™, where N N H = {e}. Hence, every G-cell approximation of E is
of this form, and any G-spectrum that is weakly equivalent to any H-free G-cell
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spectrum is H-free. The H-free G-spectra form a full subcategory of the category of
G-spectra. There is no model category structure on this full subcategory of H-free
G-spectra, since it is not closed under point-set level colimits and limits. Nevertheless,
we can consider the full subcategory of the homotopy category of G-spectra whose
objects are H-free G-spectra. We call this the homotopy category of H-free G-spectra,
even though it does not come from a model category structure on the point-set level
subcategory of H-free G-spectra.

Recall from Theorem I1.2.8 of [8] that the functor i, from the category of H-free
G-spectra indexed on U to the category of H-free G-spectra indexed on U induces
an equivalence of homotopy categories. Then the Adams isomorphism is the following
statement.

Theorem 6.2 (Adams Isomorphism (8], Theorem IL.7.1). — If E is an H-free G-
spectrum of G-cell homotopy type indexed on UH , then

E/H ~ (i,EAS™)H.
in the category of J-spectra indexed on UM .

Note that A is not contained in the H-fixed universe U, which is one of the reasons
that necessitate the use of change of universe functors in the statement.

To see the Adams isomorphism in the context of duality, we need to understand H-
free G-spectra. Recall the construction of the universal H-free G-space. Let F be the
family of subgroups of G, consisting of all subgroups N C G such that NN H = {e}.
Then there is an universal contractible H-free G-space EF (see [8], Section II.2).
Consider the map of G-spaces

JEF — x.
We have a pair of Quillen adjoint functors (jy, j*) between the categories of G-spectra
and G-spectra over EF. In particular, jy lands in H-free G-spectra, so we in fact

have a pair of adjoint functors between H-free G-spectra and G-spectra over EF.
The following lemma, holds for spectra indexed on &/ and on UH.

Lemma 6.3. — If E is an H-free G-spectrum, the counit of the adjoint pair (jy,5*) is
a homotopy equivalence jyj*E ~ E. If E is a cofibrant G-spectrum over EF, then
the unit of this adjunction pair E — j*j3E is a weak equivalence.

Proof. — For an H-free G-spectrum F, the counit of adjunction is
c:jyj*E — E.

It is easy to see that jyj*E ~ EF, A E, and the map c is obtained by collapsing EF.
By the freeness of F, this is a natural homotopy equivalence.

Conversely, let E be a cofibrant G-spectrum over EF. The functors j* and jy
preserve colimits, so it suffices to consider the case where F is the suspension spectrum
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of a single orbit G/Ny = G/N I EF, where N € F. Let p: G/N — EF be the
structure map, and I', : G/N — G/N x EF be the graph of p. Then

J*jy(G/INUEF)=(G/N x EF)UEF
and the unit of adjunction is
ILUEF:G/NUEF — (G/Nx EF)UEF

This is a G-map over EF. By classical equivariant homotopy theory, I, is a homotopy
equivalence, hence a weak equivalence in the category of G-spaces. Thus, I', [ EF is
a weak equivalence in the category of based G-spaces over EF. O

Thus, j* and jy pass to inverse equivalences between the homotopy categories of
H-free G-spectra and G-spectra over EF. This allows us to think of H-free G-spectra
in the context suited to the duality theorem.

Consider the map of G-spaces

f:EF — EF/H.

We will show that f is an equivariant smooth family of manifolds. Given this, we
get functors fy, f« from G-spectra over EF to G-spectra over EF/H. Also, let
h:EF/H — %,s0j =h-f: EF — x. Also, let i : U — U be the obvious
inclusion of universes. We have the following diagram of functors on the point-set
level categories.

H-free G-spectra on UH

s
H-free G-spectra on Y ——]—*——+ G-spectra/ EF on U
fi(=NeF Cf_l)l lf*
(6.4) G-spectra/(EF/H) on U
(-

J-spectra/(EF/H) on UH

hy

v

J-spectra on UH.

We claim that the compositions from H-free G-spectra on U to J-spectra on U
using the two functors fy(— Agr Cf‘l) and f,, agree up to weak equivalences with the
functors that occur in the classical statement of the Adams isomorphism.
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Proposition 6.5. — Let E be an H-free G-spectrum of cell homotopy type indezed on
UH. Then

(1) The composition hy(fy(j*i«E NgF CJTI))H is naturally weakly equivalent to
(i«E A S~)H in the category of J-spectra indezed on UH.

(2) The composition hy(f.j*i+E)¥ is naturally weakly equivalent to E/H in the
category of J-spectra indexed on UM .

First, we have the following lemmas.

Lemma 6.6. — Let i : U — U be the inclusion map. Then for a homotopy cell
bundle spectrum E over EF, the unit of the adjunction u : E — i*i.E is a spacewise
homotopy equivalence.

Proof. — Similarly as in the case for H-free G-spectra over a point. Let Z(UH,U)
be the space of linear isometries from U to U, with a G-action by conjugation. In
particular, if A is a G-space over EF, and we have a G-map a : A — Z(UH ,U), then
we have from Chapter 2 the twisted half-smash product

A x4 — : G-spectra over EF on U¥ — G-spectra over EF on U.

In particular, define

ag : EF — I(UH,U)
which takes z to (z,%) for every € EF. Then for a G-spectrum E over EF indexed
on UH | EF oy E = (ap)«E = i, E. Also, for a G-spectrum E’ over EF indexed
onlU, Fo [EF,E') = (a)*E' 2 i*FE'.

We claim there exists a G-map

o EF — IUT U)
such that for every x € EF, ay(x) : U¥ — U is a isomorphism. Also, ap and «a; are
path connected to each other as EF-points in the G-space Z(U¥,U/). Namely, there
is a G-map

a: EF x I — IU",U)

such that « - ip = ag, and « - i3 = a3. This is done by the acyclic models argument
over the cells of EF. Recall the cells of EF are of the form G/N x D™, where N is
a subgroup of G, and H N N = {e}. Also, for such an N, the universes ¥ and U
are N-equivariantly isomorphic. There is a path I — Z(U*,U) connecting this N-
equivariant isomorphism and the inclusion i : ## — U, which is an N-equivariant
linear isometry for every t € I. Since the action of N on Z(U*,U) is by conjugation,
a linear isometry from U¥ to U is N-equivariant if and only if it is in ZUH,U)N.
Thus, we have a path I — Z(U? ,U)N, i.e. an N-equivariant path I — (U, U),
where I is thought of as having the trivial N-action. Applying the functor G/N x —
then gives a G-map

G/N x I — IT(U®,U)
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which at time 0 is ¢ over every point of G/N, and at time 1 is an isomorphism over
each point of G/N. Let EF ) denote the n-th skeleton of EF. Let jo, ji : * — I
be the inclusions of the point at 0 and 1. Suppose that we have compatible maps
am) : EFny x I — EFmy x Z(UH,U), such that Q(n) * Jo = aolEF,,, and o) - j1 is
an isomorphism over each point of EF(,). Suppose G/N x D™t s a cell of EF of
dimension n + 1, with an attaching map G/N x S™ — EF ). Then there is a map
amyla/nxsn 1 — (G/N x S™) x Z(U" ,U)
such that a(n)IG/NXSn - Jo = a0, and a(n)|g/Nxs~ - J1 is an isomorphism over every
point of G/N x S™. By acyclic models, one can extend this map to
(G/N x D"tV x I — U, U)

with the same properties at times 0 and 1. This gives the homotopy between o and
a map which is an isomorphism in each fiber, over EF(,) with the cell G/N x D!
attached. Thus, induction over the skeleta of EF gives @ and «;.

The map jo : EF — EF x I is a homotopy equivalence over EF. Then by
arguments similar to Theorem 7.4 in Appendix A of [4], for a homotopy cell bundle
spectrum E over EF on UH there is an induced homotopy equivalence

wE=EFXq E— (EF xI) x4 E.

The functor ¢* preserves homotopy equivalences of spectra. Also, there is a spacewise
homotopy equivalence

Foo[EF,(EF x I) Xy E) — FL[EF x I,(EF x I) x E).
Hence, we have a spacewise homotopy equivalence

Bo "B — i*((EF X I) Xo E) = Foo [EF,(EF x I) Xo E)
— Fo|[EF x I,(EF x I) x4 E).

Similarly, there is a spacewise homotopy equivalence

B1: Fo,[EF,EF Xo, E) — Fo[EF x I,(EF x I) X4, E).
We have the diagram

U v
E y 1*1 B

ul \ lﬁo

Fo,[EF,EF xqo, E) —5 Fo[EF x I,(EF x I) xo E)
1

where the u’s denotes the units of adjunction. However, since a; is an isomorphism
over each point of EF, the unit of adjunction

w: E — F, |[EF, EF x oy E)

is an isomorphism. The maps fy and (3; are spacewise homotopy equivalences. Hence,
u: F — i*i,F is a spacewise homotopy equivalence. O
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Lemma 6.7. — Let H be a normal subgroup of G, and J = G/H. The fized point
functors (—)¥ from G-spectra indexed on U and from G-spectra indezed on UM to
J-spectra indexed on U preserve weak equivalences.

Proof. — Let e : E — E' be a map of G-spectra indexed on Y. Then e is a weak
equivalence of spectra if and only if for every finite-dimensional V- C U, ey : Ey — Ej,
is a weak equivalence of G-spaces. Thus, the change of universes functor ¢* preserves
weak equivalences of spectra, and it suffices to show that the fixed point functor from
G-spaces to J-spaces preserves weak equivalences. Let e : T' — Z be now a weak
equivalence of G-spaces. Then for every subgroup N of G, eV : TV — ZVN is a
nonequivariant weak equivalence. Let N’ be a subgroup of J, then N’ = N/H for a
subgroup N of G containing H. The action of J on TH# and Z¥ is induced by the
action of G on T and Z, so (TH)N" = TN and (ZH)N' = ZN. Therefore, e induces
a nonequivariant weak equivalence (TH)V " = (ZH)N for every subgroup N’ of J, so
el . TH — ZH is a weak equivalence of J-spaces. O

Lemma 6.8. — The diagram of functors

]

J
H-free G-spectra on UH —— G-spectra over EF on U

H-free G-spectra on U ——— G-spectra over EF on U
J

commutes up to natural isomorphism.

Proof. — Let E be a H-free G-spectrum indexed on . Then i,F is obtained by
spectrifying the prespectrum i£"°E on U, whose V-th space is &V~ VU Ey, o u for
each finite-dimensional V' in Y. The right adjoint of j* is j., which commutes with
the forgetful functor from spectra on U to prespectra on Y. So j* commutes with the

spectrification functor L. Hence, it suffices to show that on the level of prespectra
over EF indexed on U,

jHiPTE = P E.
The V-th space of the left hand side is
EF xsV-viup
and the V-th space of the right hand side is
SV VU BE x By youny).

These two are naturally isomorphic as G-spaces over EF. O

We also have the following observation, whose proof we defer.
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Lemma 6.9. — For maps f : EF — EF/H and j : EF — x, we have that the
dualizing object Cy of f is isomorphic to j*(S4) as G-spaces, where A is the adjoint
representation.

We now prove Proposition 6.5, which identifies the compositions of (6.4) with the
two sides of the Adams isomorphism.

Proof of Proposition 6.5. — For the first statement, consider the composition of
functors from H-free G-spectra indexed on U to J-spectra indexed on U¥ using
fi(— NeF Cf_l). Let Z be a based G-space over EF/H. Since EF/H is fixed as an
H-space, taking the fixed point functor preserves the pushout square

EF/H—— 7

J

x —— Z/(EF/H).

So (ZH)/(EF/H) = (Z/(EF/H))®. On the level of spectra, consider the diagram
of functors

h
G-spectra/(EF/H) on U ., G-spectra on U

LT

(6.10) G-spectra/(EF/H) on U¥ —, G-spectra on U

| 8K

J-spectra/(EF/H) on UH _hu_) J-spectra on U
The functor hy on spectra is obtained by first applying hy spacewise, which gives
inclusion prespectra, then applying the spectrification functor. The functors (—)* and
QV commute if V is a finite-dimensional H-fixed G-representation, so (—)* on spectra
indexed on U¥ commutes with the spectrification functor from inclusion prespectra
indexed on UH to spectra indexed on U*. Hence, the bottom square of the diagram
commutes in the point set category up to canonical isomorphism.
We make the following claim.

Proposition 6.11. — The top square of diagram (6.10) commutes up to natural weak
equivalences if applied to fy(j* i« EN EfC;l), where E is a cofibrant H -free G-spectrum
indezed on UH. Namely, there is a natural weak equivalence of G-spectra indexed
on UH

(6.12) hyi* (fy (5" i« E ApF C;l)) ~ " hy(fy(5" i< E NgF C;l))
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We will defer the proof of Proposition 6.11. By Lemma 6.7, (—) preserves weak
equivalences. So given (6.12), the entire diagram (6.10) commutes up to natural weak
equivalence, in the sense that

hy(i* (fy (5B Apr C = fT)H 2 (hyi* (£33 E Apr CF )T
= (i*hy(fy (5" i E Npr C7 1))
naturally for a H-free G-spectrum E of G-cell homotopy type indexed on U*.

Thus, the composition of functors

H-free G-spectra on U g, G-spectra/EF on U
fi(—=Aex CF1)

(6.13) G-spectra/(EF/H) on U

SL .
——— J-spectra/(EF/H) on U

h
LN J-spectra on U

is weakly equivalent to (hyfy(57*(=) AeF C'f_l))H.

Since the functor j* commutes with smash products, for a cofibrant H-free G-
spectrum E on UH | j* (i,‘E)/\E}-C’f_1 is weakly equivalent to j*(i. EAS™4) in the cate-
gory of G-spectra over EF indexed on Y. Since E is cofibrant, both j*(i. E) Agpr Cf_1
and j*(i,E A S~4) are cofibrant, the former by the discussion after Lemma 4.19.
The functor hyfy preserves weak equivalences between cofibrant objects, and (—)#
preserves weak equivalences by Lemma 6.7. So by Lemma 6.9, the composition of
functors (6.13), applied to i.E, is weakly equivalent to (hyfyj*(i.E A S™4))H =
(jyi* (i E A S~4))H. But we also have that jyj*(i.E A S™4) is weakly equivalent
to i,E A S~4, and again, (-)H preserves this weak equivalence. Thus, for a cofi-
brant H-free G-spectrum E indexed on U*, the composition (6.13), applied to i.E,
is naturally weakly equivalent to (i, A S~4)H.

For the second part of the Proposition 6.5, we need to consider the composition

H-free G-spectra on U g, G-spectra/ EF on U

L G-spectra/(EF/H) on U

SLl .
———— J-spectra/(EF/H) on U

(6.14)

h
-, J-spectra on U

We have the following lemma.

Lemma 6.15. — For a G-spectrum E over EF indexed on UM,

(£ (ENT = (fi(B))/H

naturally.
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Proof. — It suffices to prove the lemma on the level of G-spaces. Since the functor
(—)/H is a left adjoint, for a G-space T over EF, it takes the pushout diagram

EF —7T

| ]

EF/H — fy(T)

to the pushout diagram

EF/H —T/H

|

EF/H — fy(T)/H.

So (fy(T)/H = T/H. Let p : T — EF be the structure map of T. Recall that
set-theoretically, f«(T) = II, Sec(EF,,T,) over the points y € EF/H, and (f.(T))¥
consists of the H-equivariant sections. Since EF/H is fixed by H, each H-orbit of T'
is contained in T}, for a single y € EF/H. Thus, it suffices to consider a single point
of EF/H, and compare Sec(EF,,T,) and T,/H. Choose x € EF,, then EF, = Hz
is homeomorphic to H as an H-space, so the image of z in a section determines the
entire section. If k : EF, — T, is a section of p, then the image of k is an H-orbit
in T,. But for every H-orbit O in T, there is an unique z € p~!(z) N O, which
determines a section EF, = Hz — O C T, that takes x to z. Therefore, we have
that (£.T)" = T/H = (f,(T))/H.

Thus, the statement of the lemma holds for the prespectra-level functors. Applying
the spectrification functor L to both sides gives the lemma for spectra. O

For an H-free G-spectrum F indexed on U of G-cell homotopy type, we need to
apply the composition (6.14), to i.(E). This is hy(f.j*(i«E))¥. In taking the H-fixed
points of a spectrum indexed on U, we first forget to the universe ¥, i.e. apply i*,
then take H-fixed points spacewise. Hence, the composition (6.14) for i.(F) is really
hy(i* foj*i«E)H, where (—)¥ is taken spacewise, since the spectrum i* f,j*i. E is now
indexed on UH. Now it is easy to check that i* and f, commute, since f, on spec-
tra is obtained by applying the space-level f,. on each space of the spectrum. Also,
j* commutes with i, by Lemma 6.8. Hence, this is hy(fsi*i(j*E))?. Now j*E is
spacewise homotopy equivalent to i*i,(j*E) by Lemma 6.6, and the fact that j*F is
trivially a homotopy cell bundle spectrum over EF, since E is of G-cell homotopy
type. The functor (f.(—)) on spectra is obtained by applying (f«(—))¥ = (fy(-))/H
spacewise. Since (fy(—))/H preserves homotopies, the spectra-level functor (f.(—))#
preserves spacewise homotopy equivalences. Also, hy takes a spacewise homotopy
equivalence to a weak equivalence of spectra. This is because applying hy spacewise
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takes a spacewise homotopy equivalence of spectra to a spacewise homotopy equiva-
lence of inclusion prespectra, and the spectrification functor from inclusion prespec-
tra to prespectra takes a spacewise homotopy equivalence to a weak equivalence.
Hence, (6.14) is naturally weakly equivalent in the category of J-spectra on UH to
hy(f.«j*E)H, which is hy(fyj*(E)/H) by Lemma 6.15. But the functors hy and (-)/H
commute since their right adjoints commute, so (6.14) of i, F is weakly equivalent to
(hyfyi*(E))/H = (jyj*(E))/H. We have a weak equivalence £ — jyj*E. Since EF
is a cell complex, the functor j* preserves cofibrant objects, so both E and jyj*F
are cofibrant. Also, (—)/H preserves weak equivalences of cofibrant spectra. Thus,
for an H-free G-spectrum E indexed on U*, (6.14) is naturally weakly equivalent to
E/H. O

Now we prove Proposition 6.11. We will begin with the following lemma.

Lemma 6.16. — If E is a homotopy cell bundle spectrum over EF/H indezed on UH,
then for any finite-dimensional G-representation V,

hﬁ(ng/HE) ~ Q' IyE
naturally as G-spectra indexed on UH .

Proof. — Consider a cell C = G/NH x D™ of EF/H, where N is a subgroup of G
such that NN H = {e}. Let E¢ be the fiber of E over C, so E¢ is a G-spectrum
over C' indexed on ¥ . Since F is a homotopy cell bundle spectrum over EF/H, by
subdividing the cells of EF/H, we can assume that over each cell C = G/NH x D"
of EF/H, the fiber E¢ is G Xy (Ei x D™) as a G-spectrum indexed in UH over C.
Here, E, is an N H-spectrum indexed on U¥ . Also, we can assume that E, is of the
homotopy type of an N H-cell spectrum.

Now for a based N H-space X, consider the based G-space G X yg (X x D™) over
G/N H x D™, whose structure map p : GX g (X xD™) — G/N H x D™ is induced from
collapsing X to a point, and whose basepoint map i : G/NH x D™ — G X yg (X x D")
is induced from the basepoint of X. Then

Gy Ave (X AD) = Gy Avg (X x D™)/(x x D™))
~ (G xyg (X xD")/(G/NH x D")
which is naturally isomorphic to (h|c)y(G Xnu (X x D™)). Passing to spectra, we
get that similarly
(hlo)y(Ec) =% G xnm (Ec A DY)
naturally as G-spectra indexed on U. Again, E;, A D7 is also of the homotopy type

of an NH-cell spectrum. Let L be the tangent space of G/NH at eNH, with a
N H-action by translation. Note that since H is normal in G, the G-action on G/NH
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by translation, when restricted to H, is trivial. So L is in fact an H-fixed NH-
representation. Thus, S~ exists as a G-spectrum indexed on U, and the Wirth-
miiller isomorphism holds for G-spectra indexed in /. In particular,

G XNH (E/C A D?_) ~ FNH[G, E/C A Di)

However, the functor Fyg[G,—) commutes with QY for any finite-dimensional G-
representation V. Thus, G X yg — commutes with Q¥ up to weak equivalence. Let
QY denote the V-th loop functor for G-spectra over C indexed on U¥. Then

(Rle)(QEEC) = (Rl QE(G xnu (Eg x D™))
= (hlc)y(G xnu (7 Eg x D™))
~Gxng (QYEL A D7)
~ QY (G xnu (Eg A DY)
= QV((hlc)uEC).

Now hy(E) is obtained by gluing together (h|c)y(Ec)’s using cofiber sequences and
directed colimits in the category of G-spectra indexed on ¥ . These constructions are
instances of homotopy colimits, which also commute with 2" on the derived category
in the sense above. Hence, hy commutes with QY up to natural weak equivalences of

G-spectra indexed on U* | i.e. for a homotopy cell bundle spectrum E over EF/H
indexed on U¥ with fibers E[, of cell homotopy type,

hS% 5 E = hocolime (k|¢)y Q6 Ec
~ hocolimcQY (h|c)yEc
~ QY hocolime¢ (he)yEc
~ QY IyE. O

Proof of Proposition 6.11. — We define the following category, called the category of
(U, UH)-presystems.

Definition 6.17. — An (U, U™ )-presystem is a collection { E(V)} of G-spectra indexed
on UH, where the V’s range over all finite-dimensional representations V of U, such
that V NUH = {0}. We require structure maps

(6.18) E(WV) — QY-VEW)

whenever V C W, WNUH = {0}. The structure maps satisfy the obvious composition
relations. Morphisms of (U, U )-presystems are collections of maps { E(V) — E'(V)},
where each E(V) — E'(V) is a map of G-spectra indexed on ¥, and the maps
commute with the structure maps. Also, define the category of (U,U*)-systems to be
the full subcategory of (U, U™ )-presystems, with objects all { E(V)}’s whose structure
maps are all isomorphisms.
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In fact, this category of (U,UH )-systems is naturally equivalent to the category of
G-spectra indexed on U. Namely, suppose F is a G-spectrum indexed on Y. Let V
be a finite-dimensional G-representation contained in U, then we define E(V') by

E(V)z = Evgz

for any finite-dimensional G-representation Z contained in 44*. The structure maps
of E(V) are those of E. It is easy to check that we get maps (6.17), which are iso-
morphisms of G-spectra indexed on U, so we get a (U, U )-system {E(V)} from E.
Conversely, given a (U,UH )-system {E(V)}, define a G-spectrum E indexed on U by

Ew = E(W — (W nU))ways.

It is straightforward to check that this gives inverse equivalences of categories between
(U, U )-systems and G-spectra indexed on . On the level of prespectra, although the
categories of G-prespectra indexed on U and (U,UH )-presystems are not equivalent,
a (U,U™)-presystem gives a G-prespectrum indexed on Y.

Likewise, for any G-space X, we can define the categories of (U,UH)-presystems
and systems over X, whose objects are collections {E(V)} for all finite-dimensional
V C U, where each E(V) is now a G-spectrum over X indexed on Y. Then a
similar equivalence of categories holds for G-spectra over X indexed on i and (U,UH)-
systems over X. In the following, we will use the categories of G-spectra over X
indexed on U and (U,U™)-systems over X interchangeably.

In our case, the input spectrum is fy(j*i.E AgF C;l), where E is an H-free G-
spectrum of cell homotopy type indexed on #4¥. By Lemma 6.9, for any choice of
universe change a : EF — I(U?,U), we get a homotopy equivalence

—1 . *y—A @0 ~ y—A o0
Cf >~ " EainS = BonisSeF-
So we have

fi(G*iE Apr C; 1)

R

fi(G*iuE NEF 36 S%r)
Fi(E3in "1 E))

= 15" (CqinieE))

~ fyi* (i E N S™4)

= fyf*h* (. EAS™H)

~ (EFUEF/H)Agr/g (W*(ixE A S™4)).

1R

All the maps of this composition are isomorphisms or homotopy equivalences. The
map f: EF — EF/H is a G-equivariant bundle with fiber H, and h*(i.E A S~4) is
trivially a homotopy cell bundle spectrum over EF/H, with fiber i, £ A S~4, which
is a G-spectrum of cell homotopy type. Therefore, f3(j*i+E Agx C’f“l) is a homotopy
cell bundle spectrum over EF/H.
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We will denote fy(j*i«E ApF C;l) by E' for short. Write E’ as a (U,U™)-system
{E'(V)} over EF/H. Suppose we can replace E by a (U,U)-presystem {E',.(V)}
over EF/H, such that

(1) There is a natural spacewise homotopy equivalence Fpre = E of G-prespectra
over EF/H indexed on U;
(2) each E',(V) is a homotopy cell bundle spectrum over EF/H indexed on U*;
(3) for all V.C W, W NUHE = {0}, the adjoint structure map of the (U, UH)-
presystem over EF/H
E‘I:JV;/‘;{ETpre(V) — Elpre(W)
is a cofibration of G-spectra over EX/H indexed on U*.

Then for all V. C W, such that W NUUH = {0}, the diagram of G-spectra over
EF/H indexed on U

Bl pre(V) ————— E(V)

T

Qg/‘;/‘;lﬁpre(w) —:_) QEJV].-:/‘;{E(W)

has spacewise homotopy equivalences for the horizontal maps, so its left vertical map
is also a spacewise homotopy equivalence. Therefore, by Lemma 6.16,

(6.19) W E pre(V) = Qg 2ty B pre (W) = QW ™V Ry BV e (W).

Since hy(E'pre(V)) and hy(E’pre(W)) have the homotopy types of G-cell spectra, and
by Remark 1.6.4 of [8], Q" ~V preserves cell homotopy types, (6.19) is in fact a
homotopy equivalence.

Now there is a stabilization functor L(U,U*) from (U, U )-presystems to (U, UH)-
systems. It is the left adjoint to the forgetful functor from (U, UH )-systems to (U, U )-
presystems, and is similar to the spectrification functor. If {D(W)} is a (U,U)-
presystem, whose structure maps are spacewise inclusions, then

(LUUT{DW)}(V) = colimycw QY =V D(W).

Here, the colimit is taken over all finite-dimensional representations W C U contain-
ing V, and W NUH = {0}. If we think of a (U,UH)-presystem as a G-prespectrum
indexed on U, and a (U,UH )-system as a G-spectrum indexed on U, then L(U,UH) co-
incides with the spectrification functor from G-prespectra indexed on U to G-spectra
indexed on Y. In particular, let E’ = L(U,U™){E’(V)}. Then by Condition 2 for
{E’(V)} and arguments similar to that of 1.8.10 of [8], there is a natural homotopy
equivalence of G-spectra over EF/H indexed on U

Fone(V) = B(V)
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for every finite-dimensional G-representation V with V N/ = {0}. Hence, we also
have a natural homotopy equivalence of G-spectra indexed on U

(6.20) Ry (E'(V)) = hy(Epre(V)).
Note that both {hy(E"(V))}v and {hy(E"pre(V))}v form (U, UH)-presystems.

Thinking of E’ = {E'(V)}y as a G-spectrum over EF/H indexed on U, we have

hy(E") = LU, U™ ) {E"(V)}.
Since spectrification takes spacewise homotopy equivalences to weak equivalences,
by (6.20), this is naturally weakly equivalent to L({U,UT){hyE pre(V)}. Since hy of
spectra preserves cofibrations, the adjoint structure maps
EW_Vhﬂ (E—/pre(v)) - hﬁ(ﬁpre(W))

are cofibrations of G-spectra indexed on . By this and (6.19), using arguments
similar to Lemma 1.8.10 of [8], we get that

hy(Epre(V)) — (LU UT ) {hgE pre (W) }w ) (V)
is a natural homotopy equivalence for every finite-dimensional V such that
Vnut = {0}.

For every V with V NUH = {0}, F'pre(V) — E'(V) is a spacewise homotopy
equivalence. Thus, E’(V) is also spacewise homotopy equivalent to E’(V). Also,
hy preserves homotopy equivalences of spaces, and the spectrification functor takes
spacewise homotopy equivalences to weak equivalences. Therefore, we get

i*hy(E) ~ i* (hy(E7) ~ i* LU, U {E pre(V)}
= LU U {E"pre(V) }(0)

=~ hy(E'pre(0))

=~ hy(E(0))

= hyi*(E).
This is the statement of Proposition 6.11.

It remains to construct the replacement {E',e(V)} of E' = fy(j*i+E AgF Cf_l).
For this, we use the cylinder construction [8], Section 1.6. Suppose we have a G-
spectrum E of G-cell homotopy type indexed on U, recall from [8] that each space
of F is of cell homotopy type. The cylinder construction K FE is the prespectrum on U
given by

KEy = hocolimycy XV ~WEw.
The U-prespectrum K FE is Y-cofibrant, and there is a natural spacewise homotopy
equivalence of G-prespectra indexed on U

KE = E.

Let Ly n be the spectrification from G-prespectra indexed on U to G-spectra indexed
on UH. For each finite-dimensional V contained in U, such that V n U = {0},
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{KEvgz}zcyn is a L-cofibrant G-prespectrum indexed on U*, which is spacewise
homotopy equivalent to E(V'). By Proposition 1.8.13 of [8], we get natural spacewise
homotopy equivalences of G-spectra indexed on UH

Lys{KEygz} — E(V).

Define Epe(V) = Lyn{KEvgz}. Then each Ep(V) is of cell homotopy type.
Further, we have structure maps

SV E (V) — Epre(W)

whenever V.C W, WNUH = {0}. These are cofibrations of G-spectra indexed on
since they are spectrifications of spacewise cofibrations of prespectra.
Now we have

E' = fy(j*isE ApF/g C;') ~ (EF WEF/H) Apr/i (h* (i E A S™H))

over EF/H, where FE is our H-free G-spectrum of G-cell homotopy type indexed
onUH. Thus, i, EAS™4 is a G-spectrum of cell homotopy type indexed on . Apply-
ing the above discussion to i, E A S™4, we get a G-prespectrum K (i, E A S~4), which
is spacewise homotopy equivalent to i.E A S™4. Also, each space of K (i.E A S~4)
has the homotopy type of a G-cell complex, and each adjoint prespectrum structure
map is a cofibration of G-spaces. For a fixed finite-dimensional G-representation V'
such that V NnU# = {0}, consider the G-prespectrum over EF/H indexed on U*,
whose Z-th space is

(EF UEF/H) Az WK(GiENS vz

for each finite-dimensional G-representation Z contained in Uf. Since h* and
(EF UEF/H) Agx/ug — both preserve homotopy equivalences, this prespectrum is
spacewise homotopy equivalent to E'(V'). Let Lyu denote the spectrification functor
from G-prespectra over EF/H indexed on U to G-spectra over EF/H indexed
on UH. We define E'pre(V) to be Lyn of this G-prespectrum over EF/H indexed
on UH. Then {E'}e(V)} form a (U,UH)-presystem over EF/H.

The G-space EF/H is a G-cell complex, so h* preserves cofibrations. Also, as we
will see in detail later, the map EF — EF/H is a smooth family with fiber H, so it
is also a homotopy cell bundle. Hence, by Lemma 4.19, the functor

(EFUEF/H)Ngr/ua —

also preserves cofibrations of G-spaces over EF/H. So for all V. C W in U, with
W NnUH = {0}, the structure map

Sor/a(EF LEF/H) Apr/n R K (B AS™*)vez
— (EF UEF/H) Apr/g W K(ixEAS™)waz
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is a cofibration for any Z c . Applying the functor L;,n, we get that the structure
maps

E::V;/‘;E,pre(v) — E'pore(W)
are cofibrations of G-spectra over EF/H indexed on U¥. Also, since the functor Ly u
commutes with smashing with a space and also with h*, each Fpre(V) is in fact

(6.21) (EF UEF/H) Ngr/u h*Lyn K ((ixE A S™4)(V)).

But Lyn K((i.E A S~4)(V)) is a G-spectrum of cell homotopy type indexed on U¥,
so (6.21) is a homotopy cell bundle spectrum over EF/H. Finally,

K((ixE A S™4) (V) — LynK((i.E A S~™4)(V))
is a spacewise homotopy equivalence, so F(V) is spacewise homotopy equivalent to
the G-prespectrum (EF Il EF/H) Agz i K((i«E A S=#)(V)) over EF/H, which
is in turn spacewise homotopy equivalent to E’(V). This gives that the replacement

{F'pre(V)}v of E' satisfies the necessary conditions. This concludes the proof of
Proposition 6.11. O

To show that Theorem 4.9 holds for f : EF — EF/H, we need to show that f is
an equivariant smooth family of manifolds. We recall briefly the way to think of the
Adams isomorphism from [8] Section II.7. Let I' = H x G, where G acts on H by
conjugation. So there is the short exact sequence of groups

1—H—T —G—1.

In particular, H = T'/G as a I'-space. Let 6 : I' — G be the map which takes (h, g) to
hg € G. Then 0*EF is EF as a I'-space, whose I'-action comes from the surjection 6.
The map f: EF — EF/H is a fiber bundle with fiber H = I'/G, when we think of
it as
EF20*EF xgT/G — 0*EF xgx X EF/H.

The fiber of f is the manifold H =T'/G, and S = Diff (H) in the language of equivari-
ant smooth families. In particular, there is an embedding i : H — &S since H acts on
itself smoothly by translation. There is also a map j : G — S since G acts smoothly
on H by conjugation. So we can define an embedding of groups

t:I'—GxS8S

where g € G C T’ maps to (g,j(g9)), and h € H C T maps to (e,i(h)). Let N be a
subgroup of G such that N N H = {e}. Define the subgroup H ® N C T' by

HON ={(h,h"'n) €T | he H, n€ N}.

To see that H © N is a subgroup of I, write I' = {(h,g) | h € H, g € G}, with the
multiplication

(h1,91)(h2,92) = (h1(g1h297 '), 9192)-
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Then for (h1, k' n1) and (he, hy'ng) in H® N,
(h1, Ay ') (ha, by 'ng) = (ha(hy 'nahang i), (A ) (hy 'ng))
= (nihgny hy, b 'n1hy 'ng)
= (n1heny 'hy, (W 'nihg tn 1) (ning))
= (n1hany thy, (nahany thy) "t (ning)).

Since H is normal in G, nlhgnl_lhl is contained in H. Then «(H ® N) is a subgroup
of G x § that acts smoothly on I'/G, and «(H ® N) NS = {e}. Thus, «(H ® N) is
in Fsm. So «(H ® —) gives a functor from the category F to Fyy. Note that as a
I'-space,
0*(G/N)=T/(H® N).
So the cells of EF/H = (0*EF)/H are of the form
(T/(H®N))/H=G/(H-N).

Here H - N is the smallest subgroup of G that contains both H and N. Since H is
normal, this is just the set-theoretical cartesian product of H and N in G. On the
other hand, the corresponding cell of EFyy,/S is of the form

(G x 8/ H®N))/S=G/(H - N).

The map ¢ induces a natural isomorphism between the two. Taking colimit of the
cells of EF/H, we have a map

1:EF/H — EFs/S.
Over each cell I'/(H ©® N)/H in EF/H, the fiber in EF = *EF xg T'/G is
T/(HON)xgT/G.

On the other hand, over the corresponding cell ((G x 8)/«(H ® N))/S in EFg,/S,
the fiber in EFgy, xs I'/G is

(Gx8)/L(HON)xsT/G2G xg.nT/G.
Again, ¢ induces a natural isomorphism between these two. So we also have a map
U:EF=0"EF xgl'/G — EFq xsT'/G
and the diagram
EF L EFi xsT/G
d |
EF/H ——Z———+ EFnm/S

commutes and is a pullback square, since the fibers on the left and right hands are
the same. Hence, f: EF — EF/H is a family of manifolds in our sense.
It remains to prove Lemma 6.9.
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Proof of Lemma 6.9. — The dualizing object Cy is the sphere bundle of the tangent
bundle of EF in the category over EF/H. By [8], Section II.7 the tangent bundle of
I'/G is just I'/G x A, where A is the adjoint representation. So the tangent bundle
of EF is

*EF xg (/)G x A) — 0*EF xg /G = EF.

The total space of the bundle is (6* EF x(I'/Gx A))/H, where I'/G x A is a I'-space via
the action of " on the first coordinate. So as a G-space over EF, 0*EF xy (I'/G x A)
is isomorphic to (*EF x I'/G)/H x A = EF x A, i.e. the tangent bundle of EF is
trivial. Thus, its sphere bundle is EF x S4 = j*(S4). O

Thus, we have that the conditions for Theorem 4.9 are satisfied by
f:EF — EF/H.

The two compositions of (6.4) coincide up to weak equivalences with the two sides of
the Adams isomorphism. So for an H-free G-spectrum E of G-cell homotopy type in-
dexed on UH, Theorem 4.9 gives a weak equivalence between fy(j*isE AgF Cf_l)
and f.«(j*i.F). It remains to show that this gives a weak equivalence between
hy(fy(7*i.E Apr C;1))H and hy(f.(j*i.E))¥. By Lemma 6.7, the functor (—)¥
preserves weak equivalences, but the functor hy does not preserve weak equivalences
in general. To get around this, we will show the following.

Proposition 6.22. — For an H-free G-spectrum E of G-cell homotopy type indexed on
UH | the spectra ( fy (j*i*E/\Efo—l))H and (f.(j*i.E))¥ are each spacewise homotopy
equivalent to a cell spectrum in the category of J-spectra over EF/H indezed on UH .

Proof. — We first consider the case of (fy(j*i«E AgF Cf“l))H. Recall Theorem I.1.1
of [8], which states that if T is a compact G-space, and Z is a G-space with the
homotopy type of a G-cell complex, then F(T,Z) also has the homotopy type of
a G-cell complex. In particular, for every finite-dimensional V in U, QY Z has the
homotopy type of a G-cell complex. We have a version of this statement for fibrant
G-spaces over X. Suppose X is a G-cell complex, and Z is a G-space over X which
is a homotopy cell bundle over X. Then

Q% Z = Hom (S x X, Z) = lU,ex Hom(SVY, Z,)

as sets. We can give a cell structure to X such that over each cell, the fibers Z, are
constant. Let G/N x D™ be such a cell. Then over G/N x D™, we have that

Q%) /nxpn = Uzeq/nxpnHom(SY, Z,) = (G/N x D™) x Hom(SV, Z)

for any © € G/N x D"™. The fiber Z, has the homotopy type of a G-cell complex,
thus, so does Hom(SV, Z,,) and (G/N x D") x Hom(SV, Z,). By gluing over the cells
of X, we then get that Q% Z is of G-cell homotopy type if Z is fibrant and of G-cell
homotopy type over X.
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Now the spectrum fy(j*i.E Apr C)?l) is a homotopy cell bundle spectrum over
EF/H. Thus, by applying the arguments of Proposition 1.8.14 of [8] to the fibers
of the homotopy cell bundle spectrum, each space of fy(j*i«E Agx C}‘l) has the
homotopy type of a homotopy cell bundle over EF/H. Hence, so does each space
of i* fy(j*i+E AgFr Cf'l). Now recall the cylinder construction KD for a spectrum
D (see [8] Section 1.6 and [4], Section X.5). By an analogous argument, one also
has the cylinder construction K(—) in the category of spectra over EF/H. We ap-
ply it to * fy(j*i«E AEF Cf‘l). By arguments similar to Proposition X.5.3 of [4],
K(i* fy(j*i«E NgF C’;l)) has the homotopy type of a relative G-cell spectrum over
EF/H. Also, for any spectrum D over EF/H, there is a weak equivalence of spec-
trar : KD — D. Thus, for each finite-dimensional V' in the universe, ry is a
weak equivalence of G-spaces. In our case, for each finite-dimensional V in U¥,
(K(@@* fy(5*i«E NpF Cf—l)))v and (¢* fy(7*i« E AgF Cfl))v both have homotopy types
of relative cell complexes over EF/H, so the weak equivalence

rv (K@ fy(5"ixE Apr CF1))v — (i* fy(*isE Apr C; 1))y
is a homotopy equivalence, i.e. the map of spectra over EF/H
r: K(i* fy(j*ieE Agr C; 1)) — i* fy(*i.E Apr C;')

is a spacewise homotopy equivalence. The fixed point functor (—)¥ on spectra indexed
on the H-fixed universe UH¥ preserves cell structure, so

o (K@ fy (7B Apr )T — (0 fy(*1.E Apr C — f71)H

is a spacewise homotopy equivalence, and (K (¢* fy(j*i+ E Agr C;l)))H has the homo-
topy type of a G-cell spectrum over EF/H.

For the other spectrum (i* f,(j*i.E)), we have that j* commutes with i, by
Lemma 6.8, so it is in fact isomorphic to (i* f,i.j*E)". But the functors i* and f.
also commute, so this is isomorphic to (f.i*i,j*E)¥. Since j*E is a homotopy cell
bundle spectrum over EF, by Lemma 6.6, the unit of adjunction j*E — i*i,j*F is
a spacewise homotopy equivalence. The functor (f.(—)) is taken spacewise, and on
a G-space, (f«(=))? = (fy(~))/H, so it preserves homotopies of G-spaces. Hence,
(f+(=))¥ on spectra preserves spacewise homotopy equivalences. So there is a space-
wise homotopy equivalence

(£ BT = (" fu(5"i. E) ™.
But (f.(5*E))¥ = (f4(j*E))/H, which is a cell spectrum. O
Therefore, we have a weak equivalence of J-spectra over EF/H indexed on U
(@ fy (5" E Apr CF )T = (i* £ (50 E)) "
and spacewise homotopy equivalences

(K@ fy(5"ixE Aoz C;O)T = @ fy(5"iE Apr CF 1))
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and
(@ fu(§ i B)T = (f15*E)/H.
This gives a weak equivalence of J-spectra of J-cell homotopy type over EF/H in-
dexed on U
(K(* fy(§*inE Apr CF ) = (fy"E)/H.

Since hy preserves weak equivalences between spectra of cell homotopy type
(i.e. homotopy equivalences) and also takes a spacewise homotopy equivalence of
spectra to a weak equivalence of spectra, Proposition 6.22 gives the weak equivalence

hy(i* fy(5*ixE Apr C; )T~ hy(K (& fy (%1 B Apr C7 1))
~ hy((fy"E)/H)
~ hy(i* fu (5 i E)) 2.
Hence, the main duality Theorem 4.9 implies the Adams isomorphism.
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CHAPTER 7

PROOF OF RESULTS ON THE MODEL STRUCTURE
OVER A BASE

In this chapter, we prove some results that are stated in Chapter 3. The first such
result is Lemma 3.2, which gives that weak equivalences between fibrant G-spaces
over a base are preserved by pullbacks.

Proof of Lemma 8.2. — Let p1 : Z1 — Y and p2 : Za — Y be the structure maps of
Z1 and Z, respectively, so p; and ps are fibrations. Also, we have the weak equivalence
g:Z1 — Zy over Y. We can factor the map f: X — Y in the category of G-spaces
to

such that f; is an acyclic cofibration and f; is a fibration. Then f*(g) = f{(f5(9)).
So we have the following diagram of G-spaces.

X' Xy Zy ———— 2>

y ‘ g

X' xy Z J 7 D2

o N

X' Y.
f2

Recall that the pullback of a fibration of G-spaces is a fibration. Thus, the maps

X' xy Zy — 7y and X' Xy Zy — Z, are fibrations. The top square of the diagram

is a pullback. Recall also that the model category structure of G-spaces is proper, so

pullbacks along fibrations preserve weak equivalences. Thus, f3(g) is a weak equiva-

lence.
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We also have the diagram

X Xy Zy y X! Xy Zy
g f39
f*(p2) ~
X xy Z4 — X' xy Z1 f3(p2)
J f3(p1)
f*(p1) ~ /
X 7 » X7,

The maps f5(p1) and f3(p2) are fibrations, and the map f; is an acyclic cofibration. So
by the properness of the model structure on G-spaces, the maps X xy Z; — X' xy Z;
and X Xy Zs — X' xy Z, are weak equivalences. Thus, in the top square of the
diagram, three of the maps are weak equivalences, so the fourth map f*(g) is also an
weak equivalence. O

The next result from Section 3 we need to prove is Lemma 3.7, the parametrized
version of the homotopy extension and lifting property.

Proof of Lemma 3.7. — Let pg, pe/, pnv and pp denote the structure maps of the
spectra to X, respectively. Similarly as in [8] Theorem 1.5.9, it suffices to consider the
case when E = () x(G/H x S""1)II X and E' = (£P)x(G/H x D") 11 X, with
structure maps coming from any map G/H x D™ — X. We think of I = [0,1]. By
Theorem 1.5.9 of [8], we can obtain maps §: E/ — N and h: E' A I, — P such that
diagram (3.8) commutes, but g and h may not be maps over X.

We write E'A[L, 2] for E'Ax ((X x[1,2])I1X). Define the map k% : E’ A [1,2]4— P
as follows. For any t € [0, 1], write hy =h-i,: E' > E' NI, — P. Then for any
t €1,2], set

(TZOP)t = 7l2_t : E, — P.
We have that pp ﬁ[ EAl, =DPp-h = pEa1, is constant with respect to the coordinate
in I, i.e. for every t € I,

pp-?tlEAh-it=pp~ﬁ|EA1+-i0:E———>E/\I+——>P——>X.

Thus, pp - ﬁ°p|E,\[1,2}+ : EA[1,2]4 — X is also constant with respect to the the
coordinate in [1,2]. Also, the composition

B A, p
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factors to e-g: E' — N — P. We define (E A [1,2]4) U E’ by the following pushout
diagram in the category of spectra over X.

E ] > B’

A |

EAn[,2]y — (EA[1,2]4)UE".

We have a map
jUi : (EA[L2]4)UE — E'A[1,2]4
induced by j: EA[1,2] — E' A[1,2]4 and iy : B — E' A[1,2]4. Then jU 1, is an
acyclic cofibration of spectra over X. Define a map
a:(EA[1,2]4)UE" — N.

On E’, a maps to N by hy = g,and forany t € [1,2],a: = a-iy : E — EA[1,2]4 = N
is equal to g|E = g. We have the commutative diagram

E’ J 5

N
J{il le
E'AN1,2|l4 ———— P.

h°P
Also, consider the diagram
EA[1,2)4 a » N
j‘[ PN
/ I 3\
E'A[1,2)4 = P X,

For every t € [1,2], pp - (h%P); -5 = pp - (h°)1-j =pp - € g, whereas py - ¢ = pn - g.
Since e is a map over X, the diagram commutes. Thus, we have the diagram

o

(EA[L,2]4)UE —3 N
Ji - /ﬂ’ -7 lPN
E'AJL,2 Z > >
/\[ ’ ]+ EOP P PP X.

The square commutes, left vertical map j is an acyclic cofibration, and py is a fi-
bration, so the dotted arrow 3 exists. For the map B2 : E' — N, pn - B2 is equal to
pp - (i~z°p)2. But (ﬁ"p)g =ho=f:E' — P is amap over X, so 3 is a map over X.
We define a map
v:E'A[0,2]y — X
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by v: = pp “hy fort € [0,1], and y: = pp ~Tz?p =pn - B¢ for t € [1,2]. We have that
h3® = hq, so v is a continuous map. For each t € [0,2], v; = y2—;. Define also

c:E'N[0,2]y — X

where ¢-ip : E' — E' A[0,2]+ — X is equal to pgs, and c is constant with respect to
the coordinate in [0,2]. We have that 7 is homotopic to c. Namely, the homotopy is

H:E'A[0,2]4 A[0,1]4 — X.
For t € [0,2] and s € [0,1], Hy s : E' — X is given by
His = vi(1-s) for 0 <t <1
= Yo_(2-t)(1-s) for 1 <t < 2.

If t = 1, for every s € [0,1], 72—(2-1)(1-s) = 71+s = Y1-s : B/ — X, s0 H is a
continuous map. We have Hy o =y, and H; 1 = vy = 72 = pg' for any ¢ € [0,2].

We write §(E’A[0,2]+) = (E'A{0}4+)U(E'A{2}+)U(EA[0,2]4) to be the following
pushout:

oy i
Evx E-2X s puy B
9 Vx izl J,
E A [0, 2]+ e (5(E, N [0, 2]+)

We have ¢ : 6(E' A [0,2]4) — E' A [0,2)4. For every s € (0,1], Hos = Y0 = pgr,
Hys = 72 = ppr. For 0 <t <1, Hyslp = v1-5)|E = pp - h = pp. Similarly,
H;s|g = pg for 1 <t < 2. So the homotopy H is constant on 6(E’ A [0,2]4+). Let
(E"A[0,2]4) U (6(E" A[0,2]4) A [0,1]4+) be defined by the pushout diagram

S(E' A [0,2]4) —— %5 6(B' A [0,2]4) A [0, 1]+
| |
E'AN[0,2]4 —— (E' A[0,2]4) U (8(E' A[0,2]4) A[0,1]4)
in the category of spectra over X. There is a map
ioU(LA[0,1)4) : (B"A[0,2)4) U (S(E" A[0,2]4) A[0,1]4) — E' A[0,2]4 A[0,1] 4.
Also, define the maps
e:E'AN[0,2]y — P
and
g :6(E'A[0,2]4) A[0,1]4 — P.

For t € [0,1], set e, = hy : B/ — P. Fort € [1,2],set e, =e- B : ' - N — P.
€' -ig : 6(E' A [0,2]4) is equal to €|5z/n[0,2],), and it is constant with respect to the
coordinate in [0, 1].
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Thus, we have the following diagram.

eue

(E"A[0,2]4) U(S(E"A[0,2]4) A[0,1]4) ——= P
iU (LA, 1]+)j e - Jpp
E'N[0,2]4 A [0/, 1}+ > X

Since
L:0(E'A[0,2]4) — E'A[0,2]4+
is a cofibration, the left vertical arrow ig U (i A [0, 1]4) is a deformation retract, thus

an acyclic cofibration. Also, pp is a fibration, so the dotted arrow H exists, making
the diagram commute. Consider

Hy=H-i,: E'A[0,2]; — E'A[0,2]+ A[0,1]4 — P.
Then H,| EA[1,2], 18 constant with respect to the coordinate in [1,2]. So H, factors to
h:(E'A[0,2)4)/x(ENA[L,2]4) — P.

The source is homeomorphic over X to E’ A [0,1], so we have h : E' A [0,1]1 — P.
Also,

ElE'/\{l}Jr =Hi-io=Ho-in=¢" [
so it lifts to B2 : E' — N. So define g = fs. It is then straightforward to check that
g and h are maps over X, and that they make the diagram (3.8) commute. O

Finally, we prove Lemma 3.13.

Proof of Lemma 8.13. — Let iz : X — Z and i : X — T be the basepoints of Z
and T'. Since iz and i7 are cofibrations, we can find a homotopy inverse g : Z — T
to f over Y, so that (Id,g) : (X,Z) — (X,T) is a homotopy inverse to (Id, f) in the
category of pairs over Y, and that the homotopy is the identity on X for every ¢t € I.
But g is not necessarily a map over X. Consider the diagram in the category over Y

Z J — T / y 7
bz br Y4
X

The left triangle does not commute, but the right triangle does. Also, the composition
of the top row is homotopic to the identity, so the entire large triangle commutes up
to homotopy in the category over Y, with a homotopy that is the identity on the
basepoint X for every t € I. Hence, the left triangle also commutes up to homotopy
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in the category over Y, with a homotopy that is the identity on X for every t € I.
This means that there is a homotopy in the category of G-spaces over Y

H:ZAx (X xTIIX)— X,

such that Hy =pz : Z — X, and Hy = pr-g: Z — X. We have the commutative
diagram in the category of G-spaces over Y’

X

\ ; )
ill /IiI/ - lPT

Z Nx (XXIIIX)—H—)X.
Since Z is cofibrant over X, the map ; is an acyclic cofibration. Also, pr is a

fibration, so there exists a lifting H : Z A I, — T making the diagram commute.
Since pr-Ho=Hyo=pz:Z — X, Hy: Z — T is a map over X. Also, the diagram

1
X——" —

1

Z—— Z Ax (X x ITIX)
20

commutes, so Hy is based over X. Now Hj is homotopic to g = H1, so
f-H:ZAxIy —T — Z
is a homotopy between f - Hg and f - g, which is in turn homotopic to Idz. Hence,
f - Hy is homotopic to the identity on Z. Similarly,
H - (fAId):TANIy — ZANI, —T
is a homotopy between Hy - f and g - f, which is in turn Hy - f and g - f, which is
in turn homotopic to Idr, so Hy - f is homotopic to Idr. These homotopies are not

over X, but by arguments similar to those of Lemma 3.7, we can correct them to
based homotopies over X. Hence, Hy is a based homotopy inverse to f over X. O
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