Random surfaces
Astérisque, no. 304 (2005), 181 p.
@book{AST_2005__304__R1_0,
     author = {Sheffield, Scott},
     title = {Random surfaces},
     series = {Ast\'erisque},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {304},
     year = {2005},
     zbl = {1104.60002},
     mrnumber = {2251117},
     language = {en},
     url = {http://www.numdam.org/item/AST_2005__304__R1_0}
}
Sheffield, Scott. Random surfaces. Astérisque, no. 304 (2005), 181 p. http://www.numdam.org/item/AST_2005__304__R1_0/

[1] R. A. Adams - Sobolev spaces, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975, Pure and Applied Mathematics, Vol. 65. | MR 450957 | Zbl 0314.46030

[2] R. K. Ahuja, T. L. Magnanti & J. B. Orlin - Network flows, Prentice Hall Inc., Englewood Cliffs, NJ, 1993, Theory, algorithms, and applications. | MR 1205775 | Zbl 1201.90001

[3] T. Baker & L. Chayes - On the unicity of discontinuous transitions in the two-dimensional Potts and Ashkin-Teller models, J. Statist. Phys. 93 (1998), no. 1-2, p. 1-15. | Article | MR 1656362 | Zbl 0935.60087

[4] R. J. Baxter - Exactly solved models in statistical mechanics, Academic Press Inc. [Harcourt Brace Jovanovich Publishers], London, 1982. | MR 690578 | Zbl 0723.60120 | Zbl 0538.60093

[5] G. Ben Arous & J.-D. Deuschel - The construction of the (d+1)-dimensional Gaussian droplet, Comm. Math. Phys. 179 (1996), no. 2, p. 467-488. | Article | MR 1400748 | Zbl 0858.60096

[6] D. Bertacchi & G. Giacomin - Enhanced interface repulsion from quenched hard-wall randomness, Probab. Theory Relat. Fields 124 (2002), no. 4, p. 487-516. | Article | MR 1942320 | Zbl 1013.82009

[7] T. Bodineau, G. Giacomin & Y. Velenik - On entropic reduction of fluctuations, J. Statist. Phys. 102 (2001), no. 5-6, p. 1439-1445. | Article | MR 1830455 | Zbl 1174.82300

[8] E. Bolthausen - Random walk representations and entropic repulsion for gradient models, in Infinite dimensional stochastic analysis (Amsterdam, 1999), Verh. Afd. Natuurkd. 1. Reeks. K. Ned. Akad. Wet., vol. 52, R. Neth. Acad. Arts Sci.., Amsterdam, 2000, p. 55-83. | MR 1831411 | Zbl 0991.60093

[9] E. Bolthausen, J.-D. Deuschel & G. Giacomin - Entropic repulsion and the maximum of the two-dimensional harmonic crystal, Ann. Probab. 29 (2001), no. 4, p. 1670-1692. | MR 1880237 | Zbl 1034.82018

[10] J. Bricmont, A. El Mellouki & J. Fröhlich - Random surfaces in statistical mechanics: roughening, rounding, wetting,... , J. Statist. Phys. 42 (1986), no. 5-6, p. 743-798. | Article | MR 833220

[11] R. M. Burton & M. Keane - Density and uniqueness in percolation, Comm. Math. Phys. 121 (1989), no. 3, p. 501-505. | Article | MR 990777 | Zbl 0662.60113

[12] L. Chayes - Percolation and ferromagnetism on 𝐙 2 : the q-state Potts cases, Stochastic Process. Appl. 65 (1996), no. 2, p. 209-216. | Article | MR 1425356 | Zbl 0889.60096

[13] L. Chayes, D. Mckellar & B. Winn - Percolation and Gibbs states multiplicity for ferromagnetic Ashkin-Teller models on 2 , J. Phys. A 31 (1998), no. 45, p. 9055-9063. | Article | MR 1654857 | Zbl 0954.82007

[14] A. Cianchi - Continuity properties of functions from Orlicz-Sobolev spaces and embedding theorems, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 23 (1996), no. 3, p. 575-608. | Numdam | MR 1440034 | Zbl 0877.46023

[15] A. Cianchi, Boundedness of solutions to variational problems under general growth conditions, Comm. Partial Differential Equations 22 (1997), no. 9-10, p. 1629-1646. | Article | MR 1469584 | Zbl 0892.35048

[16] A. Cianchi, Some results in the theory of Orlicz spaces and applications to variational problems, in Nonlinear analysis, function spaces and applications, Vol. 6 (Prague, 1998), Acad. Sci. Czech Repub., Prague, 1999, p. 50-92. | MR 1777712 | Zbl 0965.46017

[17] A. Cianchi, A fully anisotropic Sobolev inequality, Pacific J. Math. 196 (2000), no. 2, p. 283-295. | Article | MR 1800578 | Zbl 0966.46017

[18] H. Cohn, N. Elkies & J. Propp - Local statistics for random domino tilings of the Aztec diamond, Duke Math. J. 85 (1996), no. 1, p. 117-166. | MR 1412441 | Zbl 0866.60018

[19] H. Cohn, R. Kenyon & J. Propp - A variational principle for domino tilings, J. Amer. Math. Soc. 14 (2001), no. 2, p. 297-346 (electronic). | Article | MR 1815214 | Zbl 1037.82016

[20] J. H. Conway & J. C. Lagarias - Tiling with polyominoes and combinatorial group theory, J. Combin. Theory Ser. A 53 (1990), no. 2, p. 183-208. | Article | MR 1041445 | Zbl 0741.05019

[21] A. Dembo & O. Zeitouni - Large deviations techniques and applications, second ed., Applications of Mathematics (New York), vol. 38, Springer-Verlag, New York, 1998. | MR 1619036 | Zbl 0896.60013

[22] J.-D. Deuschel & G. Giacomin - Entropic repulsion for the free field: pathwise characterization in d3, Comm. Math. Phys. 206 (1999), no. 2, p. 447-462. | Article | MR 1722113 | Zbl 0951.60091

[23] J.-D. Deuschel & G. Giacomin, Entropic repulsion for massless fields, Stochastic Process. Appl. 89 (2000), no. 2, p. 333-354. | Article | MR 1780295 | Zbl 1045.60103

[24] J.-D. Deuschel, G. Giacomin & D. Ioffe - Large deviations and concentration properties for ϕ interface models, Probab. Theory Relat. Fields 117 (2000), no. 1, p. 49-111. | Article | MR 1759509 | Zbl 0988.82018

[25] J.-D. Deuschel & D. W. Stroock - Large deviations, Pure and Applied Mathematics, vol. 137, Academic Press Inc., Boston, MA, 1989. | MR 997938 | Zbl 0705.60029

[26] R. Dobrushin, R. Kotecký & S. Shlosman - Wulff construction, Translations of Mathematical Monographs, vol. 104, American Mathematical Society, Providence, RI, 1992, A global shape from local interaction, Translated from the Russian by the authors. | Article | MR 1181197 | Zbl 0917.60103

[27] M. D. Donsker & S. R. S. Varadhan - Large deviations from a hydrodynamic scaling limit, Comm. Pure Appl. Math. 42 (1989), no. 3, p. 243-270. | Article | MR 982350 | Zbl 0780.60027

[28] B. Durhuus, J. Fröhlich & T. Jónsson - Self-avoiding and planar random surfaces on the lattice, Nuclear Phys. B 225 (1983), no. 2, FS 9, p. 185-203. | Article | MR 720341

[29] R. G. Edwards & A. D. Sokal - Generalization of the Fortuin-Kasteleyn-Swendsen-Wang representation and Monte Carlo algorithm, Phys. Rev. D (3) 38 (1988), no. 6, p. 2009-2012. | Article | MR 965465

[30] C. M. Fortuin & P. W. Kasteleyn - On the random-cluster model. I. Introduction and relation to other models, Physica 57 (1972), p. 536-564. | Article | MR 359655

[31] C. M. Fortuin, P. W. Kasteleyn & J. Ginibre - Correlation inequalities on some partially ordered sets, Comm. Math. Phys. 22 (1971), p. 89-103. | Article | MR 309498 | Zbl 0346.06011

[32] M. I. Freidlin & A. D. Wentzell - Random perturbations of dynamical Systems, second ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 260, Springer-Verlag, New York, 1998, Translated from the 1979 Russian original by Joseph Szücs. | MR 1652127 | Zbl 0922.60006

[33] J. Fröhlich, C.-E. Pfister & T. Spencer - On the statistical mechanics of surfaces, in Stochastic processes in quantum theory and statistical physics (Marseille, 1981), Lecture Notes in Phys., vol. 173, Springer, Berlin, 1982, p. 169-199. | Article | MR 729722 | Zbl 0507.60095

[34] J. Fröhlich & B. Zegarliński - The phase transition in the discrete Gaussian chain with 1/r 2 interaction energy, J. Statist. Phys. 63 (1991), no. 3-4, p. 455-485. | Article | MR 1115800

[35] J. Fröhlich & T. Spencer - The Berežinskiĭ -Kosterlitz-Thouless transition (energy-entropy arguments and renormalization in defect gases), in Scaling and self-similarity in physics (Bures-sur-Yvette, 1981/1982), Progr. Phys., vol. 7, Birkhäuser Boston, Boston, MA, 1983, p. 29-138. | Article | MR 733469

[36] T. Funaki - Recent results on the Ginzburg-Landau ϕ interface model, in Hydrodynamic limits and related topics (Toronto, ON, 1998), Fields Inst. Commun., vol. 27, Amer. Math. Soc., Providence, RI, 2000, p. 71-81. | MR 1798644 | Zbl 1060.82511

[37] T. Funaki & T. Nishikawa - Large deviations for the Ginzburg-Landau ϕ interface model, Probab. Theory Relat. Fields 120 (2001), no. 4, p. 535-568. | Article | MR 1853482 | Zbl 1011.60082

[38] T. Funaki & H. Spohn - Motion by mean curvature from the Ginzburg-Landau ϕ interface model, Comm. Math. Phys. 185 (1997), no. 1, p. 1-36. | Article | MR 1463032 | Zbl 0884.58098

[39] T. Funaki & S. Olla - Fluctuations for ϕ interface model on a wall, Stochastic Process. Appl. 94 (2001), no. 1, p. 1-27. | Article | MR 1835843 | Zbl 1055.60096

[40] A. Gandolfi, M. Keane & L. Russo - On the uniqueness of the infinite occupied cluster in dependent two-dimensional site percolation, Ann. Probab. 16 (1988), no. 3, p. 1147-1157. | Article | MR 942759 | Zbl 0658.60133

[41] R. J. Gardner - The Brunn-Minkowski inequality, Bull. Amer. Math. Soc. (N.S.) 39 (2002), no. 3, p. 355-405 (electronic). | Article | MR 1898210 | Zbl 1019.26008

[42] H.-O. Georgii - Gibbs measures and phase transitions, de Gruyter Studies in Mathematics, vol. 9, Walter de Gruyter & Co., Berlin, 1988. | MR 956646 | Zbl 0657.60122

[43] H.-O. Georgii & Y. Higuchi - Percolation and number of phases in the twodimensional Ising model, J. Math. Phys. 41 (2000), no. 3, p. 1153-1169, Probabilistic techniques in equilibrium and nonequilibrium statistical physics. | Article | MR 1757954 | Zbl 1045.82500

[44] G. Giacomin - Anharmonic lattices, random walks and random interfaces, Recent research developments in statistical physics I (2000), p. 97-118.

[45] G. Giacomin, Aspects of statistical mechanics of random surfaces, 2001, Preliminary (and partial) notes of the lectures given at IHP.

[46] G. Giacomin, Limit theorems for random interface models of Ginzburg-Landau ϕ type, in Stochastic partial differential equations and applications (Trento, 2002), Lecture Notes in Pure and Appl. Math., vol. 227, Dekker, New York, 2002, p. 235-253. | MR 1919512 | Zbl 0996.82044

[47] G. Giacomin, On stochastic domination in the Brascamp-Lieb framework, Math. Proc. Cambridge Philos. Soc. 134 (2003), no. 3, p. 507 514. | Article | MR 1981215 | Zbl 1029.60011

[48] G. Giacomin, S. Olla & H. Spohn - Equilibrium fluctuations for ϕ interface model, Ann. Probab. 29 (2001), no. 3, p. 1138-1172. | MR 1872740 | Zbl 1017.60100

[49] H. H. Goldstine - A history of the calculus of variations from, the 17th through the 19th century, Studies in the History of Mathematics and Physical Sciences, vol. 5, Springer-Verlag, New York, 1980. | Article | MR 601774 | Zbl 0452.49002

[50] G. Grimmett - Percolation, second ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 321, Springer-Verlag, Berlin, 1999. | MR 1707339 | Zbl 0926.60004

[51] M. Z. Guo, G. C. Papanicolaou & S. R. S. Varadhan - Nonlinear diffusion limit for a System with nearest neighbor interactions, Comm. Math. Phys. 118 (1988), no. 1, p. 31-59. | Article | MR 954674 | Zbl 0652.60107

[52] B. Helffer & J. Sjöstrand - On the correlation for Kac-like models in the convex case, J. Statist. Phys. 74 (1994), no. 1-2, p. 349-409. | Article | MR 1257821 | Zbl 0946.35508

[53] J. Hershberger & J. Snoeyink - Computing minimum length paths of a given homotopy class, Comput. Geom. 4 (1994), no. 2, p. 63-97. | Article | MR 1280545 | Zbl 0815.68116

[54] M. Huber - A bounding chain for Swendsen-Wang, Random Structures Algorithms 22 (2003), no. 1, p. 43-59. | Article | MR 1943858 | Zbl 1013.60084

[55] D. Ioffe - Exact large deviation bounds up to T c for the Ising model in two dimensions, Probab. Theory Relat. Fields 102 (1995), no. 3, p. 313-330. | Article | MR 1339736 | Zbl 0830.60018

[56] P. Kastelyn - The statistics of dimers on a lattice, I. the number of dimer arrangements on a quadratic lattice, Physica 27 (1965), p. 1209-1225. | Zbl 1244.82014

[57] J. H. B. Kemperman - On the FKG-inequality for measures on a partially ordered space, Nederl. Akad. Wetensch. Proc. Ser. A 80=Indag. Math. 39 (1977), no. 4, p. 313-331. | Article | MR 467867 | Zbl 0384.28012

[58] R. Kenyon - Local statistics of lattice dimers, Ann. Inst. H. Poincaré Probab. Statist. 33 (1997), no. 5, p. 591-618. | Article | Numdam | MR 1473567 | Zbl 0893.60047

[59] R. Kenyon, Conformal invariance of domino tiling, Ann. Probab. 28 (2000), no. 2, p. 759-795. | Article | MR 1782431 | Zbl 1043.52014

[60] R. Kenyon, Long-range properties of spanning trees, J. Math. Phys. 41 (2000), no. 3, p. 1338-1363, Probabilistic techniques in equilibrium and nonequilibrium statistical physics. | Article | MR 1757962 | Zbl 0977.82011

[61] R. Kenyon, The planar dimer model with boundary: a survey, in Directions in mathematical quasicrystals, CRM Monogr. Ser., vol. 13, Amer. Math. Soc., Providence, RI, 2000, p. 307-328. | Article | MR 1798998 | Zbl 1026.82007

[62] R. Kenyon, Dominos and the Gaussian free field, Ann. Probab. 29 (2001), no. 3, p. 1128-1137. | Article | MR 1872739 | Zbl 1034.82021

[63] R. Kenyon, A. Okounkov & S. Sheffield - Dimers and Amoebae, http://arxiv.org/abs/math-ph/0311005, to appear in Ann. Math. | MR 2215138 | Zbl 1154.82007

[64] R. W. Kenyon & D. B. Wilson - Critical resonance in the non-intersecting lattice path model, Probab. Theory Relat. Fields 130 (2004), no. 3, p. 289-318. | Article | MR 2095931 | Zbl 1071.82016

[65] J. L. Lebowitz & A. E. Mazel - On the uniqueness of Gibbs states in the Pirogov-Sinai theory, Comm. Math. Phys. 189 (1997), no. 2, p. 311-321. | Article | MR 1480021 | Zbl 0888.60081

[66] J. L. Lebowitz & A. Martin-Löf - On the uniqueness of the equilibrium state for Ising spin Systems, Comm. Math. Phys. 25 (1972), p. 276-282. | Article | MR 312854

[67] M. Luby, D. Randall & A. Sinclair - Markov chain algorithms for planar lattice structures, SIAM J. Comput. 31 (2001), no. 1, p. 167-192 (electronic). | Article | MR 1857394 | Zbl 0992.82013

[68] W. S. Massey - A basic course in algebraic topology, Graduate Texts in Mathematics, vol. 127, Springer-Verlag, New York, 1991. | MR 1095046 | Zbl 0725.55001

[69] V. G. Maz'Ja - Sobolev spaces, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1985, Translated from the Russian by T. O. Shaposhnikova. | MR 817985

[70] V. G. Maz'Ya & S. V. Poborchi - Differentiable functions on bad domains, World Scientific Publishing Co. Inc., River Edge, NJ, 1997. | MR 1643072 | Zbl 0918.46033

[71] A. Messager, S. Miracle-Solé & J. Ruiz - Convexity properties of the surface tension and equilibrium crystals, J. Statist. Phys. 67 (1992), no. 3-4, p. 449-470. | MR 1171142 | Zbl 0900.82029

[72] A. Naddaf & T. Spencer - On homogenization and scaling limit of some gradient perturbations of a massless free field, Comm. Math. Phys. 183 (1997), no. 1, p. 55-84. | MR 1461951 | Zbl 0871.35010

[73] A. Pisztora - Surface order large deviations for Ising, Potts and percolation models, Probab. Theory Relat. Fields 104 (1996), no. 4, p. 427-466. | MR 1384040 | Zbl 0842.60022

[74] J. Propp - Generating random elements of finite distributive lattices, Electron. J. Combin. 4 (1997), no. 2, p. Research Paper 15, approx. 12 pp. (electronic), The Wilf Festschrift (Philadelphia, PA, 1996). | MR 1444162 | Zbl 0885.05018

[75] J. G. Propp & D. B. Wilson - Exact sampling with coupled Markov chains and applications to statistical mechanics, in Proceedings of the Seventh International Conference on Random Structures and Algorithms (Atlanta, GA, 1995), vol. 9, 1996, p. 223-252. | MR 1611693 | Zbl 0859.60067

[76] M. Renardy & R. C. Rogers - An introduction to partial differential equations, second ed., Texts in Applied Mathematics, vol. 13, Springer-Verlag, New York, 2004. | MR 2028503 | Zbl 1072.35001

[77] J. Rougemont - Evaporation of droplets in the two-dimensional Ginzburg-Landau equation, Phys. D 140 (2000), no. 3-4, p. 267-282. | MR 1757091 | Zbl 0953.35134

[78] W. Rudin - Real and complex analysis, third ed., McGraw-Hill Book Co., New York, 1987. | MR 924157 | Zbl 0925.00005

[79] S. Sheffield - Ribbon tilings and multidimensional height functions, Trans. Amer. Math. Soc. 354 (2002), no. 12, p. 4789-4813 (electronic). | MR 1926837 | Zbl 1018.68057

[80] S. Sheffield, Gaussian free fields for mathematicians, arXiv: math. PR/0312099 (2004). | MR 2322706 | Zbl 1132.60072

[81] S. Sheffield & O. Schramm - Contour lines of the 2D Gaussian free field, In preparation (2006).

[82] A. J. De Souza - An extension operator for Orlicz-Sobolev spaces, An. Acad. Brasil. Ciênc. 53 (1981), no. 1, p. 9-12. | MR 623636 | Zbl 0482.46017

[83] H. Spohn - Interface motion in models with stochastic dynamics, J. Statist. Phys. 71 (1993), no. 5-6, p. 1081-1132. | MR 1226387 | Zbl 0935.82546

[84] R. H. Swendsen & J.-S. Wang - Nonuniversal critical dynamics in Monte Carlo simulations, Physical Review Letters 58 (1987), p. 86-88.

[85] G. Wulff - Zur Frage der Geschwindigkeit des Wachsthums und der Auflösung der Kristallflächen, Zeit. Krystall. Min. 34 (1901), p. 449-530.