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DUALITY FOR SMOOTH FAMILIES IN EQUIVARIANT 
STABLE HOMOTOPY THEORY 

Po Hu 

Abstract. — In this paper, we formulate and prove a duality theorem for the equivari­
ant stable homotopy category, using the language of Verdier duality from sheaf the­
ory. We work with the category of G-equivariant spectra (for a compact Lie group G) 
parametrized over a G-space X, and consider a smooth equivariant family / : X —>Y', 
which is a G-equivariant bundle whose fiber is a smooth compact manifold, and with 
actions of subgroups of G varying smoothly over Y. Then our main theorem is a nat­
ural equivalence between a certain direct image functor /* and a "direct image with 
proper support functor" /i, in the stable equivariant homotopy category over Y. In 
particular, the Wirthmuller and Adams isomorphisms in equivariant stable homotopy 
theory turn out to be special cases of this duality theorem. 

Résumé (Dualité pour les familles lisses en théorie de Phomotopie stable équivariante) 
Dans cet article, nous énonçons et démontrons un théorème de dualité pour la 

catégorie de Phomotopie stable équivariante, en utilisant le langage de la dualité de 
Verdier provenant de la théorie des faisceaux. Nous travaillons avec la catégorie des 
spectres G-équivariants (pour un groupe de Lie compact G) paramétrés par un G-
espace X, et nous considérons une famille lisse équivariante f : X —> Y, c'est-à-dire 
un fibre G-équivariant de fibre une variété lisse compacte, et avec des actions de 
sous-groupes de G variant de manière lisse sur Y. Notre résultat principal est alors 
une équivalence naturelle entre un foncteur image directe /* et un foncteur « image 
directe à support propre f\ », dans la catégorie de Phomotopie stable équivariante 
sur Y. Les isomorphismes de Wirthmuller et Adams en théorie de Phomotopie stable 
équivariante apparaissent comme des cas particuliers de ce théorème de dualité. 
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I N T R O D U C T I O N 

The purpose of this paper is to formulate and prove a stable homotopy duality 
theorem for smooth equivariant families of manifolds, using a relationship of the sta­
ble homotopy language with sheaf theory. We work with G-equivariant spaces and 
spectra parametrized over G-equivariant spaces, where G is a compact Lie group. 
To relate this to the language of sheaves and Verdier duality from algebraic geom­
etry (see e.g. [2, 6]), we introduce the notions of sheaves of spaces and of spectra. 
The Grothendieck site we use here is the most basic case, where the category is the 
comma category GTop /X of all G-equivariant topological spaces mapping to a given 
G-equivariant base space X. The coverings in this category are all colimits. This 
makes the results of this paper more directly related to classical stable homotopy 
theory [8] than its generalizations (e.g. [1, 12]), although our methods in principle 
also seem to apply to those more general contexts. 

In our context, the main theorem is that for a map / : X —• Y of base spaces 
satisfying certain conditions, there is a natural equivalence in the stable homotopy 
categories 

(0.1) /* ^ fx 

between a certain direct image functor /* and a direct image with proper support 
functor f\. This is an analogue of a classical result for proper maps of schemes, and 
abelian sheaves. A complementary statement for smooth maps relate the inverse 
image functor /* to / ! , an inverse image with proper support functor in the derived 
category of abelian sheaves. We also have an analogue of this statement. As one would 
expect, our theorem implies Poincaré duality for equivariant manifolds (see [8]). It 
may perhaps be more surprising that it also includes other results of equivariant stable 
homotopy theory, namely the Wirthmtiller and Adams isomorphisms [8]. 

We will work with maps / that are what we call equivariant smooth families of 
manifolds. Essentially, a G-equivariant map / : X —• Y is an equivariant smooth 
family if it is an equivariant bundle whose fiber is a smooth compact manifold, and 



2 INTRODUCTION 

actions of subgroups of G on the fiber vary smoothly over the base space Y in a 
suitable sense (See Definition 4.2). 

It turns out that in our case, instead of directly describing the direct image with 
proper support functor it is easier to define a left adjoint /JJ to the inverse image 
functor /*, and identify f\ with f$ up to a shift by the dualizing object associated 
to the equivariant smooth family / : X —> Y. The dualizing object is a spectrum 
parametrized over X, which is invertible under the smash product in the homotopy 
category. A main part of the content of the theorem is to identify this dualizing object 
as the stable tangent bundle of X in the parametrized category over Y. 

Another ingredient on which the meaning of our theorem depends heavily is the 
closed model structure on the categories of parametrized G-spaces and G-spectra. 
The duality theorem takes place in the homotopy category associated with the model 
structure on parametrized G-spectra. In Chapter 3, we give definitions of the model 
structures in detail. An important aspect of the model structure on parametrized 
spaces is that a G-space Z parametrized over X is fibrant if and only if the structure 
map Z —• X is a fibration in the standard model structure on G-equivariant spaces 
(i.e. for fibrations, use Serre fibrations on if-fixed point sets for all closed subgroups 
if of G). A similar statement holds for parametrized G-spectra. Thus, one can think 
of the homotopy categories of parametrized G-spaces and spectra as dealing with 
objects that are in some sense bundle-like over the base space. (In particular, it does 
not capture objects such as skyscraper sheaves.) 

We will show that the Wirthmuller and Adams isomorphisms are special instances 
of our duality theorem. Recall from [8] Theorem II.6.2 that for a (closed) subgroup 
if of G, the Wirthmuller isomorphism is that for an if-equivariant spectrum E 

(0.2) GtxHX-LE~FH [G, E) 

in the homotopy category of G-equivariant spectra. The two sides of the equivalence 
are the left and right adjoints to the forgetful functor from G-spectra to if-spectra, 
and the if-representation L is the tangent space of G/H at eif, with if-action by 
translation. If if is a normal subgroup of G, then the Adams isomorphism ([8] 
Theorem II.7.1) states that for an if-free G-spectrum E indexed on the if-fixed 
points UH of a complete G-universe ZY, 

(0.3) E/H~(UEAS-A)H 

in the homotopy category of G/if-equivariant spectra. Here, the two sides are the left 
and right adjoints to the functor from G/H -spectra to G-spectra that takes a G/ff-
spectrum to be an if-fixed G-spectrum. An if-free G-spectrum is a G-spectrum 
which has a cellular approximation, such that every cell is if-free, i.e. of the form 
G/N+ A 5n, where N is a subgroup of G such that NilH = {e}. The functor from 
G-spectra indexed on UH to G-spectra indexed on U is the universe change functor 
associated to the inclusion of universes i : UH —• U (see [8] Section II.1). Also, A is 
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INTRODUCTION 3 

the adjoint representation of G, i.e. the tangent space of H at e, with G-action by 
conjugation. 

The statement (0.2) of Wirthmuller isomorphism translates to the case of our 
duality theorem for the equivariant smooth family / : G/H —• *, via an equivalence 
of categories between if-equivariant spectra and G-equivariant spectra parametrized 
over G/H. The case of the Adams isomorphism is more complicated. The equivariant 
smooth family to which the duality theorem applies is the quotient map / : ET —• 
ET'/H, where ET is the universal contractible if-free G-space, and ET /H its orbit 
space by H ([8] Section II.2). The closed model structures give an equivalence of 
homotopy categories between H-free G-spectra and G-spectra parametrized over ET. 
Via this equivalence and composition with certain other functors, the duality theorem 
gives (0.3). 

The organization of the paper is as follows. In Chapter 1, we give a formulation 
of Verdier duality from the theory of sheaves, to give motivations for bringing in the 
language of sheaves. The next two chapters give the foundations on G-equivariant 
spaces and spectra over a base space that we need for the main theorem. Namely, 
in Chapter 2, we recall the definitions of G-equivariant spaces and spectra over a 
base space X, and show that they are equivalent to the categories of sheaves on 
GTop /X. We also give certain basic constructions such as the smash product, and 
define the base change functors, which are associated with a map / : X —> Y of base 
spaces. Chapter 3 gives a self-contained definition of the closed model structures on 
the categories of G-spaces and spectra parametrized over X. 

In Chapter 4, we state the main theorem of the paper, given in terms of equivalences 
between base change functors in the stable homotopy categories, up to a shift by a 
certain dualizing object, for a class of "good" maps f : X —>Y. This class of maps is 
the class of smooth families, which are G-equivariant bundles whose fibers are smooth 
manifolds. We also define the dualizing object, and prove some preliminary results 
towards proving the main theorem. The main part of the proof of the theorem is given 
in Chapter 5. For a smooth family f : X —*Y where Y is compact, we define natural 
transformations between the base change functors on the level of spaces, which turn 
out to be homotopy inverses. Stabilizing gives the theorem in the case of a compact F, 
and the general case is obtained via a colimit argument. In Chapter 6, we show that 
both the Wirthmuller and the Adams isomorphisms are examples of the main duality 
theorem. Finally, in Chapter 7, we give the proofs of some technical results on the 
closed model structure for G-spectra parametrized over X. 
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C H A P T E R 1 

M O T I V A T I O N 

We begin by recalling the classical statements of duality in the theory of sheaves 
(see for instance [2, 6]). Let X,Y be schemes, with a suitable topology, e.g. etale, 
Nisnevich, analytic, etc., and let A be a tensor category. Let Sh(X) and Sh(y) denote 
the categories of sheaves on X and Y into A, respectively. For a map / : X —• Y of 
schemes, there are various functors associated with / between the categories Sh(X) 
and Sh(y), defined in the standard theory of sheaves. Specifically, there is the pullback 
or inverse image functor 

f/* : Sh(y) —• Sh(X). 
Its right adjoint is the direct image functor 

U : Sh(X) — Sh(y). 

In addition to the pair of adjoints ( /* , /*) , we also have the direct image "with 
proper support" 

f/, : Sh(X) —+ Sh(y) 
whose right adjoint is 

f/! : Sh(y) — Sh(X). 
One way to phrase the statements of duality is as follows. Consider jD(Sh(X)) and 

Z}(Sh(y)), the derived categories of chain complexes of sheaves into A on X and Y. 
Let Cy denote the constant sheaf on Y into the unit object of A. Then in these 
derived categories: 

(1) If / is a smooth map of schemes, then for any Z G Sh(y), 

(1-1) f' (Z)^ f {Z)®f(CY) . 

(2) If / is a proper map of schemes, then for any T G Sh(X), 

(1-2) fi (T) ^ f*(T). 
The sheaf /!(Cy) over X is called the dualizing object associated with / . 

Our purpose is to replace the abelian category A by the equivariant stable ho­
motopy category, and give general conditions for analogous statements to hold in 
topology. 





C H A P T E R 2 

SPACES A N D S P E C T R A O V E R A B A S E SPACE 

Let G be a compact Lie group, and let X be a compactly generated weak Hausdorff 
G-space. For simplicity, denote by GTop the category of compactly generated weak 
Hausdorff G-spaces and continuous G-maps (called GU in [8] Section LI). Consider 
the comma category GTop / X , an object of which is a compactly generated weak 
Hausdorff G-space Z, together with a given G-map p : Z —• X. The morphisms 
of GTop /X are continuous G-maps that commute with the maps to X. We can 
give GTop /X the structure of a Grothendieck site, by defining the coverings to be 
given by all colimits. Namely, if J is a diagram in GTop/X, and Z is an object, 
such that Z = colimj, then X is a covering diagram of Z. Let Sh(GTop /X) be the 
category of sheaves of sets over GTop /X with this topology. It is however not a 
small site. So a sheaf of sets over this Grothendieck site is a contravariant functor 
F : GTop /X —> Sets, which takes all colimits to inverse limits. By Preyd's adjoint 
functor theorem, modulo set-theoretical difficulties, such a functor has a left adjoint 
L : Sets - » (GTop/X)op. In particular, F is represented by the object L(*), in the 
sense that for any Z G GTop(X), 

F(Z)^HomSets(*,i^)) 
=^ Hom(GTop/x)oP(L(*),Z) 

= HomGTop/x(Z,L(*)). 

Conversely, for any T £ GTop / X , the contravariant functor 

Z ^HomGTop/X(Z,T) 

takes all colimits to inverse limits, so representable presheaves on GTop/X are 
sheaves. Hence, our definition of Sh(GTop /X) with respect to this topology is just 
GTop /X itself. Thus, in discussing sheaves of sets on the site GTop / X , we are just 
considering the parametrized, or fiberwise homotopy theory of G-spaces over X. 

The based version of the above also holds: recall that a based G-space over X is 
a G-space Z with maps p : Z —> X and i : X —> Z, such that p • i = Idx> The 
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constant sheaf Cx of sets on GTop / X , given by Cx(Z) = * for every Z e GTop /X, 
is represented by X e GTop/X. So by arguments similar as above, the category 
GTop, /X of based G-spaces over X is naturally equivalent to the category of sheaves 
F of sets over GTop /X, together with a morphism of sheaves Cx —• F. This is also 
equivalent to the category of sheaves of based sets over GTop /X. Therefore, we can 
work with parametrized homotopy theory over X. In particular, a sheaf of spectra on 
GTop /X is a spectrum parametrized over X, where suspensions and loops are done 
in GTop.(X). 

In a sense, this is the simplest example of a category of sheaves. However, we will 
find the language of sheaves and their standard functors, closely analogous to the 
case of derived abelian sheaves, helpful even in this basic case. It seems that a large 
part of this paper might apply to more advanced categories of sheaves. For instance, 
Voevodsky's category of algebraic spaces behaves in many ways similar to topological 
spaces, but algebraic spaces are defined as Nisnevich sheaves over schemes, which is 
the reason behind many of their properties [12]. 

We recall certain basic constructions in the category of based G-spaces over X. 
For an unbased G-space Z over X, we write Z+ for ZIIX, which is a based G-space 
over X, where the basepoint maps into the disjoint copy of X by the identity. If T 
are unbased G-spaces over X, and j : Z —> T is a map over X, then their quotient 
T/xZ over X is a based G-space over X defined by the following pushout diagram: 

j 
Z —>T 

Pz 

X >T/XZ 

where pz is the structure map of Z. Also, if Z,T are based G-spaces over X, with 
basepoints %z : X —» Z, %T : X —» T, then the wedge sum of Z and T over X is a 
based G-space over X defined by the following pushout diagram: 

iz X Z 

ix 

T ZVx T. 

The G-space Z maps to itself by the identity and to T by Z —> X —̂+ T, so we have 
a map Z —> Z Xx T over X. Likewise, T maps to Z Xx T over X. This gives a map 
Z Vx T -> Z xx T. The smash product of Z and T over X is 

ZAxT=(ZxxT)/x(ZVx T). 

The O-dimensional sphere over X is 5^ = = X IIX. It is the unit object in the 
category of based G-spaces over X with respect to the smash product. Finally, by [7], 
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CHAPTER 2. SPACES AND SPECTRA OVER A BASE SPACE 9 

if the structure map Z —» X is open, then the functor Z Ax — has a right adjoint 
functor Homx(Z, —). For a G-space T over X, 

Homx(Z,T) = uxexEom(zx,Tx) 

as a set. Here, Zx and Tx are the fibers of Z and T over x respectively, and 
Hom(Zx,Tx) is the set of nonequivariant maps from Zx to Tx. The group G acts 
on the set of partial maps that make up HomY (Z, T) by conjugation. 

Recall that for a compact Lie group G, a G-universe is an infinite-dimensional 
G-representation U which contains the trivial representation, and if V is a finite-
dimensional subrepresentation of U, then U contains infinitely many copies of V. A 
G-universe is said to be complete if it contains every irreducible representation of G, 
and it is said to be trivial if it is a direct sum of infinitely many copies of the trivial 
representation. Let U be a G-universe. A parametrized G-prespectrum E over X is 
a collection {Ey} of based G-spaces over X, together with structure maps over X 

(X x Sw~v) AX Ev —-> Ew 

for all finite-dimensional representations V C W in U. Here, W — V denotes the 
orthogonal complement of V in W, and X x Sw~v is a based G-space over X via the 
first projection map and the basepoint of Sw~v. Since the map 

XxSv —^X 

is open for each V, the functor = (X x Sv) Ax — has a right adjoint 

fi£ = HornY(X x 

A prespectrum E over X is a spectrum over X if for every pair of finite-dimensional 
representations V C W in Ẑ , the adjoint structure map 

(2.1) —> ̂ x ^Ew 

is a homeomorphism over X. Similarly as for prespectra and spectra over a point, 
there is a spectrification functor L from prespectra over X to spectra over X, which 
is the left adjoint to the forgetful functor (see [8], Section 1.2). In particular, a 
prespectrum D over X is an inclusion prespectrum over X if for every pair of finite-
dimensional representations V C W in the adjoint structure map 2.1 is an inclusion 
map. When D is an inclusion prespectrum over X, its spectrification LD is given by 

(LD)y = colimw cu^x ~V Dw 

for each finite-dimensional representation V in U, where the colimit is taken over the 
finite-dimensional representations W in U containing V. 

In particular, for each x G X, let Gx C G be the isotropy subgroup of x. If i£ is a 
G-spectrum parametrized over X, then for each x G X, we have £y f ^ - ^ v y 
for all finite-dimensional V C W in Ẑ , so 

(Ey)x (f^~v(2?tt0)x. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2003 



10 CHAPTER 2. SPACES AND SPECTRA OVER A BASE SPACE 

But 

n%-yEw = Homx(X x Sw-y,Ew) = UxeXEom(Sw-y, (Ew)x) 

so (Q^~vEw)x = ttw~v(E\y)x- Thus, the fibers {{Ev)x} form a G^-spectrum in 
the classical sense. 

Let / : X —> Y be an open map. Then the base change functors can be described 
simply in the fiberwise context. For the inverse image functor /*, we have that 

f*(Z) = XxYZ 

for a based G-space Z over У, and the basepoint of f*(Z) is the pullback along / of 
the basepoint of Z. The right adjoint of /* is 

f.-.TapjX—•ТЪр./У. 

For T e Top. / X , /*(T) is the G-space of sections from X to T, fiberwise over the 
points of Y. Namely, consider X as a G-space over Y via / . Recall from [7] that by 
the openness of / , J xy - , as a functor from G-spaces over Y to itself, has a right 
adjoint Homy (X, —), which is the space of nonequivariant partial sections from the 
fibers of X over Y. For Z a space over У, Homy(X, Z) = UyeY Hom(Xy, Zy) as a 
set, but with an appropriate topology, where Xy and Zy are the fibers over у in X 
and Z respectively. The G-action on this space is induced by the conjugation of G on 
the partial sections from Xy to Zy. There is a map a : Y —> Homy(X, X) , which is 
adjoint to the identity on X. For a G-space T over X, with structure map p : T —• X, 
we can think of T as a G-space over Y by / -p. Then /*(T) is defined by the following 
pullback square in the category of G-spaces over Y. 

f.(T) • Y 
a 

ШШу (X, T) — — — + Ношу (X, X ) . 
Homy(X, pj 

Thus, we have that /*(Т) = Иуеу Sec(Xy, Ty) with an appropriate topology, where 
Sec(Xy,Ty) С Hom(X2/,T2/) are the sections of р\ту \Ty^Xy. If г : X —• T is the 
basepoint of Г, then there is a natural basepoint Y —> /*(T), which takes each у e Y 
to i\xy ' Xy —• Ty. From now on, we always assume that / : X —> Y is an open 
G-map. 

Rather than /i and /!, it is more natural in this case to define /JJ, the left adjoint 
to /*. In the unbased case, is just the forgetful functor, i.e. for an unbased G-space 
T over X with structure map p : T —> X, /ц(Т) is Г thought of as a G-space over У 
via / • p. In the based category, /д is given by collapsing the basepoint. Namely, if 
г : X —> T is the basepoint of T over X, then /ц(Т) is given by the following pushout 
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diagram 

X —> T 

f 

Y >ft(T). 

We also have the stable versions of these functors. For a spectrum D over Y, f*(D) 
is obtained by applying /* on the category of based G-spaces to each space of D. 
Likewise, for a G-spectrum E over X, f*(E) is obtained by applying /* spacewise. 
For f$(E), one first applies /# to each space of E to get a prespectrum over Y, 
then apply the specification functor from the category of prespectra over Y to the 
category of spectra over Y (see [8], Section 1.2). 

We record the following lemma. 

Lemma 2.2. — Let f : X —» Y be a map of G-spaces, and %K - K —• Y an inclusion 
(not necessarily open). Consider the pullback diagram 

f-\K)-*—+X 

IK f 

K : >Y. 
IK 

Then for a spectrum E over X, we have natural isomorphisms 

i*KUE ^ fKJ*E 

and 

VkhE = fKfE. 

Proof. — Let Z be a based G-space over X. We have that f*(Z) is 

UyeY Sec(Xy, Zy) 

with an appropriate topology. Then 

i*Kf*{Z) = KxY (UyeY Sec(Xy, Zy)) = UyEK Sec(Xy, Zy) 

as a subspace of (with an appropriate topology), whereas 

fKS(Z) = fK,(f-1{K)xxZ) 
= UyeK S e c ( / - { f - \ K ) xx Z)y) 
= UyeKSec(Xy,Zy). 

Hence, the first statement holds on the level of based G-spaces. Thus, it holds for 
spectra over X as well, since the functors i*K, /*, fx* and i* on spectra are all defined 
by just applying the corresponding functors spacewise. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2003 
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12 CHAPTER 2. SPACES AND SPECTRA OVER A BASE SPACE 

For the second statement, again consider a based G-space Z over X. Then f$(Z) 
is defined by the pushout square 

X >Z 

Y >fy(Z). 

Since i*K is a left adjoint, it commutes with pushouts, so 

i*Kfy(Z) = (Z xY K)/ZXYY(Z xy X) = (i*{Z))/zr\Z) 

which is just fk i t (Z) Hence, the second statement holds on the level of G-spaces. 
For a spectrum E, /jj(-E) is defined by first applying /JJ on each space of E, then 
applying the specification functor L. Consider the diagram of categories 

Forget 
Spectra/if > Prespectra/iiT 

(ik)* (ik)* 

Spectra/X —Forget— Prespectra/X. 

This diagram commutes since (ÎK)* on spectra is just applied spacewise. Hence, the 
left adjoints i*K and L commute. Therefore, the functors i*Kf$ and /K^* on spectra 
are obtained by first applying i*Kf% and JK%Ï* spacewise, then applying L to both 
sides. Hence, the second statement also holds on the level of spectra. • 

To define smash products of spectra over X, we need to give some consideration to 
change of universe functors for spectra over X. For G-universes U and V, let T(U, V) 
be the space of linear isometries from U to V, not necessarily G-equivariant. Then 
G acts on T(U, V) by conjugation. A G-linear isometry over X is an X-point of the 
space of linear isometries T(U, V), i.e. a G-map 

a:X —+ I(U,V). 

Equivalently, it is a G-map over X 

a:X —> X x J(W, V) 

where the target is a G-space over X via the first projection. By abuse of notation, 
we use a for both formulations. So for every point x G X, a(x) is a Gx-fixed point 
of X(W, V), where Gx denotes the isotropy subgroup of x. This is the same as a Gx-
equivariant linear isometry from U to V, where U and V are Gx-universes by forgetting 
the G-actions on them to Gx. For such an a, we define the universe change functors 
with respect to a 

a* : G-Spectra/X on V —• G-Spectra/X on U 

a* : G-Spectra/X on U —> G-Spectra/X on V. 

ASTÉRISQUE 285 
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These functors will have the property that for G-spectra E over X indexed on U, E' 
over X indexed on V, and any x G X, we have 

(2.3) (a*E)x = a(x)*(Ex) 

and 

(2.4) (a*E')x = a(x)*(E'x) 

as G^-equivariant spectra. On the right hand side, a(x)* and a{x)* are the universe 
change functors with respect to the G^-linear isometry a(x) : U —> V. 

To define the universe change functors, we use methods analogous to those of [4]. 
We first consider the case where X is compact. By adjunction, a : X —• V) can 
also be written as a G-map over X 

a\XxU —• X x V. 

Let U C U be a finite-dimensional G-representation. Since X is compact, there is 
some finite-dimensional G-representation V in V, such that a(X x [ / ) C I x F , i.e. a 
gives an embedding of bundles over X from X x U into X x V. Let vuy be the 
orthogonal complement of a(X x U) in X x V, and let S(vuy) be the sphere bundle 
of this bundle over X, which is a based G-space over X. For any finite-dimensional G-
representation U in ZY, suppose that V C W are finite-dimensional G-representations 
contained in V, and a(X xU)CXxVCXxW, then we have 

Y%-yS(vnV) ^ S(vuW). 

Hence, {S(vu,v)} form a G-prespectrum over X indexed on V. Let Mu be the 
specification of this prespectrum. In particular, Mu — ^v^(uu,v) canonically for 
every finite-dimensional V C V such that a(X x U) C (X x V). If U C Ur are 
finite-dimensional G-representations in U1 then there is a canonical isomorphism of 
G-snectra over X indexed on V 

(2.5) Y}i-UMiv -=+Mn. 

In (2.5), u denotes smashing with S% u. Namely, for each finite-dimensional 
representation V in V, such that a(X x U) C a(X x {/') C X x V, we map 

Y}i-UMiv -=+Mn.Y}i-UMiv -=+Mn.Y}i-UMiv -=+Mn. 
by applying the map atoXxSu ~u. Since a(X x U)®a(X x {V - U)) = a(X x U'), 
this is an isomorphism for every such V. Therefore, (2.5) is an isomorphism (see 
also [4], Appendix, Section 2). Hence, for a G-spectrum E over X indexed on U, 
define 

a*E = colimucuEu Ax Mu> 
Here, the colimit ranges over all finite-dimensional G-representations U contained 

in U\ for U C U' in the map is 

Eu Ax Mu = Eu Ax ^x Mu> = %x Eu Ax Mu> —• Ew Ax Mu> 
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For its right adjoint, we define for a G-spectrum E' over X indexed on V 

{a*E')u = Bomx(MuiE') 

for any finite-dimensional G-representation U that is contained in ZY, where 
Homx(A4c/, E') denotes the based G-space over X of (nonequivariant) morphisms of 
spectra over X indexed on V. (This is defined similarly as HomY(—, —) of G-spaces 
over X: as a set, it is the disjoint union of the maps on the fibers over all x G X, 
with an appropriate topology and G-action by conjugation.) In particular, for every 
finite-dimensional representation V contained in V such that a(X x U) C X x V, we 
have a canonical isomorphism 

( a * ^ ) ^ H o m x ( S K v ) , ^ ) 
by adjunction. For finite-dimensional representations U C U' in U, choose a finite-
dimensional representation V cV such that 

a(X xU)C a{X x U') C X x V. 

We define the structure isomorphism of a*E' to be 
(a*E')u ^E<Mkx(S(vv,u),Efv) 

= lomx( (X x Su'-U) Ax C e AJ E'v) 
(2.6) „ , rT 

= nux-ummx{S{vu/y),E'v) 
^n%-u(a*Ef)u,. 

It is easy to check that this is independent of the choice of V, via the structure maps 
of and that a* is the left adjoint of a*. 

We need to check that the functors satisfy conditions (2.3) and (2.4). Let x G X. 
For (2.4), let U and V be finite-dimensional representations in U and V respectively, 
with a(X x U) C X x V. Then we have canonical isomorphisms 

((a*E')u)x * ( H o m x ( 5 K y ) , ^ ) ) , - Hom*((5Ky))x, ( ^ ) , ) . 

But the fiber over x of S(uUiV) is Sv'a^u\ so this is 

nV-aW(^(^)v^(^)aW(i7)-
This gives that the fiber of a*E' over x is a(x)*(E'x). For (2.3), note that for each 
x e X, finite-dimensional U C ZV, and finite-dimensional F c V such that a(X xU) C 
I x V, we have 

( A ^ ) * a (E??S(i^,v))x = V?Sv-aWM 
canonically. So for a G-spectrum E over X indexed on ZY, 

(a*£)x = (colimt/cWA<c/ Ax Ev)x 
^ coUm£/cW((Aft/)x A (Ex)u) 

- colimccw, fl(XxU)cxxv(^5v-flW^ A (Ex)u). 
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In the last line, the colimit ranges over all finite-dimensional representations U C U 
and V C V such that â(X xU) Ç. X xV. On the other hand, a(x)*E is obtained by 
applying the specification functor on the universe V to the inclusion G-prespectrum 
indexed on V whose V-th space is 

yrV-a(x)(a(x)~1(V)) T? 

The spectrification functor takes colimits over finite-dimensional representations 
V C V, so comparing the colimits, we see that the two are canonically isomorphic. 

For general X, we will glue a* and a* over a covering of X by compact subspaces. 
Given a : X —> 1(U,V), for any compact G-subspace if C X, we get O\K : if —• 
I (U, V). We will show that the functors (a^)* and (alx)* are natural with respect 
to if. Suppose if C if' are compact G-subspaces of X. For finite-dimensional G-
representation [7 in let Mu{K) and Mu{K') be the spectra respectively over if 
and if' indexed on V constructed above. Then for large enough finite-dimensional 
G-representation V in V, we have that a(K' x U) C if' x V, so a(if x £/) c if x V as 
well. In particular, the orthogonal complement of a(if x U) in if x V is the restriction 
to if of the orthogonal complement of a(if1 x U) in if1 x V over if'. Hence, after 
taking spectrifications over if and over if7, we get a canonical map of G-spaces 

(Mu(K))v — (Mu(K'))v 

over the inclusion if —> if' for any finite-dimensional G-representation V in V. We 
define 

(Mu{X))v = colim^cx compact (Mu(K))v 

over all compact G-subspaces if of X and their inclusions. Then Mu{X) is a G-
spectrum over X indexed on V, and for all U C [/' in U, there is a canonical isomor­
phism 

J%-uMu>(X)*Mu(X). 

Therefore, we can define for a G-spectrum E over X indexed on U 

a*E = co\imUeuEu A Mu(X). 

For a G-spectrum E' over X indexed on V, define 

{^E')u = YLom{Mu{X))E') 

for every finite-dimensional G-representation U contained in U. Equivalently, let 
%K : if —• X be the inclusion of if in X for each compact subspace if of X. Then 

a*E = c6timKcx{a\K)*(i*KE) 

and 
a*E' = \imKcx(a\K)*(iKEf). 

It is again straightforward to check that (a*, a*) form a pair of adjoint functors. The 
fact that they satisfy conditions (2.3) and (2.4) follows from the compact case. 
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Example2.7. — Suppose that the G-linear isometry a : X —» J(£Y, V) is a constant 
map into a point a G 1(U, V). Then for a G-spectrum E' over X indexed on V, the 
G-spectrum over X a*E' indexed on U is just given by 

(2.8) {a*E')u = E'a(u) 

for each finite-dimensional representation U C U. Similarly, if E is a G-spectrum 
over X indexed on U, then a*E is the specification of the G-prespectrum a%reE 
over X indexed on V given by 

(2.9) (arE)v = Y,Vx-a{a-1{v))Ea-Hv) 

for each finite-dimensional representation V contained in V. 

More generally, suppose A is a G-space over X such that the structure map A —» X 
is open, and 

a:A-^Xx 1{U,V) 

is a G-map over X. Equivalently, this is just any G-map A —> 1(JA, V). Then we can 
define the twisted half-smash product 

A\xa — : G-spectra over X on U —> G-spectra over X on V 

and its right adjoint, the twisted function spectrum functor 

Fa[A, —) : G-spectra over X on V —• G-spectra over X on U. 

For each point x G X, consider the map ax : Ax —> T(JA,V)X on the fibers over x. 
This is equivariant with respect to the isotropy subgroup Gx of x. For a G-spectrum 
E over X indexed on UH, the functor Axa — will have the property that 

(2.10) {AKaE)x = AXKaxEx 

where the right hand side is the twisted half-smash product of Gx-spectra defined 
in [8], Chapter VI, and [4]. Likewise, for a G-spectrum E' over X indexed on U, the 
twisted function spectrum functor will have the property that 

(2.11) Fa[A,E')x = Fax[Ax,E'x). 

If A = X, then a : A —• X(ZV, V) is a G-linear isometry over X, and we will have that 
A Ka - = a*, Fa[A, - ) = a*. 

The construction of A txa — and Fa[A,—) are similar to that of [5]. Let PA • A —» X 
be the structure map of A over X. The map a : A —> X x T(ZY, V) is equivalent to 
any G-map A —> T(JA, V), so it also corresponds to a G-map over A 

a: A—>i4xT(W,V). 

Note that by an abuse of notation, we will denote this map also by a. Then our 
definition is as follows. 
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Definition 2.12. — For A : A —• X x T(U, V), as above, define the functor A xa — to 
be the composition 

(P ) * 
A ix q, — : Spectra/X on £Y > Spectra/A on U 

——> Spectra/A on V 

(P A)1 • Spectra/A on V. 

Here, (PA)t an(l (pa)* are the base change functors with respect to PA '• A —» X, and 
OJ* is the universe change functor of spectra over A with respect of A thought of as a 
G-map over A. Similarly, define the functor Fa[A, —) to be the composition 

(PAY 

Fa[A, - ) : Spectra/X on V yF } > Spectra/A on V 

- • Spectra/A on U 

^ * ) Spectra/X on U. 

Prom the definitions, it is clear that when A = X, the twisted half-smash product 
and the twisted function spectrum functors are just the change of universe functors. 
The proofs of (2.10) and (2.11) are similar as for (2.3) and (2.4). 

Also, the twisted half-smash product and twisted function spectrum are functorial 
with respect to A in the following sense. Suppose that A and B are spaces over X, with 
open structure maps PA - A —• X and PB B —• X respectively. Also, let g : A —• B 
be a (not necessarily open) G-map over X. Suppose that OLB : B —• J(W, V) is any 
G-map, and let a A = &B • # • A —> V). Then we claim that there are natural 
transformations 

p K - : A KAA • £? xaB -

F[g,-):FaB[B,-)—+FaA[A,~) 

that are compatible with respect to compositions of G-maps over X. For the first 
statement, note that PA = PB ' 9- So we have for a G-spectrum E over X indexed 
on U, 

A**A = (PA)T(AA)*(PA)*E = (PB)m(AA)*9*(PB)*E. 

It is straightforward to check that the diagram of functors 

Spectra/f? on U ^ (a B) —> Spectra/5 on V 

9 9 

Spectra/A on U > Spectra/A on V 
(a A)* 
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commutes up to natural isomorphism. Hence, we get a canonical map 

g x E : А к а А E = (рв)№9*(<*в)*(рв)*Е (рвЖав)*(Ы*£ = В к а в Е. 

Here, the map с is the counit of the adjunction pair (g$,g*). The map F[g,—) on the 
twisted function spectra follows by adjunction. More specifically, for any G-spectrum 
E over X indexed on U, and G-spectrum E' over X indexed on V, there is a canonical 
map of morphism sets of spectra 

Homspectra on u(E, FaB [B, E')) ^ Homspectra on v(B к « в E, E') 

—> Homspectra on v(A tx Q A E, E') 

^ Homspectra on u(E, FaA [Л, E')) 

where the middle map is induced by g x E. Setting E = FaB [В, E') and starting with 
the identity map on FaB [B, Er) gives F[g,E') in 

Homspectra on Ы 
(FaB[B,E'),FaA[A,E')). 

Now for G-spectra E and E' over X indexed on U, we can define the external 
smash product E7\E' as a G-spectrum over X indexed on Ы ф Ы. Namely, for finite-
dimensional representations V and V in U, we define 

(EfKE')vQV =Evf\E'v,. 

Choose a G-linear isometry a : X —• 1(U ®U,U) over X. Then define the internal 
smash product of E and E' to be 

ЕЛЕ' = a*(E7\E'). 

Let C(ri) = l(U®n,U). In [8], Lemma II.1.5, it is shown that £ is a contractible 
G-equivariant operad. Hence, the internal smash product of G-spectra over X is 
well-defined up to coherent homotopies. 

Similarly, given a spectrum E indexed on Ы and a spectrum E" indexed on Ы ф W, 
we can define the external function spectrum F(E, E"), which is a spectrum indexed 
on U. Namely, for a finite-dimensional representation V contained in U, we have that 

F(E,E")V — Hom(W0^)- Spectra(^ o o5'VA£', E") 

where H o m ( W 0 W ) _ s p e c t r a ( — , —) denotes the G-space of maps in the category of spectra 

indexed on U ®U. Then for spectra E and E' indexed on U, the (internal) function 

spectrum F(E,Ef) is defined as 

F(E, E') = F(E,a*E') 

for a linear isometry a : X —• X(U (BU,U). 

The proof of the following lemma is similar to the case of G-spectra over a point ([8], 

II.3.12). For a finite-dimensional G-representation V, we let denote the V-th 

shift desuspension of the suspension spectrum functor, and let denote the shift 

desuspension spectrum functor, similar to those defined in [8], Section 1.4. 
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Lemma 2.13. — If E is a G-spectrum over X indexed on li, and Z is a based G-space 
over X, then for any finite-dimensional G-representation V contained in li, there is 
a natural homotopy equivalence 

E AX £ ? Z ~ E s - h y £ A x Z). 

Here, the right hand side is the smash product of a spectrum with a space, which has 
a canonical definition, and the left hand side is the smash product of spectra indexed 
on U, using any linear isometry X —> X(ZY®2,ZY) over X. 
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CLOSED M O D E L S T R U C T U R E O N S P E C T R A 
O V E R A B A S E 

The model category structure on spectra parametrized over a base G-space X is 
defined in [11], similarly as for unparametrized spectra (for basic definitions on model 
categories, see [3], see also [4]). In this chapter, we give a self-contained description of 
the model structure. First, we define the model structure on the category of G-spaces 
over X. We begin by recalling the model structure on the category of G-spaces. A 
map / : X —> Y of G-spaces is a weak equivalence in the category of G-spaces if 
for every closed subgroup H of G, the map f H : Xh -> yH is a weak equivalence 
nonequivariantly. The map / is a fibration if fH is a Serre fibration for every H. It 
is a cofibration if it is a retract of relative G-cell complexes, which are obtained by 
attaching cells of the form G/H x Z)n+1 along G/H x Sn. In particular, the acyclic 
cofibrations are retracts of deformation retracts obtained by attaching cells of the 
form (G/H x ZT+1) x / along G/H x Dn+1. 

Recall that a map of nonequivariant spaces is a (Serre) fibration if and only if it 
has the right lifting property with respect to the inclusions Sn —• Dn+l for all n. So 
the G-equivariant map / : X —• Y is a fibration if and only if for all subgroups H in 
G, the dotted arrow exists for all squares of the form 

gn. 

Dn+l 

Xh 
fH 

YH 

in the category of nonequivariant spaces. The functor (—)H from the category of H-
spaces to nonequivariant spaces has a left adjoint, which is regarding a nonequivariant 
space as a fixed .fiT-space. So this is equivalent to having the dotted arrow in all squares 
of the form 

gn . X 

Dn+1 

f 

Y. 
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in the category of 77-spaces, for all closed subgroups H of G, where Sn and £)n+1 are 
regarded as fixed iJ-spaces. Also, / : X —> Y is a map of if-spaces by forgetting the 
actions on X and Y from G to H. The forgetful functor from G-spaces to if-spaces 
has a left adjoint G/H x —, so the above diagram is in turn equivalent to 

G/H x Sn • X 

G/H x £>n+1 > y 

in the category of G-spaces. Hence, the map / is a fibration of G-spaces if and 
only if it has the right lifting property with respect to all inclusions of the form 
G/H xSn-> G/H x £>n+1, for all subgroups H of G. 

For based G-spaces over X, we define the model category structure as follows. 

Definition 3.1. — A map g : T —> Z of based G-spaces over X is a cofibration/weak 
equivalence/fibration if it belongs to the corresponding class of maps in the category 
of unbased G-spaces. 

It is easy to see that this gives the structure of a model category to GTop# /X. 
We include the following result for motivation and future reference. 

Lemma3.2. — For f : X —> Y, suppose Z\,Z2 are fibrant G-spaces over Y, and 
g : Z\ —> Z2 is a weak equivalence over Y. Then 

f*g : f(Z1) —> f (Z2) 

is a weak equivalence over X. 

We defer the proof of Lemma 3.2 to Chapter 7. 
For / : X —• Y, by Lemma 3.2, /* preserves fibrations and weak equivalences 

between fibrant objects. Thus, the functors (/n,/*) form a pair of Quillen adjoint 
functors, so they pass to a pair of adjoint functors on the homotopy categories of 
based G-spaces over X and Y. If Y is a cell complex, and / : X —• Y is a fiber 
bundle whose fiber is also a cell complex, then /* preserves attachment of cells, so it 
preserves cofibrations and acyclic cofibrations in addition. In that case, the adjoint 
functors (/*, /*) are also a pair of Quillen adjoint functors. 

We define the following model structure on the category of parametrized spec­
tra over X. We say that a map i : E —> E' of parametrized G-spectra over X 
is a relative G-cell complex if Y is obtained by attaching cells of the form 
(££?)x((G/# x £>n+1) IIX) to X along ( £ ^ ) x ( ( G / # x Sn) II X) in the category 
over X. Here, (Ey)x denotes the V-th shift desuspension of the suspension spectrum 
in the category of spectra over X. As a based G-space over X, (G/H x Dn+l) U X 
may have structure map induced by any map G/Hx Dn+1 —> X, and (G/Hx Sn)UX 
is a based G-space over X via the restriction. 
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Definition 3.3. — Let / : E —• E' be a map of parametrized G-spectra over X. 
(1) / is a fibration if for every finite-dimensional V C U, fy : Ey —• E'v is a Serre 

fibration of G-spaces; 
(2) / is a weak equivalence if for every finite-dimensional V C U, fy ' Ey —> Ey 

is a weak equivalence of G-spaces; 
(3) / is a cofibration if / is a retract of a relative G-cell complex. 

The following proposition is an analogue of Proposition 6.9 of [10]. 

Proposition 3.4. — The classes of cofibrations, weak equivalences and fibrations, as in 
Definition 3.3, define a closed model structure on the category of parametrized spectra 
over X. 

Proof. — We will first define cofibrations and weak equivalences of spectra over X 
as in Definition 3.3, and define a class of "i?-fibrations" by the right lifting property 
with respects to all acyclic cofibrations, and show that this is a model structure by 
arguments similar to those of [4] and [10]. By definition, we have the lifting axiom 
for a square with an acyclic cofibration and an i?-fibration. By the small object 
argument (see [3]), for any map / : E —> E\ we can attach cells of the form 

(E^)X(G/H xDn)UX-^ W)X(((G/H x Dn) IIX) Ax ((X x J) II X)) 

and factor / to a composition of an acyclic cofibration and an i2-fibration. For the 
other factorization, we again use the small object argument and attach cells of the 
form 

(ES?)X(G/JJ xSn)UX (Z^)X(G/H x Dn+1)UI. 
This factors / into a composition of a cofibration and a map that has the right lifting 
property with respect to all cofibrations. 

Now let p : E —• B be any map that has the right lifting property with respect to 
all cofibrations. Then p is certainly an i?-fibration. Also, for any V, the diagram of 
G-spectra over X 

W)x(G/H xSn)UX 3 E 

{E^)X(G/H x Dn+1) IIX • B 
is equivalent to a diagram in the category of G-spaces 

(G/H xSn)UX • Ev 

/ ^ " Pv 

(G/H x Dn+1) IIX • By. 

The dotted arrow exists in the diagram of spectra, so it exists in the diagram of 
G-spaces as well. Hence py is an acyclic fibration of G-spaces, and thus a weak 
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equivalence of G-spaces, for each V. This gives that p is an acyclic f?-fibration. The 
lifting axiom for a square with a cofibration and an acyclic i?-fibration follows formally. 

Now we will show that the class of i?-fibrations is exactly the same as the class of 
fibrations as given in Definition 3.3. Let / : E —• E' be a map of spectra over X. If 
/ has the right lifting property with respect to all acyclic cofibrations over X, then 
for any finite-dimensional V in the universe, we can consider the lifting diagram of / 
with any map from the acyclic cofibration 

W)x(G/H xDn)UX-^ (E^)X((G/H xDn)UX Ax {{X x J) IIX)). 

Then by applying the adjunction between (Y,y)x and taking the V-th space, we 
see that fy is a fibration of G-spaces for every finite dimensional V in the universe. 
Conversely, if / is fibration of G-spaces on each finite-dimensional V, then each testing 
diagram of spectra of the form 

W)x(G/HxDn)UX ^E 

(3.5) / 

W)x{G/H xDn)UX Ax ((X x I) IIX) > E' 

is equivalent by adjunction to a diagram of G-spaces of the form 

(G/H xDn)UX 3 Ev 

(3.6) fv 

({G/H x Dn) II X) AX ((X x / ) U X) E'y. 

The dotted arrow exists in the diagram of G-spaces, so it exists in the diagram of 
spectra as well. It is easy to check that it is automatically a map of spectra over X. 
Thus, a map of spectra over X has the right lifting property with respect to all relative 
cell complexes over X which are also weak equivalences if and only if it is a fibration 
on each space. This gives Proposition 3.4. • 

We also have a parametrized version of the relative Whitehead theorem. We state 
it as a parametrized version of the HELP (homotopy extension and lifting property) 
lemma (Theorem 1.5.9 of [8]). 

Lemma 3.7. — Let j : E —> E' be a relative G-cell complex over X, and let e : 
N —> P be a weak equivalence of fibrant spectra over X. We can write E A 7+ as the 
parametrized spectrum EAx ((X x 7)IIX) over X. Then if we have maps f : E' —• P, 
g : E —> N and h : E A /+ —> P over X such that f • j = h • ¿0 and e • g = h • i\, 
then there are maps g : E' —• N and h : E' A i+ —> P over X such that the following 
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diagram commutes. 

(3.8) 

E 
ip 

E M+ 
iv 

E 

E' ig 
E' Л J+ 

i\ 
E'. 

3 3 

Again, we will prove Lemma 3.7 in Chapter 7. The parametrized version of the 
Whitehead theorem follows from Lemma 3.7, similarly as in the classical case. 

Proposition 3.9. — Let X be a cell complex. If E is a relative cell spectrum over X, 
and e : N —> P is a weak equivalence of fibrant spectra over X, then in the homo-
topy category of spectra over X, the induced map of morphism sets Hom(.E, TV) —• 
Hom(E', P) is a bisection. In particular, a weak equivalence between relative cell spec­
tra over X which are also fibrant over X is a homotopy equivalence. 

We will show that the model structure given by Definition 3.3 is equal to the model 
structure of [11], where the class of stable fiberwise weak equivalences of parametrized 
spectra over X is defined as follows. For each x G X, let Gx С G be the isotropy 
subgroup of x. Let E is a parametrized spectrum over X. For x G X, the fibers 
{{Еу)х} over x form a G^-spectrum in the classical sense. If E, E' are fibrant (in 
the sense of Definition 3.3) parametrized G-spectra over X, a map / : E —> E' is 
said to be a stable fiberwise weak equivalence if for every x G X, the map on fibers 
fx : Ex —• E'x is a weak equivalence of Gx-spectra. For maps f : E —> Ef between 
general parametrized G-spectra over X, / is a stable fiberwise weak equivalence if it 
is a stable fiberwise weak equivalence after we apply fibrant replacement to E and E' 
in the model structure of Definition 3.3. Together with the same cofibrations as those 
given in Definition 3.3 and fibrations determined by the right lift property, this gives 
a closed model structure on parametrized spectra. 

Proposition 3.10. — A map f : E —> E' of parametrized G-spectra over X is a stable 
fiberwise weak equivalence in the sense of [11] if and only if it is a weak equivalence 
in the sense of Definition 3.3. 

We will need the following lemma. 

Lemma 3.11. — Let f : E —> E' be a map of parametrized G-spectra over X, which are 
fibrant in the sense of Definition 3.3. Then fis a stable fiberwise weak equivalence if 
and only if for every finite-dimensional V С U and x G X, the map (fv)x ' {Ey)x —> 
(Efv)x is a weak equivalences of based Gx-spaces. 
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Proof. — For each x G l , the fiber spectra Ex and E'x are just taken spacewise, so 
it suffices to show that for any subgroup H of G, a map of inspectra g : D —• D' is 
a weak equivalence if and only if for every finite-dimensional V C U, gy : Dy —> D'v 
is a weak equivalence of based if-spaces. This follows from Theorem 3.4 of [9]. Now 
we apply it to the case where H = Gx, D = Ex and D' = E'x, for all x G X. • 

Given Lemma 3.11, to show that stable fiberwise weak equivalences are the same 
as weak equivalences of Definition 3.3, it suffices to work on the level of fibrant based 
G-spaces. 

Lemma 3.12. — Let f : T —• Z be a map of fibrant parametrized G-spaces over X. 
Then f is a weak equivalence in the category of G-spaces if and only if for every 
x E X, the map on fibers over x 

fx • Tx • Zx 

is a weak equivalence in the category of Gx-equivariant spaces, where Gx is the isotropy 
subgroup of x. 

Proof — The map / : T —» Z is a weak equivalence of G-spaces if and only if for every 
subgroup H C G, fH : TH —> ZH is a nonequivariant weak equivalence. Likewise, for 
x G X, the map on fibers fx :TX —> Zx is a weak equivalence of Gx-spaces if and only 
if for every H C Gx, (fx)H • (TX)H (%x)H is a nonequivariant weak equivalence. 
But note that (TX)H = (TH)X, (ZX)H = (ZH)X, and 

(fx)H = (fH)x : (TH)X —^ (ZH)X. 

Also, for a pair (x G X, H C G), the condition that H C Gx is equivalent to the 
condition that x G XH. So it suffices to show that each of the nonequivariant maps 
fH : TH —> ZH over XH is a weak equivalence if and only if for every x G XH, (fH)x ' 
(TH)X —> {ZH)X is a nonequivariant weak equivalence. Note that as nonequivariant 
spaces, TH and ZH are fibrant over BH. The fact that fH is a weak equivalence 
implies that (fH)x is a weak equivalence for all x follows from Lemma 3.2. The 
converse statement follows from standard arguments using the long exact sequence in 
homotopy groups. • 

Lemmas 3.11 and 3.12 show that between parametrized G-spectra over X whose 
spaces are all fibrant, stable fiberwise weak equivalences are the same as weak equiv­
alences given in Definition 3.3. Let T be the fibrant replacement functor with respect 
to the model structure given in Definition 3.3, For a general map / : E —> E1\ the 
diagram 

E > TE 

f Tf 

E' • TE' 
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commutes. By the above argument, / is a stable fiberwise weak equivalence if and 
only if Tf is a weak equivalence on each space. But the maps E —• TE and E' —> YE' 
are weak equivalences on each space. So / is a stable fiberwise weak equivalence if 
and only if it is a weak equivalence on each space. 

Similarly as in the case of G-spaces over X, for a map / : X —> F, the functors 
(/lb/*) 011 the categories of G-spectra over X and Y form a Quillen adjoint pair. 
This is because the functor /* for parametrized G-spectra is defined spacewise, and 
so are fibrations and weak equivalences of parametrized G-spectra. If Y is a G-cell 
complex, and / is a fiber bundle whose fiber is also a G-cell complex, then the functors 
(/*»/*) on tne level °f parametrized G-spectra also form a Quillen adjoint pair, again 
since /* for parametrized G-spectra is defined spacewise, as are fibrations and acyclic 
fibrations of parametrized G-spectra. 

We record the following lemma, whose proof we will defer to Chapter 7. 

Lemma 3.13. — Let X —• Y be a map of G-spaces, and let T and Z be fibrant and 
cofibrant based G-spaces over X, with structure maps pr : T —» X and pz : Z —» X. 
Suppose f : T Z is a map of based G-spaces over X, such that f forgets to a 
homotopy equivalence over Y. Then f is a homotopy equivalence over X. 

The proof of the following lemma is similar to that of Proposition 7.1 in the Ap­
pendix of [4]. 

Lemma 3.14. — Suppose that X is a G-cell complex, and a : X —• 2"(W,V) is a G-
map. Then the adjoint functors (a*, a*) on the categories of G-spectra over X indexed 
on U and on V form a Quillen adjoint pair. Hence, they pass to an adjoint pair of 
functors on the homotopy categories of G-spectra over X indexed on U and on V. 
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The goal of this chapter is to formulate and prove a general duality theorem that 
combines (1.1) and (1.2) in the context of equivariant topology. For a map / : X —> Y 
of G-spaces, it is more natural in topology to define /JJ, the left adjoint to /*, than f 
and f\ directly. So for an appropriate condition of smoothness of / , if we can define 
the dualizing object G/ of / , (1.1) states that we can define 

/ ' = / * ( - ) AC/. 

If in addition, we have that G/ is invertible in the stable homotopy category over X, 
then — A Cf is an invertible functor on the stable homotopy category over X, so we 
can define f\ in the stable homotopy categories to be 

/ . = / » ( - A CJ1). 

Then f\ is the left adjoint functor to f] in the stable homotopy categories. Thus, the 
appropriate statement of duality, which puts together (1.1) and (1.2), is that for the 
right class of maps / : X —• F, with conditions that are analogous to smoothness and 
properness for schemes, we can define an invertible spectrum Cf over X, such that 
for a spectrum E over X 

(4-1) f (E MEACJ^^ME) 

in the stable homotopy category over Y. 
We now consider more precisely the conditions in the equivariant context in order 

for (4.1) to hold. Let G be a fixed compact Lie group. Let / : X —> Y be a map 
of G-spaces. Assume that Y is a cofibrant G-space, i.e. a G-cell complex. If Y is 
a single point, then "smoothness" and "properness" say that X is a smooth compact 
G-manifold. This suggests that (4.1) should hold for a class of "families of manifolds", 
which are some kind of fiber bundles whose fiber is a compact smooth manifold. We 
give the following definition. 
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Let M be a compact G°°-manifold, not necessarily with a G-action. Let S = 
Diff(M) be the group of diffeomorphisms of M, with the C1-topology (see [13]). We 
will define the universal equivariant smooth family with fiber M. Define the family 
fsm of subgroups of G "with smooth action on M", a member of which is a closed 
subgroup K C G, together with a group homomorphism 6 : K —> S such that K 
acts smoothly on M via 6. For (K, 6) G .FSm, we can also think of K as a subgroup 
in the cartesian product G x S via k (k,6(k)) G G x S for each k G K. So 
equivalently, fsm is the collection of subgroups K C G x <S, such that K D <S = {e}, 
and the second projection map K -+ S gives a smooth action of K on M. For such 
a subgroup K C G x S, the first projection map K —> G is injective, and makes if 
into a subgroup of G, and the smooth action 6 of K C G on M is induced by the 
section projection to S. We can make into a topological category by defining the 
morphisms to be subconjugations, similarly as in the definition of the orbit category 
of a compact Lie group (see [8], V.9). The topology on the object set of FSM is the 
discrete topology. There is a functor 

Orb : fsm —• (G x <S)-spaces 

which sends an orbit (G x S)/(K, 0) to itself as a (G x <S)-space. Then by taking the 
simplicial (Gx<S)-space B(*, .FSm, Orb), where B denotes the 2-sided bar construction, 
with a (G x <S)-action induced by the action of G x S on the last coordinate, we obtain 
a universal (G x <S)-space Efsm, which depends on G and M, although we suppress 
them in the notation here. 

Recall that the 2-sided bar construction of a category, originally introduced by 
J.P. May, is defined as follows. Let C be a small category, V : C —• Sets, E : Cop —> Sets 
be functors, then the simplicial set B(£, C, V) (the 2-sided bar construction) is defined 
to have the n-th stage 

£ xobj(c) Mor(C) Xobj(C) • • • xobj(c) Mor(C) x0bj(C) V 
(with n copies of Mor(C)). The degeneracies are provided by inserting the map Id : 
Obj(C) Mor(C), and faces are given by structure maps 

Mor(C) x0bj(c) Mor(C) —• Mor(C) 
Mor(C) X o b j ( C ) ^ ^ ^ 
Cxobj(c) M o r ( C ) ^ C 

(composition) 
(functoriality) 
(functoriality) 

where V is identified with LL^Q^C)V(X)^ and similarly for £. In our setting, we 
need the generalization of this concept to (equivariant) topological categories, which 
is standard when Obj(C) is discrete and £>, £ are continuous functors. 

The (G x <S)-space Efsm is not necessarily a (G x <S)-cell complex. However, we 
can factor out the action of <S, and apply G-cell approximation. So as a G-space, the 
G-cell approximation of EJ^^/S is constructed from cells of the form 

((G X S/(K,0))/S X SN = G/К X SN 
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where (K,0) G Fsm. We are using the fact that the Diff(M)-conjugacy classes of the 
pairs (K, 0) form a discrete set [14]. In particular, the G-orbits of ETSUi/S are of the 
form G/K, where (K,Q) G Ĵ m- We define the universal equivariant smooth family 
with fiber M to be the G-equivariant map 

7(G, M) : EFsm xs M —> ETsm/S. 

Over each orbit G/K = ((G x S)/(K,6))/S (this is a canonical isomorphism) of 
ETsm/S, the fiber of 7(6?, M) is 

(G x S/(K,6)) xsM^G x{Kt0) M. 

So as a G-space, Efsm x$ M is constructed as a colimit of strata of the form 

(G x{Kt0) M)xSn^ (G/K x Sn) x{K,e) M. 

Definition 4.2. — We say that a G-equivariant map / : X —» Y, where Y is a G-cell 
complex with count ably many cells, is an equi variant smooth family of manifolds if 
it is a pullback of the universal equivariant smooth family 7(G, M) via some G-map 
Y —» EFsm/S, for a smooth compact manifold M. 

Lemma 4.3. — A smooth family of manifolds, as in Definition 1^.2, is a fibration of 
G-spaces as defined above in Chapter 3. 

Proof. — Since fibrations are closed under pullbacks, it suffices to show the universal 
family of manifolds 

7(G, M) : ETsm xs M —> Efsm/S 

is a G-equivariant fibration. Note that whether a map / : X —• Y of G-spaces is a 
fibration in our sense can be tested by diagrams of the form 

G/H x Dn > X 

f 

G/H xDn xl • y 

for all closed subgroups H of G. By the adjunction between G/Hx — and the forgetful 
functor, this is equivalent to a square in the category of iJ-spaces 

Dn >X 

Dn xl • Y 

where Dn and Dn x I are fixed if-spaces. Then by the adjunction between giving 
a fixed action to a nonequivariant space and (—)H, this is in turn equivalent to the 
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square in the category of nonequivariant spaces 

Dn >XH 

Dn xl >YH. 

It follows that / is a fibration if and only if for each closed subgroup if of G, the map 
of if-fixed points fH : XH —» YH is a fibration of nonequivariant spaces. 

Now by arguments similar as above, we can consider ETSU)L/S as the simplicial 
G-space f?(*,.Fsm, Orb'), where Orb' is a functor from the topological category Jrsm 
to the category of G-spaces, which takes an orbit (G x <S)/(if, 0) to G/K. Although 
G/K does not take into account the map 6 : if —> <S, a copy of it occurs for every 
smooth action of if on M 6 : if —> S. Again, the G-action on f?(*, fsm, Orb') is 
induced by the action on G on the last coordinate Orb'. Then to show that the map 

B(*,TsmiOrb)H — £(*, jrm,Orb')" 

is a nonequivariant fibration, consider the map for a given (if, 6) 

((G x S)/(K,6))H = Orb(G x S/(K,6))H —> Orb'(G x S/(K,6))H = (G/K)H. 

Recall that (G/K)H is equal to the space of maps G/H —> G/K in the orbit category, 
so it is empty if if is not subconjugate to if in G. If if is subconjugate to if in G, 
then 

(G/K)H = {gK | g-'Hg C K). 
For any such g, we have (hg)~lH(hg) = g~1Hg C If, so /i#if = gK in (G/K)H for 
any h € H. We have a canonical embedding if C G C G x <S, by embedding if into 
the first variable. Then ((G x S)/(K, 0))H is empty if if is not subconjugate to (if, 0) 
in G x <S, if we think of (if, 0) as a subgroup of G x <S via 0. For any (#, s) € G x <S, 
(#, s)~1H(g, s) = g~1Hg x {e} in G x <S, where e G <S is the unit element. So (#,s) 
takes if into (if, 0) in G x <S if and only if g~1Hg C if in G, and fl^-i/^ is the trivial 
map into S. Thus, if if is subconjugate to (if, 6) in G x <S, then 

(4.4) ((G x <S)/(X, 0))H = {(<?, 0) | ff"1^ C K, 6\g-iHg = e : g^Hg - 5 } . 

Note that if gK = g'K in (G/K)H, and O/ gr — e-> tnen 0 = 9fk f°r some fc G if, 
and for any h G if, 

Q(g-lhg) = Oik^g'^hg'k) = 6(k)-1e(g'~1hg')6(k) = e(k)~1e6(k) = e. 

So 0|s-iH0 = e. The map ((G x S)/(K,6))H -> (G/K)H takes the class of to 
the class of The fiber over the class of g in (G/K)H is thus either empty or S. 
Furthermore, the condition of (4.4) clearly remains unchanged when if is replaced by 
if' with some g" G G such that g"~~XKg" C if'. 

Thus, we only need to show that for gK and g'K in (G/K)H, if the fiber over gK 
in ((G x 5)/(if, 6))H is nonempty and the fiber over g'K is empty, then gK and g'K 
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are in different components of (G/K)H. Suppose they are in the same component of 
(G/K)H, then the path between gK and g'K in (G/H)K breaks up into paths in G 
and multiplications by elements of K. So without loss of generality, we can assume 
there exists a path {gt} in G, such that for every t e I, g^Hg C K, and g0 = g, 
gi = g'. Further, 9\g-iHg is the trivial map into <S, whereas 0\g,-iHg, : g'~lHg' —»<S 
is a nontrivial map. So we can define a continuous path of smooth actions 

(H : H —> S 

by 
Pt(h)=0(gr1hgt). 

Then po : H —• S gives the trivial action of H on M, whereas pi : H —> 5 gives a 
nontrivial smooth action of if on M. However, recall that the smooth actions of the 
compact Lie group H on M, modulo conjugations by elements of S = Diff (M), form a 
discrete set [14]. Since the trivial action of H on M is in its own conjugation class, it 
cannot be continuously deformed to any nontrivial action. This is a contradiction. • 

Given a smooth family of manifolds / : X —> Y, we define the dualizing object G/ 
as follows. Let A : X -+ X xY X be the diagonal map. We think of X xY X as a 
G-space over X by 7Ti, projection to the first coordinate. Then A is a map over X. 
Then we would like to put 

"Cf = X xy X/X(X x y I \ A ) " . 

To make Cf Hausdorff, we need to replace I x y l \ Aby I x y l \ [ / , where U 
is a G-equivariant tubular neighborhood of A in I Xy I . We require A C U to be 
a G-deformation retract over X via the first projection n\. This exists when Y is 
compact. Then G/ is independent of the choice of U up to homotopy. Alternatively, 
we can define a model of Cf to be 

(X xy X) nXxyXxA C(X xy X \ A) 

z.e. attaching a cone onto 1 Xy X \ A, in the category of G-spaces over X, which 
gives a homotopy equivalent construction which is also canonical. In fact, when Y = * 
and X is a G-equivariant smooth manifold, G/ is naturally equivalent to the sphere 
bundle of the tangent bundle TX of X. 

We have the following essential fact about the dualizing object when / is a smooth 
equivariant family of manifolds as above. 

Lemma 4.5. — Let U be a complete G-universe. Let f : X —>Y an equivariant smooth 
family of manifolds, where Y is compact. Then there exists a spectrum CJ1 over X 
indexed on U, such that Cf Ax CJ1 is homotopy equivalent to the sphere spectrum 
Sx over X. (Here, Cf is thought of as a based G-space over X, so Cf Ax CJ1 is 
well-defined on the point-set level category of spectra.) For general smooth family of 
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manifolds f : X —+Y, S^C/ is invertible in the homotopy category of spectra over X 
indexed on U, with respect to the model structure of Definition 3.3. 

Remark 4.6. — By formal arguments, the inverse Cj1 of Cf in the stable homotopy 
category over X must be DCf = F(C/,S°), the Spanier-Whitehead dual of Cf. 
On the point-set level, the function spectrum functor depends on a linear isometry 
a : X —> T(U®2iU). Hence, for each such linear isometry, we get a model for Cj1 in 
the point-set category of spectra over X. 

We will postpone the proof of Lemma 4.5. First, note that the functor f$ has the 
following property. For any finite-dimensional representation V C ZY, let E^ift and 
ŝhlft denote the shift suspension and desuspension functors by V on the category of 

spectra parametrized over a G-space Y. 

Lemma 4.7. — For any G-spectrum Z over Y, based G-space T over X, and finite-
dimensional G-representation V C U, there is a natural isomorphism 

(4.8) Es-Jft(Z Ay / ,T) E ^ t / j l f (Z) AX T). 

Proof. — Recall that the functor /* is defined spacewise, and the functor /JJ is defined 
by first taking f$ spacewise, then taking the spectrification functor L. We first consider 
the level of based G-spaces. Let Z be a based G-space over Y, and T a based G-space 
over X. Then 

Mf*Z AX T) = fy((X xY Z) AX T) 

= /„((X xY Z) xx T/X(X xY Z) U T) 

= (X xy Z) xx T/Y(X xY Z) U T). 

Here, (X Xy Z) Xx T is a G-space over Y via 

(X xYZ)xxT —• X -L> Y. 

On the other hand, 

ZAYfs(T) = ZAy (T/yX) 

= (ZxYT)/y((ZxYX)UT). 

Here, in the numerator Z Xy T, T is thought of as a G-space over Y via the structure 
f 

map T —» X —• Y. There is a natural isomorphism over Y 

(X xY Z) xxT —> Z Xy T 

which takes ((#, z), t) to (z, t), whose inverse takes (z, t) G Z Xy T to ((pt(£)> z)> 0 ^ 
(X Xy Z) Xx T. It induces a natural isomorphism 

ZAYft(T)^Mf*ZAx T). 
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Now for any spectrum Z over Y and finite-dimensional W C the natural iso­
morphism over Y 

Zw Ay fyT Mf*Zw AX T) 

commutes with the adjoint prespectrum structure maps, so the prespectrum over Y 
consisting of the G-spaces {Zw Ay f(T} is isomorphic to the prespectrum over Y 
consisting of the G-spaces {f$(f*Zw Ax T)}. Applying the specification functor 
L from prespectra over Y to spectra over Y to both sides gives the isomorphism of 
spectra 

Z Ay /„(T) L{ft(f*Zw AX T)}. 

Now the spectrum f$(f*Z Ax T) is given by 

/» ( /*Z Ax T) - L(ft(L{f*Zw AX T})). 

The diagram of functors 

Forget 
Spectra/ Y > Prepectra/Y" 

Spectra/X > Prespectra/X 
Forget 

commutes, since /* is just defined spacewise on prespectra and on spectra. Thus, the 
left adjoints /JJ and L commute, so f$(f*Z Ax T) is isomorphic to L{f$(f*Zw Ax 
T)}. Now applying the shift desuspension functor to the isomorphism gives the 
statement of the lemma. • 

In particular, for the case where T = Sx = X II X, fjj(T) = X II Y, so for a 
spectrum Z over F, Lemma 4.7 gives that f$f*(Z) ~ (X IIY) Ay Z naturally in the 
category of spectra over Y. 

The following is our main duality theorem in the equi variant topological context. 

Theorem 4.9. — Let f : X —> Y be a smooth family of manifolds, and U be a complete 
G-universe. Then in the category of spectra over Y indexed on U, for any fibrant and 
cofibrant spectrum E over X , we have a natural weak equivalence in the category of 
spectra over Y indexed on U 

f.(E) M E Ax CJ1). 

Here, Cj1 is given in Lemma using any choice of linear isometry a : X —* 
1{U®2M). 

Remark 4.10. — This is how, in the present language, one arrives at the concept of 
equivariant orientations and Poincaré duality as given in [8], Section III.6. Assume 
for simplicity that Y is a point, and X is a smooth G-manifold, with / : X —• *. We 
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write C for Cf. Let e be a cofibrant and fibrant G-spectrum which is a ring spectrum, 
and V a G-representation. Then an e-orientation of X in dimension V is a map 

r, : /„(<?) — TXe 

satisfying the following condition. (Note that since /jj(G) is the Thorn space of the 
tangent bundle rx of X, 77 is a F-dimensional class in the e-cohomology of the Thorn 
space of rx.) We have that 

MCAX / *e )~ / aCAe 

naturally by Lemma 4.7. Define the composition 

(4.11) ft(C Ax /*e) — /|)C A e V Alde • T,ve A e —> Eve 

where the last map is the ring structure on e. Our condition for rj to be an e-orientation 
is that the adjoint map to (4.11) 

(4.12) C A x f e - ^ f ( E y e ) 

be a weak equivalence of spectra over X. 
A ^-dimensional e-orientation rj of X determines a Poincaré duality isomorphism 

as follows. Since f$ preserves weak equivalences between spectra over X that are 
cofibrant and fibrant, by Theorem 4.9 and the discussion after Lemma 4.19 below, so 
does Hence, applying /* to (4.12) gives a weak equivalence of G-spectra 

Mf*(T.ve))~Mf*eAx C). 

By Theorem 4.9, the right hand side is weakly equivalent to /jj(/*e). Thus, we have 

/ . ( / * ( I ^ e ) ) ^ / « r ( e ) . 

By Lemma 4.7, the right hand side is just X+ A e, whereas the right hand side is 
F(X+, Xye), so we get a weak equivalence 

F ( I + , E y e ) - I + A e . 

To prove Theorem 4.9, we begin with the following lemmas. 

Lemma 4.13. — For a G-equivariant space X, let g : E —> E1 be a map of spectra 
over X. For a G-subspace K C X, let %K • K —• X be the inclusion map. If for 
a cover {Kr} of X by G-subspaces, i*Krg : i*KrE —• i*KrE' is a weak equivalence of 
spectra over K, then g is a weak equivalence of spectra over X. 

Proof. — By Proposition 3.10, a map of G-spectra over X is a weak equivalence if 
and only if for every x E l , the map on fibers fx is a weak equivalence of Gx-spectra. 
The condition that i\ g is a weak equivalence for a cover {Kr} of X clearly implies 
this fiberwise condition. • 
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Lemma 4.14. — Let U be a G-universe. Let E be a cofibrant and fibrant G-
spectrum over X, such that for a cover {Kr} of X by G-equivariant subspaces, with 
iKR • Kr —> X the inclusion for each Krj i*Kr(E) is invertible in the stable homotopy 
category of spectra over K indexed on U. Then E is invertible in the stable homotopy 
category over X indexed on U. 

Proof. — Let DxE denote the Spanier-Whitehead dual of E in the category of spectra 
over X. Recall that the internal smash product of two spectra E and E' indexed on U 
is given by first taking the external smash product EKE', which is a spectrum indexed 
on U 0 U, then applying a change of universe functor coming from a chosen linear 
isometry a : X —• l(Ue2,U). For cofibrant E and E1', this is independent of the choice 
of linear isometry, up to weak equivalences with all coherences. Likewise, the linear 
isometry determines a point-set model for DxE = F(E, Sx), the Spanier-Whitehead 
dual of E in the category of spectra over X. Then E is invertible if and only if the 
evaluation map 

£x • E Ax DxE —> Sx 

is an isomorphism in the homotopy category of G-spectra over X. Since i* is a left 
adjoint for any i = iKr, it commutes with smash products of G-spaces. Also, for any 
given linear isometry a : X —• X(U®2,U), i* commutes with the change of universe 
functor a* : Spectra on U^U —• Spectra on U. Hence, if we define the internal smash 
product of spectra and the Spanier-Whitehead dual using a, then 

i*(E AX DxE) £ e E AKr i*{DxE). 

Similarly, i* commutes with the external function spectrum functor and with a*, so 

e (DxE) = eFx(EiS°x) FK(i*EJ*S°x) = DKi*E 

since i*Sx = S K. By the naturality of the evaluation map, we get the map over Kr 

i*Krex = e:i*KrEAKr Dx(i*KrE) - s t . 

This is a weak equivalence for every Kr. Thus, ex is itself a weak equivalence over X 
by Lemma 4.13. 

We now use Lemma 4.14 to prove Lemma 4.5. 

Proof of Lemma 4-5. — We first assume that Y is compact. We will embed X in V x 
Y in the category of G-spaces over Y, for some finite dimensional G-representation V. 
The map / is given by the pullback square 

X •> Efsm XSM 

f 7(G,M) 

Y •> E!FSUi/S. 
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The image of Y in ET^/S is contained in a finite G-cell subcomplex of ETSUi/S. 
Denote the preimage of this finite G-cell subcomplex in Efsm by Z. So it suffices to 
consider the pullback square 

X > Z xsM 

Y > Z/S. 

If we have an embedding Z xs M ->V x Z/S over Z/S, applying Y xZ/S- gives an 
embedding over Y 

X = Y xz/s (Z xsM)-^Y xz/s (V x Z/S) = VxY. 

Thus, it suffices to consider the universal case, for / = 7z(G, M) : Z x$ M —• Z/S. 
We first consider an orbit G/K in Z/S, where K c G x S, K OS = {e} , and if 

acts smoothly on the fiber M. Again, we can equivalently consider if as a subgroup 
of G, with a smooth action 6 : if —> S on M. Also, the fiber over G/K in Z xs M 
is G Xx M. We can embed M if-equivariantly into a if-representation W(K,O)> and 
embed W(K,e) into a G-representation V(K,O)- Then we get G-equivariant embeddings 

(4.15) GxKM C G xK W{K,e) C G xK V{K,e) = G/K x V{K,e). 

Now using the (G x <S)-cell structure of Z, each (G x <S)-orbit (G x S)/if of Z has an 
open (G x <S)-invariant neighborhood U such that (G x S)/K is a (G x 5)-equivariant 
retract of £7 (this is a general property of equivariant cell complexes). Using the 
compactness of Z/S, we can cover Z by finitely many such neighborhoods U\,..., Un. 
Now using the retractions, each Ui x$ M embeds G-equivariantly into Ui/S x Vi for 
some finite-dimensional G-representation Vi. Using a G-equivariant partition of unity, 
we can then embed Z x$ M into Z/S x (0^=1Vi). 

Let Sv be the one-point compactification of V = 0^=1^. It can be shown that 
Z/S x Sv has a structure of a G-cell complex, Z x$ M is a G-cell subcomplex, and 
is Spanier-Whitehead dual to its complement. So let V be the normal bundle of the 
embedding of Z XSM into Z/S x V. Then the sphere bundle S(V) of V, when smashed 
with Cf over Z x$ M, is homotopy equivalent to the based space (Z x$ M) x Sv 
over Z Xs M. Since {Z xs M) x Sv is invertible in the stable homotopy category 
over Z xs M, so is Cf. Specifically, define 

C Y = Z/S Y > Z/S 

where Ssh t̂ is the V-th shift desuspension functor in the category of spectra over 
Z xs M. Then CF AzxSM Cj1 ~ E ^ ( C / AZXSM X™S(V)), by Lemma 2.13, is 

naturally homotopy equivalent to E^tE°°((Z xs M) x SV) = S%XSM. 
This gives that Cf is invertible for a smooth family of manifolds / : X —• Y, where 

Y is compact. For a general smooth family / : X —• Y, let if —• Y be a compact G-
subspace, so /\K ' f~xK —> Y, and let %K '> /_1(if) X be the inclusion. We claim 
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that i*K(Cf) is naturally homotopy equivalent to Cf\ the dualizing object with 
respect to f (f-1 (K) :f —• K, as a spectrum over f~l(K). Thus, Lemma 4.14 
and the compact case give the the invertibility of G/, since the equivariant smooth 
family / : X —• Y is surjective, so {X xY K} over all compact subspaces K CY gives 
a covering of X. To see the claim, recall that up to natural homotopy equivalences, 
Cf is the suspension spectrum of the G-space over X 

( X x y X ) / x ( X x y X \ A ( X ) ) 

which means that one attaches a cone of X x Y X \ A (in the category of G-spaces 
over X) on X xY X, where A : X —> I Xy I is the diagonal. The functor z* = 
f~l(K) Xx — commutes with colimits, so i*KCf is obtained by attaching a cone 
of f~x{K) xx (X xy X \ A(X)) (in the category of G-spaces over f~l(K)) on 
f~x(K) xx (X Xy X). We have the obvious isomorphism 

f-\K) xx (X xy X) * f-\K) xy X 

But if (x,x') G f~l{K) xy X, then /(a/) = f(x) G K C r , so x' G Z " 1 ^ ) , and so 

/ - H * ) xx (x xy x) ^ r 1 ^ ) xK r \ K ) 

as G-spaces over f~l(K). Similarly, the G-subspace f~x{K) xx (X Xy X \ A(X)) 
is isomorphic to xK f~l(K) \ A(/~1(K)) over Z " 1 ^ ) - Thus, i*K{Cf) is 
obtained by attaching a cone of f~x(K) xK f~x(K) \ A(/_1(iir)) in the category of 
G-spaces over /_1(K) on f~l(K) XK f~x(K), which is the definition of C/|/_1 . • 

We will need the following notion of bundle-like objects over a base space. As 
we will see, in some situations, it is better behaved than the notion of cofibrant and 
fibrant objects. 

Definition 4.16. — Let X be a G-space. A G-space Z over X, with structure map 
p : Z —• X, is said to be a homotopy cell bundle over X if for every subgroup H of 
G, every point x G XH has a nonequivariant open neighborhood U in XH, and an 
iJ-space Fu with the homotopy type of an iJ-cell complex, such that 

p-^^^UxFu 

as if-spaces over U. Here, U is thought of as a fixed if-space, and U x Fu is an 
if-space over U via the first projection. 

In the based category, we say that a based G-space Z over X is a based homotopy 
cell bundle if the same condition is satisfied, but Fu is now a based if-space with the 
homotopy type of a based if-cell complex. 

By adjunction, a nonequivariant map U —> XH is equivalent to an i7-equivariant 
map U —> X, where U is thought of as a fixed iJ-space. In turn, this is equivalent to 
a G-equivariant map 

G/HXU^GXHU—> X. 
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Likewise, a point in XH corresponds to a G-orbit G/H in X. We have G-equivariant 
maps G xHp~x(U) —> Z and G xHp : G XHP~1(U) —• G/ff x /7, which agree when 
we map Z and G/H x U to X, so we get a G-equivariant map 

GXHP-^U) — • (G/H x U) xx Z. 

This takes a point (g,z) E G xHp~l(U), where z E p~l(U) C Z, to ((g,p(z)),gz) E 
(G/if xU)xxZ, where (<7,p(z)) E G/if x J7, and #z E Z. It is routine to check that 
this map is in fact a G-equivariant isomorphism. Therefore, the square 

GXHP-^U) >Z 

V 

G/H xU >X 

is a pullback in the category of G-equivariant spaces. Hence, the condition of Defi­
nition 4.16 is equivalent to the condition that for every G-orbit G/H in X, there is 
some G-equivariant open neighborhood of the form G/H x U of G/H in X, such that 

(G/HxU) xxZ^GxH(Fu xU) 

as G-spaces over G/H x [/, where U is thought of as a fixed if-space. 
In particular, by equivariant cell subdivision, a homotopy cell bundle Z over a 

G-cell complex X is both fibrant and cofibrant in the category of based G-spaces 
over X. Similarly as in the case of based spaces, we can also define homotopy cell 
bundle spectra over X. 

Definition 4.17. — For a G-space X, a G-spectrum E over X indexed on a G-universe 
U is a homotopy cell bundle spectrum if for every subgroup H of G and x E XH, 
x has a nonequivariant open neighborhood U in XH, and an if-spectrum Eu of 
the homotopy type of a cell if-spectrum (indexed on U which is thought of as an 
if-universe), such that for the inclusion i : U —• XH, and 7r : U —> *, 

i*(E)*ir*(Eu) 

as if-spectra over U. Here, U is thought of as a fixed if-space. 

Again, this is equivalent to the condition that for every G-orbit G/H in X, there 
is a G-equivariant open neighborhood of the form G/H x U of G/H in X, such that 
if we write i : G/H x U —> X for the inclusion, and n : G/H x U —> *, then 

i*(E)^GxH(n*Eu) 

as G-spectra over G/H x U. If X is a G-cell complex, then a homotopy cell bundle 
spectrum E over X is cofibrant and fibrant in the category of G-spectra over X. 

We have the following special case of homotopy cell bundles. 

Lemma 4.18. — Let Y be a G-cell complex, and f : X —> y be an equivariant smooth 
family of manifolds. Then X is a homotopy cell bundle over Y. 
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Proof. — Let the fiber of the smooth family be the manifold M. It is easy to see 
that the condition that a map be a homotopy cell bundle is closed under pullbacks. 
So it suffices to consider the universal case / : ETSTn xDiff(M) M —> Efsm/'Diff(M). 
Locally, if H is a subgroup of G, and 6 : H —> Diff(M) is a smooth action of H on 
M, then we have a cell G/H x Dn in ETSTa/ Diff(M), and the map / over this cell is 

(G x{H,e) M) x Dn —> G/H x Dn. 

By [14], for each H, the space of smooth if-actions on M is discrete after we take 
the orbit space of the action of Diff(M) by conjugation. Hence, for each 6 giving a 
smooth if-action on M, let Diff(M)^ be the isotropy subgroup of 6 in Diff(M) with 
respect to the conjugation action, i.e. Dif[(M)e is the subgroup of iJ-equivariant 
diffeomorphisms on M when H acts on M by 6. Then 

Diff(M) — • Diff(M)/Diff(M)* 

is a fibration. The target of this map is the component of 6 in the space of smooth 
iJ-actions on M. Hence, suppose we have a given H and an H-ftxed point x in 
Y = EFsm/S, such that the fiber over x is M with a smooth if-action via 9. Then 
by taking a section of the fibration from Diff(M) to the space of smooth if-actions 
on M, we can find an open neighborhood U of x in YH, such that for every y G U, 
the fiber over U is M with a smooth if-action by ay0a~l, where ojy G Diff(M) varies 
continuously with y. This allows us to define an #-equivariant isomorphism between 
X X y U and U x M over 17, where M is an i7-space via 0, by conjugating by a"1 on 
the fiber over y for each y eU. • 

We will also need the following result. 

Lemma 4.19. — Let X be a G-cell complex, p : Z —> X a based homotopy cell 
bundle over X. Then for any cofibrant spectrum E over X indexed on a complete 
G-universe U, E Ax Z is cofibrant. 

Proof. — A cofibrant spectrum E is the retract of a G-cell spectrum over X. Since 
— Ax Z preserves retracts, we can assume that E is a G-cell spectrum over X , i.e. it 
is constructed by attaching cells of the form T>y(G/H x Dn) H X onto X , where V 
can be any finite-dimensional G-representation in U, and (G/H x Sn) U X can be 
a based space over X via any map G/H x Sn —» X. Since cofibrancy is preserved 
by pushouts and directed colimits, by gluing the cells of E, it suffices to show that 
E Ax Z is cofibrant for the the case of E = E ^ ( ( G / i f x Dn) H X). In this case, 
E Ax Z is naturally homotopy equivalent to 11^({[G/H x Dn) H X) Ax Z). Hence, 
it suffices to show that if T is a based space over X , such that the basepoint X —» T 
is a relative cell complex over X , then T Ax Z is cofibrant as a based space over X . 

In this case, X is a G-cell complex, and T is a relative cell complex over X , so T 
is a G-cell complex as well. Let i : X —• Z be the basepoint of Z , then i is also 
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homotopy equivalent a relative cell complex. We have the pullback maps over X 

Txxi m „ Txxp 
T -—>T xx Z ^->r 

(4.20) 

X : >Z - >X 
i P 

where T xx p is the pullback bundle of p, with the same fibers as p : Z —> X. By 

subdividing X and T to make the cells of X and the cells of T over X small enough, 

we can assume that the bundle T x x p is of the form 

(GxH Fc) x Dn —> G/H x Dn 

when restricted to each cell C = G/H x Dn of the G-cell complex T, where Fc , 

the fiber over G, is a based iif-space of cell homotopy type. Since the fiber Fc has 

cell homotopy type, by equivariant cell subdivision, we can give a G-cell structure to 

(G xH Fc) xDn = (G/H xDn)xx Z, such that 

(G/H x Dn) xxi 
(G/H x Dn) (GxHFc)xDn 

is homotopy equivalent to a relative G-cell complex. After gluing together the cells of 

T, we get a G-cell structure onT xx Z, such that Txxi:T^TxxZ is a, relative 

G-cell complex. We can do the cell subdivision over the cells of X and the cells of T 

over X separately, so after gluing the cells of T, Z T xx Z is again a relative cell 

complex. Hence, the top map of the pushout diagram 

rvx Z >T xx Z 

X • T Ax Z 

is also a relative G-cell complex over X. Hence, the bottom map is a relative G-cell 

complex over X as well. But this is the basepoint of TAx Z, i.e. TAx Z is a cofibrant 

based space over X. • 

The case in which we are interested is the following. Let / : X —• Y be a G-

equivariant smooth family of manifolds, where Y is a compact G-cell complex. Con­

sider the model of the dualizing object G/ given by 

(X xY X) n X x y i x A C(X xY X x A ) , 

i.e. attaching a cone onto the complement of the diagonal A in X xy X. Since 

/ : X —> Y is a G-bundle whose fiber is a cell complex, X is a G-cell complex by equiv-

ariant cell subdivision. So G/ is homotopy equivalent to the sphere bundle S(r\x) of 

the tangent bundle of X. Choose any linear isometry a : X —> T(U®2,U). As shown 

in the proof of Lemma 4.5, by the compactness of F, the spectrum CJ1 = DCf is 

homotopy equivalent to £^tft£(Hx) f°r some finite-dimensional G-representation Y, 
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where v\x is the normal bundle of an embedding of X into V x Y over Y. As the 
sphere bundle of a G-equivariant vector bundle, the map S{y\x) —» X is a cell homo-
topy bundle over X. So for any cofibrant spectrum E over X indexed on U, we have 
a natural homotopy equivalence 

EAXcjl^x;vt ahift ( {EAx s{v]x)) 

where the right hand side is the smash product of a spectrum with a space over X. 
By Lemma 4.19, E Ax S(u\x) is cofibrant. Hence, E Ax CJ1 is naturally homotopy 
equivalent to a cofibrant G-spectrum over X. 
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PROOF OF THE MAIN THEOREM 

We will now proceed with the proof of Theorem 4.9. We first prove the theorem in 
the case where Y is compact. The general case follows from applying Lemma 4.14 to 
the dualizing object Cf, and a colimit argument. We will write C for the dualizing 
object Cf. For the compact case, we will define inverse natural equivalences between 
/ . and/tf(- A X C - 1 ) . 

We first define the maps on the level of based G-spaces. Let / : X —> Y be an 
equivariant smooth family of manifolds, with Y compact. Fix an embedding of X 
into Y x Sv for some G-representation V as in the proof of Lemma 4.5. Let S(rx) 
denote the sphere bundle of the tangent bundle rx of X, and let S(vx) denote the 
sphere bundle of the normal bundle vxoiX'mYxSv. By the proof of Lemma 4.5, 
for any choice of linear isometries a : X —> T(U®2,U), C~l is naturally homotopy 
equivalent to E^^E^S^x) - In particular, f${S(vx)) — Th(i/x) is the Thorn space 
of vx in the category of based G-spaces over Y, so /j}(G _ 1) is naturally homotopy 
equivalent to E ^ t E ° ° Th(rx). The Pontryagin-Thom construction gives a map 

(5.1) S% —> Th(^x) 

which collapses a complement of a normal tubular neighborhood of X in Y x V to Y. 
For a cofibrant and fibrant based G-space T over X, by smashing (5.1) with /*(T), 
we get the map of G-spaces over Y 

(5.2) <p : E£/.(T) — / . (T) A ft(S(u)) /j(T Ax f*f.S(u)) — /,(T A S(u)). 

Here, the isomorphism is by Lemma 4.7, and the last map is the counit of the adjunc­
tion pair ( / * , / . ) . 

We will also give the "inverse" to (p. let T be a cofibrant and fibrant G-space 
over X, with structure map pr : T —> X and basepoint %T : X —• T. We would like 
to define a natural map 

^ : / * / | t ( T ) — T A x C 

in the category of G-spaces over X. Then the adjoint to ip would give 

ip '• h(T) —y f*(T Ax c) 
in the category of G-spaces over Y. 
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To define I/J, we give some consideration to its source and target spaces. Recall 
that /d(T) is defined as a based G-space over Y by the following diagram 

X > T PT 
->X 

f 

Y >MT) >Y 
where the left hand side square is a pushout, and the top and bottom compositions 
are identities. Since /* preserves colimits, applying /* to this diagram gives 

X Xy X -
Id xiT -+X Xy T • Id xpT X x y X 

it 

X ->/*/ö(T) 

it 

->X. 
Again, the left hand side square is a pushout, and the top and bottom compositions 
are identities. So f*f$(T) is naturally isomorphic over X to (X xYT)/x{X x y I ) , the 
quotient in the category of G-spaces over X of /*(T) = X xYT by /* (X) = I x y I , 
both of which have structure maps via the first projection 7Ti. 

On the other hand, recall that in the category of based G-spaces over X, the 
dualizing object C can be defined up to homotopy equivalence to be 

C = X xY X/x{X XYX\U) 
where A is the image of the diagonal I - ^ I x y l , and U is a G-equivariant tubular 
neighborhood of A. The smash product T Ax C is defined to be 

TAxC = (TxxC)/x(TVx C) 
= (T xx (X xY X))/X{T xx (XxYX^U)U iT{X) xx (X xY X)). 

There is a natural map from X xY T to T Xx (X Xy I ) , which takes (x,t) to 
(t,pr(t),x). At first glance, one might want to define if) as the map on the quotients 
induced by this map. However, this is not a map over X. As a G-space over X, the 
structure map of X x YT = /* (T) is just the first projection, whereas T x x (X x y X) = 
T xy X as a G-space over X, where the structure map is via pr> The two are in 
general not isomorphic. 

To overcome this problem, we will "thicken" T as a G-space over X by making 
the following construction. The product X Xy X is a G-space over X by the first 
projection 7Ti. Assume that the closure of the tubular neighborhood U of A in X Xy X 
over X is contained in another such G-equivariant tubular neighborhood U'. We also 
assume that for each x G X, the fiber U'x = U' fl 7rj" l(x) over x in U' is an open 
contractible neighborhood of x in 7rj"1(x). Such tubular neighborhoods U and U' 
exist if Y is compact. We define the following unbased G-space T over X. 

T = {(x,t) eXxYT\ pT(t) G U'x}. 
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The structure map T —• X is just the first projection, i.e. (x,t) »-> x. Since [/' is 
G-equivariant, so is T. There is a natural G-map over X 

QT : T —> T 

which takes t to (pt 
To handle the basepoint, we also define the following based G-space T over X. 

There is an injective G-map U' —• T over X, which takes (x,xf) to (x^irix1)) Define 
the based space T over X by 

f = T/xU'. 

If T is cofibrant in the category of based G-spaces over X, then the basepoint map 
ir : X —* T is a closed injection. Thus, so is the inclusion Idx Xyir ' X Xy X —• 
X x y T . So 

[/' = Tn (Idx xyzT)(X xy X) 

is closed in T, which gives that T is a weak HausdorfF G-space. We define in the based 

category over X 
gT:T—>T-^f 

to be the composition of the unbased gr and the quotient map T —• T. Since the 
unbased gr : T —> T and the quotient map T —> T are G-maps over X, gr : T —T 
is a G-map over X. It is straightforward to check that it is a based map over X. 

We make the following observation. 

Lemma 5.3. — If T is a fibrant based G-space over X, then gr ' T —• T is a weak 
equivalence over X. If T is also cofibrant or of G-cell homotopy type, then gr is a 
homotopy equivalence over X . In particular, suppose T = f*(T') for some fibrant T' 
over Y. Define rT'-T-+T by (x, (x', t')^ ( M ' ) for (x'J) G X xy V = T. Tften 
TT ¿«5 a homotopy inverse to gr over X. 

Proof. — We first consider the unbased gr :T —> T. Consider the diagram over X 

X A >u> 

XxYX 

where I x y l is a G-space over X by the first projection. Then A : X —• U' is a 
weak equivalence since it is the inclusion of a G-equivariant deformation retract. Also, 
consider Idx xYpr : X xY T —> X xY X. This is a fibration since pr is a fibration. 
We have that 

T^{X xYT)xXxYxX 

via the G-equivariant isomorphism 11—> ((PT(£), £),PT(£))5 and 

T ^ ( I x r T ) x , X y I [ / ' U v ' 
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via the G-equivariant isomorphism (x, i) »—• ((x, £), (x,;>r(£))) for (x, £) G T C X x y T . 

The map gr T —> T is obtained by pulling back A : X U' along Id^ Xyp^. Since 

pulling back along fibrations preserve weak equivalences, gr is a weak equivalence. 

Also, the quotient map T —> T is a weak equivalence over X, since the tubular 

neighborhood U' is G-equivariantly homotopy equivalent to X. Thus, gr ' T —> T is 

a weak equivalence over X . 

Now suppose the basepoint map %T : X —> T is a cofibration. We claim that after 

forgetting to the category of unbased G-spaces over Y, ^ : T —• T is a homotopy 

equivalence. To see this, we first consider the unbased gr - T —>T. Define ST - T —• T 

over Y by (x,£) i—> t. Then ST • gr = U T - Also, let 7r2 \ U' —> X be the second 

projection. It is not a map over X , but as a G-space over Y, we have 

T^U xxT 

where £/' —> X by 7r2. The isomorphism is (x, £) i-> ((X,PT(£))> £)• Also, we have that 

T = X xx T, and sT = TT2 X x IdT : T ^ £/' x x T T. The composition 

U' 7T2 X A U' 

is homotopic to the identity on U via a homotopy H : U' x I —> U1', such that for 
every r Gl , 

Y 

U1 
Hr 

U' 

7T2 7T2 

X 

commutes. So H Xx Idy : T x I —> T is a homotopy over y between <?T • $T and the 
identity on T. Thus, gr : T —• T is a homotopy equivalence over y . Further, if we 
consider the map X —> T which takes x 6 I to (X^TOE)), then for each r G J, the 
map Hr xx Idr ' T —> T is the identity on X. 

For the quotient map T —> T, note that X is a G-deformation retract of f/;, via 
a homotopy U' x I U' that preserves the diagonal for all r G i". Now since X is 
a homotopy cell bundle over Y, X xy — preserves cofibrations by Lemma 4.19. So 
Idx Xyir : X Xy X X Xy T is a cofibration. Also, X is a G-cell complex. Since 
U1 is the total space of the tangent bundle of X, U' is also a G-cell complex, as is 
X xY X. We can divide the cells of U' and X XyX so that the inclusion U' XxyX 
is a relative G-cell complex. Thus, the map Idx Xyix : U' —> T is a cofibration, so 
the quotient map T —» T is a homotopy equivalence, via homotopies that preserves 
X in T and f for all r e I. 

Thus, the composition gr : T T is a homotopy equivalence in the unbased 
category over y , via homotopies that is the identity on the basepoint copies of X in 
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T and T for all r e I. Also, the basepoint of T = T/xU' is given by the pushout 
diagram 

U' >T 

7Ti 

x >т 

The top map is a cofibration, so T is cofibrant over X. Thus, by Lemma 3.13, we can 
lift the homotopy inverse of QT over Y to a based homotopy inverse of gr over X. 

In particular, suppose T = f*(T') = X xy T' for some fibrant G-space T" over Y. 
Then we have 

T = {(x, (x', *')) eXxY(X xY T') I x' e U'x} = U' xY r 

where U' is thought of as a G-space over Y by Uf X —» Y. Then by the methods 
of Lemma 3.13, we can choose the lifting of the homotopy inverse ST to a map over X 
to be 

rT:T = U' xy T' —>T = XxYT' 

by 7Ti ; £/' —• X, so (x, (x', *')) h-> (x, *'). Then rT • #T = IdT. Also, If if : t/; x / -> t/7 
is a homotopy over X between 7Ti : U' —> X and the identity on Uf, then H Xy IdT' 
gives a homotopy over X between #T • and the identity on T. For the basepoint, 
note that TT : T —» T passes to a based map : T —»> T over X. One can check 
that the homotopy between <?T * and the identity on T passes to a based homotopy 
over X between gr • rT and the identity on T. Thus, for T = /*(T7), is an explicit 
based homotopy inverse to gx over X. 

Finally, suppose T is of G-cell homotopy type over X. So there is some based space 
T0 over X, such that the basepoint X —• T0 of T0 is a relative G-cell complex, and 
there is a G-equivariant homotopy equivalence / : T —• T0 over X. The thickening 
construction taking T to T = (X Xy T) x jXr j [/' is functorial on the category of 
unbased G-spaces over X. For a based G-space T over X, T = T/x(Idx XyiT)([/'), 
so it is also functorial on the category of based G-spaces over X. Thus, we have a 
commutative diagram of G-spaces over X 

f 
T To 

9T 9T0 

T To-
f 

By the above, gr0 is a homotopy equivalence. The functor T H T preserves ho­
motopies, so / is a homotopy equivalence as well. Hence, gr is also a homotopy 
equivalence. 
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The following lemma gives the relation between the thickening of G-spaces over X 
with smash products. 

Lemma 5.4. — Let T and Z be fibrant based G-spaces over X. 

(1) There is a natural weak equivalence over X 

a : TT^TZ ^TAXZ. 

If T is also cofibrant over X, and Z is a homotopy cell bundle over X, then a is a 
homotopy equivalence over X. 

(2) IfT = /*(T') for some fibrant based G-space T' over Y, then there is a natural 
isomorphism 

T Ax Z TT^TZ. 

Proof. — The based G-space T Ax Z is obtained as a quotient space of the unbased 
G-space T xx Z = {(X, (T, Z) }G X x (T xx Z) \ pT(t) = Pz(z) G Ux}. Similarly, 
T Ax Z is a quotient space of T xx Z = {((#,£), (x,z)) \ Pr(t) € UX1 Pz(z) € Ux}. 
So define the map 

a : T xx Z — > T x X Z 

by (x, (t,z)) i—̂  ((x,t), (x, z)). It is routine to check that this map induces a based 
G-map on the quotient spaces 

a : TA^Z —>TAXZ. 

This is a weak equivalence by the following commutative diagram, where the two 
vertical arrows are weak equivalences by Lemma 5.3, and the top arrow is the identity 
map. 

T Ax Z = > T AX Z 

9T/\XZ 9T AX 9Z 

TxxZ—^ TxxZ. 

If T is also cofibrant over X and Z is a homotopy cell bundle over X, then by 
Lemma 4.19, T Ax Z is cofibrant over X. So by Lemma 5.3, the two vertical maps of 
the diagram are homotopy equivalences. Hence, so is a. 

Now suppose that T = f*(Tf) = X xYT' for some fibrant based G-space V over Y. 
We define a map of unbased G-spaces 

a:Txx Z—>Txx Z. 

A point of T xx Z is of the form ((x,*7),(x, z)), where (x,tf) G X xY T1 = T, and 
Pz(z) £ Ux. We define the map a to take this point to (x,((pz(z),t'),z)), where 
(pz(z),tf) G T, so ((pz(z),tf),z) is in T Xx Z. One can check that this map induces 
a map of based G-spaces on the quotient spaces 

a : T Ax Z —• T^y^Z. 
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The inverse of a is induced by the following unbased map 

b:Txx Z—>TxxZ. 

A point of T xxZ is of the form (x, ((y, t'), z)), where (y,t) G T = I Xy f , 
y = p^(^) G We define 6 to take this point to ((x, £'), (x, z)) G T xx Z. Again, it 
is straightforward to check that this gives a based map on the quotient spaces 

b : TA^Tz —• T Ax Z. 

It is now easy to check that a and b are inverse maps of based G-spaces over X. • 

Now we can define the map i[> on the level of based G-spaces as follows. We define 
the model of the dualizing object C to be C = X xY X/X{X xY X \ U). We first 
define ip on the level of G-spaces. For a based G-space T over X, define a map over X 

^ : X xy T —+ (XxYT/xU') AX C 

^ (X xy T/XU') AX (X xy X/(X xy X \ 17)) 

(XxYT)xx(XxYX)  
(Uf xx (X xy X) U (X xy T) xx (X xy X \ I/)) 

(Here, the last quotient is in the category over X). Namely, • 
((x,£), (x,pT(£))) in the numerator of the target (X xY T) xx (X xY X). This 
is a continuous map over X, and for (x,t) G X Xy T, such that pr(t) & Ux, 
(x,t) lands in (X xy T) xx (X Xy X \ 17), so its image is in fact x in the base-
point X —> (X xy T/xU') Ax C. Hence, the image of ^0 is in fact contained in 
(T/xUf) Ax C = f Ax G. Also, suppose t = ij>(x') for some x7 G X. If xr ^ U'x, the 
image of (x, IT{X')) is x in the basepoint X —• T Ax G by the above. If x' G UXJ then 
^0 takes (x,IT(X')) to ((x,IT{X'),X,X) G /7' Xx (X Xy X) . Hence, (X,2T(X')) also 

maps to x in the basepoint. So ̂ 0 factors through a based map over X 

(5.5) ^ : /*/«(r) = (X xy T) /x (X Xy X) —• TAx G. 

If T is cofibrant and fibrant, then the target TAx C is naturally homotopy equivalent 
to T Ax G, since by Lemma 5.3, gr ' T —> T is a homotopy equivalence. 

Our strategy for proving Theorem 4.9 is as follows. We will show that ip and ip are 
"homotopy inverses" to each other on the level of G-spaces in a certain sense, in the 
case when Y is compact. Then we will define <p and rfc on the level of spectra, still 
for the case when Y is compact, and prove that the homotopy inverses on the level 
of spaces give that the spectra-level (p and ij) are inverse weak equivalences in this 
case. Finally, for general / : X —> Y where Y is not necessarily compact, we cannot 
define the inverse map ij) since there may not be a suitable tubular neighborhood U' 
of the diagonal in X Xy X. But we can define <p on the level of spectra by a colimit 
argument over the compact skeleta of Y, and show that it is a weak equivalence of 
spectra over Y. 
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We have the natural homotopy equivalence 

S^=X xSv S(v) AX S(T). 

Also, recall that by Lemma 3.13, for T cofibrant and fibrant over X, the maps 

gr : T —> T 

and 

9TAXS(,) : T AX 5(1/) — T A^~S(v) 
are natural homotopy equivalences over X. The statement on the level of spaces is 
the following proposition. 

Proposition 5.6. — Let f : X Y be an equivariant smooth family of manifolds, 

where Y is compact. Let T be a cofibrant and fibrant based G-space over X. 

(1) The composition 

VVxf*U{T) S /*Sx / . (r) - i X r/tt(T AX S{u)) - L (TA^~S(v)) AX S(r) 

is naturally homotopic to the composition 

VvxrU{T)EX(T EX(T) TAXS(V)AXS(T) gTAxS(l/) • (T AX~S(I/))AXS(T). 

Here, c : f*f*(T) T is the counit of the adjunction pair (/*,/*). 
(2) Tfte composition 

XxMT) EX(T ̂  , E x / . ( f Ax 5(r)) EX(T / « ( f Ax 5(r) Ax 5(2/)) 

/8(Sxf) Sx/«(T) 

¿5 naturally homotopic to 

EX/S(9T) : Ex/tt(T) —• EX/„(T). 

Proof. — We first consider the case where y = * is a point, so X is a G-equi variant 
smooth manifold, and / : X —* *. To prove statement (1) of the proposition, we need 
to show that in the diagram 

f*Ev LT 
EX(T 

f*MTAx S(u)) 
1Ù 

(T Ax EX(T Ax 5(r) 

9T/\XS(U) 

TAX S(v) Ax Sir) 

EX(T) 

the dotted arrow h exists such that the diagram commutes up to homotopy, and h is 
homotopic to the counit of the adjunction pair ( /* , /*) . By Lemma 5.3, the vertical 

ASTÉRISQUE 285 



CHAPTER 5. PROOF OF THE MAIN THEOREM 53 

map GTAXs{V) is a homotopy equivalence. Now by Lemmas 5.3 and 5.4, we have the 
natural homotopy equivalences over X 

a : T Ax S(u) -—> T Ax S{u) 

and 

GT AX Id : T Ax S(u) —• T Ax S(v). 

We also define a map 

7:S%=XxSv EX(T S(u) AX S(T) 

as follows. We have the embedding of X inside SV. Let U be a G-equivariant normal 
tubular neighborhood of X in SV, so we have a G-map p : U = E{v) —• X, and S(v) 
is the one-point compactification of U in the category of G-spaces over X. 

Also, we define the dualizing object G to be S(r) ~ (X x X ) / x ( X x X \ £/7), 
where C/7 is a tubular neighborhood of the diagonal in X x X, chosen as follows. 
Since X is a compact smooth manifold, there is an equivariant Riemannian metric p 
on X. By the compactness of X, there is some e > 0, such that 

/7/ = { ( x , y ) G X x X | p ( x , 2 / ) < s } 

is a tubular neighborhood of the diagonal in X x X. In particular, consider X x X 
as a G-space over X via the first projection. Then U' has the property that for any 
x G X, the fiber U'x is a contractible neighborhood of x in X. 

Let C/7 be a G-equivariant tubular neighborhood of the diagonal in X x X, such 
that for every x G X, the fiber U'x over x via the first projection is a contractible 
neighborhood of a: in X. We have that 

5(r) ^ (X x X) /X(X x X \ U'). 

We define the thickening S(v) of S(v) using the tubular neighborhood Uf. For x G X 
and t; G Sy, suppose v G U and (pv) E G then we define 7 to take (x,v) G 
X x Sv = Sx to ((#, v), (x,p(v))). In the target, (x, v) is a point in S(v), which is 
a quotient of S(v) C X x 5(1/), and (x,p(^)) is a point of 5(r), which is a quotient 
of E(T) = U' C X x X. If p(v) & U'X, then we define 7(2;, t;) to be x in the basepoint 
copy of X in 5(1/) A S(T). It is straightforward to check that 7 is a continuous G-
equivariant map over X. By arguments similar to that of Lemma 5.4, Idr Ax7 is 
naturally homotopic to the composition of homotopy equivalences 

E^T^TAx S(v) AX S(T) 
id ^xgs(U) 

TAX S(u) AX S(T) 
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over X. The diagram of homotopy equivalences 

T Ax SM 
Id Ax9s{v) 

* T Ax 5(i/) 

9T^XS{V) 
$T Ax gs{u) 

gT Ax Id 

T AX S(y)a T Ax 5(i/) 

commutes. Hence, it suffices to show that the dotted arrow h exists making the 
following diagram commute up to homotopy. 

rMTAx SM) 
ai 

(TAx 5(i/)) Ax 5(r) 
a 

TAX (SV) AX 5(r) 

/ V 
QT AY T 

9T AX 9S(V) 

TAx S(v) AX S(T) 

r^vf*T _ + Y,VXT 

The top row of the diagram is 

E £ / 7 . ( T ) = r s v / . ( T ) 
rtû rMTAx SM) 

(5.7) (T AX (S V) Ax 5(T) 

TAx 5(i/) Ax 5(T). 

Since the target of / is a single point, /*(T) = Sec(X, T) is the G-space of sections 
from X to T. Let i : X —* T be the basepoint of T, and let <7: T —> X be the structure 
map of T. We have the normal tubular neighborhood U of X in V, so the sphere 
bundle S(v) of f is the one-point compactification of U in the category of G-spaces 
over X. Also, let Xv be the Thom space of u, so X" = /j(5(i/)). Then f*ip is 

(5y A Sec(X, T)) x X —• (Xv A Sec(X, T)) x X 

= ftS(v)ASec(X,T) xX 

* /j(5(i/) Ax X x SecpC.T)) x X 

— /»(5(i/) Ax T) x X 

= (5(i/) Xx T)/((S(v) x m xx T U 5(i/) xx *(*)) x X 

(5.8) 

The first map is induced by the Pontryagin-Thom map 5 —+ Xv. For the second map 
that is not an isomorphism, consider the projection p : S(u) —> X. By Lemma 4.7, 
for v G 5(z/) and a € Sec(X, T), the natural isomorphism 

/Ä5(i/) A Sec(X,T) /„(5(i/) Ax X x Sec(X,T)) 
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takes (v,a) to (v,p(v), a). Thus, the second map of the composition evaluates the 
section a at p(v). The last copy of X carries along identically. Thus, for v G Sv, a G 
Sec(X,T) and x G X, the composition (5.8) takes ((v,a),x) G (Sv A Sec(X,T)) x X 
to (v, a(p(v)), x) in f$(S(v) Ax T) x X if v £ U, and to x in the basepoint copy of X 
iîvgU. 

We have that C is the sphere bundle of the tangent bundle r of X. Let j : X —> 
S(v)AxT be the basepoint map over X. Recall the thickening S(i/) Ax T of S{v)AxT 
used to define with 

5(i/) AXT = {(x, (v,t)) G X x (5(i/) Ax T) I p(v) = q(t) G 

which is a G-space over X by the first projection, and 

5(i/) AX T = 5(i/) Ax T/X(X x j (X)) . 

The second map ip of (5.7) is 

/„(5(1/) A x T ) x X (5(i/) Ax T) Ax C 

(5(1/) Ax T) Xx(XxX) 

(5(i/) Ax T ) x W l x I \ [ / ' ) 

Here, the last quotient is taken in the category of G-spaces over X. For v G 5y, a G 
Sec(X, T), and xeX,ifveU, then ^ takes ((v, o(p(v))), x) G /A(5(I/) Ax T) x X to 
((x,v,a(p(v))),(x,p(v))) G ( S ( ^ T ) A x ( I x I / x ( I x I s £ ) ) . Here, (v,a(p(v))) 
is a point of 5(z/) Ax T, so (x, f, a(p(v))) is an element of 5(z/) Ax T, and (x,p(i;)) is 
in C = (X x X)/X(X x X \ £/'). If v £ U, then ^ takes ((v, a(p(v))), x) to x in the 
basepoint copy of X in (5(i/) Ax T) Ax C. Also, for any £ G T and x G X, if £ 0 
then ip maps ((v, £),x) to x in the basepoint of S(v) Ax T Ax C. Since a : X T 
is a section, for any x G X, ç(a(x)) = x. In particular, for v G 5(i/), and x G X, if 
g(a(p(t;))) = p(v) 0 then (5.7) maps ((i>,a),x) to x in the basepoint. 

Also, by Lemma 5.4, the homotopy equivalence 

A : 5(i/) Ax T —> 5(i/) Ax T 

takes (x, to ((x, v), (x, £)), where (x,t;) G 5(i/), and (x,£) G T. Thus, (5.7) is 

(5.9) (Sv A Sec(X,T)) x X —> (5(i/) Ax T) Ax 5(r) 5(i/) Ax T Ax 5(r) 

which takes ((f,a),x) to (x, a(p(v))), (x,p(v))) if v G /7 and p(v) G E/£ (ie. if 

v G t / n p " 1 ^ ) in Sv). Here, (x,v) G 5(^j, (x,a(p(v))) G f, and (x,p(v)) G 5(r) = 
X x X / (X x X \ [/'). Otherwise, the map takes ((v, a), x) to x in the basepoint copy 
of X. By contracting the tubular neighborhood U' to X, the map (5.9) is homotopic 
to a map 

(5.10) {Sv A Sec(X,T)) x X —• A* T Ax 5(T) 
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which takes ((v,a),x) to ((x, v), (x, a(x)), (x, x)) if v G U Pip~l{Ux), and to x in the 
basepoint copy of X otherwise. Namely, let H : U' x I —> U' be a linear homotopy 
over X, where 22o is the identity on U'', and 22i is the first projection onto X. Then 
the homotopy between (5.7) and (5.10) is given by applying H to p(v). The map (5.10) 
factors through to 

(Sv A Sec(X, T)) x X -A+ (X x S1") Ax T 

(5.11) ^ > T A x 5 ( l / ) Ax5(r) 

- 5 U f A x % J A x S(T) 

where h takes ((i>,a),x) to ((x,v),a(x)) if v £ U P\p~l(U'x), and to x in the base-
point otherwise. This is first evaluating the section a at x, then factoring out the 
complement of U C\p~l(Ux) in Sv. The tubular neighborhood /7 of X is isomorphic 
to the total space 25 (i/) of the normal bundle v of X in V. So for each x G X, 
[/ flp"1^ = ^(z/l^) is the total space of v restricted to the contractible neighbor­
hood U'x of x in X, so it is a contractible neighborhood of x in Hence, collapsing 
its complement is naturally homotopic to the identity on Sv. These homotopies vary 
continuously with respect to x. Hence, the map h is homotopic to just evaluating 
the section a at x, which is the counit of adjunction for ( /* , /*) . This gives the first 
statement of Proposition 5.6 for the case where Y = *. 

The proof of statement (2) of Proposition 5.6 is similar, for the case where Y = *. 
We need to show that the dotted arrow h exists making the following diagram com­
mute, such that h is naturally homotopic to T,v f%(gr)-

Hvfi(T) - ^ U EV/.(T AX S(T)) — h { f AX S(T) Ax S(V)) 

/ « № ) 

xvMn 

There is an equivariant Riemannian metric p on X, and as in the proof of statement 
(1) of Proposition 5.6, we can define the tubular neighborhood U' of the diagonal in 
X x X so that for every x G l , the fiber U'x is an open ball in X centered at x. We 
have C = S(T) = X x X/(X x X \ as before. Also, we have the G-equivariant 
tubular neighborhood U of X in and the projection map p : U —> X. Also, let 
a : T —• X be the structure map of T. For x G X and t G T, 

il>:f*f*T—+TAx S(r) 
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takes (x,t) G f*h(T) = (Xx T)/X(X x X) to ((x,£), fo(K*))) if q(t) G Ux, and to x 
in the basepoint copy of X otherwise. Here, (x, t) is thought of as a point in T, which 
is a quotient of T C X x T, and (x,q(t)) is a point in 5(r), which is a quotient of 
£(T) ^ [ / ' C I X I Thus, for veSv srndte T, Ey of its adjoint is 

Ev : E^/jT —-> Ev Sec(X, f Ax 5(T)). 

For f G Sv and £ G T, this takes (v,t) to (i;,^(£)), where ip(t) : X f Ax 5(r) is 
a section which takes x G X to ((x,t),x,q(t)) if </(£) G and to x in the basepoint 
copy of X otherwise. 

Now the composition Ey(</? • ip) is 

Ev/jjT E ^ > Sv A Sec(X, f AX 5(r)) 

—*XV ASec(X,f Ax 5(T)) 

= /„(S(i/))ASec(X,f Ax 5(r)) 

(5'12) = MS(u) AX (X x Sec(X, f AX 5(r)))) 

5(z / )xx(TAx5(r ) ) 

_ * (S ( i / ) \E / )x* (TAx 5(r)) 

= /«(5(i/) Ax (TAx 5(r))). 

The second map is induced by the Pontryagin-Thom map Sv —• X1". By Lemma 4.7, 
for v G S(v) and a G Sec(X, T Ax 5(r)), the isomorphism 

/15(1/) A Sec(X, f Ax 5(r)) /tt(5(i/) Ax (X x Sec(X, T Ax 5(r)))) 

takes (v,a) to (v, (p(i;),a)). The last map is induced by evaluating the sections 

X x Sec(X,f Ax 5(r)) —• f Ax 5(r). 

Thus, for v G 5y and £ G T, if t; G U and <?(£) G E ^ ) , the composition (5.12) takes 

(v,i) to (v, (p(v),i), (p(v), q(i))) G f$(S(v) Ax TAx 5(r)), where t; is thought of as an 

element in 5(i/), (p(t>),£) is in T, and (p(v),q(t)) is in 5(r). Otherwise, (5.12) takes 

(v, t) to the basepoint. 
By the definition of /7', for each v G U and £ G T, the condition that q(t) G U'p^ is 

equivalent to the condition that p(q(t),p(v)) < e for a fixed £ > 0. This is symmetric 
with respect to p(v) and (?(£), so we have that p(v) G U'q^ if and only if q(t) G 
By contracting U' to X, we get that the composition (5.12) is homotopic to a map 

(5.13) E ^ T —+ /„(5(1/) Ax f AX 5(r)) 

which takes (i>,£) to (v, t), (p(v),p(v))) if v e U and p(v) G B(q(t),e), and to 
the basepoint otherwise. The map 5.13 factors through to 

(5.14) Xvfs(T) Evft(f) a / „ ( ( * x 5V) AX f ) /»(5(1/) Ax f Ax 5(r)) 
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where h takes (v,t) to (v, (p(v)^t)) if v e U and p(V) G C/̂ tj, and to the basepoint 
otherwise. By collapsing [/' to the diagonal, we get that h is homotopic to a map h! 
that takes (v,t) to (v,(q(t),i)) if v € U and G U'q^ty and to the basepoint 
otherwise. So over each t e T, hf collapses the complement in Sv of the open 
neighborhood U np_1( [ / ^ ) of #(£), then applies qx- Again, /7, £/' are defined in 
a way such that U Hp-1 (17^) is a contractible neighborhood, so collapsing the 
complement of U ̂ P~1(Ufq^) is naturally homotopic to the identity on Sv. Also, £/ 
and Ufq^ vary continuously with respect to v and £, so h! is homotopic to £vf$(gr)-

This gives the proof of Proposition 5.6 in the case where Y = *. Now suppose 
/ : X —> y is an equivariant smooth family of manifolds, where Y is compact. Then 
we can divide the cells of Y such that for each cell G/H x Dn of Y, the fiber of / 
over G/H x Dn is (G xH M) x Dn, where M, the fiber of / , is a smooth compact 
manifold with some smooth il-action (depending on the cell of Y). For any point 
y G G/H x Dn, the proof for the case Y = * gives #-equivariant homotopies between 
the maps in the statement of the proposition, for fy : M —> {y} , the restriction 
of / to the fiber over the point y. These are in fact independent of the choice of 
y G G/H x Dn. By applying (G xH - ) x Dn to the homotopies, we get that the 
proposition holds for the map 

(G x# M) x Dn —> G/H x Dn. 

These homotopies are natural over the cells of y , so by gluing the homotopies over 
the cells of Y, we get that Proposition 5.6 holds for any equi variant smooth family of 
manifolds where Y is compact. • 

We now define the natural maps (p and ip on the level of spectra, again for the 
case where Y is compact, and show that Proposition 5.6 implies that the spectra-level 
versions of cp and ijj are inverse weak equivalences. Let E be a cofibrant and fibrant 
spectrum over X. Recall the Pontryagin-Thom map (5.1). In the category of spectra 
over y , taking the shift desuspension by V gives 

(5.15) t:S°Y = E^SZ — Es-hrft Th(i/X) = /^C"1) . 

Here, the isomorphism E ^ T h ^ x ) ^ /((C-1) comes from Lemma 4.7. We define 
the natural transformation <p : /* —> A G_1) as follows. Let E be a spectrum 
over X. In the homotopy category of spectra over Y, smashing the map t with f*(E) 
gives 

(5.16) 

wE : L(E) —> UE) Av f«(C~l) 

/,(/*/,(£?) Ax C-1) 

fx ( E Ax C-1). 
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Here, the first map is I d / ^ ) Ayt, the equivalence is by Lemma 4.7 (since C~l is 
homotopy equivalent to the shift desuspension of the suspension spectrum of a space), 
and the last map is the counit of the adjunction pair (/*, / * ) . 

Note that since the smash product of spectra is only defined up to weak equiva­
lences, the map (5.16) is only defined uniquely in the homotopy category of spectra 
over Y. We would like to have a model of it that is defined on the point-set level. One 
way to do this is to take a choice of linear isometry a : X —• T(£Ye2,£Y), so the point 
set level model of smash product is defined via a. We also give a canonical model for 
f$(E Ax G-1). To this end, we take the map (5.1) of G-spaces, and smash it with 
/* (E) to get the map in the point-set category of spectra 

(5.17) ££/*(£) - /*(£) A y T h ( ^ ) MRME)AxS(ux)) - /«(£AxS(i/x)). 

Since E is cofibrant, we can take the model 

EAX C - ^ S - ^ E A x S(vx)). 

Then the target of (5.17) is naturally homotopy equivalent to 

MT&KE AX CT1) ~ EjU/iKE Ax C'1). 

However, /*(£") may not be cofibrant, so we do not have homotopical control on the 
source of (5.17). To remedy this, we use the cofibrant replacement functor T on the 
category of spectra over Y, with respect to the model structure given in Definition 3.3. 
We have natural maps 

(5.18) S¥ AY r/.(2?) SV Y AY ME) 5.17 Z^ME Ax C'1). 

Here, a is an acyclic fibration, and the source of (5.18) is naturally homotopy equiv­
alent to T(Syf*(E)). Recall that for a cofibrant spectrum D, there is a natural 
homotopy equivalence between E^ift(D) and Sv A D. So we can replace Sy AY — 
in (5.18) by Eŝ hift to get 

E£iftI7.(25) — X l M E ( E ) AX G"1). 

Taking E ahift then gives 

(5.19) v'E • Tf*(E) — ft(E AX C-1). 

The following diagram commutes after we pass to the homotopy category of spectra 
over Y for any choice of linear isometry a : X —> T(U®2,U). 

rUE)—^ftlE AX C-M 

(5.20) 
Ef 

fx (E) 

So (5.19) is a point-set model of the map ips-
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For the inverse map -0, note that by part 2 of Lemma 5.4, the thickening construc­
tion T ^ T o n G-spaces commutes with the suspension functor = (X x Sv) Ax — 
for all finite-dimensional V CU. This allows us to define the thickening on the cate­
gory of spectra. Let E be a spectrum over X. Then for all finite-dimensional V CW 
in let py : T^~vEy —» Ew be the structure map. Then we have 

Y>w2-Wi-£W!-vY>w2-Wi-£W!-v 
Wi 

EW 

To check that the composition of these maps are compatible for finite-dimensional 
representations V Ç W\ Ç W2 inU, we need the following diagram of isomorphisms 
to commute: 

?%>-vEv Wi-£W! 

Y>w2-Wi-£W!-v 

Y>w2-Wi-£W!-v Y>w2-Wi-£W!-v 

It is routine to check that this diagram commutes by the definition of the isomorphisms 
in the proof of Lemma 5.4. Thus, {Ey} form a prespectrum over X. Applying the 
specification functor gives the thickening E of E in the category of spectra. 

Lemma 5.21. — If E is a cofibrant and fibrant G-spectrum over X, then we have a 
natural weak equivalence of G-spectra over X 

CE • E —> E 

induced by the maps gEv on the level of spaces. 

Proof. — For E a fibrant spectrum, each space of E is fibrant over X. So we have 
a weak equivalence of based G-spaces gEv : Ey —> Ey over X for every finite-
dimensional V CU. Note that for all finite-dimensional V C W in W, the diagram 

LX TIY 

•̂v 9 Ex s^W-V Tp 

s^W-V Tp s^W-V Tp £jy 

commutes, so the maps give a spacewise weak equivalence from E to the prespectrum 
{Ey}. 

Now suppose E is also cofibrant over X. Since the map QE is natural with respect 
to retracts, we can assume without loss of generality that E is a G-cell spectrum 
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over X. Then by arguments similar to those of 1.8.14 of [8], each space Ey of E 
has the homotopy type of a relative G-ce\\ complex over X. So by Lemma 5.3, each 
QEV : Ey —• Ey is a homotopy equivalence over X, and we get a spacewise homotopy 
equivalence of prespectra g : E —> {Ey} over X. Also, the prespectrum {Ey} is an 
inclusion prespectrum, and taking the spectrification functor from inclusion prespectra 
to spectra takes a spacewise homotopy equivalence to a weak equivalence of spectra. 

• 

With the thickening of a cofibrant and fibrant spectrum E over X, we can now 
define the inverse map ip to ip on the level of G-spectra. To define ip for spectra, 
let E be a cofibrant and fibrant spectrum over X indexed on the universe U. By the 
definition of the model structure on the category of parametrized spectra, Ey is a 
fibrant G-space over X for every finite-dimensional V CU. We define E by taking Ey 
spacewise, and we define ip on the spectra level first, then taking its adjoint. More 
specifically, we define the map ip on a spectrum E by applying ip for spaces, as in (5.5), 
to Ey for each finite-dimensional representation V C U. To make this work, we need 
to check that the following diagram commutes for all finite-dimensional V C W in U. 

Y%-VEV)AXC 
PhPv W - V Ey Ах С 

Y%-VEV)AXC Y%-VEV)AXC 

PhPv PhPv C 

f*hEw Ew Ax C. 

Going back to the definition of ip for spaces and using the fact that the structure map 
Py is a map over X, one checks that this diagram commutes. By taking ip from (5.5) 
spacewise, we get a map of prespectra 

il>:tf*MEv)}—+iEv Ax C\. 

Applying the spectrification functor to both the source and the target gives the 
map of spectra 

*l>:f*ME)^>EAx C. 
Now taking the adjoint gives the map of spectra 

0 : / « ( £ ) — / . ( £ A* C). 

Also, if we take 

il> : MEv) —* fJEv Ax C) 
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on each space Ey of E, and then spectrify, we get a map 

ŝpacewise : /jj(^) • L{f*(Ey AX C)}. 

Since the functor /* does not commute with the spectrification functor L, the target 
is not the same as f*(E Ax C). 

We will now show that Proposition 5.6 implies that the spectra-level maps ip and 
I/J are inverse weak equivalences. Since the map (p is natural on spectra over X, it is 
preserved by retracts. So it suffices to consider the case where E is a fibrant G-cell 
spectrum over X. Note that the space-level homotopies constructed in Proposition 5.6 
only depend on a deformation retraction of the tubular neighborhood U' onto X, all 
the maps and homotopies are natural, they commute with suspensions and loops. 
Thus, for a cofibrant and fibrant spectrum E over X, by applying Proposition 5.6 to 
each space of J5, and checking that the homotopies commute with the structure maps, 
we get that the statements of Proposition 5.6 still hold if we replace the based G-
space T over X by the spectrum E. However, again since f*E may not be a cofibrant 
spectrum, we do not have homotopical control over Ey/#(J5). 

To solve this problem, we consider the cofibrant replacement functor Y in the 
category of spectra over Y. For any spectrum D over Y, there is a cofibrant spectrum 
YD over Y, such that there is an acyclic fibration a : YD —• D. We can make Y into 
a functor, and a into a natural transformation Y —• Id. For E a cofibrant and fibrant 
spectrum over X, the V-th suspension of the map (5.19) is 

(5.22) ip1 : Y%YU(E) E vY a ^f*(E) — ft(E Ax S(is)) 

where the second map is obtained by taking the space-level cp on each space E\y of 
E, then spectrifying both source and target. We also define 

(5.23) V' : ME) — TUE Ax S(r)). 

Namely, tj)' is the lifting in the square 

* >TU{EAX S{T)) 

a 

ME)—^ f,(E Ax S(T)) 

which exists since ME) is cofibrant, and Tf*(E Ax S(T)) —> f*(E Ax S(T)) is an 
acyclic fibration. Similarly, from Vspacewise : ME) L{f*(EV Ax S(T))}, we get 

iCcewtae : ME) — TL{U{EV AX S(T))}. 
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The diagram 

Tft(EA 
TL{U 

^Tft(EAx S(T)) 
TL{U 

Tft(EA 

ZW 
TL{U 

TL{U 

TX UE Sx S(T)) 

commutes, so the second statement of Proposition 5.6 gives that 

(5.24) £y/»(£) 
TL{U 

^TUEAx S(T)) 
ZW Tft(EA 

is homotopic to Ey/u Likewise, we have the commutative diagram 

Tft(EA 
Tv<ih'"r spacewise 

TL{UEV Ax S(T))} 
^W spacewise 

Tft(EA 

E Y ̂ spacewise 
TL{U 

^ Y ̂ spacewise 
Sf L{U(EV AX S{T))} 

Hence, we also get from Proposition 5.6 that 

(5.25) ZÏME) 
Y v m' sDacewise ̂ TL{MEvAxS(r))} 

^ Y TT spacewise Tft(EA 

is homotopic to Ey/jj^js). Now gE : E —• E is the specification of a spacewise 
homotopy equivalence of prespectra. The functors Ey and f$ commute with the 
specification functor and preserve spacewise homotopy equivalences of prespectra. 
Hence, T,vf$(gE) is the specification of a spacewise homotopy equivalence of pre­
spectra, so it is a weak equivalence of spectra. This gives that (5.24) and (5.25) are 
weak equivalences of spectra over Y. 

Next, we would like to desuspend (5.25) by V. Recall that if D is a cofibrant 
spectrum, then there is a natural homotopy equivalence between EVD and the shift 
suspension T^hiitD of D. A similar statement holds for cofibrant spectra over Y. 
In (5.24), the spectra ?%fa{E) and T^YLif^Ey Ax 5(r))} are cofibrant, since S% 
is a homotopy cell bundle over Y. However, we do not know about Evf#(E). To 
get around this problem, recall the cylinder construction K [8] Section 1.6 and [4], 
which replaces a prespectrum by one that is E-cofibrant. There is an analogous 
construction in the category of prespectra over Y. (For more details on the cylinder 
construction over a base space, see Chapter 6 below.) For any prespectrum D over Y, 
we have a functorial map rn : KD —• D, where KD is a E-cofibrant spectrum 
over Y. Define the cylinder construction functor Z on spectra over Y to be LD, 
where L is the specification functor from G-prespectra over X to G-spectra over X. 
Applying L to the natural transformation r : K —> Id on prespectra gives a natural 
transformation Z —»Id on the category of spectra over F, which we will denote also 
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by r. By arguments analogous to those of Proposition X.5.4 of [4], smashing with Sy 
commutes with K on the level of G-prespectra over Y. So it commutes with Z as 
well. Hence, we have the commutative diagram of G-spectra over Y 

T%Zft(E) > T%zrL{f.(Ev Ax S(r))} »• Z$Zft(E) 

(5.26) Z$Z(E) Z$Zft Z$Zft 

Z$Zft (E) Y%TL{U{EVAX S(r))} Z$Zft (E) 

where the bottom row is (5.25), and the top row is Z applied to it. By arguments 
similar to that of Proposition 1.8.14 of [8], the left vertical map of this diagram is a 
homotopy equivalence, since f#(E) is a G-cell spectrum over Y. Now the bottom right 
corner of the diagram is the spectrification of the prespectrum {Hyf^Ey)} over Y. 
By arguments similar to that of Construction 1.6.8 of [8], the map 

r : KiT^MEv)} —> {T^MEv)} 

is a space wise homotopy equivalence. Passing to spectra gives that the right vertical 
map of diagram (5.26) is a weak equivalence of spectra over Y. Hence, the top row 
of (5.26) is a weak equivalence of G-spectra over Y. 

Now by choosing G-cell decompositions of the tubular neighborhood U' of the 
diagonal in X x y X so that the inclusion [ / ' C l x y l i s a relative G-cell complex, 
one sees that the thickening of a relative G-cell complex over X is also a relative 
G-cell complex over X, so each Ey is also of G-cell homotopy type. Therefore, each 
space f#Ey is of G-cell homotopy type over Y. This gives that the upper right corner 
of diagram (5.26) is of the homotopy type of a G-cell spectrum over Y. Hence, in the 
top row of (5.26) we can replace the Ey by S^ift up to homotopy equivalences. But 
ŝhift ls an avertible functor, which gives that 

(5.27) Zfi(E) 
Zip's spacewise ZTL{f*(Ev AX S(T))} 

Z<P'S spacewise Zft(E) 

is a weak equivalence of G-spectra over Y. But we also have the commutative diagram 

Zft(E) spacewise > ZYL{f*{Ev AX S(T))} 
Zf's spacewise > Zft(E) 

Z€ 

ME) TL{f*(EvAx S(T))} ME). 
spacewise ŝpacewise 

The top row and the vertical maps of this diagram are weak equivalences, so we get 
that the composition 

(5.28) ME) spacewise rUUEv Ax S(T))\ T spacewise ME) 
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is a weak equivalence of G-spectra over Y. Now we substitute E Ax G-1 for E, where 
G-1 = £^tS(z/). Since by Lemma 4.5, E Ax G-1 Ax S(r) is homotopy equivalent 
to E as spectra over X, we get that 

(5.29) ME AX C-1) ŝpacewise • TL{ft{Ev)} y' spacewise • ft(E l~x~C^) 

is a weak equivalence of spectra. But now we have a spacewise homotopy equivalence 
of prespectra fx (gE) • {/*(£V~)} —> f*(E), where the source is an inclusion prespec-
trum, and the target is a spectrum. Hence, applying the spectrification functor and 
then T gives a weak equivalence of spectra 

TL{U{EV)}-^TU (E). 

By similar arguments, we have a weak equivalence of spectra 

ME A^C"1) - ^ / j ( £ Ax C-1). 

By the definition of ip' and <p'apacewiae, the diagram 

(5.30) 

ME AX C-1) 

ME) 

ŝpacewise -—- ŝpacewise -— 
> TL{f*{Ev)} > ME AX C~l) 

->r/.(£7) ->ft(E Ax C-1) 

commutes. Hence, the bottom row of the diagram is a weak equivalence of spectra, 
and we get that ip' : Tf*(E) —> f$(E Ax C~l) has a left inverse in the homotopy 
category of G-spectra over Y. 

For the other composition, consider the map 

c : TivhyE) —• fJEyE) 

adjoint to the counit of adjunction 

f*Ev UE) SÉ E XV f* LE VC-E. 

We have the square 

(5.31) 

> r / . ( E ^ ) (E) 

T^TME)' 
E vAx 

->E£/.(£) fx (E vx E) 

Since Eyr/*(E) is cofibrant and a : r/*(£^i£) —> /*(E^E') is an acyclic fibration, 
the dotted arrow it exists. The adjoint to the first statement of Proposition 5.6 gives 
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that the diagram in the category of G-prespectra over Y 

*%ME) - • ME AX S(u)) 

(5.32) spacewise 

f*Q%E) — »• ft{{Ev Ax S(u)} Ax S(T)) 
J*\9EAXS(V)) 

commutes up to homotopy. The bottom map is a spacewise homotopy equivalence of 
prespectra. Again, let K be the cylinder construction in the category of prespectra 
over X, and Z = LK be the cylinder construction in the category of spectra over X. 
Then we have a spacewise homotopy equivalence of prespectra 

a : KU{{Ev^Ts{v)} Ax 5(r)) — M{Ev^S(u)} Ax S(T)). 

Applying the prespectra-level cylinder construction to ŝpacewise gives a map of G-
prespectra over Y 

#(Spacewise) : K ft(E AX S(u)) — Kf^{Ey^Ts{u)} AX S(T)). 

It follows from a diagram chase, using diagrams (5.31) and (5.32), as well as the 
definitions of if' and that the big square of the following diagram in the category 
of G-prespectra over Y commutes up to homotopy. 

KTVTME) * W » KME Ax S(u)) ^ S — i S e , WiEy^Tsi,)} 
AxS(T)) 

K9E/\XS(V) 
K9E/\XS(V) 

Kf„({EV Ax S(u)} AX S(T)) a 
U{{EV AX (S(v) 

AxS(T)) 

Since the map a is a spacewise homotopy equivalence, we can lift the homotopy to 

KU{{EVAX S{v)} Ax S(T)). 

Hence, the composition of prespectra 
(5.33) 

KVlYUE) -
K E vn y') 

MEAXSM) 
K ^SN AR.E.WI SF» 

Kf*({EV Ax 5(i/)} Ax S{T)) 

is naturally spacewise homotopic to the composition of prespectra 
(5.34) 

K^ÇVU{E) 
K{u) 

KTUTZE) 
Kf*(9EAvS(v)) 

KU{EV AX S{U)}AxS{T)). 

Since K preserves spacewise homotopy equivalences of prespectra, the second map 
of (5.34) is a spacewise homotopy equivalence. The functor Y also commutes with 
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shift suspensions. So we can take u to be the composition 

E1 TUE) ^ S l f t r / . ( £ 

L f r/.(E^ftE) 

L f r/.(E^ftE) 

L f r/.(E^ftE) 

All the maps of this composition are isomorphisms or homotopy equivalences, so it is a 
homotopy equivalence. Thus, the first map Ku of (5.34) is also a spacewise homotopy 
equivalence. Hence, (5.33) is a spacewise homotopy equivalence of prespectra. Now all 
the spectra concerned in (5.33) are inclusion prespectra, so applying the spectrification 
functor to it gives a weak equivalence of spectra 

L f r/.(E^ftE) 
Zft(EA 

Zft(EAxS(v)) 
Z ̂ spacewise ZU{{EvAx S(V)}AXS(T)). 

But since EyTf*(E) and f#(E Ax S(v)) are cofibrant, each is naturally homotopy 
equivalent to its cylinder construction. Hence, we get that the composition of spectra 

1ZTUE) 
Zft(EA 

ME Av SM) 
Z ̂ spacewise ZU{{EvAx S{u)}Ax 5(r)) 

is a weak equivalence. 
This gives that 

ZU{{EvAx S{u) ME AX SM) = EYhi*ME AX C-1) 

has a right inverse in the homotopy category of G-spectra over Y. But since both its 
source and target are cofibrant spectra, we can replace Ey in the source by E^ift. 
Now taking shift desuspension gives that 

V' :TUE)-^MEAX C-1) 

has a right inverse in the homotopy category of G-spectra over Y. But also, by (5.30), 
it also has a left inverse in the homotopy category of G-spectra over Y. Therefore, 
we get that the map (5.19) 

<p' : TUE) — ^HMEAX SM) = ME Ax C~l) 

is a natural weak equivalence of spectra. By the commutative diagram (5.20) this 
gives that (p : f*(E) —• ME Ax C~l) is a natural weak equivalence of spectra, for all 
equivariant smooth families of manifolds / : X —> Y compact, and all cofibrant 
and fibrant spectra E over X. 

For general equivariant smooth family of manifolds / : X —> Y, where Y is any 
G-cell complex with countably many cells, we use a colimit argument on the finite 
subcomplexes of Y. We observe the following fact. Suppose i : K' C K are compact 
G-cell complexes, and / : XK —> K is a smooth family of manifolds over K. Let 
XK, = X xK K' = f-l(K')- Also, write / ' = f\Xw, : XK> - K\ making XK, a 
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smooth family of manifolds over K'. Let i : XK> —> XK be the inclusion map. For a 
cofibrant and fibrant spectrum EK over XK, we defined 

№ : f*(EK) MEK Ax Cjl). 

By Lemma 2.2, the map i*(tpxK) is a map 

f'*i*(EK) = i*f*(EK) i*ft(EK AXk CJ1) 
^fFiEKAxxCj1) 
^f№EKAXK,Cj}) 

where the last map is a homotopy equivalence natural in K1', with respect to inclusions. 
By the naturality of the construction of one can check that this is just ¥xK,, with 
respect to the map f : XK> —> K'. The diagram 

f*i*(EK)Y Xk fp*(EK AXk CJ1) 

f,(EK,)ft(EK, f1 (Ek', AXk' Ax^Cj1-1) 

commutes. So given a general G-cell complex Y, with / : I - ^ 7 a smooth family 
of manifolds, for each compact G-subcomplex K C Y, let fx ' X Xy K —• K be the 
pullback of / with respect to the inclusion K c Y. We have a stable map 

tK •. s°K ^ MC-},) = Mecj1). 

Now let / : X —> y be any equivariant smooth family of manifolds, and let K be a 
finite subcomplex of Y, with inclusion %K > K -^Y. By equivariant cell subdivision, 
XK = X xyK is also a finite subcomplex of X. We will denote the inclusion XK —» X 
also by %K- We have that for each ix K —+ Y, 

(iK)t(S0K) = S0KUKX 

as spectra over Y. Hence, we in fact have 

SY <* col im^t* )„Sk 

as spectra over F, over all finite subcomplexes K C X. Similarly, defining CJ1 = DC/ 
by any choice of linear isometry X —> X{U®2,U), we get that 

MCJ1) s / ^ ( c o l i m * ^ ^ 1 ) ~ colim* ( ^ M / x ^ 1 ) ) . 

So passing to the colimits, we get a stable map in the category of spectra over Y 

tY : —• /tt(C/1)-

This allows us to define the natural map ipx : f*(E) —> f$(EAX CJ1) for i£ a cofibrant 
and fibrant spectrum over X, similarly as in the case when Y is compact. 
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Now suppose E a cofibrant and fibrant spectrum over X. For any finite subcom-
plex K of y , we now denote both the inclusion maps K —• Y and XK X by %K, and 
the restriction XK —• K of / by fx- By Lemma 2.2, we have natural isomorphisms 

i*ME) - UKUW) IK (E) 

and 
i*Kft(E AX CJ1) <* (ffc)\ji*fc(E AX CJ1). 

Since i*K commutes with external smash products of spectra, and i*K(Cf ) is naturally 
homotopy equivalent to G71 , we get that for any choice of linear isometry 

X —*1(U®ZM), 

(fK)$i*K(E AX CJ1) is naturally homotopy equivalent to (fK)$(i*K(E) AXK CJK). By 
the definition of ipx for the noncompact case, it is straightforward to check that the 
diagram 

Kh(EAx Kh(EAx i*Kh(EAx C71) 

ÎSKE) 
<PXK 

№*KEAXKC^) C- FK 

commutes for every finite subcomplex K of Y. However, although i*K{E) is a fibrant 
spectrum over XK, it is not necessarily cofibrant, so we do not have that the bottom 
map of the diagram is a weak equivalence. To solve this problem, we make the 
following construction. 

Definition 5.35. — Let K' be a G-cell complex, and K a subcomplex, with inclusion 
i : K —> K'For a G-spectrum E' over K' and a G-spectrum E over K indexed on a 
G-universe U, a map g : E —> i*E' gives a map of unbased G-spaces 

9v : Ey i*E'v c Ey 

for each finite-dimensional representation V C U. We say that a map g : E —» i*E' 
of G-spectra over K is a map over i : K K', and for every finite-dimensional 
representation V contained in U, the diagram of unbased G-spaces 

K i K' 

Ey 9v E'y 

K K' 
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commutes. We write a map of spectra over the inclusion K C K' just as g : E —> E', 

even though strictly speaking, £ and £" are in different categories. A map of spectra 

over the inclusion K C K' is an inclusion over K C if 7 if it is a spacewise inclusion. 

For our G-cell complex F, let {Kj} be an increasing sequence of finite subcom-

plexes, such that Y = \JjKj. For the equivariant smooth family of manifolds 

f : X —> Y, write Xj for XKj = X xY Kj, and fj : Xj —• ATj for the restric­

tion of / . Then {Xj} is also an increasing sequence of finite subcomplexes of X , and 

X = \Jj Xj. If E is a spectrum over X , then for every j , we have an inclusion of 

spectra over the inclusion Xj C X J + i 

i * (E) 
c 

i * +1 (E) 

In particular, for each finite-dimensional representation V C U, Ey = |J. i*(Ey). In 

this situation, we say that 

E = U i* (E) 
3 

is the (spacewise) union of the spectra ij(E) over the sequence of inclusions Xj Ç 

X J + i . Conversely, suppose we have a sequence of inclusions of spectra Dj —» Dj+1 

over the inclusions Xj Ç Xj+i , where £)j is a spectrum over Xj. Then their spacewise 

union forms a spectrum D over X , and we write 

D = U Dj 

We will use the following lemma to show that the compact case of Theorem 4.9 
leads to the general case. 

Lemma 5.36. — Suppose E is a cofibrant and fibrant G-spectrum over X. Then there 

is some cofibrant and fibrant spectrum E' over X, such that E is weakly equivalent to 

E' and 

E' = \JE' 
3 

where each E'- is a cofibrant and fibrant spectrum over Xj, with an inclusion of spectra 

E'j Ej+1 over the inclusion Xj —> Xj+i for every j . 

Given the lemma, we will show that 

(5 .37) <p : ME1) — ME' AX C71) 

is a weak equivalence of spectra over Y. To this end, we will show that both /* and 

/tt(— Ax Cjl) commutes with unions of spectra. Namely, we claim that 

(5.38) /*(£') = /. \JE' s U ( ( / j ) . № ) ) 

and 

(5.39) ME' AX CJ') = / „ U\JE> Ax C 7 1 ~ U ((fj) Ej^ C 7 1 ) ) 
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is a natural homotopy equivalence. For (5.38), note that since /* is taken spacewise, 
it suffices to show that if T is a based space over X, such that T = (J. Tj for an 
increasing sequence of based spaces Tj over Xj, such that the diagram 

XI 
Ç 

Xj+1 

Tx 
c 

Tc +1 

xk- Ç 
Xj 2 

commutes for every j , then /*(T) = U?(/?)*№)• We have 

/.(T) = Secy(X,Z) = nyey Sec(Xy,ry) 
as sets, where Xy and Ty are the fibers of X and T over a point y of Y, and Sec(Xy, Ty) 
denotes the space of (nonequivariant) sections to the structure map Ty —> Xy, with 
G-action by conjugation. Again, here Hy€y Sec(Xy,Ty) is topologized as in [7]. Note 
that since X —> Y is an equivariant smooth family of manifolds, Xy = M as nonequiv­
ariant spaces for every y £ Y. So f*(Y) is (G-equivariantly) the same as 

UyeY Sec(M, Ty) ^ ny€y Sec(M, U№)y)-

But M is compact, and for every j , (Tj)y (Tj+i)y is an inclusion. Hence, we also 
have a G-equivariant isomorphism 

Sec M,n((Tr)y)) = USec(M, (T,-)„) 

where for each r, Sec(M, (Tj)y) —> Sec(M, (TJ+i)y) is an inclusion. Hence, we get 

/ , ( T ) - U j 6 r USec(W,№)y) . 

On the other hand, 
U(/i).№) = U ( i W , Sec(M, m)„)) 

where the right hand side is given an appropriate topology. It is easy to see that these 
two are G-equivariantly isomorphic, which gives (5.38). To prove (5.39), note that up 
to natural homotopy equivalences, we can define C71 to be i*AC7l). Then 

C71 =\ IC71 
7 

is a union of spectra over the sequence of inclusions Xj Ç Xj+\. By arguments similar 
as above, unions of spaces over the sequence of inclusions Xj —• -Xj+i commutes with 
taking loops. As a directed colimit, it also commutes with colimits. Hence, unions of 
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spectra commutes with the specification functor. So again, it suffices to show that 
for a based G-space T over X, such that T = \Jj Tj for an increasing sequence Tj of 
based G-spaces over Xj, 

ft(T Ax CJ1) UJ F1 (Tj A^CJ1). 
3 

Now if Z is a based G-space over X, it is easy to see that 

TAxZ^\J {TjAxji*{Z)) 
3 

G-equivariantly. This is because for each j , there is an inclusion 

TjAxji^Z-^T AxZ 

over the inclusion Xj C X. This induces a map U j № Ax, i*Z) T Ax Z, which 
is an G-equivariant isomorphism. But CJ1 — ^(Cj1) is obtained by applying z* to 
CJ1 spacewise, so we get that 

(5.40) TAxCj^ U (Tj ViTjA^Cj1). 
3 

Similarly, since X = [jjXj, Y = [JjKj, and the union commutes with pushouts, 
we get that for a space T = \JT. as above, fx (T) = \Jj((fj)$Tj). Passing to spectra, 
we get that for any spectrum D = |J. Dj over X which is a union of an increasing 
sequence of spectra Dj over Xj over the inclusions Xj CXj+i, f${D) = IJj((/7')lt^j)-
Applying this to (5.40) gives (5.39). 

This gives the commutative diagram in the category of G-spectra over Y 

ME') YX • ME' AX CJ1) 

(5.41) = -

WjUE'j) (E'j) -— > [JjUME'j Ax, CJ1). 
Uj {Pxj 

Each (fXj : (fj)*(Ej) —> (fj)$(E'j AXJ CJ1) is now a weak equivalence of G-spectra 
over Kj, so on each space, (pxj is a weak equivalence of unbased G-spaces. The union 
of weak equivalences of unbased G-spaces is a weak equivalence, so the bottom map 
Uj VXj °f (5-41) is a weak equivalence of unbased G-spaces, i.e. a weak equivalence of 
G-spectra over Y. Therefore, the top map of (5.41) is a weak equivalence of G-spectra 
over y , which gives Theorem 4.9 for E'. 

Hence, we have that 

V : U(E') — ME' AX CJ1) 

ASTERISQUE 285 



CHAPTER 5. PROOF OF THE MAIN THEOREM 73 

is a weak equivalence of spectra over Y. But we have the following diagram in the 
homotopy category of spectra over Y. 

UE1)ME1 f1 (E AX C71) 

fm(E)—> f1 (EMEAx C7J), 

By the functoriality of the constructions to obtain E' and the definition of <p, it is 
routine to check that this diagram commutes. But E and E' are now both cofibrant 
and fibrant over X. Since /* preserves weak equivalences of fibrant spectra, the 
left vertical map of this diagram is an isomorphism in the homotopy category of 
spectra over Y. Also, since CJ1 is a homotopy cell bundle spectrum over X, both 
EAxCj1 and E'AxCj1 are cofibrant over X by Lemma 4.19. Since f$ preserves weak 
equivalences between cofibrant spectra, the right vertical map is also an isomorphism 
in the homotopy category of spectra over Y. Hence, the bottom map of the diagram is 
an isomorphism in the homotopy category of spectra over Y, i.e. a weak equivalence 
of spectra over Y. 

To finish the proof of Theorem 4.9, it remains to prove Lemma 5.36. 

Proof of Lemma 5.36. — For each j and any finite-dimensional representation V in 
the universe U, the diagram of unbased G-spaces 

Xj E• Xj+i 

i*(Ev)-—+i*1+1 (Ev) 

Xj y Xj+i 

commutes. Hence, we have an inclusion of spectra i*jE —> i*j+\E over the inclusion 
Xj C Xj+i, and E = (J. ijE is the union over the sequence of these inclusions. Let 
Tj be the cofibrant replacement functor of spectra over Xj. Then the functors Tj 
are also natural with respect to inclusions of spectra over the inclusions Xj C Xj+\. 
To see this, note that the functor Tj is obtained by attaching to Xj all cells of the 
form T,y((G/H x Dn) H Xj) such that there is a commutative diagram of G-spectra 
over Xn 

E??((G/fl" x Sn~l) H Xj) > Xj 

Y,°?((G/H x Dn) H X.-Ï > i*E. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2003 



74 CHAPTER 5. PROOF OF THE MAIN THEOREM 

By adjunction, this is equivalent to the diagram in the category of unbased G-spaces 

G/HxS71'1 >Xj 

G J H x Dn >ij(Ev). 

By composing with the inclusion ij(Ey) —> ij+1{Ey) over Xj C Xj+i, we get a 
diagram of unbased G-spaces 

G/HxS"-1 >Xj+1 

G H x Dn I * 1+1 (EV) 

which gives a cell Hy((G/H x Dn) II A^+i) in the category of G-spectra over Xj+\. 
(Note that here, Ey now denotes shift desuspension of the suspension spectrum 
over Xj+i instead of over Xj.) Therefore, each stage of the small objects constructions 
constructing Tj and Tj+\ are natural with respect to the inclusion of spectra i*E C 
ij+iE. This gives that Tj is natural with respect to inclusions of spectra. For every j . 
we have a map of spectra TjijE —• Fj+iij^E over the inclusion Xj —• Xj+i, and 
each Tji'jE is a cofibrant spectrum over Xj. It is also in fact fibrant over Xj, since 
ij takes a fibrant spectrum over X to a fibrant spectrum over Xj, and Tji*E —> i*E 
is an acyclic fibration. 

Now for each j , let Ej(0) be the telescope of the sequence of maps of spectra 

c C C 
X0 =—> Xi —=—• —> xj 

T0i*0E > TtfE > > T&E 

X0 Xi — Xi—>X,-

over the inclusions Xr C Xr+i, with r < j . This is obtained by taking the tele­
scope construction spacewise (in the category of unbased G-spaces), then taking the 
spectrification functor over Xj. Then Ej(0) is cofibrant over Xj, Ej(0) is weakly 
equivalent to ijE, and we have an inclusion of spectra Ej(0) —• Ej+i(0) over the 
inclusion Xj C Xj+i. Let TE be the telescope of the infinite sequence of maps of 
spectra 

UioE —• TiilE —• r2i*2E — 
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over the infinite sequence of inclusions 

Xq • X\ • X2 • • • • • 

Then TE is a cofibrant spectrum over X, and TE —» is a weak equivalence of 
spectra over X. Also, ^ (Jj ^ ( ° ) -

However, TE" and the £j(0)'s are now no longer fibrant, so we need to apply 
fibrant replacement to them again. We will use the fibrant replacement functors on 
the 2?j(0)'s to obtain the E^s inductively. Since Eo(0) = Toi^E, it is fibrant over X0, 
so we define Ef0 = Eo(0). Now suppose we have constructed spectra E'0,...,Ej 
over X o , . . . , X j , such that each E'r is cofibrant and fibrant over Xr, Er(0) —» JB̂  
is an acyclic cofibration. Also, suppose we have cofibrant spectra Er(j) over Xr for 
every r > j , with acyclic cofibrations Er(0) —• Er(j), such that there is the following 
diagram of inclusions of spectra over the inclusions X0 C X\ C • • • C Xj. 

X0 =—> Xi > > Xj • Xj+i y Xj+2 

Eo(0) £7i(0) ^(0) —^+ £j+i(0) — ^ ^+2 (0) 

(5.42) 

E' #i — ^ ^ ^ ^(0) —^+ £j+i(0)—^> EJ^(j) 

X0 —> Xi —-—> Xj -—> Xj+i —» Xj+2 • 

Here, all the horizontal maps are spacewise inclusions. The first row of vertical maps 
are cofibrations, the second row of vertical maps are acyclic cofibrations, and the 
first j maps of the bottom row of vertical maps are fibrations. We construct Ej+1 to 
be the fibrant replacement of Ej+i(j), obtained by attaching to Ej+i(j) all cells of 
the form T>y((G/H x Dn x I) H Xj+i) such that there is a commutative diagram of 
the form 

£?( (G/ f f x £>") U Xj+1) • Ej+ 1(j) 

ES?((G/fT xDnxI)U Xj+1) > Xj+1 

in the category of G-spectra over Xj+\. So Ej+1 is a fibrant spectrum over Xj + 1, 
and there is an acyclic cofibration of spectra Ej+\{j) —• E'j+l. Composing with the 
acyclic cofibration £^+1(0) —> Ej+\(j) gives an acyclic cofibration £j+i(0) —> J57J-+1. 
Also, an acyclic cofibration of spectra is a spacewise inclusion. So we also have the 
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composition 

E' Ej+1(j) ^ E' 

which is an inclusion of spectra over the inclusion Xj C Xj+\. Therefore, we can 
replace Ej+i(j) in diagram (5.42) by Ej+1. The first j + 1 maps in the bottom row of 
the diagram are now fibrations. We still need to construct Er(j + 1) for all r ^ j + 2. 
For such an r, we have the acyclic cofibration Ej+\(j) —> Ej+1, and the inclusion of 
spectra Ej+i(j) —> Er(j) over the inclusion Xj+\ C I r . Define the spectrum Er(j+l) 
over Xj+i to be the spectrification of the prespectrum E^re(j 4-1) over Xj+i, whose 
V-th space is the pushout in the category of unbased G-spaces given by 

Ej+i(J)v • Er{j)v 

(E') v >E?™(j + l)v. 

Then it is straightforward to check that we have an acyclic cofibration Er(j) —> 
Er(j + 1) of spectra over Xr. Also, there are inclusions of spectra —> Er(j + 1) 
over the inclusions Xj+\ C Xr, as well as inclusions of spectra Er(j + 1) —• i£r+i(j + l) 
over the inclusions Xr C Xr+i, which are compatible with each other. This allows us 
to replace Er(j) by Er(j + 1) in the third row of diagram (5.42) for r ^ j + 2, which 
gives the inductive step. 

Finally, we define E' = (Ĵ  Ej. Then we have maps of spectra over X 

(5.43) T£ —> E' X. 

The first map is the union over j of the acyclic cofibrations Ej(0) —•> E'j, so it is 
an acyclic cofibration. Thus, E' is cofibrant and weakly equivalent to E. Also, the 
second map of (5.43) is the union over j of the fibrations Ej —• Xj. We claim that p 
is a fibration. To see this, suppose that we have a testing diagram of the form 

S??((G/ff x Dn) IIX) > E' 

(5.44) 

^((G/H xDnxI)UX) • X 

in the category of G-spectra over X. By adjunction, this is equivalent to a diagram 
in the category of unbased G-spaces 

GIB x Dn • E' = [)AEfAv 

G/H xDn xl y X. 
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Since the union E'v is the colimit of the {Efj)y over a sequence of inclusions, and X 
is the colimit of the Xj over a sequence of inclusions, this factors to 

G/H x Dn • {Efj)v 

(5.45) 

G/H xDn xl y Xj 

for some j . The right vertical map of (5.45) is a fibration, so a dotted arrow exists 
in (5.45) making the diagram commute. Therefore, a lifting exists in (5.44) as well. • 

This concludes the proof of Theorem 4.9. 
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CHAPTER 6 

THE WIRTHMÜLLER AND ADAMS ISOMORPHISMS 

In this chapter, we will show that the Wirthmuller and Adams isomorphisms in 
equivariant homotopy theory are instances of the duality theorem 4.9. We begin with 
the Wirthmuller isomorphism. 

Let G be a compact Lie group, and H a closed subgroup of G. Let L denote the 
tangent space of G/H at eH. The group G acts on G/H by translation, inducing an 
action on the tangent bundle of G/H. The subgroup H fixes the fiber at eH, which 
is L. Hence, L is an /^-representation via the translation action. The Wirthmuller 
isomorphism [8] Theorem II.6.2 states that for an i7-spectrum E of H-ce\\ homotopy 
type, 

(6.1) GxH{EA S~L) ~ FH[G, E) 

in the category of G-spectra. To see this as an example of Theorem 4.9, consider 
the G-orbit G/H. There is a natural equivalence between the categories of based H-
spaces and based G-spaces over G/H. For a based i7-space Z, G xH Z is a G-space, 
with a natural map G x# Z —> G/H induced by the collapse map Z —> *. Likewise, 
the basepoint G/H G XH Z is induced by the basepoint of Z. Conversely, if 
G/H T ~^-> G/H is a based G-space over G/H, then the fiber p~1(eH) is an 
i/-space, with the basepoint i(eH). It is easy to check that these two functors are 
inverse to each other. Stabilizing, we get an equivalence of categories between H-
spectra indexed on a G-universe U, thought of as an i7-universe, and G-spectra over 
G/H over U. Also, this equivalence of categories takes i^-spectra of H-ce\l homotopy 
type to G-spectra of G-cell homotopy type over G/H. 

We claim that the map / : G / i / - ^ * i s a family of manifolds in the sense defined 
above. In fact, for any compact manifold M with a smooth G-action, consider the 
map of G-spaces 

f:M—>*. 
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By the G-action on M, G is contained in the family ,Fsni, so EF^ has a cell of 
the form (G x S)/G. In the G-space EFsin/S, therefore, there is a cell of the form 
G/G = *, giving a canonical map %M : * —• EFsrn/S. The following square is a 
pullback 

M >EFam xsM 

f 

* — • ETsm/S. 
IM 

Hence, / is an equivariant smooth family of manifolds, so Theorem 4.9 holds for / . 
In particular, for M = G/H, by Theorem 4.9, we have 

fa(E A CJ1) ~ f*(E) 
as G-spectra, for a G-spectrum E over G/H. It is straightforward to check that the 
composition functor 

G-spectra • G-spectra/ (G/H) if-spectra 

is just the forgetful functor, so the right adjoint F#[G, —) coincides with /*, and 
the left adjoint G xH — coincides with /JJ, via the equivalence of categories between 
if-spectra and G-spectra over G/H. Recall also that the dualizing object G/ is the 
sphere bundle of the tangent bundle of G/H, which is in this case 

GxHL^ G/H. 
Thus, by definition, CJ1 corresponds to the if-spectrum S~L by the equivalence 
of categories between if-spectra and G-spectra over G/H, and the duality theorem 
gives (6.1) exactly. One can say a map from a G-manifold M to a single point is 
the simplest kind of equivariant smooth family of manifolds, and a single orbit G/H 
is the simplest manifold in the equivariant world. In this sense, the Wirthmiiller 
isomorphism is the simplest case of the general equivariant duality theorem. 

A more interesting example is that of the Adams isomorphism. Let if be a normal 
(closed) subgroup of G, and let J = G/H. Let A be the adjoint representation, 
i.e. the tangent space of H at e, with a G-action by conjugation. Also, let U be a 
complete G-universe. Let i : UH —> U be the inclusion, and z*, i* denote the change of 
universe functors between G-spectra indexed on UH and on U. (Unfortunately, there 
is some opportunity for confusion from the similarity between the classical notation 
for the universe change functors and the base change functors. Note that for a map / 
of base spaces, /* is the right adjoint to /*, but for a linear isometry i of universes, 
the universe change functor i* is the left adjoint to i*.) 

Recall from [8], Section II.2 that a G-equivariant spectrum E is said to be H-
free, if E has a G-cell approximation E', such that the cells of E' are of the form 
Y,yG/N+ A Dn, where N D H = {e}. Hence, every G-cell approximation of E is 
of this form, and any G-spectrum that is weakly equivalent to any if-free G-cell 
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spectrum is H-free. The if-free G-spectra form a full subcategory of the category of 
G-spectra. There is no model category structure on this full subcategory of H-free 
G-spectra, since it is not closed under point-set level colimits and limits. Nevertheless, 
we can consider the full subcategory of the homotopy category of G-spectra whose 
objects are H-free G-spectra. We call this the homotopy category of H-free G-spectra, 
even though it does not come from a model category structure on the point-set level 
subcategory of H-free G-spectra. 

Recall from Theorem II.2.8 of [8] that the functor i* from the category of if-free 
G-spectra indexed on UH to the category of if-free G-spectra indexed on U induces 
an equivalence of homotopy categories. Then the Adams isomorphism is the following 
statement. 

Theorem 6.2 (Adams Isomorphism [8], Theorem 11.7.1). — If E is an H-free G-
spectrum of G-cell homotopy type indexed ontiH, then 

E/H~(i*EAS~A)H. 

in the category of J-spectra indexed on UH. 

Note that A is not contained in the if-fixed universe UH, which is one of the reasons 
that necessitate the use of change of universe functors in the statement. 

To see the Adams isomorphism in the context of duality, we need to understand if -
free G-spectra. Recall the construction of the universal if-free G-space. Let T be the 
family of subgroups of G, consisting of all subgroups N c G such that N n H = {e}. 
Then there is an universal contractible H-free G-space ET (see [8], Section II.2). 
Consider the map of G-spaces 

j : E T ^ *. 
We have a pair of Quillen adjoint functors (ji, j*) between the categories of G-spectra 
and G-spectra over ET. In particular, j% lands in H-free G-spectra, so we in fact 
have a pair of adjoint functors between H-free G-spectra and G-spectra over ET. 

The following lemma holds for spectra indexed on U and on UH. 

Lemma 6.3. — If E is an H-free G-spectrum, the counit of the adjoint pair (j$,j*) is 
a homotopy equivalence j#j*E ~ E. If E is a cofibrant G-spectrum over ET, then 
the unit of this adjunction pair E —> j*j#E is a weak equivalence. 

Proof. — For an H-free G-spectrum E, the counit of adjunction is 

c : j%j*E E. 

It is easy to see that jjj j*E ~ ET+ A E1, and the map c is obtained by collapsing ET. 
By the freeness of E, this is a natural homotopy equivalence. 

Conversely, let E be a cofibrant G-spectrum over ET. The functors j * and j# 
preserve colimits, so it suffices to consider the case where E is the suspension spectrum 
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of a single orbit G/N+ = G/N II ET, where N e T. Let p : G/N -> ET be the 

structure map, and Fp : G/N —• G/N x EJ 7 be the graph of p. Then 

j*j$(G/N I I K F ) = (G/7V x KF) n JE7J=" 

and the unit of adjunction is 

Tp II ET : G/N II ET — • (G/Af x KF) II £ F 

This is a G-map over ET. By classical equivariant homotopy theory, Tp is a homotopy 

equivalence, hence a weak equivalence in the category of G-spaces. Thus, Tp II ET is 

a weak equivalence in the category of based G-spaces over ET. • 

Thus, j * and j$ pass to inverse equivalences between the homotopy categories of 

H-free G-spectra and G-spectra over ET. This allows us to think of H-free G-spectra 

in the context suited to the duality theorem. 

Consider the map of G-spaces 

f :ET —• ET/H. 

We will show that / is an equivariant smooth family of manifolds. Given this, we 

get functors /{j, /* from G-spectra over ET to G-spectra over ET/H. Also, let 

h : ET/H *, so j = h • / : ET -> *. Also, let i : UH U be the obvious 

inclusion of universes. We have the following diagram of functors on the point-set 

level categories. 

H-îiee G-spectra on UH 

if-free G-spectra on U - - > G-spectra/ET on U 

f :ET —• ET/H. 

(6.4) 

fx 

G-spectm/(ET/H) on U 

(*) H 

J-spectm/(ET/H) on UH 

h1 

J-spectra on U . 

We claim that the compositions from if-free G-spectra on UH to J-spectra on UH, 

using the two functors f%(— AEFCJ1) and /*, agree up to weak equivalences with the 

functors that occur in the classical statement of the Adams isomorphism. 
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Proposition 6.5. — Let E be an H-free G-spectrum of cell homotopy type indexed on 
UH. Then 

(1) The composition h$(f$(j*i*E AEP Cj1))11 is naturally weakly equivalent to 
(i*E A S~A)H in the category of J-spectra indexed on UH. 

(2) The composition h$(f*j*i*E)H is naturally weakly equivalent to E/H in the 
category of J-spectra indexed on UH. 

First, we have the following lemmas. 

Lemma 6.6. — Let i : UH —• U be the inclusion map. Then for a homotopy cell 
bundle spectrum E over ET', the unit of the adjunction u : E —>i*i*E is a spacewise 
homotopy equivalence. 

Proof. — Similarly as in the case for H-free G-spectra over a point. Let 1(UH,U) 
be the space of linear isometries from UH to U, with a G-action by conjugation. In 
particular, if A is a G-space over ET, and we have a G-map a : A —> I(UH,U), then 
we have from Chapter 2 the twisted half-smash product 

A xa — : G-spectra over ET on UH —• G-spectra over ET on U. 

In particular, define 

a0:ET—>1(UHM) 
which takes x to (x, i) for every x £ ET. Then for a G-spectrum E over ET indexed 
on UH, ET xao E = (ao)*E = i*E. Also, for a G-spectrum E' over ET indexed 
on U, Fao[ET,E1) = (a0)*E' ̂  i*Ef. 

We claim there exists a G-map 

ax : ET —• 1(UH ,U) 

such that for every x G ET, a\(x) : UH —> U is a isomorphism. Also, ao and OL\ are 
path connected to each other as i^-points in the G-space Z(UH ,U). Namely, there 
is a G-map 

a:ETxI—>1(UH,U) 
such that a • io = ao, and a • i\ = a\. This is done by the acyclic models argument 
over the cells of ET. Recall the cells of ET are of the form G/N x Dn, where Af is 
a subgroup of G, and H fi N = {e}. Also, for such an AT, the universes UH and U 
are A/"-equivariantly isomorphic. There is a path / —> T{UH,U) connecting this N-
equivariant isomorphism and the inclusion i : UH —> U, which is an A -̂equivariant 
linear isometry for every t € I. Since the action of N on T(UH,U) is by conjugation, 
a linear isometry from UH to U is AT-equivariant if and only if it is in T{UH\U)N. 
Thus, we have a path / —> 1(UHM)N> -̂e- an AT-equivariant path / —> 1(UH,W), 
where / is thought of as having the trivial AT-action. Applying the functor G/N x — 
then gives a G-map 

G/N xl—>1(UHM) 
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which at time 0 is i over every point of G/N, and at time 1 is an isomorphism over 
each point of G/N. Let ET(n) denote the n-th skeleton of ET. Let j0, ji • * —• I 
be the inclusions of the point at 0 and 1. Suppose that we have compatible maps 
a(n) : ET(n) x I -> ET^n) x X(UH,U), such that a(n) • j0 = a0|js^(n), and a(n) • ji is 
an isomorphism over each point of ET^n). Suppose G/N x Dn+1 is a cell of E1̂ 7 of 
dimension n + 1, with an attaching map G/iV x Sn —> ET^ny Then there is a map 

<*(n)lG/* xs* : / — GN x Sn) x I (UH, U) 

such that OL^\o/NxSn ' jo — ao> and â n̂ G/A/xs™ * ji is an isomorphism over every 
point of G/N x Sn. By acyclic models, one can extend this map to 

(G/N x £>n+1) x I —+ 1(UH,U) 

with the same properties at times 0 and 1. This gives the homotopy between ao and 
a map which is an isomorphism in each fiber, over ET(n) with the cell G/N x Dn+1 
attached. Thus, induction over the skeleta of ET gives a and a\. 

The map jo : ET —> EJ7 x 7 is a homotopy equivalence over ET. Then by 
arguments similar to Theorem 7.4 in Appendix A of [4], for a homotopy cell bundle 
spectrum E over ET on UH, there is an induced homotopy equivalence 

uE = ET Kao E —> (ET x I) \xa E. 

The functor z* preserves homotopy equivalences of spectra. Also, there is a spacewise 
homotopy equivalence 

Fao[ET, (ET x I) \xa E) —• Fa[ET x J, (ET x I) k £) . 

Hence, we have a spacewise homotopy equivalence 

A) : i*UE i*((ET x / ) xa E) = Fao[ET, (ET x / ) *a E) 

—> Fa[ET x I, (ET x J) txa E). 

Similarly, there is a spacewise homotopy equivalence 

/?i : Fai [E^7, xai £•) —> Fa[ET x J, (ET x 7) txai £ ) . 

We have the diagram 

E -i*i*E 

0o 

Fai \ET, ET KQI E) > FJET x J, (ET x 7) xa E) 

where the w's denotes the units of adjunction. However, since a\ is an isomorphism 
over each point of ET, the unit of adjunction 

u : E —> Fai [ET, ET x axE) 

is an isomorphism. The maps /?o and f3\ are spacewise homotopy equivalences. Hence, 
u : E —> i*i*E is & spacewise homotopy equivalence. 

ASTÉRISQUE 285 



CHAPTER 6. THE WIRTHMÜLLER AND ADAMS ISOMORPHISMS 85 

Lemma 6.7. — Let H be a normal subgroup of G, and J = G/H. The fixed point 
functors (—)H from G-spectra indexed on U and from G-spectra indexed on UH to 
J-spectra indexed on UH preserve weak equivalences. 

Proof. — Let e : E —• E' be a map of G-spectra indexed on U. Then e is a weak 
equivalence of spectra if and only if for every finite-dimensional V C Uy ey : Ey —> Ey 
is a weak equivalence of G-spaces. Thus, the change of universes functor z* preserves 
weak equivalences of spectra, and it suffices to show that the fixed point functor from 
G-spaces to J-spaces preserves weak equivalences. Let e : T —• Z be now a weak 
equivalence of G-spaces. Then for every subgroup N of G, eN : TN —» ZN is a 
nonequivariant weak equivalence. Let N' be a subgroup of J, then N' = N/H for a 
subgroup N of G containing H. The action of J on TH and ZH is induced by the 
action of G on T and Z, so ( T * = TN and (ZH )N' = ZN. Therefore, e induces 
a nonequivariant weak equivalence (TH)N —> (ZH)N for every subgroup iV7 of J, so 
e# . _^ ̂ / f a weak equivalence of J-spaces. • 

Lemma 6.8. — The diagram of functors 

PL-free G-spectra on UH > G-spectra over ET on UH 

i* z* 
H-free G-spectra on U :—> G-spectra over ET on U 

commutes up to natural isomorphism. 

Proof. — Let E be a if-free G-spectrum indexed on UH. Then i*E is obtained by 
spectrifying the prespectrum i%veE on U, whose V-th space is Ylv~(Vnu ^EVNUH for 
each finite-dimensional V in U. The right adjoint of jf* is j * , which commutes with 
the forgetful functor from spectra on U to prespectra on U. So j * commutes with the 
specification functor L. Hence, it suffices to show that on the level of prespectra 
over ET indexed on U, 

3*VFE 9* irfE. 
The V-th space of the left hand side is 

3*VFE 9* irfE.3*VFE 9* irfE. 

and the V-th space of the right hand side is 

ET 
-(vnuH) (ET x EV_(VNUH}). 

These two are naturally isomorphic as G-spaces over ET. 

We also have the following observation, whose proof we defer. 
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Lemma 6.9. — For maps f : ET —» ET/H and j : ET —> *, we have that the 
dualizing object Cf of f is isomorphic to j*(SA) as G-spaces, where A is the adjoint 
representation. 

We now prove Proposition 6.5, which identifies the compositions of (6.4) with the 
two sides of the Adams isomorphism. 

Proof of Proposition 6.5. — For the first statement, consider the composition of 
functors from H-free G-spectra indexed on U to J-spectra indexed on UH using 
/jt(— ^ET Cj1). Let Z be a based G-space over ET/H. Since ET/H is fixed as an 
if-space, taking the fixed point functor preserves the pushout square 

ET/H -+Z 

>Z/(ET/H). 

So (ZH)/(ET/H) ^ (Z/(ET/H))H. On the level of spectra, consider the diagram 
of functors 

G-spectra/ (ET/H) on U > G-spectra on U 

(6.10) G-spectra/ (ET/H) on UH —G-spec t ra on UH 

( - ) я (~)H 

J-spectm/(ET/H) on UH ——> J-spectra on UH. 

The functor /ijj on spectra is obtained by first applying h% spacewise, which gives 
inclusion prespectra, then applying the spectrification functor. The functors (—)H and 
Vtv commute if V is a finite-dimensional H-fixed G-representation, so (—)H on spectra 
indexed on UH commutes with the spectrification functor from inclusion prespectra 
indexed on UH to spectra indexed on UH. Hence, the bottom square of the diagram 
commutes in the point set category up to canonical isomorphism. 

We make the following claim. 

Proposition 6.11. — The top square of diagram (6.10) commutes up to natural weak 
equivalences if applied to f$(j*i*EAEfCj1), where E is a cofibrant H-free G-spectrum 
indexed on UH. Namely, there is a natural weak equivalence of G-spectra indexed 
on UH 

(6.12) hti*(ft{j*UE AET CJ1)) ~ i*ht(h(j*i*E AET CJ1)). 
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We will defer the proof of Proposition 6.11. By Lemma 6.7, (—)H preserves weak 
equivalences. So given (6.12), the entire diagram (6.10) commutes up to natural weak 
equivalence, in the sense that 

h(i*(Mfi*E AE? C - rl)))H = (hi*(MfuE AEf CJ1)))" 
^VhiMfuEAErCj1)))*1 

naturally for a if-free G-spectrum E of G-cell homotopy type indexed on UH. 
Thus, the composition of functors 

3 
H-îree G-spectra on U > G-spectra,/ ET on U 

(6.13) 

M-AET G71) 
— - > G-spectra/ (ET/H) on U 
(-)H 

—• J-spectra/(ET/H) on UH 
h* TT 

> J-spectra on U 

is weakly equivalent to (h$f$(j*(—) NET Cjl))H. 
Since the functor j * commutes with smash products, for a cofibrant if-free G-

spectrum E onUH, j*(i*E) AETGJ 1 is weakly equivalent to j*(i*EAS~A) in the cate­
gory of G-spectra over ET indexed on U. Since E is cofibrant, both j*(i*E) NET Cj1 
and j*(i*E A S~A) are cofibrant, the former by the discussion after Lemma 4.19. 
The functor /ijj/j} preserves weak equivalences between cofibrant objects, and (—)H 
preserves weak equivalences by Lemma 6.7. So by Lemma 6.9, the composition of 
functors (6.13), applied to i*E, is weakly equivalent to (h#f#j*(i*E A S~A))H = 
(j$j*(i*E A S~A))H. But we also have that j$j*(i*E A S~A) is weakly equivalent 
to i*E A S~A1 and again, (—)H preserves this weak equivalence. Thus, for a cofi­
brant if-free G-spectrum E indexed on UH, the composition (6.13), applied to i*E, 
is naturally weakly equivalent to (i*E A S~A)H. 

For the second part of the Proposition 6.5, we need to consider the composition 

(6.14) 

H-îree G-spectra on U • G-spectra/E T on U 

G-spectra/(ET/H) on U 

(-)H 
———> J-spectra/(ET/H) on UH 

ПЦ ff 
• J-spectra on U . 

We have the following lemma. 

Lemma 6.15. — For a G-spectrum E over ET indexed on UH, 

(ME)f = (ME))/H 

naturally. 
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Proof. — It suffices to prove the lemma on the level of G-spaces. Since the functor 
(—)/if is a left adjoint, for a G-space T over ET, it takes the pushout diagram 

ET >T 

ET IH >ft(T) 

to the pushout diagram 

ET Iif • T/H 

ET IH >MT)/H. 

So (fi(T)/H = T/H. Let p : T —• ET be the structure map of T. Recall that 
set-theoretically, / . (T) = Uy Sec(ETy,Ty) over the points y G ET/H, and (f*(T))H 
consists of the if-equivariant sections. Since ET/H is fixed by if, each ff-orbit of T 
is contained in Ty for a single y G ET/H. Thus, it suffices to consider a single point 
of ET/H, and compare Sec(ETy,Ty) and Ty/H. Choose x G then ETy = Hx 
is homeomorphic to H as an if-space, so the image of x in a section determines the 
entire section. If k : ETy —» Ty is a section of p, then the image of k is an if-orbit 
in Ty. But for every if-or bit O in Ty, there is an unique z G fl O, which 

determines a section ETy = Hx —• O Ç Ty that takes # to z. Therefore, we have 
that (/.T)H ^ T/ff ^ (MT))/H. 

Thus, the statement of the lemma holds for the prespectra-level functors. Applying 
the spectrification functor L to both sides gives the lemma for spectra. • 

For an if-free G-spectrum E indexed on U of G-cell homotopy type, we need to 
apply the composition (6.14), to i*(E). This is h$(f*j*(i*E))H. In taking the if-fixed 
points of a spectrum indexed on U, we first forget to the universe UH, i.e. apply z*, 
then take if-fixed points spacewise. Hence, the composition (6.14) for i*(E) is really 
h$(i* f*j*i*E)H, where (—)H is taken spacewise, since the spectrum i*/*j*i*£ is now 
indexed on UH. Now it is easy to check that i* and /* commute, since /* on spec­
tra is obtained by applying the space-level /* on each space of the spectrum. Also, 
j * commutes with i* by Lemma 6.8. Hence, this is h$(f*i*i*(j*E))H. Now j*E is 
spacewise homotopy equivalent to i*i*(j*E) by Lemma 6.6, and the fact that j*E is 
trivially a homotopy cell bundle spectrum over ET, since E is of G-cell homotopy 
type. The functor (f*(—))H on spectra is obtained by applying (/*(—))H = (f$(—))/H 
spacewise. Since (f$(—))/H preserves homotopies, the spectra-level functor (/*(—))H 
preserves spacewise homotopy equivalences. Also, ftjj takes a spacewise homotopy 
equivalence to a weak equivalence of spectra. This is because applying h% spacewise 
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takes a spacewise homotopy equivalence of spectra to a spacewise homotopy equiva­
lence of inclusion prespectra, and the spectrification functor from inclusion prespec­
tra to prespectra takes a spacewise homotopy equivalence to a weak equivalence. 
Hence, (6.14) is naturally weakly equivalent in the category of J-spectra on UH to 
h$(f*j*E)H, which is h#(f$j*(E)/H) by Lemma 6.15. But the functors /ijj and (—)/H 
commute since their right adjoints commute, so (6.14) of i*E is weakly equivalent to 
(h$ftJ*(E))/H = (J0*(E))/H. We have a weak equivalence E -> j$j*E. Since ET 
is a cell complex, the functor j * preserves cofibrant objects, so both E and j$j*E 
are cofibrant. Also, (—)/H preserves weak equivalences of cofibrant spectra. Thus, 
for an H-free G-spectrum E indexed on UH, (6.14) is naturally weakly equivalent to 
E/H. • 

Now we prove Proposition 6.11. We will begin with the following lemma. 

Lemma 6.16. — IfE is a homotopy cell bundle spectrum over ET /H indexed onUH, 
then for any finite-dimensional G-representation V, 

h«(nvRT/HE)~nvh«E 

naturally as G-spectra indexed on UH. 

Proof. — Consider a cell C = G/NH x Dn of ET/H, where AT is a subgroup of G 
such that N fl H = {e}. Let Ec be the fiber of E over C, so Ec is a G-spectrum 
over C indexed on UH. Since E is a homotopy cell bundle spectrum over ET/H, by 
subdividing the cells of ET/H, we can assume that over each cell C — G/NH x Dn 
of ET/H, the fiber Ec is G xNH (Efc x Dn) as a G-spectrum indexed in UH over C. 
Here, E'c is an A îJ-spectrum indexed on UH. Also, we can assume that E'c is of the 
homotopy type of an NH-cell spectrum. 

Now for a based if-space X, consider the based G-space G x { X x Dn) over 
G/NHx Dn, whose structure map p : GxNH(X xDn) -> G/NHx Dn is induced from 
collapsing X to a point, and whose basepoint map i : G/NH xDn —• G x NH (X x Dn) 
is induced from the basepoint of X. Then 

G+ ANH (X A Dl) * G+ ANH ((X x Dn)/(* x Dn)) 

^ (G xNH {X x Dn))/(G/NH x Dn) 

which is naturally isomorphic to (ft|c)jj(G XNH (X x Dn)). Passing to spectra, we 
get that similarly 

(h\cUEc)^Gx NH (E'c ADD 

naturally as G-spectra indexed on U. Again, E'c A D+ is also of the homotopy type 
of an NH-ce\\ spectrum. Let L be the tangent space of G/NH at eNH, with a 
ATii-action by translation. Note that since H is normal in G, the G-action on G/NH 
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by translation, when restricted to if, is trivial. So L is in fact an if-fixed NH-
representation. Thus, S~L exists as a G-spectrum indexed on UH, and the Wirth-
mtiller isomorphism holds for G-spectra indexed in UH. In particular, 

GKNH [E'C A Dl) ^ FNH[G, E'c A D$). 

However, the functor FNH[G, —) commutes with QV for any finite-dimensional G-
representation V. Thus, G k NH — commutes with QV up to weak equivalence. Let 
Qc denote the V-th loop functor for G-spectra over C indexed on UH. Then 

(h\c)t№Ec) = (h\c)tn%(G xNH (E'c x DN)) 

^(h\c)s(GxNH (nVE'cxDn)) 

^GKNH (QVE'C ADD 

^ V ( G K r a (E'c ADD) 

^Slv((h\c)»Ec). 

Now h$(E) is obtained by gluing together (/i|c)tj(^c)'s using cofiber sequences and 
directed colimits in the category of G-spectra indexed on UH. These constructions are 
instances of homotopy colimits, which also commute with Qv on the derived category 
in the sense above. Hence, h% commutes with £lv up to natural weak equivalences of 
G-spectra indexed on UH, i.e. for a homotopy cell bundle spectrum E over ETjB. 
indexed on UH with fibers E'c of cell homotopy type, 

h№Ejr/HE ~ h o c o l i m c ^ l c ^ c ^ c 
~ h o c o l i m c ^ ^ l c ^ ^ c 
~ Qvhoco\imc{he)#Ec 
~ nvh^E. • 

Proof of Proposition 6.11. — We define the following category, called the category of 
(U, UH )-presystems. 

Definition 6.17. — An (U,UH)-presystem is a collection {E(V)} of G-spectra indexed 
on UH, where the Vs range over all finite-dimensional representations V of U, such 
that V f)UH = {0}. We require structure maps 

(6.18) E(V) —> Qw-yE(W) 

whenever V C W, WC\UH = {0} . The structure maps satisfy the obvious composition 
relations. Morphisms of (U,UH)-pvesystems are collections of maps {E(V) —» Ef(V)}, 
where each E(V) —> E'(V) is a map of G-spectra indexed on UH, and the maps 
commute with the structure maps. Also, define the category of (ZY,̂ jF/)-systems to be 
the full subcategory of (U, WH)-presystems, with objects all {E(V)Ys whose structure 
maps are all isomorphisms. 
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In fact, this category of (ZY,ZY )̂-systems is naturally equivalent to the category of 
G-spectra indexed on U. Namely, suppose E is a G-spectrum indexed on U. Let V 
be a finite-dimensional G-representation contained in U, then we define E(V) by 

E(V)z = Ey®z 

for any finite-dimensional G-representation Z contained in UH. The structure maps 
of E{V) are those of E. It is easy to check that we get maps (6.17), which are iso­
morphisms of G-spectra indexed on UH, so we get a (U, UH)-system {E(V)} from E. 
Conversely, given a (U,UH)-system {E(V)}, define a G-spectrum E indexed on U by 

Ew = E(W-(WnUH))WNUH. 

It is straightforward to check that this gives inverse equivalences of categories between 
(U, ZYH)-systems and G-spectra indexed on U. On the level of prespectra, although the 
categories of G-prespectra indexed on U and (ZY,Z//H)-presystems are not equivalent, 
a (ZY,ZY//)-presystem gives a G-prespectrum indexed on U. 

Likewise, for any G-space X, we can define the categories of (U,UH)-presystems 
and systems over X, whose objects are collections {E(V)} for all finite-dimensional 
V C U, where each E(V) is now a G-spectrum over X indexed on liH. Then a 
similar equivalence of categories holds for G-spectra over X indexed on U and (U, UH )-
systems over X. In the following, we will use the categories of G-spectra over X 
indexed on U and (U,UH)-sy stems over X interchangeably. 

In our case, the input spectrum is f$(j*i*E AEF C/1)? where E is an if-free G-
spectrum of cell homotopy type indexed on UH. By Lemma 6.9, for any choice of 
universe change a : ET —> X(ZY2,ZY), we get a homotopy equivalence 

ftU'ÙE AER KuA)MfùE A 

So we have 

MfùE AEF CJ1) ~ ftU'ÙE AER K u A ) ef 

~ hi*(LEAS~A) 

~ hi*(LEAS~A) 

~ hi*(LEAS~A) 

*ftrh*(i.EAS-A) 

SI (ET II ET/H) AET/H (h*(uE A S~A)). 

All the maps of this composition are isomorphisms or homotopy equivalences. The 
map / : ET —> ET IE is a G-equivariant bundle with fiber H, and h*(i*E A S~A) is 
trivially a homotopy cell bundle spectrum over ET/H, with fiber i*E A S~A, which 
is a G-spectrum of cell homotopy type. Therefore, f$(j*i*E AEF CJ1) is a homotopy 
cell bundle spectrum over ET/H. 
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We will denote fo(j*i*E AET Cj1) by E' for short. Write E' as a (U,UH)-system 
{E'(V)} over ET/H. Suppose we can replace E by a (U,UH)-presystem {S/pre(V)} 
over ET JE., such that 

(1) There is a natural spacewise homotopy equivalence Efpre —* ¿2 of G-prespectra 
over ET j H indexed on U; 

(2) each Efpre(V) is a homotopy cell bundle spectrum over ET/H indexed on UH; 
(3) for all V Ç W, W nUH = {0}, the adjoint structure map of the (U,UH)-

presystem over ET/H 

s ^ F p ^ v ) — • wpre(W) 

is a cofibration of G-spectra over EJ-/H indexed on UH. 

Then for all V C W, such that W C\UH = {0}, the diagram of G-spectra over 
ET IE indexed on UH 

E'vie{V) E(V) 

tÇLZ^E'rJW) №=YHE(W) 

has spacewise homotopy equivalences for the horizontal maps, so its left vertical map 
is also a spacewise homotopy equivalence. Therefore, by Lemma 6.16, 

(6.19) h»E'rJV) ^ htÇLZ^E'rJW) ~ Qw-vh*E'nr«(W). 

Since h$(E'pTe(V)) and h$(E'pre(W)) have the homotopy types of G-cell spectra, and 
by Remark 1.6.4 of [8], Qw~v preserves cell homotopy types, (6.19) is in fact a 
homotopy equivalence. 

Now there is a stabilization functor L(U,UH) from (W, W^-presystems to (U,UH)-
systems. It is the left adjoint to the forgetful functor from (W, )-systems to (W, UH)-
presystems, and is similar to the specification functor. If {D(W)} is a (U,UH)-
presystem, whose structure maps are spacewise inclusions, then 

(L{U,UH){D(W)}){V) = CO\IMVÇWTTW~VD(W). 

Here, the colimit is taken over all finite-dimensional representations W C U contain­
ing V, and W ilUH = {0}. If we think of a (U, UH)-presystem as a G-prespectrum 
indexed on U, and a (W, UH )-system as a G-spectrum indexed on U, then UH) co­
incides with the specification functor from G-prespectra indexed on U to G-spectra 
indexed on U. In particular, let E7 = L{UMH){EJ{V)}' Then by Condition 2 for 
{E'(V)} and arguments similar to that of 1.8.10 of [8], there is a natural homotopy 
equivalence of G-spectra over ET/H indexed on UH 

E'Vre{V) E'{V) 
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for every finite-dimensional G-representation V with V f)UH = {0}. Hence, we also 
have a natural homotopy equivalence of G-spectra indexed on UH 

(6.20) htm (E'V))-^ht(E>pre(V)). 

Note that both {h^(W(V))}v and {h^(ErpTe{V))}v form (U,UH)-presystems. 
Thinking of E' = {Ef(V)}y as a G-spectrum over EF/H indexed on U, we have 

hi(W) = L(U,UH){hiW(V)}. 

Since specification takes spacewise homotopy equivalences to weak equivalences, 
by (6.20), this is naturally weakly equivalent to L(U,UH){h$E''pTe(V)}. Since h$ of 
spectra preserves cofibrations, the adjoint structure maps 

Ew-%(£Ve (F)) —> h^W^iW)) 

are cofibrations of G-spectra indexed on UH. By this and (6.19), using arguments 
similar to Lemma 1.8.10 of [8], we get that 

fy(£V(V)) — {L{U,UH){hEiwe{W)}w){V) 

is a natural homotopy equivalence for every finite-dimensional V such that 
Vf)UH = {0}. _ 

For every V with V f\UH = {0}, E'pTe(V) —> E'(V) is a spacewise homotopy 
equivalence. Thus, E'(V) is also spacewise homotopy equivalent to E'(V). Also, 
/ij preserves homotopy equivalences of spaces, and the spectrification functor takes 
spacewise homotopy equivalences to weak equivalences. Therefore, we get 

i*h$(E) ^ i* (h1(E') ~ **L(l/,Wif){Fpre(V)} 

= L{U,UH){Wpte(V)}(Q) 

~/i,(^pre(0)) 

- tyW)) 

= ht?(E). 

This is the statement of Proposition 6.11. 
It remains to construct the replacement {E'pre(V)} of E' = f#(j*i*E AEF CJ1)-

For this, we use the cylinder construction [8], Section 1.6. Suppose we have a G-
spectrum E of G-cell homotopy type indexed on U, recall from [8] that each space 
of E is of cell homotopy type. The cylinder construction KE is the prespectrum on U 
given by 

KEy = hocolim w c v^V~W Ew • 
The U-prespectrum KE is E-cofibrant, and there is a natural spacewise homotopy 
equivalence of G-prespectra indexed on U 

KE^ E. 

Let LUH be the spectrification from G-prespectra indexed on UH to G-spectra indexed 
on UH. For each finite-dimensional V contained in U, such that V HUH = {0}, 
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{KEy®z}zcuH is a S-cofibrant G-prespectrum indexed on UH, which is spacewise 
homotopy equivalent to E(V). By Proposition 1.8.13 of [8], we get natural spacewise 
homotopy equivalences of G-spectra indexed on UH 

LUH{KEV(BZ}-^ E(V). 

Define EpTe(V) — LUH{KEV®Z}- Then each EPRE(V) is of cell homotopy type. 
Further, we have structure maps 

T,w'vEpre(V) —>Epre(W) 

whenever V CW, WnaUH = {0}. These are cofibrations of G-spectra indexed onUH, 
since they are specifications of spacewise cofibrations of prespectra. 

Now we have 

E' = fttfuE NETIH CJ1) ~ (ET II ET/H) AET,H (h*(i*E A S~A)) 

over ET/H, where E is our if-free G-spectrum of G-cell homotopy type indexed 
on UH. Thus, i*Ef\S~A is a G-spectrum of cell homotopy type indexed on U. Apply­
ing the above discussion to i*E f\S~A, we get a G-prespectrum K(i*E AS~A), which 
is spacewise homotopy equivalent to i*E A S~A. Also, each space of K(i*E A S~A) 
has the homotopy type of a G-cell complex, and each adjoint prespectrum structure 
map is a cofibration of G-spaces. For a fixed finite-dimensional G-representation V 
such that V nUH = {0}, consider the G-prespectrum over E!F/H indexed on UH, 
whose Z-th space is 

(ETUET/H) \ETjH h*K(uE A S~A)v®z 

for each finite-dimensional G-representation Z contained in UH. Since h* and 
(ETJIET/H) AEJ?/H — both preserve homotopy equivalences, this prespectrum is 
spacewise homotopy equivalent to Ef{V). Let LUH denote the specification functor 
from G-prespectra over ET'/H indexed on UH to G-spectra over EF/H indexed 
on UH. We define EFPRE(V) to be LUH of this G-prespectrum over ETjH indexed 
on UH. Then (EJPRE(V)} form a (U,UH)-presystem over ET/H. 

The G-space ET/H is a G-cell complex, so h* preserves cofibrations. Also, as we 
will see in detail later, the map ET —• ET/H is a smooth family with fiber iJ, so it 
is also a homotopy cell bundle. Hence, by Lemma 4.19, the functor 

(ET U ET/H) AET/H-

also preserves cofibrations of G-spaces over ET/H. So for all V C W in U, with 
W (1UH = {0}, the structure map 

Y%-JH(ETUET/H) AET/H h*K(i*E A S-A)v®z 

—» (ET U ET/H) AET/H h*K(UEAS-A)w®z 
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is a cofibration for any Z C UH. Applying the functor LWH , we get that the structure 
maps 

E ™-YHE>PRE(V) —> E'PVE(W) 

are cofibrations of G-spectra over ET'/if indexed on UH. Also, since the functor LUH 
commutes with smashing with a space and also with ft*, each Efpre(V) is in fact 

(6.21) (ET U ET IB) AET/H h*LUHK((i*E A S~A)(V)). 

But LUHK((I*E A S~A)(V)) is a G-spectrum of cell homotopy type indexed on UH, 
so (6.21) is a homotopy cell bundle spectrum over ET/B. Finally, 

K((nE A S~A){V)) LUHK{(UE A S~A)(V)) 

is a spacewise homotopy equivalence, so E'(V) is spacewise homotopy equivalent to 
the G-prespectrum (JET II ET/B) AEJ,/H K((i*E A S~A)(V)) over ET/B, which 
is in turn spacewise homotopy equivalent to E'(V). This gives that the replacement 
{Efpre(V)}v of E' satisfies the necessary conditions. This concludes the proof of 
Proposition 6.11. • 

To show that Theorem 4.9 holds for / : ET —• ET/B, we need to show that / is 
an equivariant smooth family of manifolds. We recall briefly the way to think of the 
Adams isomorphism from [8] Section II.7. Let V = B x G, where G acts on B by 
conjugation. So there is the short exact sequence of groups 

1—> B—>T—>G— 

In particular, B = T/G as a T-space. Let 9 : T —> G be the map which takes (ft, g) to 
hg G G. Then 6*ET is ET as a T-space, whose T-action comes from the surjection 6. 
The map / : ET —> ET/B is a fiber bundle with fiber B = T/G, when we think of 
it as 

ET ^ 0*ET xH T/G —• 6*ET xH * ̂  ET/B. 
The fiber of / is the manifold B = T/G, and S = DifE(B) in the language of equivari­
ant smooth families. In particular, there is an embedding i : B —> S since B acts on 
itself smoothly by translation. There is also a map j : G —> S since G acts smoothly 
on B by conjugation. So we can define an embedding of groups 

L:r—^GxS 

where g G G C T maps to (g,j(g)), and h G B C T maps to (e,i(h)). Let AT be a 
subgroup of G such that N D B = ie}. Define the subgroup B 0 N C T by 

BQN = {(ft,/rxn) e r I ft E if, n G N}. 

To see that if 0 N is a subgroup of T, write T = {{h,g) \ h G if, # G G}, with the 
multiplication 

(/11,01X^2,02) = (hi(gih2g1 \9192). 
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Then for (hi, h, 1ni) and (h2, ho 1ri2) in H 0 N, 

(hi, h-, ni)(h2,h0 n2) = (hi(h, nih2n, hi), (h-, ni)(h0 n2)) 

— (nih2n, hi,h^ riiho1^) 

= (mh2n1 hi,(hx nih2 nx )(nin2)) 

= \nih2nx hi^nifon-t hi) {nin2)). 

Since H is normal in G, nih2n{xhi is contained in H. Then t(H © TV) is a subgroup 
of G x S that acts smoothly on T/G, and ¿(77 Q N) (IS = {e}. Thus, ¿(77 0 TV) is 
in Tsm. So ¿(77 0 —) gives a functor from the category T to Tsm. Note that as a 
T-space, 

9*(G/N)=T/(HG)N). 

So the cells of ET/H = (6*ET)/H are of the form 

(T/(H 0 N))/H ^ G/(H • N), 

Here H • N is the smallest subgroup of G that contains both H and N. Since i7 is 
normal, this is just the set-theoretical cartesian product of H and N in G. On the 
other hand, the corresponding cell of ET*m/S is of the form 

((G x S/i(H 0 N))/S * G/(H • TV). 

The map i induces a natural isomorphism between the two. Taking colimit of the 
cells of ET/H, we have a map 

I : ET/H —• ETsm/S. 

Over each cell T/(HQN)/H in ET/H, the fiber in ET = 0*ET xHT/G is 

T/(H®N) xHT/G. 

On the other hand, over the corresponding cell ((G x S)/t(H 0 N))/S in ETsm/S, 
the fiber in K m xs T/G is 

(G x S)/i(H 0 /V) x5 T/G ^ G Xtf-AT T/G. 

Again, t induces a natural isomorphism between these two. So we also have a map 

r : ET = 6*ET xH T/G —> ETsm xs T/G 

and the diagram 

ET ——+ ET*™ x c T/G 

ET /E -—• ETsm/S 

commutes and is a pullback square, since the fibers on the left and right hands are 
the same. Hence, / : ET —• ET/H is a family of manifolds in our sense. 

It remains to Drove Lemma 6.9. 
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Proof of Lemma 6.9. — The dualizing object G/ is the sphere bundle of the tangent 
bundle of ET in the category over ET'/H. By [8], Section II.7 the tangent bundle of 
T/G is just T/G x A, where A is the adjoint representation. So the tangent bundle 
of ET is 

0*ET xH (T/G xA) —> 6*ET xH T/G 9* ET. 

The total space of the bundle is (6*ETx (T/G x A))/H, where T/G x A is a T-space via 
the action of T on the first coordinate. So as a G-space over ET, 6*ET xH(T/GxA) 
is isomorphic to (6*ET x T/G)/H x A = ET x A, i.e. the tangent bundle of ET is 
trivial. Thus, its sphere bundle is ET x SA = j*(SA). • 

Thus, we have that the conditions for Theorem 4.9 are satisfied by 

/ : ET —• ET/H. 

The two compositions of (6.4) coincide up to weak equivalences with the two sides of 
the Adams isomorphism. So for an H-fvee G-spectrum E of G-cell homotopy type in­
dexed on UH, Theorem 4.9 gives a weak equivalence between f$(j*i*E A E T CJ*) 
and f*(j*i*E). It remains to show that this gives a weak equivalence between 
h(h(fuE AEr CJ1))11 and h$(f*(j*i*E))H. By Lemma 6.7, the functor ( - )H 
preserves weak equivalences, but the functor h# does not preserve weak equivalences 
in general. To get around this, we will show the following. 

Proposition 6.22. — For an H-free G-spectrum E of G-cell homotopy type indexed on 
UH, the spectra (f$(j*i*EAEFCj1))H and (f*(j*i*E))H are each spacewise homotopy 
equivalent to a cell spectrum in the category of J-spectra over ET/H indexed on UH. 

Proof. — We first consider the case of (MJ*i*E A E T CJ1))11. Recall Theorem 1.1.1 
of [8], which states that if T is a compact G-space, and Z is a G-space with the 
homotopy type of a G-cell complex, then F(T, Z) also has the homotopy type of 
a G-cell complex. In particular, for every finite-dimensional V in U, QvZ has the 
homotopy type of a G-cell complex. We have a version of this statement for fibrant 
G-spaces over X. Suppose X is a G-cell complex, and Z is a G-space over X which 
is a homotopy cell bundle over X. Then 

ft^Z = Homx(Sv xX,Z) = Uxex Hom(5y, Zx) 

as sets. We can give a cell structure to X such that over each cell, the fibers Zx are 
constant. Let G/N x Dn be such a cell. Then over G/N x Dn, we have that 

(ttxh/NxD* = UxeG/NxDnEom(Sv,Zx) = (G/N x Dn) x mm(Sv,Zx) 

for any x e G/N x Dn. The fiber Zx has the homotopy type of a G-cell complex, 
thus, so does Hom(5y, Zx) and (G/N x Dn) x Hom(5y, Zx). By gluing over the cells 
of X, we then get that Q^Z is of G-cell homotopy type if Z is fibrant and of G-cell 
homotopy type over X. 
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Now the spectrum f$(j*i*E ЛЕТ Cj1) is a homotopy cell bundle spectrum over 
ET/Н. Thus, by applying the arguments of Proposition 1.8.14 of [8] to the fibers 
of the homotopy cell bundle spectrum, each space of f$(j*i*E ЛЕТ С JГ) has the 
homotopy type of a homotopy cell bundle over ET/H. Hence, so does each space 
of i*f$(j*i*E ЛЕТ С"J1). Now recall the cylinder construction KD for a spectrum 
D (see [8] Section 1.6 and [4], Section X.5). By an analogous argument, one also 
has the cylinder construction K(—) in the category of spectra over ET/H. We ap­
ply it to i*f$(j*i*E ЛЕТ Cj1). By arguments similar to Proposition X.5.3 of [4], 
K(i*fa(J*i*E ^ET Cj1)) has the homotopy type of a relative G-cell spectrum over 
ET/H. Also, for any spectrum D over ET/H, there is a weak equivalence of spec­
tra r : KD —> D. Thus, for each finite-dimensional V in the universe, ту is a 
weak equivalence of G-spaces. In our case, for each finite-dimensional V in UH, 
{K(i* f$(j*i*EЛЕТ Суг)))у and (г* f$(j*i*EЛЕТ Cjl))y both have homotopy types 
of relative cell complexes over ET/H, so the weak equivalence 

tv : {K(i*h{j*uE/\ETC]l)))v —> ^MfnEAErCJ1)^ 
is a homotopy equivalence, i.e. the map of spectra over ET/H 

r : K(i*ft(j*i*E ЛЕТ Cj1)) —> i*ft{*uE ЛЕт Cj1) 

is a spacewise homotopy equivalence. The fixed point functor (—)H on spectra indexed 
on the Я-fixed universe UH preserves cell structure, so 

rH : {K(i*h{j*uE AET Cj1)))" — (i'fttfuE AE? С - Г1))» 
is a spacewise homotopy equivalence, and (K(i* f$(j*i*E ЛЕТ С J1)))11 has the homo­
topy type of a G-cell spectrum over ET/H. 

For the other spectrum (г*f*(j*i*E))H, we have that j * commutes with г* by 
Lemma 6.8, so it is in fact isomorphic to (i* f*i*j*E)H. But the functors г* and /* 
also commute, so this is isomorphic to (f*i*i*j*E)H. Since j*E is a homotopy cell 
bundle spectrum over ET, by Lemma 6.6, the unit of adjunction j*E —> i*i*j*E is 
a spacewise homotopy equivalence. The functor (/*(—))я is taken spacewise, and on 
a G-space, (/*(—))я = (/ц(—))/if, so it preserves homotopies of G-spaces. Hence, 
(/*(—))я on spectra preserves spacewise homotopy equivalences. So there is a space-
wise homotopy equivalence 

(f.{j*E))H ~ (г* / * (Г**£))я. 

But (f*(j*E))H = (ft(j*E))/H, which is a cell spectrum. • 

Therefore, we have a weak equivalence of J-spectra over ET/H indexed on UH 

(i*h{j*nE AEr CJ1))" ~ (i*f*(j*i*E))H 

and spacewise homotopy equivalences 

{K(i*MfuE ЛЕг CJ1)))" ~ (i*h{j*nE AEr CJ1))" 
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and 
(i*U{fuE))H ~ (hfE)/H. 

This gives a weak equivalence of J-spectra of J-cell homotopy type over EF/H in­
dexed on UH 

(K(i*MfuE I\ET CJ1)))H * (ftfE)/H. 
Since h$ preserves weak equivalences between spectra of cell homotopy type 
(i.e. homotopy equivalences) and also takes a spacewise homotopy equivalence of 
spectra to a weak equivalence of spectra, Proposition 6.22 gives the weak equivalence 

h№h{j*uE AET Cjl))H ~ ht(K(i*h(fi*E AET Cjl)))H 
~ht((ftJ*E)/H) 
^h(i*f*(fi*E))H. 

Hence, the main duality Theorem 4.9 implies the Adams isomorphism. 
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CHAPTER 7 

PROOF OF RESULTS ON THE MODEL STRUCTURE 
OVER A BASE 

In this chapter, we prove some results that are stated in Chapter 3. The first such 
result is Lemma 3.2, which gives that weak equivalences between fibrant G-spaces 
over a base are preserved by pullbacks. 

Proof of Lemma 3.2. — Let p\ : Z\ —• Y and p2 : Z2 —> Y be the structure maps of 
Zi and Z2 respectively, so pi and p2 are fibrations. Also, we have the weak equivalence 
g : Z\ —> Z2 over Y. We can factor the map / : X —* Y in the category of G-spaces 
to 

X -?±-> X' -^-> Y 

such that fi is an acyclic cofibration and f2 is a fibration. Then f*(g) = /*(/2 (#))• 
So we have the following diagram of G-spaces. 

X' xy Z2 y Z2 
fig 

X' xYZx Zn P2 

Pi 
X'-

h 
Y. 

Recall that the pullback of a fibration of G-spaces is a fibration. Thus, the maps 
X' Xy Z\ —> Z\ and X' Xy Z2 —> Z2 are fibrations. The top square of the diagram 
is a pullback. Recall also that the model category structure of G-spaces is proper, so 
pullbacks along fibrations preserve weak equivalences. Thus, (g) is a weak equiva­
lence. 
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We also have the diagräm 

X xy Z2 X' xYZ2 

f*9 fÏ9 
X' xy Z1 

X xy ZX - X' xY ZX / 1 Ы (p2) 
f* (p1) 

f * (p1) 
л: 

Л 
x'. 

The maps (pi) and (P2) are fibrations, and the map /1 is an acyclic cofibration. So 
by the properness of the model structure on G-spaces, the maps X xY Zi —• X' xY Z\ 
and X Xy Z2 —• X1 Xy Z2 are weak equivalences. Thus, in the top square of the 
diagram, three of the maps are weak equivalences, so the fourth map f*(g) is also an 
weak equivalence. • 

The next result from Section 3 we need to prove is Lemma 3.7, the parametrized 
version of the homotopy extension and lifting property. 

Proof of Lemma 3.7. — Let pE, PE>, PN and pp denote the structure maps of the 
spectra to X, respectively. Similarly as in [8] Theorem 1.5.9, it suffices to consider the 
case when E = (£°°)x(G/ff x S71"1) II X and E' = (££>)x(G/77 x Dn) II X, with 
structure maps coming from any map G/H x Dn —• X. We think of I — [0,1]. By 
Theorem 1.5.9 of [8], we can obtain maps g : E' —> N and h : Ef A 7+ —» P such that 
diagram (3.8) commutes, but g and h may not be maps over X. 

We write £'A[1,2]+ for E'AX((X x[l,2])UX). Define the map H°P : E' A [1,2]+—>P 
as follows. For any t e [0,1], write ht = h • it : E' —» E' A 7+ —>• P. Then for any 
t G [1,2], set 

(ft°P)t=^-t:tf —>P. 

We have that • ft|^A/+ =pp -h = PEAI+ is constant with respect to the coordinate 
in 7, ie. for every t G 7, 

PP * ^UA/+ 'it=pp- h\E/\i+ 'ioiE —• E A 7+ —• P —• X. 

Thus, pp • ftop|£?A[i,2]+ : A [1,2]+ —> X is also constant with respect to the the 
coordinate in [1,2]. Also, the composition 

E' E' A 7+ - L P 
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factors to e • g : E' -> N -> P. We define (E A [1,2]_j_) U E' by the following pushout 
diagram in the category of spectra over X. 

E 
3 

E' 

i* 

E A fi, 21+ > (E A fi, 21+) U E'. 

We have a map 

j U h : (E A [1,2J+) U Ü7 —• E A [1,2J + 

induced by j : E A [1,2]+ —> Ef A [1,2]+ and i\ : E' Er A [1,2]+. Then j U n is an 
acyclic cofibration of spectra over X. Define a map 

a : (E A 1,2 +) U E —• N. 

On a maps to AT by hi = g, and for any i G [1,2], a* = a-it E —• £7A[1,2]+ —• A 
is equal to g\E = g. We have the commutative diagram 

E' 
9 

•N 

ix e 

E'A [1,21+ P. 
i xa 

Also, consider the diagram 

E A [1,21, N 

3 PN 

£'Afl ,2L 
h°v 

P 
PP 

X. 

For every t G [1,2], pP • (ftop)t - j = PP - (hop)i -j=pp-e-g, whereas pN • at = pN • 0. 
Since e is a map over X, the diagram commutes. Thus, we have the diagram 

(£Afl,2l+)U£' a N 

3 PN 

£'A[1,2]+ 
ft°P 

P 
PP 

X. 

The square commutes, left vertical map j is an acyclic cofibration, and PN is a fi-
bration, so the dotted arrow ¡3 exists. For the map /?2 • E1 —• TV, * /?2 is equal to 
PP * (̂ op)2- But (hop)2 = ho = f : —> P is a map over X , so /?2 is a map over X . 

We define a map 

^ : E A 0,2 L- —• X 
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by it =PP ' ht for t G [0,1], and 7* = pP • h°p = pN • (3t for * € [1? 2]. We have that 
îP = fti, so 7 is a continuous map. For each t G [0,2], jt = 72-*. Define also 

c : £ ' A [ 0 , 2 ] + —>X 

where c • ¿0 : 2?' —• J5' A [0, 2]+ —> X is equal to and c is constant with respect to 
the coordinate in [0, 2]. We have that 7 is homotopic to c. Namely, the homotopy is 

if A [0,2]+A [0,1] + —> X. 

For * € [0, 2] and 5 € [0,1], ifM : Ef X is given by 

Ht,8 = 7t(i-a) for 0 < t < 1 

= 72-(2-t)(i-s) for 1 < * ̂  2. 

If t = 1, for every s G [0,1], 72-(2-i)(i-s) = 7i+* = 7i-s : E' X, so if is a 
continuous map. We have if^o = 7* and ift,i = 70 = 72 = for any t G [0,2]. 

We write 6(E' A[0,2]+) = (£ 'A{0 }+ )U(£ ' A{2}+)U(£7a[0,2]+) to be the following 
pushout: 

7 V x 1 

E\/XE ) E' VX E' 

io Vx ¿2 
E A [0, 2]+ > 8(Ef A [0,2]+). 

We have t : 6(E' A [0,2]+) -> £' A [0,2]+. For every s G [0,1], if0,s = 7o = Ps', 
#2,s = 72 = Ps'. For 0 < t ^ 1, ift,sU = 7t(i-s)l^ = pp • h = pE. Similarly, 
Ht,s\E — PE for 1 ̂  t ^ 2. So the homotopy if is constant on <J(£" A [0,2]+). Let 
(Ef A [0,2]+) U (6(E' A [0,2]+) A [0,1]+) be defined by the pushout diagram 

S(E'A [0,2]+) io 
6(E' A [0,2]+) A [0,l}+ 

L 

£'A[0,2]+ > {E' A [0,2]+) U (Ô(E' A [0,2]+) A [0,1]+) 

in the category of spectra over X. There is a map 

¿0 U (t A [0,1]+) : (E' A [0,2]+) U (S(E' A [0,2]+) A [0,1]+) —• E' A [0,2]+ A [0,1]+. 

Also, define the maps 
e:E'A\0.2]+ —>P 

and 
e' : Ô(E' A [0,21+) A [0, ll+ —> P. 

For t e [0,1], set et = ht : E' -> P. For t G [1,2], set et — e - f3t : E' ^ N P. 
e' - io : 5{E' A [0,2]+) is equal to £\S(E'A[O,2]+), and it is constant with respect to the 
coordinate in [0,1]. 
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Thus, we have the following diagram. 

(E' A [0, 2]+) U (Ô(E> A [0, 2]+) A [0,1]+) 
EUE' 

P 

in U (t A TO, 11+) 
H 

\PP 

E'A[0,2]+A[0,1]+ 
H 

X. 

Since 
i : 6(E' A [0,2]+) —y E' A [0,2] + 

is a cofibration, the left vertical arrow ¿0 U (i A [0,1]+) is a deformation retract, thus 
an acyclic cofibration. Also, pp is a fibration, so the dotted arrow H exists, making 
the diagram commute. Consider 

Hi = H • ii : E' A [0,21+ —> E' A [0,21+ A [0,1]+ —• P. 

Then Hi\EA[lt2]+ is constant with respect to the coordinate in [1,2]. So Hi factors to 

h: (E'A 0,2+ ) x(EA 1,2+ — P . 

The source is homeomorphic over X to E' A [0,1]+, so we have h : E1 A [0,1]+ —> P. 
Also, 

h: (E'A 0,2+ ) x(EA 1,2+ —B2 

so it lifts to /32 : E' N. So define g = fa- It is then straightforward to check that 
<7 and h are maps over X, and that they make the diagram (3.8) commute. • 

Finally, we prove Lemma 3.13. 

Proof of Lemma 3.13. — Let iz : X —> Z and ZT : —» T be the basepoints of Z 
and T. Since ^ and %T are cofibrations, we can find a homotopy inverse g : Z —> T 
to / over y , so that (Id, g) : (X, Z) —• (X, T) is a homotopy inverse to (Id, / ) in the 
category of pairs over Y, and that the homotopy is the identity on X for every tel. 
But g is not necessarily a map over X. Consider the diagram in the category over Y 

Z 
9 f 

Z 

Pz 
PT 

Pz 

X 

The left triangle does not commute, but the right triangle does. Also, the composition 
of the top row is homotopic to the identity, so the entire large triangle commutes up 
to homotopy in the category over Y, with a homotopy that is the identity on the 
basepoint X for every tel. Hence, the left triangle also commutes up to homotopy 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2003 



106 CHAPTER 7. PROOF OF MODEL STRUCTURE RESULTS 

in the category over Y, with a homotopy that is the identity on X for every t e l . 
This means that there is a homotopy in the category of G-spaces over Y 

H:ZAx{XxIUX) —• X, 

such that H0 = pz • Z —> X, and Hi = pT - g : Z ^ X. We have the commutative 
diagram in the category of G-spaces over Y 

X 

Z- T 
N 

ia 

IE \PT 

ZAX (XxIUX) X. H 
Since Z is cofibrant over X, the map %i is an acyclic cofibration. Also, pr is a 
fibration, so there exists a lifting H : Z A 7+ —• T making the diagram commute. 
Since pr - H0 = H0 = pz Z X, H0 : Z -> T is & map over X. Also, the diagram 

X 
iz Z 

iz i\ 

Z 
io 

Z Ax (X xIUX) 

commutes, so Ho is based over X. Now HQ is homotopic to g = Hi, so 
f.H.ZAxI+^ T ^ Z 

is a homotopy between / • Ho and / • g, which is in turn homotopic to Id^. Hence, 
/ • if o is homotopic to the identity on Z. Similarly, 

H - (f A Id) : T A 7-1- —• Z A 7+ —• T 

is a homotopy between i7o • / and g • / , which is in turn ifo • / and g • / , which is 
in turn homotopic to Id^, so i7o • / is homotopic to Idr> These homotopies are not 
over X, but by arguments similar to those of Lemma 3.7, we can correct them to 
based homotopies over X. Hence, i7o is a based homotopy inverse to / over X. • 
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