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RANDOM PERTURBATIONS OF 
NONUNIFORMLY EXPANDING MAPS 

by 

José Ferreira Alves & Vitor Araujo 

Abstract. — We give both sufficient conditions and necessary conditions for the 
stochastic stability of nonuniformly expanding maps either with or without critical 
sets. We also show that the number of probability measures describing the statistical 
asymptotic behaviour of random orbits is bounded by the number of SRB measures 
if the noise level is small enough. As an application of these results we prove the 
stochastic stability of certain classes of nonuniformly expanding maps introduced in 
[Vil] and [ABV]. 

1. Introduction 
Dynamical systems theory has, among its main goals, the description of the typical 

behaviour of orbits as time goes to infinity, and understanding how this behaviour is 
modified under small perturbations of the system. This work refers to the study of 
the latter problem from a probabilistic point of view. 

Given a map / from a manifold M into itself, let (xn)n^i be the orbit of a given 
point XQ G M, that is #n+i — f(xn) for every n ^ 1. Consider the sequence of time 
averages of Dirac measures 5X, along the orbit of XQ from time 0 to n. A special 
interest lies on the study of the convergence of such time averages for a "large" set of 
points XQ G M and the properties of their limit measures. In this direction, we refer 
the work of Sinai [Si] for Anosov diffeomorphisms, later extended by Ruelle and Bowen 
[BR, Ru] for Axiom A diffeomorphisms and flows. In the context of systems with 
no uniform hyperbolic structure Jakobson [Ja] proved the existence of such measures 
for certain quadratic transformations of the interval exhibiting chaotic behaviour. 
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26 J.F. ALVES & V. ARAUJO 

Another important contribution on this subject was given by Benedicks and Young 
[BY1], based on the previous work of Benedicks and Carleson [BC1, BC2], where 
this kind of measures were constructed for Hénon two dimensional maps exhibiting 
strange attractors. The recent work of Alves, Bonatti and Viana [ABV] shows that 
such measures exist in great generality for systems exhibiting some nonuniformly 
expanding behaviour. 

The notion of stability that most concerns us can be formulated in the following 
way. Assume that, instead of time averages of Dirac measures supported on the 
iterates of XQ G A/, we consider time averages of Dirac measures ôXj, where at each 
iteration we take Xj+i close to f(x3) with a controlled error. One is interested in 
studying the existence of limit measures for these time averages and their relation 
to the analogous ones for unperturbed orbits, that is, the stochastic stability of the 
initial system. 

Systems with some uniformly hyperbolic structure are quite well understood and 
stability results have been established in general by Kifer and Young; see [Kil, Ki2] 
and [Yo]. The knowledge of the stochastic behaviour of systems that do not exhibit 
such uniform expansion/contraction is still very incomplete. Important results on this 
subject were obtained by Katok, Kifer [KK], Benedicks, Young [BY1], Baladi and 
Viana [BV] for certain quadratic maps of the interval. Another important contribu­
tion is the announced work of Benedicks and Viana for Hénon-like strange attractors. 
As far as we know these are the only results of this type for systems with no uniform 
expanding behaviour. 

In this work we present both sufficient conditions and necessary conditions for the 
stochastic stability of nonuniformly expanding dynamical systems. As an application 
of these results we prove that the classes of nonuniformly expanding maps introduced 
in [Vil] and [ABV] are stochastically stable. 

1.1. Statement of results. — Let / : AI —> 71/ be a smooth map defined on a 
compact riemannian manifold AI. We fix some normalized riemannian volume form 
m on AI that we call Lebesgue measure. 

Given an /-invariant Borel probability measure on 71/, we say that \i is an SRB 
measure if, for a positive Lebesgue measure set of points x G 71/, the averaged sequence 
of Dirac measures along the orbit {fn(x))n^o converges in the weak* topology to /i, 
that is, 

+d1 lim 
d+d1d 

d+d1d 

.7=0 
Af"(x)) = ^ du 

for every continuous map (f : AI —» M. We define the basin of \x as the set of those 
points x in AI for which (1) holds for all continuous <p. The maps to be considered 
in this work will only have a finite number of SRB measures whose basins cover the 
whole manifold 71/, up to a set of zero Lebesgue measure. 
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RANDOM PERTURBATIONS OF NONUNIFORMLY EXPANDING MAPS 27 

We are interested in studying random perturbations of the map / . For that, we 
take a continuous map 

$ : T -
t ^ ft 

C2{ALAI) 

from a metric space T into the space of C2 maps from AI to AI, with / = //* for 
some fixed t* G T. Given x G AI we call the sequence (//'(;r))n>1 a random orbit of 
x, where t denotes an element (ti, t>2, £:*,...) in the product space TN and 

//'' = /*„ ° ' • • ° fh lor n>,\. 

We also take a family (6£)£>Q of probability measures on T such that (supp#£)£>o is 
a nested family of connected compact sets and supp^ —» {t*} when £ —> 0. We will 
also assume some quite general nondegeneracy conditions on 3> and (0£)£>o (see the 
beginning of Section 3) and refer to {<!>, (9£)£>o} as a random perturbation of / . 

In the context of random perturbations of a map we say that a Borel probabil­
ity measure /r on M is physical if for a positive Lebesgue measure set of points 
x G AI, the averaged sequence of Dirac probability measures along random 
orbits (/R(X)).„>() converges in the weak* topology to jie for 6^ almost every f G TN. 
That is, 

(2) 11 TTl 
n — t x 77, 

1-1d 

.7=0 
'' = /*„ ° ' • • ° (f dfi for all continuous </? : A/ —• IR 

and 0^ almost every t G TN. We denote the set of points x G M for which (2) holds 
by B(fxE) and call it the basin of / / . The map / : M —> A/ is said to be stochastically 
stable if the weak* accumulation points (when £ > 0 goes to zero) of the physical 
probability measures of /' are convex linear combinations of the (finitely many) SRB 
measures of / . 

1.1.1. Local diffeomorphisms. Let / : M —> Al be a C2 local diffeomorphism of 
the manifold AI. We say that / is nonuniformly expanding if there is some constant 
c > 0 for which 

(3) lim sup 
><w< 

1ss+1 

.7=0 

og||JD/(/-'(.r))-1|| *S -c<0 

for Lebesgue almost every x G AI. It was proved in [ABV] that for a nonuniformly 
expanding local diffeomorphism / the following holds: 

(P) There is a finite number of ergodic absolutely continuous (SRB) f-invariant 
probability measures /ii,...,//p whose basins cover a full Lebesgue measure subset 
of AI. Moreover, every absolutely continuous f-invariant probability measure /i may 
be written as a convex linear combination of fi\,..., /xp: there are real numbers 
ivi,..., wp > 0 with w\ + • • • + Wp = 1 for which /x = wj \i\ + • • • + WP/J,P. 
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28 J.F. ALVES & V. ARAÛJO 

The proof of the previous result was based on the existence of a-hyperbolic times for 
the points in M : given 0 < a < 1, we say that n G Z+ is a a-hyperbolic time for the 
point x G M if 

(4) 
n-1 

j — n-k 
\\Df(f\x))-l\\ <: ak for every l^k^n. 

The existence of (a positive frequency of) a-hyperbolic times for points x G M is a 
consequence of the hypothesis of nonuniform expansion of the map / and permits us 
to define a map h : M —> Z+ giving the first hyperbolic time for m almost every 
x G M. 

In the context of random perturbations of a nonuniformly expanding map we are 
also able to prove a result on the finitness of physical measures. 

Theorem A. — Let f : M —> M be a C2 nonuniformly expanding local diffeomorphism. 
If e > 0 is sufficiently small, then there are physical measures /if,... ,/xf (with £ not 
depending on e) such that: 

(1) for each x G M and 0^ almost every t G TN, the average of Dirac measures 
àfll{x) converges in the weak* topology to some [if with 1 ̂  i ^ £; 

(2) for each 1 ̂  i ^ £ we have 

/4 = w*- lim 
n—^oo 

1 
n 

-l 

7=0 J 

(fl)^m\\B(^))dO^(t), 

where m\\B(/j,f) is the normalization of the Lebesgue measure restricted to B(/x£t); 
(3) if f is topologically transitive, then £ = 1. 

We say that the map / is nonuniformly expanding for random orbits if there is 
some constant c > 0 such that for e > 0 small enough 

(5) lim sup 
1 

n 

-1.-1 

vr 
log | |D/ (^ ' (x ) ) -1 |K-c<0 , 

for 0^ x m almost every (t, x) G TN x M. Similarly to the deterministic situation, 
condition (5) permits us to introduce a notion of a-hyperbolic times for points in 
TN x M and define a map 

h£:TNx M —> Z+ 

by taking h£(t,x) the first a-hyperbolic time for the point (£, x) G TN x M (see 
Section 2). Assuming that h£ is integrable with respect to 0^ x ra, then 

(6) IIMi = 
fc=0 

oc 

k(0? xm)(\(t,x): hJt,x) =k}) 

We say that the family (h£)£>o has uniform L1-tail, if the series in (6) converges 
uniformly to \\h£\\i (as a series of functions of the variable e). 
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Theorem B. — Let f' : M —> M be a nonuniformly expanding C2 local diffeomorphism. 

(1) If f is stochastically stable, then f is nonuniformly expanding for random orbits. 
(2) If f is nonuniformly expanding for random orbits and (h£)£ has uniform L1-

tail, then f is stochastically stable. 

We should emphasize that we do not know if condition (2) in Theorem B is really 
necessary. No example of a stochastically stable map which does not satisfy the 
uniform Lx-tail property is known. 

1.1.2. Maps with critical sets. — Similar results to those presented for random per­
turbations of local diffeomorphisms will also be obtained for maps with critical sets 
in the sense of [ABV]. We start by describing the class of maps that we are going to 
consider. Let / : M —> M be a continuous map of the compact manifold M that fails 
to be a C2 local diffeomorphism on a critical set C C M with zero Lebesgue measure. 
We assume that / behaves like a power of the distance close to the critical set C: there 
are constants B > 1 and (5 > 0 for which 

(SI) 1 
B 

list(x,C)a s= 
\Df(x)v\ 

NI 
< £dist(.T,C)-/3; 

(S2) I l og l lD /M- l - log lp / a , ) -1 ! ! 
dist(x, y) 

dist(x,C)0' 

(S3) I log I det Df{x)~l\ - log I det Df{y)-1 \ sssccse dist(#, y) 
dist(x,C)0' 

for every x,y G M \ C with dist(x,y) < dist(x,C)/2 and v G TXM. Given ô > 0 we 
define the Ô-truncated distance from x G M to C 

dist^(x,C) = 1 if dist(x,C) > (J, 
dist(x,C) otherwise. 

Assume that / is a nonuniformly expanding map, in the sense that there is c > 0 
such that the limit in (3) holds for Lebesgue almost every x G M (recall that we are 
taking C with zero Lebesgue measure) and, moreover, suppose that the orbits of / 
have slow approximation to the critical set: given small 7 > 0 there is ô > 0 such that 

(7) lim sup 
n—> + oo 

1 

n 

n-l 

.7=0 
•logdist*(/''(z),CK7 

for Lebesgue almost every x G M. The results in [ABV] show that in this situation 
we obtain the same conclusion on the finiteness of SRB measures for such an / , also 
holding property (P). 

In order to prove the stochastic stability of maps with critical sets we need to 
restrict the class of perturbations we are going to consider: we take maps ft with the 
same critical set C and impose that 

(8) Dftix) = Df(x) for every x e M \ C and t e T. 
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30 J.F. ALVES & V. ARAÛJO 

This may be implemented, for instance, in parallelizable manifolds (with an additive 
group structure, e.g. tori Td or cylinders Td~~k x by considering 

-logdist5(//(x),C) < +1xw+s1 

for some SQ > 0, 0£ the normalized Lebesgue measure on the ball of radius e ^ £o, 
and taking ft — / -ft; that is, adding at each step a random noise to the unperturbed 
dynamics. 

For the case of maps with critical sets we also need to impose an analog of con­
dition (7) for random orbits; we assume slow approximation of random orbits to the 
critical set: given any small 7 > 0 there is ô > 0 such that 

(9) lim sup 
n —» + oc 

n — 1 
l 
n 7=0 

-logdist5(//(x),C) < 7 

for 6^ x m almost every (t,x) G TN x M and small £ > 0. Results similar to those 
presented for local diffeomorphisms on the finiteness of physical measures can also be 
obtained in this case. 

Theorem C. — Let f : M —* AI be a C2 nonuniformly expanding map behaving like a 
power of the distance close to the critical setC, and whose orbits have slow approxima­
tion to C. If f is nonuniformly expanding for random orbits and random orbits have 
slow approximation to C, then we arrive at the same conclusions as in Theorem A. 

The property of nonuniform expansion for random orbits, together with the slow 
approximation of random orbits to the critical set permit us to introduce a notion of 
(a, (5)-hyperbolic times for points in (t, x) G TN x AI and define a map 

K: Tn x AI —> Z+, 

by taking h£(t,x) the first (a, 5)-hyperbolic time for the point (t, x) G TN x M, see 
Section 2. Assuming that h£ is integrable with respect to 6£ x m, then we obtain an 
analog to (6), which enables us to define a notion of uniform Ll-tail exactly in the 
same way as before. 

Due to the fact that log ||D/_1|| is not a continuous map (it is not even everywhere 
defined) we are not able to present in this setting a result similar to Theorem B in 
all its strength. However, we obtain the same kind of conclusion of the second item 
of Theorem B. 

Theorem D. — Let /: AI —» AI be nonuniformly expanding C2 map behaving like a 
power of the distance close to its critical set C and whose orbits have slow approxima­
tion to C. Assume that f is nonuniformly expanding for random orbits and random 
orbits have slow approximation to C. If (h£)£ has uniform Ll-taih then f is stochas­
tically stable. 
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As a major application of the previous theorem we are thinking of a class of maps 
on the cylinder S1 x R introduced in [Vil]. Subsequent works [Al] and [AV] showed 
that such systems are topologically mixing (thus transitive) and have a unique SRB 
measure. The work [AV] also shows that these SRB measures vary continuously with 
the map, which means that time averages of continuous functions are only slightly 
affected when the system is perturbed. Although this points in a direction of statistical 
stability, this does not imply the stochastic stability of such systems as we defined 
above. 

The class of nonuniformly expanding maps (with critical sets) introduced by 
M. Viana can be described as follows. Let ao € (1,2) be such that the critical point 
x — 0 is pre-periodic for the quadratic map Q(x) = CLQ — x2. Let S1 = R/Z and 
b : S1 —> R be a Morse function, for instance, b(s) = sin(27rs). For fixed small a > 0, 
consider the map 

f:S1xR—> SxxR 
(s,x) '—> {g(s),q(s,x)) 

where g is the uniformly expanding map of the circle defined by g(s) = ds (mod Z) 
for some d ^ 16, and q(s,x) = a(s) — x2 with a(s) = ao + ab(s). It is easy to check 
that for a > 0 small enough there is an interval I C ( — 2,2) for which f(S1 x I) is 
contained in the interior of S1 x I. Thus, any map / sufficiently close to / in the C° 
topology has S1 x / as a forward invariant region. We consider from here on these 
maps / close to / restricted to S1 x /. Taking into account the expression of / it is 
not difficult to check that / (and any map / close to / in the C2 topology) behaves 
like a power of the distance close to the critical set. 

Theorem E. — If f is sufficiently close to f in the C3 topology then f is nonuniformly 
expanding and its orbits have slow approximation to the critical set. Moreover, if the 
noise level of a random perturbation of f is sufficiently small, then 

(1) / is nonuniformly expanding for random orbits; 
(2) random orbits have slow approximation to the critical set; 
(3) the family of hyperbolic time maps (h£)£ has uniform L1-tail. 

As an immediate consequence of Theorems C, D and E we have that Viana maps 
are stochastically stable. An application of Theorems A and B will also be given in 
Section 6 for an open class of local diffeomorphisms introduced in [ABV, Appendix A]. 

2. Distortion bounds 

In this section we generalize some of the results in [Al] and [ABV] for the setting 
of stochastic perturbations of a nonuniformly expanding map. These results will be 
proved in the setting of maps with critical sets. Then everything follows in the same 
way for local diffeomorphisms if we think of C as being equal to the empty set, with 
the only exception of a particular point that we clarify in Remark 2.4 below (due to 
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the fact that we are not assuming condition (8) for maps with no critical sets). For 
the next definition we take 0 < b < min{l/2,1/(2/?)}. 

Definition 2.1. — Given 0 < a < 1 and ô > 0, we say that n G Z+ is a (a,S)-
hyperbolic time for (£, x) G TN x M if 

n-l 

j = n-k 
Dfti+dftWr'W < <** and dist*(/rfc(:c),C) > abfc 

for every 1 ̂  /c ̂  n. 

The following lemma, due to Pliss [PI], provides the main tool in the proof of the 
existence of hyperbolic times for points with nonuniform expansion on random orbits. 

Lemma2.2. — Let H > C2 > c\ > 0 and ( = (c2 — c\)/(H — c\). Given real numbers 
• • •, Q>N satisfying 

N 

3 = 1 
a j ^ C2N and a3 ^ H for all 1 ̂  j ^ N. 

there are H > (N and 1 < n\ < • • • < ng ̂  N such that 

Hi 

j=n+l 
On ^ CI • (rij — n) for each 0 ^ n < N ? , i = 1,... 

Proof. — See [ABV, Lemma 3.1]. 

Proposition 2.3. — There are a > 0 and ô > 0 /or which 0^ x m almost every (t, x) G 
TN x M has some {a, 8)-hyperbolic time. 

Proof. — Let (t,x) G TN x M be a point satisfying (5). For large A we have 

N-

3=0 

log \Df(fHx))-1 -logdist5(//( 

by definition of nonuniform expansion on random orbits. Fixing p > (5 we see that 
condition (SI) implies 

(10) h o g l l D / O r r l U o|logdist(i,C)| 

for every i in a neighborhood V of C. Now we take 71 > 0 so that p7i < c/10 and 
let 61 > 0 be small enough to get 

(H) 
N-l 

3=0 
logdist5l(//(x),S) ^ 71 iV for large TV, 
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which is possible after property (7) of slow approximation to C. Moreover, fixing 
H ^ p\ log 51 sufficiently large in order that it be also an upper bound for for the set 
{-\og\\Df~l\\ :t£T, x £ M \ V"}, then the set 

E = {1 ^ j < N : - log \\DfUr\X))'11| > H} 

is such that / / (X) G V for all j G E and 

p log&st Ut\x),C) > - l o g DfUrl{x))-1 >H>p\\og5\ 

i.e., dist (f[~L(X),C) < Su in particular distSl(FT (X),C) = dist(// (X)X) < ÔI FOR 

all 7 G E. Hence, defining 

a j = 
-log Df{fr\x))-1 if ? <£ E 

0 ifi 

it holds cij ^ # for 1 ̂  j ^ TV, and (10) and (11) imply 

q+q1 

]iog\\Df(frI(X)ri ^P 
3EE 

logdist(/rX(x),C) ^ P 7 i ^ 

Since /r/i < c/10 we deduce 

ND 

3 = 1 

CLJ 
N 

7 = 1 

-log DflftHx))-1 \ 
3EE 

-log Dftfi-^x))-1 2 
5 

V. 

By the previous arguments we may apply Lemma 2.2 to the sequence CTJ with ci = c/5 
and C2 = 2c/5 (we may suppose H > c\ too by increasing H if needed). Thus there 
are Ci > 0 and ^i > C i ^ times 1 < qx < • • • < q£l < N such that 

(12) 
re 

J=N+L 
-log Dfur\x)r vr 

vrd+41 

d+d1rs 

vr+d1r c 
2 

far - n) 

for every 0 ^ n < q7, i = 1,... ,£\. We observe that (12) is just the first part of the 
requirements on (a, £)-hyperbolic times for (t,X) if a = exp(c/5). 

Now we apply again Lemma 2.2, this time to the sequence CTJ = log dist̂ 2 (//~~ (X),C) 
where 62 > 0 is small enough so that for 72 > 0 with 272(be)"1 < £i we have by 
assumption (7) 

N-L 

3=U 

logdist*2(//(x),C) > -j2N for large N. 

Defining; c-\ — bel2, CO = —72, H = 0 and 

(2 = 
C2 ~ CI 

H - ci 
= 1 272 

6c 
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34 J.F. ALVES & V. ARAÛJO 

Lemma 2.2 ensures that there are £2 ^ (2N times 1 ̂  ri < • • • < r̂ 2 ^ TV satisfying 

(13) 
vrd 

J = N+L 

logdist,2(# + i(x),C) ^ 
6c 

2 
(R2 - n) 

for every 0 ^ n < r?:, i = 1,. . . , £2. Let us note that the condition on 72 assures 
Ci + C2 > 1. So if C = Ci + C2 - 1, then there must be £ = (£x + £2 - N) ^ (N and 
1 ^ m < • • • < n£ ^ TV for which (12) and (13) both hold. This means that for 
1 ^ i ^ £ and 1 ^ k ^ nt we have 

n i 

j=ni—k 
Df(fj(.r)y-[ ^ak and d\stÔ2(f^~k(x)X) ^ abk\ 

and hence these n?, are (a, J)-hyperbolic times for (£, x), with ô = ô2 and a = exp(c/5). 
It follows that for O^xm almost every (t, x) G TN x M there are (positive frequency 
of) times n e Z + for which 

(14) 
N-L 

j = n-k 
\\Df(fl{x)rl\\ < afc and .MM,-I/," ''i.n.c'ï ^ afcfc 

for every 1 ^ /c ^ n. Now the conclusion of the lemma is a direct consequence of 
assumption (8). • 

Remark 2.4. — In the setting of random perturbations of a local diffeomorphism / we 
may also derive from the first part of (14) the existence of hyperbolic times for 6^ xm 
almost every (t,x) G TN x M without assuming condition (8). Actually, let (U x) be 
a point in TN x M for which the first part of (14) holds. Taking the perturbations ft 
in a sufficiently small C1-neighborhood of / , then 

WDftivr'w < 
1 

vrd 
Df(y)-l\\ 

for every y G M, which together with (14) gives 

N-L 

j-n-k 
\\Dft(ft{X)r'\\^ 

N-L 

j=n-k 

1 
vr 

\\Df(f!(x))-l\\£ak/2. 

In the context of maps with no critical sets this n may be defined as a v^-Irype-rbolic 
time for (t, x) and all the results that we present below hold with y^a-hyperbolic times 
replacing (a, <5)-hyperbolic times for maps with critical sets. 

Proposition 2.3 allows us to introduce a map 

h£:TN xM— 

by taking h£(t,x) as the first (a, £)-hyperbolic time for (£, x) G TN x M. We assume 
henceforth that the family (h£)£>o has uniform L1-tail. For the next lemma we fix 
6\ > 0 in such a way that 45i < min{5, 5@\ loga|}. 
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RANDOM PERTURBATIONS OF NONUNIFORMLY EXPANDING MAPS 35 

Lemma 2.5. — Given any 1 ^ j ^ n, we have 

WDfiyr1]] ^ a-l/2\\Df(f^(x)rl\\ 

for every y in the ball of radias 26 \a-^2 around f"'~J(x). 

Proof. — We are assuming dist^/"'-"7 (#), C) ^ aJ since n is a (a, 5)-hyperbolic time 
for (t,x). This means that 

dist{fll-j(x),C) = dmts(ffl-j(x),C) > abj or else dist(/tn"J'(x),C) > (5. 

Either way it holds dist(y, ft~j(x)) ^ dist(/"~j(x),C)/2 because 6 < 1/2 and £i < 
ô/A < 1/4 for all y in the ball of radius 2£IQJ//2 around ftl~J (x). Therefore condition 
(S2) implies 

log \\Df(y)-l\ 

\\DHfrj(x))^\ 
^ B 

dist ( / r / ( . r ) . / y ) 

dist(fr\x)xr 
<: B 2(W/2 

min{a^> j}" 

But a, 5 < 1 and 6/3 < 1/2 so a-7'/2 < ab^J and thus the right hand side of the last 
expression is bounded from above by 2B8\5~P. The assumptions on S\ assure this 
last bound to be smaller than log a-1/2, which implies the statement. • 

Proposition 2.6. — There is Ô\ > 0 such that if n is (a, 6)-hyperbolic time for (t,x) G 
TN x M, then there is a neighborhood Vn(t,x) of x in M such that 

(1) f'f1 maps Vn(t,x) diffeomorphically onto the ball of radius 5\ around ftn(x); 
(2) for every 1 ̂  k ^ n and y,z G Vk(t, x) 

• l i s " / , " '•!//>. f?~k(z)) • «A/2dist(/f(y), f»(z)). 

Proof. — The proof will be by induction on j ^ 1. First we show that there is a well 
defined branch of f~J on a ball of small enough radius around / / (x). Now we observe 
that Lemma 2.5 gives for j — 1 

\\Df(y)-l\\ ^ a - ^ l l D / U r 1 ^ ) ) - 1 ! ! < «1/2, 

because n is a (a, 5)-hyperbolic time for (£, ic). This means that / is a a~1//2-dilation in 
the ball of radius 28\a1^2 around f[,~1(x). Consequently there is some neighborhood 
Vi(t, x) of frtl~l(x) inside the ball of radius 2&\a1/2 that is diffeomorphic to the ball of 
radius 5\ around ft\x) through ftn, when / is a map with critical set satisfying (8). 

For j ^ 1 let us suppose that we have obtained a neighborhood Vj(t,x) of ft~3(x) 
such that ftn o • • • o ftn_j+1 \ V3(Ux) is a diffeomorphism onto the ball of radius 5\ 
around fll(x) with 

(15) l!W(A„.J+,+1o---o/t , i^1(2))"^<a-V2| |Z)/(/»-^+i(;c))^| | 
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for all z G V3(t,x) and 0 ^ i < j . Then, by Lemma 2.5 and under the assumption 
that n is a (a, <S)-hyperbolic time for x, 

U>(f,.. ••/,.. (//)) * -logdist5(//(x),C) <+s1x+xx+x1x+xx1x+ 
i=0 

< 
j 

i=0 

a-1/2\\Dft„ ^Af?~3+l~Hx))-l\\ 

-logdist5(//(x),C) < +skjs+sjns 

for every y on the ball of radius 28\a^+l^2 around fJl~J~1(x) whose image ftn_j(y) 
is in Vj(t, x) (above we convention ftn_J+t_1 ° • • • ° ftn-j {y) — V for i = 0). 

This shows that the derivative of /tn o • • • o /t is a a_^+1^2-dilation on the 
intersection of (Vj(t, x)) with the ball of radius 2ôia^J~^1^2 around f^i~J~1(x)J 
and hence there is an inverse branch of ftn o • • • o ftn_J defined on the ball of radius 
8\ around ft'(x). Thus we may define Vj+i(£ ,x) as the image of the ball of radius 
8\ around f™(x) under this inverse branch, and recover the induction hypothesis for 
j + 1. In this manner we get neighborhoods Vj(t,x) of fTtl~J(x) as above for all 
1<j<n 

Corollary 2.7. — There is a constant C\ > 0 such that if t G TN; n is a (a, £)-
hyperbolic time for x G M and y,z G Vn(t, x), then 

1 \ det Df?(y)\ 
Ci ^ | det Dfn (sz))) 

vrd 

Proof — For 1 ^ k < n the distance between fk(x) and either fk{y) ord++d+d+d1d+is 
smaller than a(n_fc)/2 which is smaller than ab(n_fc) ^ dist(/tfc(x),C). So, by (S3) we 
have 

log 
det DflHy)\ 

\det Df£(z)\ 

n-l 

k=0 
dv 

det Dftk(ftk(y))\ 

I det D/tfc+1 (/*(*)) 

vrd 
n-l 

k=l 
log 

det Df(fl(y))\ 

det Df(ftk(z))\ 

n-l 
vrd 

k=0 
2BC-

Jn-k)/2 
ab(3(n-k) • 

and it is enough to take C\ ^ exp (XSi 2Ba(1/2_6i3)i), recalling that 6/3 < 1/2 and 
also (8). 
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3. Stationary measures 

As mentioned before, we will assume the random perturbations of the nonuniformly 
expanding map / satisfy some nondegeneracy conditions: there exists 0 < so < 1 such 
that for every 0 < e < £o we may take no = no(e) G N for which the following holds: 

(1) there is f = Ç(e) > 0 such that £:TN^ M £:TN^ M t G (supp(9e)N j contains the ball of 
radius £ around fn(x) for all x G M and n ^ no; 

(2) (f2)*0® < m for all x G M and n ^ n0. 

Here (/£).0? is the push-forward of to M via f £ : T N ^ M, defined as fx(t) = 
ft(x). Condition (1) means that perturbed iterates cover a full neighborhood of the 
unperturbed ones after a threshold for all sufficiently small noise levels. Condition (2) 
means that sets of perturbation vectors of positive 6f measure must send any point 
x G M onto subsets of M with positive Lebesgue measure after a finite number of 
iterates. 

In [Ar, Examples 1 & 2] it was shown that given any smooth map f : M —» M 
of a compact manifold we can always construct a random perturbation satisfying the 
nondegeneracy conditions (1) and (2), if we take T = Ep, t* = 0 and 0£ is equal to the 
normalized restriction of the Lebesgue measure to the ball of radius e around 0, for a 
sufficiently big number p G N of parameters. For parallelizable manifolds the random 
perturbations which consist in adding at each step a random noise to the unperturbed 
dynamics, as described in the Introduction, clearly satisfy nondegeneracy conditions 
(1) and (2) for n0 = 1. 

In the context of random perturbations of a map, we say that a set A C M is 
invariant if ft{A) C A, at least for t G supp((9e) with s > 0 small. The usual invariance 
of a measure with respect to a transformation is replaced by the following one: a 
probability measure \i is said to be stationary, if for every continuous : M —> R it 
holds 

(16) Lp dfi = <p(ft(x))dn(x)M£(t). 

Remark 3.1. — If (/i£)e>o is a family of stationary measures having UQ as a weak* 
accumulation point when e goes to 0, then it follows from (16) and the convergence 
of supp(#£) to {£*} that fiQ must be invariant by / = ft*. 

It is not difficult to see (cf. fArl) that a stationary measure a satisfies 

x G suppf/i) => ft(x) G suppf/i) for all t G supp(^) 

just by continuity of This means that if fi is a stationary measure, then supp(/x) 
is an invariant set. Nondegeneracy condition (1) ensures that the interior of supp(u) 
is nonempty. 

Let us write supp(/x) as a disjoint union \Jz C% of connected components and 
consider only those C{ for which m (Ci) > 0 — this collection is nonempty since 
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supp(/x) contains open sets. Moreover each ft must permute these components for 
t G supp(#e), because ft (Ci) is connected by continuity, ft (Ci) C supp(/x) by invari­
ance, and m(ft(Ci)) > 0 since we have (ft)*m <C m. 

The connectedness of CL and continuity of 3> guarantee that the above-mentioned 
perturbation of the components Ct induced by ft does not depend on t G supp(0e). 
Indeed, supposing that t,t' G supp(^) are such that 

MCJcCj and ft>(Ci)cCj>, 

then fixing some z G CL we have that {ft(z)\ t G supp(#£)} is a connected set inter­
secting both Cj and Cy inside supp(/i), and so C3 — Cy. 

We will show that these connected components are periodic under the action in­
duced by ft with t G supp(#e). After this, we may use nondegeneracy condition (1) 
to conclude that each component contains a ball of uniform radius and thus that each 
component satisfies m(C,) > const > 0. Hence there existing only a finite number of 
such components. 

At this point it is useful to introduce the skew-product map 

F : TN x M —> TN x M 
(Lz) (a(t)Jtl(z)) 

where a is the left shift on sequences t = (ti,^2,---) G TN. It is easy to check 
that the product measure 0^ x \x is F-invariant, as so is the set supp(0]? x \i) — 
supp(^£)N x supp(/x). 

Lemma 3.2. — The support of a stationary measure /i contains a finite number of 
connected components arranged in cycles permuted by the action of ft fort G supp(#e). 

Proof. — Is is enough to obtain that each connected component C\ is periodic under 
the action of ft for t G supp(^), in the sense that ft (Ci) C Cj for some p G N and 
all t G supp(éÇ). There are components Ct with nonempty interior, since the interior 
of supp(/i) is nonempty. So we may take a component Ct that contains some ball B. 
Then we have m(B) > 0 and so (0^ x /i)(supp(0^) x B) > 0. Poincaré Recurrence 
Theorem now guarantees there is (t x) G supp(^) x B such that the F-orbit of (t, x) 
has the same (t,x) as an accumulation point. We see that there must exist some 
p G N such that ff(x) G B C C(. In view of the independence of the permutation on 
the choice of £, we conclude that Ci is sent inside itself by /f for all t G supp(^). • 

It is clear that the cycles obtained above are invariant sets. We are now ready to 
decompose /i into some simpler measures. For that we need the following result. 

Lemma 3.3. — The normalized restriction of a stationary measure to an invariant set 
is a stationary measure. 

Proof — See [Ar, Lemma 8.2]. • 
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We define an invariant domain in M as a finite collection (UQ, ..., Up-i) of pairwise 
separated open sets, that is, U% D Uj — 0 if i 7̂  j , such that ft(Ui) C U(k+i) mod P f°r 
all k ^ 1, z = 0,... ,p - 1 and t G supp(0f ). 

In order to get the separation of the connected components in a cycle, we may unite 
those components Ci and C7 such that C?nC7- ^ 0 and observe that the permutation 
now induced in the new sets by ft also does not depend on the choice of £ £ supp(#£). 
In this manner we construct invariant domains inside the support of any stationary 
probability measure. 

The next step is to look for minimal invariant domains with respect to the natural 
order relation of inclusion of sets. Let D = (UQ, . . . , Up-i) and D' = (WQ,..., WQ-\) 
be invariant domains. On the one hand, D = D' if there are i, j G N such that 
U(i+k) modp — (̂j+A,) mod q f°r aU k ^ 1, which implies p — q because the open sets 
that form each invariant domain are pairwise disjoint. On the other hand, we say D ^< 
D' if there are i,j G N such that U% mod p Ç W3 mod Q and i7(./+fe) mod p C ILr(j+A:) mod g 
for all k ^ 1. 

Lemma 3.4. — In the partially ordered family of all invariant domains in M, with 
respect to the relation the number of -<-minimal domains is finite. Moreover, 
every invariant domain contains at least one minimal domain. 

Proof — The proof relies in showing that Zorn's Lemma can be applied to this par­
tially ordered set and that minimal domains are pairwise separated. See [Ar, Sec­
tion 3]. • 

Let us now fix x G M and consider 

(17) Unix) : 
1 ^ 

n 3=0 

dd+d1r 

Since this is a sequence of probability measures on the compact manifold M, then it 
has weak* accumulation points. 

Lemma 3.5. — Every weak* accumulation point of (fin(x))^ is stationary and abso­
lutely continuous with respect to the Lebesgue measure. 

Proof. — Let \i be a weak* accumulation point of (/in(x))_. We may write 

ip(Mx))du{x)dee{t) = lim 
d+d12r 

nk-l 1 

3=0 

r(ft(fiU))) d0^(t)d0£(t) 

for each continuous tp : M —> M. Moreover dominated convergence ensures that we 
may exchange the limit and the outer integral sign and, by definition of fj(x), we get 

lim 
fc—>oo rik 

1 nk-l 

3=0 ' 

^(//+1(x))d9?m = </? du, 
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according to the definition of /i. Thus (16) must hold and fi is stationary. 
Noting that C°(M,R) is dense in L1(M,fi) with the L1 norm, we see that (16) 

holds for all /x-integrable functions Lp : M —» R. In particular, if F C M is such that 
m{E) = 0, then 

Is du = / / lE(ft(x))du(x)dOe(t) 

/ / l£;( / t (x))dee(t)d/z(x) 

// / lE{ft(fs(x)))dO£(t)d[i(x)dO£(s) 

= // lE{fHx))d^(t)dfJL{x) 

= (f2x)^(E)d^x). 

This process may be iterated to yield 

KE)= (fT)*0e{E)dv(x) 

and, since (fx°)*@e <C m by nondegeneracy condition 2, we must have /x(E) = 0 . • 

Clearly if x G M belongs to some set of an invariant domain (Uo, • • •, ̂ p-i), then 
/jLn(x) have supports contained in [/Q U • • • U t/p-i for all n ^ 1 and any weak* 
accumlation point /x of (fin(x))n is a stationary measure with supp(/i) C Uo U • • • U 
Up-i. We will now see these measures are physical. 

Lemma 3.6. — If {Uo,..., Up-i) is a minimal invariant domain, then there is a unique 
absolutely continuous stationary measure v such that supp(^) C Uo U ••• U Uv-\. 
Moreover, this v is a physical measure and supp(^) — UQ U • • • U Uv-\. 

Proof. — Let us assume no = 1 for simplicity (see [Ar, Section 7] for the general 
case) and let us consider a stationary absolutely continuous probability measure v 
with supp(z/) C Uo U • • • U Up-i. We first show the ergodicity of z/, in the sense that 
0^ x v is F-ergodic. It turns out that to be F-ergodic it suffices that either v{G) = 0 
or v{G) — 1 for every Borel set G C M satisfying 

(18) 1G(X) = / lG(ft(x)) d0M) 

for v almost every x (cf. [Ar] and [Vi2]). So let us take G such that v(G) > 0 and 
G satisfies the left hand side of (18). Then it must be rn(G) > 0 because v <C m and 
there is a closed set J C G such that m(G \ J) = 0 and also v(G \ J) = 0. Hence J 
also satisfies the left hand side of (18) because of nondegeneracy condition (2) (with 
no = 1), since 

/ lE(ft(x))d6Jt) = (fx).6"(E). 
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This means that when x G J we have ft(x) G J for 9£ almost all t G supp(<9£). Since 
a set of 0£ measure 1 is dense in supp(0e) (we are supposing 0£ to be positive on open 
sets) and ft(x) varies continuously with £, we see that ft(x) G J for all t G supp(#e) 
because J is closed. We then have that the interior of J is nonempty by condition 
(1) on random perturbations and we may apply the methods of decomposition into 
connected components as before (Lemma 3.2). In this manner we construct an in­
variant domain inside J which, in turn, is inside a minimal invariant domain. This 
contradicts minimality and so we conclude that J must contain UQ U • • • UUP-\. Thus 
we have v(G) = v(J) = 1 proving 6^ x v to be F-ergodic. 

Now, given p : M —> R continuous we consider the map x/; = p o n from TN x M 
to M, where TT : TN x M —> M is the natural projection. The Ergodic Theorem then 
ensures 

lim 
d+d1r+ 

1d 

j=0 
ip{Fj{Lx)) = / i/,d(0? x i/) 

for ^ xi/ almost all (f, x), which is just the same as 

(19) lim 
n—>- + oo n 

1 n-l 

d 

£:TN^ M (p dv 

for 9^ x i/ almost all (t, x). Finally considering the ergodic basin B(y), defined as the 
set of points x G M for which 

lim 
n—> + oo n 

1 71 — 1 

vr 
£:TN^ Mx <pdv 

for all (p G C°(M,E) and ^ almost every t G TN, it is easy to see that B(y) satisfies 
(18) in the place of G and we must have as before B(y) Z> UQ U • • • U UP-\. 

This shows that if another stationary absolutely continuous probability measure v 
is such that supp(P) C (7oU- • •U/7p_l5 then the basins of v and must have nonempty 
intersection. Thus these measures must be equal. Moreover v{B{y^) — 1 and so, by 
absolute continuity, m(B(v)) > 0 and thus v is a physical probability. • 

4. The number of physical measures 

In this section we will prove that the number £ of physical measures is bounded 
by the number p of SRB measures. Moreover we will present examples of dynamical 
systems for which £ = p and £ < p. 

Let / i i , . . . , m be the physical measures supported on the minimal invariant do­
mains in M, which exist by Lemmas 3.2 and 3.4 through 3.6. If \i is an absolutely 
continuous stationary measure, its restrictions to the minimal invariant domains of 
A/, normalized when not equal to the constant zero measure, are absolutely continu­
ous stationary measures by Lemma 3.3. After Lemma 3.6 these restrictions must 
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be the physical measures (*.........µ2) of the minimal domains. Hence /i must de­
compose into a linear combination of physical measures. Moreover, the union of 
supp(/ii),...,supp(^) must contain supp(/i), except possibly for a \i null set. In 
fact, if the following set function 

/I-/X(supp(/XI))/XI /I(supp(/X£))^ 

were nonzero, then its normalization \J! would be an absolutely continuous stationary 
measure, and the above decomposition could be applied to //, thus giving another 
minimal domain inside supp(/i). Clearly this cannot happen. We then have a convex 
linear decomposition 

(20) /i = ai/iiH YoLtiii 

where a% = /x(supp(/ij) > 0 and aqH Vac, = 1. We will see that this decomposition 
is uniquely defined. 

We remark that so far we did not use more than the continuity of the map / . For 
the next result we assume that / : M —> M is a C2 nonuniformly expanding map 
whose orbits have slow approximation to the critical C (possibly the emptyset) with 
m(C) = 0. This result contains the assertions of the first two items of Theorem A 
(if we think of C = 0) and Theorem C. 

Proposition 4.1. — If e > 0 is small enough, then there exist physical measures 
...,\x\ (with £ not depending on e) such that 

(1) for x G M there is a 0^ mod 0 partition T\(x),... ,T^(x) of TN such that 

IIE. — 7/j* - lim 
1—>OG TI 

1 ^ 

.7 = 1 
sm*) if and only if t G T?(x): 

(2) for each i = 1,. . . , £ we have 

ae: — w* - lim 
vr+d1r 

dv+r1 

3=0 

(fi)Am\B{ti))df%(t) 

where m \ B(/j£t) is the normalized restriction of Lebesgue measure to B(/xf). 

Proof — Take x G M and let /i be a weak* accumulation point of the sequence 
(/in(x))n defined in (17). We will prove that this is the only accumulation point 
of (17) by showing that the values of the a\,..., in decomposition (20) depend 
only on x and not on the subsequence that converges to /I. The definition of the 
average in (17) implies that there is a subset of parameter vectors t G supp(^) with 
positive 0^ measure for which there is j ^ 1 such that f3t(x) G supp(/i?). We define 
for z = ! , . . . ,£ 

Ti(x) = \ t G supp(6^) : ft(x) G supp(^) for some j ^ 1 \ 
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We clearly have 

T,{x) = U, - 7 > ! where Tf(x) = {te supp(^) : f[(x) G supp(^)} 

and TJ(x) C T/+1(x) for all i,j ^ 1, since the supports of stationary measures are 
themselves invariant. In addition, since \i is a regular (Borel) probability measure, we 
may find for each 77 > 0 an open set U and a closed set K such that K C supp(/x/) C U 
with ji(U \ K) < 7] and /x(dU) = ji{dK) = 0. In fact, there is an at most countable 
number of ^-neighborhoods of supp(/i7) whose boundaries have positive \i measure, 
and likewise for the compacts coinciding with the complement of the (5-neighborhood 
of M \ supp(/i?). Then, taking a,,, = /i(supp(/i./)) we have 

OL-i + 77 > u(U) = lim 
<+<1w<+ 

w+<1w 

.7=0 

9^{teTN:fi(x)eU] 

^ lim sup 
A:-+ + oo nA; 

1 nfc-l 

.7=0 
<+<1<w+<1+< 

for some sequence of integers ri\ < 712 < ft 3 < • • •, and likewise for 

a-, — // ^ u(K) lim 
A- -4- x. ///,. 

1 wq 

wq 
0?UeTN •..f(x) €K\ 

<C lim inf 
A:-̂  + oc 71) 

w<w<+ 

.7=0 

£:TN^ M 

where 77 > 0 is arbitrary. This shows 

a-i — Mfsuppf/i;)) = lim -
dd+d<+ 

-1 nfc-l 

.7 = 0 

£:TN^ M 

We also have 

^fr,(a;)) = lim O^MCx)) 
w 

lim 
<+1<w+ 

1<<<<< 

w 

f ( 7 y ( x ) ) = a . 

which shows that the a7, depend only on the random orbits of x and not on the 
particular sequence (rik)k- Thus we see that the sequence of measures in (17) converges 
in the weak* topology. Moreover the sets Xi(x),..., T^(x) are pairwise disjoint by 
definition and their total 0^ measure equals or H VOL^ = 1, thus forming a 0^ modulo 
zero partition of TN. We observe that if t G T^(x), then fjl(x) G supp(/x?) C B(fii) for 
some n ^ 1 and i = 1,.. . , £. This means this 9^ modulo zero partition of TN satisfies 
the first item of the proposition. 

Now fixing i — 1, ...,£, for all x G B{ni) (the ergodic basin of uz) it holds that 

lim 
q+1<00 

! »-1 

i=0 

£:TN^ M (p d/jii 
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for 6^ almost every t G TN. Recall that m(B(ui)) > 0 by the definition of physi­
cal measure. Using dominated convergence and integrating both sides of the above 
equality twice, first with respect to the Lebesgue measure m, and then with respect 
to #f, we arrive at the statement of item 2. 

Recall that up until now the noise level e > 0 was kept fixed. For small enough 
e > 0 the measures \i% — /if depend on the noise level, but we will see that the number 
of physical measures is constant. 

Fixing i G {1 , . . . , £} we let x in the interior of supp(/if) be such that the orbit 
F(( x) has infinitely many hyperbolic times. Recall that / = ft* is nonuniformly 
expanding (possibly with criticalities). Then there is a big enough hyperbolic time n 
so that Vn(t*,x) C supp(/if), by Proposition 2.6, where we take t* = (£*,£*,£*,... ). 
Since t* G supp(0e) and supp(/xf) is invariant under ft for all t G supp(#e), we must 
have 

m: fil (Vn(t*,x)) = Bffjt (x), Si) C supp(^), 

where ôi > 0 is the constant given by Proposition 2.6 and B(f™* (x), ô\) is the ball of 
radius Si around ft*(x). 

On the one hand, we deduce that the number £ = £(e) is bounded from above 
by some uniform constant TV since M is compact. On the other hand, since each 
invariant set must contain some physical measure (by Lemma 3.4), we see that for 
0 < e' < e there must be some physical measure p£ with supp(/i£ ) C supp(/i£). In 
fact supp(//) is invariant under ft for every t G supp(#£/) C supp(#£). This means 
the number £(e) of physical measures is a nonincreasing function of e > 0. Thus we 
conclude that there must be £Q > 0 such that £ — £(e) is constant for 0 < e < £o, 
ending the proof of the proposition. • 

Remark 4.2. — Let us point out that from (21) one easily deduces that the Lesbesgue 
measure of the basin of each physical measure is uniformly bounded from below, since 
the support of such a measure is always contained in its basin. 

Remark 4.3. — Observe that if the map / : M —> M is topologically transitive, then 
every stationary measure must be supported on the whole of M, since the support is 
invariant and has nonempty interior. According to the discussion above, there must 
be only one such stationary measure, which must be physical. 

We note that the number £ of physical measures for small £ > 0 and the number p 
of SRB measures for / are obtained by different existential arguments. It is natural 
to ask if there is any relation between £ and p. 

Proposition 4.4. — If p ^ 1 is the number of SRB measures of f and £ ^ 1 is the 
number of physical measures of the random perturbation of f, then for £ > 0 small 
enough we have £ ̂  p. 
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Proof. — We observe that supp(/ie) is forward invariant under f = ft* and, moreover, 
condition (3) holds for Lebesgue almost every x in supp(/x£) because holds almost 
everywhere in M (by assumption) and supp(//£) has nonempty interior. Thus from 
[ABV, Theorem C] we assure the existence of at least one SRB measure \i with 
supp(/i) C supp(/r). 

We have seen that each support of a physical measure fi£ must contain at least the 
support of one SRB measure for the unperturbed map / . Since the number of SRB 
measures is finite we have £ ̂  p, where p is the number of those measures. • 

The reverse inequality does not hold in general, as the following examples show: it 
is possible for two distinct SRB measures to have intersecting supports and, in this 
circumstance, the random perturbations will mix their basins and there will be some 
physical measure whose support overlaps the supports of both SRB measures. 

1 

0.5 

0 

-0.5 

-1 

-E5 

-2 

-2.5 

-3 -3 -2.5 -2 -E5 -1 -0.5 0 0.5 1 

FIGURE 1. Map for which 1 = £ < p = 2 

The first example is the map / : [—3,1 ]—3,1 ] whose graph is figure 1: 

/(*) = 
l-2ir2 i f - l ^ x ^ l 
2(x + 2)2 - 3 i f -3 ^ x <: - 1 

The dynamics of / on [—1,1] and [—3, —1] is conjugated to the tent map T(x) = 
1 — 2\x\ on [—1,1]. Thus understanding / as a circle map through the identifica­
tion S1 — [—3, l]/{—3,1}, this is a nonuniformly expanding map with a critical 
set satisfying conditions (SI)-(S3) and there are two ergodic absolutely continuous 
(thus SRB) invariant measures /xi,/i2 whose supports are [—3,-1] and [—1,1] re­
spectively. Moreover defining &(t) — Rt o /, where Rt : Sl —• Sl is the rotation 
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of angle t and 0£ = (2e)~l(m \ [-e,e\) for small e > 0, we have that {<£, (0£)£>o} 
is a random perturbation satisfying nondegeneracy conditions (1) and (2). Since 
supp(/ii) H supp(//2) = {-1} we have that for e > 0 small enough there must be a 
single physical measure if. Indeed, by property (P) any weak* accumulation point 
of a family of physical measures must have —1 in its support. 

2 

1 

0 

-1 

-2 

-3 

-4 

-5 

-6 

-7 
7 -6 -5 - 4 - 3 - 2 - 1 0 1 2 

ces+q 

ss 

F IGURE 2. Map for which £ — p — 2 

The second example is defined on the interval / = [—7,2]. We take the map 
Qa(x) = a — x2 on [—2, 2] for some parameter a G (1,2) satisfying Benedicks-Carleson 
conditions (see [BC1] and [BC2]), and the "same" map on [—7,-3] conveniently 
conjugated: pa(x) = (x + 5)2 — 5 — a. Then the two pieces of graph are glued together 
in such a wray that we obtain a smooth map / : / — > / sending / into its interior, 
as figure 2 shows. The intervals Iq = [q2(0), qa(0)} and Ip = [pa( — 5),p^( — 5)] are 
forward invariant for / , and then we can find slightly larger intervals I\ 2> Ip and 
I2 D Iq that become trapping regions for / . So, taking $(t) = f + t, and 0£ as in 
the previous example with 0 < e < c() for some eo > 0 small enough, then {$, (0£)£\ 
is a random perturbation of / leaving the intervals I\ and 12 invariant by each &(t). 
Moreover, Lebesgue almost every x G / eventually arrives at one of these intervals. 
Then by [BC1] and [BY1] the map / is nonuniformly expanding and has two SRB 
measures with supports contained in each trapping region. Finally / admits two 
distinct physical measures whose supports are contained in I\ and I2 respectively, for 
SQ > 0 small enough. Moreover, these SRB measures are stochastically stable; see 
[BVl. 
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5. Stochastic stability 

In this section we will prove the first item of Theorem B and Theorem D. The 
second item of Theorem B may be obtained in the same way as Theorem D, if we 
think of C as being equal to the empty set and take into account Remark 2.4. 

We start by proving the first item of Theorem B. Assume that / is a stochastically 
stable nonuniformly expanding local diffeomorphism. We know from Proposition 4.1 
that there is a finite number of physical measures /if,... p^ and for each x G M there 
is a 6f mod 0 partition Ti(x),..., Tf{x) of TN for which 

iâ — w*- lim 
>+<1<< 

1 n-l 

7 = 1 
s+c1e for each teTt(x). 

Furthermore, since we are taking / a local diffeomorphism, then log\\(Df) 1\\ is a 
continuous map. Thus, we have for each x G M and 0^ almost every t G TN 

lim 
f.->oc n 

1 n-l 

.7=0 

logWDfifKx))'1^ logiKD/)-1!!^ 

for some physical measure \i\ with 1 ^ i ^ £. Hence, for proving the nonuniform 
expansion of / on random orbits it suffices to show that there is Co > 0 such that if 
if = ii£ for some 1 ̂  i ^ £ then 

log \\{Df)-l\\dtie < c() for small e > 0. 

Lemma 5.1. — Let p: M —> R be a continuous map. Given ô > 0 there is So > 0 such 
that if £ ^ £o? then 

I pd/j£ — / pd\iE < 

for some absolutely continuous f -invariant probability measure \xE. 

Proof. — We will use the following auxiliary result: Let X be a compact metric space, 
K C X a closed (compact) subset and (xt )/ >() a curve in X (not necessarily contin­
uous) such that all its accumulation points (as t —» 0+) lie in K. Then for every 
open neighborhood U of K there is to > 0 such that xf G U for every 0 < t < to. 
Indeed, supposing not, there is a sequence (tn).fl with tn —* 0+ when n —> oo such 
that xtn ^ U. Since X is compact this means that (xt)t>o has some accumulation 
point in X \ U, thus outside K, contrary to the assumption. 

Now, the space X — P(M) of all probability measures in M is a compact metric 
space with the weak* topology, and the convex hull K of the (finitely many) SRB 
measures of / is closed. Hence, considering the curve (//)£ in P(M), we are in the 
context of the above result, since we are supposing / to be stochastically stable. 
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A metric on X topologically equivalent to the weak* topology may be given by 

dP(/i,i/) = 
oo 

K= 1 

1 

2n 
ipn dp - (fn du 

where /i, v G P(M) and (</?n)n î is a dense sequence of functions in C°(M,M), 
see [Ma]. 

Let ip : M —> M continuous be given and let us fix some J > 0. There must be 
n G N such that \\p — (/?n||o < 5/3 and, by the auxiliary result in the beginning of 
the proof, there exists, for some £o > 0 and every 0 < e < a probability measure 
u£ G P(M) for which dp(/ie,/ie) < 5(3 • 2n)_1. This in particular means that 

1 
2n (pn dp£ - q+q1qs+q Ô 

^ 3 • 2n ' 
by the definition of the distance dp, which implies 

' <pn da£ - ipn da£ Ô 
^ 3' 

Hence we get 

(fdp£ — / (fdp£ ^ 

^ / if dfl£ - (fndp£ + / (fn dp6 - I ifn dp£ + / (fn d[le - if dp£ 

< 
S S ô 

3 3 3 
= 8, 

which completes the proof of the lemma. 

Now we take p = log ||(D/)_1|| and ô = c/2 in the previous lemma, where c > 0 
is the constant given by the nonuniform expansion of / (recall (3)). For each e ^ £n 
let \I£ be the measure given by Lemma 5.1. Since property (P) holds, there are 
real numbers W\[e\ . . . , Wp(e) ^ 0 with W\(e) + -f Wp(è) — 1 for which \IE = 
wi(e)fi\ + - • • + wp(e)iJLp. Since each ui is an SRB measure for 1 ̂  i ^ p, we have for 
Lebesgue almost every x G B(pi) 

lozWiDf^Wdui = lim 
n—> + oo TL 

1 "-1 

J=0 

logWDfifix))-1]] < - c < 0 . 

This implies 

logUOD/)-1!!^^-c, 

and so, by Lemma 5.1 and the choice of <5, 

logiK/?/)-1!!^ < -c/2. 

This completes the proof of the first item of Theorem B. 
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Now we go into the proof of Theorem D. In order to prove that / is stochastically 
stable, and taking into account property (P), it suffices to prove that the weak* 
accumulation points of any family (/ie)£>o, where each \i£ is a physical measure of 
level £, are absolutely continuous with respect to the Lebesgue measure. Let \ie be a 
physical measure of level e for some small e > 0 and define for each n ^ 1 

Mn = 
1 

n 

n-l 1 
m(B(iie)) 

(fi)*(m\Bfa£))d£(t). 

We know from Proposition 4.1 that each [f is the weak* limit of the sequence (/in)n-
We will prove Theorem D by providing some useful estimates on the densities of the 
measures ixen. Define for each t G TN and n ^ 1 

Hn(t) = B(ii£)\ n is a (a, <5)-hyperbolic time for (£,#)}, 

and 

H*(t) B(/j,£): n is the first (a, £)-hyperbolic time for (£,#)}. 

H*(t) is precisely the set of those points x G B(iie) for which h£(t,x) = n (recall the 
definition of the map h£). For n,k > 1 we also define Rn,k{t) &s the set of those points 
x G M for which n is a (a, 5)-hyperbolic time and n + /c is the first (a, J)-hyperbolic 
time after n, i.e. 

i ^ U ) = e ffn(£): /tn(x) G #£((7nÉ)}: 

where cr: TN —» TN is the shift map <r(£i, £2,... ) — (̂ 2^3? • ••)• Considering the 
measures 

s+s1s (/fn).(m|Hn(t))dfl?(«) 

and 

+1<+<1<+ 
00 fc—1 

k=2j=l-

(f^)4m\Rnjk(t))d6^t), 

we may write 

/4 
1 
72 

n-l 

j=0 

1 
m(5(/i-)) 

£:TN^ M 

Proposition 5.2. — There is a constant C2 > 0 snc/i £/ia£ for every n ^ 0 and £ G TN 

wq 

dm 
[f?)*{m\Hn(t)) ^C2. 

Proof — Take 6\ > 0 given by Proposition 2.6. It is sufficient to prove that there is 
some uniform constant C > 0 such that if A is a Borel set in M with diameter smaller 
than ôi/2 then 

m(ft~n(A)DHn(t)) ^Cm(A). 
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Let A be a Borel set in M with diameter smaller than 6i/2 and B an open ball of 
radius 5\/2 containing A. We may write 

ft-"(B) = 

k^l 
dvrd 

where (Bk)k^i is a (possibly finite) family of two-by-two disjoint open sets in M. 
Discarding those Bk that do not intersect Hn(t), we choose for each k ^ 1 a point 
Xk G Hn(t) H Bk- For k ^ 1 let Vn(t,Xk) be the neighborhood of Xk in 71/ given 
by Proposition 2.6. Since B is contained in B(fp(xk),ôi), the ball of radius #i 
around (f (x)x and //l is a diffeomorphism from Vr„( /. .r/,) onto B(fll(xk), Si), we 
must have C V,, (/. .r//) (recall that by our choice of Bk we have frtl(Bk) C 5). 
As a consequence of this and Corollary 2.7, we have for every k that the map f" \ 
Bk : Bk B is a diffeomorphism with bounded distortion: 

1 
Ci 

|detA/r(2/)i 
|detA#(*) | 

^ CI 

for all y, z G J3fc. This finally gives 

m(ft-n(A)nHn(t)) ^ 
A: 

m ( r ( i n 5 ) n / 5 , ) 

vrd 

A-

vr m(A n £) 

rn(B) 
m(Bk) 

^ C2m(A), 

where C2 > 0 is a constant only depending on Ci, on the volume of the ball B of 
radius <5i/2, and on the volume of M. • 

It follows from Proposition 5.2 that 

(22) 
d+d 

dm 
^c2 

for every 77 ^ 0 and small £ > 0. Our goal now is to control the density of the 
measures rfn in such a way that we may assure the absolute continuity of the weak* 
accumulation points of the measures \ie when e goes to zero. 

Proposition 5.3. — Given C > 0, there is C:\(Q > 0 such that for every n ^ 0 and 
e > 0 we may bound ifn by the sum of two non-negative measures, 7fn ^ uo e + pE, with 

duj£ 

dm 
C C3(() and p£(M)<C 
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Proof. — Let A be some Borel set in AI. We have for each n > 0 

nRnAi))M 
oo k 1 

A;=2 j = l ' 

m(frn-HA)nRnAi))M™(t) 

xdx oc A--1 

k=2 ,7 = 1 

m(f[n(fMA) N H£(a"t)) N Hv(t))d^(t) 

xx 
TO A:-l 

k=2 j = l 
C-2 m,(frJ(A)nHt(t))d(ff(t). 

(in this last inequality we used Proposition 5.2 and the fact that 9^ is a-invariant). 
Let now Ç > 0 be some fixed small number. Since we are assuming (h£)£ with uniform 
L1-tail, then there is some integer TV = N(C) for which 

oc 

j = N 
k m{HZit))M?(t) < 

ssc 
c2 

We take 

UJ~~ — C'2 
N-l k-l 

A=2 ;j=l ' 
(fl),(m\Hm)M"(t) 

and 

fr =C2 
x k-l 

k = N y = l '7 
(fl),{m\Hm)M™(t)-

For this last measure we have 

W3 < C3 
oc A:-l 

k=N .7 = 1 

;;/{ //.' ' / \) till il ;• < Co 
cs 

k=N 
k m(H*k(t))d0?(t)<C 

On the other hand, it follows from the definition of (a, <5)-hyperbolic times that there 
is some constant a = a(N) > 0 such that dist (Hk(t)X) ^ a for 1 ̂  k ^ N. Defining 
A C AI as the set of those points in AI whose distance to C is greater than a, we have 

nRnAi))M 
N-l k-l 

A: = 2 .7 = 1 
(/ /) .(m| A) 

and this last measure has density bounded by some uniform constant, as long as we 
take the maps ft in a sufficiently small neighborhood of / in the C1 topology. • 

It follows from Remark 4.2, Proposition 5.3 and (22) that the weak* accumulation 
points of \ie when e —» 0 cannot have singular part, thus being absolutely continuous 
with respect to the Lebesgue measure. Moreover, the weak* accumulation points of a 
family of stationary measures are always /-invariant measures, cf. Remark 3.1. This 
together with (P) gives the stochastic stability of / . 
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6. Applications 

In this section we will apply Theorems B and D to certain classes of nonuniformly 
expanding maps. Before we describe the examples we have in mind let us give a 
practical criterion for proving that the family of hyperbolic time maps (h£)£ has 
uniform L1-tail. 

If we look at the proof of Proposition 2.3 we see that what we did was fixing some 
positive number CO smaller than c, and then, for 6^ xm almost every (T, x) G TN x M, 
we took a positive integer N£ — N£(t,x) for which 

Ne-l 

3=0 

logWDfifKx)dssddd)-1^-^ and 
Ne-l 

3=0 
-logdistsifdddd (x)X)^lN£, 

for suitable choices of ô > 0 and 7 > 0. This permits us to introduce a map 

N£ : TN x M —> Z+ 

whose existence provides a first hyperbolic time map 

h£ : TN x M —> Z+ with h£ ̂  N£ 

(recall the proof of Proposition 2.3). Thus, the integrability of the map h£ is implied 
by the integrability of the map N£, which is in practice easier to handle. 

Remark 6.1. — In the examples we are going to study below we will show that there 
is a sequence of positive real numbers (al)k for which 

(0* x m) {{{t,x) e TN x M: N£{t,x) > k}) ^ a% and 
00 

k=l 
kal < 0 0 , 

This gives the integrability of h£ with respect to the measure x m. The fact the 
family (h£)£ has uniform ^-tsil can be proved by showing that the sequence (a£k)k 
may be chosen not depending on e > 0. 

Now we are ready for the applications of Theorems B and D. We will describe first 
a class of local diffeomorphisms introduced in [ABV, Appendix A] that satisfies the 
hypotheses of Theorem B, and then a class of maps (with critical sets) introduced in 
[Vil] satisfying the hypotheses of Theorem D. 

6.1. Local diffeomorphisms. — Now we follow [ABV, Appendix A] and describe 
robust classes of maps (open in the C2 topology) that are nonuniformly expanding 
local diffeomorphisms and stochastically stable. Let M be a compact Riemannian 
manifold and consider 

$ : T —> C2(M,M) 
nRnAi))M 

a continuous family of C2 maps, where T is a metric space. We begin with an 
essentially combinatorial lemma. 
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Lemma 6.2. — Let p,q ^ 1 be integers and a > q a real number. Assume M admits 
a measurable cover {B\,..., Bp, Bp+\,..., Bp+q} such that for all t G T it holds 

(1) I detDft(x)\ ^ a for all x G Bp+1 U • • • U Bp+q; 
(2) (ft I Bi) is mjective for all i = 1,... ,p. 

Then there is ( > 0 such that for every Borel probability 6 on T we have 

(23) #{0 < j < n : f[(x) G Bx U • • • U Bp} > (n 

for 0N x m almost all (t,x) G TN x M and large enough n ^ 1. Moreover the set 
In of points (t, x) G TN x M whose orbits do not spend a fraction ( of the time in 
B\ U • • • U Bp up to iterate n is such that (0N x m)(In) ^ rn for some 0 < r < 1 and 
for large n ^ 1. 

Proof. — Let us fix n ^ 1 and t<ETN. For a sequence 

i = (io, • • • ,?n-i) £ {l , . . . ,p + g}n 

we write 
[z] = Bi0 n (//)-](jb,:1) n • • • n ( /r1)-1 ) 

and define g(i) = #{0 ^ j < n : i3 ^ p}. 
We start by observing that for ( > 0 the number of sequences i such that g(i) < (n 

is bounded by 

k<Çn 

d 
v 

d+d1r+d 

d+d1d 

f n 
vr 

fnqn. 

Using Stirling's formula (cf. [BV, Section 6.3]) the expression on the right hand side 
is bounded by (e1pc>q)n, where 7 > 0 depends only on £ and 7(C) ^ 0 when ( —> 0. 

Assumptions (1) and (2) ensure m ([i]) < a-^-On (recaii that m(M) = 1). Hence 
the measure of the union In(t) of all the sets [i] with p(i) < is bounded by 

<7-(1-c)n(eV?)n. 

Since a > q we may choose £ so small that eJp^q < cr^1-^. Then m(In(t)) ^ rn with 
r = e7+^_1 • • g < 1 for big enough n ^ AT. Note that r and TV do not depend on 
t. Setting 

In=\JteT»{{t}xIn(t)) 

we also have (0 x m)(In) ^ rn for all big n ^ N and for every Borel probability 6 on 
T, by Fubini's Theorem. Since J2n(^N x m)(^n) < o° then Borel-Cantelli's Lemma 
implies 

(^Nxm) ( a , ,U, .,./*) " 

and this means that 0N x m almost every (t,x) G TN x M satisfies (23). 

Lemma 6.3. — Let {B\,..., Bp+\,...,nRnAi))M6e a measurable cover of M satisfy­
ing conditions (1) and (2) 0/ Lemma 6.2. For 0 < A < 1 there are rj > 0 and Co > 0 
sz/c/z that, if ft also satisfies for all t G T 
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(3) WDMx)-1sss^ s\< ddd\for x£Bu...,Bp; 
(4) \\Dft{x)-l\\ • 1 • ,,/,„•.,•• />•,., /,',...,; 

then we have for f = ft*, where t* is some given point in T, 

(24) lim sup 
II—• + X 

! liZ.1 

x+1dr 
log \\Df(f[(x))-11| < -c0 

/or 0N x m almost all (t, x) G TN x M, where 0 is any Borel probability measure on 
T. Moreover the first hyperbolic time map h : TN x M -> Z+ satisfies 

(0N x m){(£,a;) e TN x 71/ : /;.(£, x) > k} < ofc and 
dr 

A:=l 
nRnAi))M 

with (cik)k independent of the choice of 6. 

Proof — Let ( > 0 be the constant provided by Lemma 6.2. We fix 7/ > 0 sufficiently 
small so that A^(l + 77) ^ e~Cl) holds for some CQ > 0 and take (t,x) satisfying (23). 
Conditions (3) and (4) now imply 

(25) 
77.-1 

3=0 
\Df(fi(x))-l\\ < X<"(l + nY1-^" < e-r«n. 

for large enough n. This means (25) holds for 0N x m almost every (Lx) G TN x M. 
We observe that if h(t,x) = h, then 1 ^ n < k cannot be hyperbolic times for 

(t, x). Hence (£, x) G Ln for all n = 1,. . . , A: — 1. In particular 

(0N x m){(£,x) G TN x A/ : /,(/. .r) = A*} ^ (0N x ///)(/,,.. 1) = a*. 

and J2k hah ^ krk 1 < oo. 

Now we will show that families of 6" maps satisfying conditions (1) through (4) 
of Lemmas 6.2 and 6.3 contain open sets of families in the C2 topology. Let M be a 
n-dimensional torus Tn and Jo : M —+ M a uniformly expanding map: there exists 
0 < A < 1 such that \\Df(){x)v\\ ^ A"1 H for all x G M and v G T,M. Let also W 
be some small compact domain in 71/ where /0 | W is injective. Observe that fo is a 
volume expanding local diffeomorphism due to the uniform expansion. 

Modifying Jo by an isotopy inside W we may obtain a map f\ which coincides with 
/o outside W, is volume expanding in M, i.e., | det Dfi(x)\ > 1 for all x G M, and has 
bounded contraction on W near 1: ||D/i(.x)-11| ^ 1+7/ for every x G W and some 
77 > 0 small. This new map f\ may be taken C1 close to fo and we may consider a 
C2 map f<2 arbitrarily Cl close to j \ . 

Now any map / in a small enough C2 neighborhood of f'2 admits a > 1 such that 
1 det Df(x)\ ^ a for all x G M and, for x outside W, we have \\Df(x)-l\\ <: A. If the 
C2 neighborhood is taken sufficiently small then we maintain \\Df(x)~~1\\ ^ 1 + 7/ for 
x G W and for some small 77 > 0. Let us take B\,..., BP1 Bp+1 = W a partition of M 
into measurable sets where the restriction / | Bt is injective for i = 1,... ,79+ 1. Then 
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any continuous family of C2 maps <I> : T —>• C2(M, M) together with a family (9£)£>o 
of Borel probability measures in the metric space T, satisfying supp((9£) —» {£*} when 
e ^ O and ft* = / , for some t* G T, is such that / is nonuniformly expanding for 
random orbits and (h£)£>o has uniform L1-tail — by Lemma 6.3 with q = 1 and 
T = supp(0£) for small enough e > 0. Theorem B then shows 

Corollary 6.4. — There are open sets U C C2(M,M) such that every f G U is a 
stochastically stable nonuniformly expanding local diffeomorphism. 

6.2. Viana maps. — In what follows we study the class of nonuniformly expanding 
maps with critical sets introduced by M. Viana and prove Theorem E. 

6.2.1. Nonuniform expansion. — Let / be defined as in Subsection 1.1.2. The results 
in [Vil] show that if the map / is sufficiently close to / in the C3 topology then / 
has two positive Lyapunov exponents almost everywhere: there is a constant A > 0 
for which 

lim inl 
I) j X 

1 
n 

log \\Df"(s, x)v\\ > A 

for Lebesgue almost every (>s,x) G S1 x / and every non-zero v G T ( i S x /) . 
As mentioned in [ABV], this does not necessarily imply that / is nonuniformly ex­
panding. However a slight modification in Viana's arguments enables us to prove the 
nonuniform expansion of / . 

For the sake of clearness, we start by assuming that / has the special form 

(26) f(s,x) = (g(s),q(s1x)), with dxq{s,x) = 0 if and only if x = 0, 

and describe how the conclusions in [Vil] are obtained for each C2 map / satisfying 

(27) | | / - / H c * ^ « on Slxl. 

Then we explain how these conclusions extend to the general case, using the existence 
of a central invariant foliation, and we show how the results in [Vil] give the nonuni­
form expansion and slow approximation of orbits to the critical set for each map / as 
in (27). 

The estimates on the derivative rely on a statistical analysis of the returns of orbits 
to the neighborhood S1 x {—\fâ, y/a) of the critical set C = : x — 0}. We set 

J(0) = / \ (-y7», v7») and J(r) = {x G I : \x\ < e~r} for r ^ 0. 

From here on we only consider points G S1 x I whose orbit does not hit the 
critical set C. This constitues no restriction in our results, since the set of those points 
has full Lebesgue measure. 

For each integer j ^ 0 we define (,sy. .r, ) = fJ(s,x) and 

rj(s, x) — min {r ^ 0 : Xj G J(r)} . 
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Consider, for some small constant 0 < rj < 1/4, 

G = < 0 ^ j < n : r3(s,x) ^ | 
2 

- 277 log 1 

a J 
Fix some integer n > 1 sufficiently large (only depending on a > 0). The results in 
[Vil] show that if we take 

B2(n) = {(s,x) : there is 1 ̂  j < n with x3 G J([y/n\) } , 

where [y/n\ is the integer part of yfn, then we have 

(28) m(B2(n)) ^ const e_v^/4 

and, for every small c > 0 (only depending on the quadratic map Q), 

(29) log 
n-l 

J=0 

|9x(7(s7,x7)| ^ 2cn -
jeG 

r3(s,x) for (s,x) £ ^ ( n ) , 

see [Vil, pp. 75 & 76]. Moreover, if we define for 7 > 0 

B1(n) = {(s,x)<£B2{n): 

d+d14 

rAs,x) ^ 7/1 

then, for small 7 > 0, there is a constant £ > 0 for which 

(30) m(B1(n)) < e"*n, 

see [Vil, p. 77]. Taking into account the definitions of J(r) and r3l this shows that if 
we take 5 = (1/2 — 2r/) log(l/a), then 

n-l 

3=0 
logdist5(/J(x),C) ^771 for ( s , z ) £ #1(n) U B2(n) . 

This in particular gives that almost all orbits have slow approximation to C. 
On the other hand, we have for («s, x) G S1 x / 

(31) nRnAi))Mx+x1 1 
dxq(s,x)dsg(s) 

drq(s,x) 0 
-dsq(s,x) dsg(s) 

Since all the norms are equivalent in finite dimensional Banach spaces, it is no re­
striction for our purposes to take the norm of (Df(s,x)) as the maximum of the 
absolute values of its entries. From (26) and (27) we deduce that for small a 

\dsg\^d-a, \dsq\ ^ a\b'\ + a <: Sa and \dxq\ ^ \2x\ + a ^ 4, 

which together with (31) gives 

| | ( D / ( s , * ) r l H ^ ( s , * ) r \ 

as long as a > 0 is taken sufficiently small. This implies 

(32) 
n-l 

3=0 
\log\\Df(s3,x3))-l\\ = -\ 

n-l 

3=0 

loz\dxq(si,Xi)\ 
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for every (s, x) G S1 x I. If we choose 7 < c, then we have 

(33) 
n-l 

.7=0 

iog|axg(s7,x?)| = log 
n-l 

7=0 
\dxq(sj,Xj)\ > cn 

for every (s,x) £ Bi(n)UB2(n) (recall (29) and the definition of Bi(n)). We conclude 
from (32) and (33) that 

n-l 

j=0 

loglID/fSj.a;,-))-1!! < -en for (s,x) <É BAn) U B2(n), 

which, in view of the estimates on the Lebesgue measure of B\(ri) and B2(n), proves 
that / is a nonuniformly expanding map. 

Now we describe how in [Vil] the same conclusions are obtained without assuming 
(26). Since / is strongly expanding in the horizontal direction, it follows from the 
methods of [HPS] that any map / sufficiently close to / admits a unique invariant 
central foliation Tc of S1 x / by smooth curves uniformly close to vertical segments, 
see [Vil, Section 2.5]. Actually, Tc is obtained as the set of integral curves of a vector 
field (£c, 1) in S1 x / with £c uniformly close to zero. The previous analysis can then 
be carried out in terms of the expansion of / along this central foliation Tc. More 
precisely, \dxq(s,x)\ is replaced by 

\dcq(s,x)\ = \Df(s,x)vc(s,x)\, 

where vc(s,x) is a unit vector tangent to the foliation at (s,x). The previous obser­
vations imply that vc is uniformly close to (0,1) if / is close to / . Moreover, cf. [Vil, 
Section 2.5], it is no restriction to suppose \dcq(s,0)\ = 0, so that dcq(s,x) œ \x\, as 
in the unperturbed case. Indeed, if we define the critical set of / by 

C = Us,x) G S1 x I : dcq(s,x) = 0}. 

by an easy implicit function argument it is shown in [Vil, Section 2.5] that C is the 
graph of some C2 map 77 : S*1 —> / arbitrarily C2-close to zero if a is small. This 
means that up to a change of coordinates C2-close to the identity we may suppose 
that 77 = 0 and, hence, write for a > 0 small 

dcq(s, x) = xip(s, x) with \yj -f 2| close to zero. 

This provides an analog to the second part of assumption (26). At this point, the 
arguments apply with dxq(s,x) replaced by <9cg(s,x), to show that orbits have slow 
approximation to the critical set C and n"=o \9cQ(si,Xi)\ grows exponentially fast for 
Lebesgue almost every (s, x) G S1 x /. A matrix formula for (KDfn(s, x)) 1 similar to 
that in (31) can be obtained if we replace the vector (0,1) in the canonical basis of the 
space tangent to S1 x / at (s, x) by TJC(S, X), and consider the matrix of (Dfn(s, x)) 1 
with respect to the new basis. 
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For future reference, let us make some considerations on the way the sets B\{n) 
and B2(n) are obtained. Let X : S1 —* / be a smooth map whose graph in S1 x I is 
nearly horizontal (see the notion of admissible curve in [Vil, Section 2] for a precise 
definition). Denote Xn(s) = fn (s, X(s)) for n ^ 0 and s G S1. Take some leaf L0 
of the foliation Tc. Letting Ln — /n(Lo) for n ^ 1, we define a sequence of Markov 
partitions (Vn)n of S1 in the following way: 

Vn = (s-, s'') 0s Vs") is a connected component of X'1^1 x I) \ Ln) | . 

It is easy to check that Pn+i refines Pn for each n ^ 1 and 

(d + const a)~n ^ |a;| ^ (d - const a)~n 

for each uo G Vn. Due to the large expansion of / in the horizontal direction, we have 
that if J C / is an interval with \J\ ^ a, then for each uo G Vn 

(34) m({s euo: X:j(s) G x J} ) <C const x/jjjm(a;) 

see [Vil, Corollary 2.3]. The estimate (28) on the Lebesgue measure of £?2(n) is 
now an easy consequence of (34). For that we only have to compute the Lebesgue 
measure of #2 (ft) on each horizontal line of S1 x I and integrate. The estimate (28) on 
the Lebesgue measure of B\ (n) is obtained by means of a large deviations argument 
applied to the horizontal curves in S1 x I; see [Vil, pp.76 & 77 ]. 

Remark 6.5. — The choice of the constants c, £, 7 and S only depends on the quadratic 
map Q and a > 0. In particular the decay estimates on the Lebesgue measure of Bi(n) 
and B'2(n) only depend 011 the quadratic map Q and a > 0. 

6.2.2. Random perturbations. -— Let / be close to / in the C3 topology. As we have 
seen before, it is no restriction to assume that C = {(s,x) G S1 x I: x = 0} is the 
critical set of / . Fix {<£>, (0£)£} a random perturbation of / for which (8) holds. Our 
goal now is to prove that any such / satisfies the hypotheses of Theorems C and D 
for e > 0 sufficiently small, and thus conclude that / is stochastically stable. So, we 
want to show that if e > 0 is small enough then 

- / is nonuniformly expanding for random orbits; 
random orbits have slow approximation to the critical set C; 

- the family of hyperbolic time maps (h£)£ has uniform L1-tail. 

We remark that in the estimates we have obtained for \og\\(Df(sj,Xj))~l\\ and 
logdist̂ (TT7-,C) over the orbit of a given point (s,x) G S1 x / , we can easily replace 
the iterates (.sy. ,ry) by random iterates (sj ..rj) = //(,s,x). Actually, the methods 
used for obtaining estimate (29) rely on a delicate decomposition of the orbit of a 
given point (5, x) from time 0 until time n into finite pieces according to its returns 
to the neighborhood S1 x ( — ̂ fa.^fa) of the critical set. The main tools are [Vil, 
Lemma 2.4] and [Vil, Lemma 2.5] whose proofs may easily be mimicked for random 
orbits. Indeed, the important fact in the proof of the referred lemmas is that orbits 
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of points in the central direction stay close to orbits of the quadratic map Q for long 
periods, as long as a > 0 is taken sufficiently small. Hence, such results can easily be 
obtained for random orbits as long as we take e > 0 with e <C a and perturbation 
vectors t G supp(#£). 

Thus, the procedure of [Vil] described in Subsection 6.2.1 applies to this situation, 
and we are able to prove that there is c > 0, and for 7 > 0 there is S > 0, such that 

n-l 

vr 

[og||D/(4,x^))-1|| ^ -en and 
n-l 

j=0 

logdist^(x^,C) ^ 77?. 

for (s,x) £ B\(ri) U B2(n)1 where B\{n) and B2{n) are subsets S1 x 7 with 

m(Bi(7i)) ^ ( <n and m(B2(n)) ^ const e 

for some constant £ > 0 only depending on 7. This gives the nonuniform expansion 
and slow approximation to the critical set for random orbits. Moreover, the arguments 
show that we may take the map N£ with 

(0* x //;) ({(tx) G TN x M : Ne(t,x) > //}) ^ const c ^n/ \ 

thus giving that the family of first hyperbolic time maps has uniform L1-tail; cf. 
Remark 6.1. 

For the sake of completeness, an explanation is required on the way the Markov 
partitions Vn of Sl can be defined in this case, in order to obtain the estimates on 
the Lebesgue measure of B\{n) and B2(n). We consider M = S1 x I and define the 
skew-product map 

F : TN x M —> TN x M, 
(Lz) (*U),ftl(z)) 

where a is the left shift map. Writing ft(z) = (gt(z), qt(z)) for z = (s,x) G S1 x 7, 
we have that qt(s, •) is a unimodal map close to q for all s G S1 and t G supp(#£) with 
e > 0 small. 

Proposition 6.6. — Given t G TN there is a C1 foliation T{ of M such that if Lf_(z) is 
the leaf of T({ through a point z G AI, then 

(1) Lfjyz) is a C1 submanifold of M close to a vertical line in the C1 topology; 
(2) ftl(LL(z)) is contained in Laf_(ftl(z)). 

Proof. — This will be obtained as a consequence of the fact that the set of vertical 
lines constitutes a normally expanding invariant foliation for / . Let H be the space 
of continuous maps £ : TN x AI —> [—1,1] endowed with the sup norm, and define the 
map A:H->Hby 

nRnAi))M 
dxqtl(z)gF(t,z))-dxgtl(z) 

-dsqtl(z)aF(t,z)) + dHgtl(z] 
t = (ti,t2,...) eTN and z G AI. 
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Note that A is well-defined, since 

\AÇ(t,z)\ ^ 
(4 + Q + g ) + Q + g 

-(const a + e) + (d — a — e) 
< 1 

for small a > 0 and e > 0. Moreover, A is a contraction on H: given G W and 
(£, z) G TN x M then 

i ^ a , z ) - ^ c a ^ ) i 

d |detD/tl(z)|.|m,2;)-Ctt^)l 
| (- dsqtl (^)Ç(F(i, z)) + 3 ^ W) • ( - d8qtl (z)aF(t, z)) + dsgtl (z)) \ 

d 
(d + a + £)(4 + a + e) + o + s) • 1̂ (72, z) - C(L^)| 

(d — consto — 
This last quantity can be made smaller than z) — r)(t,z)\/2, as long as a and e 
are chosen sufficiently small. This shows that A is a contraction on the Banach space 
W, and so it has a unique fixed point £c G H. 

It is no restriction for our purposes if we think of T as being equal to supp(#e) for 
some small s. Note that the map A depends continuously on F and for e > 0 small 
enough the fixed point of A is close to the zero constant map. This holds because 
we are choosing supp(#e) close to {£*}, ft* = f and / close to / . Then, for e > 0 
small enough, we have £c(y;, •) uniformly close to £c(t*, •) and it is not hard to check 
that £g = £c(£*, •) is precisely the map whose integral leaves of the vector field (̂ "g, 1) 
give the invariant foliation Tc associated to ft* = f. Since this foliation depends 
continuously on the dynamics and for f — f we have £g = 0 (see [Vil, Section 2.5]), 
we finally deduce that £c(t, •) is uniformly close to zero for small s > 0. 

We have defined A in such a way that if we take Ec(t, z) = span{(£c(/;, z), 1)}, then 
for every t G TN and z G S1 x I 

(35) Dftl{z)Ec(t,z)cEc(F(t,z)). 

Now, for fixed t G T , we take to be the set of integral curves of the vector field 
z i—> (£c(/:, z), 1) defined on S1 x /. Since the vector field is taken of class (7°, it does 
not follow immediately that through each point m S1 x I passes only one integral 
curve. We will prove uniqueness of solutions by using the fact that the map / has a 
big expansion in the horizontal direction. 

Assume, by contradiction, that there are two distinct integral curves Y, Z G J-[ 
with a common point. So we may take three distinct nearby points zo, zi, Z2 G S*1 x / 
such that zo G Y H Z, z\ G Y, z>2 G Z and zi, Z2 have the same x-coordinate. Let X 
be the horizontal curve joining z\ to z^. If we consider Xn = TÏ2 O Fn(t, X) for n ^ 1, 
where 1x2 is the projection from TN x S1 x I onto S4 x /, we have that the curves 
Xn are nearly horizontal and grow in the horizontal direction (when n increases) by a 
factor close to d for small a and e, see [Vil, Section 2.1]. Hence, for large n, Xn wraps 
many times around the cylinder S1 x L On the other hand, since Yn = 112° Fn(t, Y) 
and Zn = 7T2 O Fn(t,Z) are always tangent to the vector field z 1—» (£c(o~nt, z), l) 
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on S1 x /, it follows that all the iterates of Yn and Zn have small amplitude in the 
s-direction. This gives a contradiction, since the closed curve made by Y, Z and X is 
homotopic to zero in S1 x I and the closed curve made by Yn, Zn and Xn cannot be 
homotopic to zero for large n. Thus, for fixed t G TN we have uniqueness of solutions 
of the vector field z —» (£c(t, z), 1), and from (35) it follows that is an F-invariant 
foliation of M by nearly vertical leaves. • 

Now, using the foliations given by the previous proposition we are also able to 
define the Markov partitions of S1 in this setting. Given any smooth map X : S1 —> / 
whose graph is nearly horizontal, denote X?(s) = f™(s,X(s)) for n ^ 0 and 5 G S1. 
Take some leaf of the foliation T^. Letting — f?(Lt) for n ^ 1, we define the 
sequence of Markov partitions (VI1)n of 51 as 

V? = {[s', s") : (s, s") is a connected component of (X}1)'1 ((S1 x I) \ L?)} . 

It is easy to check that 7>"+1 refines V[l for each n ^ 1 and, taking e <C a, 

(d + const a)~n ^ |a;| ^ (d - const cv)~n 

for each a; G Pf. This permits to obtain estimates (28) and (30) for the Lebesgue 
measure of the sets B\(n) and B2(n) exactly in the same way as in Subsection 6.2.1, 
also with the constants only depending on the quadratic map Q (cf. Remark 6.5). 
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