Perverse solutions of the planar n-body problem
Geometric methods in dynamics (I) : Volume in honor of Jacob Palis, Astérisque, no. 286 (2003), pp. 249-256.
@incollection{AST_2003__286__249_0,
     author = {Chenciner, Alain},
     title = {Perverse solutions of the planar $n$-body problem},
     booktitle = {Geometric methods in dynamics (I) : Volume in honor of Jacob Palis},
     editor = {de Melo, Wellington and Viana, Marcelo and Yoccoz, Jean-Christophe},
     series = {Ast\'erisque},
     pages = {249--256},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {286},
     year = {2003},
     mrnumber = {2052305},
     zbl = {1200.70008},
     language = {en},
     url = {http://archive.numdam.org/item/AST_2003__286__249_0/}
}
TY  - CHAP
AU  - Chenciner, Alain
TI  - Perverse solutions of the planar $n$-body problem
BT  - Geometric methods in dynamics (I) : Volume in honor of Jacob Palis
AU  - Collectif
ED  - de Melo, Wellington
ED  - Viana, Marcelo
ED  - Yoccoz, Jean-Christophe
T3  - Astérisque
PY  - 2003
SP  - 249
EP  - 256
IS  - 286
PB  - Société mathématique de France
UR  - http://archive.numdam.org/item/AST_2003__286__249_0/
LA  - en
ID  - AST_2003__286__249_0
ER  - 
%0 Book Section
%A Chenciner, Alain
%T Perverse solutions of the planar $n$-body problem
%B Geometric methods in dynamics (I) : Volume in honor of Jacob Palis
%A Collectif
%E de Melo, Wellington
%E Viana, Marcelo
%E Yoccoz, Jean-Christophe
%S Astérisque
%D 2003
%P 249-256
%N 286
%I Société mathématique de France
%U http://archive.numdam.org/item/AST_2003__286__249_0/
%G en
%F AST_2003__286__249_0
Chenciner, Alain. Perverse solutions of the planar $n$-body problem, dans Geometric methods in dynamics (I) : Volume in honor of Jacob Palis, Astérisque, no. 286 (2003), pp. 249-256. http://archive.numdam.org/item/AST_2003__286__249_0/

[AC] Albouy A. and Chenciner A., Le problème des n corps et les distances mutuelles, Invent. Math. 131, p. 151-184 (1998). | DOI | MR | Zbl

[AM] Albouy A. and Moeckel R., The inverse problem for collinear central configurations, Celestial Mechanics and Dynamical Astronomy 77, p. 77-91 (2000). | DOI | MR | Zbl

[BCS] Bang D., Chenciner A. and Simó C., Truly perverse relative equilibria of the planar n-body problem, in preparation

[BE] Bang D. and Elmabsout B., Configurations polygonales en équilibre relatif, C.R. Acad. Sci. Paris, t. 329, Série IIb, p. 243-248 (2001). | Zbl

[C] Chenciner A., Are there perverse choreographies?, to appear in the Proceedings of the HAMSYS conference held in Guanajuato in march 2001. | MR

[CGMS] Chenciner A., Gerver J., Montgomery R. and Simó C., Simple choreographies of N bodies: a preliminary study, in Geometry. Mechanics and Dynamics, Ed. P.Newton, P. Holmes & A. Wemstein, p. 287-308, Springer (2002). | DOI | MR | Zbl

[D] Dziobek O., Ueber einen merkwürdigen Fall des Vielkörperproblems, Astron. Nacht. 152, p. 33-46 (1900). | DOI

[M] Moeckel R., On central configurations, Math. Zeit., 205, p. 499-517 (1990). | DOI | EuDML | MR | Zbl

[MB] Macmillan W. B. and Bartky W., Permanent configurations in the problem of four bodies, Transactions of the AMS, vol 34, p. 838-875 (1932) (see page 872). | DOI | JFM | MR | Zbl

[MS] Moeckel R. and Simó C., Bifurcation of Spatial Central Configurations from Planar Ones, SIAM J. on Math. Analysis, 26, p. 978-998 (1995) | DOI | MR | Zbl

[S1] Simó C., New families of Solutions in N-Body Problems, Proceedings of the ECM 2000, Barcelona (July, 10-14), Ed. C. Casacuberta, R. M. Miró, J. Verdera and S. Xambó, Progress in Mathematics 201, p. 101-115, Birkhäuser-Verlag, Basel | Zbl

[S2] Simó C., Periodic orbits of the planar N-body problem with equal masses and all bodies on the same path, in The Restless Universe, Ed. B. Steves and A. Maciejewski, p. 265-284

Simó C., Periodic orbits of the planar N-body problem with equal masses and all bodies on the same path, Institute of Physics Pub., Bristol (2001)

[V] Venturelli A., Une caractérisation variationnelle des solutions de Lagrange du problème plan des trois corps, C.R. Acad. Sci. Paris, t. 332, Série I, p. 641-644, (2001). | DOI | MR | Zbl