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COMPLEX SCHOTTKY GROUPS

by

José Seade & Alberto Verjovsky

Abstract. — In this work we study a certain type of discrete groups acting on higher
dimensional complex projective spaces. These generalize the classical Schottky groups
acting on the Riemann sphere. We study the limit sets of these actions, which turn out
to be solenoids. We also look at the compact complex manifols obtained as quotient
of the region of discontinuity, divided by the action. We determine their topology
and the dimension of the space of their infinitesimal deformations. We show that
every such deformation arises from a deformation of the embedding of the group in
question into the group of automorphisms of the corresponding complex projective
space, which is a reminiscent of the classical Teichmiiller theory.

Introduction

The theory of Kleinian groups introduced by Poincaré [Po] in the 1830's played
a major role in many parts of mathematics throughout the 20th century, as for ex-
ample in Riemann surfaces and Teichmiiller theory, automorphic forms, holomor-
phic dynamics, conformal and hyperbolic geometry, 3-manifolds theory, etc. These
groups are, by definition, discrete groups of holomorphic automorphisms of the com-
plex projective line P2, whose limit set is not the whole Pl Equivalently. these
can be regarded as groups of isometries of the hyperbolic 3-space, or as groups of
conformal automorphisms of the sphere S?. Much of the theory of Kleinian groups
has been generalised to conformal Kleinian groups in higher dimensions (also called
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252 J. SEADE & A. VERJOVSKY

Mébius or hyperbolic Kleinian groups), i.e., to discrete groups of conformal automor-
phisms of the sphere S™ whose limit set is not the whole sphere (see, for instance,
[Kul, Ku2, Mal, Sul, Su2, Su3, Su4)).

Many interesting results about the dynamics of rational maps on Pcl in the last
decades have been motivated by the dynamics of Kleinian groups, and there is an
interesting “dictionary” between these two theories (see, for instance, [Sul, Su2,
Su3, Su4, Mcl, Mc2]). The theory of rational maps has also been generalised
to automorphisms of P,f, and recently many results are being obtained about the
dynamics of automorphisms and rational endomorphisms of P in general. This led
us to define in [SV] the concept of a higher dimensional complex Kleinian groups. By
this we meant (infinite) discrete subgroups of PSL(n+ 1, C), the group of holomorphic
automorphisms of P¥. n > 1. acting with a non-empty region of discontinuity.

One of the most interesting families of (conformal) Kleinian groups is provided by
the Schottky groups. and the aim of this article is to study the analogous construction
for groups acting by holomorphic transformations on complex projective spaces. We
call these Complex Schotthy Groups.

We consider an arbitrary configuration {(L;. AMy)..... (L,.M,)} of pairs of pro-
jective n-spaces in Pg"“, which are all of them pairwise disjoint. Given arbitrary
neighbourhoods Uy, .. .. U, of the L;’s, pairwise disjoint, we show that there exists.

It

for each i = 1,....7, projective transformations T; of 7

interior with the exterior of a compact tubular neighbourhood N; of L; contained

, which interchange the

in U;, leaving invariant the boundary E; = O(N;). The E;’s are mirrors, they play
the same role in ',g” Floas cireles play in S? to define the classical Schottky groups.
Each mirror E; is a (2n + 1)-sphere bundle over P!. The group of automorphisms
of P?"“ generated by the T;’s is a complex Kleinian group I'. The region of dis-
continuity Q(I') is a fibre bundle over P/ with fibre 5272 minus a Cantor set C.
The limit set A is the complement of Q(T) in P2 it is the set of accumulation
points of the T-orbit of the Lls, and it is a product C x P/. The action of T on
this set of projective lines is minimal in the sense that the I'-orbit of every point x,,
in [g”“ accumulates to (at least a point in) each one of the projective lines in A.
This set is transversally projectively self-similar, i.e., A corresponds to a Cantor set
in the Grassmannian Ga,, 41, which is dynamically-defined. Hence A is a solenoid
(or lamination) by projective spaces, which is transversally Cantor and projectively
self-similar. Each of these groups I' contains a subgroup I' of index two, which is a
free group of rank r — 1 and acts freely on Q(I'). The quotient Q(I')/T is a com-
pact complex manifold, which is a fibre bundle over P/ with fibre the connected
sum of (r — 1) copies of S%"*!1 x S'. As mentioned above, these manifolds have a
canonical projective structure [Gul. i.e., they have an atlas {(U;, ¢;)} whose changes
of coordinates are restrictions of complex projective transformations. However, these
manifolds are never Kihler, due to cohomological reasons. When n = 1, the manifolds
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COMPLEX SCHOTTKY GROUPS 253

that we obtain are Pretzel twistor spaces in the sense of [Pe]; and if the configuration
{(Ly, M), ..., (L., M,)} consists of twistor lines of the fibration p: P? — S*, then I’
and T descend to conformal Schottky groups on S*. In this case Q(T')/T is the twistor
space of the conformally flat manifold S*/p(T"), which is a Schottky manifold [Ku2];
QT)/T is a flat twistor space [Si]. We also generalise our construction of Schottky
groups to P2, the projectivization of a separable complex infinite dimensional Hilbert
space.

We then compare the deformations of our Schottky groups with the deformations
of the complex manifolds that one gets as quotients of the action of the group on
its region of discontinuity. For this we estimate an upper bound for the Hausdorff
dimension of the limit set of the complex Schottky groups. We use this to show
that, with the appropriate conditions for the Schottky group I', the Kuranishi space
R of versal deformations of the complex manifold My = Q(I)/T, is smooth near
the reference point determined by Ay, Furthermore, we estimate the dimension of £
and we prove that every infinitesimal deformation of M} actually corresponds to an
infinitesimal deformation of the group I' in the projective group PSL(2n + 2.C). in
analogy with the classical Teichmiiller and moduli theory for Riemann surfaces.

While preparing this article we had very useful conversations with a number of
people, and we wish to thank all of them for their support. We are most grateful
to Francois Lescure for very useful comments regarding the algebraic aspects of this
paper. Special thanks are also due to Misha Kapovich and Etienne Ghys.

1. Complex Schottky groups

We recall that (in the classical case) the Schottky groups are obtained by consid-
ering pairwise disjoint (n — 1)-spheres S;,....S, in S". see [Ma2]. Each sphere S,
plays the role of a mirror: it divides S" in two diffeomorphic components, and one
has an involution T; of S" interchanging these components, the inversion on S;. The
Schottky group is defined to be the group of conformal transformations generated by
these involutions. We are going to make a similar construction on P2 "' n > 0.
(For n = 0, if we take P“ to be a point, this construction gives the classical Schottky

(

groups on PL.)

Consider the subspaces of C2'+2 = C"+1 x C"+1 defined by Ly := {(a.0) € C2"+2}
and My = {(0.b) € C*"*2}. Let S be the involution of C*"*2 defined by S(a.b) =
(b,a). This interchanges Ly and M.

I.1. Lemma. Let ®: C*'*2 — R be given by ®(a.b) = |(1|2 - |b)2. Then:

i) By = O=Y0) is a real algebraic hypersurface in C*"2 with an isolated singu-
larity at the origin 0. It is embedded in C*"*2 as a (real) cone over S?"+1 x §2n+t
with vertex at O € C*"+2,
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254 J. SEADE & A. VERJOVSKY

ii) E’é is tnvariant under multiplication by A € C, so it is in fact a complex cone.
Ei’g separates C*" T2 — {(0,0)} in two diffeomorphic connected components U and V.
which contain respectively Ly — {(0,0)} and My — {(0,0)}. These two components are
interchanged by the involution §, for which ES’ 18 an invariant set.

iii) Every linear subspace K of C*"*2 of dimension n + 2 containing ZB meets
transversally E‘@ and M. Therefore a tubular neighbourhood V' of M,y — {(0,0)} in

Pé"‘“ is obtained, whose normal disc fibres are of the form KNV. with K as above.

Proof. — The first statement is clear because ® is a quadratic form with 0 € C2n+2
as unique critical point. Clearly ES is invariant under multiplication by complex
numbers, so it is a complex cone. That f N Sint3 = g2ntl o gontl — C2n+2 iy
because this intersection consists of all pairs (I y) so that |z| = |y| = 1/v/2. That S
leaves [ & invariant is obvious, and so is that S interchanges the two (omponontb of
C? 2 — {(0,0)} determined by Es which must be diffcomorphic because S is an
automorphism. Finally, if K is a subspace as in the statement (iii), then K meets
transversally Es because through every point in Eq there exists an affine line in &

which is transverse to Eg. O

Let .S be the linear projective involution of PZ”Jrl defined by S. Since E a
complex cone, it projects to a codimension 1 real submanifold of PZ"JF1 thdt we
denote by Es.

1.2. Corollary

i) Eg is an invariant set of S.

ii) Fs is a S+l pyundle over Pr, in fact Eg is the sphere bundle associated to the
holomorphic bundle (n + 1)Opy, which is the normal bundle of P in Pz”Jrl

iii) Fg separates Pé”“ i two connected components which are interchanged by

S and each one is diffeomorphic to a tubular neighbourhood of the canonical Pf
2n+41
P

Definition. We call Eg the canonical mirror and S the canonical involution.

It is an exercise to show that (1.1) holds in the following more generally setting.
Of course one has the equivalent of (1.2) too.

1.3. Lemma. Let A be a positive real number and consider the involution
§)\ . (C'n,+1 % (Cn+l N (C”+l % (Cn+l
given by b,\((z b) = (A\b. A" ta). Then g,\ also interchanges Z(, and ﬂ\[(,. and the set
Ex = {(a.b) : |a|*> = X2[b%}

satisfies. with respect to Sy, the analogous properties (i)-(iii) of (1.1) above.
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COMPLEX SCHOTTKY GROUPS 255

We notice that as A tends to oo, the manifold F'\ gets thiner and approaches the Lg-
axes. Consider now two arbitrary disjoint projective subspaces L and M of dimension
n in Pé"’“, and the corresponding linear subspaces L. M of C2"+2 Tt is clear that
C2"+2 = [ & M and there is a linear automorphism H of C2n+2 taking L to Ly and
M to ]/\TU. For every A € Ry, the automorphism Hlo §A o H. is an involution that
descends to an involution H ' o Sy o H of Pé”'“ that interchanges L and M. It is
clear that one has results analogous to (1.1) and to (1.2). One also has:

1.4. Lemma. — Let T be a linear projective involution of Pg”“ that interchanges L
and M. Then T is conjugate in PSL(2n + 2,C) to the canonical involution S.

Proof. Let L and M be linear subspaces of C2"*2 as above. Let {l1,...,l,11} be
a basis of L. Then {lic.. . Ligas f(ll), e f(l,,+1)} is a basis of C*"*2. The linear
transformation that sends the canonical basis of C2"+2 = C"*! @ C"*! to this basis
induces a projective transformation which realizes the required conjugation. O
Pg"“ are, by definition, the images of Fg under the
action of PSL(2n + 2,C). A mirror is the boundary of a tubular neighbourhood of a

n

2 in P2 so it is an S?"F-bundle over P

In this paper, mirrors in

We summarise the previous discussion in the following result.

1.5. Proposition. Let L = M = B} be disjoint projective subspaces of Pé”“‘ Then:

. . B . 2 .
i) There exist involutions of R5”+1 that interchange L and M.
i) Each of these involutions has a mirror, i.e.. an invariant set £ = Ep C Pé”“

2n-+1

which separates P, in two connected components which are interchanged by T.

Each component is diffeomorphic to a tubular neighbourhood of the canonical PY C
2n+1
P
iii) Given an arbitrary tubular neighbourhood U of L. we can choose T so that the
corresponding mirror Ep is contained in the interior of U.

In fact one can obviously make stronger the last statement of (1.5):

1.6. Lemma. Let L and M be as above. Given an arbitrary constant X, 0 < X\ < 1.
we can find an involution T interchanging L and M, with a mirror E such that
if U* is the open component of Pé”“ — E which contains M and x € U*, then
d(T (). L) < Ad(x, M), where the distance d is induced by the Fubini-Study metric.

Proof. The involution T = H~ ' o Sy o H, with H and Sy as above, satisfies
(1.6). O

We notice that the parameter A in (1.6) gives control upon the degree of expansion
and contraction of the generators of the groups, so one can estimate bounds on the
Hausdorft dimension of the limit set (see section 2 below).

The previous discussion can be summarized in the following theorem (cf. [No]):
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256 J. SEADE & A. VERJOVSKY

1.7. Theorem. — Let L = {(Ly,M))..... (L., M)}, v > 1, be a set of v pairs of
projective subspaces of dimension n of Pé”’“, all of them pairwise disjoint. Then:

i) There exist involutions Ty.....T, of Pg”“, such that each T;, i = 1.....r,
interchanges L; and M;, and the corresponding mirrors FEr, are all pairwise disjoint.

ii) If we choose the T!s in this way, then the subgroup of PSL(2n + 2. C) that they
generate is complex Kleinian.

iii) Moreover. given a constant C' > 0. we can choose the T!s so that if T :=
T;, ---Tj, is a reduced word of length & > 0 (i.e.. j1 # jo # -+ # jo—1 # Jji ), then
T(N;) is a tubular neighbourhood of the projective subspace T(L;) which becomes very
thin as k increases: d(x.T(L;)) < CA* for all v € T(N;). where N; is the connected

2 - . . .
component of P@"’“ — Eqp, that contains L;, for alli=1,..., r.
1.7.1. Definition. A Complex Kleinian group constructed as above will be called a

Complex Schottky Group.

1.7.2. Definition. Given a Complex Schottky group I', we define its limit set A :=
A(T) to be the set of accumulation points of the T-orbit of the union L, U---U L,.
Its complement Q = Q(T') := Pé"“ — A is the region of discontinuity.

1.7.3. Remark. We notice that this definition is not standard but it is suitable for
Schottky groups.

1.8. Theorem. — Let I' be a complex Schottky group in Pg”“. generated by invo-
lutions {1y, ..., T.}.on = 1.r > 1. as in (1.7) above. Lel Q') be the region of
discontinuity of T' and let A(T") = Pé"“ — Q(T) be the limit set. Then, one has:

i) Let W = Ré"“ — U;':Lli)f,'. where 76, is the interior of the tubular neighbourhood
N; as in (1.7). Then W is a compact fundamental domain for the action of T' on
Q). One has: Q') = Uwel“ ~(W)., and the action on § is properly discontinuous.

ii) A(T') is an intersection of nested sets: A(I') = 072 7i(Nj()). where {~;}72, is
a sequence of distinct elements of T and j: N — {1,....r} is a function such that
Yir1(Njir1y) C2i(Njiy)-

i) If r =2, then I' 2 Z/2Z « Z/27Z, the infinite dihedral group, and A(T) is the
union of two disjoint projective subspaces L and M of dimension n. In this case we
say that T is elementary, in analogy with Kleinian groups acting on P}.

i) If r > 2. then A(T') is a complex solenoid (lamination). homeomorphic to
P x C, where C is a Cantor set. I acts minimally on the set of projective subspaces
in A(I') considered as a closed subset of the Grassmannian Gay i, .

v) Ifr > 2. let T C T be the index 2 subgroup consisting of the elements which are
reduced words of even length. Then T is free of rank r — 1 and acts freely on Q(T).
The compact manifold with boundary W = W U Ty (W) is a fundamental domain for
the action of I' on Q). We also call I' a complex Schottky group.
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COMPLEX SCHOTTKY GROUPS 257

vi) Fach element v € T leaves invariant two copies. Py and Ps. of P! oin A(T).
For every L € A(T). A/i(L) converges to Py (or to Py) as i — oo (ori — —oc).

In fact we prove that if » > 2, then I' acts on a graph whose vertices have all
valence either 2 or r. This graph is actually a tree, which can be compactified by
adding its “ends”. These form a Cantor set and the action of I' can be extended to
this compactification. The limit set A(I') corresponds to the uncountable set of ends
of this tree. We use this to prove statement v) above.

[e]
Proof of i). Let 9117 be the boundary of W = é"“ — UN;, i.e.. the union Fy U
U E, of the mirrors. Set Wy := . Now define W, = {JI_, 7:(W). where T,
is the identity. by definition. Then W, is a manifold whose boundary consists of

r(r — 1) components Ej; = 1 (Ej). i # j,4.j =1,....r. cach one being a mirror.
Define. by induction on & > 1, W = U:,” T;(Wy—1). Then W} is a manifold whose
. ) k .
boundary consists of r(rr — 1) compouents, E; =T, - Tj._ (£}, ). where

J1ed2s ey g € {l,...or and §1 # Ja,.oo g1 #F Jre Thus Wyois contained in the
interior of 15.41: W7 C U'A.H.

Let U = Uj—, Wi. so U is P-invariant. since T;(W,) C Wiy for every j €
{1..... r}. It is clear that U is open, since any x € U is contained in the inte-
rior of some Wy. Let v = T} ---T}, be any element of T' represented as a re-

]
duced word of length & > 1. Then (W) € W =W, 1. Thus. for any 7 # 3.

o] e}

YW BW) =@. Since U = U, .- 7(W). then U is obtained from translates of 117,
glued along some boundary compounents. Thus U is open. connected. with a properly
discontinuous action of I'. Therefore U C Q(1'). To finish the proof of i) we must prove

. (e}
P.:f"J’] — U = A(I"). For this we consider. for cach & > 0. the set I} := P?” oy,

R 5 > 2 . . . ~
Then fy41 C Fj, hence ﬂ;:(, F. = \5"“ — U is a nonempty closed invariant set. For
each k= 0. Fj is a disjoint union of closed tubular neio‘hbourl1()()(15 of projective sub-

spaces of dimension n of 1’.:'7”“ These are of the form 7 (N;) = -1, (N;), for a
v € I' which is represented in terms of the generators as the 1'(‘(111(‘(‘(1 word T, --- T}, .
They are closed tubular neighbourhoods of the projective subspace T, -1, (L;).
For each sequence {v; },/X:l in I'. such that the length of ;4 is bigger than the length
of v; and 41 (N;) C v, (N;). the tubular neighbourhood becomes thinner. By (1.7).
the sequence { v (Li)};2 converges, in the Hausdorff metric, to a linear subspace of
dimension n. Hence, also by (1.7), ]’5'”’1 — U is a nowhere dense closed subset of
Pf"“. which is a disjoint union of projective subspaces of dimension n. Thus U is
open and dense in P‘i‘f”ﬁz since U C Q(I), it follows that Q(T') is also connected. We
have that U/I" is compact and it is obtained from the compact fundamental domain
W after identifications in cach component of its boundary. If Q(I') # U we arrive to
a contradiction, because Q/I' is connected and U/T is open, compact and properly
contained in Q/T. Therefore, Q(I') = U and A(T') = (,Z, F;. This proves i).
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Proof of ii). — If 2 € A(T') then, as shown above, x € (2, F;. To prove ii) it is
sufficient to choose, for each ¢, the component of F; which contains z. Such component
is of the form y(N;) for a unique v € I' (we set v = ;) and a unique j € {1,....7}.
We set j = j(i). This proves ii). This also shows that (., F; is indeed the limit set
according to Kulkarni’s definition in [Kul].

Proof of iii). — We have two involutions, T and S, and two neighbourhoods, Nr and
Ng, whose boundaries are the mirrors of 7" and S, respectively. The limit set is the
disjoint union AU B, where A := (1, v(Ns), B := [\, cp» v(N7), I is the set of
elements in I' which are words ending in 7" and I is the set of elements which are
words ending in 5. By (1.7), A and B are each the intersection of a nested sequence
of tubular neighbourhoods of projective subspaces of dimension n, whose intersection
is a projective subspace of dimension n. Hence A and B are both projective subspaces
of dimension n, and they are disjoint. Two reduced words ending in T" and S, act
differently on Np (or Ng). Hence I is the free product of the groups generated T'
and S, proving iii).

Proof of iv). Let L C P@"H be a subspace of dimension n and let NV be a closed
tubular neighbourhood of L as above. Let D be a closed disc which is an intersection
of the form L N N, where Lisa subspace of complex dimension n + 1, transversal
to L. If M is a subspace of dimension n contained in the interior of N, then M is
transverse to D, otherwise the intersection of M with L would contain a complex line
and M would not be contained in N. From the proofs of i) and ii) we know that A(T")
is the disjoint union of uncountable subspaces of dimension n. Let x € A(I") and let
L < A(T") be a projective subspace with @ € L. Let N be a tubular neighbourhood
of L and D a transverse disc as above. Then A(I') N D is obtained as the intersection
of families of discs of decreasing diameters, exactly as in the construction of Cantor
sets. Therefore A(I') N D is a Cantor set and A(I") is a solenoid (or lamination) by
projective subspaces which is transversally Cantor. It follows that A(T") is a fibre
bundle over P!, with fibre a Cantor set C. Since P} is simply connected and C is
totally disconnected, this fibre bundle must be trivial, hence the limit set is a product
P! x C, as stated.

There is another way to describe the above construction: I" acts, via the differential,
on the Grassmannian Ga,, 41, of projective subspaces of dimension n of P?"H. This
action also has a region of discontinuity and contains a Cantor set which is invariant.
This Cantor set corresponds to the closed family of disjoint projective subspaces in
A(D). It is clear that the action on the Grassmannian is minimal on this Cantor set.

Proof of v). Choose a point xy in the interior of W. Let ', be the I'-orbit of x.
We construct a graph G as follows: to each v(zg) € T, we assign a vertex v. Two
vertices v., v, are joined by an edge if v(W) and /(W) have a common boundary
component, which corresponds to a mirror F;. This means that 4" is v followed by an

involutions T or vice-versa. This graph can be realized geometrically by joining the
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COMPLEX SCHOTTKY GROUPS 259

corresponding points (o), (o) € Q') by an arc a, s in Q(T'), which is chosen
to be transversal to the corresponding boundary component of (W); we also choose
these arcs so that no two of them intersect but at the extreme points. Clearly G is
a tree and each vertex has valence r. To construct a graph G with an appropriate
[-action we introduce more vertices in G: we put one vertex at the middle point of
each edge in G; these new vertices correspond to the points where the above arcs
intersect the boundary components of v(W). Then we have an obvious simplicial
action of I on G. Let I' be the index-two subgroup of I' consisting of elements which
can be written as reduced words of even length in terms of 7%, ..., T,. A fundamental
domain for I' in Q(I') is W = W U Ty (W), so this group acts freely on the vertices
of G. Hence T is a free group of rank r — 1. The tree G can be compactified by its
ends by adding a Cantor set on which I' acts minimally: this corresponds to the fact
that T acts minimally on the set of projective subspaces which constitute A(I").

Proof of vi). — By (1.7). if 4 € I, then either v(N) is contained in Ny or 77 H(Ny)
is contained in Ni: say 7(N}) is contained in Nj. Thus {7/(Ny)}. i > 0, is a nested
sequence of tubular neighbourhoods of projective subspaces whose intersection is a
projective subspace Pp of dimension n; {7'(Ny)}. i < 0, is also nested sequence
of tubular neighbourhoods of projective subspaces whose intersection is a projective
subspace P, of dimension n. For every L € A(I'), 4'(L) converges to Py and P
as i — oo or i — —o0, respectively, and both P; and P, are invariant under . as
claimed. O

1.9. Remarks

i) The action of I" in the Cantor set of projective subspaces is analogous to the ac-
tion of a classical Fuchsian group of the second kind on its Cantor limit set. We also
observe that, since each involution 7} is conjugate to the canonical involution defined
in lemma 1.1, the laminations obtained in theorem 1.8 are transversally projectively
self-similar. Hence one could try to apply results analogous to the results for (confor-
mally) self-similar sets (for instance Bowen'’s formula [Bo]) to estimate the transverse
Hausdorff dimension of the laminations obtained. Here by transverse Hausdorff di-
mension we mean the Hausdorff dimension of the Cantor set C of projective subspaces
of GG3,,41., which conform the limit set. If Ti.i=1,....r, denote the maps induced
in the Grassmannian Gy, 1., by the linear projective transformations T, then C is
dynamically-defined by the group generated by the set {YN",}

ii) The construction of Kleinian groups given in 1.8 actually provides families of
Kleinian groups, obtained by varying the size of the mirrors that bound tubular
neighbourhoods around the L’s. In Section 3 below we will look at these fanilies.

iii) The above construction of complex Kleinian groups, using involutions and mir-
rors, can be adapted to produce discrete groups of automorphisms of quaternionic pro-
jective spaces of odd (quaternionic) dimension. Every “quaternionic Kleinian group”

V] . . . ¥ K
on P;{"“ lifts canonically to a complex Kleinian group on P23,
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260 J. SEADE & A. VERJOVSKY

2. Quotient Spaces of the region of discontinuity

We now discuss the nature of the quotients Q(I')/T" and Q(I') /T, for the groups of
section 1. The proof of proposition (2.1) is straightforward and is left to the reader.

2.1. Proposition. — Let L be a copy of the projective space PE in P and let x be a

L

point in Pé”“ —L. Let K, C Pé”“ be the unique copy of the projective space é’*'

m Pé"“ that contains L and x. Then K, intersects transversally every other copy of
 embedded in Pé”“ — L. and this intersection consists of one single point. Thus,

given two disjoint copies L and M of P! in pantl

. there is a canonical projection
map
2
Ti= Ty Pé‘”“ — L — M,

which is a (holomorphic) submersion. Each fibre 7= (x) is diffeomorphic to R*"+2.

2.2. Theorem. Let I' be a complex Schotthky group as in theorem 1.8, with r > 2.
Then:

i) The fundamental domain W of I' is (the total space of ) a locally trivial differ-
entiable fibre bundle over P! with fibre S2"+2 — [O)l u---u B,'. where each 107,- 18
the interior of a smooth closed (2n + 2)-disc D; in S*"2 and the D;’s are pairwise
disjoint.

i) Q(T) fibres differentiably over P! with fibre S*" 2 minus a Cantor set.

iii) If T is the subgroup of index two as in theorem 1.8. which acts freely on Q).
then QT /T is a compact complex manifold that fibres differentiably over P2 with fibre

C

(520 SEYH - (S2H  SYY the connected sum of 11— 1 copies of S x ST

Proof of 1). - Let P, P, C A(I') be two disjoint projective subspaces of dimension
n contained in A(T") C P}j"'“. Since Q(T) is open in P21 the restriction to Q(T)
of the map 7 given by 2.1, using Py as L and P as M., is a holomorphic submersion.
We know, by theorem 1.8.iv, that A(I") is a compact set which is a disjoint union of
projective subspaces of dimension n and which is a transversally Cantor lamination.
By 2.1, for each y € P», K, meets transversally each of these projective subspaces (in
other words, I, is transverse to the lamination A(T"). outside P;). Hence. by theoremn
1.8, for each y € %, K, intersects A(I') — P, in a Cantor set minus one point (this
point corresponds to P). The family of subspaces K, of dimension n + 1 are all
transverse to f2%.

Let us now choose P, and P, as in 1.8.vi, so they are invariant sets for some
v e T, and 4/(L) converges to Py as j — o for every projective n-subspace L C
A(T') = P1. We see that every mirror F;, 1 € {1,..., r} is transverse to all A',. Hence
the restriction

T = Tp, 'M'I W — P_g = I)g.

of m to W, is a submersion which restricted to each component of the boundary
is also a submersion. For each y € P» one has 7, '({y}) = K, N W, so 7, ' ({y}) is
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compact. Thus 7 is the projection of a locally trivial fibre bundle with fibres K, "W,
y € P2, by Ehresmann’s lemma [Eh]. On the other hand for a fixed yy € P2, K,,NW
is a closed (2n + 2)-disc with » — 1 smooth closed (2n + 2)-discs removed from its
interior. This is true because P; is contained in exactly one of the N/s, say Ny, the
tubular neighbourhood of Py, and K, intersects each N;. j # 1, in a smooth closed
(2n + 2)-disc. This proves i).

Proof of ii). — The above arguments show that for each 7 € T', the image F(E;)
of a mirror E; is transverse to K, for all y € P, and i € {1....,7}. Hence the
restriction ﬂi' = mp, lw,. where Wy is as above, is a submersion whose restriction to

each boundary component of 17 is also a submersion. Thus 7¥ is a locally trivial
fibration. Since Q(I') = U~ Wi, we finish the proof of the first part of ii) by applying
the slight generalisation below of Ehresmann fibration lemma [Eh]: we leave the proof
to the reader.

Lemma. — Let M = ;= N, be a smooth manifold which is the union of compact
manifolds with boundary N, so that each N is contained in the interior of Niyi.
Let £ be a smooth manifold and f : M — L a submersion whose restriction to each
boundary component of Ni. for every i. is also a submersion. Then f is a locally
trivial fibration.

Thus mp, : QI") — P, = P is a holomorphic submersion which is a locally trivial
differentiable fibration. To finish the proof of ii) we only need to show that the fibres
of mp, are S2n+2 inus a Cantor set. Just as above, one shows that K, N Wy is
diffeomorphic to the sphere "2 minus the interior of r(r — 1)¥ disjoint (2n + 2)-
discs. Therefore the fibre of 7p, at y, which is &, NQ(I). is the intersection of S%"+2
minus a nested union of dises, which gives a Cantor set as claimed in ii).

Proof of iii). — We recall that by theorem 1.8.v, the fundamental domain of I is the
manifold W = W UT;(W). Then. as above, the restriction of 7 to W is a submersion
which is also a submersion in each connected component of the boundary:

N = (U ’I’I(E,)> UE:
J#1 J#1
which is the disjoint union of the r — 1 mirrors £, j # 1, together with the mirrors
Eyj =T (F)). j # 1. The mirror £} is identified with Ey;. j # 1, by Ty, and Q(I')/T
is obtained through these identifications. Let 7 : W — P, be the restriction of 7
to 117, By the proof of i). #7(y) = K, N W. y € P, is diffeomorphic to S22
minus the interior of 2(» — 1) disjoint (2n + 2)-discs. The restriction of 7 to each
E; and E|; determines fibrations #; : E; — Py and 7y; @ Ey; — P, respectively.

" ") \ ~ - i . ~ . .
whose fibres are S%"t!. Set m; = @y o (Th|g,). If we had that 7; = 7; for all
Jj =2.....r. then we would have a fibration from W/I" to P, because we would have

compatibility of the projections on the boundary. In fact we only need that 7; and 7;
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be homotopic through a smooth family of fibrations 7, : Fy; — P, my =71, mg = 7,
t € [0,1]. Actually, to be able to glue well the fibrations at the boundary we need
that m, = 7; for ¢ in a neighbourhood of 0 and 7, = 7, for ¢ in a neighbourhood of
1. But this is almost trivial: 7; : Fy; — % is the projection of Ey; onto P, from Py
and T — j is the projection of Ey; from T'(P;) onto P,. The n-dimensional subspaces
Py and T'(Py) are disjoint from P;, so there exists a smooth family of n-dimensional
subspaces P;. t € [0, 1], such that the family is disjoint from P, and P; = P for t in a
neighbourhood of 0 and P, = T'(P;) for t in a neighbourhood of 1. We can choose the
family so that for each ¢ € [0, 1], the set of n+ 1 dimensional subspaces which contain
Py meet transversally F;. To achieve this we only need to take an appropriate curve
in the Grassmannian of projective n-planes in Pé”“, consisting of a family P, which is
transverse to all K; this is possible by (2.1) and the fact that the set of n-dimensional
subspaces which are not transverse to the ]\'!’, s, is a proper algebraic variety of Pg"’“.
In this way we obtain the desired homotopy. Hence W fibres over Py & PZ: the fibre

S27+2 minus the interior of 2(r — 1) disjoint (2n + 2)-discs whose
S‘Zn+1

is obtained from
boundaries are diffeomorphic to and are identified by pairs by diffeomorphisms
which are isotopic to the identity (using a fixed diffeomorphism to $2"+1!). Hence the
fibre is diffeomorphic to (S?" 1 x SV)# - #(S?"+1 x S1), the connected sum of r — 1
copies of 2"+ x S This proves iii). O
2.3. Theorem. —— Let My be the compact complex orbifold My = Q(I")/T, which has
complex dimension (2n 4+ 1). Then:

i) The singular set of My, Sing(Mry), is the disjoint union of r submanifolds an-
alytically equivalent to PY. one contained in (the image in My of) each mirror E;
of T.

ii) Fach component of Sing(My) has a neighbourhood homeomorphic to the normal
bundle of P{ in Pé”“ modulo the involution v — —v, for v a normal vector.

iii) Mrp fibres over PE with fibre a real analytic orbifold with r singular points,
each having a neighbourhood (in the fibre) homeomorphic to the cone over the real
projective space Pﬁ”“ .

Proof. We notice that Mrp is obtained from the fundamental domain W after an
identification on the boundary F; by the action of T;. The singular set of M is the
union of the images, under the canonical projection p : (') — Q(T")/T, of the fixed
point sets of the r involutions T;. Now, T} is conjugate to the canonical involution
S of (1.2). The lifting of S to C?"*2 = C"*! x C"*! has as fixed point set the
(n + 1)-subspace {(a,a) : a € C"*t1}. This projectivizes to a n-dimensional projective
subspace. Since we can assume, for a fived j, that T; is an isometry, we obtain the
local structure of a neighbourhood of each component of the singular set. The same
arguments as in theorem 2.2.iii prove that Q(I")/I" fibres over P and that the fibre
has r singular points, corresponding to the r components of Sing(My), and each of
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these r points has a neighbourhood (in the fibre) homeomorphic to the cone over
P2n+1 O
5

2.4. Remarks

i) The map 7 in (2.2.ii) is holomorphic, but the fibration is not holomorphically
locally trivial, because the complex structure on the fibres may change.

ii) The Kleinian groups of 2.2 provide a method for constructing complex mani-
folds which is likely to produce interesting examples (cf. [No, Kal, Ka2, Ka3, Ka4,
Pe, Si]). These are never Kiihler, because the fibration  : Q(I')/I" — PZ has a sec-
tion, by dimensional reasons, so there can not exist a 2-cocycle with a power which
is the fundamental class of Q(I')/I". The bundle (n + 1)Opx is nontrivial as a real
bundle, because it has non-vanishing Pontryagin classes (excépt for n = 1), hence 7 is
a nontrivial fibration. We notice that the fundamental group of a compact Riemann
surface of genus greater than zero is never a free group; similarly, by Kodaira’s clas-
sification, the only compact complex surface with non trivial free fundamental group
is the Hopf surface S x S'. Our examples above give compact complex manifolds
with free fundamental groups (of arbitrarly high rank) in all odd dimensions greater
than one. Multiplying these examples by P!, one obtains similar examples in all
even dimensions. As pointed out by the referee, it would be interesting to know if
there are other examples which are minimal, i.e., they are not obtained by blowing
up along a smooth subvariety of the examples above. It is natural to conjecture that
our examples in odd dimensions are the only ones which have a projective structure
and free fundamental group of rank greater than one.

iii) The manifolds obtained by resolving the singularities of the orbifolds in (2.3)
have very interesting topology. We recall that the orbifold Mp is singular along r
disjoint copies of Pr: Sy, ..., S,.. The resolution M, r of My is obtained by a monoidal
transformation along each S;, and it replaces each point x € S;, 1 < i < r by a
projective space F. Hence, if P : M — M denotes the resolution map, then P~1(S;)
is a non-singular divisor in M . which fibres holomorphically over P* with fibre P,
1< <r.

2.5. Symmetric products of classical Kleinian groups. — Let I' C PSL(2,C)
be a classical Kleinian group acting on P2. Let A(I') and Q(T) := P} — A(T) be,
respectively, the limit set and the region of discontinuity of I'. Since P! is the nth

S"(P}), there is a canonical diagonal action of T’

oo~

symmetric product of Pé, fo
on PY, for all n > 1. The group I' acts properly and discontinuously on Q" :=
Pl — S"(A(I')). In particular, if " is a Schottky group of the second kind acting in
P! whose limit set A(T") is a Cantor set, then S"(A(I')) is again a Cantor set, and
the action of I' on its complement is discontinuous. Every point in S™(A(I')) is an
accumulation point of orbits of I'. This provides examples of complex Klenian groups
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acting on B¥ whose limit sets are Cantor sets. If in addition, the quotient of the action
of T'in P} in the region of discontinuity is compact, then Q" /T is also compact.

3. Hausdorff dimension and moduli spaces

Let £ := {(Ly,My),...,(L,,M,)} be a configuration of P!’s in P(g’"“ as before,
r > 2. Let I" and I'” be complex Schottky groups obtained from this same configu-
ration, i.e., they are generated by sets {T%,...,7,} and {T7],..., T/} of holomorphic
involutions of Pé"’“ that interchange the L;’s with the M;’s. For each i = 1,...,r,

the composition T} o Ti_' preserves the subspaces L;, M;. It is an exercise to see
that the subgroup of PSL(n + 2, C) of transformations that preserve these subspaces
is the projectivization of a copy of GL(n 4+ 1,C) x GL(n + 1,C) € GL(2n + 2,C).
Therefore, we can always find an analytic family {T';}, 0 <t < 1, of complex Schottky
groups, with configuration £, such that {I'} = I" and {I'y} = I"". Furthermore, let
L= {(L1,My),..., (L., M)} and £ := {(L},M]),.... (L., M)} be two configura-
tions of P1’s in Pé”“ as before. Due to dimensional reasons, we can always move
these configurations to obtain a differentiable family of pairs of disjoint n-dimensional
subspaces {(Ly4, M14)y...,(Lyyy Myy)}, with 0 < t < 1, providing an isotopy be-
tween £ and £’. Thus one has a differentiable family I'; of complex Kleinian groups,
where I'g = I and I'y = I'". The same statements hold if we replace I' and I by
their subgroups I' and IV, consisting of words of even length. So one has a differen-
tiable family I'; of Kleinian groups, where To=T and I'; = I’. Hence the manifolds
Q(T) /T are all diffeomorphic. By section 2, these manifolds are (in general non-
trivial) fibre bundles over P with fibre #1527+ x 1) a connected sum of
(r — 1)-copies of S?"*+1 x S1.If n = 1, given any configuration of r pairwise disjoint
lines in P72, there exist an isotopy of P2 which carries the configuration into a family
of r twistor lines. Hence P2 minus this configuration is diffeomorphic to the Cartesian
product of S* minus r points with PL. Moreover, the attaching functions that we use
to glue the boundary components of W, the fundamental domain of I'; are all isotopic
to the identity, because they live in PSL(4,C), which is connected. Thus, if n = 1,
then SZ(Ft)/f, is diffeomorphic to a product Pé X #“"”(S” x S1). Hence we have:

3.1. Proposition. — The differentiable type of the compact (complex) manifold
Q') /Ty is independent of the choice of configuration. It is a manifold of real
dimension (4n + 2), which is a fibre bundle over P with fibre #"=1(S2" 1 x §1);
moreover, this bundle is trivial if n = 1. We denote the corresponding manifold
by M.

The fact that the bundle is trivial when n = 1 is interesting because, as pointed
out in the introduction, when the configuration £ consists of twistor lines in P(g, the
quotient Q(T)/I" is the twistor space of the conformally flat manifold p(Q(T"))/p(I),
which is a connected sum of the form #~1 (8% x §1). Hence, in this case the natural
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fibration goes the other way round, i.e.. it is a fibre bundle over #(" =1 (8% x S1) with
fibre P}

Given a configuration £ as above, let us denote by [£]¢ its orbit under the action
of the group G = PSL(2n+2,C). These orbits are equivalence classes of such configu-
rations. Let us denote by C' the set of equivalence classes of configurations consisting
of r pairs of P2’s as above. Then C)! is a Zariski open set of the moduli space 9},
of configurations of r unordered couples of projective subspaces of dimension n in
Pé”“, whicl is obtained as the Mumford quotient [MFK] of the action of G on such
configurations. By [MFK], C! is a complex algebraic variety: the moduli space of
configurations of r pairs of n-planes P/ in P\;:f”“. Similarly, we denote by &' the
equivalence classes, or moduli space, of the corresponding Schottky groups, where
two such groups are equivalent if they are conjugate by an element in PSL(n + 2. C).
Given L := {(Ly,M;),....(L,.M,)}, and r-tuples of involutions (T4,....7)) and
(Sy.....95,) as above, i.e.. interchanging L; with A/; for all i = 1.....7r and having
pairwise disjoint mirrors, we say that these r-tuples are equivalent if there exists h € G
such that hT;h—' = S; for all i. Let T, denote the set of equivalence classes of such
r-tuples of involutions. It is clear that a conjugation h as above must leave £ invari-
ant. Hence, if r is big enough with respect to n, then i must be actually the identity,
so the equivalence classes in fact consist of a single element.

3.2. Theorem. — There exists a holomorphic surjective map 7: &) — C,! which is a
C™> locally trivial fibration with fibre T,. Furthermore, let T, T be compler Schotthy
groups as above and let Q). Q") be their regions of discontinuity. Then the com-
plex orbifolds My := Q(U)/U and My := Q1) /T are biholomorphically equivalent
if and only if T and "' are projectively conjugate, i.c.. they represent the same ele-
ment in &' Similarly. if T.T" are the corresponding indea 2 subgroups. consisting
of the elements which are words of cven length, then the manifolds My = Q(I')/T
and My, = Q) /T are biholomorphically equivalent if and only if T and T are
projectively conjugate.

Proof. — The first statement in (3.2) is obvious, i.e., that we have a holomorphic
surjection m: 8 — C' with kernel . The other statements are immediate conse-
quences of the following lemma (3.3), proved for us by Sergei Ivashkovich. Our proof
below is a variation of Ivashkovich’s proof.

3.3. Lemma. Let U be a connected open set in 1”5”“ that contains a subspace
LC I’é”“ of dimension n, and let h: U — V' be a biholomorphism onto an open set
V C I’E”J’l. Suppose that V' also contains a subspace M of dimension n. Then h
extends uniquely to an element in PSL(2n + 2,C).
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Proof. — Let f: U — P be aholomorphic map. Then f is defined by n meromorphic
functions fi,..., f, from U to P} (see [Ival), i.e., holomorphic functions which are
defined outside of an analytic subset of U (the indeterminacy set).

Consider the set of all subspaces of Pé”’“ of dimension n + 1 which contain L.
Then, if N is such subspace, one has a neighbourhood Uy of L in N which is the
complement of a round ball in the affine part, C"*!, of N. Since the boundary of such
a ball is a round sphere Sy and, hence, it is pseudo-convex, it follows from E. Levi
extension theorem, applied to each f;, that the restriction, fy, of f to U NN extends
to all of N as a meromorphic function. The union of all subspaces N is Pé’"“ and
they all meet in L. The functions fyn depend holomorphically on N as is shown in
[Iva]. One direct way to prove this is by considering the Henkin-Ramirez reproducing
kernel defined on each round sphere Sy, [He, Ram]. One can choose the spheres Sy
in such a way that the kernel depends holomorphically on N by considering a tubular
neighbourhood of L in N whose radius is independent of N. Hence the extended
functions to all N's define a meromorphic function in all of 1"5"“, which extends f.
Now let /2 be as in the statement lemma 3.3 and let h be its meromorphic extension.
Then, since by hypothesis h is a biholomorphism from the open set U C P{ onto the
the open set V := h(U) C P!, one can apply the above arguments to h=!' : V — U.
Let g : P! — P{ be the meromorphic extension of h~!. Then, outside of their sets of
indeterminacy, one has l~1,_q = gl~L = Id. Hence the indeterminacy sets are empty and
both h and g are biholomorphisms of P{!. In fact, in [Iva] it is shown that if f is as
in the statement of lemma 3.3 and if f is required only to be locally injective, then f
extends as a holomorphic function. O

Notice that if n = 1, then (3.3) becomes Lemma 3.2 in [Kal].

3.4. Corollary. — For v > 2 sufficiently large, the manifold Q(T)/T" has non-trivial
moduli.

In fact, if the manifolds Q(T")/T and Q(I)/T" are complex analytically equivalent,
then I' is conjugate to I'" in PSL(2n+2,C). by (3.2). and the corresponding configura-
tions £ and £’ are projectively equivalent. Now it is sufficient to choose r big enough
to have two such configurations which are not projectively equivalent. This is possi-
ble because the action induced by the projective linear group G on the Grassmannian
Gaont1.y 18 obtained from the projectivization of the action of SL(2n + 2, C) acting on
the Grassmann algebra A"+, of (n + 1)-vectors of C2"+2, restricted to the set of de-
composable (n+1)-vectors D"t The set D" generates the Grassmann algebra and
Goniin = (D"T1 —{0})/ ~, where ~ is the equivalence relation of projectivization.

If 7 is small with respect to n, then C;' consists of one point, because any two
such configurations are in the same PSL(2n + 2, C)-orbit. Therefore, in this case T,
coincides with &' That is, to change the complex structure of A" we need to change
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the corresponding involutions into a family of involutions, with the same configuration
(up to conjugation), which is not conjugate to the given one.

The following result is a generalization of Theorem 1.2 in [Kal]. This can be
regarded as a restriction for a complex orbifold (or manifold) to be of the form Q(T")/T
(or QT)/T).

3.5. Proposition. — If r > 2, then the compact complex manifolds and orbifolds
Q(T)/T and QI)/T, obtained in theorem 2.2, have no non-constant meromorphic
functions.

Proof. — Let f be a meromorphic function on one of these manifolds (or orbifolds).

Then f lifts to a meromorphic function fon Q) C Pé""“, which is [-invariant. By

lemma (3.6) below, f extends to a meromorphic function on all of Pé”“. Hence f

must be constant, because I' is an infinite group. O

3.6. Lemma ([Iva]). — LetU C Pé"“ ,n =1, be an open set that contains a projective
subspace P Let f: U — P} be a meromorphic function. Then f can be extended to
a meromorphic function f: U — P}.

We refer to [Iva] for the proof of (3.6). In the following proposition we estimate an
upper bound for the Hausdorff dimension of the limit set of some Schottky groups.

3.7. Proposition. — Letr >2,0 <A< (r—1)"" and letT and T be as in (1.7). Then,
for every & > 0, the Hausdorff dimension of A(T') = A(T') is less than 2n+1+6, i.e.,
the transverse Hausdorff dimension of A(T') = A(T") is less than 1 + 9.

Proof. — We recall that A(I') = N, Fi, by the proof of theorem 1.8.i), where Fy, is
the disjoint union of the r(r — 1)k closed tubular neighbourhoods v(N;), i € {1,...,7},
where v € I' is an element which can be represented as a reduced word of length
k in terms of the generators. ~(N;) is a closed tubular neighbourhood of ~v(L;),
as in theorem 1.7, and the “width” of each 7(N;), w(, ) = d(v(E;), L;), satisfies
W(y.i) < CMF, as was shown in lemma 1.6 and corollary 1.7. Hence,

,(U(k) = Z ’IU({;F?) < CT(T’ _ l)k:/\l\z(l+($) < C’I‘('I‘ _ 1)‘51\1.
l(v)=k
ie{l....r}

Thus, limy_.~ w(k) = 0. Hence, just as in the proof of the theorem of Marstrand
[Mr], the Hausdorff dimension of A(T") can not exceed 2n + 1 + 4. O

Next we will apply the previous estimates to compute the versal deformations of
manifolds obtained from complex Schottky groups as in (3.7), whose limit sets have
small Hausdorff dimension.

We first recall [Kod] that given a compact complex manifold X, a deformation
of X consists of a triple (X, B,w), where X and B are complex analytic spaces and
w : X — Bis asurjective holomorphic map such that w™1(t) is a complex manifold for
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allt € Band w™'(ty) = X for some t(, which is called the reference point. It is known
[Kur] that given X, there is always a deformation (X, &x,w) which is universal, in
the sense that every other deformation is induced from it (see also [KNS, Kod]). The
space Ry is the Kuranishi space of versal deformations of X [Kur]. If we let © := Ox
be the sheaf of germs of local holomorphic vector fields on X, then every deformation
of X determines, via differentiation, an element in H!(X,0), so H!(X,0) is called
the space of infinitesimal deformations of X ([Kod], Ch. 4). Furthermore ([KNS]
or [Kod, Th. 5.6]), if H*(X,©) = 0, then the Kuranishi space fx is smooth at the
reference point to and its tangent space at t is canonically identified with H'(X, ©).
In particular, in this case every infinitesimal deformation of X comes from an actual
deformation, and vice-versa, every deformation of the complex structure on X, which
is near the original complex structure, comes from an infinitesimal doformation

The following lemma is an immediate application of (3.7) and Harvey’s Theorem 1
in [Ha], which generalises the results of Scheja [Schj.

3.8. Lemma. — Letr > 2,0 < X< (r—1)"", let T be as in proposition 3.7 and let
Q=) C PZ"H be its region of discontinuity. Then one has:
HI(Q,i*(0 p2ur1)) = HI (P O p2usr),  for 0< j <n,
where i is the inclusion of Q0 in Pé"“. Hence, if n > 1, then one has:
H()(Q.i*(®H§,1+1)) ~s5l(2n+2,C) and H(Q,i"(© Pz,,+1)) (),
for all 0 < j < n, where sl(2n + 2,C) is the Lie algebra of PSL(2n + 2,C), and it is
being considered throughout this section as an additive group.

Proof. — By (3.7) we have that the Hausdorff dimension d of the limit set A(T)
satisfies d < 2n + 14§ for every & > 0. Therefore the Hausdorff measure of A(T")
of dimension s, Hs(A(I")), is zero for every s > 2n + 1. Hence the first isomorphism
in (3.8) follows from Theorem 1.ii) in [Ha], because the sheaf © is locally free. The
second statement in (3.8) is now immediate, because

HO(PZ'" O pauin) 2 sl(2n +2,C) and  H/ (P!, 0 p2ni) 2 0 for j > 0,
a fact which follows immediately by applying the long exact sequence in cohomology
derived from the short exact sequence:
0— O — [OM)]"™ — O p2utr — 0.

where O is the structural sheaf of PZ"*! and [O)]" is the direct sum of n + 1
copies of Op2nt1(1), the sheaf of germs of holomorphic sections of the holomorphic

line bundle over Pé"‘“ with Chern class 1. See Hartshorne [Ht], Example 8.20.1,
page 182. 0O

We let M := Q/T, where I is as above. We notice that € is slmply connected
when n > 0, so that € is the universal covering M of M. Let D M — M be the
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covering projection; since I' acts freely on €2, this projection is actually given by the
group action. Let ©,; be the sheaf of germs of local holomorphic vector fields on M
and let © be the pull-back of © to M under the covering p: © is the sheaf i*(© p21+1)

on M = Q.
3.9. Lemma. — If n > 2, then for 0 < j < 2 we have:
H/(M.©y) = H) (T sl(2n +2.C)).
where sl(2n + 2,C)) is considered as a I'-left module via the representation
p: I — Aut(sl(2n +2.0C)))

given by:
p()(v) =dT,ovoT,” . wvesl(2n+2.C),

where T, is the action of g €T on Pg"“.

Proof. — If n > 2, then (3.8) and Mumford’s formula (c¢) in [Mu], pag 23, (see also
Grothendieck [Gr], Chapter V) imply that there exists an isomorphism

¢ HI(T, H(Q,0)) — H’(M,Oy).

for 0 < j < 2, where HO(€. (:)) is the vector space of holomorphic vector fields on the
universal covering M = Q C 1”(‘(:2"'4rl of M.
Now, by [Ha], Theorem 1.i), every holomorphic vector field in ("), extends to a

holomorphic vector field defined in all of Pé”“. Therefore,

H(Q,0) = H'(P2" 0 pensi) = sl(2n 4+ 2.C). O

We recall that T is a free group of rank r — 1; let g1.....g,_ be generators of I". By
[HS], page 195 Corollary 5.2, applied to I', we obtain:

11 b b ~ y ¢ W
H,(T,sl(2n +2,C)) = sl(2n +2,C) x - -+ x sl(2n + 2,C)/Im(¥),

where
P :sl(2n+2,C) — sl(2n 4+ 2.C) x -+ x sl(2n +2,C)

is given by ¥(v) = (g1(v) —v,....g,—1(v) —v). We claim that ¢ is injective. Indeed, if
v is a linear vector field in Pé”“ which is invariant by ¢1,...,¢,_1, then, by Jordan’s
theorem, this vector field is tangent to a hyperplane IT which is I-invariant. This can
not happen. In fact, if L is a n dimensional projective subspace contained in A(T),
then L must intersect II transversally in a subspace of dimension n — 2, for otherwise
IT would contain the whole limit set A(I'), which is a disjoint union of projective
subspaces of dimension n. Hence, there exists L C II, a projective n-subspace such
that L N A(I') = @. Then, as we have shown in section 1, there exists a sequence
{7i};en such that lim; . (vi(L)) = Ly, where L, C A(T), where L; is not contained
in II. This is a contradiction to the invariance of II. (]
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Therefore,
dime H'(62,6) = dimclsl(2n +2.0)" ] = (r - 2) (20 +2)° ~ 1).

By [HS], page 197, Corollary 5.6 we have Hﬁ(f‘.s[(?n +2,C)) = 0. Hence, by 3.9
above, one obtains,

H?*(M,©y) = H (', sl(2n +2,C)) = 0.
Thus we arrive to the following theorem:

3.10. Theorem. — Let n,r > 2 and let A be an arbitrary scalar such that 0 < \ <
(r—1)"1. Let T be a Schottky group as in (1.7.iii), so that the (Fubini-Study) distance
from y(x) to the limit set A decreases faster that CAF for every point x € Pg"“ and
anyy € T of word-length k (where C' is some positive constant). Let T be the index-two
subgroup of I consisting of words of even length. Let Q2 be the region of discontinuity
of T', M := Q/T, and let & denote the Kuranishi space of versal deformations of M,

with reference point to € R corresponding to M. Then, we have:
Hl(]\[, @]\I) ~ H[{ (1‘\’ 5[(271’ + 2, (C)) ~ (C(:;Q)((Q'H-FZ)?_ l)’

and

H?*(M,©,;) = 0.
Hence R" is mnon-singular at to, of complex dimension (r — 2)((2n + 2)? — 1), and
every small deformation of M is obtained by a small deformation of I' as a subgroup
of PSL(2n + 2,C), unique up to conjugation.

Although we only considered n > 2 above, the last theorem remains valid for
n = 0,1. In fact, if n = 0 and r > 2, we have the classical Schottky groups. The
manifold Q/T" is a compact Riemann surface of genus r — 1. Tt is well known that in
this case the moduli space has dimension 3(r — 1) — 3 = 3(r — 2), which, of course,
coincides with the formula above. When n = 1 and r > 2 the manifolds Q/T" are
Pretzel twistor spaces of genus g = r — 1, in the sense of Penrose [Pe]. The theorem
above gives that the dimension of the moduli space of this manifold is 15g — 15, which
coincides with Penrose’s calculations in page 251 of [Pe].
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