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STATISTICAL PROPERTIES OF UNIMODAL MAPS: 
SMOOTH FAMILIES WITH NEGATIVE 

SCHWARZIAN DERIVATIVE 
by 

Artur Avila & Carlos Gustavo Moreira 

Abstract. — We prove that there is a residual set of families of smooth or analytic 
unimodal maps with quadratic critical point and negative Schwarzian derivative such 
that almost every non-regular parameter is Collet-Eckmann with subexponential re
currence of the critical orbit. Those conditions lead to a detailed and robust statistical 
description of the dynamics. This proves the Palis conjecture in this setting. 

1. Introduction 

'The main strategy of the study of all mathematical models is, according to 
Poincaré, the consideration of each model as a point of a space of different but similar 
admissible systems' (V.Arnold in [Ar]). One of the main concerns of dynamical 
systems is to establish properties valid for typical systems. Since the space of such 
systems is usually infinite dimensional, there are of course many concepts of 'typical'. 
According to [Ar] again, 'The most physical genericity notion is defined by Kol-
mogorov (1954), who suggested to call a property of dynamical systems exceptional, 
if it holds only on Lebesgue measure zero set of values of the parameters in every 
(topologically) generic family of systems, depending on sufficiently many parameters'. 

In the last decade Palis [Pa] described a general program for (dissipative) dy
namical systems in any dimension. He conjectured that a typical dynamical system 
has a finite number of attractors described by physical measures, the union of their 
basins has full Lebesgue measure, and those physical measures are stochastically sta
ble. Typical was to be interpreted in the Kolmogorov sense: full measure in generic 
families. Our aim here is to give a proof of this conjecture for an important class of 
one-dimensional dynamical systems. 

Here we consider unimodal maps, that is, continuous maps from an interval to itself 
which have a unique turning point. More specifically, we consider S'-unimodal maps, 
that is, we assume that the map is CA with negative Schwarzian derivative and that 
the critical point is non-degenerate. 
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1.1. The quadratic family. — The basic model for unimodal maps is the 
quadratic family, qa{x) = a - x2, where - l / 4 ^ a ^ 2 i s a parameter. Despite its 
simple appearance, the dynamics of those maps presents many remarkable phenom
ena. Restricting to the probabilistic point of viewT, its richness first became apparent 
with the work of Jakobson [J], where it was shown that a positive measure set of 
parameters corresponds to quadratic maps with stochastic behavior. More precisely, 
those parameters possess an absolutely continuous invariant measure (the physical 
measure) with positive Lyapunov exponent. On the other hand, it was later shown 
by Lyubich [L2] and Graczyk-Swiatek [GS] that regular parameters (with a periodic 
hyperbolic attractor) are (open and) dense. So at least two kinds of very distinct 
observable behavior are present on the quadratic family, and they alternate in a 
complicate way. 

Besides regular and stochastic behavior, different behavior was shown to exist, 
including examples with bad statistics, like absence of a physical measure or a physical 
measure concentrated on a hyperbolic repeller. Those pathologies were shown to be 
non-observable in [L3] and [MNj. Finally in [L4] it was proved that almost every 
real quadratic map is either regular or stochastic. 

Among stochastic maps, a specific class grabbed lots of attention in the 90V. Collet-
Eckmann maps. They are characterized by a positive Lyapunov exponent for the 
critical value, and gradually they were shown to have 'best possible' near hyperbolic 
properties: exponential decay of correlations, validity of central limit and large devi
ations theorems, good spectral properties and zeta functions ([KN], [Y]). Let us call 
attention to the robustness of the statistical description, with a good understanding 
of stochastic perturbations: strong stochastic stability ([BV]). rates of convergence 
to equilibrium ([BBM]). 

In [AMI] the regular or stochastic dichotomy was extended by showing that almost 
every stochastic map is actually Collet-Eckmann and has polynomial recurrence of its 
critical point, in particular implying the validity of the above mentioned results. 

The position of the quadratic family in the borderline of real and complex dynamics 
made it a meeting point of many different techniques: most of the deeper results 
depend on this interaction. It gradually became clear however that studying the 
quadratic family allows one to obtain results on more general unimodal maps. 

1.2. Universality. — Starting with the works of Milnor-Thurston, and also 
through the discoveries of Feigenbaum and Coullet-Tresser, the quadratic family 
was shown to be a prototype for other families of unimodal maps which presents 
universal combinatorial and geometric features. More recently, the result of density 
of hyperbolicity among unimodal maps was obtained in [K] exploiting the validity of 
this result for quadratic maps. 

In [ALM], a general method was developed to transfer information from the 
quadratic family to real analytic families of unimodal maps. It was shown that 
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the decomposition of spaces of analytic unimodal maps according to combinatorial 
behavior is essentially a codimension-one lamination. 

Thinking of two analytic families as transversals to this lamination, one may try to 
compare the parameter space of both families via the holonomy map. A straightfor
ward application of this method allows one to conclude that the bifurcation pattern 
of a general analytic family is locally the same as in the quadratic family from the 
topological point of view (outside of countably many 'bad parameters'). 

The " holonomy ' method was then successfully applied to extend the regular or 
stochastic dichotomy from the quadratic family to a general analytic family. The 
probabilistic point of view presents new difficulties however. First, the statistical 
properties of two topologically conjugate maps need not correspond by the (generally 
not absolutely continuous) conjugacy. Fortunately many properties are preserved, in 
particular the criteria used by Lyubich in his result. 

The second difficulty is that the holonomy map is usually not absolutely continuous, 
so typical combinatorics for the quadratic family may not be typical for other families: 
it has to be shown that the class of regular or stochastic maps is still typical after 
application of the holonomy map. 

1.3. Results and outline of the proof. — Let us call a /.'-parameter family good if 
almost every non-regular parameter is Collet-Eckmann (and satisfies some additional 
technical conditions). Our goal will be to prove that good families are generic. This 
question naturally makes sense in different spaces of unimodal maps (corresponding 
to different degrees of smoothness). We only deal with the last steps of this problem 
(going from the quadratic family to analytic and then smooth categories), basing 
ourselves on the building blocks [L3], [L4], [ALM], and [AMI]. 

We start by describing how the holonomy method of [ALM] can be applied to 
generalize the results of [AMI] to general analytic families (to put together those 
two papers we need to do a non-trivial strengthening of [AMI]). As a consequence 
we conclude that essentially all analytic families are good. 

To get to the smooth setting (at least C'\ since we are assuming negative 
Schwarzian derivative), our strategy is different: we show a certain robustness of 
good families, which together with their denseness (due to the analytic case) will 
yield genericity. Our main tool is one of the nice properties of Collet-Eckmann maps: 
persistence of the Collet-Eckmann condition under generic unfolding (a result of 
[Tl]). By means of some general argument, we reduce the global result to this local 
one. 

Let us mention that the results of this paper are still valid without the negative 
Schwarzian derivative assumption (also allowing one to get to C2 smoothness), see 
[A], [AM4]. The techniques are very different however, since we replace the global 
holonomy method we use here by a local holonomy analysis based on a "macroscopic" 
version of the infinitesimal perturbation method of [ALM]. For analytic maps this 
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also allowed us to obtain better asymptotic estimates which have interesting conse
quences, for instance pathological measure-theoretical behavior of the lamination by 
combinatorial classes (see [AM2]). 
Acknowledgements. — We thank Viviane Baladi, Mikhail Lyubich, and Marcelo 
Viana for helpful discussions and suggestions. 

2. General definitions 

2.1. Notation. — Let I = [-1,1] and let Bk be the closed unit ball in Rk (we 
will use the notation I for the dynamical interval, while B1 will be reserved for the 
one-dimensional parameter space). We will consider Bk endowed with the Lebesgue 
measure normalized so that \Bk\ = 1. Let Cr(I) denote the space of Cr maps / : 
/ —> R. 

By a unim,odal map we will mean a smooth (at least C2) symmetric (even) map 
/ : / —> I with a unique critical point at 0 such that / ( — 1) = —1, Df( — 1) ^ 1, and 
if Df( — 1) — 1 then D2f( — 1) < 0. If / is C'\ we define the Schwarzian derivative on 
/ \ {0} as 

Sf = D3f 
Vf 

3 fD2f\2 
D Df 

For a > 0, let fta C C denote an a neighborhood /. 
Let Aa denote the space of holomorphic maps on Qa which have a continuous 

extension to dQa, satisfying qo(z) — 4>( — z), qo( — 1) = (f)(1) = —1 and 0'(O) = 0. 
Notice that Aa is a closed affine subspace of the Banach space of bounded holo

morphic maps of Qa. We endow it with the induced metric and affine structure. 
We define A^ C Aa the space of maps which are real symmetric. 

2.2. More on unimodal maps. — A C3 unimodal map such that Sf < 0 on 
/ \ {0} and such that its critical point is non-degenerate (that is, D2f / 0) will be 
called a S -unimodal map. 

We say that x is a periodic orbit (of period n) for / if fn(x) = x and n ^ 1 is 
minimal with this property. In this case we define Dfn(x) as the multiplier of x. 
Notice that this definition depends only on the orbit of x. We say that x is hyperbolic 
if \Df"(x)\ jtl. 

A unimodal map is called regular (or hyperbolic) if all periodic orbits are hyperbolic 
and the iterates of the critical point converge to an attracting periodic orbit. This 
condition is C2-open, moreover a 5-unimodal map is regular if and only if it has a 
hyperbolic periodic attractor (see [MvS]). 

A k-parameter family of unimodal maps is a map F : Bk x / —> I such that for 
p G Bk\ fp(x) = F(p, x) is a unimodal map. Such a family is said to be Cn or analytic, 
according to F being Cn or analytic. We introduce the natural topology in spaces of 
smooth families (Cn with n. = 2 , . . . , oo), but do not introduce any topology in the 
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space of analytic families (however, we will refer from time to time to induced Cn 
topologies). 

An analytic family of S-unimodal maps F will be called non-trivial if there exists 
a regular parameter. Notice that this condition is C3-open. 

A unimodal map / is called Collet-Eckmann (CE) if there exists constants C > 0, 
À > 1 such that for every n > 0, 

|£>/n(/(0))| > C\". 

This means that the map is strongly hyperbolic along the critical orbit. It is also 
useful to study the hyperbolicity of backward iterates of the critical point, so we say 
that / is Backwards Collet-Eckmann (BCE) if there exists C > 0, A > 1 such that for 
any n > 0 and any x with fn(x) = 0, we have 

\Df"(x)\ > CX". 

By a result of Nowicki (see [MvS]), for 5-unimodal maps CE implies BCE, so we 
will mostly discuss the Collet-Eckmann condition (except for the last section where 
we consider C2 unimodal maps as well). 

Very often it is useful to estimate how fast is the recurrence of the critical orbit. 
We will be mainly interested in two kinds of control: Polynomial Recurrence (P) if 
there exists a > 0 such that 

I/" (0)| >n-" 

for big enough n and Subexponential Recurrence (SE) if for all a > 0, 

I/" (0)| > e~'m 

for n big enough. 
We will say that / is Weakly Regular (WR) if 

lim lim inf 
(S •() N • x 

1 

n L<K<N 

ln|D/(/fc(0))|=0. 

fk(o)e{-s,s) 

This condition is used in proofs of stochastic stability for C2 maps, see [T2]. 
We will consider spaces of 5-unimodal maps: we define Uv C Cr(I) the set of 

5-unimodal maps. Spaces of analytic unimodal maps are now easily defined: Ua — 
U ( N Ae e 

2.3. The quadratic family. — The quadratic family is the most studied family 
of unimodal maps. It is usually parametrized by 

qt(x) = t-x2, 

so that for —1/4 ^ t ^ 2, there exists a unique symmetric interval It = [—f3ufit] such 
that qt(It) C It and qt(-pt) = —fit, so qt can be seen as a unimodal map of It (which 
depends on t). Moreover Sqt(x) < 0 if x ^ 0. 
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By an affine reparanietrization of the parameter t and of each interval If, we obtain 
a canonical one-parameter family of 5-unimodal maps in the interval L which we 
denote pu t G B1, which will be called the quadratic family as well. 

2.4. Quasisymmetric maps. — Let 7 ^ 1 be given. We say that a homeomor-
phism / : IR —» R is quasisymmetric (qs) if there exists a constant k > 1 such that for 
all x G IR and any ft > 0 

1 . f{x + ft) - fix) 
k " fix) - fix - ft ^ k. 

A homeomorphism ft is quasisymmetric if and only if it admits a real-symmetric 
extension to a quasiconformal map ft, : C —> C (Ahlfors-Beurling). We wrill say that 
h is 7-qs (or that 7 is a qs constant for ft) if the dilatation of ft is bounded by 7. 
This definition of the quasisymmetric constant is convenient since the composition 
of quasisymmetric maps g and / is readily seen to be quasisymmetric and the qs 
constant of g o f is bounded by the product of the qs constants of g and / . 

If X C IR and ft : X —> IR has a 7-quasisymmetric extension to IR we will also say 
that h is 7-qs. 

3. Statement of the results 

3.1. A dichotomy for generic families of 5-unimodal maps. — We would like 
to classify the typical behavior in generic families of unimodal maps. This classifica
tion should reveal refined information on the stochastic description of the dynamics 
of those typical parameters. 

We will therefore consider a smooth enough family of unimodal maps F. The 
techniques of the present paper will need the fact that F is a family of 5-unimodal 
maps. This includes two main restrictions: the negative Schwarzian derivative and 
the quadratic critical point. The first one is serious, since this condition is not dense, 
but can be removed with more refined techniques (see [A]). The second one (which 
is not present in the usual definition of 5-unimodal map, but is rather a convention 
in this paper) is no serious loss of generality, since quadratic critical point is certainly 
typical among unimodal maps. 

Remark 3.1. — Families of unimodal maps with a fixed critical exponent different 
from 2 have also been subject of much study. This theory has many similarities, but 
also some important differences and new features, and is not nearly as complete as 
the case of criticality 2. It is however widely expected that the Palis conjecture (and 
indeed our Theorems A, B and C) still holds in this setting. 

We first consider the analytic case. 
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Theorem A. — Let F be a non-trivial k-parameter analytic family of S-unimodal 
maps. Then for almost every non-regular parameter p G Bk, fp satisfies the Collet-
Eckmann and Polynomial Recurrence conditions. 

Notice that the set of non-trivial analytic families is indeed generic in any meaning
ful sense: its complement has "infinite codimension", see Proposition 4.3. Moreover, 
if an analytic family is non-trivial, it is possible to verify the non-triviality in finite 
time (with an infinite precision computer ^ ) . 

Our second result about non-trivial analytic families is the robustness of a slightly 
weaker dichotomy under C2 perturbations of the family. 

Theorem B. - Let F be a non-trivial k-parameter analytic family of S-unimodal 
maps. Let be a sequence of C2 families such that —-> F in the C2 topol
ogy. For each n, let Xn be the set of parameters p G Bk where F^ is either reg
ular or has only repelling periodic orbits and satisfies simultaneously the Backwards 
Collet-Eckmann, Collet-Eckmann, Subexponential Recurrence and Weak Regularity 
conditions. Then \Xn\ 1. In particular, almost every parameter of F is Weakly 
Regular. 

As a consequence, we can use a Baire argument to conclude that the dichotomy 
is still valid among topologically generic smooth families (that is, belonging to some 
residual set), obtaining the following corollary of Theorems A and B. 

Theorem C (Smooth Dichotomy). In topologically generic k-parameter Cr, r = 
3, 4 , . . . , oc families of S-unimodal maps, almost every non-regular parameter satisfies 
the Backwards Collet-Eckmann. Collet-Eckmann, Subexponential Recurrence and 
Weak Regularity conditions. 

It is good to recall that both types of behavior described by the dichotomy are 
indeed observable for open sets of families of unimodal maps ([J], [BC]). 

Remark 3.2. — The space of S-unimodal maps is easy to describe and easier to work 
with but has some disadvantages. One of them is that it is not an intrinsic condition, in 
particular it is not invariant by analytic change of coordinates. A more natural class 
to work with is the space of quasiquadratic unimodal maps as defined by [ALM]. 
A unimodal map / is called quasiquadratic if there exists a C3-neighborhood of / 
where all maps are topologically conjugate to some quadratic map. The results of this 
paper are still valid in spaces of quasiquadratic unimodal maps (which includes S-
unimodal maps). The proofs are unchanged, since the results we need from [ALM] are 
stated and proved for quasiquadratic maps. We remark further that the description of 
quasiquadratic unimodal maps can be used to describe all unimodal maps: it is proved 

'!'Since regular parameters form an open set (non-empty if the family is non-trivial), and any regular 
parameter one can be also checked in finite time (by locating the attracting hyperbolic periodic orbit). 
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in [A], [AM4] that (Kolmogorov) typical (analytic or smooth) unimodal maps have 
either a quasiquadratic renormalization or a quasiquadratic unimodal restriction. 

3.2. Ergodic consequences. — The importance of the above dichotomy is the 
fact that each of the two possibilities has very well defined stochastic properties. We 
quickly recall those (we assume that maps are 5-unimodal). 

Regular maps have a periodic attractor whose basin is big both topologically (open 
and dense set) as in the measure-theoretical sense (full measure). Moreover the at
tractor and its basin are stable under C1 perturbations. The dynamics of such maps 
can be described in deterministic terms. 

Maps satisfying CE and SE have non-deterministic dynamics. They can be however 
described through their stochastic properties, and it turns out that such maps have 
the main good properties usually found in hyperbolic maps. First, there is a physi
cal measure, that is an invariant probability which describes asymptotic behavior of 
orbits: for almost every x and for every continuous (ft : / —> M, 

lim 1 
n 

N-L 

A;=0 
4>(fk(x)) = (ftdfi. 

This physical measure has a positive Lyapunov exponent and is indeed absolutely 
continuous and supported on a cycle of intervals, so the asymptotic behavior is non-
deterministic. The convergence to the asymptotic stochastic model is exponential, 
see the results on decay of correlations and convergence to equilibrium ([KN], [Y]). 
Those properties are beautifully related to a spectral gap of a transfer operator and 
to zeta functions, see [KN]. Notice finally that exponential decay of correlations is 
actually equivalent to the Collet-Eckmann condition (see [NS]). 

W7hile the dynamics is highly unstable under deterministic perturbations (nearby 
maps can be regular for instance), the stochastic description given by the physical 
measure \i is robust under stochastic perturbations: the perturbed system has a 
stationary measure which is close to /x in the sense of the L1 distance between their 
densities ([BV]). For studies of decay of correlations for the perturbed systems, see 
[BBM]. 

4. Analytic families 
4.1. Hybrid classes and holonomy maps. — Two 5-unimodal maps /, / are 
said to be hybrid equivalent if they are topologically conjugate and, in case they are 
regular, their attracting periodic orbits have the same multiplier. 

The set of all maps which are hybrid equivalent to some / is called the hybrid class 
of / . The partition of 5-unimodal maps into hybrid classes is thus a refinement of 
the partition in topological conjugacy classes. 
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It follows from a result of Guckenheimer (see [MvS]) that any 5-unimodal map / is 
topologically conjugate to some quadratic map. It turns out that if / has a hyperbolic 
attractor, we can select the quadratic map with a hyperbolic attractor with the same 
multiplier^2). In particular, each hybrid class intersects the quadratic family in at 
least one point. 

The problem of uniqueness is much harder. The following result is due to Lyubich 
[L2] and Graczyk-Swiatek [GS], and is a consequence of (the proof of) the equivalent 
rigidity result for quadratic maps: 

Theorem 4.1. — Let h be a topological conjugacy between two analytic S-unimodal 
maps f and f which have all periodic orbits repelling. Then h is quasisymmetric. 

Remark 4.1. — Although we won't use it here, a similar theorem still holds for maps 
with non-repelling periodic orbits: if / and / are two topologically conjugate 5-
unimodal maps and have non-repelling periodic orbits then we can select a topological 
conjugacy which is quasisymmetric (the choice of the topological conjugacy is not 
unique). This result is considerably easier than the case where all periodic orbits are 
repelling, and does not use analyticity. 

This rigidity result has a remarkable consequence for quadratic maps: each hybrid 
class intersects the quadratic family at a unique parameter. Thus, any 5-unimodal 
map / is hybrid equivalent to a unique quadratic map x{f). The map \ is called the 
straightening ^\ 

Lemma 4.2. — Let f be an analytic S-unimodal map. Then x(f) is regular/CE/P if 
and only if f also satisfies the corresponding property. 

Proof. — The property of being regular is clearly invariant under hybrid equivalence, 
so we only have to analyze invariance of the conditions CE and P. 

By [NP2], the Collet-Eckmann condition is topologically invariant, so it is pre
served under hybrid equivalence. 

To check invariance of polynomial recurrence of the critical orbit, first assume 
that / has some non-repelling periodic point p. In this case, the the orbit of p must 
attract the critical point. In particular, the critical point is either non-recurrent (in 

(2)This follows for instance from Milnor-Thurston kneading theory and the fact that the quadratic 
family is a full family. Another way to see this is to notice that in each "hyperbolic window" of 
quadratic maps (a maximal parameter interval (a, b) such that pt is hyperbolic for t G (a, 6)), the 
multiplier of the hyperbolic attractor induces a homeomorphism from (a, 6) to ( — 1,1) (this is a 
consequence for instance of the work of Douady-Hubbard on the complex quadratic family). 
('̂ We should point out that there is also a notion of hybrid class in complex dynamics. In that 
context, the fact that each hybrid class (of quadratic-like maps with connected Julia set) contains 
exactly one quadratic polynomial is a consequence of the Straightening Theorem of Douady-Hubbard. 
Our definition of hybrid class is motivated precisely by the possibility of defining an analogous 
straightening map (whose existence is proved by quite different methods). 
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which case both / and \(f) satisfy P in a trivial way) or periodic (in which case / 
and x(f) do not satisfy P also in a trivial way). 

If / has all periodic orbits repelling, by Theorem 4.1, the conjugacy between / and 
\{f) is quasisymmetric, and in particular Holder. It is easy to see that P is invariant 
by Holder conjugacy. • 

Remark 4.2. — By [NP1], two 5-unimodal Collet-Eckmann maps which are topolog
ically conjugate are Holder conjugate, so using [NP2] we see that the joint conditions 
CE and P are topologically invariant. This joint invariance of CE and P is all that 
will be used in the further arguments. Notice that [NP1] and [NP2] do not assume 
analyticity, and are more elementary than Theorem 4.1. 

4.2. Hybrid laminations. — It is natural to study the hybrid class of some map / . 
This is what is done in Theorem A of [ALM] in the analytic setting, where it is shown 
that in Ua, every hybrid class is a codimension-one analytic submanifold. Moreover, 
different hybrid class fit together in some nice structure, called hybrid lamination. 

Remark 4.3. — It is not known if the hybrid lamination is really a lamination every
where. In [ALM], it is shown that the hybrid lamination is a lamination (in the usual 
sense) "almost everywhere'1 (more precisely, if restricted to an open set containing the 
complement of coimtably many classes corresponding to existence of neutral periodic 
orbits), which is enough for our purposes. 

A fc-parameter analytic family of .S-unimodal maps can be thought as an analytic 
map from Bk to some Ua. As a consequence, the structure of the hybrid lamination 
implies that non-trivial analytic families are indeed quite frequent. 

Lemma 4.3 (Most analytic families are non-trivial). If a k-parameter analytic fam
ily of S-unimodal maps is not contained in some non-regular hybrid class then it is 
non-trivial. In particular, non-trivial analytic families are dense in the space of C" 
families of S-unimodal maps, n = 3 , . . . . oc. 

Proof Let us consider an analytic family of 5-unimodal maps F. By the theory 
of Milnor-Thurston, see [MvS], either all parameters have the same non-periodic 
kneading sequence, or there exists a parameter with periodic critical point. In the 
latter case, the family is of course non-trivial, so let us consider the former case. Two 
5-unimodal maps with the same kneading sequence are either topologically conjugate, 
or one of them possess a neutral periodic orbit (see Corollary, Chapter 2, page 157 of 
[MvS]). and it follows that the other is necessarily regular. Thus, if the family F does 
not have regular parameters, all maps are non-regular and topologically conjugate, 
that is, F is contained in a non-regular hybrid class. 

For the denseness result, given a Cr family F, approximate it by an analytic fam
ily F. If such an analytic family is contained in a hybrid class, we can perturb it further 
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in order to intersect two hybrid classes, since each hybrid class is a codimension-one 
submanifold. • 

Let us consider the case where F is a one-parameter analytic family of S'-unimodal 
maps, that is, an analytic curve in some Ua. A consequence of the nice structure of 
the hybrid lamination is the following result: 

Lemma 4.4 (see the proof of Theorem C of [ALM1). — // F is a one-parameter ana
lytic family of S-uni/modal maps which is not contained in some hybrid class then 
there is an open set of parameters, with countable complement, where F is transverse 
to the hybrid lamination. 

Define the map \p on Bl by \ F ( 0 = xift)- m [ALM] the map \F is considered 
as the holonomy map from F to the quadratic family along the hybrid lamination in 
some Ua. Using this interpretation, they obtain the following result: 

Theorem 4.5 (Theorem C of [ALM]). — Let F be a one-parameter family of unimodal 
maps which is not contained in some hybrid class. Then there is an open set U C B1 
with countable complement such that the straightening \F is quasisymrnetric in any 
compact interval J C U. 

4.3. Dichotomy in the quadratic family. — The main result of [AMI] is that 
almost every parameter in the quadratic family is either regular or Collet-Eckmann 
with a polynomial recurrence of the critical orbit. To obtain the same result for a 
non-trivial analytic family using Theorem 4.5, we will need a stronger estimate, since 
quasisymrnetric maps are not in general absolutely continuous. 

Let us say that a set X C Bx has total qs-probability if the image of B{ \ X by 
any quasisymrnetric map h : B1 —> Bl has zero Lebesgue measure. 

By an improvement of the proofs in [AMI] (see appendix), it is possible to obtain 
the following result: 

Theorem 4.6. The set of quadratic maps which are either regular or simultaneously 
CE and P has total qs-probability. 

Remark 4.4. — In [AMI] a better result than polynomial recurrence is obtained in the 
quadratic family. Namely it is shown that the asymptotic exponent of the recurrence 

lim sup 
s+<<+< 

-In IP (0)1 
Inn 

is exactly 1 for almost every non-regular map. However, for a set of total qs-
probability, we are only able to show that the asymptotic exponent is bounded. 
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4.4. Proof of Theorem A. — Let F be a non-trivial analytic family. If all pa
rameters are regular, there is nothing to prove, so assume that there is a non-regular 
parameter. 

First assume F is one-parameter. By Theorems 4.6 and 4.5, for almost every 
t G Bl, XF(£) is either regular or satisfies C E and P. By Lemma 4.2, this implies that 
ft is either regular or C E and P. 

Assume now that F is a ^-parameter family. Let p G Bk be a regular parameter. 
Let L : B1 Bk be an affine map such p G L(B1). Let FL be the one-parameter 
family defined by /fL = fm). Then FL is a non-trivial one-parameter analytic family 
and hence for almost every t, ftL is either regular or C E and P. The result follows by 
application of Fubini's Theorem. 

5. Robustness of the dichotomy 

To obtain the robustness claimed on Theorem B our approach will be to exploit an 
important result of Tsujii, whose core is a strong generalization of Benedicks-Carleson 
result and techniques. This result establishes that the CE and SE conditions are 
infinitesimally persistent in one-parameter families unfolding generically: they are 
density points of CE and SE parameters. The connection with our robustness result, 
which has a global nature, is done using some general argument. 

5.1. Tsujii's theorem. — Let F be a C2 ^-parameter family of unimodal maps. 
Assume that p0 is a parameter such that fPo satisfies CE, BCE, SE, has a quadratic 
critical point and all periodic orbits repelling. Tsujii's Theorem considers the case 
where F is a generic unfolding at po. For one-parameter families, generic unfolding 
means oreciselv 

(5.1) 
OC 

.7=0 

nRnAi))M 
nRnAi))M 

dre+d where v = 
d 
dp ' p 

I P=PO 
This transversality condition will be called Tsujii transversality. 

If F is a one-parameter family, we will say that (F,po) satisfies the Tsujii conditions 
if all above requirements are satisfied. 

The following is an immediate consequence of the main theorem of Tsujii in [Tl]. 

Theorem 5.1. — Let F be a C2 one-parameter family of unimodal maps. Assume 
(F, to) satisfies the Tsujii conditions. Then to is a density point of parameters t for 
which (F. t) satisfies the Tsujii conditions and for which ft is WR. 

5.2. A higher dimensional version. — In order to pass from one-parameter to 
fc-parameters, we will need the following easy proposition. Let us say that p G Bk is 
a density point of a set X along a line / through p if p is a density point of l n X in / 
(endowed with the linear Lebesgue measure). 
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Proposition 5.2. — J/pG Bk is a density point of X along almost every line, then p 
is a density point of X in Bk. 

Proof. — Let E be the characteristic function of X. For each line I through p, let 
Ai : M —>• I be an isometric parametrization of I taking 0 into p. Let pk~l be the 
space of such lines with the natural probability measure (obtained by identification 
with the k — 1 dimensional projective space). Let 

Pe(l) = 
•1 

- 1 
r\E(Ai(er))dr 

Assuming that p is a density point of X along almost every I we have, for almost 
every / 

lim pF(l) — 1. 
£->0 

Using polar coordinates, the relative measure of X in an e ball around p is given by 

I PK-L 
p£(l)dl 

By the Lebesgue Convergence Theorem, 

lim £^0 
pM)dl = lim pM)dl 

•i ) 
= 1. 

This shows that p is a density point of X. 

We say that a fc-parameter F satisfies the Tsujii transversality at po if there exists 
a line through po along which the one-parameter Tsujii transversality condition is 
satisfied. In other words, there exists an affine map L : B1 —> Bk such that L(to) = po 
for some to G int J51 and such that the induced one-parameter family FL defined by 
FT = FL(T) 18 Tsujii transverse at the parameter to. 

By linearity of (5.1) with respect to c, if (F,po) is Tsujii transverse then all 
lines passing through po are Tsujii transverse except the lines parallel to a certain 
codimension-one space of IRA;. 

Lemma 5.3. — Let F be a C2 k-parameter family of unimodal maps. Assume (F,po) 
satisfies the Tsujii conditions. Then po is a density point of parameters p for which 
(F,p) satisfies the Tsujii conditions and for which fp is WR. 

Proof. — If F is Tsujii transverse at po then it is Tsujii transverse along almost every 
line through po. Along such a line it is a density point of parameters satisfying the 
Tsujii conditions and WR. The result follows from Proposition 5.2. • 
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5.2.1. Tsujii trans v ers ality and hybrid lamination. — Let us take a closer look at the 
Tsujii transversality for an analytic F. Let fp = /. 

Assuming the summability condition, 

ASTÉRISQUE 28G 

(5.2) 
d+d1 

A:=0 

1 
\Dfk(W))\ 

C oo 

(in particular if / is CE), let 

Uflv) = 
dd 

k=() 

v(fk(0)) 

D/fc(/(0)) 
= v(0) • 

DC 

k=l 

v(fk(0)) 
Dfk(f(0)) 

be a functional defined on continuous vector fields v on the interval. 

Lemma 5.4. — If f satisfies the summability condition then there exists an even poly
nomial vector field v, with v( — l) = v(l) = 0 and such that Vf(v) / 0. 

Proof. — Let S = £ \Dfk{f(0))\~l. Let e be so small that 

A:>0 
d<+<+<1<+ 

1 
IAP(/(0))| 

< 1/3. 

Let v be an even polynomial vector field satisfying v( — l)=v(l)=0, 

\v(x)\ < 2, for x e J, 

v(x) > 1, for x G (-£/2,e/2), 

nRnAi))M 
1 

105 ^ 
for x £ I \ (—e, e). 

Then z/f(i;) > 1 - 2/3 - 1/10 > 0. 

Lemma 5.5. - The kernel of Vf intersected with TA^j is the tangent space to the 
hybrid class of f. 

Proof. — By the previous lemma, Uf is non-trivial over TA^, so the above intersection 
is a closed codimension-one subspace of TAfL. So it is enough to show that if v is 
tangent then Vf(v) = 0. Assuming that v is tangent, consider an analytic family ft 
contained in the hybrid class of / , such that fo = / and 

d 
-i dtJ Uo 

= V. 

It is remarked in [ALM] that 

q„+I = D/"(/(0)) 
n 

k=0 

v(fk(0)) 
Dfk(f(0)) 

= Df"(f(0))vf(v) 

is precisely 
d 
dt 

ftn+1(o) 
\t=o 
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Moreover, t i—>• f™+l(0) are holomorphic functions of the complex parameter t, taking 
values in Qa, and whose domain is some definite neighborhood of 0. It follows by 
Cauchy estimates on the derivative that this sequence is bounded independently of 
n. By the summability condition (5.2), \Dfn(f(0))\ —* oo, so we have necessarily 
uf(v)=0. • 

Remark 5.1. — It is shown in [ALM] that the sequence an is not only bounded (for 
tangent vector fields v), but that the vector field defined on the orbit of the critical 
value by w(fk(0)) = a^, k > 0, extends to a quasiconformal vector field on C. 

So Tsujii transversality can be interpreted for such a map (satisfying the summa
bility condition (5.2)) as transversality of the family to the hybrid class of fp. 

Since for maps with negative Schwarzian derivative CE implies the BCE and that 
all periodic orbits are repelling, we can conclude from Theorem A, Lemma 4.4 and 
this discussion the following result: 

Lemma 5.6. — If F is a non-trivial k-parameter analytic family of S-unimodal maps 
then almost every parameter is regular or satisfies the Tsujii conditions. 

5.3. Estimates of density in perturbed families. — Let K be the space of C2 
fc-parameter families of unimodal maps (without, naturally, the hypothesis of negative 
Schwarzian derivative). 

Let X C K x Bk be the set of such that either fp is regular or satisfies the 
Tsujii conditions and WR. For F e K, let XF = {p G Bk\(F,p) G X}. 

Let Y C Bk he measurable with \Y\ > 0. We define the density of X along F on Y 
a« 

d(F,Y) = YnxF 
dg+d1d 

Instead of defining the classical infinitesimal density: 

lim mfd(F<BF(v)) 
£->0 

we will need to consider the stability of the density with respect to perturbations of F 
With this in mind we introduce two parameters. Let 

D (F,p) — liminf liminf d(F, B£(p)), 
<9+<1<+<1 
FP = FP 

D+(F,v) = lim inf lim inf d(F< BJv)). 
+<1>+>>1<w 

Remark 5.2. — Notice that in the definition of D~(F,p) we only consider families 
through a fixed map, while in the definition of D+(F,p) we do not make this restric
tion. 

Theorem A and Tsujii's result give a direct way to estimate D~: 
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Lemma 5.7'. — Let F be a non-trivial analytic family of S-unimodal maps. Then for 
almost every p G Bk, D~(F,p) = 1. 

Proof. — Indeed, by Lemma 5.6, almost every parameter is either regular or satisfies 
the Tsujii conditions. Since the set of regular maps is C2 open, D~(F,p) = 1 at any 
regular parameter p. 

Let us show that this still holds for parameters p satisfying the Tsujii conditions. 
Since Tsujii transversality through a fixed CE map is clearly an open condition, if F 
is any C2 family near F with fp = fp then (F,p) also satisfies the Tsujii conditions. 
Bv Lemma 5.3. 

\hnd(F,B£(p)) = l. 

Thus D-(F,p) = 1. 

However, for measure estimates in perturbed families, D+(F,p) is more relevant. 
We proceed to discuss the effect of the interchange of limits in the definitions of 
D~{F,p) and D+(F,p). 

Lemma 5.8. — In this setting, 

D+(F,p) > D~(F,p) 

Proof. — The idea is to construct, arbitrarily near F, a family F with fp — fp and 

lim d(F,BEi(p)) = D+(F,p), 

for some sequence e3 —• 0, which implies D~*~(F,p) ^ D~{F,p). To construct F, 
we will interpolate F with a certain sequence F^ which realizes the limit in the 
definition of D+(F,p). 

Let e1•—•» 0 be a sequence such that 

lim liminf d(F,B£Ap)) = D+(F,p). 
i^oc re

passing to a subsequence, we may assume that 

lim 
7— 

S3 + l 
qqx 

= 0. 

Let Kj C B£j(p) \ B£j+1(p) be compact sets such that 

(5.3) lim 
<+<1 

int K1 I 

\BeM 
= 1. 

Let (pj : Rk —> R be a C°° function supported in B£j(p) \ B£j+1(p) such that 

</>j\Kj = 1 
For a sequence p(n) Fj iet us define F : Bk x I -> I by 

<+<1<+<1< 
oc 

x+<1 
<PM(f(qJ) - f«)-
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It is easy to see that for every ô > 0 there exists a sequence Sn > 0, n ^ 1, such that, 
if ||F(n) -F||C2 < Sn then ||F-F||C2 < ô (and in particular F is C2). In other words, 
if p{n) p sufficiently fast then F is C2 and close to F in the C2 topology. 

Notice that F interpolates F and the sequence F^ in such a way that inside each 
B£n(p), fp = fpn^ for p in inti\~n. Thus, 

(5.4) XlhnKn = XFin) nKn. 

Fix S > 0 and select F^ such that 

(5.5) lim d(F{n\B£n(p)) = F>+(F(0),p) 

and moreover - F||C2 < Sn, so that ||F - F||C2 < S. By (5.3), (5.4), and (5.5), 

liminfd(F,Be(p)) sc lim d(F,BsJ= lim d(F("\B£„) = D+(F,p). 

Making (5 —>• 0, F converges to F and we obtain D+(F,p) ^ D~(F,p). • 

5.4. Proof of Theorem B. — Let F be a non-trivial analytic family of 5-unimodal 
maps. Then almost every parameter satisfies D~{F,p) — 1. Hence, for almost every p 
we have D+(F,p) = 1. 

Fix e > 0. Let p G J3fc be such that F>+(F,p) = 1. By definition of F>+ there 
exists a sequence of balls Un(p) centered at p and converging to p, and neighborhoods 
Vn(p) C K of F such that if F G Vn(p) then 

d(F,Un(p)) > l-e/2. 

By Vitali's Lemma, there exist sequences pj, nj such that Urij{p3) are disjoint and 
I U F''-'(p,)| = 1. Let m be such that U^i^nj (Pj) > 1 - e/2. Let V = rV/L, V"'(py). 
Then if F G V, d(F, £A:) ^ 1 - If F ^ -+ F in the C2 topology then F(n> G V for 
n large enough and the set of parameters for F^ which are either regular or satisfy 
the Tsujii conditions and Weak Regularity have measure at least 1 — 5, as required. 

Moreover, considering the sequence F^ = F, we conclude that almost every 
parameter for F is Weakly Regular, hence the last claim of Theorem B. 

5.5. Proof of Theorem C (Smooth Dichotomy). — By Proposition 4.3 non-
trivial analytic families are dense among Cn families of 5-unimodal maps, n — 
3 , . . . , oo. Theorem B implies that for all e the set De of Cn families of 5-unimodal 
maps for which the set of bad parameters (not regular or BCE, CE, SE and WR) has 
measure less then £, contains a neighborhood of all non-trivial analytic families, that 
is, an open and dense set. Therefore nF^/2™ is a residual set. Clearly any family in 
C]Dif2n satisfies the stated dichotomy. 
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Appendix 
Quasisymmetric robustness of Collet-Eckmann 

and polynomial recurrence 

The aim of this Appendix is to sketch a proof of Theorem 4.6. This proof is 
similar in strategy to the one of the main results of [AMI], however non-trivial 
modifications are needed. To avoid too much intersection, this will be a concise 
exposition concentrated mainly on the new steps needed for this improvement: the 
reader can find a full proof of this result in [AM3]. 

A.l. Quasisymmetric maps 
A. 1.1. Quasisymmetric reparametrization. — Let now H be an arbitrary but fixed 
7-quasisymmetric map from B1 to the parameter space of the quadratic family. To 
prove Theorem 4.6, it will be enough to show that almost every t G B1 correspond 
under H to a parameter of the quadratic family which is either regular or satisfies the 
Collet-Eckmann and Polynomial Recurrence conditions. 

From now on, all mentions to parameter space will (unless explicitly stated other
wise) refer to the above reparametrization. 

A. 1.2. Quasisymmetric capacities. — The 7-capacity of a set X c M in an interval / 
is defined as follows: 

Pi(X\I) = sup \h(xni)\ 
\h(I)\ 

where the supremum is taken over all 7-qs maps h : E —> R. 
Notice that if IJ are disjoint subintervals of / and X C UP then 

Pl(X\I) ^p7(U,P | / )supp7(X|P) . 

A.2. Sequence of first return maps. — The statistical analysis of [AMI] con
cerns mainly the following objects: we are given a unimodal map (which we will 
assume finitely renormalizable and with a recurrent critical point) / : / — > / and 
a sequence of nested intervals In C /. The inductive relation between the In is as 
follows: the domain of the first return map Rn to In consists of count ably many in
tervals {Ifyjçz, with the convention that 0 G I® (the central component), and we let 
I0 = In+ 1 

The special sequence of intervals In that we consider is called the principal nest, 
see [L2]. Since we assume / to be finitely renormalizable, there exists a smallest 
symmetric interval T C I which is periodic (say, of period m). For the principal nest, 
lx — [—p,p], where p is the orientation reversing fixed point of fm : T —• T. A level n 
of the principal nest is called central if Rn(0) G 7n+i- Let us say that / is a simple 
map if its principal nest has at most finitely many central levels. 

Each non-central branch of Rn is a diffeomorphism onto In. Let us introduce some 
convenient notation related to the iteration of the non-central branches of Rn. Let Q 
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be the set of finite sequences of non-zero integers (the empty sequence is included), 
an element of Q is denoted d— ( j i , . . . ,jm)- If d G £1 has length \d\ = m, we denote 
Rfi the branch of R.,f with combinatorics d, that is, the domain of RVJ is the set 

I%={xeI\Rt\x)eIdddddJnk,l^k^m}. 

Wele tC^=(^) -1( I ,+1) . 
Let us denote by Ln the first landing map from /„. to In+i. This map relates easily 

to Rn using the above description: the domain of Ln is UCn, and Ln\Cn — Rn. The 
reader should think of Ln as a high iterate of Rn. This leads to the following inductive 
relation between return maps: + i = Ln o Rn\I„-\- 1 • 

The return time of a point x belonging to an interval In is denoted by rn(x) (or 
rn(j), since it does not depend on x G I3n), that is, Rn\ll. = f'r'n^K The landing time is 
denoted by ln(x) = ln(j)- The combinatorics at level n of a point x is denoted (fn\x), 
so that x G Cfl){x). Let (s d k + be such that x G r!Î"'(r). We let rn = j(n)(flw(0)), 
so that Rn(0) G • The return time of the critical point is denoted vn = rn(0). Let 
S„ = \en)(Rn(0))\-

Notice that In+\ = R^^C^^) for some d. The interval Jn+i = Cfl){x) c 
is a big neighborhood of In+\ which will be useful later. This choice of neighborhood 
is particularly good for simple maps, and it turns out that in this case In+i is still 
much smaller than In for big n. 

A.2.1. Phase-parameter relation. — The starting point of [AMI] are two theorems of 
Lyubich describing the (unreparametrized) parameter space of the quadratic family: 
infinitely renormalizable maps have zero Lebesgue measure [L4] and almost every 
finitely renormalizable non-regular map is simple [L3]. We will need the following 
remark of [ALM]: Lyubich's proof actually allows one to conclude that the set of 
regular or simple maps lias full measure after any quasisymrnetric repararnetrization. 

In view of those results, Theorem 4.6 is reduced to proving that the set of param
eters which are Collet-Eckmann and polynomially recurrent have full measure (after 
repararnetrization by H) among simple maps. From now on we exclude non-simple 
maps from measure-theoretic considerations, and we will use "with total probability'1 
to refer to a set of parameters with full measure (after repararnetrization by H) among 
simple maps. 

To estimate the probability in the parameter corresponding to a certain behavior 
of the n-th stage of the principal nest, we make use of the Phase-Parameter Lemmas 
of [AMI]. They describe how the partition of the phase space induced by return 
and landing maps Rn and Ln induce parameter partitions of certain parameter win
dows Jn. 

The topological part of the phase-parameter relation is described in the following: 

Theorem A.l. — For each non-renormahzable quadratic map f with a recurrent crit
ical point, there exists a sequence of parameter intervals {Jn} such that: 
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(1) Jn is the maximal interval containing f such that for all g G Jn, there exists 
a continuation In+i[g] of In+i with the "same combinatoricsv in the following sense. 
There exists a continuous family of homeomorphisms hn[g] : I —> I', g G Jn which is 
equivariant with respect to the actions of g\(I \ 7n+1[g]) and / | ( / \ ^n+i); so that if 
x G I \ /n+i[/] then g o hn[g](x) = hn[g] o /(x). 

(2) There exists a homeomorphism En : 7n —• Jn sî c/i £/&a£ £n(Cn) ^ £/&e set of all 
g G Jn such that Rn[g](0) G hn[g}(Cn). 

This result follows immediately from the Topological Phase-Parameter relation 
for the unreparametrized quadratic family (Theorem 2.2 of [AMI]), since the 
reparametrization is a homeomorphism. 

In words, the sequence Jn in Theorem A.l denotes the maximal interval contain
ing / where we can consider a continuation of In (recall that the boundary of In is 
preperiodic), and such that the first return map to this continuation does not change 
combinatorics, so that its domain changes continuously. When we change the map g 
inside the interval Jn, the critical value of Rn[g] varies inside the interval In[g] "prop
erly", that is, moves from one boundary point to the other. In doing so, it goes 
through the partition induced by the Cn in a well behaved ("monotonie") way: it goes 
through each member of the partition exactly once, and thus defines a partition in 
the parameter interval Jn, corresponding topologically to the partition in the phase 
interval In. Theorem A.l thus establishes that the "diagonal" motion of the critical 
value and the "horizontal" motion of the partition of the phase space are "transversal". 
This is indeed how the proof of Lyubich goes (using complex analysis). This result 
can also be established using the Milnor-Thurston's combinatorial theory of unimodal 
maps together with the monotonicity property of the quadratic family. 

The next component of the phase-parameter relation is a quantitative estimate 
on the regularity of the phase-parameter homeomorphisms En. While the topological 
part is based on a very general transversality argument, the quantitative part depends 
on the delicate geometric estimates of Lyubich. 

We let J£n — En(IJ}n). The correspondence En is uniquely defined if restricted to 
Kn = In \ UCn • More importantly, it is quasisyrnmetric if restricted to certain subsets 
of Kn. To make this precise, let KTn = Kn D I^11 (forgetting information outside I^n) 
and Kn = In \ (U/r{ U /n+i) (forgetting information inside each IJn and also inside 

In+l). 

Theorem A.2. — Let f be a simple map. Then, for all 7 = (1 + ô)j > 7, there exist 
no > 0 such that for all n > no, 

PhPal: En\K^ is j-qs; 
PhPa2: En\Kn is ^-qs; 
PhPhl: hn[g]\Kn isl + 5-qs for all g G ; 
PhPh2: hn[g]\Kn is 1 + S-qs for all g G Jn. 
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This theorem is a straightforward consequence of the Phase-Parameter relation for 
the unreparametrized quadratic family (Theorem 2.3 of [AMI]). While in [AMI] 
the quasisymmetric constants in PhPal and PhPa2 could be taken arbitrarily close 
to 1 (the unreparametrized case corresponds to taking H — id, that is, 7 = 1) for 
deeper levels of the principal nest, this does not hold here due to introduction of 
reparametrization, which multiply all phase-parameter constants by 7 (notice that 
PhPhl and PhPh2 are estimates which do not depend on reparametrization, so we 
can still choose constants close to 1). This will be the source of many difficulties 
addressed in this Appendix. 

A.3. The statistical argument. — For the remaining of this Appendix we fix 
some constant 7 > 7, and we will start our consideration with levels of the principal 
nest where the reparametrized phase-parameter relation is already 7-qs. We will also 
need some very large constants b < b which depend only on 7 (the relation can be 
computed explicitly following the proof, in particular, b should be at least so big that 
b~l is a lower bound on the Holder constant of 7-qs maps). We let a = b~l and 
a = b~l. 

From now on we will always estimate the 7-capacity of bad sets in the phase space. 
To conclude results for the parameter we will use the following variation of the Borel-
Cantelli Lemma (this is Lemma 3.1 of [AMI]). 

Lemma A3. — Let X C M be a measurable set such that for each x G X there is a 
sequence Dn(x) of nested intervals converging to x such that for all xi,X2 G X and 
any n, Dn(x\) is either equal or disjoint to Dn(x2). Let Qn be measurable subsets 
ofM. and qn(x) = \Qn fl Dn(x)\/\Dn(x)\. Let Y be the set of x in X which belong to 
finitely many Qn. If^2qn(%) îS finite for almost any x G X then \Y\ = \X\. 

In practice, the Dn will be the parameter windows defined before (either Jn or Jr^n), 
and Qn will be certain subsets of Jn or JJTn corresponding (under the phase-parameter 
map) to branches of the return map (in the case of Jn) or landings (in the case of 
Jr^n), whose behavior we want to avoid. We will then show that such bad events have 
summable 7-capacity in the phase space, which will yield the conclusion for Lebesgue 
measure of the parameter using PhPal (for landings) or PhPa2 (for returns). 

A.S.I. A simple application: torrential decay of geometry. — We will now illustrate 
the use of Lemma A.3 and the phase-parameter relation with an estimate on the decay 
of geometry. More precisely, we will consider the scaling factor 

_ |/n+ll  
71 ' \In\ • 

The scaling factor is a particularly important parameter in the subsequent analysis: 
all statistical estimates that follow will be related to cn. 
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One initial information on the scaling factors is provided by the following result of 
Lyubich: 

Theorem A.4 (see [LI]). — If f is simple than there exists C > 0, A < 1 such that 
Cn <C\". 

We will now show that, with total probability, the decay of cn is much faster than 
exponential. To express this decay, let us consider the tower function defined by 
recursion T(l) = 2, T(n + 1) = 2T("\ We will show that, with total probability, the 
cn decrease torrentially to 0, that is, there exists k > 0 such that c~l > T(n — k) for 
n big enough. More precisely, we will show that c~)rl behaves as an exponential of 
(a bounded power of) c"1. 

This very fast decay implies that the landing map to In+\ is essentially a very high 
iterate of the return map to In (since it takes a long time to hit a very small interval). 
This very high iteration time will allow us to conclude that the characteristics (say, 
return time) of each level tend to be better behaved than in the previous one due to 
fast convergence to some average (some kind of Law of Large Numbers). The fact 
that we must deal with qs-capacity instead of Lebesgue measure will essentially reflect 
in the presence of errors terms (whose size depend on 7) in certain exponents in the 
above description. 

In order to estimate cn, we first consider the related quantity sn = \Sn\Rn(0))\, 
which denotes the number of times the critical orbit visits In before hitting In+\. 

If the critical orbit behaved as a sequence of random points (uniformly distributed 
with respect to Lebesgue), the expectation of this first hitting time should be c~l. 
More relevant for us, the distribution of the first hitting time (for the random model) 
should be concentrated about c~l: with large probability (say, less than 2~n), the first 
hitting time is in some "neighborhood" of c~l (say, [4r1lc~l,Anc~1]). The correspond
ing statement for our actual dynamical system is that the distribution of \Sn\x)\, 
with respect to Lebesgue measure on x G In is concentrated around c"1, which can 
be easily checked by the reader: the estimates are not significantly affected in the 
non-random case. 

However, due to the nature of the phase-parameter relation, we must estimate the 
distribution of \Sn\x)\ in terms of capacities. This will affect drastically the esti
mates. To understand why, keep in mind that 7-qs maps are only Holder (with some 
constant bounded from below by b~l), so they can potentially distort the logarithm 
of the ratio between In+i and In by such a constant. Aside from this problem, the 
information we need can be computed quite easily and is summarized below. 

Lemma A.5. — With total probability, for all n sufficiently big we have 

(i) 

(2) 

P27(|d(n)(*)l 0 | J „ ) < * C 
P2j(\én)(x)\^k\In)<e-k<. 
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We also have 

(3) W|d(n)(*)| O l / , ? 1 ) < fcc«, 

(4) P2y(\én)(x)\>k\IÏ)<e-k<-». 

This lemma corresponds to Lemma 4.2 of [AMI]. 
The phase-parameter lemmas (specially PhPal) allow us to transfer the last pair of 

estimates to the parameter space: for n sufficiently big, (Lebesgue) most parameters 
in J„n satisfy 

c7:a/2 < st) < c~2b. 

Here 'most' means that the complement has probability bounded by c"/3. But cn 
(and thus c"/3) decays exponentially for every simple map (by Theorem A.4). So 

Cn* < oo and we are able to apply Lemma A.3 to obtain the following: 

Lemma A.6. — With total probability, for n sufficiently big we have 

-a/2 < < -2b 

This lemma corresponds to Lemma 4.3 of [AMI]. 

Remark A. 1. — This result implies easily torrential decay of cn: lnc"^ can be easily 
bounded from below by Ksn for some universal K > 0, and thus for big n, 

- 1 ^ r 
Cn+1 > 6 N • 

A.4. Derivatives. — We proceed to estimate derivatives of branches of the return 
map. All lemmas in this section can be proved using the same argument as in [AMI]. 

The first step is to exclude the possibility of a 'too recurrent' or 'too low' return. 
It is analogous to Lemma 4.8 of [AMI], being a simple application of PhPa2. 

Lemma AJ. — With total probability, the distance between Rn(0) and dlv U {0} is at 
least \In\n~b. In particular Rn(0) £ Iv + i for all n large enough. 

Recall that the distortion of a diffeomorphism 6 on an interval T is defined by 

DistfrMT) 
3upT \Dd>\ 
infr \Dè\ ' 

Lemma A.7 allows us to start estimating the distortion of iterates of / . The 
following estimate corresponds to Lemma 4.9 of [AMI]. It is based on the fact that 
the distortion of branches of return maps is due to the position of the branch with 
respect to the critical point. Using PhPal, we are able to give polynomial lower bounds 
on the distance between the critical point with respect to non-central branches, which 
are valid with total probability. 

Lemma A.8. — With total probability, for n big enough and j ^ 0 

Dist(/|//,) ^ nb. 
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The following estimate is analogous to Lemma 4.10 of [AMI]. It is based on the 
previous one and the observation that return branches are torrentially expansive in 
average (from the decay of geometry). 

Lemma A.9. — With total probability, for n big enough and for all d€ £1 

Dist(#£) ^ nb. 

In particular, for n big enough, \DRn(x)\ > 2 if x G Uj^odn. 

Lemma A.9 gives estimates of derivatives under iterates of Rn. To obtain estimates 
of derivatives under iterates of / , we will need the following very general result of 
Guckenheimer which shows that quadratic maps are hyperbolic away from critical 
points and parabolic points (this actually generalizes to very general one-dimensional 
systems by a result of Mane), see [MvS]. We state just a consequence adapted to our 
particular setting. 

Theorem A.10. — Let f be a quadratic map without non-repelling periodic orbits (in 
particular if f is a simple map). For every e > 0, there exists C > 0, X > 1 such that 
if \fk(%)\ >e forO^k^m then Dfrn+l(x) > CX7n. 

With this information we are now able to give a lower bound on the derivative of 
iterates of / . The next lemma is identical to Lemma 4.11 of [AMI], and is based on 
the idea that full returns to sufficiently deep levels cause expansion (from the previous 
lemma), while the dynamics outside a definite neighborhood of the critical point is 
hyperbolic (by Theorem A. 10). 

Lemma A.ll. — With total probability, if n is sufficiently big and if x G LJn, j / 0; 
and Rn\In = fr, then forl^k^r, \Dfk(x)\ > \x\cl_x. 

A.5. How to deal with hyperbolicity. — Keeping in mind that our analysis of 
the statistical properties of the dynamics of / is made in terms of the induced return 
maps Rni we see that in order to estimate the hyperbolicity along the critical orbit 
(to obtain the Collet-Eckmann condition) we must have a convenient way to quantify 
the hyperbolicity of (for instance) non-central return branches. To do so, for j ^ 0, 
we define the quantity 

XJj) = inf 
xeiJr 

ln\DRn(x)\ 
q+q1q+q1 

We let An = inf^o An(j). 
To analyze the behavior of An, we start with the general information provided by 

Theorem A. 10. Coupled with exponential upper bounds on distortion for returns 
(which competes with torrential expansion of each non-central branch from the decay 
of cn), the hyperbolicity of / in the complement of 7„ + i immediately implies the 
following estimate (identical to Lemma 7.9 of [AMI]). 

Lemma A.12. — With total probability, for all n sufficiently big, Xn > 0. 
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The "minimum hyperbolicity" lim inf An of the parameters we will obtain will in 
fact be positive, as it follows from one of the properties of Collet-Eckmann parameters 
(uniform hyperbolicity on periodic orbits), together with our estimates on distortion. 

Our strategy however is not to show that the minimum hyperbolicity is positive, 
but that the typical value of Xn(j) stays big as n grows (and is in fact bigger than 
Ano/2 for n > no big). In this sense, it is convenient to think of \n(j) as a random 
variable whose distribution we are interested in. 

There is an inductive relation between the random variables Xn(j) for different 
values of n: this is related to the fact that if Rn(In+l) C Cn, d = ( j i , . . . , jm), we 
have i?n+i|/^+1 = Ln\Cn ° Rn\In+i- The hyperbolicity of the "landing part" Ln\Cn 
is essentially a weighted sum 

(A.l) YïlLi K{3i)rn{3i) 
EZLl rn(ji) 

So if the "return part" Rn\In+1 does not carry a big weight on the computation of 
An+i(j) (outside a set of branches with small 7-qs capacity), we can think of An+i(j) 
as distributed according to the weighted sum (A.l). This turns out to be the case 
as the return part does not affect much the denominator (time) and does not have 
a bad effect on the numerator (derivative). Indeed, in the next section we will see 
that the return time of Rn\I3n+l (given by vn) is much smaller (of order c"^) than 
the total return time Rn+i\I3nJrl (of order c"1). Moreover, if 7n+1 is outside a small 
neighborhood of 0, \DRn\IJn+1\ is bigger than 1. 

Since we also have to estimate the hyperbolicity of truncated branches (as the 
Collet-Eckmann condition is a condition along the full critical orbit, and not only at 
full returns), it will not be enough to just obtain that the distribution of Xn(j) 18 
concentrated around some value bigger than Ar?0/2. In order to state exactly what 
kind of hyperbolicity estimate we need, it is convenient to introduce a certain class of 
branches: good returns. 

We define the set of good returns G(no,n) CZ \ {0}, no, n G N, n ^ no as the set 
of all j such that 

Gl: (hyperbolic return) 

Xn{j) > An( 
1 + 2no_n 

2 
G2: (hyperbolicity in truncated return) for r-3/(n-l) ^ k ^ Tnij) we have 

inf 
ce 

In ID/*I 

sdr 
^ Ann 

\ _L 2no-n+l/2 

2ses 
2/(n-l) 

<+1<+1 
Of course we still have to show that the set of returns which fail to be good has 

small 7-qs capacity. In order to do so, we will construct explicitly a class of branches 
whose complement has small 7-qs capacity and then show that this class of branches 
is contained in good branches (see Lemma A.20). Before doing so, we must first 
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estimate the distribution of return times, since they have an important role in the 
computation of An(j). 

A.6. Distribution of return and landing times. — To estimate the distribution 
of return and landing times, it is convenient to also think of rn(j) and ln(j) as "random 
variables" which are related by some simple rules: if d = (ji, • • • ,jm) then ln(d) = 
zLl=i rn(ji) and rn+i(j) = vn + ln(d) where Rn(IJn+i) C Cn. In particular, since the 
distribution of \d^\ is concentrated around c~l which is torrentially big, the random 
variable ln behaves like a very large sum of random variables distributed as rn. On 
the other hand, rn+i should have distribution approximately like ln itself, once we 
show that vn does not make an important contribution. 

The main tool to do the actual analysis is to prove first a Large Deviation Estimate 
for rn using only the torrential decay of cn, and then show that such estimate leads 
to much more precise control of the subsequent levels. 

Since the transition between different levels introduces some distortion (although 
torrentially small), we are forced to deal with a sequence of quasisymmetric constants 
in our estimates: instead of just estimating 7-qs capacities for some fixed 7, we must 
consider a sequence jn = 7(71 + l)/n and 7,,. = j(2n -f 3)/(2n + 1). The basic idea 
is that control of the distribution of rn with respect to 7n-capacities will provide 
control of the distribution of ln with respect to jn capacities which in turn will allow 
to estimate the distribution of rn+i with respect to 7n+i capacities. Notice that 
inf 7n = inf 7n = 7. (This ideas are introduced in §5 of [AMI].) 

Although very technical, this part is very similar to the analysis made on (the 
several lemmas of) §6 of [AMI] (differing only by change of constants), so we will 
only state the final estimate which summarizes the results of that section and provide 
a short outline of the argument. 

Lemma A.13. — With total probability, for all n sufficiently large we have 

(1) pyn{ln{x) < C~S\In) < C"" * < <%~S, With S > 0, 
(2) Pjn(ln(x) < c~s\I^) < c£--s, with s>0, 
(3) p7yn(ln(x) > c~s\In) < ë~c™ s, with s > b, 
(4) p^n(ln(x) > c~s\Inn) < e~c"~\ with s > b, 
(5) pln(rn(x) < c'l^In) < cf_7 < c^Z.slf with s>0, 

(6) pln(rn(x) > cn^1|/n) < e c'n~1 < e c'n-1 with s > b. 

(7) C f l ) { x ) c - ^ K r M K c - ^ . 
(8)Cfl){x)< vn < c-^. 

(9) c-'\ <Hcddddd-l)<c~tl. 

A.6.1. Outline of the proof of Lemma A.13. — The estimates from below are rela
tively easy. Estimates (1) and (2) follow directly from ln(d) > |d| and Lemma A.5. 
Estimate (5) follows from (1) using the relation between rn+i and ln. The estimate 
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from below in (8) follows from (2) and PhPal, and the estimate from below in (7) fol
lows from (5) and PhPa2. The estimate from below on (9) was computed on Remark 
A.l. 

The estimates from above are much more delicate. In what follows we will ignore 
the difference between In and , since it is not substantial for the argument. The 
key estimate is (6), which says that the tail pln(rn(x) > k) decays exponentially fast 
(in k) with some specific rate (polynomial in cn_i). On the other hand, decay with 
some rate is easy: / is hyperbolic outside In+\ (see Theorem A. 10), so there exists 
some (small) an > 0 with pln(rn(x) > kci^1) < e~k for k ^ 1. This exponential 
decay implies that it is very unlikely that a large sequence d = (j i , . . . , jm) will have 
a landing time ln(d) = ]C"=i rn(ji) much bigger than mo"1. 

From this relation between rn and Zn, we see that there exists some j3n with 
p^n(ln(x) > k(5~l) < e~k\ and moreover we can estimate [3n in terms of an and 
the size of a typical Sn>) (which is given by a polynomial on c"1): /J"1 is bounded 
by a polynomial (this polynomial error is related to 7) on <\'n'lcn 1. From the relation 
between ln and rn+i we obtain an estimate on an+i in terms of vn and /3n, which we 
can rewrite in terms of vn, cn and c\n:Cfl){x)— vn is bounded by some polynomial on 

•11 n 
Since p^n (lTl(x) > Pnlc~l) is summable (by definition of /3n), it follows that vn+\ — 

vn is bounded by a polynomial on a~1c~1 with total probability (use PhPal), in 
particular, for n big we can bound cn+i with a polynomial on a~lc~l. 

In particular, if o^1 > c"1, o:"^ is bounded by a polynomial in o,̂ "1. Although 
initially we did not have any control on the value of an, we know that c~̂ x behaves 
as an exponential on c"1 (torrential growth), so eventually it catches up with ol~1'. 
for n big, c~l > cx~l. 

So for n big o"1 can be bounded exclusively by a polynomial on c~\1 as stated in 
(6). This automatically implies the estimate from above in (7) using PhPa2. Since 
(3~l and vn+\ are bounded by a polynomial on a~lc~l we obtain (3) and (4) and the 
estimate from above in (8). 

Since fVl1 expands 7n+i to an interval of size at least 2-n|I„.|, and the derivative 
of / is bounded by 4, we have 2nc~1 < 4''", so the estimate from above on (9) follows 
from the estimate from above in (8). 

A.7. Constructing hyperbolic branches. — In this section we show by an in
ductive process that the great majority of branches are reasonably hyperbolic (good 
branches). In order to do that, in the following subsection, we define some classes of 
branches with 'very good' distribution of times and which are not too close to the 
critical point. The definition of 'very good' distribution of times has an inductive 
component: they are composition of many 'very good' branches of the previous level. 
The fact that most branches are 'very good' is related to the validity of some kind of 
Law of Large Numbers estimate. The inductive definition will guarantee that the 'very 
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good' distribution of times holds in all scales and allows us to preserve hyperbolicity 
from one step to the other: very good branches are good. 

Remark A.2. — The several classes of branches that we will define do not correspond 
exactly to the same classes in [AMI], although classes with the same name have 
essentially the same function in the proof. There are some non-trivial steps to make 
this adaptation work, since the previous proof uses strongly small quasisymrnetric 
constants. This will lead to consideration of extra classes below (bad returns and fast 
landings). 

Remark A3. — This section contains the main modifications with respect to [AMI] 
(precisely the introduction of bad returns and fast landings). The role of those mod
ifications is explained in Remark A.4. 

A.7.1. Standard landings. — Let us define the set of standard landings at time n, 
LS(n) C Q as the set of all d= (j\,..., jrn) satisfying the following: 

LSI: (m is not too small or large) Cn^2 < m < c~2l\ 
LS2: (No very large times) rn(jt) < c~t\ for all i. 
LS3: (Short times are sparse in large enough initial segments) For c~l\ ^ k ^ m 

#{1 ^ i < k, ru(ji) < C } < (6 • 2n)c"/_f1k 
We also define the set of fast landings at time n, LF(n) C Q by the following 

conditions 
LF1: (m is small) m < cTla^2. 
LS2: (No very large times) rn(jt) < c~t\ for all i. 
It is easy to convince oneself that most landings are standard. Indeed, the dis

tribution of \d('n\x)\ is concentrated around c~l as requested by LSI. Moreover, 
branches with very large times (larger than c~*\) are so few that even a long se
quence (j i , . . . ,jrn) with m < c^2\ is not likely to contain such an event, as required 
by LS2. Finally, the Law of Large Numbers indicates that a long sequence (ji,..., jrn) 
will seldom contain a proportion of short times much bigger than their frequency as 
given by Lemma A. 13, as required by LS3. 

Since fast landings are not standard, they must be few. However, they correspond 
to most of the branches which are not standard. The reason for this comes from 
the requirements of LSI, which imposes two conditions (an upper and a lower bound 
on m). The upper bound condition is much more rarely violated (by one exponential 
order of magnitude) than the lower bound (just check Lemma A.5). Fast landings 
essentially capture the violations of the lower bound (LF1). 

The actual estimates for the frequency of standard and fast landings are provided 
below. They can be obtained from the estimates of distribution of return times 
(contained in Lemma A. 13) following the general lines of Lemma 7.1 of [AMI]. This 
step is purely dynamical (no further parameter exclusion is made). 
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Lemma A.14. — With total probability, for all n sufficiently big, 
(1) P^(d{n)(x) i LS(n)\In) < ciP/2, 
(2) PrJd(n)(x) i LS(n)uLF(n)\In) < cf /2, 

(3) p,„(rf(n)(x)^L5(n)|/.-")<4/3/2. 
(4) Pî,Xén\x) i LS(n) U LF(n)\I?) < c f /2 . 

A.1.2. Very good returns, bad returns and excellent landings. — Define the set of 
very good returns, VG(no,ri) C Z \ {0}, no $C n G N and the set of bad returns, 
B(riQ,n) C Z \ {0}, no ^ ri G N, by induction as follows. We let V G (no, no) = 
Z \ {0}, B(no*no) = 0 and supposing VG(no,n) and B(rio,n) defined, define the set 
of excellent landings LE(rio,n) C LS(n) satisfying the following extra assumptions. 

LEI: (Not very good moments are sparse in large enough initial segments) For all 
cn~i <k^m 

#{1 ^ k, ji i VG(n0,n)} < (6 • 2n)<L1fc, 

LE2: (Bad moments are sparse in large enough initial segments) For all cn < 
k ^ m 

#{1 ^ / ^ k, j , £ B(no.v)} < (6 • TK^k, 

We define VG(rio, n-hl) as the set of j such that Rn(In+l) = Cn with d G LE (no, n) 
and the extra condition: 

VG: (distant from 0) The distance of In+1 to 0 is bigger than c"h 

And we define B(no, n +1) as the set of j ^ VG(n0, n+1) such that Rn(Ln+i) = C/f 
with d ^ LF(n). 

Very good returns are designed to carry hyperbolicity from level to level: since 
they are composed of many very good returns of the previous level (LEI), and are 
not too close to 0 (VG), they should keep most of the hyperbolicity of level no (given 
by Ano > 0). For this to work, we must control the distribution of return times of 
the previous level inside a very good branch. The risky situation is the presence of 
not very good branches which have a large return time: those are contained in the 
bad branches defined above. It turns out that they can not spoil the hyperbolicity 
because they are too few (LE2). This basic idea will be carried out in detail through 
a series of lemmas. 

Very good and bad returns can be estimated in an inductive fashion analogously 
to the estimate of Lemmas 7.2 and 7.3 of [AMI]: initially all branches are very 
good and no branches are bad, and as n grows the Law of Large Numbers indicates 
that conditions LEI and LE2 should be rarely violated so that very good branches 
should continue to be frequent and bad branches rare. This estimate is again purely 
dynamical. 

Lemma A.15. — With total probability, for all no sufficiently big, 

(1) P7„0'(")(a0 t VG(n0,n)\In) < < U , 
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(2)p7„(j(n)(a:)GB(no,n)|/„)<2^'I1, 
(3) Pr„(én}(x) i LE(n0,n)\I„) < c*'/5, 
(4) Pr„(én)(x) i LE(nihn) U LF(n)\In) < c'/,". 
(5) p:ldddddAén\x)£LE(n{).n)\IJ;')<iï/\ 

This translates immediately using PhPa2 to a parameter estimate analogous to 
Lemma 7.4 of [AMI]: 

Lemma A.16. — With total probability, for all no big enough, for all n big enough 
(depending on no), rn G VG(iiQ,n). 

Before going on we will need two simple estimates: one is for the return time of 
very good branches and another is for the return time of branches which are neither 
very good or bad. The first of those estimates is analogous to Lemma 7.5 of [AMI], 
and follows directly from the definitions of very good and bad branches. 

Lemma A.17. —~ With total probability, for all no big enough and for all n ^ no, if 
j G VG(nihn + 1) then 

m < n, + iO') < "icnU\> 

where, as usual, rn is such that Rn (L'n ; , ) = Cfi and d = (ji,.. . ,jin). 

Lemma A. 18. - With total probability for all no sufficiently big, if n > JIQ, if j ^ 
VG(niUn) U B(n(hn) then r,(j) < ^l{2c~\ 

Proof. Indeed, if j £ VG(n{un) U B{n{),ii) then Rn-i{IJ) C C(^_1 with d G 

LF(n — 1). By definition of fast landing, ln-i{d) < cr,"(2c~^2' SO 

/•„ (j ) = v„ _!+/„_, (d) < C f c ; f 2 + c-^• • 

At this stage we have most of the tools to show that almost every parameter is 
"Collet-Eckmann at first returns", that is. \Dfkn(f(0))\ is exponentially big for the 
sequence kn of first landings of /(0) in In. To obtain the full Collet-Eckmann condition 
(exponential growth for all /c), we will need to analyze truncations of branches or 
landings, that is, we will consider iterates of the type fk\Lf[ (or fk\Cn) for k less then 
the return time rn(j) (or ln(d)). 

We now show that very good branches are well behaved when truncated at a 
reasonably big time. Here "well behaved'1 means "spending most of the time in very 
good branches of the previous level'*. So if we are able to control the hyperbolicity 
of very good branches in some level we will have a good possibility of controlling 
truncated very good branches in the next level. This lemma corresponds to Lemma 
7.6 of [AMI], but the proof must be modified, with the use of bad returns and fast 
landings. 
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Lemma A.19. — With total probability, for all no big enough and for all n ^ no, the 
following holds. 

Let j <E VG(no,n + 1), as usual let Rn(In+1) C C | and d= ( j i , . . . , j,n). Let rrik 
be biqqest possible with 

Vn -f 
ddv 

3 = 1 
rn(ji) ^ k 

(the amount of full returns to level n before time k) and let 
Br. = 

d+d21d 
jieVGino.n) 

d+d1r+d 

(the total time spent in full returns to level n which are very good before time k) Then 
l-0k/k<cddddddf/* ifk>c?ln. 

Proof. — Let us estimate first the time %k which is not spent on non-critical full 
returns: 

ii. — k — 
d 

.7 = 1 
rn(ji). 

This corresponds exactly to vn plus some incomplete part of the return jm.h+i. This 
part can be bounded by c~h_l + en M\ (use the estimate of vn and LS2 to estimate the 
incomplete part). 

Using LS2 we conclude now that 

» ' k > ( i - C A > ' , ; , / " 
so m.k is not too small. 

Let us now estimate the contribution hk from bad full returns jt. The number of 
such returns must be less than c"'J^{mk by LE2 and the estimate on m/,. By LS2 their 
total time is at most c\"l^ M)rnk. < m/,.. 

The non very good full returns on the other hand can be estimated by LEI (given 
the estimate on m/,), they are at most c"_1n^:- So we can estimate the total time h-
of non very good or bad full returns (with time less then c~"{2''c~̂ 2 DY Lemma A. 18) 
bv 

a2 -a/2 -4/; 
c//„1cr/_i cn_2mk, while /j/,. can be estimated from below by 
/i (I/4 \ —<i/4 

It is easy to see then that ik/i~)k <C c"_j, hk/ftk <. c",/-\- We also have 

% 
< 2r"2/2 

So (tk + hk + lk)//Jk is less then c"J'f. Since ik + hk + lk + jjk = k we have 1 - ;3k/k < 
in+ hi +lk)à/d1 
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Remark A.4. — This lemma illustrates the main reason why the original argument of 
[AMI] must be changed in order to deal with big quasisymmetric constants. Indeed, 
in [AMI], we do not need to split the branches which are not very good in bad 
branches and otherwise (fast). The reason is that in [AMI] the distribution of rn(j) 
is concentrated in a much narrower window around c~^1 (say, {c~]_\2e, c~]_\2e)). In 
particular, in a large sequence {ji,-••,jk) (which should be thought as an initial 
segment of an excellent landing), we can estimate the proportion of the total return 
time due to very good branches essentially by considering the proportion of very good 
branches in the sequence. 

In this Appendix, the distribution of rn(j) is located in a much larger window 
(cn-i> cn-i)- The risky situation is to have a large sequence (jq,..., jk) with a large 
proportion of very good branches, but whose return time is near the bottom of the 
window (c"^), while the not very good branches in the sequence have all return time 
near the top (c"^). In this case, the proportion of the total time due to very good 
branches could be very small. 

The solution given in this Appendix is based on the idea that the not very good 
branches with large time (bad branches) are really very few: most of the not very 
good branches are indeed fast. Paying attention to this asymmetry, we can indeed 
prove that in such a sequence ( j i , . . . , jk), most of the total time is due to very good 
branches. 

This argument (most branches with atypical time are fast) is based implicitly in the 
following asymmetry which appeared already in our first statistical estimate, Lemma 
A.5. when we showed that the distribution of \d{n)(x)\ is concentrated around a, : 
there is a big difference (one extra exponential) in the estimates on the upper tail (7-qs 
capacity of {|d(n)(x)| > c~kb}) and the lower tail (7-qs capacity of {\én\x) < c~ka}). 

(Essentially the same problem, with the same solution, appears in Lemma A.22.) 

Now we conclude that very good (that is, most) branches are good, justifying our 
previous hints. 

LemmaA.20. — With total probability, for UQ big enough and for all n > no, 
VG(riQ,ri) C G(n0,n). 

The proof is the same as for Lemma 7.10 of [AMI], the two main features of 
very good branches exploited here are their good distribution of return times and 
the condition VG which allows us to avoid drastic losses of derivative due to starting 
very close to the critical point. The argument is by induction: first, all very good 
branches of level no satisfy condition Gl of a good branch, that is, a full return is 
very hyperbolic (this follows from the definition of Ano). Then, supposing that all 
very good branches of level n satisfy Gl, we conclude that very good branches of 
level n + 1 have enough hyperbolic branches in its composition (even if truncated) to 
satisfy both conditions Gl and G2. 
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A.7.3. Cool landings. — As we hinted in the last section, very good branches play 
the role of building blocks of hyperbolicity. We must now show that the critical point 
spends most of its time in very good branches. To do so, we will define a class of 
landings which are composed by many very good branches, but which are controlled 
to an ever greater detail than excellent landings. Their design will allow to estimate 
their hyperbolicity if truncated outside a relatively small initial segment. 

We define the set of cool landings LC(no,n) C ft, no,n G N, n ) no as the set of 
all d= ( j i , . . . ,jm) in LE(no, n) satisfying 

LCI: (Starts very good) jL G VG(no,n), 1 ̂  i ^ c °_J2. 
LC2: (Not very good moments are sparse in large enough initial segments) For all 

cn_i < k 

#{1 <C i < k, rn(ji) < c~a_{2} < (6 • 2n)c?/_31fc, 

LC3: (Bad moments are sparse in large enough initial segments) For cn_/l ^ k ^ m 

#{1 ^ i ^ k, j-i e B(rkhn)} < (6 • 2n)cnJ\k, 

LC4: (Starts with no bad moments) jt £ B(n0ln), 1 ̂  i ^ cn-{2. 

As in Lemma 7.7 of [AMI], cool landings are frequent and we get the following 
parameter estimate analogous to Lemma 7.8 of [AMI]. The ideas of this estimate 
are quite similar to the case of standard landings. 

Lemma A.21. — With total probability, for all no big enough, for all n big enough we 
have Rn(0) G LC(no,n). 

Let us now show that cool landings inherit hyperbolicity from very good returns. 
This result corresponds to Lemma 7.11 of [AMI], but the proof of this fact needs 
adjustments for big quasisymmetric constants, so we provide it here. 

Lemma A.22. — With total probability, if no is sufficiently big, for all n sufficiently 
big, if d G L(7(n0,n) then for all cn '{\{" ̂  < k ^ ln(d), 

inf 
C77 

lnlD/A:l 
k 

An0 
d2 

Proof. — Fix such d G LC(rio, n), and let d = ( j i , . . . , jrn). 
Let 

a A; = inf 
ci 

\n\Dfk\ 
k 

Analogously to Lemma A. 19, we define mk as the number of full returns before k, 
that is, the biggest integer such that 

d+d1r 

•i. = l 

TnUi) < k. 
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We define 

0k. = 
><< 

jieVG{n0,n+l) 

rn(ji), 

(counting the time up to k spent in complete very good returns) and 

ik = k-
d 

v 
rn(ji)-

(counting the time in the incomplete return at k). 
Let us then consider two cases: small ra^ (^k < c~l/2) and otherwise. 
Case 1 (rrik < cnl/'2). The idea of the first case is that all full returns are very 

good by LCI, and the incomplete time is also part of a very good return. 
Since full very good returns are very hyperbolic by Gl and very good returns are 

good, we just have to worry about possibly losing hyperbolicity in the incomplete 
time. To control this, we introduce the queue (or tail) qk = mîcd In\Dflk o fk~n'\. 
We have —q^ < — In(c,1/^^^ ) by VG and Lemma A. 11. Let us split again in two 
cases: ik big or otherwise. 

Subcase la (ik > c~t{^n l^). If the incomplete time is big, we can use G2 to 
estimate the hyperbolicity of the incomplete time (which is part of a very good return). 
The reader can easily check the estimate in this case. 

Subcase lb (ik < cn-^T1 ^ ) . If the incomplete time is not big, we can not use G2 
to estimate qk, but in this case ik is much less than k: since k > c~t!i"~l\ at least 
one return was completed {nik ^ 1). and since it must be very good we conclude that 
k > c~"{2 by LSI, so 

dd1d+d1r 
(1 + 2n,)-") 

2 
k - //, 

k 
-Qk An̂  

k 2 * 
— 2 I'2 

Case 2 (nik > c„"/ ). For an incomplete time we still have —q^ < — ln(cr7c,̂ _1), 
so -({k/k < cn ;, . 

Arguing as in Lemma A. 19, we split k — dk — ik (time of full returns which are 
not very good) in part relative to bad returns hk and in part relative to returns that 
are not very good or bad (which must be fast) //,-. Using LC3 and LC4 to bound the 
number of bad returns and LS2 to bound their time, we get 

_{2c;ib2(6-2")cti+x 

and using LCI and LC2 we have 

lk<c:a_{2c;ib2(6-2")ctimk, 
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By LCI and LC2 again, using LSI to estimate the time of a very good return by 
c~N-'I , we have that (3k > C~"Ç2RRIK/2, thus we get 

(A.2) hk + lk 
th 

/ a2/2 

which is very small. 

On the other hand, (3k > -a/2 -a2 12 
-•N-L CV-1 2 by hypothesis on m/,.. Let us split in three 

cases according to the behavior of ik.. 
Subcase 2a (ik not very good or bad). In this case, ik -a 12 -M) , so ih l3k is very 

small, and we actually have 1 — (3k (k a2/IX) 
N-L Since very good returns are good and 

even not very good returns have derivative at least 1, 

(A.3) _{2c;ib2(6-2")cti 
1 + 2 

2 
0k 
k 

-Qk 
k 

Ar/„ 
2 

Subcase 2b (ik very good). If ik is very good and ik > <"n-i • we can reason as 
in Subcase la that G2 can be used for the estimate of qk so that we have 

Ok > A„0 
1 + 2n<)-" 

2 
A- , Ù: An() A.„0 
k k 2 2 

by (A.2). 
If ù- ^ c~t^n~l\ tlien ù/A- is very small and so 1 — {%jk < c'n/l(\ and we obtain 

(as in Subcase 2a) estimate (A.3). 
Subcase 2c (ik bad). If ik is bad, by LC4 we have that m/, > c.~"'{2, but ik < C'C'^ 

by LS2, so ik/f3k is very small again and we have 1 — (3k/k < cani\{\ so estimate (A.3) 
applies and we are done. • 

A.8. Collet-Eckmann. — Since the critical point always falls in cool landings (see 
Lemma A.21), the Collet-Eckmann condition follows easily from Lemma A.22 (which 
guarantees gain of derivative after large truncations), together with Lemma A. 11, 
which controls loss of derivative at small truncations. This argument is identical to 
the one in §8.1 of [AMI], but we reproduce it here for the convenience of the reader. 

Lat 

ak = 
ln|ZV*(/(0))) 

k 
and en = a1!n_i. 

It is easy to see that if no is big enough such that both Lemmas A.21 and A.22 we 
obtain for n big enough that 

_{2c;ib2(6-2" d+d1d 
VN+I - 1 

, An vn^i — vn 
2 VN+I - 1 

and so 

(A.4) lim inf e.n 
N—+oc< 

v 

2 
Let now vn - Kk < vn+1 - 1. Define qk = In\Dfk-Vn(fVn(0))\. 
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Assume first that k < vn Hh cn^l\l *\ From LCI we know that rn is very good, 
so by LSI we have rn(rn) > cn^{2, so k is in the middle of this branch (that is, 
vn ^ k ^ vn + rn{rn) - 1). Using that \Rn(0)\ > \ln\/2n (by Lemma A.7), we get by 
Lemma A.11 that —qk < — ln(2~ncn_ic^_1). We then get from vn > c~^1 that 

(A.5) w+w1w w+w12w 
k 

-Qk ^ 
kd 1 -

using Lemma A.22 we get Iik>vn + c-t{in-1) 

_{2c;ib2(< V„ — 1 A„M k — VTI + 1 
k 2 k 

(A.6) 

Estimates (A.4), (A.5), and (A.6) imply that lim inf ak > Ano/2 and so / is Collet-
Eckmann. 

A.9. Recurrence. — To show that the critical point is polynomially recurrent, 
we can follow the same lines from [AMI]. First we look at the essentially Markov 
process Rn\(In \ 7n+i), which shows that with total probability, most (in the 7-qs 
sense) points in In approach 0 with a polynomial rate (the exponent must be chosen 
according to 7) until the first time they fall in Jn+i. More precisely, we show (after 
transferring to the parameter) the following estimate (analogous to Corollary 8.3 of 
[AMI]). 

Lemma A.23. — With total probability, for n big enough and for 1 ^ i ^ sri, 

In K ( 0 ) | 
In c,,._i) 

:b2 1 + ln(i) 
l n ( C ) 

To obtain the polynomial recurrence for / we relate the return times in terms of Rn 
to return times in terms of / . In other words, letting k, be such that R!n(0) = /A;'(0), 
we must relate k, and i. It is enough to do the estimate for a cool landing and we 
obtain the following estimate (as in Corollary 8.5 of [AMI]). 

Lemma A.24. — With total probability, for n big enough and for 1 ̂  i ^ sn, 

în(fci) 
in(c:M 

> a/3 1 + Hi) 
ln(c,7ii 

Let now v„ ^ k < v„+1. If |/*:(0)| < k~:ilji we have /A:(0) G /„ and so k = A:, for 
some i. It follows from Lemmas A.23 and A.24 tha t 

|/FC'(0)|>fc-3" . 

This concludes the proof of polynomial recurrence. We notice that polynomial lower 
bounds are easily obtained: considering |it!„.(0)| = |/?'n(0)| < cn-i and using vn < 
cn-i we S'et 

lim sup 
7)—>OC 

in i r^roii 
Inn 

^ a. 

ces 
1 

On * 
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