Walks in rigid environments: symmetry and dynamics
Geometric methods in dynamics (I) : Volume in honor of Jacob Palis, Astérisque, no. 286 (2003), pp. 231-248.
@incollection{AST_2003__286__231_0,
     author = {Bunimovich, Leonid A.},
     title = {Walks in rigid environments: symmetry and dynamics},
     booktitle = {Geometric methods in dynamics (I) : Volume in honor of Jacob Palis},
     editor = {de Melo, Wellington and Viana, Marcelo and Yoccoz, Jean-Christophe},
     series = {Ast\'erisque},
     pages = {231--248},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {286},
     year = {2003},
     mrnumber = {2052304},
     zbl = {1046.37002},
     language = {en},
     url = {http://archive.numdam.org/item/AST_2003__286__231_0/}
}
TY  - CHAP
AU  - Bunimovich, Leonid A.
TI  - Walks in rigid environments: symmetry and dynamics
BT  - Geometric methods in dynamics (I) : Volume in honor of Jacob Palis
AU  - Collectif
ED  - de Melo, Wellington
ED  - Viana, Marcelo
ED  - Yoccoz, Jean-Christophe
T3  - Astérisque
PY  - 2003
SP  - 231
EP  - 248
IS  - 286
PB  - Société mathématique de France
UR  - http://archive.numdam.org/item/AST_2003__286__231_0/
LA  - en
ID  - AST_2003__286__231_0
ER  - 
%0 Book Section
%A Bunimovich, Leonid A.
%T Walks in rigid environments: symmetry and dynamics
%B Geometric methods in dynamics (I) : Volume in honor of Jacob Palis
%A Collectif
%E de Melo, Wellington
%E Viana, Marcelo
%E Yoccoz, Jean-Christophe
%S Astérisque
%D 2003
%P 231-248
%N 286
%I Société mathématique de France
%U http://archive.numdam.org/item/AST_2003__286__231_0/
%G en
%F AST_2003__286__231_0
Bunimovich, Leonid A. Walks in rigid environments: symmetry and dynamics, dans Geometric methods in dynamics (I) : Volume in honor of Jacob Palis, Astérisque, no. 286 (2003), pp. 231-248. http://archive.numdam.org/item/AST_2003__286__231_0/

[1] R. K. Ahuja, T. L. Magnanti, J. B. Orlin. Network Flows. Prentice Hall, NY, 1993. | MR | Zbl

[2] L. A. Bunimovich. Controlling production lines. In Handbook of Chaos Control, H. Schuster, editor, Wiley-VCH, Berlin, 1999. | Zbl

[3] L. A. Bunimovich. Walks in rigid environments. Physica A 279, 169-179, 2000. | DOI | MR

[4] L. A. Bunimovich and S. E. Troubetzkoy. Recurrence properties of Lorentz lattice gas cellular automata. J. Statist. Phys., 67, 289-302, 1992. | DOI | MR | Zbl

[5] L. A. Bunimovich and S. E. Troubetzkoy. Topological properties of flipping Lorentz lattice gases. J. Statist. Phys., 72, 297-307, 1993. | DOI | MR | Zbl

[6] L. A. Bunimovich. Billiards and other hyperbolic systems. In Dynamical Systems, Ergodic Theory and Applications, Ya.G. Sinai, editor, Springer, Berlin, 2000. pp. 192-233. | Zbl

[7] B. Chopard. Complexity of cellular automata models. In Physics of Complexity, S. Ciliberto, T. Dauxois and M. Dros, eds., Editions Frontiers, Lyon, 1995. pp. 111-136.

[8] E. G. D. Cohen. New types of diffusion in lattice gas cellular automata. In Microscopic Simulation of Complex Hydrodynamic Phenomena, M. Marechal and B.L. Holian, eds., Plenum, NY, 1992. | DOI

[9] M. Delorme, J. Mazoyer. Cellular Automata. Kluwer, Dordrecht, 1999. | DOI | MR | Zbl

[10] Dynamics of Complex Interacting Systems, E. Goles and S. Martinez, eds., Kluwer, Dordrecht, 1996. | MR

[11] A. Gajardo, A. Moreira and E. Goles. Complexity of Langton's ant. Discrete Appl. Math., 117, 41-50, 2002. | DOI | MR | Zbl

[12] General physical systems and the emergence of physical structures from information theory. Int. J. Gen. Syst, 27, 1-379, 1998. | DOI | Zbl

[13] P. Grosfils, J.-P. Boon, E. G. D. Cohen and L. A. Bunimovich. Organization and propagation in deterministic Lorentz gases. J. Statist. Phys., 97, 375-401, 1999. | DOI | MR

[14] M. Lyubich. The quadratic family as a qualitatively solvable model of chaos. Notices of AMS, 47, 1042-1052, 2000. | MR | Zbl

[15] R. K. Mauldin, M. Monticino and H. Von Weizsäcker. Directionally reinforced random walks. Adv. in Math., 117, 239-252, 1996. | DOI | MR | Zbl

[16] E. W. Montroll and M. F. Shlesinger. On the wonderful world of random walks. In Studies in Statistical Mechanics XI, E.W. Montroll and J.L. Lebowitz, eds. North-Holland Phys. Publ., Amsterdam, 1984. | MR | Zbl

[17] R. Pemantle. Phase transition in reinforced random walk and RWRE on trees. Ann. Probab., 16, 1229-1241, 1995. | DOI | MR | Zbl

[18] T. W. Ruijgrok and E. G. D. Cohen, Deterministic lattice gas models. Phys. Lett. A., 133, 415-418, 1988. | DOI | MR