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COMPLEX SCHOTTKY GROUPS 

by 

José Seade & Alberto Verjovsky 

Abstract. — In this work we study a certain type of discrète groups acting on higher 
dimensional complex projective spaces. Thèse generalize the classical Schottky groups 
acting on the Riemann sphère. We study the limit sets of thèse actions, which turn out 
to be solenoids. We also look at the compact complex manifols obtained as quotient 
of the région of discontinuity, divided by the action. We détermine their topology 
and the dimension of the space of their infinitésimal déformations. We show that 
every such déformation arises from a déformation of the embedding of the group in 
question into the group of automorphisms of the corresponding complex projective 
space, which is a reminiscent of the classical Teichmùller theory. 

Introduction 

The theory of Kleinian groups introduced by Poincaré [Po] in the 1880\s played 
a major rôle in many parts of mathematics throughout the 20th century, as for ex­
ample in Riemann surfaces and Teichmùller theory, automorphic forms, holomor-
phic dynamics, conformai and hyperbolic geometry, 3-manifolds theory, etc. Thèse 
groups are, by définition, discrète groups of holomorphic automorphisms of the com­
plex projective line whose limit set is not the whole P^. Equivalently, thèse 
can be regarded as groups of isometries of the hyperbolic 3-space, or as groups of 
conformai automorphisms of the sphère S2. Much of the theory of Kleinian groups 
lias been généralisée! to conformai Kleinian groups in higher dimensions (also called 
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Môbius or hyperbolic Kleinian groups), Le., to discrète groups of conformai automor-
phisms of the sphère Sn whose limit set is not the whole sphère (see, for instance, 
[Kul, Ku2, Mal, Sul, Su2, Su3, Su4]). 

Many interesting results about the dynamics of rational maps on P^ in the last 
décades have been motivât ed by the dynamics of Kleinian groups, and there is an 
interesting "dictionary" between thèse two théories (see, for instance, [Sul, Su2, 
Su3, Su4, Mcl, Mc2]). The theory of rational maps lias also been generalised 
to automorphisnis of P2, and recently many results are being obtained about the 
dynamics of automorphisnis and rational endomorphisms of P£ in gênerai. This led 
us to define in [SV] the concept of a higher dimensional complex Kleinian groups. By 
this we rneant (infinité) discrète subgroups of PSL(n +1, C), the group of holornorphic 
automorphisnis of P". n > 1, acting with a non-empty région of discontinuity. 

One of the most interesting families of (conformai) Kleinian groups is provided by 
the Schottky groups, and the aim of this article is to study the analogous construction 
for groups acting by holomorphic transformations on complex projective spaces. We 
call thèse Complex Sehottky Groups. 

We consider an arbitrary configuration {(Li, M\),.... (Lr, Mr)} of pairs of pro­
jective n-spaces in P^n+1, which are ail of them pairwise disjoint. Given arbitrary 
neighbourhoods U\..... Ur of the L^s, pairwise disjoint, we show tliat there exists. 
for each i = 1,. .., r, projective transformations Tr of P^" + 1, which interchange the 
interior with the exterior of a compact tubular neighbourhood Nt of L% contained 
in Uy, leaving invariant the boundary Et = d(Nt). The E'./'s are mirrors, they play 
the saine rôle in P^n + l as circles play in S'2 to define the classical Schottky groups. 
Each mirror E, is a (2n + l)-sphere bundle over P£. The group of automorphisnis 
of P^n + l generated by the TV s is a complex Kleinian group T. The région of dis­
continuity Çî(T) is a fibre bundle over P£ with fibre S2n+2 minus a Cantor set C. 
The limit set A is the complément of fl(T) in P '̂" + 1; it is the set of accumulation 
points of the T-orbit of the Lj.s, and it is a product C x Pp. The action of T on 
this set of projective lines is minimal in the sensé tliat the F-orbit of every point xG 
in accumulâtes to (at least a point in) each one of the projective lines in A. 
This set is transversally projectively self-sirrular, i.e., A corresponds to a Cantor set 
in the Grassmannian G27>-H.m which is dynamically-defined. Hence A is a solenoid 
(or larrnnation) by projective spaces, which is transversally Cantor and projectively 
self-similar. Each of thèse groups T contains a subgroup T of index two, which is a 
free group of rank r — 1 and acts freely on Q(T). The quotient Çt(T)/T is a com­
pact complex manifold, which is a fibre bundle over P£ with fibre the connected 
sum of (r — 1) copies of £2n+1 x S1. As mentioned above, thèse manifolds have a 
canonical projective structure [Gu], i.e., they have an atlas {(U,. o, )} whose changes 
of coordinates are restrictions of complex projective transformations. However, thèse 
manifolds are ne ver Kàhler, due to cohomological reasons. When n — 1, the manifolds 
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that we obtain are Pretzel twistor spaces in the sensé of [Pe]; and if the configuration 
{(Li, A/i),..., (Lr, Mr)} consista of twistor Unes of the fibration p: P^ —» S4, then T 
and f descend to conformai Schottky groups on S4. In this case Q(T)/T is the twistor 
space of the conformally fiât manifold S4/p(T), which is a Schottky manifold [Ku2]; 
Q(T)/r is a flat twistor space [Si]. We also généralise our construction of Schottky 
groups to P^, the projectivization of a separable complex infinité dimensional Hilbert 
space. 

We then compare the déformations of our Schottky groups with the déformations 
of the complex manifolds that one gets as quotients of the action of the group on 
its région of discontinuity. For this we estimate an upper bound for the Hausdorff 
dimension of the limit set of the complex Schottky groups. We use this to show 
that, with the appropriât e conditions for the Schottky group f, the Kuranishi space 
Â of versai déformations of the complex manifold Mr = ^(f) / r , is smooth near 
the référence point determined by AIp. fur! hermore. we estimate the dimension of & 
and we prove that every infinitésimal déformation of Alf actually corresponds to an 
infinitésimal déformation of the group F in the projective group PSL(2n + 2,C), in 
analogy with the classical Teichmùller and moduli theory for Riemann surfaces. 

While preparing this article we had very useful conversations with a number of 
people, and we wish to thank ail of them for their support. We are most grateful 
to François Lescure for very useful comments regarding the algebraic aspects of this 
paper. Spécial thanks are also due to Misha Kapovich and Etienne Ghys. 

1. Complex Schottky groups 

We recall that (in the classical case) the Schottky groups are obtained by consid-
ering pairwise disjoint (n — l)-spheres Si,.. . ,Sr in S"\ see [Ma2]. Each sphère S,-
plays the rôle of a mirror: it divides S" in two diffeomorphic components, and one 
lias an involution T-, of S" interchanging thèse components, the inversion on S/. The 
Schottky group is defined to be the group of conformai transformations generated by 
thèse involutions. We are going to make a similar construction on P2n4~\ n > 0. 
(For n, = 0, if wre take P^ to be a point, tins construction gives the classical Schottky 
groups on P^.) 

Consider the subspaces of C2|'+2 = C" + 1 x C" + 1 defined by L(] := {(a, 0) G C2"+2} 
and M0 := {(0,6) G C2n+2}. Let S be the involution of C2n+2 defined by S(a,b) = 
(6, a). This interchanges L(, and M{}. 

1.1. Lemma. - Let<$>: C2,'+2 R be given by $(a,6) = \a\2 - \b\2. Then: 

i) := $_1(0) is a real algebraic hyper surjace in C2"'+2 with an isolated singu-
larity at the origin 0. It is embedded in C2n+2 as a (real) cone over S2n4~[ x 52/, + 1. 
with vertex at 0 G C2" '2. 
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ii) E§ is invariant under multiplication by À G C, so it is in fact a complex cone. 
Eg séparâtes C2n+2 — {(0,0)} in two diffeomorphic connected components U and V, 
which contain respectively LQ — {(0, 0)} and MQ — {(0, 0)}. Thèse two components are 
interchanged by the mvolution S, for which E^ is an invariant set. 

iii) Every linear subspace K of C2n+2 of dimension n + 2 containing LQ meets 
transversally E^ and MQ. Therefore a tubular neighbourhood V of MQ — {(0,0)} in 
P2n+1 is obtained, whose norm,al dise fibres are of the form K n V, with K as above. 

Proof — The first statement is clear because $ is a quadratic form with 0 G C2n+2 
as unique critical point. Clearly E^ is invariant under multiplication by complex 
numbers, so it is a complex cone. That Ê§ fl S4n+3 = S2n+1 x S'2n+1 C C2r?+2, is 
because this intersection consists of ail pairs (x,y) so that \x\ = \y\ = l/\/2. That S 
leaves E^ invariant is obvious, and so is that S interchanges the two components of 
C2n+2 — {(0,0)} determined by E^ which must be diffeomorphic because S is an 
automorphism. Finally, if K is a subspace as in the statement (iii), then K meets 
transversally E^, because through every point in E§ there exists an affine line in K 
which is transverse to E^. • 

Let S be the linear projective involution of P^n+1 defined by S. Since E^ is a 
complex cone, it projects to a codimension 1 real submanifold of P^n+1, that we 
dénote by Es-

1.2. Corollary 

i) Es is an invariant set of S. 
ii) Es is a g2n+1 -bundle over P£, in fact Es is the sphère bundle associated to the 

holomorphic bundle (n + l)Opp, which is the normal bundle of P^ in P2n+1. 
iii) Es séparâtes P^n+1 in two connected components which are interchanged by 

S and each one is diffeomorphic to a tubular neighbourhood of the canonical P^ in 
P2n+1 

Définition. — We call Es the canonical mirror and S the canonical involution. 

It is an exercise to show that (1.1) holds in the following more gênerally setting. 
Of course one lias the équivalent of (1.2) too. 

1.3. Lemma. — Let X be a positive real number and consider the involution 

Sx : Cn+1 x Cn+1 —> C" + 1 x Cn+1, 

given by S\(a,b) = (À6, À_1a). Then S\ also interchanges LQ and MQ, and the set 

Êx = {(a.b):\a\2 = \2\b\2} 

satisfies, with respect to S\, the analogous properties (i)—(iii) of (1.1) above. 
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We notice that as À tends to oc, the manifold E\ gets thiner and approaches the LQ-
axes. Consider now two arbitrary disjoint projective subspaces L and M of dimension 
n in P2n+1, and the corresponding linear subspaces L, M of C2n+2. It is clear that 
C2n+2 = L 0 M and there is a linear automorphism H of C2n+2 taking L to LQ and 
M to Mo- For every À G R+, the automorphism iif-1 o S\o H, is an involution that 
descends to an involution H~L o S\ o H oî PQ1^1 that interchanges L and M. It is 
clear that one lias resuit s analogous to (1.1) and to (1.2). One also lias: 

1.4. Lemma. — Let T be a linear projective involution of P^N+1 that interchanges L 
and M. Then T is conjugate in PSL(2n 0 2,C) to the canonical involution S. 

Proof. — Let L and M be linear subspaces of C2n+2 as above. Let {/i,..., ln+i} be 
a basis of L. Then {h,..., Zn+i, T(h),..., f (Zn+i)} is a basis of C2r'+2. The linear 
transformation that sends the canonical basis of C2n+2 = Cn+1 0 Cn+1 to this basis 
induces a projective transformation which realizes the required conjugation. • 

In this paper, mirrors in P£N+1 are, by définition, the images of Es under the 
action of PSL(2n 0 2, C). A mirror is the boundary of a tubular neighbourhood of a 
P£ in Pcn+\ so it is an S2n+1-bundle over P£. 

We summarise the previous discussion in the following resuit. 

7.5. Proposition. — Let L = M = P^ be disjoint projective subspaces of P^N+1. Then: 

i) There exist involutions o/P2n+1 that interchange L and M. 
ii) Each of thèse involutions has a mirror, i.e., an invariant set E = ET C P^NJRL 

which séparâtes P^1^1 in two connected components which are interchanged by T. 
Each component is diffeomorphic to a tubular neighbourhood of the canonical P£ C 
P2n+1 

iii) Given an arbitrary tubular neighbourhood U of L. we can choose T so that the 
corresponding mirror ET IS contained in the mterior of U. 

In fact one can obviously make stronger the last statement of (1.5): 

1.6. Lemma. — Let L and M be as above. Given an arbitrary constant À, 0 < À < 1, 
we can find an involution T interchanging L and M, with a mirror E such that 
if U* is the open component of PQ1^1 — E which contains M and x G U*, then 
d(T(x),L) < Xd(x,M), where the distance d is induced by the Fubini-Study metric. 

Proof. — The involution TA := H'1 o S\ o H, with H and 5A as above, satisfies 
(1.6). • 

We notice that the parameter À in (1.6) gives control upon the degree of expansion 
and contraction of the gênerators of the groups, so one can estimate bounds on the 
Hausdorff dimension of the limit set (see section 2 below). 

The previous discussion can be summarized in the following theorem (cf. [No]): 
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1.7. Theorem. — Let C := {(la, M\),..., (Lr, il/,.)}, r > 1, be a set of r pairs of 
projective subspaces of dimension n of P£n+1, ail of them pairwise disjoint. Then: 

i) There exist involutions Xi.. . . , Tr of P^n+1, such that each T,,, i = 1,.. . , r, 
interchanges Lt and M,, and the corresponding mirrors ET, are ail pairwise disjoint. 

ii) If we choose the T[s in this way, then the subgroup of PSL(2n + 2. C) that they 
generate is complex Kleinian. 

iii) Moreover, given a constant C > 0, we can choose the T-s so that if T : = 
Tn • • • Tlk is a reduced word of length k > 0 (i.e., j \ ^ j>2 • • • ̂  jk-i 7̂  JAJ, 
T(N.j) is a tubular neighbourhood of the projective subspace T(L;) which becomes very 
thin as k inereases: d(x,T(L/)) < CXk for ail x G T(Nj), where Nt is the connected 
component of P2n+1 — ET, that contains Ln for ail i = 1,.. ., r. 

1.7.1. Définition. — A Complex Kleinian group constructed as above will be called a 
Complex Schottky Group. 

1.7.2. Définition. — Given a Complex Schottky group T, we define its limit set A : = 
A(r) to be the set of accumulation points of the T-orbit of the union L\ U • • • U Lr. 
Its complément Q = ^(r) := P^r' + I — A is the région of discotitinuity. 

1.7.3. Remark. — We notice that this définition is not standard but it is suitable for 
Schottky groups. 

1.8. Theorem. —- Let T be a complex Schottky group in P^n+1, generated by invo­
lutions {Ti,. . . , Tr}7 n ^ 1, r > 1, as in (1.7) above. Let be the région of 
discontinuity ofT and let A(F) - P5" + 1 — ^(r) be the limit set. Then. one lias: 

o o 
i) Let W = P^n+l — U-'==1A/'/. where Nt is the interior of the tubular neighbourhood 

Nj as in (1.7). Then W is a compact fundamental domain for the action of F on 
Q(T). One has: ft(T) = [jier'j{W): and the action on Q is properly dis continuons. 

ii) A(T) is an intersection of nested sets: A(T) = nj^^j(Nj^). where {jj}^ is 
a séquence of distinct éléments of F and j : N —> {1, r} is a function such that 
7;+i(Wj(v+i)) C-)i(Nm). 

iii) If r = 2, then F = Z/2Z * Z/2Z, the infinité dihedral group, and A(T) is the 
union of two disjoint projective subspaces L and M of dimension n. In this case we 
say that F is élémentary, in analogy with Kleinian groups acting on P^. 

iv) If r > 2, then A(F) is a complex solenoid (lamination), homeomorphic to 
P^ x C, where C is a Cantor set. F acts minimally on the set of projective subspaces 
in A(T) considérée as a closed subset of the Grassmannian G^u+i.n-

v) If r > 2, let f c T be the index 2 subgroup consistmg of the éléments which are 
reduced words of even length. Then F is free of rank r — 1 and acts freely on Çt(T). 
The compact manifold with boundary W — W U T\(W) is a fundamental domain for 
the action ofF on Q(T). We also call F a complex Schottky group. 
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vi) Each clément 7 G f leaves invariant two copies, P\ and P2, of P£ in A(T). 
For every L C A(T), j'l{L) converges to P\ (or to P2) as i —• 00 (or i —» —00). 

In fact we prove that; if r > 2, then T acts on a graph whose vertices have ail 
valence either 2 or r. This graph is actually a tree, which can be compactified by 
adding its "ends". Thèse for m a Cantor set and the action of Y can be extended to 
this compactification. The limit set A(T) corresponds to the uncoimtable set of ends 
of this tree. We use this to prove statement v) above. 

Proof ofi). Let dW be the boundary of IF = P*" + l - UNh i.e., the union Ex U 
••• U Er of the mirrors. Set IF0 := IF. Now define II7 = [j-^'DiW)- where T0 
is the identity, by définition. Then Wy is a manifold whose boundary consists of 
r(r — 1) components E}] := Tj(Ej). i ^ j , i.j = l , . . . . r . each one being a mirror. 
Define. by induction on k > 1, 11 '/, = |J/=o ^'(^--î.)• Then 11 '/,. is a manifold whose 
boundary consists of r(r — 1)A components, EJ{ n. := T-n • • • Tjk-i(Ejk), where 
J1J2, • • • JK ^ {l , . . . , r} and ji 7̂  j2, JA-I 7̂  Jk- Thus is contained in the 

interior of \VK+1: IFA C TITA + i • 
Let U = U^o ^A 1 so U is T-invariant, since Ty(II'7) C Wk.+i for every j G 

{ l . . . . . r } . It is clear that U is open, since any x G C/ is contained in the inte­
rior of some Wk. Let 7 = X!/, • • • Tjk be any élément of F represented as a re-

duced word of length k > 1. Then 7(IF) C IFA — IF/,-i. Thus. for any ^ ^ 

-(IF) f] .i(W') = 0. Since [/ = |J_ r ~ (IF), then t/ is obtained from translates of IF, 
glued along some boundary components. Thus U is open. connected, with a properly 
discontinuons action of T. Therefore U C . To finish the proof of i) we must prove 

P£" + 1 - U = A(F). For this we consider, for each k > 0. the set Fk : = P*" + l - Wk. 
Then FA-+I C F/,, lience HA^O ^ ~ ^c" + 1 ~U is a nonempty closed invariant set. For 
each k ^ 0, F/,, is a disjoint union of closed tubular neighbourhoods of projective sub­
spaces of dimension n of P2 / ' ^1 . Thèse are of the form 7(Ar;) = T-n • • •Tn,(N/), for a 
7 G T which is represented in ternis of the gênerators as the reduced word Tn • • • Tn,. 
They are closed tubular neighbourhoods of the projective subspace T-n • • • T;A. (L,-). 
For each séquence {̂ 1}̂ ={ in T, such that the length of 7;+j is bigger tlian the length 
of 7, and 7/+i(A'/) C ~ , ( .Y, ). the tubular neighbourhood becomes thinner. By (1.7). 
the séquence {7y-(L/)}Jl1 converges, in the Hausdorff met rie, to a linear subspace of 
dimension n. Hence, also by (1.7), P r̂,+1 — U is a nowhere dense closed subset of 
P2n + [\ which is a disjoint union of projective subspaces of dimension n. Thus U is 
open and dense in P2" ! 1 : since U C ̂ (F), it follows that iï(Y) is also connected. We 
have that U /Y is compact and it is obtained from the compact fondamental domain 
IF after identifications in each component of its boundary. If Yt(Y) / U we arrive to 
a contradiction, because il/Y is connected and U/Y is open, compact and properly 
contained in il/Y. Therefore, £l(Y) = U and A(T) = HT 0 F,. This proves i). 
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Proof of iï). — If x G A(r) then, as shown above, x G f]^î0Fi. To prove ii) it is 
sufficient to choose, for each i, the component of Ft which contains x. Such component 
is of the form j(Nj) for a unique 7 G T (we set 7 = 7,) and a unique j G {1 , . . . , r}. 
We set j = This proves ii). This also shows that f]^ 0 Ft is indeed the limit set 
according to Kulkarni's définition in [Kul]. 

Proof o/iii). — We have two involutions, T and S, and two neighbourhoods, NT and 
Ns, whose boundaries are the mirrors of T and 5, respectively. The limit set is the 
disjoint union A U B, where A : = f|7er' l(Ns), B := f]ier" ^(NT), r ' is the set of 
éléments in T which are words ending in T and T" is the set of éléments which are 
words ending in S. By (1.7), A and B are each the intersection of a nested séquence 
of tubular neighbourhoods of projective subspaces of dimension n, whose intersection 
is a projective subspace of dimension n. Hence A and B are bot h projective subspaces 
of dimension n, and they are disjoint. Two reduced words ending in T and S, act 
differently on NT (or Ns). Hence T is the free product of the groups generated T 
and 5, proving iii). 

Proof of iv). — Let L C PQ1^1 be a subspace of dimension n and let N be a closed 
tubular neighbourhood of L as above. Let D be a closed dise which is an intersection 
of the form L H N, where L is a subspace of complex dimension n + 1, transversal 
to L. If M is a subspace of dimension n contained in the interior of N, then M is 
transverse to D, otherwise the intersection of M with L would contain a complex line 
and M would not be contained in N. From the proofs of i) and ii) we know that A(r) 
is the disjoint union of uncountable subspaces of dimension n. Let x G A(T) and let 
L C A(T) be a projective subspace with x G L. Let N be a tubular neighbourhood 
of L and D a transverse dise as above. Then A(T) fl D is obtained as the intersection 
of families of dises of decreasing diameters, exactly as in the construction of Cantor 
sets. Therefore A(r) n D is a Cantor set and A(T) is a solenoid (or lamination) by 
projective subspaces which is transversally Cantor. It follows that A(T) is a fibre 
bundle over P£', with fibre a Cantor set C. Since P£ is simply connected and C is 
totally disconnected, this fibre bundle must be trivial, hence the limit set is a product 
PU x C, as stated. 

There is another way to describe the above construction: T acts, via the differential, 
on the Grassmannian G2n+j.7,. of projective subspaces of dimension n of P^n+1. This 
action also lias a région of discontinuity and contains a Cantor set which is invariant. 
This Cantor set corresponds to the closed family of disjoint projective subspaces in 
A (F). It is clear that the action on the Grassmannian is minimal on this Cantor set. 

Proof of' v). Choose a point x{) in the interior of W. Let YX() be the T-orbit of xo-
We construct a graph G as follows: to each -(./•,)) G TX() we assign a vertex v7. Two 
vertices v1,v1> are joined by an edge if 7(PI7) and y(W) have a coinmon boundary 
component, which corresponds to a mirror Er. This means that 77 is 7 followed by an 
involutions T, or vice-versa. This graph can be realized geometrically by joining the 
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corresponding points 7(:rn), 7/(.xu) G $Ï{Y) by an arc o7.y m ^(Y), which is chosen 
to be transversal to the corresponding boundary component of j(W); we also choose 
thèse arcs so that no two of them intersect but at the extrême points. Clearly Ç is 
a tree and each vert ex lias valence r. To construct a graph Q with an appropriate 
r~ action we introduce more vertices in Q: we put one vert ex at the middle point of 
each edge in Q; thèse new vertices correspond to the points where the above arcs 
intersect the boundary components of 7(H7). Then wre have an obvious simplicial 
action of T on Q. Let Y be the index-two subgroup of Y consisting of éléments which 
can be written as reduced words of even length in ternis of T] , . . . , Tv. A fondamental 
domain for Y in £l(Y) is W = W U Pi(IF), so this group acts freely on the vertices 
of Q. Hence Y is a free group of rank r — 1. The tree Q can be compactified by its 
ends by adding a Cantor set on which Y acts minimally; this corresponds to the fact 
that T acts minimally on the set of projective subspaces which constituée A(T). 

Proof o/vi). — By (1.7), if 7 G f, then either 7(Ari) is contained in Ni or 7_1(ATi) 
is contained in N\\ say 7(Ari) is contained in N\. Thus {7v(Ari)}, i > 0, is a nested 
séquence of tubular neighbourhoods of projective subspaces whose intersection is a 
projective subspace Pi of dimension n\ {77(7V1)}, / < 0, is also nested séquence 
of tubular neighbourhoods of projective subspaces whose intersection is a projective 
subspace P2 of dimension n. For every L C A(T), 7'(L) converges to P\ and P2 
as i —» 00 or z —» — 00, respectively, and both P\ and P2 are invariant under 7, as 
claimed. • 

1.9. Remarks 
i) The action of f in the Cantor set of projective subspaces is analogous to the ac­

tion of a classical Fuchsian group of the second kind on its Cantor limit set. We also 
observe that, since each involution T, is conjugate to the canonical involution defined 
in lemma 1.1, the laminations obtained in theorem 1.8 are transversally projectively 
self-similar. Hence one could try to apply results analogous to the results for (confor-
inally) self-similar sets (for instance Bowen's formula [Bo]) to estimate the transverse 
Hausdorff dimension of the laminations obtained. 11ère by transverse Hausdorff di­
mension we mean the Hausdorff dimension of the Cantor set C of projective subspaces 
of G'2V+i.-n which conform the limit set. If JH,, i = 1,..., r, dénote the maps induced 
in the Grassmannian C2A, + I.7? by the linear projective transformations T,, then C is 
dynamically-defined by the group generated by the set {Tt}. 

ii) The construction of Kleinian groups given in 1.8 actually provides families of 
Kleinian groups, obtained by varying the size of the mirrors that bound tubular 
neighbourhoods around the L'-s. In Section 3 below we will look at thèse families. 

iii) The above construction of complex Kleinian groups, using involutions and mir­
rors, can be adapted to produce discrète groups of automorphisms of quaternionic pro­
jective spaces of odd (quaternionic) dimension. Every "quaternionic Kleinian group" 
on P^J> + 1 lifts canonically to a complex Kleinian group on Prln+'3. 
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2. Quotient Spaces of the région of discontinuity 

We now discuss the nature of the quotients Ct(T)/T and Q(T)/t, for the groups of 
section 1. The proof of proposition (2.1) is straightforward and is left to the reader. 

2.1. Proposition. — Let L be a copy of the projective space P" in P(£n+1 and let x be a 
point in P^n + l — L. Let Kx C P^'^1 be the unique copy of the projective space P '̂+1 
in P((?" + 1 that contains L andx. Then Kt intersects transversally every other copy of 
P^ embedded in P^,+1 — L, and this intersection consists of one single point. Thus, 
given two disjoint copies L and M of l»l in P2" 1 1. /// ère is a canonical projection 
rnap 

7T := ttl: Pcn+1 - L —> M, 

which is a (holomorphic) submersion. Each fibre TT~1(X) is diffeomorphic to IR2"+2. 

2.2. Theorem. Let F be a complex Schottky group as in theorem 1.8, with r > 2. 
Then: 

i) The fundamental domain W of T is (the total space of) a locally trivial differ-

entiable fibre bundle over Iy" with fibre S2v+2 — D\ U • • • U Dr. where each Dt is 
the interior of a srnooth closed (2n + 2)-dise Dt in S2'"+2 and the D, \s are pairwise 
disjoint. 

ii) £2(T) fibres differentiably over P£ with fibre S2n+2 minus a Cantor set. 
iii) / /T is the subgroup of index two as m theorem, 1.8. which acts freely on Q(T), 

then Q(r)/f is a compact complex manifold that fibres differentiably over P^ with fibre 
(52n+J x 51)# • • • #(52n+1 x S1), the connected sum of r - 1 copies of 52n+1 x S1. 

Proof ofi). Let Pi,p2 C A(F) be two disjoint projective subspaces of dimension 
?? contained in A(T) C P 7̂, + 1. Since Q(T) is open in p2'» + 1, the restriction to Çt(T) 
of the map TT given by 2.1, using P\ as L and P2 as M, is a holomorphic submersion. 
We know, by theorem l.S.iv, that A(F) is a comr)act set which is a disjoint union of 
projective subspaces of dimension 71 and which is a transversally Cantor laminât ion. 
By 2.1, for each y G P2, Ky meets transversally each of thèse projective subspaces (in 
other words, Ky is transverse to the lamination A(F), outside P\). Hence, by theorem 
1.8, for each y G P2, Kv intersects A(T) — P\ in a Cantor set minus one point (this 
point corresponds to P\). The family of subspaces Ku of dimension 71 + 1 are ail 
transverse to P2. 

Let us now choose P\ and P2 as in 1.8.vi, so they are invariant sets for some 
7 G f, and yi (L) converges to P2 as j —> oc for every projective n-subspace L C 
A(T) — Pi. We see that every mirror Et1 i G {1 , . . . , r} is transverse to ail Ky. Hence 
the restriction 

Tri :=7TPl|^: W —> P2 — P<c ? 
of 7r to W, is a submersion which restricted to each component of the boundary 
is also a submersion. For each y G P2 one lias TT^1 ({y}) — Ky H W, so TT^dy}) is 
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compact. Thus 717 is the projection of a locally trivial fibre bundle with fibres KyC\W, 
y £ P'2, by Ehresmann's lemma [Eh]. On the other hand for a fixed yo G P2, Kyo FiIF 
is a closed (2n + 2)-disc with r — 1 smooth closed (2n + 2)-discs removed from its 
interior. This is true because P\ is contained in exactly one of the N-s. say N\, the 
tubular neighbourhood of Pi, and Kyi) intersects each A/j, j 7̂  1, in a smooth closed 
(2n -F 2)-disc. This proves i). 

Proof of ii). — The above arguments show that for each 7 G T, the image 7(P,) 
of a mirror P, is transverse to Jvy for ail y G P2 and i G { l , . . . , r } . Hence the 
restriction 7r{: := TTPJVU^ where II7. is as above, is a submersion whose restriction to 
each boundary component of 11 "/, is also a submersion. Thus 7rJ' is a locally trivial 
fibration. Since fl(T) = UA>O ̂  ' we finish the proof of the first part of ii) by applying 
the slight généralisation below of Ehresmann fibration lemma [Eh]: wre leave the proof 
to the reacler. 

Lemma. — Let A4 = ( J ^ , A ' be a smooth manifold which is the union of compact 
manifolds with boundary Af,so that each Aft is contained in the interior of J\fi+\. 
Let C be a smooth manifold and f : A4 —> C a submersion whose restriction to each 
boundary component of Af,, for every i. is also a submersion. Then f is a locally 
trivial fibration. 

Thus 7rp1 : O(r) —> P2 = P(p is a holomorphic submersion which is a locally trivial 
différent iable fibration. To finish the proof of ii) we only need to show that the fibres 
of npl are S'2n4~2 minus a Cantor set. Just as above, one shows that Ku fl Wk is 
diffeomorphic to the sphère S2N+2 minus the interior of r(r — 1)̂ ' disjoint (2n + 2)-
discs. Therefore the fibre of 7ïpi at y, which is Ky fl^(r), is tlie intersection of 52'"+2 
minus a nested union of dises, which gives a Cantor set as claimed in ii). 

Proof o/iii). — We recall that by theorem L8.v, the fundamental domain of f is the 
manifold W — VFUPi(IF). Then, as above, the restriction of TT to W is a submersion 
which is also a submersion in each connected component of the boundary: 

dw -

d+ 

d+br1)e dr 

eg 
which is the disjoint union of the r — 1 mirrors Ev j ^ 1, together with the mirrors 
E\j := T{(Ej)1 j 7̂  1. The mirror E} is identified with E\j< j ^ 1, by 7\, and Q(T)/T 
is obtained through thèse identifications. Let TT : W —» P2 be the restriction of n 
to iV. By the proof of i). TT~ 1 (/y) = Ky D W'\ y G P2, i» diffeomorphic to S2"+2 
minus the interior of 2(r — 1) disjoint (2n -f 2)-discs. The restriction of TT to each 
Ej and E\_j détermines fibrations ix} : E} —> P2 and TTI;- : Pi; —> P2, respectively. 
whose fibres are S2N + L. Set 7?y- := 7Tj y o (TI\EJ)- If we had that 7?y- = 7ry for ail 
j = 2, r, then we would hâve a fibration from W/Y to P2, because we would hâve 
compatibility of the projections on the boundary. In fact we only need that TÏJ and jfj 
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be homotopic through a smooth family of fibrations Tit : E\j —> P2, TT\ = fîj, 7To = ïïj, 
t G [0,1]. Actually, to be able to glue well the fibrations at the boundary we need 
that 7rt = fij for t in a neighbourhood of 0 and 7Tt = 7Tj for t in a neighbourhood of 
1. But this is almost trivial: TTJ : E\3 —> P2 is the projection of E\3- onto P2 from Pi 
and 7? — j is the projection of E\3 from T(Pi) onto P2. The n-dimensional subspaces 
Pi and T(Pi) are disjoint from P2, so there exists a smooth family of n-dimensional 
subspaces Pt, t G [0,1], such that the family is disjoint from P2 and Pt = P\ for t in a 
neighbourhood of 0 and Pt = P(Pi) for t in a neighbourhood of 1. We can choose the 
family so that for each t G [0,1], the set of n + 1 dimensional subspaces which contain 
Pt meet transversally E\3. To achieve this we only need to take an appropriate curve 
in the Grassmannian of projective r?-planes in P^n+1, consisting of a family Pt which is 
transverse to ail Ky; this is possible by (2.1) and the fact that the set of n-dimensional 
subspaces which are not transverse to the Kys, is a proper algebraic variety of P^n+1. 
In this way we obtain the desired homotopy. Hence W fibres over P2 = P^ ; the fibre 
is obtained from S2n+2 minus the interior of 2(r — 1) disjoint (2n + 2)-discs whose 
boundaries are diffeomorphic to 52n+1 and are identified by pairs by diffeomorphisms 
which are isotopic to the identity (using a fixed diffeomorphism to S2r, + 1). Hence the 
fibre is diffeomorphic to (S'2n+1 x 5A)# • • • #(52n+I x S1), the connected sum of r - 1 
copies of 52n+1 x S1. This proves iii). • 

2.3. Theorem. — Let Air be the compact complex orbifold Afr := Q(T)/T, which has 
complex dimension (2n + 1). Then: 

i) The singular set of Air, Sing(Afr), is the disjoint union of r submanifolds an-
alytically équivalent to P£\ one contained in (the image in Air of) each mirror Et 
ofT. 

ii) Each component 0/Sing(Air) has a neighbourhood homeomorphic to the normal 
bundle of P^ in P^1^1 modulo the involution v 1—> —v, for v a normal vector. 

iii) Air fibres over P^ with fibre a real analytic orbifold with r singular points, 
each having a neighbourhood (m the fibre) homeomorphic to the cone over the real 
projective space P^n+1. 

Proof. — We notice that À/p is obtained from the fundamental domain W after an 
identification on the boundary E} by the action of T}. The singular set of Air is the 
union of the images, under the canonical projection p : Q(T) —» Q(T)/r, of the fixed 
point sets of the r involutions Tj. Now, T} is conjugale to the canonical involution 
S of (1.2). The lifting of S to C2n+2 = Cr,+1 x Cn+1 has as fixed point set the 
(n + l)-subspace {(a, a) : a G Cn+1}. This projectivizes to a n-dimensional projective 
subspace. Since we can assume, for a fixed j , that Tj is an isometry, we obtain the 
local structure of a neighbourhood of each component of the singular set. The saine 
arguments as in theorem 2.2.iii prove that Q(T)/T fibres over P£ and that the fibre 
lias r singular points, corresponding to the r components of Sing(Air), and each of 

ASTÉRISQUE 287 



COMPLEX SCHOTTKY GROUPS 263 

thèse r points has a neighbourhood (in the fibre) homeomorphic to the cone over 
p2n+l 

R 

2.4. Remarks 

i) The map ir in (2.2.ii) is holomorphic, but the fibration is not holomorphically 
locally trivial, because the complex structure on the fibres may change. 

ii) The Kleinian groups of 2.2 provide a method for constructing complex mani-
folds which is likely to produce interesting examples (cf. [No, Kal, Ka2, Ka3, Ka4, 
Pe, Si]). Thèse are never Kàhler, because the fibration TY : Q,(T)/T —• has a sec­
tion, by dimensional reasons, so there can not exist a 2-cocycle with a power which 
is the fundamental class of Q(T)/T. The bundle (n + l)Opn is nontrivial as a real 
bundle, because it has non-vanishing Pontryagin classes (except for n = 1), hence TT is 
a nontrivial fibration. We notice that the fundamental group of a compact Riemann 
surface of genus greater than zéro is never a free group; similarly, by Kodaira's clas­
sification, the only compact complex surface with non trivial free fundamental group 
is the Hopf surface S3 x S1. Our examples above give compact complex manifolds 
with free fundamental groups (of arbitrarly high rank) in ail odd dimensions greater 
than one. Multiplying thèse examples by P^, one obtains similar examples in ail 
even dimensions. As pointed out by the référée, it would be interesting to know if 
there are other examples which are minimal, i.e., they are not obtained by blowing 
up along a smooth subvariety of the examples above. It is natural to conjecture that 
our examples in odd dimensions are the only ones which have a projective structure 
and free fundamental group of rank greater than one. 

iii) The manifolds obtained by resolving the singularities of the orbifolds in (2.3) 
have very interesting topology. We recall that the orbifold Mr is singular along r 
disjoint copies of Pg: Si,... , Sr. The resolution Mp of Mp is obtained by a monoidal 
transformation along each St, and it replaces each point x G Si, 1 $C i ^ r by a 
projective space P£. Hence, if V : M —> M dénotes the resolution map, then V~1(Sl) 
is a non-singular divisor in AI, which fibres holomorphically over P£ with fibre P£, 
1 ^ i ^ r. 

2.5. Symmetric products of classical Kleinian groups. — Let T C PSL(2, C) 
be a classical Kleinian group acting on P^. Let A(T) and ft(T) := P^ — A(T) be, 
respectively, the lirait set and the région of discontinuity of T. Since P£ is the nth 
symmetric product of P^, P£ = Sn(P^), there is a canonical diagonal action of T 
on P£, for ail n > 1. The group T acts properly and discontinuously on Qn : = 
P£' — Sn(A(T)). In particular, if T is a Schottky group of the second kind acting in 
P^ whose limit set A(T) is a Cantor set, then 5n(A(r)) is again a Cantor set, and 
the action of T on its complément is discontinuons. Every point in 5n(A(r)) is an 
accumulation point of or bits of T. This provides examples of complex Klenian groups 
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acting on Pg whose limit sets are Cantor sets. If in addition, the quotient of the action 
of T in P£ in the région of discontinuity is compact, then Çtn/T is also compact. 

3. Hausdorff dimension and moduli spaces 

Let C := {(Li, Mi) , . . . , (Pr, Mr)} be a configuration of P^'s in P^n+1 as before, 
r > 2. Let T and T' be complex Schottky groups obtained from this same configu­
ration, i.e., they are generated by sets {Ti,. .., Tr} and {T{,..., T'r} of holomorphic 
involutions of P'^n+l that interchange the T7;'s with the M?;'s. For each i — 1,... ,r, 
thc composition T[ o T~1 préserves the subspaces L^Mj. It is an exercise to see 
that the subgroup of PSL(n -h 2, C) of transformations that préserve thèse subspaces 
is the projectivization of a copy of GL(n + 1,C) x GL(n + 1,C) C GL(2n + 2,C). 
Therefore, we can always find an analytic family {rt}, 0 ^ t ^ 1, of complex Schottky 
groups, with configuration £, such that {r0} = T and {Ti} = Y'. Furthermore, let 
C := {(Li, Mi) , . . . , (Lr, Mr)} and C! := {(L[,M[),..., (Lj., M,')} be two configura­
tions of P^'s m ^cn+1 as before. Due to dimensional reasons, we can always move 
thèse configurations to obtain a differentiable family of pairs of disjoint n-dimensional 
subspaces {(Li.t, A/i,t),. .., (Lr,t, Mr,t)}, with 0 ^ t ^ 1, providing an isotopy be-
tween C and C. Thus one has a differentiable family Yt of complex Kleinian groups, 
where r0 = T and Ti = r ' . The same statements hold if we replace Y and V by 
their subgroups f and f, consisting of words of even length. So one has a differen­
tiable family Yt of Kleinian groups, where r0 = Y and Y\ — Y1. Hence the manifolds 
Q(Tt)/Tt are ail diffeomorphic. By section 2, thèse manifolds are (in gênerai non-
trivial) fibre bundles over P£ with fibre ^('r_1)(52n+1 x S1), a connected sum of 
(r — l)-copies of S2n+l x S1. If n = 1, given any configuration of r pairwise disjoint 
lines in P̂ 3, there exist an isotopy of P£ which carries the configuration into a family 
of r twistor lines. Hence P^ minus this configuration is diffeomorphic to the Cartesian 
product of S4 minus r points with P^. Moreover, the attaching functions that we use 
to glue the boundary components of W, the fundamental domain of T, are ail isotopic 
to the identity, because they live in PSL(4,C), which is connected. Thus, if n = 1, 
then Q(Yt)/Yt is diffeomorphic to a product P^ x #(r_1)(5'':1 x S'1). Hence we have: 

3.1. Proposition. — The differentiable type of the compact (complex) manifold 
Q(Yt)/Yt is independent of the choice of configuration. It is a manifold of real 
dimension (An + 2), which is a fibre bundle over P£ with fibre (̂r'-1)(À5,2n+1 x S1); 
moreover, this bundle is trivial if n — 1. We dénote the corresponding manifold 
by M™. 

The fact that the bundle is trivial when n = 1 is interesting because, as pointed 
out in the introduction, when the configuration C consists of twistor lines in P^, the 
quotient Çl(Y)/Y is the twistor space of the conformally fiât manifold p(Q(Y))/p(Y)1 
which is a connected sum of the form #(r_1^(53 x S1). Hence, in this case the natural 
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fibration goes the other way round, Le., it is a fibre bundle over #(r ^(S3 x S1) with 
fibre P£. 

Given a configuration C as above, let us dénote by [£]G its orbit under the action 
of the group G = PSL(2n + 2, C). Thèse or bits are équivalence classes of such configu­
rations. Let us dénote by C" the set of équivalence classes of configurations consisting 
of r pairs of P^'s as above. Then C" is a Zariski open set of the moduli space Wl", 
of configurations of r unordered couples of projective subspaces of dimension ?? in 
P^" + 1, which is obtained as the Mumford quotient [MFK] of the action of G on such 
configurations. By [MFK], C]}: is a complex algebraic variety: the moduli space of 
configurations of r pairs of n-planes P'£ in P^" + 1. Similarly, we dénote by the 
équivalence classes, or moduli space, of the corresponding Schottky groups, where 
two such groups are équivalent if they are conjugate by an élément in PSL(r? + 2,C). 
Given C := {(la, M\),. • •, (Lr, M,)}, and r-tuples of involutions (7\, . . ., Tr) and 
(S\...., Sr) as above, i.e., interehanging L\ with Mi for ail i = 1,.. . , r and having 
pairwise disjoint mirrors, we say that thèse r-tuples are équivalent if there exists h G G 
such that hT;h~l = Si for ail i. Let %c dénote the set of équivalence classes of such 
r-tuples of involutions. It is clear that a conjugation h as above must leave C invari­
ant. Hence, if r is big enough with respect to then h must be actually the identity, 
so the équivalence classes in fact consist of a single élément. 

3.2. Theorem. — There exists a holomorphic surjectwe map TT: —> C" winch is a 
G00 locally trivial fibration with fibre ̂ c- Furthermore, let T\V be complex Schottky 
groups as above and let Q(F).Q(Tf) be their régions of discontinuity. Then the com­
plex orbifolds Mr := Q{T)/T and Mr' := r^(r/)/r/ are biholomorphically équivalent 
if and only if T and V are projectively conjugate, i.e.. they represent the same clé­
ment in £5". Similarly. if f, f' are the corresponding index 2 subgroups, consisting 
of the cléments which are words of even length, then the manifolds Mr := Çt(T)/T 
and Mr, := Q(Tr)/t/, are biholomorphically équivalent if and only if Y and F7 are 
projectively conjugate. 

Proof — The first statement in (3.2) is obvions, i.e., that we have a holomorphic 
surjection TT: &R! C" with kernel T^. The other statements are immédiate consé­
quences of the following lemma (3.3), proved for us by Sergei Ivashkovich. Our proof 
below is a variation of Ivashkovich's proof. 

3.3. Lemma. — Let U be a connected open set in P^n+1 that contams a subspace 
L C Pc" + 1 of dîme nswn n, and let h: U —• V be a biholom,orphism onto an open set 
V C P-2" 1 1. Suppose that V also contaws a subspace M of dimension n. Then h 
extends uniquely to an élément in PSL(2n + 2,C). 
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Proof. — Let f : U —> PQ be a holomorphic map. Then / is defined by n meromorphic 
functions / i , . . . , / n from U to P^ (see [Iva]), i.e., holomorphic functions which are 
defined outside of an analytic subset of U (the indeterminacy set). 

Consider the set of ail subspaces of P^n+1 of dimension n + 1 which contain L. 
Then, if TV is such subspace, one lias a neighbourhood UN of L in N which is the 
complément of a round bail in the affine part, Cn+i, of TV. Since the boundary of such 
a bail is a round sphère 5yv and, hence, it is pseudo-convex, it follows from E. Levi 
extension theorem, applied to each f j, that the restriction, //v, of / to U P\N extends 
to ail of TV as a meromorphic function. The union of ail subspaces TV is P^n+1 and 
they ail meet in L. The functions fjsj dépend holomorphically on TV as is shown in 
[Iva]. One direct way to prove this is by considering the Henkin-Ramirez reproducing 
kernel defined on each round sphère 5 A/, [He, Ram]. One can choose the sphères 5 A/ 
in such a way that the kernel dépends holomorphically on TV by considering a tubular 
neighbourhood of L in TV whose radius is independent of TV. Hence the extendeci 
functions to ail N's define a meromorphic function in ail of P2n+1, which extends / . 
Now let h be as in the statement lemma 3.3 and let h be its meromorphic extension. 
Then, since by hypothesis h is a biholomorphism from the open set U C P£ onto the 
the open set V :— h(U) C P^\ one can apply the above arguments to /i-1 : V —» U. 
Let g : P£ —> P£ be the meromorphic extension of h~l. Then, outside of their sets of 
indeterminacy, one has hg = gh = Id. Hence the indeterminacy sets are empty and 
both h and g are biholomorphisms of P£. In fact, in [Iva] it is shown that if / is as 
in the statement of lemma 3.3 and if / is required only to be locally injective, then / 
extends as a holomorphic function. • 

Notice that if n = 1, then (3.3) becomes Lemma 3.2 in [Kal]. 

3.4. Corollary. -— For r > 2 sufficiently large, the manifold Q(T)/T has non-trivial 
moduli. 

In fact, if the manifolds Çl(T)/T and Çl{Tf)/Tf are complex analytically équivalent, 
then f is conjugate to F' in PSL(2n + 2, C), by (3.2), and the corresponding configura­
tions C and C are projectively équivalent. Now it is sufficient to choose r big enough 
to have two such configurations which are not projectively équivalent. This is possi­
ble because the action induced by the projective linear group G on the Grassmannian 
G^n+i.n is obtained from the projectivization of the action of SL(2n + 2, C) acting on 
the Grassmann algebra An+1, of (n + l)-vectors of C2n+2, restricted to the set of de-
composable (n + l)-vectors X>n+1. The set X>n+1 générâtes the Grassmann algebra and 
G2n+i.rj = (Pn+1 — {0})/ ~, where ~ is the équivalence relation of projectivization. 

If r is small with respect to n, then C" consists of one point, because any two 
such configurations are in the saine PSL(2n + 2,C)-orbit. Therefore, in this case Î£ 
coincides with 0". That is, to change the complex structure of .1//.' we need to change 
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the corresponding involutions into a family of involutions, with the same configuration 
(up to conjugation), which is not conjugate to the given one. 

The following resuit is a generalization of Theorem 1.2 in [Kal]. This can be 
regarded as a restriction for a complex orbifold (or manifold) to be of the form Q(Y)/Y 
(or N ( R ) / F ). 

3.5. Proposition. — If r > 2, then the compact complex manifolds and orbifolds 
Q(r)/f and Q(Y)/Y, obtained in theorem 2.2, have no non-constant meromorphic 
functions. 

Proof. — Let / be a meromorphic function on one of thèse manifolds (or orbifolds). 
Then / lifts to a meromorphic function / on ft(Y) C P^n+1, which is f-invariant. By 
lemma (3.6) below, / extends to a meromorphic function on ail of P^n+1. Hence / 
must be constant, because Y is an infinité group. • 

3.6. Lemma ([Iva]). — Let U C P^n+1, n ^ 1, be an open set that contains a projective 
subspace P£. Let f : U —> P^ be a meromorphic function. Then f can be extended to 
a meromorphic function f : U —• P^. 

We refer to [Iva] for the proof of (3.6). In the following proposition we estimate an 
upper bound for the Hausdorff dimension of the limit set of some Schottky groups. 

3.7. Proposition. — Letr > 2, 0 < À < (r — 1)_1 and let Y andt be as in (1.7). Then, 
for every ô > 0, the Hausdorff dimension of A(Y) = A(Y) is less than 2n + 1 -j- ô, i.e., 
the transverse Hausdorff dimension of A(T) = A(f) is less than 1 + 5. 

Proof. — We recall that A(r) = n^=0Fkj by the proof of theorem 1.8.i), where F& is 
the disjoint union of the r(r — 1) closed tubular neighbourhoods y (Ni), i G {1,... ,r}, 
where 7 G T is an élément which can be represented as a reduced word of length 
k in terms of the generators. y (Ni) is a closed tubular neighbourhood of 7 (Pi), 
as in theorem 1.7, and the "width" of each y (Ni), :— d(/y(El), L{), satisfies 
w(ja) ^ CXk, as was shown in lemma 1.6 and corollary 1.7. Hence, 

w(k) := ]T w1^ ^ Cr(r - \)kXk{l [6) < Cr(r - iyôk. 
z(7)=fc 

ie{l;...,r} 
Thus, limfe_00 w(k) = 0. Hence, just as in the proof of the theorem of Marstrand 
[Mr], the Hausdorff dimension of A(Y) can not exceed 2n + 1 + ô. • 

Next we will apply the previous estimâtes to compute the versai déformations of 
manifolds obtained from complex Schottky groups as in (3.7), whose limit sets have 
small Hausdorff dimension. 

We first recall [Kod] that given a compact complex manifold X, a déformation 
of X consists of a triple (X,B,UO), where X and B are complex analytic spaces and 
OU : X —> B is a surjective holomorphic map such that u;_1(t) is a complex manifold for 
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ail t G B and cj_1(to) = X for some to, which is called the référence point. It is known 
[Kur] that given X, there is always a déformation (X,Âx,u) which is univers al, in 
the sensé that every other déformation is induced from it (see also [KNS, Kod]). The 
space Âx is the Kuranishi space of versai déformations of X [Kur]. If we let O := Sx 
be the sheaf of germs of local holomorphic vector fields on X, then every déformation 
of X détermines, via differentiation, an élément in H1(X, ©), so H1(X, B) is called 
the space of infinitésimal déformations of X ([Kod], Ch. 4). Furthermore ([KNS] 
or [Kod, Th. 5.6]), if H2(X,S) = 0, then the Kuranishi space Âx is smooth at the 
référence point to and its tangent space at to is canonically identified with H1(X, B). 
In particular, in this case every infinitésimal déformation of X cornes from an actual 
déformation, and vice-versa, every déformation of the complex structure on X, which 
is near the original complex structure, cornes from an infinitésimal déformation. 

The following lemma is an immédiate application of (3.7) and Harvey's Theorem 1 
in [Ha], which généralises the results of Scheja [Schj]. 

3.8. Lemma. — Let r > 2, 0 < A < (r — 1)~\ let f be as in proposition 3.7 and let 
Q, := Q(T) C P^1^1 be its région of discontinuity. Then one has: 

Hj(iï,i*(ep2n + L)) 9é HJ(P*n+\ep2n + L), foi' 0 ^ J < 71, 

where i is the inclusion of Q in P^n+1. Hence, if n > 1, then one has: 

H°(n,i*(Gp2n+i)) ^sl(2n + 2,C) and Hj(Q,i*(Op2n+i)) ^ 0, 

for ail 0 < j < n, where 5Ï(2n + 2,C) is the Lie algebra o/PSL(2n + 2,C); and it is 
being considérée throughout this section as an additive group. 

Proof. — By (3.7) we have that the Hausdorff dimension d of the limit set A(f) 
satisfies d < 2n + 1 + 5 for every ô > 0. Therefore the Hausdorff measure of A(T) 
of dimension s, HS{A(T)), is zéro for every s > 2n + 1. Hence the first isomorphism 
in (3.8) follows from Theorem l.h) in [Ha], because the sheaf B is locally free. The 
second statement in (3.8) is now immédiate, because 

H°{P*n+\Op2n+1) ^5[(2n + 2,C) and ^ (P2n+1, B ^ + i ) 9* 0 for j > 0, 

a fact which follows immediately by applying the long exact séquence in cohomology 
derived from the short exact séquence: 

0 —> O —+ [0(l)]n+1 —•> ©^,-m — * 0, 

where O is the structural sheaf of P^n+1 and [(9(l)]n+1 is the direct sum of n + 1 
copies of Op2n+i(l), the sheaf of germs of holomorphic sections of the holomorphic 
line bundle over P2n+1 with Chern class 1. See Hartshorne [Ht], Example 8.20.1, 
page 182. • 

We let M := Q/T, where f is as above. We notice that Q is simply connected 
when n > 0, so that Q is the universal covering M of M. Let p : M —> M be the 
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covering projection; since f acts freely on Q, this projection is actually given by the 
group action. Let 9 m be the sheaf of germs of local holomorphic vector fields on M 
and let 0 be the pull-back of 9 to AI under the covering p; 9 is the sheaf z*(Op2„ + i) 

on AI = Q. 

3.9. Lemma. — If n > 2, then for 0 ^ j ^ 2 we have: 

HJ{M,GM) = ^ ( f , s l (2n + 2,C)), 

where sl(2n + 2,C)) is considérée, as a T-left module via the représentation 

p:t —> Aut(sl(2n + 2X))) 

given by: 

p(l)(y) =dTgovoTg~\ v G5l(2n + 2,C), 

where Tg is the action of g ET on P^n+1. 

Proof. — If n > 2, then (3.8) and Mumford's formula (c) in [Mu], pag 23, (see also 
Grothendieck [Gr], Chapter V) imply that there exists an isomorphism 

0 : Wp(t, H°(Q, 9)) —• W(AI, 9M), 

for 0 ^ j ^ 2, where H°(Q, 9) is the vector space of holomorphic vector fields on the 
uni versai covering AI = IL C P^l+l of AI. 

Now, by [Ha], Theorem l.i), every holomorphic vector field in F£(R), extends to a 
holomorphic vector field defined in ail of P^n+1. Therefore, 

if()(fî,ë) - ffo(Pc2n+1,0p2n+i) = sl(2ra + 2,C). • 

We recall that F is a free group of rank r — 1; let g\,..., gr^\ be generators of f. By 
[HS], page 195 Corollary 5.2, applied to F, we obtain: 

i^(f,sl(2n + 2,C)) ^ô[(2n + 2,C) x ••• x $L(2n + 2, C)/Im(ib), 

where 
^ : SL(2n + 2, C) —> SL(2n + 2, C) x • • • x sl(2rc + 2, C) 

is given by xjj(v) = (gi(v) — v,...,gr_i(v) — v). We claim that 0 is injective. Indeed, if 
v is a linear vector field in P^n+l which is invariant by . . . , gr-i, then, by Jordan's 
theorem, this vector field is tangent to a hyperplane II which is f-invariant. This can 
not happen. In fact, if L is a n dimensional projective subspace contained in A(f), 
then L must intersect II transversally in a subspace of dimension n — 2, for otherwise 
Ft would contain the whole limit set A(f), which is a disjoint union of projective 
subspaces of dimension n. Hence, there exists L C n, a projective n-subspace such 
that L H A(f) = 0. Then, as we have shown in section 1, there exists a séquence 
{7/};gn such that lim7_>oc(7/(L)) = L\, where L\ C A(f), where L\ is not contained 
in n. This is a contradiction to the invariance of n. • 
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Therefore, 

dimc H\Q, 0) = dimc[s[(2ra + 2, Cp2] = (r - 2) ((2n + 2)2 - l) . 

By [HS], page 197, Corollary 5.6 we have H2(t ,sl(2rc + 2,C)) - 0. Hence, by 3.9 
above, one obtains, 

H2(M,0M) = ^ ( f , s l (2n + 2,C)) =0 . 

Thus we arrive to the following theorem: 

3.10. Theorem. — Let n,r > 2 and let À 6e an arbitrary scalar such that 0 < À < 
(r — Let T 6e a Schottky group as in (I.l.in), so that the (Fubini-Study) distance 
from 7(x) to the limit set A decreases f aster that CXk for every point x G P^71^1 and 
any 7 G T of word-length k (where C is some positive constant). LetT be the index-two 
subgroup of T consisting of ivords of even length. Let Q be the région of discontinuity 
ofT, M := ft/T, and let dénote the Kuranishi space of versai déformations of M, 
with référence point to G corresponding to M. Then, we have: 

H\M, 0M) ^ i^(f,5[(2n + 2, C)) ^ c*7'-^2"*2)2-1), 

and 

H2(M,SM) = 0 . 
Hence is non-smgular at to, of complex dimension (r — 2)((2n + 2)2 — 1), and 
every small déformation of M is obtained by a small déformation ofT as a subgroup 
of PSL(2n + 2, C), unique up to conjugation. 

Although we only considered n > 2 above, the last theorem remains valid for 
n = 0,1. In fact, if n = 0 and r > 2, we have the classical Schottky groups. The 
manifold Q/T is a compact Riemann surface of genus r — 1. It is well known that in 
this case the moduli space has dimension 3(r — 1) — 3 = 3(r — 2), which, of course, 
coincides with the formula above. When n — 1 and r > 2 the manifolds Q/T are 
Pretzel twistor spaces of genus g = r — 1, in the sensé of Penrose [Pe]. The theorem 
above gives that the dimension of the moduli space of this manifold is 15g — 15, which 
coincides with Penrose's calculations in page 251 of [Pe]. 
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