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SELMER COMPLEXES

Jan Nekovar

Abstract. — This book builds new foundations of Iwasawa theory, based on a system-
atic study of cohomological invariants of big Galois representations in the framework
of derived categories. A new duality formalism is developed, which leads to generalized
Cassels-Tate pairings and generalized p-adic height pairings. One of the applications
is a parity result for Selmer groups associated to Hilbert modular forms.

Résumé (Complexes de Selmer). — Ce livre construit de nouvelles fondations pour
la théorie d’Iwasawa, basées sur une étude systématique d’invariants cohomologiques
(vivant dans des catégories dérivées) pour les grosses représentations galoisiennes. On
développe un nouveau formalisme de dualité dont on déduit des accouplements de
Cassels-Tate généralisés et des hauteurs p-adiques généralisées. Une des applications
est un résultat de parité pour les groupes de Selmer attachés aux formes modulaires
de Hilbert.
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CONTENTS

0. Introduction ...... ... .o 1
0.0. Big Galois representations ................coiiiiiiiiiiiiiiiii 1
0.1. EXAMPLES ..ttt 1
0.2. SElIMET GTOUPS .\ttt e ettt e et 2
0.3. Big vs. finite Galois representations ................. .o 3
0.4. Compact vs. discrete modules ... 4
0.5. (Ind-)admissible R[G]-modules .............cooiiiiiiiiiiii 6
0.6. Continuous cohomology ........ ..o 7
0.7. Duality for Galois cohomology ......... ...t 7
0.8. Selmer COMPIEXES ...\ttt et 9
0.9. Duality for Selmer complexes ........... ..o 10
0.10. Comparison with classical Selmer groups ...................c.cooiiiit. 12
0.11. Twasawa theory ... ..o 13
0.12. Duality for Galois cohomology in Iwasawa theory ...................... 13
0.13. Duality for Selmer complexes in Iwasawa theory ....................... 15
0.14. Classical Iwasawa theory ........ ... ... 16
0.15. Generalized Cassels-Tate pairings ...........oooiiiiiiiiaiiaeaene e, 18
0.16. Generalized height pairings ............ ..o 22
0.17. Parity TeSUItS ..o vt ettt e 25
0.18. COMEEIIES .t vttt ettt et e et e et e e 25
0.19. Directions for further research .......... ... ... . i 26
0.20. MiSCEIlANEOUS .\t ot ettt ettt e e 27

1. Homological Algebra: Products and Signs ............................. 29
1.1. Standard notation and conventions ............. .. ... i 29
1.2. Tensor products and Hom ......... ... 33
1.3, Products ..ot 41

2. Local Duality ...... ... 51
2.1, NOtAtION ..ottt e 51
2.2. Dualizing functors . .........o.ouiiii e 51



vi CONTENTS

2.4. Cohomology with support at {m} ......... .. ... 53
2.5. Local Duality ([RD, Ch. V]) ... 54
2.6. Grothendieck Duality ([RD, Ch. V]) ... 55
2.7 REIMATKS .ottt 55
2.8. Relating D, 2 and @ ........ .. 56
2.9. Relation to Pontrjagin duality ........... ... ..o oo 61
2.10. Non-complete B .. ..o 62
2.11. Semi-local R ... 74
3. Continuous Cohomology ... 75
3.1. Properties of R-modules of finite type ............... ... .. 75
3.2. Admissible R[G]-modules ........... .. ... i 75
3.3. Ind-admissible R[G]-modules ... 79
3.4. Continuous COChAIIS .. ...\ttt 82
3.5. Continuous (hyper-)cohomology ..., 87
3.6. Derived functor cohomology ...........cooii i 90
3.7. LocallZation . .....out ot 93
4. Continuous Cohomology of Pro-Finite Groups ........................ 95
4.1, BasiC PrOPETLIES ..ottt 95
4.2. Finiteness conditions ........ ..ot 96
4.3. The duality diagram: T, A, T, A* ... . 101
4.4. Comparing RTTger and RTcont « o eeevvnnoeeeiiieeiiiiaiiiaannn 102
4.5, Bar 1eSOlUbION .. ..ot 105
4.6. Euler-Poincaré characteristic ............ ... i i 106
5. Duality Theorems for Galois Cohomology Revisited ................. 113
5.1. Classical duality results for Galois cohomology .................... ... .. 113
5.2. Duality fOr Gp «ovvie i 114
5.3. Cohomology with compact support for Gr g ..o 122
5.4. Duality for Gr g . .ooiri i 125
5.5. Duality for Poincaré groups ........... ... 129
5.6. LocaliZation . ......o.uinii e 130
5.7. In the absence of (P) ......ooouiiiiii 130
6. Selmer CompleXes ..........o.oiiii i 135
6.1. Definition of Selmer complexes . ..... ... 135
6.2. Orthogonal local conditions ............ ..., 137
6.3. Global cup products .........c.vieiriii 140
6.4. Functoriality of Selmer complexes ..., 143
6.5. TranspoSitiONS . ... .. ..uu ittt 145
6.6. Self-dUAl CASE ...\ttt e 148
6.7. An example of local conditions ............. ... . i 151
6.8. LocallZation ... ...ont i e 154
6.9. In the absence of (P) .......iiiii i 154

ASTERISQUE 310



CONTENTS vii

7. Unramified cohomology ... 155
A0 [ Y7 5 o 155
7.2. Complexes C (M) ...ttt 156
7.3. Explicit resolutions (discrete case) ..............ooiiiiiiiiiiiiiii 161
7.4. Explicit resolutions (pro-finite case) ................. i, 163
7.5, DUALIEY oottt 168
7.6. From modules to complexes ... 171
7.7 TranspoSItIONS . ... ....en i 181
7.8. Greenberg’s local conditions .............. ... 184

8. Iwasawa theory .........o.iuiiiiii 189
8.1. Shapiro’s Lemma, . .........euiuiuinii i 189
8.2. Shapiro’s Lemma for ind-admissible modules ........................ ... 200
8.3. Infinite extenSIONS .. ...\ttt 202
8.4. Infinite Abelian eXtensIONS . ... ..oiutint et i 204
8.5. Duality theorems in Iwasawa theory ............. ... ...t 216
8.6. Local conditions and Shapiro’s Lemma ................... ... ... 221
8.7. Functoriality of the unramified local conditions ......................... 227
8.8. Greenberg’s local conditions in Iwasawa theory .......................... 230
8.9. Duality theorems in Iwasawa theory revisited .................... .. ... 238
8.10. Control TheOTEIS .. ...\ out ettt e 249
8.11. Iwasawa theory over local fields ......... ... .. .. .. oo 255
8.12. In the absence of (P) ..ot 259

9. Classical Iwasawa theory .............cooiiiiiiiiiiiiiiiiiiiii ., 261
0.1, Generalities ... ..viit it 261
9.2. Cohomology of Zp(1) «..ovrii 264
9.3. Pseudo-null submodules ... 267
9.4. Relating A’ and X/ .. ..o 270
9.5. Relating Ao and Xoo «vovinininini i 281
9.6. Comparison with classical Selmer groups ................................ 286
9.7. Duality and perfectness ..............ooiiiiii i 293

10. Generalized Cassels-Tate pairings ...................ooiiiiiiii .. 301
10.1. A topological analogue ............. .o 301
10.2. Abstract Cassels-Tate pairings ... 305
10.3. Greenberg’s local conditions ............ ... oo 308
10.4. Localized Cassels-Tate pairings ... ......vuenrerinineiiiiiiiiiieaan, 320
10.5. Greenberg’s local conditions - localized version ......................... 322
10.6. Discrete valuation rings with involution .......................... ... ... 324
10.7. Skew-Hermitian and symplectic pairings on generalized Selmer groups . 328
10.8. Comparison with the Flach pairing ............. ... ..., 347

11. R-valued height pairings .............. ... ... .. 353
11.1. Definition of the height pairing .......... ..., 353
11.2. Symmetry of the height pairing .................. ... 357

SOCIETE MATHEMATIQUE DE FRANCE 2006



viii CONTENTS

11.3. Comparison with classical p-adic height pairings ....................... 363
11.4. Comparison with classical p-adic height pairings (bis) .................. 375
11.5. Higher height pairings .......... ..o, 383
11.6. Bockstein spectral sequence and descent ............. ... .. .. 390
11.7. Formulas of the Birch and Swinnerton-Dyer type ...................... 398
11.8. Higher height pairings and the Cassels-Tate pairing .................... 407
11.9. Higher height pairings and parity results .................. ... ... ... 409
12. Parity of ranks of Selmer groups ........................... 413
12.1. The general Setup . ......c.ouiiii 413
12.2. The parity results ... ... 420
12.3. Hilbert modular forms .......... ... 427
12.4. Galois representations associated to Hilbert modular forms ............ 436
12.5. Ordinary Hilbert modular forms .................... ... ... . ... 442
12.6. L-functions over ring class fields .............. ... ... 455
12.7. Hida families of Hilbert modular forms ............ ... ... ... ... ... 470
12.8. Level raising . ... e 498
12.9. Parity results in the dihedral case .............. ... ... 512
12.10. Proof of Theorem 12.2.3 ... ... i 520
12.11. Proof of Theorem 12.2.8 .. ..o i e 528
12.12. Systematic growth of Selmer groups ............. ... 537
12.13. Concluding remarks ...... ... 538
Errata . ...... ... 539
List of symbols ... 541
Bibliography . ........o.ouiniii 549

ASTERISQUE 310



CHAPTER 0

INTRODUCTION

0.0. Big Galois representations
In this work we study cohomological invariants of “big Galois representations”
p: G — Autg(T),

where

(i) G is a suitable Galois group.

(ii) R is a complete local Noetherian ring, with a finite residue field of
characteristic p.

(iii) T is an R-module of finite type.

(iv) p is a continuous homomorphism of pro-finite groups.
We develop a general machinery that covers duality theory, Iwasawa theory, general-
ized Cassels-Tate pairings and generalized height pairings.

0.1. Examples

0.1.0. An archetypal example of a big Galois representation arises as follows. Let
K be a field of characteristic char(K) # p. For every K-scheme X — Spec(K) put
X = X @ K%, where K*°P is a fixed separable closure of K. Given a projective
system Xoo = (Xo)aer (indexed by some directed set I) of separated K-schemes of
finite type with finite transition morphisms Xz — X, put

HY(Xoo) :=lim H},(X 4, Z) = lim lim H} (X o, Z/p"Z),
(63 « n

where the transition morphisms are given by trace maps. This is a representation
of G = Gal(K*P/K), linear over the Z,-algebra generated by “endomorphisms” of
the tower X. In practice, H(X.) is often too big and must be first decomposed
into smaller constituents. One can also use more general coeflicient sheaves, not
just Z/p"Z.
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0.1.1. Iwasawa theory. — Let K. /K be a Galois extension (contained in K°P)
with I' = Gal(K o/ K) isomorphic to Zj, for some r > 1. Write Ko, = |J K as a union
of finite extensions of K. For a fixed separated K-scheme of finite type X — Spec(K),
consider the projective system X, = X @ K,. In this case

H'(Xo) = HL(X,Zp) 27, A,
where
A=7Z,[T] = Z,[X1,..., X/]
is the Iwasawa algebra of I' and G acts on A by the tautological character
xr:Gg —» ['— A"

(or its inverse, depending on the sign conventions). Thus T' = H*(X.,) is a big Galois
representation of G = Gk over R = A.

0.1.2. Hida theory. — Let N > 1 be an integer not divisible by p (and such that
Np > 4). Let X, be the projective system of modular curves(!)

Xl(Np) — e —— Xl(NpT) — X](N])T+l) — oo

over K = Q. The tower X, has many endomorphisms, namely Hecke correspon-
dences.

The Galois module H!(X ) is too big, but its ordinary part H'(X,)°™®, defined

as the maximal Z,-submodule on which the Hecke operator(®) T'(p) is invertible, is of
finite type over the ordinary Hecke algebra §°'4, defined as the projective limit of the
ordinary parts of the Z,-Hecke algebras acting on S3(I'1(Np")) (for variable ).
The ring h°™¢ is semilocal, in fact finite and free over A = Z,[I'] = Z,[X], where
I' =1+ pZ, (resp., I' = 1+ 4Z,, if p = 2) acts on X by diamond operators. If
we fix a maximal ideal m C §'4 then T = H'(X,)3 is a big Galois representation
of G = Gq over R = hord.

0.1.3. One can, of course, combine the constructions in 0.1.1-0.1.2.

0.2. Selmer groups

In the case when K is a number field and the projective system X, has good
reduction (i.e., each X, has) outside a finite set S of places of K containing all
places above p, then H*(X,) is a representation of the Galois group with restricted
ramification Gx s = Gal(Kg/K), where Kg is the maximal extension of K which is
unramified outside S.

(D There are two choices of transition morphisms; see e.g. [N-P] for more details.
(2)Again, there are two choices of T'(p); which one is correct depends on the choice made in (1),
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0.3. BIG VS. FINITE GALOIS REPRESENTATIONS 3

In general, given a big Galois representation T' of G s, the main objects of interest
are the following:

(i) (continuous) Galois cohomology groups HY, .(Gk.s,T).
(ii) Selmer groups
Sel(GK,Sa T) C H(:lont(GK,S’ T)’

consisting of elements satisfying suitable local conditions in H},

(Gy,T) forv e S

(where G, = Gal(K,/K,)).

Similar objects were first considered by R. Greenberg [Gre4] as a natural generaliza-
tion of Iwasawa theory.

Greenberg expressed hope that there should be a variant of the Main Conjecture
of Iwasawa theory in this context, i.e., a relation between the “characteristic power
series” of a big Selmer group and an appropriate p-adic L-function.

A big Galois representation p can be viewed as a family of “usual” Galois represen-
tations px : Gx.s — GL,(Z,), which depends analytically on the parameter A. One
of the main motivations of the present work was to develop a homological machinery
that would control the variation of the Selmer groups associated to the individual py’s
as a function of A. A statement such as the Main Conjecture for 7" should then imply
a relation between the Selmer group of p) and the special value at A of the p-adic
L-function in question.

0.3. Big vs. finite Galois representations

Every big Galois representation p : G — Autgr(T) is the projective limit of Galois
representations p, : G — Autr(T/m"T) with finite targets. Using known properties
of p, one can sometimes pass to the limit and deduce results valid for p.

Consider, for example, a representation p : Gg — Autg(T) of Gg = Gal(K*P/K)
for a local field K (with finite residue field) of characteristic char(K) # p. Writing D
for the Pontrjagin dual functor

D(_> = Homcont(_a R/Z)»
Tate’s local duality states that the (finite) cohomology groups

H{(Gg,T/m"T) <—2

H* Gk, D(T/m"T)(1))

are Pontrjagin duals of each other. Taking projective limit one obtains Pontrjagin
duality between a compact and a discrete R-module

Hi(G,T) <—2—= H2 (G, D(T)(1)),

where

Hi(GK7 T) = thzont(GK7T) = ll_le(GK7T/m"T)

SOCIETE MATHEMATIQUE DE FRANCE 2006



4 CHAPTER 0. INTRODUCTION

0.4. Compact vs. discrete modules

Attentive readers will have noticed that Greenberg [Gre2, Gre3, Gred| considers
Selmer groups for discrete Galois modules, while our T is compact. Let us investigate
the relationship between discrete and compact Galois representations more closely.
In fact, understanding the interplay between discrete and compact modules is at the
basis of the whole theory developed in this work.

Let us first consider the “classical” case of R = Z,. Given a representation

p: G — Autg (T),

where T' is free of finite rank over Z,, there are three more representations of G
associated to T, namely

A=T ®Z,, Qp/zpa
(0.4.1) 1" = Homg, (T,Z,) = D(A),
A" =T" ®z, Qp/Z, = D(T).

They can be arranged into the following diagram:

G

T T*
(0.4.2) l@ > J@
A A*

Here 7 (—) = Homg,(—,Z,) and ®(—) = (—) ®z, Qp/Zy.

What is the analogue of this construction for general R (or even for R = Z, if T
is not free over Z,)? Let us temporarily ignore the action of G and consider this
question only for R-modules. For R = Z,,, the tensor product

T ®Z,, Qp/zp

loses any information about the torsion submodule Tio,s C T. On the other hand,

Tiors — Tor" (T, Qp/Zy).-
This suggests that one should consider the derived tensor product

A= TQ%Z,, QI)/ZT)
as a correct version of (0.4.1). In concrete terms, Q,/Z, has a natural flat resolution
(0.4.3) Z, — Q)
(in degrees —1,0) and A is represented by the complex
T g, (Z, — Q) = [T — Tz, Q)

again in degrees —1, 0.
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0.4. COMPACT VS. DISCRETE MODULES 5

What is the analogue of (0.4.3) for general R? Fix a system of parameters of R,
i.e., elements x1,...,24 € m (where d = dim(R)) such that dim(R/(z1,...,zq)) = 0.
An analogue of (0.4.3) is then given by the complex

C*=C*(R.(2:)) = |R — P Rs, — PRase, — — Raya,

i<j
in degrees [—d, 0], with standard “Cech differentials”. This complex depends on the
chosen system of parameters. In order to remove this ambiguity it is necessary to
consider C* as an object of the (bounded) derived category D’(zpMod). In more
rigorous terms, if (y;) is another system of parameters of R, then there is a canonical
isomorphism
R= Hom po ( ,Mod) (C'(R, (r:)),C* (R, (y])))

Given T € Dp(rMod), we then define

L
A=®(T)=TrC* =T ®rC"*

(for the last equality note that C'* is a complex of flat R-modules).
The Pontrjagin dual of R

I = D(R)

is an injective hull of the (finite) residue field k¥ = R/m; we abandon our earlier
convention about D and instead define

D(M) = Hompg(M,I)

for every R-module M. This functor coincides with Pontrjagin dual for Noetherian
(hence compact) or Artinian (hence discrete) R-modules.

We have, so far, defined analogues of the vertical and diagonal arrows in the dia-
gram (0.4.2). What about the horizontal arrow? A derived version of the adjunction
isomorphism

adj : RHomp(X &Y, Z) > RHomp(X, RHomg(Y, Z)),
applied to X =T,Y = C*, Z = I, shows that
Do ®(—) = RHomg(—, D(C*)).
The object of D’(gMod) represented by the complex
D(C*)

is known as the dualizing complex w € D?t( rMod) and the functor

2 (-) = RHompg(—,w)
as Grothendieck’s dual (if R = Z,,, then w = Z,,).

SOCIETE MATHEMATIQUE DE FRANCE 2006



6 CHAPTER 0. INTRODUCTION

To sum up, a general version of (0.4.2) is given by the following “duality diagram”

T — 2 . 7
(0.4.4) lq> > ‘cp
A A

with T, T* € Dy(rMod), A, A* € D, (rRMod),

D(-) = Homp(—,I)

7 (-) = RHompg(—,w)

L

®(—-) = (-)®rD(w)
Commutativity of this diagram (up to canonical isomorphisms) is equivalent to three
duality theorems: Matlis duality (id = D o D), Grothendieck duality (id = 2 0 2)
and local duality (Z = D o ® together with the isomorphism ®[—d] = R (y}).

The diagram (0.4.4) gives rise to a spectral sequence
(0.4.5) Ei7 = Exth(D(H(A)),w) = Ext’(H ™ (T*),w)
— H"™(2(T*)) = H(T).

0.5. (Ind-)admissible R[G]-modules

In order to incorporate the Galois action into the diagram (0.4.4), it is necessary
to enlarge the category of Galois modules we consider. For example, T' ®gr C* has
components of the form

T @r Ry =lim [T-5T-5T-" -] = UT®R{an|T€R}‘
n n>1

This suggests that we should consider R[G]-modules M satisfying the following con-
dition (which makes sense for any topological group G):

Axiom 1. M = |UM,, where M, C M are R[G]-submodules of M, which are of
finite type over R and such that the map G — Autr(M,) is continuous (with respect
to the pro-finite topology on the target).

As
D(@Ma> = HD(M(X)v

there are cases when Axiom 1 is satisfied by M, but not by D(M). For this reason
we impose an additional, purely algebraic, condition:

Axiom 2. — Im(R[G] — Endgr(M)) is an R-module of finite type.

ASTERISQUE 310



0.7. DUALITY FOR GALOIS COHOMOLOGY 7

An R[G)-module satisfying Axiom 1 and Axiom 2 (resp., only Axiom 1) will be
called admissible (vesp., ind-admissible). Admissible modules form a full subcategory
(?{d[G]Mod) of ( R[GlMod), which is stable under subquotients, finite direct sums, tensor
products and internal Hom’s. In particular, if T is admissible, so is T' ®r R, for
every z € R.

The duality diagram

then makes sense for T,T™* € DR_ﬁ(%j[G]Mod), A A% € DR_COﬁ(Z,d[G]Mod).

0.6. Continuous cohomology

For an admissible R[G]-module M we define the complex of continuous (non-
homogeneous) cochains of G with values in M as

Cc.ont(GV M) = h_HQ C(:ont(GV ]\40) = l.i)n ln_n C(:ont
a a’ n

(G, My /m"M,,),

where each M,/m™M, has discrete topology. The functor M — Cg. (G, M) gives

cont

rise to an exact functor
RF(;()nt(G7 _) : D* (??d[G]MOd) —_— D*(RMOd)

for x* = + (resp., for x = +,b, if G is a pro-finite group satisfying cd,(G) < o0). In
fact, this construction requires only Axiom 1, and so it makes sense for ind-admissible
modules.

In the situation of (0.5.1), the functor RI'¢cont(G, —) commutes with ® (up to a
canonical isomorphism). For R = Z,, this statement boils down to the fact that there
exists a long cohomology sequence of continuous G-cohomology associated to

0—T —V —A—0,

where V =T ®z, Q,.

0.7. Duality for Galois cohomology

The machinery behind the duality diagram (0.5.1) makes the passage from finite
to big Galois representations very easy. As we have seen in 0.3, classical duality
results for finite Galois modules imply a duality with respect to D, while compatibility
of Rl ¢ont (G, —) with @ is automatic; combining the two facts we obtain a duality with
respect to 2. The final outcome (cf. Chapter 5) is the following:

SOCIETE MATHEMATIQUE DE FRANCE 2006



8 CHAPTER 0. INTRODUCTION

0.7.0. Duality over local fields (Tate). — Let K be a local field (with finite
residue field) of characteristic char(K) # pand G = Gg. U T, T* € D’;%_ﬂ(‘}*%d[GK]Mod)
and A, A* € D’é_coﬂ(ﬁGK]Mod) are related as in (0.5.1), then the four objects
of D?CO)ft(RMod) in the diagram

chont(GKa T) chont(GK7 T*(l)) [2]

o |
P [
R cont (G, A) RIcont(Gre, A*(1)) [2]

are related as in (0.4.4).

0.7.1. Duality over global fields (Poitou- Tate). — Let K be a global field of
characteristic char(K) # p and S a finite set of primes of K containing all primes
above p and all archimedean primes of K. If p = 2, assume for simplicity that K has
no real prime (otherwise one would have to consider also Tate cohomology groups at
real primes). Denote by Sy the set of all non-archimedean primes in S; for v € Sy put
G, = Gk, and fix an embedding K < K,. Set Gx s = Gal(Ks/K), where Kg the
maximal extension of K unramified outside S. For every admissible Gk g-module M
define the complex of continuous cochains with compact support by

Cc.',cont(GK,Sv M) = Cone <Cc.ont(GK>S’ ]\/[) - @ C(:ont(G’Uﬁ A[)) [_1]
vESy
This defines an exact functor
RT ¢ cont(Gr,s,—) : D* (i, o Mod) — D*(zrMod)
(x = +,b). If T,T* € D’;{_ﬁ(;‘?d[GK S]Mod) and A, A* € D??_Coﬂ(;‘{d[GKQS]Mod) are
related as in (0.5.1) (for G = Gk g), then the objects of D?Ca)ﬂ(RMOd) in the diagram

2
RFcont(GK,57 T) A — RFc,cont(GK,Sa T*(l)) [3]

P P
chont(GK,57 A) RF(:,cont(GK,57 A* (1)) [3]

are related as in (0.4.4).

(3)This differs from the cochains with compact support as defined by Kato [Kal]. Our definition
makes the duality theorem work, while Kato’s definition, which incorporates cochains at all infinite
places, gives rise to objects naturally related to “zeta elements”.
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0.8. SELMER COMPLEXES 9

0.7.2. As in (0.4.5), the previous diagram gives rise to the following spectral
sequences:

By = Extly(HY 2. (G5, T*(1),w) = Exty(D(HL, (Gk.s, A)), w) _
— H'M (Grs,T)

cont
By = Ext(Hi (Gres, T (1)),w) = Bxt(D(H] oo (Grs, A)w)
= H. 3 (Gks,T).

c,cont

0.8. Selmer complexes

Let us keep the notation of 0.7.1. Selmer groups have been traditionally de-
fined as subgroups of elements of H!(Gk s, —) satisfying suitable local conditions
in H'(G,,—) (for v € S). In our approach we have no choice but to impose local
conditions on the level of complexes, rather than cohomology.

0.8.0. Let T, T*, A, A* be bounded complexes of admissible R[G g, s]-modules,
which are related in the derived category as in (0.5.1). Local conditions for any
X e {T,A,T*(1), A*(1)} are given by a collection A(X) = (A, (X))ves,, where each
A, (X) is a morphism of complexes of R-modules

iF(X) U (X) — O

cont

(Gv»X),

with U;f (X) satisfying appropriate finiteness conditions.
The Selmer complex associated to the local conditions A(X) is defined as the total
complex

C‘:(Hlt(GKvS’ X) - @vésf Cgont(GlM X)
Tot

EBUGSf UJ' (X)
The corresponding object of the derived category will be denoted by

ft. X =T,T1)

RL/(X) =RI(Gr.s, X;AX)) € D, (gMod),  * =
J(X) = RT(Gr 5. X: ACX) € D, (5Mod) LwyszAm)
and its cohomology by .FNI}(X) = ﬁ}(GK,S, X;A(X)). If we put

U, (X) = Cone(U,S (X) — C¢

v cont

(G’Uv X))a
then the exact triangle

iiff(X) — RFCOm(GKys,X) — @ UU_(X)
v€Sf
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gives rise to a long exact sequence

0.8.0.1) - — EB H=NU; (X)) — ﬁ}(X)

vESy ] ‘

— Hioni(Gr,s, X) — @ HY (U (X)) — -
vESy

In particular, the canonical map
Hjl" (X) I H(}t_)nt(GK»»S? X)

need not be injective.

0.8.1. In the present work we consider only Greenberg’s local conditions, defined
as follows (these are the only local conditions that can be handled by elementary
methods; the general case would require a heavy dose of crystalline machinery, which
is not yet available). Fix a subset ¥ C S containing all primes above p and put
Y=8;-%.

(i) For v € X, assume that we are given a morphism of complexes of admissible
R[G,]-modules X;F — X; put

U;L(X) = Cc.ont(GW Xj)
(ii) For v € ¥’ we take the “unramified local conditions”
UJ (X) = Ci(Go, X).
Morally, these should defined as
“Cc.ont(G'U/LM T<0 Cc.ont(l'l” X)) - Cc.ont(G’U/['lH Cc.ont(lvv X)) “N_) Ce nt(GU? X)”’

co

where I, C G, is the inertia subgroup. Unfortunately, there does not seem to be
a satisfactory general formalism of the Hochschild-Serre spectral sequence for con-

tinuous cohomology. As a result, we define C?. by explicit formulas. For example,

ur

if X = XY is concentrated in degree zero, then

Ct.lr(G’m X) = Cgont (Gv/['07 (XO)I“)
is quasi-isomorphic to the complex
(XO)I,, Ll__)(XO)IU]

in degrees 0, 1; here f, € G, /I, denotes the geometric Frobenius element.

0.9. Duality for Selmer complexes

In order to obtain a duality result similar to 0.7.1 for various ﬁ\f‘f (X), it is necessary
to impose suitable “orthogonality constraints” on the local conditions. For example,
we require, for all v € Sy, the composite morphism of complexes

v e} cont
(in which the map « underlies Tate’s local duality) to be a quasi-isomorphism.
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For Greenberg's local conditions 0.8.1, this follows from a suitable orthogonality
of X5 and D(X)(1);}.
This implies that the following pairs of Selmer complexes are related by Pontrjagin
duality:
(09.1) RI () < RI';(4*(1)) 3
— D —_——— .
RI(A) <——RI'»(T"(1))[3]
In general, (0.9.1) cannot be completed to a full duality diagram

RT(T) «———— RIp(T*(1))[3]

(0.9.2) [¢ < |q>

RT () RT(A*(1))[3),

as the local conditions need not be compatible with respect to ®. In other words,
there is an exact (= distinguished) triangle

SUHT)) — US(A) — Err,(®,7)
involving an “error term” Err, (®,T), which leads to another exact triangle

®(RI4(T)) — RL(A) — @ Err,(2,7).
vESy

For Greenberg’s local conditions 0.8.1 we have Err,(®,7") = 0 for v € X, but not
for v € 3, in general. For example, assume that R = Z, and T is a free Z,-module
of finite rank, concentrated in degree zero. As before, A =V/T for V =T ®z, Q,.

The unramified local conditions at v € ¥’ are quasi-isomorphic to

U (X) =[xt LX) (x =T,
hence ®(UF(T)) is quasi-isomorphic to
e e e e LT
It follows that Err,(®,T) is quasi-isomorphic to
(A7) (A9 —Ls (AT (AT Y] = [ (s T g =D B (1, T) -
The cohomology groups of Err, (®,7") are finite groups of common order

k)

(B (Bun, (0,7)] = | (Brr, (8.7)) = [ (1, T

tors

equal to the “local Tamagawa factor” of T at v € ¥’, which appears in the formulation
of the Bloch-Kato conjecture in the language of [Fo-PR] (this is a generalization of
the “fudge factors” in the conjecture of Birch and Swinnerton-Dyer).
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Similarly, there is an error term for the horizontal arrow 2 in (0.9.2). Under a
suitable boundedness hypothesis, the arrow corresponds to a cup product

(0.9.3) RI(T)%r RTH(T*(1)) — w[-3].

0.10. Comparison with classical Selmer groups

Let E be an elliptic curve over Q, with good reduction outside a finite set of primes
S D {p,0}. The classical p-power descent on E gives rise to Selmer groups

Sel(Gq.s,—) C H'(Gq.s,—)
(for — =T =T,(E) or — = A = E[p*™]), sitting in exact sequences
0 — FEQ®Z, — Sel(Gq,s,T) — T,HI(E/Q) — 0
0— E(Q)® Qp/Z, — Sel(Gq,s. A) — LI(E/Q)[p™] — 0.
We also use the notation
Sel(Gq,s,V) = Sel(Gq,s,T) @z, Q,

for V.=V, (E) = T)(F) ®z, Qp.

Assume that F has ordinary reduction®) at p and, for simplicity, that p # 2. As
a representation of GG, = Gq,,, the Tate module T' is reducible. There is an exact
sequence of Z,[Gp]-modules

0—>T;—>T——>Tp‘—>0,

in which each Tpi is free of rank 1 over Z, and [, acts trivially on 7 (i.e., T, is
unramified). Consider Greenberg’s local conditions for T', given by

U:(T) _ {C(:ont(GZ”T;r)?I v=p
Ceont(Go/ 1, T™), wveSp v#p.
One deduces from (0.8.0.1) an exact sequence (cf. 9.6.3, 9.6.7)
0 — HGy T;) — HHT) — Sel(Gq,s,T) — C — 0,
in which C' is a finite group and
Z

0, otherwise.

p, if E has split multiplicative reduction at p

H0<GP7Tp_) = {

In other words, I:T}(T) is an “extended Selmer group” in the sense of Mazur, Tate

and Teitelbaum [M-T-T] and the term H°(G,, T, ) detects the presence of a “trivial

zero” of the p-adic L-function of E. This is one of the simplest instances of the fol-

lowing general principle: classical Selmer groups correspond to complex L-functions,
while Selmer complexes to p-adic L-functions.

(4)4.e., either good ordinary or multiplicative reduction.
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0.11. Iwasawa theory

The formalism of big Galois representations greatly simplifies Iwasawa theory. Let
K be a number field and S as in 0.7.1. Assume that we are given an intermediate
Galois extension K C K., C Kg with ' = Gal(K»/K) = Z;, for some r > 1 (in fact,
one can treat in the same way also “tame Iwasawa theory”, when I' = Z, x A, for a
finite abelian group A). Put G = Gk s.

Writing Ko = |J K, as a union of finite extensions of K, we define the Iwasawa
algebra of T" over R as

R = R[I'] = lim R[Gal(K,/K)].

As in the classical case (R = Z,), any choice of an isomorphism I' = Z;, gives an
isomorphism of R-algebras
R =5 R[X4,..., X,].
We denote by
xr:G—T — R[I'|"
the tautological character of G and by
t:R— R

the R-linear involution satisfying ¢(y) =~ ! for all vy € T.
If M is an R[G]-module and n € Z, we define R[G]-modules M < n > and M* by
requiring that

(i) M <n >= M as an R-module; g € G acts by
gm<n> = xr(9)"gar-
(i) M* = M as an R[G]-module; v € I acts by

e =tV = ur

0.12. Duality for Galois cohomology in Iwasawa theory

The main point is that cohomology of R-representations over K, can be expressed
in terms of cohomology of R-representations over K (cf. [Gre4, Prop. 3.2]; [Col,
Prop. 2]).

Let T, T* (resp., A, A*) be bounded complexes of admissible R[G]-modules, of
finite (resp., co-finite) type over R. In Iwasawa theory one is often interested in the
cohomology groups

Hi,(Koo/K,T)=lim Hyp (Gal(Ks/Ka),T)

JE

\ HY

cont

H(Kg/Ks, A) = i

=

(Gal(K's/Ka), A)

|
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(and their counterparts with compact support). An easy application of Shapiro’s
Lemma, (cf. Sect. 8.3 and 8.4) shows that these are the cohomology groups of the
following objects of D(zMod):
RFIW(KOO/K7 T) = RFcont(GK,Sng(T))
RINKs/Kx, A)= Rl coni(Gk,s, Fr(A)),
where
Fr(T)=(T@rR) < —1>
Fr(A) = Hompg cont (R, A) < —1 >
(and similarly for cohomology with compact support).
The crucial observation (cf. 8.4.6.6) is the following: if T', T*, A, A* are related

(over R) as in (0.5.1), then #(T), Z(T*), Fr(A), Fr(A*) are related by the duality
diagram

F1(T) . Fr(T*)
012.) [ >< [
Fr(A) Fr(A*)

over R (here we use the notation 7 (—) = RHomp(—, wg), and similarly for ® and D).
Applying the Poitou-Tate duality 0.7.1 (over R) to (0.12.1), we obtain a duality
diagram in D(5Mod)

Rl (Koo/K, T) RI ¢ 1w (Koo /K, T*(1))"[3]
(0.12.2) F 2 @
RI(Ks/Ko, A) RI.(Kg/Koo, A*(1))"[3]

and spectral sequences

(0.12.3)
By = Exto(D(H? (Ks /Koo, A)),w5) = Ext%(Hj;g(Koo /K, T*(1)),wg)"

= H{}(Ko/K,T)
By = Exto(D(H(Ks/Kxo, A)),w) = Ext(Hpy? (Koo / K, TH(1)), wgp)"

— H' (K /K,T)

c,Iw

In the classical case R = Z,, the ring R = Z,[I'] = A is the usual Iwasawa algebra.
The spectral sequence

By = Bxth(D(H (Ks /Koo, A)), A) = Hit? (Koo /K, T)
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was in this case constructed in an unpublished note of Jannsen [Ja3] (who also con-
sidered the case of non-commutative I').

Back to the general case, recall that an R-module M is pseudo-null if it is
finitely generated and its support supp(M) has codimension > 2 in Spec(R). As
codimﬁ(supp(Eé’j )) = 1, the spectral sequence F, degenerates in the quotient
category (FMod)/(pseudo-null) into short exact sequences

0— Ey" ' — HP (Koo/ K, T) — EY™ — 0,

. . 0, - . 1,n—1 ) . . .
in which F5"" has no R-torsion and E,™ " has support in codimension > 1.

0.13. Duality for Selmer complexes in Iwasawa theory

Given suitably compatible systems of local conditions U} (X) along the tower of
fields { K}, one can define Selmer complexes

RIf1w(Koo/K,X), RTj(Ks/Koo,Y) (X =T,T*(1),Y = A, A*(1)).

Although over each finite layer K, the diagram (0.9.2) may involve non-zero error
terms, the limit of these error terms over K, is very often pseudo-null (or co-pseudo-
null).

For example, Greenberg’s local conditions 0.8.1 induce similar local conditions
over each K,. If we assume that no prime v € ¥’ splits completely in K /K, then
(cf. 8.9.9)

7

ﬁf/)]w(Koo/K,T) ﬁff,lw(Koo/K’T*(l))L[g]

(0.13.1) jg F

RT(Kg/ Koo, A) R (Ks/Koo, A*(1))"[3]

ol

becomes a duality diagram without any error terms, if we consider the top
(resp., bottom) two objects in Dﬂ((EMod)/(pseudo-null)) (resp., in Deop(zMod/
(co-pseudo-null))).  Equivalently, for every prime ideal p € Spec(R) of height
ht(p) = 1, the localization of (0.13.1) at p is a duality diagram in D(EFMod). As
in 0.12, this leads to exact sequences of Rg—modules
(0.13.2)  0— Ext(Hyl(Koo/K, T"(1)),wg)s — Hf 1, (Koo/ K, T)
— Homp(Hj 4(Kso/K, T*(1)),wg)5 —0,
in which Xz is a shorthand for (X “)y and
)24

¢ (Koo /K. T*(1)) =5 D(H} *(Ks/Kwo, A)')
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(and similarly for 7' and A*(1)). If R has no embedded primes, then we obtain
isomorphisms

= Exth(H (Koo /K, T*(1)),w05)"

HY, (Koo /K.T) i

R-tors
in (FMod)/(pscudo-null).

If there is a prime v € ¥’ that splits completely in K, /K, then the above state-
ments hold for those prime ideals p € Spec(R) of height ht(p) = 1 which are not of
the form p = pR, where p € Spec(R) has ht(p) = 1 (cf. 8.9.8).

In particular, if R is regular and no prime v € ¥/ splits completely in K, /K, then
the R-modules

(D(H}(Ks/Kx. A)))

and (E(?I}(Ks/Kooa A*(l))))L

tors tors

are pseudo-isomorphic. This is a generalization of Greenberg’s results ([Gre2,
Thm. 2]; [Gre3, Thm. 1]), according to which for R = Z,, and K,/K the cyclotomic
Zp—extension('r’) the two A-modules in question have the same characteristic power
series (more precisely, Greenberg works with his “strict Selmer groups” S§"(K )
and Sj“t{(l)(Koo); their relation to our fl} is explained in 9.6). A similar result for
Selmer groups of abelian varieties defined in terms of flat cohomology was proved by
Wingberg [Win].

If the complex T' = 0« T is concentrated in non-positive degrees, then one can say
much more: the horizontal arrow in (0.13.1) becomes an isomorphism after tensoring
with Rq, for any minimal prime q of R (Sect. 8.9.11-Sect. 8.9.12).

Greenberg [Gre2| also defined “non-strict” Selmer groups Sa 2 S%. One of their
interesting features is the fact that a trivial zero over K can sometimes be detected
by the A-module S4(K) (but not by the Selmer group Sa(K) over K). Although
the Pontrjagin duals of S4 (K ) and I;T}(KS/KOO7 A) may often have the same char-
acteristic power series, they need not be isomorphic as A-modules, as S§" (Ko ) is a
subgroup of S4 (K ), but a quotient of ﬁ'} (Kg/Koo, A) (cf. 9.6.2-9.6.6). It seems that
in the presence of a trivial zero INI}(K 5/ Koo, A) has better semi-simplicity properties
than Sa(Kx).

0.14. Classical Iwasawa theory

0.14.0. Traditionally, the main objects of interest in Iwasawa theory have been the
following:

(i) The Galois group Gal(Ms /K ) of the maximal abelian pro-p-extension of K,
unramified outside primes above S.

(5) And assuming, in addition, that both 5(?]}'(K5/K007A)) and ﬁ(ﬁ}(KS/Koc, A*(1))) are tor-
sion over A = Z,[T'].
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(ii) The projective (resp., inductive) limit X (resp., Ao) of the p-primary parts
of the ideal class groups of O, .

(iii) The projective (resp., inductive) limit X/ (resp., A’_) of the p-primary parts
of the ideal class groups of O s, where S, is the set of primes of K, above S.

These are closely related to RI'w(Ko/K,T) and RT . 1w(Ke/K,T) for T =
Z,,Z,(1) (with R = Z,, R = A = Z,[I']). Can onc obtain anything interesting
from the general machinery (Sect. 0.12-Sect. 0.13) in this classical setup?

0.14.1. First of all, the spectral sequence 'E, in (0.12.3) for T = Z, and T = Zy(1)
gives very short proofs of the following well-known results (cf. 9.3):
(i) The Pontrjagin dual of A’ contains no non-zero pseudo-null A-submodules.
(ii) If the weak Leopoldt conjecture holds for Ko (i.e., H*(Ks/Koo, Qp/Zp) = 0),
then Gal(Ms/K~) contains no non-zero pseudo-null A-submodules.

0.14.2. For I' = Z,, Iwasawa [Iw] constructed canonical isomorphisms in
(AMod)/(pseudo-null)

Ext}(Xoo,A) = D(As), Exth(X.,A) == D(AL).

One expects analogous statements to hold for arbitrary I' = Z;, (cf. [McCa2]).
Our machinery gives only partial results in this direction, such as the following
(cf. 9.4-9.5):

(i) There is a canonical morphism of A-modules
o X! — Exti(D(A.),\).

(ii) Coker(a’) is almost pseudo-null in the sense that there is an explicit finite set P
of height one prime ideals p € Spec(A) such that Coker(a’), = 0 for all p € Spec(A),
ht(p) =1, p ¢ P.

(iii) The characteristic power series of D(A’_) divides that of X/_.

Slightly weaker results can be proved for X, and As.
In 1998 the author announced a proof of the fact that Coker(a’) is pseudo-null.

Unfortunately, the argument for exceptional p € P turned out to be flawed, which
means that the claim has to be retracted.

0.14.3. Greenberg’s local conditions have built into them a fundamental base change
property (cf. 8.10.1)

— L ~ =
RI'f1w(Koo/K, T)®rR — RI'(T)

with respect to the augmentation map R — R. This can be interpreted as a de-
rived version of Mazur’s “control theorem” for Selmer groups, according to which the
canonical map

Sel(G.s, E[p™]) — Sel(Gi, 5 Elp™))"
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has finite kernel and cokernel (assuming that I' = Z, and E has good ordinary
reduction at all primes dividing p).
More generally, there are canonical isomorphisms

N L ~ ==
(0.14.3.1) RI'yw(Koo/ K, T)®g R[Gal(L/K)] — RIf1w(L/K,T)
for arbitrary intermediate fields K C L C K.

0.14.4. A typical situation in which Mazur’s control theorem fails for the classical
Selmer groups but holds for the extended Selmer groups H }(—, E[p™]) is the following:
E is an elliptic curve defined over Q with multiplicative reduction at p and Ko /K
is the anti-cyclotomic Z,-extension of an imaginary quadratic field K in which p is
inert. Note that a trivial zero is again lurking behind this example.

0.14.5. Our duality results also show that, in the classical case when R = Z, and
T = T° is concentrated in degree zero, the objects ﬁva’IW(KOO/K, T') can often be rep-
resented by relatively simple complexes (see 9.7), which then control f{\l:f,;w(L/K, T)
and the corresponding height pairings for all subextensions L/K of K. /K, thanks
to (0.14.3.1). These results were used, in the context of classical Selmer groups, in
the work of Mazur and Rubin [M-R2] on “organizing complexes” in Iwasawa theory
of elliptic curves.

0.15. Generalized Cassels-Tate pairings

One of the main applications of the duality theory for Selmer complexes is a con-
struction of higher-dimensional generalizations of Cassels-Tate pairings (cf. Chap-
ter 10). These pairings are used in 10.7 to prove several versions of the following
general principle (for Greenberg’s local conditions): the parity of ranks of extended
Selmer groups H }(T,\) associated to a one-parameter family T\ of self-dual Galois rep-
resentations (with respect to a family of skew-symmetric isomorphisms Ty = Ty (1)
respecting the local conditions) is constant. In [N-P, Ne3, Ne5] and in Chapter 12
we deduce from this principle parity results for ranks of Selmer groups associated to
modular forms, elliptic curves and Hilbert modular forms, respectively.

On should keep in mind the following topological analogue (see 10.1): if X is a
compact oriented topological manifold of (real) dimension 3, then Poincaré duality
with finite coefficients induces a non-degenerate symmetric pairing

HQ(Xv Z)tors X H2<X7 Z)tors — Q/Z

0.15.0. Let us return to the exact sequence (0.13.2), assuming in addition that

depth(Ry) = dim(Rp) = 1. Under this assumption the first term in (0.13.2) is canon-
ically isomorphic to

H0111§F<(H}1;£(KOO/K, T*(1))

L
ﬁ) (Ry)-tors’ Iﬁi) ’
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- ~ 0(,  \_ o 5\ /D .. . AN
where [ Tis ——>~H (wyp)F ® Ry (Frac(—RP)g{p) dinotes the injective hull of the (Rp)
module Ry/pRy (e.g. Ig, = Frac(Rp)/Rp, if Ry is a discrete valuation ring). As a
result, one obtains a non-degenerate bilinear form (cf. 10.3.3, 10.5.5)

(ﬁ(fI,IW(KOO/K’ T) )(_

P Rg) -tors Iy

X (ﬁ}l;"?’(Koo/K’ T*(l));) (EF)‘tors - Ry’

This pairing is of particular interest for ¢ = 2. In the self-dual case, i.e., when
there is a skew-symmetric isomorphism T, = T*(1), compatible with isomorphisms
(TF)e = ((T*(1))f)p for all v € T, then the induced pairing

(0.15.0.1) (, ) (f[ﬁ)IW(KOO/K, T)F)( x (ITI}{IW(KOO/K, T);) (R o™ s

'Rg) -tors RF) ~tors 3

is skew-Hermitian (cf. 10.3.4.2).

0.15.1. All of the above makes sense in the absence of T' (i.e., for R = R and p = p),
when we obtain bilinear forms (cf. 10.3.2, 10.5.3)

(g, < (Ara),), e,

Ry-tors Rp-tors
which can be degenerate (because of the presence of error terms in (0.9.2)).

In the self-dual case, the induced pairing
(3(1),) x (H3(T),) o Ip,

Ry-tors
is skew-symmetric (cf. 10.2.5).

For R=17,, p = (p) and T = T,(£) (where E is an elliptic curve with ordinary
reduction at all primes above p), we recover essentially the classical Cassels-Tate pair-
ing on the quotient of Sel(G k s, E[p™]) by its maximal divisible subgroup (combining
10.8.7 with 9.6.7.3 and 9.6.3).

Perhaps the simplest non-classical example comes from Hida theory (cf. [N-P]).
For simplicity, let us begin with an elliptic curve E over Q, with good ordinary
reduction at p (if p = 2, then the following discussion has to be slightly modified).
It is known that E is modular [B-C-D-T], hence L(E,s) = L(fg, s) for a newform
fEe € S2(Ty(N), Z), where N is the conductor of E.

Our assumptions imply that pt N and fg = f2 is a member of a Hida family of
ordinary eigenforms(®) f € S(I'o(N), Z,), for weights k € Z>, sufficiently close to 2
in the p-adic space of weights Z, x Z/(p — 1)Z.

The Galois representations associated to various fr can be interpolated by a big

Ry-tors

Galois representation

P GQﬁS — Autg(T),

(®)1n this introduction we ignore the phenomenon of p-stabilization.
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where S consists of all primes dividing Np (and infinity) and R, T are as in (0.1.2).
Replacing T by a suitable twist ([N-P, §3.2.3]), one obtains a representation (also
denoted by T') with the following properties:

(i) There is a prime ideal P € Spec(R) with ht(P) = 1 such that
(T/PT) @z, Qp — Vp(E).

Moreover, Rp is a discrete valuation ring, unramified over Apnqy.
(ii) T is self-dual, i.e., there is a skew-symmetric isomorphism

T = T*(1) = Homp (T, A)(1).
(iii) There is a self-dual exact sequence of Rp[Gq,]-modules
0—Tp —Tp —Tp —0,

in which T;;L is free of rank one over Rp and there is an isomorphism 755 /PT5 =
V,(E)*t (compatible with that in (i)).

The corresponding big Selmer complex RD 1(Gq,s,Tp) satisfies the base change
property 12.7.13.4 (i)
— L Y —
(0.15.1.1) R (Tp)@r, Rp/P — RIp(Vp(E)),
which gives an exact cohomology sequence
0 — H}Tp)/P — HHV,(E)) — H}(Tp)[P] — 0,
in which the middle term is equal to the classical Selmer group Sel(Gq.s, Vp(E)).
The existence of a canonical non-degenerate skew-symmetric pairing

ﬁ?(TP)RP—tors X ﬁ;(TP)Rp—tors — Frac(Rp)/Rp
then implies the following result (see 12.7.13.5).

0.15.2. Let E be an elliptic curve over Q with a good ordinary reduction at p. Then:

(i) There exists a canonical decreasing filtration by Q,-vector spaces on S =
Sel(Gq,s, Vp(E)):

S=8'"2852..
(ii) There exist non-degenerate skew-symmetric pairings
Si/SHHE x §T/ST 5 Q, (i =1)

depending on the choice of an isomorphism I' = 1+¢Z, = Z,,, and otherwise canonical
(where ¢ = p (resp., ¢ = 4) if p # 2 (resp., p = 2)).

(iii) The common kernel

s> =59

i1
is equal to the “generic subspace of S”

SE = IIIl(ﬁ}(Tp) o f[;(Vp(E)))
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In particular,
dimgq, () = dimq, (5*") (mod?2).

Above, dimq, (S#") = dimg fI}("V), where ¥ = Frac(Rp), ¥ = T ®r.¥¢ and
ﬁ} W) = ﬁ} (Tp) ®rp L is the Selmer group associated to the whole Hida family
passing through fg.

A similar result holds for extended Selmer groups H} of self-dual Galois represen-
tations associated to Hilbert modular forms (see 12.7.13.5).

The results of [N-P] show that certain non-vanishing conjectures for the two-
variable p-adic L-function of E would imply (at least for p > 3) that

0, if2]ords=1L(E,s)

dimg, (5%") =
@ (5%7) {1, if 2t ord,_ L(E, s)

in the language of 12.7.13.5, hl Q, V") =0 (resp., = 1) for infinitely many P’, hence
f
dimq, (5%") = dim F* is also equal to 0 (resp., to 1)).

0.15.3. Self-duality in Iwasawa theory is more complicated; because of the presence
of the involution ¢, we obtain skew-Hermitian pairings (Sect. 10.3.4.2(ii)). In an im-
portant dihedral case it is possible to get rid of the involution and obtain, as in 0.15.2,
skew-symmetric pairings.

Consider, for example, the following situation. Let K = Q(v/D), D < 0, be an
imaginary quadratic field and K /K the anti-cyclotomic Z,-extension of K. This is
a dihedral extension of Q, i.e.,

't = Gal(Kw/Q) =T x {1,7},
where
=1 ryrTl=yT (vel 2.
This implies that, for every R[['"]-module M, the action of 7 € I'" induces an iso-
morphism of R[I']-modules
T M "5 M-
Applying this remark to M = fI%IW(KOO/K, T,(E)), where E is an elliptic curve over
Q with good ordinary reduction at p, the non-degenerate skew-Hermitian pairing

(,): (ﬁ?,IW(Koo/K»Tp(E))p) X (ﬁ]%,lw(KOO/KaTP(E))P)

Ap-tors Ap-tors

— Frac(Ay) /Ay
from (0.15.0.1) (where R = Z,, R = A = Z,[I'], T = T,(E), p € Spec(A) =
Spec(Z,[T']), ht(p) = 1, p # (p)) induces a non-degenerate skew-symmetric pairing

( ) ) : (ﬁ]%‘lw(KOO/[(: TP(E))P)Ap—tors X (ﬁ]%,lw(KOO/K7 TP(E))P)Ap-tors
— Frac(Ap)/Ap,
(x,y) = (x,7Y).
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This implies that, for each prime ideal p as above, we have

H} 1 (Koo /K, Ty(E))y = (D(Sel(Gr 5, EP™)))),
with

(D(Sel(Gre.: EID™ Do) s — Y Y
for some Ap-module Y of finite length. The control theorem 0.14.3 for Selmer groups
then gives a congruence analogous to that in 0.15.2 (iii)
(0.15.3.1) dimq, (Sel(Gk,s, Vp(E))) = rkaD(Sel(Gk__ s, E[p™])) (mod 2)

(which holds in a general “dihedral” context; see 10.7.19).
If p # 2 and K satisfies the following “Heegner condition”
(Heeg) Every prime dividing Ng splits in K,

then everything works even for p = (p) (see 10.7.18). A recently proved ([Cor, Va])
conjecture of Mazur [Maz2] implies that, assuming (Heeg), the R.H.S. in (0.15.3.1)
is equal to 1. As shown in [Ne3], the congruence (0.15.3.1) for suitably chosen K
implies that
dimq, (Sel(Gq,s, Vp(F))) = ords=1 L(E,s) (mod2)
(still assuming that E has good ordinary reduction at p).
A generalization of this parity result to Hilbert modular forms is proved in
Chapter 12.
If
dimq, (Sel(Gk,s,Vp(E))) =1 (mod?2),
the congruence (0.15.3.1) together with the control theorem 0.14.3 imply that
dimgq, (Sel(Gk.s.Vp(E))) = [K': K],

for all finite subextensions K'/K of Ko /K (cf. 10.7.19). The phenomenon of system-
atic growth of Selmer groups in dihedral extensions was systematically investigated
by Mazur and Rubin [M-R3, M-R4] (cf. 12.12).

0.16. Generalized height pairings

0.16.0. Our formalism also gives a new approach to p-adic (in fact, R-valued) height
pairings, which greatly simplifies all previous constructions (due to many people,
including Zarhin, Schneider, Perrin-Riou, Mazur and Tate, Rubin, and the author;
see the references in [Ne2] and in Sect. 11.3 below). Let

J = Ker(R — R)
be the augmentation ideal of R; there is a canonical isomorphism
JJJ? = Tr=T®z R
v =1 (modJ?) —y®1 (yenl).
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Assume that I'g is flat over R. For T as in (0.12.1), denote #r(T) by T. The exact
triangle

T®rJ/J? —T)J*T — T)JT — T @r J/J*[1]
is canonically isomorphic to

(0.16.0.1) T@&rTr — T/J*T — T — T @ Tr[l].

Greenberg’s local conditions for T induce similar local conditions for each term
in (0.16.0.1); the corresponding Selmer complexes also form an exact triangle
in D}?t(RMod)

R (T) @ T — RI(T/J*T) — RI(T) — RT4(T) ©r Tr[1],

which can also be obtained by applying RT f(T)(gﬁ (—) to the exact triangle
J)J? — R/J? — R — J/J*[1].

The cup product (0.9.3) and the “Bockstein map”
BRI (T) — R (T) @ T [1]

induce a morphism in D;it( rMod)

R (T)& g RT ;(T*(1) — w ®r Dr[~2],

which is a derived version of the height pairing. In practice, the only interesting
component of this pairing is given by

h:HNT)@r HY(T*(1)) — H(w) ®r IR,

which can be written as

h(z ®y) = Tr(B(z) Uy).

This construction makes sense also in the case when I is a finite abelian group of
exponent p™ and R is an Z/p™Z-algebra. It is very likely that there is a similar
cohomological formalism behind real-valued heights.

There is also a more general version of this construction, which yields pairings

__ L —
RT 1w (L/K, T)®R[Gai(L/ k)] R f1w(L/K, T (1))
— w®p R[Gal(L/K)] ®r Gal(Koo/L)r[~2]

for arbitrary subextensions L/K of K. /K (assuming that Gal(K./L)r is flat
over R).
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0.16.1. This approach to height pairings has many advantages over traditional treat-
ments even in the simplest case when R = Z,, and T' = T,,(E), where E is an elliptic
curve over Q with ordinary reduction at p. For example,

(i) The pairing
h: HH(T,(E)) @ HHT,(E)) — Z,

has values in Z,; there are no denominators involved.

(ii) If E has split multiplicative reduction at p, then R is a natural height pairing on
the extended Selmer group (Mazur, Tate and Teitelbaum [M-T-T] and their followers
used an ad-hoc definition).

(iii) Universal norms in ﬁ}(T[)(E)) (i.e., the image of ITTI},IW(KOO/K7 T,(E))) lie in
Ker(3), hence are automatically contained in the kernel of the height pairing.

0.16.2. The definition of & in terms of the Bockstein map [ also sheds new light on
the formulas of the Birch and Swinnerton-Dyer type proved by Perrin-Riou [PR2,
PR3, PR4, PR5] and Schneider [Sch2, Sch3]. These formulas express (for I' = Z,,)
the leading term of the “arithmetic p-adic L-function” (i.e., of the characteristic power
series of det ﬁ‘f’lw(Koo/K, T)) as a product of the determinant of the height pairing
h with, essentially, the p-part of the various rational terms appearing in the conjecture
of Birch and Swinnerton-Dyer.

In our approach, such formulas boil down to the additivity of Euler characteristics
in a suitable exact triangle (see 11.7.11). For example, in the classical case R = Z,,
the leading term in question is equal, up to a p-adic unit, to the product of

s .
det(n) [ |H}1(T)m\<‘1)

i=1
with a certain fudge factor. As in the classical case, all this works under the following
assumptions:

i) The R-modules H Ko/K,X) (X = T,T*(1)) satisfy suitable finiteness
filw
proper‘ges.
(ii) A is non-degenerate.

If (i) holds but (ii) fails, then it is necessary to consider also higher order terms
E, in the Bockstein spectral sequence and suitable higher order height pairings that
generalize the “derived heights” of Bertolini and Darmon [B-D1, B-D2].

In [PR3], Perrin-Riou considered the case of anti-cyclotomic Z,-extensions and
proved a suitable A-valued version of the formulas alluded to above. This result is
also covered by our machinery.

Burns and Venjakob [Bu-Ve| combined our approach to the formulas of the Birch
and Swinnerton-Dyer type with the formalism of non-commutative Iwasawa theory.
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0.17. Parity results

The symplectic pairings constructed in Chapter 10 can be used to generalize the
parity results proved in [Ne3] to Hilbert modular forms and abelian varieties of GL(2)-
type over totally real number fields. We refer the reader to Sections 12.1-12.2 for a
detailed description of our results, which include, for example, the following general-
ization of [Ne3, Thm. A] (see Corollary 12.2.10 below):

Theorem. — Let F be a totally real number field, Fy/F an abelian 2-extension, E an
elliptic curve over F which is potentially modular in the sense of 12.11.3(1) below™
and p a prime number such that E has potentially ordinary (= potentially good ordi-
nary or potentially multiplicative) reduction at each prime of F' above p. Assume that
at least one of the following conditions holds:

(1) J(E) ¢ Op.

(2) E is modular over F and 21 [F : Q].

(3) j(E) € Op, E has good ordinary reduction at each prime of F above p, the
prime number p is unramified in Fy/Q and p > 3. If E does not have CM , assume,
in addition, that Im(Gp — Aut(E[p])) 2 SLa(F)).

Then: for each finite Galois extension of odd degree Fy/Fy,

rkz E(F) 4 corkz, III(E/Fy)[p™] = ords—1 L(E/F1,s) (mod2).

These parity results can be combined with (generalizations of) (0.15.3.1), giving
rise to many situations in which Selmer groups “grow systematically” in the sense of
[M-R3]. See Sect. 12.12 for more details.

0.18. Contents

Let us give a brief description of the contents of each chapter of this work. In
Chapter 1 we collect the necessary background material from homological algebra.
We pay particular attention to signs, as one of our main goals is to construct higher-
dimensional generalizations of the Cassels-Tate pairing, and verify that they are skew-
symmetric. The reader is strongly advised to skip this chapter and return to it only
when necessary. In Chapter 2 we recall the formalism of Grothendieck’s duality the-
ory over (complete) local rings. In Chapter 3 we develop from scratch the formalism
of continuous cohomology for what we call (ind)-admissible R[G]-modules. Chap-
ter 4 deals with finiteness results for continuous cohomology of pro-finite groups. In
Chapter 5 we deduce from the classical duality results for Galois cohomology of finite
Galois modules over local and global fields (due to Tate and Poitou) the corresponding
results for big Galois representations. In Chapter 6 we introduce Selmer complexes in

(") Potential modularity of E seems to be well-known to the experts [Tay5]; a proof is expected to
appear in a forthcoming thesis of a student of R. Taylor.
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an axiomatic setting and prove a duality theorem for them (as a consequence of the
Poitou-Tate duality in our formalism). In Chapter 7 we investigate a generalization
of unramified cohomology (over local fields) in our set-up. In Chapter 8 we apply
Shapiro’s Lemma to deduce duality results in Iwasawa theory from those over num-
ber fields. Chapter 9 is devoted to applications to classical Iwasawa theory, namely
to p-parts of ideal class groups (resp., of S-ideal class groups). It also includes com-
parison results between the extended Selmer groups PNI}, Greenberg’s (strict) Selmer
groups and classical Selmer groups for abelian varieties. In Chapter 10 we construct
and study various incarnations of generalized Cassels-Tate pairings. We pay partic-
ular attention to the self-dual case, which is important for arithmetic applications.
In Chapter 11 we construct generalized p-adic height pairings and relate them to the
formulas of the Birch and Swinnerton-Dyer type. In Chapter 12, we apply the results
from Chapter 10 to big Galois representations arising from Hida families of Hilbert
modular forms of parallel weight, and also to anticyclotomic Iwasawa theory of CM
points on Shimura curves. This allows us to deduce a far-reaching generalization of
the parity results from [Ne3).

0.19. Directions for further research

The fact that Selmer complexes ‘see’ trivial zeros of p-adic L-functions and satisfy
the base change properties (Sect. 0.14.3) and (0.15.1.1) indicates that they — and not
the usual Selmer groups — are the correct algebraic counterparts of p-adic L-functions.

It would be of some interest, therefore, to reformulate all aspects of Iwasawa theory
from this perspective.

0.19.1. Non-commutative Iwasawa theory. — It seems very likely that the
results discussed in 0.11-0.13 can be generalized to a fairly large class of non-
commutative p-adic Lie groups I'. One would expect the duality diagram (0.12.1)
to hold over R = R[I'] again with wp = wr ®p R (this time as a complex of
R-bimodules) and .Z 1, Fi- defined as in 8.3.1. Note that both Z (M) and Fr(M) are
R-bimodules equipped with an involution compatible with the bimodule structure,
and the action of G = Gk ¢ commutes with one of the R-module structures. It
seems that this extra structure can be used to generalize the cohomological theory of
admissible R[G]-modules to the non-commutative setting.

0.19.2. Local Iwasawa theory. — It would be highly desirable to develop a the-
ory of local conditions at primes dividing p that would go beyond Greenberg’s local
conditions. Ome should view Perrin-Riou’s theory [PR6] interpolating the Bloch-
Kato exponential in the local cyclotomic Z,-extension as a first step in this direc-
tion. Another challenge is posed by the families of Galois representations arising from
Coleman’s theory of rigid analytic families of modular forms. It is clear that in this
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generality one would have to work with more general coefficient rings R. In fact,
there should be a common generalization of 0.19.1 and 0.19.2, perhaps in the context
of “Fréchet-Stein algebras” introduced by Schneider-Teitelbaum [Sch-Te]. One can
also envisage a version of the theory involving directly étale cohomology of towers of
varieties, rather than Galois cohomology.

0.19.3. Euler systems. — The machinery of Euler systems is a powerful tool for
obtaining upper bounds for the size of (dual) Selmer groups. It would seem natural to
incorporate Selmer complexes into this theory, which would allow for the treatment
of trivial zeros.

In practice, elements of an Euler system are obtained from suitable elements of
motivic cohomology to which one applies the p-adic regulator or the p-adic Abel-
Jacobi map. It is a natural question whether one can, in the presence of a trivial zero,
canonically lift an Euler system from the Selmer group to its extended version f[}
This can be done, for example, for the Euler system of Heegner points in the presence
of an “anticyclotomic trivial zero” ([B-D3, §2.6]).

0.20. Miscellaneous

0.20.1. An embryonic version of Selmer complexes appears in [Fol] (following a
suggestion of Deligne). The first consistent use of derived categories in Iwasawa
theory is due to Kato [Kal]; his approach has been incorporated into the general
formalism of Equivariant Tamagawa Number Conjecture [Bu-F11, Bu-F12]. Recent
articles of Burns-Greither [Bu-Gr], Burns-Venjakob [Bu-Ve], Fukaya-Kato [Fu-Ka]
and Mazur-Rubin [M-R1, M-R2, M-R3| are also closely related to our framework.

0.20.2. To our great embarrassment, it has proved impossible to keep the length
of this work under control, even though much of what we do is just an exercise in
linear algebra. This is a consequence of our early decision not to use any homotopical
machinery (such as infinite hierarchies of higher-order homotopies) in our treatment
of Selmer complexes, only brute force.

0.20.3. The idea of a ‘Selmer complex’ occurred to the author while he was staying at
Institut Henri Poincaré in Paris in spring 1997. It was further developed during stays
at the Isaac Newton Institute in Cambridge in spring 1998 and (again) at Institut
Henri Poincaré in spring 2000. During the visits at IHP the author was partially
supported by a grant from EPSRC and by the EU research network “Arithmetic
Algebraic Geometry”. Main results of this theory were presented in a series of lectures
at University of Tokyo in spring 2001; this visit was supported by a fellowship from
JSPS. The first version of this work was completed during the author’s visit at Institut
de Mathématiques de Jussieu in Paris in October 2001. The author is grateful to all
these institutions for their support. He would also like to thank D. Blasius, D. Burns,
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O. Gabber, R. Greenberg, H. Hida, U. Jannsen, B. Mazur, K. Rubin, P. Schneider,
A.J. Scholl, C. Skinner, R. Taylor and A. Wiles for helpful discussions and inspiring
questions, and to C. Cornut, D. Mauger, J. Oesterlé, L. Orton, J. Pottharst and the
referee for pointing out several inaccuracies in the text.

0.20.4. To sum up, this work gives a unified treatment of much of (commutative)
Iwasawa theory® organized around a small number of simple, but sufficiently gen-
eral principles. We hope that our attempt to Grothendieckify the subject will help
integrate it into a wider landscape of arithmetic geometry.

Selmer groups are dead.
Long live Selmer complexes!

(8)We consider only the algebraic side of the subject. The relation of Selmer complexes to p-adic L-
functions remains to be explored, but it is natural to expect that det RT 1w (Koo /K, T), whenever
defined, should be closely related to a suitable analytic p-adic L-function.
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CHAPTER 1

HOMOLOGICAL ALGEBRA: PRODUCTS AND SIGNS

This chapter should be skipped at first reading. Sect. 1.1 and 1.2 collect basic
conventions involving signs, tensor products and Hom’s in derived categories. In
Sect. 1.3 we define and study abstract pairings between cones. Such pairings will
be used in Chapter 6 as a fundamental tool for developing duality theory for Selmer
complexes.

1.1. Standard notation and conventions

We follow the sign conventions of [B-B-M] (with one important correction;
see 1.2.8 below). We fix an abelian category C and work with the corresponding
category of complexes C(C).

1.1.1. Translations (= shifts). — For n € Z, the translation by n of a complex
X (resp., of a morphism of complexes f : X — Y) is given by
X[n)" = X", d&[n] = (=1)"d¢™, fln] = f

1.1.2. Cones. — The cone of a morphism of complexes f : X — Y is equal to
Cone(f) =Y @ X[1]
with differential
i B (dg, fitt
Cone(f) = { i
There is an exact sequence of complexes

0— Yi»Cone(f)LX[l] — 0,

) :Yi GBXH_l . Yi+1 @Xi+2.

in which j and p are the canonical inclusion and projection, respectively; the corre-
sponding boundary map

0: HY(X[1]) = HY(X) — H"Y(Y)

is induced by fi*+1.
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1.1.3. Exact (= distinguished) triangles. — These are isomorphic (in the de-
rived category D(C)) to triangles of the form

XLYLCone(f)'—an (1],
or, equivalently, to .
Cone(f)[—1]pE>]XL>YL>Cone(f).
The translation of an exact triangle

x Ly Lz xn

is equal to

xy 2z = x .
1.1.4. Exact sequences. — For every exact sequence of complexes
(1.1.4.1) 0—xILyv 2tz o,

the morphism of complexes
q: Cone(f) — Z
equal to g (resp., to zero) on Y (resp., on X[1]) is a quasi-isomorphism (Qis). The
corresponding map in the derived category
h: Z<2Cone(f)—5X [1]
defines an exact triangle
x-Ly 4z x
such that the map H'(h) : H (Z) — H*(X[1]) = H'T1(X) is equal to the coboundary
map arising from the original exact sequence (1.1.4.1).
Assume that, for each ¢ € Z, the epimorphism in C

gi Y — 7t
admits a section
;2 4t — YY"  gis; =id.

Then there is a unique collection of morphisms in C

Bi: 7t — XiT1
characterized by

dyys; — sidy = fiy1Bi.
As
A B = —Bisady,

the collection of maps § = (f3;) is a morphism of complexes

8:7— X[1].

The morphism of complexes

r=(s,—f3): Z — Cone(f)
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is a section of ¢, which implies that the morphism of complexes
B=-por:Z— X|[1]
represents the ‘boundary’ map h in the derived category D(C).

1.1.5. Homotopies. — A homotopy a between morphisms of complexes f,g : X —
Y (i.e., a collection of maps a = (a* : X**1 — Y*) such that da + ad = g — f) will be
denoted by a: f ~ g. fu: X’ — X (resp., v: Y — Y’) is a morphism of complexes,
then a xu = (a® ou'*! : (X')"*1 — Y?) (vesp., vxa = (vioa® : X1 — (Y')P)) is
a homotopy a * u : fu ~» gu (resp., v*a : vf ~» vg). A second order homotopy «
between homotopies a,b : f ~ g (i.e., a collection of maps a = (o' : X2 — Y¥)
such that ad — da = b — a) will be denoted by « : a ~ b.
Assume that we are given complexes X*,Y*, Z* and collections of maps h = (h* :
XLy B = ()" : YT — Z%). Then
dh+hd: X*—Y* dh+hd:Y" — Z°
are morphisms of complexes,
(dh' + h'd) x h,h' x (dh + hd) : 0 —> (dh' + h'd) o (dh + hd)
are homotopies and
H = hh:(dh' + h'd) xh —~ h' % (dh + hd)
is a 2-homotopy between these homotopies.
1.1.6. Functoriality of cones ([Ve2, §3.1]). — Let tr1(C) be the category with
objects f: X — Y (morphisms of complexes in C) and morphisms (g, h, a)
s
X—Y

L)

X —Y,
7

where g : X — X', h : Y — Y’ are morphisms of complexes and a : f'g ~ hf is a
homotopy. The composition of
(X L) ) (s Ly e Iy
is defined as (¢g'g, h'h,a’ *g+h'*a), where h'xa : h' f'g ~ W'hf, a'xg: f"g'g ~ h'f'g.
A morphism )
(9.h,0): (X-oY) — (XY
in try(C) defines a morphism of complexes

Cone(g, h,a) : Cone(f) — Cone(f")

given by
. 7: 7; . . . .
Cone(g, h,a)" = (% q?+1> Y@ X Lyt XL
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In other words, “Cone” is a functor

Cone : tr1(C) — C(C).

1.1.7. Homotopies in tr;(C). — By definition, a homotopy
(bt ) : (g,h,a) — (¢',h',a")

between two morphisms

(9. hya), (g W', a) - (X Loy) = (x' Loy
in trq(C) consists of homotopies

b:g—~g, b :h—h
and a second order homotopy
a: flxb+a —~V *f+a.

Such a homotopy in try(C) induces a homotopy

b (07 AN
0 —p)° Cone(g, h,a) — Cone(g', ', a’).

1.1.8. Assume that we are given the following cubic diagram of complexes:

Ay

In other words, Aj, ..., B} are complexes in C; u, ..., 32 are morphisms of complexes
and h:vo fi ~ faou, ..., ko: fSoag ~ (30 fo are homotopies.

Assume, in addition, that the boundary of the cube is trivialized by a 2-homotopy
H = (H": A" - (BY)Y), i.e.,

H:v'xki+mx*fi+Paxh —kaxu+h'xay + f5*L.
Then the triple (ki, ko, H) defines a homotopy

(ki,ko, H) = (f1, f3,h') o (a1, a2,€) = (fion, fooa, B *ay + f3 %)
— (Bif1, Bafa,mx fi1 + Box h) = (B1, B2, m) o (f1, f2, h),
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i.e., the diagram

2f2,h
Cone(u) Hfah) Cone(v)
(ar,a2,€) (B1,B82,m)
/7 /’h/
Cone(u') A Cone(v')

is commutative up to homotopy.

1.1.9. A covariant additive functor F' : C — C’ induces a functor on complexes
F:C(C) — C(C) given by d’ﬁ(x) = F(d’ ). The identity morphisms define (for all
n € Z) canonical isomorphisms of complexes

F(X[n]) = F(X)[n].
For a contravariant additive functor F : C°? — C’ we define F : C'(C)°® — C(C') by

oy = (DR,

1.1.10. If G : (C')°P — C” is another contravariant additive functor, then

da(r(x)) = —G(F(dx)).

We define an isomorphism of complexes
G(F(X)) = (Go F)(X)

to be equal to (—1)¢ times the identity morphism in degree i.

1.1.11. Truncations. — If X is a complex, we use the usual notation for the
truncations

o X = [ Xi-2 ., xi-1 X . 0 . 0 ]
T X = X=? — X! —  Ker(dy) — 0 — 0 -]
oz X=[ 0 — 0 — X! - X X
i X = | 0 — 0 — Coker(dy') — X1 — X2 ...]

1.2. Tensor products and Hom

In the rest of Chapter 1, C = (gMod) will be the category of modules over a
commutative ring R. If X* is a complex and z € X', we denote the degree of x
by T = 1.
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1.2.1. For complexes X = X*, Y = Y* we define the complexes Hom¥%(X,Y) and
X®rY by

Hom(X,Y)= H Homp (X', V™)
i€Z
(XerY)"'=@X @rY" ),
i€Z
with differentials
df=dof+(-1)"'fod
dz®y)=dr@y+(—1)"z@dy.
If Y = Y is concentrated in degree zero, then Homy(X,Y) = F(X) for F(—) =
Hompg(—,Y?) (with the sign conventions of 1.1.9).

If Y is a bounded (resp., bounded below) complex of injective R-modules and X
is any (resp., bounded above) complex of R-modules, then Hom%(X,Y) represents
RHompg(X,Y).

An element f € Hom%(X,Y) satisfies
(1.2.1.1) df =0 < fis a morphism of complexes f: X — Y

f=dg < g¢gis ahomotopy g:0 —~ f.
There is also a “naive” version Hom}""(X,Y) of Hom%(X,Y), in which the differ-
ential of f: X* — Y7 is equal to
dnaivef =do f + (_1)]f od.

1.2.2. Morphisms of complexes u: X — X', v: Y — Y’ induce morphisms

Hom*(u,v) : Homy(X',Y) — Hompkx(X,Y)

f — vofou

and
uRv: X®rY — X ®pY’
@y +— u(r)®u(y)

1.2.3. Tensor products of complexes admit various symmetries, such as

Associativity isomorphism:

(X®rY)®rZ — X@p(YQrZ)
@oy®z — TR (ly©2)

Transposition isomorphism:

S12: X®RrY — Y®orX
T®Y — (D)W y®z
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Another transposition isomorphism:

~

S93: (X Q@rA)@r(Y®rB) — (X®rY)®r(A®gB)

(z@a)@(yeb) — ()oY e (@b
1.2.4. Lemma. — The following diagram is commutative:
(X@rA)@r (Y ®rB) ~ (X®rY)®r(A®RDB)
S12 5120812

(Y ®r B) ®p (X ®r A) 2 (Y ®r X)®r (Bog A)
Proof. - (_1)(f+a)(§+5)(_1)55 _ (_1)@(_1)ﬁ(_1)%. .

1.2.5. With the sign conventions of 1.2.1, the canonical isomorphism
Hom% (X, Y)[n] — Hom% (X, Y([n])

does not involve any signs, i.e., it is given in all degrees by the identity maps.

1.2.6. The adjunction morphism on the level of complexes
adj: Homi(X ®rY,Z) — Homy(X,Homy (Y, 2))
f —  (ze (Y= flz@y)
induces a morphism of R-modules

HomC(RMod) (X ®R Y, Z) — HOHIC(RMod) (X, I‘IO).’H;%(Y—7 Z))7

which preserves homotopy classes (by (1.2.1.1)). Both of these maps are monomor-
phisms; they are isomorphisms, provided X and Y are bounded above and Z is
bounded below.

1.2.7. The evaluation maps

evi t Homz(X,Y)®r X — Y

fox — f(x)
and
evy : X @g Homyk(X,)Y) — Y
r®f — (=1 f(2)

are morphisms of complexes making the following diagram commutative:
Homy{(X,Y)®r X —5 Y

(1.2.7.1) lm |
X ®@g Homyh(X,Y) =2 Y

We have adj(evy) = id under the adjunction morphism

adj : Home (,Mmoa)(Homyz(X,Y) ®r X,Y)
— Home (,moq) (Homy (X, Y), Hom% (X, Y)).
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More generally, there are evaluation morphisms

evi : Homy(X,Y) ® g Homy, (W, X) —  Hom$%(W,Y)

9@ f — gof
evy : Hom%(W, X) @ Homy(X,Y) —  Homy(W.Y)
fog —  (=1)f9gof

satisfying evy = evy o0 $12. Another generalization of ev; is given by the morphism
Homy (X, Y)®pr (X ®rZ) — Y Q®prZ
fele:z) — f(z) @z,
which corresponds to
Hom% (Hom% (X, Y), Homy (X ®r Z,Y ®r Z))
fr— f®idg

under the adjunction map.

1.2.8. The biduality morphism
ey : X — Homy(Hom%(X,Y),Y)

is given on = € X* by
@ ((=1)*2"), ez

where

X — Homp(Homp(X? Yitk) yithk)

r (@i [ — f(2))
is the usual biduality map. This corrects a sign error in [B-B-M, §0.3.4.2] — also
discovered by B. Conrad [Con] — where the authors give an erroneous sign (—1)?
instead of (—1)*; that would not make ey a morphism of complexes.

We have adj(eve) = ey under the adjunction morphism

adj : HomC(RMOd)(X ®r Hom%x (X, Y),Y)
— Home(,moa) (X, Homy (Homy (X, Y),Y)).

The statements of Lemmas 1.2.9-1.2.13, 1.2.16 below follow immediately from the
definitions; we leave the details to the reader (for the homotopy versions of 1.2.11-
1.2.13 it is sufficient to recall that adj preserves homotopy classes).

1.2.9. Lemma. — The following diagram (and a symmetric diagram, in which the roles
of evy and evy are interchanged) is commutative:
X @ Hom%(X,Y) 22y

lay@id |
Hom% (Hom%(X,Y),Y) ®g Homy(X,Y) =% V.
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1.2.10. Lemma. — Assume we are given a morphism of complexes f @ X —
Hom%(X,Y); denote the composite morphism of complezes

X 2% Hom3, (Hom?y (X, Y), Y) 2 S gome (X, V)
by g. Then the following diagram is commutative:

X®r X X8I, X @, Hom}y(X,Y)

Jf@idy J,evz

Hom%(X,Y)oprX 25 Y.

1.2.11. Lemma. — If the following diagram of morphisms of complexes is commutative
(resp., commutative up to homotopy)

X®rY' _def X or X'
lf ®id ly
Y @pY’ — Z,
80 18
x Y9 Home(x!, 2)
lf lHom'(f’,id)
Y Y% Homs,(Y', 2).
1.2.12. Lemma. — If the following diagram of morphisms of complexes is commutative
(resp., commutative up to homotopy)

XorY 5 Z

lf@g J,h

X'orY 5 Z,

50 18 ) .
X 9 Homs(v,z) UM goms (v, 27)
J/f d. ’ H L] 'd ||
XY Homsy (v, z7) D pome (v, 27).

1.2.13. Lemma. — Let A, B, B', U, U’, C be complexes of R-modules and
AerB-LU, AepBLU, BerCB, UerC-SU
morphisms of complexes. If the diagram

A®p (B 9pC) —=" . Aor B

~

(Ar B')®rC

f'®id f

U ®grC ! U
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is commutative (resp., commutative up to homotopy), so is

adj(f)

A Hom%(B,U)
ladj(f/)
HOII’I;%(B,, U/) Hom, (b,id)

|

Hom}y(B' @r C,U' @ C)

Hom$, (id,u)

Homy(B' @ C,U)

1.2.14. Lemma. If

XorY 2 Z

15120(f®g) lh

YorX - Z

18 a commutative diagram of morphisms of complexes, so are

Y 209 Homs, (X, Z)
laz lHom'(f,id)
Hom 3, (Hom$, (Y, Z), Z) 22 GO yoms (X, 2).

and

X AR, Hom¥%(Y, Z)

lEZOf JVH0m°(id,h)

Hom3, (Hom?, (X, Z), ) 2omCditosid) g e (v, 2).

Proof. — Let y € Y7, z € X*. Then Hom*(f,id) o adj(12) o g(y) sends z to u(g(y) ®
f(x)) = (=1)"h(A(z ®y)). In the notation of 1.2.8, the only component of €z (y) =
((—1)7*y;*)kez contributing to Hom*®(adj()\), k) o ez (y)(x) is (—1)7'y;*; its image in
Hom%(X, Z) also sends x to (—=1)Yh(Az ® y)). A similar argument works for the
second diagram: Hom*(id, k) o adj(A\)(x) sends y to h(A(z ® y)) = (=1)Yu(g9(y) ®
f(z)), while the only component of ez o f(z) = ((—1)* f(2);*)kez contributing to
Hom"* (adj(p) o g,id) o ez(f(x)) is (—1)Z]f(b)j*, the image of which in Hom%y (Y, Z)
sends y to (—1)7u(g(y) @ f(x)). O
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1.2.15. For each n € Z, the following formulas define isomorphisms of complexes:
Sn: X*'n]@rY* = (X*®@rY*)[N]
TRQYr— T Y
S X @ (Yo [n]) < (X @ Y*)[n)
rRy— (- ®y
tn s Hom%(X*,Y*) =5 Hom% (X *[n],Y*[n])
f— (=)™ 7.

1.2.16. Lemma. — Given a morphism of complexes u : A* g B* — C* and n € Z,
put

v=uln]osl, : A* @ (B*n])—" (4" ®r B*)[n]-LC* ).
Then adj(v) is equal to the composite map

A‘MHom}?(B‘, C")—t—"—>Hom}z(B° [n], C*[n]).

1.2.17. Tensor product of homotopies. — Assume that
fi: X — X', gV —Y (i=1,2)
are morphisms of complexes and
u: fi — fa, v:igr — g2
homotopies between them. Then the formulas

(u@v)(z®y) =u)® gy + (—1)" f2(z) @ v(y)
(u®v)(z@y) =u(x) @ g2(y) + (—1)" fi(z) @ v(y)

define two homotopies
(u®v)j: fi@g1 — f2® g2 (1=12)
between the morphisms
[i®g : X®@rY — X' @rY'.
The formula
a(z®y) = (~1)7u(z) ®v(y)
defines a second order homotopy

a: (u®v); — (u®v)s.
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1.2.18. If X,Y are complexes of R-modules, then the maps
r@y— (-1)"z®y, yRr—yeu
define isomorphisms of complexes
Xor (V) — XepY)1], (Y[A]))orX = (Y or X)[],

which make the following diagram commutative:

Xer(Y]) — (XerY))]

s12 s12(1]

Y[IherX — (Yo®rX)1].

1.2.19. Lemma. — Assume that the following commutative diagram of morphisms of

complezes has exact rows and columns:

0 0 0

A

0 — A" 245 4 A4 4 0

R

0 — B 5 p % B — 0

]

0o — o £ o % ¢ — 0

|l

0 0 0
Then the diagram

He'(C

|
(A
(

)
9(B)

1%}

Sy

|
=

HY(B') 28

|1 I

HIZNC) 2% meer) S He(C) 2% HY(O)

Lo e

)
Ho(A) 24 Ho(A)  2A getl(ary PA getl(a) 94, [atl(4)

Q

is also commutative, and if [¢'] € HY(C"), (V'] € HY(B') are cohomology classes
satisfying pclc”’] = j'[V'], then there is a unique coset [a] + Im(0) € HI(A) + Im(0)
such that ila] = op[b']. This coset satisfies

dala] + 0"[c"] € Im(940) = Im(9"0¢).
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Above, 0, 0', 8", 04 and Oc denote coboundary maps associated to the original
diagram.

Proof. — This is a well-known fact, which can be verified by an explicit calculation.
O

1.3. Products
In this section we construct products in a slightly more general context than consi-
dered by Niziot ([N1i, Prop. 3.1]). The main difference is that we allow certain diagrams
to commute only up to homotopy. In what follows, R is a commutative ring and all
complexes are complexes of R-modules.
1.3.1. Assume we are given the following data:
1.5.1.1. Complexes A;,B;,C; (j =1,2,3).
1.5.1.2. Morphisms of complexes
Ao, B (j=1,2,3).
1.5.1.3. Morphisms of complexes
Ua A ®p Ay — As
Up :B1 ®g By — Bs
Uc :C1 ®@r Oy — Cy
1.8.1.4. A pair h = (hy, hy) of homotopies
hy:Uco(fi® f2) = faoUa
hg : Uc o(g91 ® g2) —> g3 oUp
We define new complexes E; by
Ej = Cone(4; & B;%Cy) 1], (=1,2,3)
i.€.,
_An -1
El=A7 e B} o C] ",
d(a, bj, ¢;) = (dag, dbj, —fi(a;) + g;(bj) — dej).
An clement e; = (a;,bj,c;) has degree 2; = a; = b; = 1 +7¢;.
1.3.2. Proposition. — Given the data 1.3.1.1-1.3.1.4, then
(i) For every r € R the formula

(a1,b1,¢1) Upp (a2, b2, c2) = (a1 Ua az,by Up ba, c1 U (rfa(az) + (1 —7)ga(b2))
+ (=)™ (1L =) fi(ar) + rgi(b1)) Uc c2 — (ka1 ® az) — hg(by ® b))
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defines a morphism of complezes
Urn : EhW ®@pr Fo — Es.
(i1) For r1,r2 € R, the formula
k((a1,b1,c1) @ (az, ba, ca)) = (0,0, (=1)(ry —ry) e1 Ue ¢3)

defines a homotopy k : Uy, p, ~> Uy, p.
(iif) If ' = (W'}, hy) is another pair of homotopies as in 1.3.1.4, then

Urh — Upp - (al, bl,(il) ® ((LQ, b, CQ) — (0, 0, (hf — h})(al ®(L2) — (hg — h;)(bl ®b2)).
Ifa:hy~ h}, B hg ~ h; is a pair of second order homotopies, then the formula
k((al,bl,cl) (024 ((LQ, ba, (32)) = (0, O,a(a1 & (LQ) — ﬂ(bl ® bg))

defines a homotopy k : Uy, ~ Uy .

Proof. — Explicit calculation (cf. [Ni, Prop. 3.1]). |
1.3.3. Functoriality of products. — Assume we are given another piece of data
as in 1.3.1.1-1.3.1.4, namely morphisms of complexes

7, 28,5 5,

products U, (for x = A, B,C) and homotopies h = (l~1f~', ng), yielding complexes E'j.
A morphism between the data

(Aj, B, Cy, f5,95,Uss h) — (A, B, Cy, 1,55, 0s, 1)
consists of the following:
1.5.3.1. Morphisms of complexes
o Ay — ZJ-
B;:B; — By (j=123)
% :Cj — C;
1.3.3.2. Homotopies

wifoa —nyol;
N (j=1,2,3)
Vj ZgjO,BJ' — Y ©4g;
1.3.3.3. Homotopies
ko :Up o0 () ® ag) — azoUg
kg :Up o (b1 ® f2) —~ f30Up
ky :Uc o (71 ® 72) — v3 0 Uc
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1.3.3.4. A second order homotopy K; between 0 and the composition of the six
homotopies associated to the faces of the following cubic diagram:

A ® Ay o Az
a1@az asz
\ 7
ke
. Ua 7N
fr&f2 Al @Ay ———————> A3
Fi®F2 't J
Uc 7
C1® Oy < b5 .
(u1 ®u%_
Y1872 ‘/—
61 [ 62

In other words, K¢ is a collection of maps
Kf = (K} : (Al X R AQ)’L —_— (6'3)7:-2)
satisfying
dKp— Kpd = —ky* (f1 ® fa) = 3% hy +uz *Ua
+ j:; * ke, +7Lf* (Oél [ ()[2) — OC * (1L1 [ ’U,Q)l,

i.e., trivializing the boundary of the cube (the homotopy (u; ® ug); was defined
in 1.2.17).

1.5.3.5. A second order homotopy
Ky = (K} : (B ®g B2)' — (C3)"7?)
satisfying an analogous condition, with (A, f, o, u) being replaced by (B, g, 83, v):
dKy — Kgd = —ky % (91 ® g2) — y3 % hg +v3 % Up
+ gz x kg + hg* (/1 ® B2) — Uc * (v1 ® va)1,

Up

B ® By By
B1®PB2 o Bs
9 kg >
. s Vi
91892 By @ B, By
;: @;2 b ‘
C1®Cy —2< :

(v1 ®1)%
Y1872 1/—

C~'1®62
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1.3.4. Proposition
(i) Given the data 1.3.8.1-1.8.3.2, then the formula
p;ilaj, by, c;) = (aj(az), B(b;),7;(c;) + u;(a;) —v;(b;))
defines a morphism of complexes
¢ E; —E;  (j=1,2,3).
(ii) Given the data 1.3.3.1-1.3.3.5 and r € R, the formula

H((ay,b1,c1) @ (az, b2, c2)) =
(ka(a,] ® az), kg(by ® ba), —ku,((:l ® (rfa(az) + (1 —r)ga2(b2))
+ (=1D)"((1 = 7)fi(a1) +rgi(b1)) ® c2)
+ (=151 (c1)Uc (rug(as) + (1 — r)va(bs))

— (=)™ (1 = r)ui(ar) +rvi(b1))Uc (v2(c2) + ua(az) — va(b2))
— Ky(ay ® az) + Ky(by @ by))

defines a homotopy
H: G,,J; o (1 ® @a) = Y30 Upp,

i.e., the diagram
U’I', g3
Ey®r By — Ej

lwl Q2 B lWB
~ ~ U, &
Ey@rEs —% Ej
is commutative up to homotopy.

Proof. — The first part is a special case of 1.1.6, while (ii) can be proved by a tedious,
but routine calculation. O

1.3.5. Transpositions. — Assume that, in addition to the data 1.3.1.1-1.3.1.4, we
are given the following objects:
1.8.5.1. Morphisms of complexes

Ta:Aj — A

T :B; — B, (1 =1,2,3)

To:C;—C,

1.8.5.2. Morphisms of complexes
Uy 1Ay @ A) — As
Up : By @p By — B3
Up :Co®r C1 — C3
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1.8.5.5. A pair ' = (h';, hy) of homotopies
biUgo(fa® fi) = faoUy
hy :Ug o (g2 ® g1) — gz o Uy
1.8.5.4. Homotopies
Uj:fjoTy —Tcof; (=123
VjigjoTp — Tcoyg;

1.3.5.5. Homotopies
to: U408120(Ta®@Ta) —~ TaoUg
tg: U/B 08192 © (TB ®TB) —~ TgoUp
ty: Ugosigo (Te ® Te) — To o Ug

1.8.5.6. A second order homotopy H trivializing the boundary of the following cube:

Ua

Al % A2 Ag
w\ ) Ta
I3 to
U408
fi®f2 A1 ® Ag a7 f> Az

N1®f2 4 ‘
C1®Cy 7

(m@U}_
Te®Tc \’/—

C1 ®Cy

Uc

1.e., satisfying

dHf —Hfd: —t,y*(fl ®f2)—Tc*}Lf+U3*UA+f3*ta
+h/f*(812 o (TA ®TA)) — (UIC 0812)*(U1 ®U2)1.

1.8.5.7. A second order homotopy H trivializing the boundary of an analogous cube
in which (A, a, f) are replaced by (B, 3, g).

With these data, the formula
(ag, bg, 02) UlT’h/ (al,bl,cl) == (CL2 U;& ai, b2 UIB b1,02 U/C (Tf] (al) + (1 - 7")_(]1 (bl))
+(=1)%((1 = ) f2(az) + rga(b2)) Ug e1 — (K(az ® ar) — hy (b2 ® b1)))
(for a fixed r € R) defines a morphism of complexes
U;,h’ :Fy®r By — Ej.

The complexes
Aj — Aj,Bj - Bj,Cj B Cj,
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morphisms of complexes
[i= 15,95 = 95,05 = Ta, 35 = Tp,v; = Tc,
u; =Uj,v; = Vj,Uq = Uy 0812,Up = U 0812,Uc = U 0 512,
homotopies
ka =tq, kﬁ = tﬁ,kv = t'y,hf = h} *Slg,hg = h; * 812
and second order homotopies
Ky=Hy, Ky=H,

satisfy the conditions 1.3.3.1-1.3.3.5. Applying Proposition 1.3.4 and observing that
the following diagram of morphisms of complexes

Y,k
Ey ®pr By Es
||
Ul ns
E, ®pr By Ej

is commutative, we obtain the following statement.

1.3.6. Proposition
(i) Given the data 1.3.5.1 and 1.53.5.4, then the formula
Tj(aj,bj,¢cj) = (Talay), Tp(b;), 1c(¢j) + Uj(az) — Vi(b;))

defines a morphism of complexes

7;' . E'j — EJ
(ii) Given the data 1.3.5.1-1.3.5.7 and r € R, the diagram
Ey ®p Ey ek, E3
18120(7—16@7:2) ng
E; ®r Ey L O

is commutative up to homotopy.

1.3.7. Corollary. — Under the assumptions of Proposition 1.3.6(ii), the following

diagrams are commutative up to homotopy:
adj(Uy _, ,1)0T2
Es ———————— Hom%y(F4, Es3)
J/ﬂ?;; lHom’(Tl,id)

Hom¥y (Homy (E2, E3), E3) Hom" (adi(Vein ), %) Hom% (E1, E3)
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dj(Uy
Ey i) Hom%(Es, E3)
1553073 lHom'(id,'Z})
Hom’(adj(U'lir’h,)oTz,id)
Homy (Hom%(E1, E3), E3) Hom$, (Ey, E3).

Proof. — Apply a homotopy version of Lemma 1.2.14 to the diagram in Proposi-
tion 1.3.6 (ii). ' O

1.3.8. Bockstein maps. — Assume that, in addition to the data 1.3.1-1.3.4, we
are given an R-module I'g and the following objects:
1.8.8.1. Morphisms of complexes
Bjz:Zj — Zjl]@rTr  (j=1,2,Z=A,B,0)

1.5.8.2. Homotopies

uj fill] o Bja — Bjcofi

(J=12).
vj 951 o Bj = Bjcoy;

Above, the map
filll@id: A;[1]@rTr — C;[1] @r Tk
is abbreviated as f;[1] (and similarly for g, [1]).
1.8.8.3. Homotopies
hz :Uz[1l]o(id ® f2,z) =~ Uz[1] o (f1,z ®id) (Z=A,B,0C).
Again, we write Uz [1] instead of

Uzl ®id : (Z1 ®r (Z2[1]))) ®r Tr — Z3[1] ®g Cg.

1.8.8.4. A second order homotopy H trivializing the boundary of the following cubic
diagram:

B, a®id
AL ® Ay i Alll@ A, ® TR

id®B2,4 Uall]
filllefz
h,\(

1
fi®fz Al ® (AQ[].]) (= S calt A;;[].] ®@Tr

hi®(fa(1)) %‘
B1.o®id
C1® Cy S Cl[l]®c2®FRl
C

fs(1]
f1®uz Uell]
1 Uu: >
N—_ hsl1] ;
Cr@(C[l]) ®Tr Cs[1] @ T'r,

Ue (1]
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i.e., such that

dHy — Hyd = Uc[1]* (u1 ® f2) + fa[l] x ha + hs[1] x (id @ B2,4)
—Uc[lx (fi @ uz) — he * (f1 @ fa) — hs[1] % (61,4 ®id).

Above, we implicitly use the canonical isomorphisms from 1.2.18.

1.8.8.5. A second order homotopy H, trivializing the boundary of an analogous cube
in which (A, f,u) are replaced by (B, g, v).

1.3.9. Proposition
(i) Given the data 1.3.8.1-1.5.8.2, the formula
Bi.8(az,bj.¢5) = (Bj.a(a3), B5,8(bs), =B;.0(c;) — uila;) + v;(b;))
defines a morphism of complexes
BjE:Ej — Ej[1]@rTr (j=1,2).
(ii) Given the data 1.3.8.1-1.3.8.5 and r € R, the diagram

BE,1®id

FE, ®r E> — E1[1]®RE2®RFR
lid@ﬂEl J'U,-,h[l]
§ ; Ur.n (1] y
Ey @ (Eo[l))@p T — E3[1]®@r TR
is commutative up to homotopy.
Proof. — The proof is analogous to that of Proposition 1.3.4. In (ii), we again use
the canonical isomorphisms 1.2.18. O

1.3.10. Proposition. Given the data 1.8.5.1-1.8.5.7, 1.3.8.1-1.3.8.5 and r € R, the
diagram

3E 1 ®id ol T3(1
B or B O B 0r BrorTr 22 BylJorTe 2 Ej)ljogTs
S12 ||

35 2 @id To)®T; Ul el
Ey ®p E1[ﬁ Ey[1] ®p F1 ®@r TR et Ex[1)®r E1 ®r TR — Es[1]®r g

is commutative up to homotopy (above, T; are as in Proposition 1.3.6(i)).

Proof. — Combine Proposition 1.3.6(ii) and 1.3.9(ii) (using the canonical isomor-
phisms 1.2.18). O
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1.3. PRODUCTS 49

1.3.11. The morphisms §; x arise naturally in the following context (for simplicity,
we suppress the index j from the notation). Assume that

0 — A7 2 o4 5 4 — 0
lf " lf’ lf
0 — ¢ 5 ¢ % ¢ — 0
el

0 — B” 2 B 2% B — 0
is a commutative diagram of morphisms of complexes with exact rows. Assume, in
addition, that in each degree i € Z the epimorphism

oh (X)) — X' (X =A,B,0)
admits a section
s X' — (X)) (X =AB,0).
Writing
E= Cone(A ® Bﬂc) (1]

(and similarly for E’, E”), then the maps

Pl = (PP, 0 ")y ok = (0, 00,057)
define an exact sequence of complexes

0— E"PEE TR —0
and
sp = (54,85, 5¢ '
is a section of ¥, (i € Z).
The recipe from 1.1.4 yields morphisms of complexes
Bx : X — X"[1] (X =A,B,C,FE)

characterized by
(1.3.11.1) px[l]ofBx =dosx —sxod (X =A,B,C,E)
and such that

Bx

X// PX X/ oX X X//[l]

is an exact triangle in the derived category. In order to express Gg in terms of 34, G5

and f[¢, we compute

d(sg(a,b,c)) — sg(d(a,b,c))
= d(sa(a),sp(b), sc(c)) = (sa(da), sp(db), sc(—dc — f(a) + g(b)))
= ((dsa—sad)(a), (dsp—spd)(b), —(dsc—scd)(c)—(f'sa—sc f)(a)+(g'sB—5c9) (b)),
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50 CHAPTER 1. HOMOLOGICAL ALGEBRA: PRODUCTS AND SIGNS

hence
(1.3.11.2) Bela,b,c) = (Bala), Bp(b), —Bc(c) — ula) + v(b)),
where
A" -B
are morphisms of complexes characterized by
pcou=fosg—scof
pcov=g osp—scoy.
As
—dero(flosa—scof)+(fosa—scof)oda
=(dosc —scod)of—fo(doss—sa0d)
(and similarly for (B,g) instead of (A, f)), the morphisms u and v are, in fact,
homotopies
w10 s — foo f
v:g"[1}oBp — fcog.
In the special case when X"’ = X @gr I'r (X = A, B, C) we thus obtain the
data 1.3.8.1-1.3.8.2, as well as the formula for fg from Proposition 1.3.9(i).
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CHAPTER 2

LOCAL DUALITY

In this chapter we recall the formalism of Grothendieck’s duality for R-modules
([LC, RDJ]). At first reading there is no need to continue beyond 2.10.4 (the sub-
sequent sections are used in the construction of generalized Cassels-Tate pairings
in Chapter 10).

2.1. Notation

Throughout Chapters 2—-11 (with the exception of Sect. 2.10), R will be a complete
Noetherian local ring with maximal ideal m and residue field k = R/m. The dimension
of R will be denoted by d (it is finite, as R is Noetherian and local). The total ring of
fractions of R will be denoted by Frac(R).

Denote by (rRMod) the category of all R-modules, by (rkMod) s (resp., (rRMod) coft)
the category of R-modules of finite (resp., co-finite) type (i.e., of modules satisfying the
ascending (resp., descending) condition for submodules) and (rMod)g = (rMod); N
(rRMod) copt the category of R-modules of finite length.

2.2. Dualizing functors

Let I be an R-module. The functor
D(—) =Hompg(—,I) : (rRMod)°® — (rMod)
is dualizing if the canonical homomorphism
(2.2.1) e: M — D(D(M))

is an isomorphism for every M € (rMod)g.
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2.3. Matlis duality

2.3.1. Matlis Duality ([LC, Prop. 4.10]; [Br-He, Thm. 3.2.13])
(i) D is dualizing iff I is an injective hull of k (defined, e.g., in [Br-He, Def. 3.2.3]).
(ii) Fix such I (it is unique up to a non-unique isomorphism); the functor D is
then exact and induces equivalences of categories

(RMOd)gp : (RMOd)ﬂ
(RMod)}).tp — (rMod) coft-

The map (2.2.1) is an isomorphism for every M in (gkMod)x or (rMod) coft.

2.3.2. From now on, I will be as in 2.3.1(ii). The functor D, being exact, can be
derived trivially. For every complex M* of R-modules and n € Z put

D, (M*) = Homy(M*, In]) = D(M*)[n]
(with the sign conventions of 1.2.1). It follows from 2.3.1(ii) that the canonical map
€=¢qm): M — D,(Dn(M))

is an isomorphism for every M in Dy(rMod) or D, (rMod).

2.3.3. The simplest examples of I are the following:
(i) I =Rif R=Fkis a field.
(ii) I = K/R if R is a (complete) discrete valuation ring with fraction field K.
(iii) I = R[1/z1...24)/( Zle R[1/z1...%;...2q)) if R =k[zy,...,24] is a power

series ring.

2.3.4. We shall often use the fact that for every projective (resp.. inductive) system
(Mp)nen of R-modules of finite (resp., co-finite) type such that M = lim M,, (resp.,
M = lim M,,) is also of finite (resp., co-finite) type, the canonical map lim D(M,,) —
D(M) (resp., D(M) — lim D(M,,)) is an isomorphism.

2.3.5. Lemma. — Let f: M — N be a homomorphism of R-modules. Then

(i) M=0 < D(M)=0.

(i1) The homomorphism € : M — D(D(M)) is injective.

(iii) f=0 < D(f)=0.
Proof. — If M # 0, choose non-zero x € M, y € I. By 2.3.1 applied to Rz there
exists an injective morphism Rx — [; it extends to a morphism f : M — [ satisfying
f(xz) # 0. This proves (i) and also shows that e(z) # 0, proving (ii). As regards
(iii), the morphism f factors as f = gh with ¢ : f(M) — N injective ( = D(g)
surjective) and h: M — f(M) surjective (= D(h) injective). This implies that

D(f) =0 <= D(g)=0 < D(f(M))=0 <% f=0. O
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2.3.6. Lemma. — If M is an R-module of finite (resp., co-finite) type, then every
surjective (resp., injective) R-linear endomorphism f: M — M is bijective.

Proof. — If M is of finite type, see ([Mat, Thm. 2.4]). If M is of co-finite type, the
previous statement applied to the dual endomorphism D(f) : D(M) — D(M) implies
that D(f) is bijective, hence so is f = D(D(f)). O

2.4. Cohomology with support at {m}

2.4.1. Every R-module M defines a quasi-coherent sheaf Mon X = Spec(R). Tts
cohomology with support at the closed point {m} C X will be denoted by

H'{im}(]bf) = HE‘“}(SPCC(R), M).
An explicit complex representing
RD(w} (X, M) € D*(zMod)
can be constructed by using an exact triangle

(2.4.1.1) R {yy (X, M) — RT(X, M) — R (X —{m}, M) — RT (4, (X, M)[1]

2.4.2. First of all, R’ (X, ]Tf) is represented by M in degree zero. To get a complex
representing RF(X - {m},]rf), fix a system of parameters of R, i.e., a d-tuple of
elements x1,...,xq € m such that R/(z1,...,z4) has finite length. Then U = {U; =
Spec(R1,) |i=1,...,d} is an open covering of X — {m} such that all intersections
Uiy M-+ N Ui, = Spec(Ry, ...z, ) are affine. This implies that the Cech complex
C*(M) = C"(]W, (7)) = C"(U,M) with

CP(M, () = @ My, =CP(R,(2:)) @r M (0<p < d)

io<-- <'lp

and the standard differential

(5PA)i()"~i,,+1 = Z(_l)inU'”i;'”iml (2() < e & ip+1)
J=0

represents RI'(X — {m}, M)
2.4.3. It follows from (2.4.1.1) that RF{m}(X., M) can be represented by

C*(M) = C*(M, (2;)) = Cone(M~-C*(M, (,)))[~1] ,
:M;i)CO(A[)__(SU,...LHC”i_l(M),

where ¢ : M — G)" 1 M, is the canonical map. The complex C*(M) is concentrated
in degrees (0, d] (Lnd is equal to C*(R) @p M = M ®g C*(R).
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54 CHAPTER 2. LOCAL DUALITY

2.4.4. For example, if R = Z,,, then C*(M) = []\J =M @z, Qp], H?m}(]\l) = Miors
and H{m}( ) =M ®z, Qp/Z,.

2.4.5. There is an alternative description of C*(M) in terms of Koszul com-
plexes ([LC, §2]). For a commutative ring A, an A-module M and a sequence
v = (y1,...,yr) of elements of A, the Koszul complexes are defined inductively as

K3(A. (1)) = [A-"=4]
(in degrees 0, 1),
KZX<A’ y) = K;l(Av (yla s 7yT)) = K:q(Av (Ul)) XA K;A\(Av (y2, s 7/!/7‘))

and

Ki(M,y) = K4(M,(y1,....y;)) = K4 (A y) @4 M.
If M is a Noetherian A-module, then each cohomology group of K% (M,y) is a Noethe-
rian A/(y1, ..., yr)A-module.

The morphisms K3 (A, (y})) — K3(A4, (y]"H)), given by the multiplication by y;.
in degree ¢ = 0, 1, define morphisms of complexes K% (M, y") — K4 (M,y" "), where
y* = (yi,...,y}). In the situation of 2.4.3, there is a canonical isomorphism of
complexes

lim K3 (M, x") — C*(M.x).

2.4.6. For every complex of R-modules M* we define C*(M*) = M* ®% C*(R).
If M* has cohomology of finite type, then C*(M?*) represents RI'(ny (X, M*), hence
HY(C*(M*)) = H{y (M)

2.4.7. Lemma ([LC, §3.10, §6.4]). — For every M € (rkMod)p and i >0

(i) {m}(JV[) is an R-module of co-finite type.

(ii) H{m}(]bf) =0 for i < depth(M).

(iti) Hy (M) =0 fori> dlm( ).

(iv) dlm( (Hfm}(ﬂ[)))

(v) H{m}( )Y#£0 fori= dlm( ) and i = depth(M).

2.5. Local Duality ([RD, Ch. V])

(i) There exists a dualizing complex w € D;)y,( rMod) (unique up to isomorphism)

with the property
i ~ I, i=d
Hipy(w) — .

We fix an isomorphism Tr : H fm}(w) 51
(ii) w can be represented by a bounded complex of injective R-modules w*, sup-
ported in degrees [0, d].
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(iii) For every R-module M of finite type and i € Z, the Yoneda pairing
Hiy (M) x Ext§ (M, w) — H{y(w) =1
induces isomorphisms
H{,y (M) = D(Bxtf (M, w))
Ext{, (M, w) > D(Hj{yy (M)).

(iv) A triangulated version of (iii): for every object M of Dgy(rMod) (resp.,
D?;( rMod)) the canonical map

n: RHomp(M,w) — D(RI (ny(M)[d])

(defined in 2.8.1 below) is an isomorphism in D (rMod) (resp., D;’; (rMod)).

2.6. Grothendieck Duality ([RD, Ch. V])

For every object M of Dp(rMod) (resp., Dﬁ(RMod)), 2(M) := RHompg (M, w) is
an object of th(RMod) (resp., D;Ft(RMod)) and the canonical map e = ¢, : M —
2 (%9 (M)) is an isomorphism.

2.7. Remarks

(i) H(w) = D(H?{;;(R)) vanishes for ¢ > d — depth(R) (resp., i < 0) by
Lemma 2.4.7 (ii) (resp., 2.4.7(iii)) and is non-zero for i = 0 and ¢ = d — depth(R) by
Lemma 2.4.7(v). Furthermore, dim(H*(w)) < d — i, by Lemma 2.4.7 (iv).

(ii) In particular, R is Cohen-Macaulay (i.e., depth(R) = d) iff w = H%w) is
concentrated in degree zero (in which case w — D(Hf{lm}(R))).

(iii) R is Gorenstein (i.e., R is quasi-isomorphic to a bounded complex of injective
R-modules) iff w = R.

(iv) In order to stress their dependence on R we sometimes denote I, D, 2, w
by Ir, Dr, 2R, wWr.

(v) The hyper-cohomology spectral sequence

Ey’ = Extly (M, H (w)) = Ext'f? (M, w)
implies that
Extiy(M,w) = Homp(M, H(w)) = Homp (M, D(H{,,(R))),

for every R-module M.

(vi) If depth(R,) = 1 for all p € Spec(R) with ht(p) = 1, then w = H°w) in
D((rMod)/(pseudo-null)), using the language of 2.8.6 below (this follows from 2.7 (i)—
(ii) applied to the (non-complete — but see 2.10) localizations Ry).
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2.8. Relating D, ¥ and ¢
2.8.1. The functors
Dt Dy (pMod)*? — D, (rMod)
2 : Dy(rRMod)?” — Dg(rMod)
(which map DF to DF) are related to
®(—) := R () (—)[d] : Dp(rRMod) — Dop(rMod)

(which maps D* to D*) as follows.
First of all, we have

@(-) = ((-)5®(R)[~d))d]

The natural transformation of functors n: 2 = D o ®, defined by

7(-) = RHomp(~w) — RHomp ((~)5 p®(R)]~d], w& n@(R)~d)

= RHomp (®(—)[~d], ®(w)[~d])

L4, RHomp (®(-), <I)(w))RHom—(id’Tr2

RHompg(®(—), 1)
=Do CI)(‘)?

is an isomorphism, by local duality 2.5.
The natural transformations

er:idd=DoD, ¢e,:id=% 0P

are isomorphisms, by Matlis and Grothendieck duality, respectively. As a conse-

quence, the natural transformations
'LZJZ(I)E_————M;DODO(I)QDO.@

& 30722 Dog o925

are isomorphisms, too. It follows from the fact that the composition
DL Do Do DEELD

is the identity (and from an analogous statement for &) that the following diagrams
of natural transformations are commutative:

Dxe,, e1*2 er
P=——=>DP0P 0P 9 =—=>DoDo9 id=————==DoD
\ ﬂﬁ*@ \ HD*N/ “Ew ﬂD*é

*‘(g
Do9 Dod 90@]=>DO<I>0@
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2.8.2. To sum up: the following duality diagram of functors
Z

Dy, (rkMod)°? D} (rRMod)
3] [
D= (rMod)°P DT .(rMod)
(:oft(R o ) coft\RIVLO

(and its analogue without £, F) is commutative up to various natural isomorphisms
of functors:

ec;:id = Do D (Matlis duality).
ec,:id =202 (Grothendieck duality).
en:9 = Dod (local duality).

2.8.3. In particular, ¢(R) induces an isomorphism ®(R) = D(Z(R)) = D(w), hence
2(-) = (()ERDE)-d))d) = (-)HrDw)

(the last arrow is given by s, [d], in the notation of 1.2.15). This can also be deduced
from the adjunction isomorphism

adj : RHomp (A, RHompg (B, C’)) —~ RHomp <A<}%RB, C)

(which is a derived version of 1.2.6; it holds in DT (gMod) for all A, B € D~ (gMod),
C € Dt (grMod)) applied to B = D(w) and C = I:
~ ~ L
RHomp(—,w) —= RHomp (=, D(D(w))) RHomR<(—)®RD(w), 1).

For example, for R = Z,, we have I = Q,/Z,, w — Z, and C*(Z,) = [Z, — Q,] (in
degrees 0 and 1); this is quasi-isomorphic to Q,/Z, [—1]. If M is a free Z,-module of
finite type, then (M) = Homg (M, Z,), ®(M) = M ®z, Q,/Z, and

D(®(M)) — HOIan(M Dz, Qp/zrn QP/ZP) =92(M).
2.8.4. All of the above makes sense on the level of complexes: fixing a system of

parameters x; of R and a bounded complex of injective R-modules w* representing w,
we have

O(X*) = (X* @r C*((2:), R))[d]
D(X*) = Homy(X*,I)
2(X*) = Homp(X*,w*).
As I is injective, the isomorphism Tr can be represented by a quasi-isomorphism

Tr: ¢(w®) — 1,
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unique up to homotopy. The morphisms n(X*), ¥ (X*),£(X*) are genuine morphisms
of complexes (of course, they are all quasi-isomorphisms). For example, n(X*) is given
by
2(X*) = Homy(X*,w*) — Homy(X* ®@r C*(R),w* @r C*(R))
L Homp((X* @k C*(R))[d), (0* ®r C*(R))[d) T Homy,(@(X*), T)
=Do®(X*).

2.8.5. For T' € Dpy(rMod) put T* =2(T'), A = ®(T) = RI'(n)(1)[d], A* = D(T).
Loosely speaking, we can think of these four objects as being related by the diagram

T T
P P
A A*

2.8.6. In the notation of 2.8.5, the hyper-cohomology spectral sequence of Z applied
to T* is given by
Ey? = Bxtip(H 7(T),w) = H'Y/(@(T")),
i.e.,
(2.8.6.1) EY = Exth(D(HI(A)),w) = H™(T).

It follows from local duality 2.5 and Lemma 2.4.7 (iii) (iv) that E;’j =0 fori < 0and
that supp(F5”) has codimension > i in Spec(R). By 2.7(v) we have

EY7 = Hompg(D(H’ (A)), H(w)).

Recall that an R-module M of finite (resp., co-finite) type is pseudo-null (resp., co-
pseudo-null) if supp(M) has codimension > 2 in Spec(R) (resp., if D(M) is pseudo-
null).

It follows that, in the quotient category (rMod)/(pseudo-null), the spectral se-
quence (2.8.6.1) degenerates to a collection of short exact sequences

(2.8.6.2) 0 — Exth(D(H "' (A)),w) — HI(T) — ExtG(D(H’(A)),w) — 0.

Recall also that, for each prime ideal p € Spec(R) with ht(p) < 1, the localization
M +— M, defines an exact functor (gMod)/(pseudo-null) — (g, Mod).

2.8.7. Proposition. — In the situation of 2.8.5 there are spectral sequences
Ey! = H{}S(H)(T)) = H'™(4A)
By’ = H{\§(D(H7(A))) = D(H " (T)).
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Proof. — The first spectral sequence E,. is just the hyper-cohomology spectral se-
quence for ®. It can be constructed explicitly as follows. Represent T by a complex
M* of R-modules; then A is represented by N* = (M* @r C*(R))[d]. Filter N* by
the subcomplexes

F'N® = (M' Rr U‘Zi.;_d(C'(R))) [d]
We have

grp(N*) = (M* ®@r C™(R))[~],
as C*(R) is a complex of flat R-modules. The corresponding spectral sequence satisfies

Ey! = H/(M*) 9 C*(R) = HY(T) ©r C"(R),

hence ‘

By’ = Hi§(H)(T)
as claimed. The second spectral sequence 'E,. is obtained from (2.8.6.1) by applying
D and using local duality 2.5 (iii). O

2.8.8. Lemma. — For every R-module M of finite type, the R-module Ext%(M,w)
(resp., Hfm}(M )) is torsion-free (resp., divisible). In particular, H(w) is torsion-
free.

Proof. — We know from 2.7 (v) that Ext% (M, w) = Hompg(M, D(H?m}(R))). IfreR
does not divide zero, then the exact sequence of local cohomology

an;}l(R/rR) — H{(R)—>H{ \(R) — H{,(R/rR) =0
(in which the last term vanishes by Lemma 2.4.7 (iii)) shows that multiplication by r on
D(H® | (R)), and hence also on Ext% (M, w), is injective. It follows that multiplication

{m}
by r on H fm} (M) = D(Ext%(M,w)) is surjective. The last statement is a consequence
of H%(w) = Ext%(R,w). O

2.8.9. As in 2.8.6, it follows from Lemma 2.4.7(iii) -(iv) that E47,'E%7 in Proposi-
tion 2.8.7 are co-pseudo-null for ¢ # 0, —1. This implies that in the quotient cate-
gory (rMod)/(co-pseudo-null) the two spectral sequences degenerate into short exact
sequences
, : a ,
0 — H{\py (HI(T)) — ) (A) — BN H(T)) — 0

0 — H{yy (D(H?(A))) —D(H’(T)) — H{ { (D(H~'(4))) — 0,

the second one being just D(2.8.6.2)). It follows from Lemma 2.8.8 and Lemma 2.4.7

(

(iv) that H‘{im}(Hj(T)) (resp., Extp(D(HI='(A)),w)) is the maximal R-divisible
(resp., R-torsion) subobject of H’(A) (resp., H/(T)) in (gMod)/(co-pseudo-null)
(

resp., (rRMod)/(pseudo-null)).
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2.8.10. Much of the previous discussion can be reformulated in terms of an analogue
of the duality diagram 2.8.2 for appropriate quotient categories:

2

D, (rRMod/(pseudo-null))°? Dy (rMod/(pseudo-null))

5 “ l@

D .,;(rRMod/(co-pseudo-null))°? D..,;(rRMod/(co-pseudo-null))

2.8.11. It is sometimes convenient to use another normalization of 2 and ®, namely
P4(—) =2(-)[d] = RHompg(—,w)[d] = RHompg(—,w|[d])
L
P_g(—) = ¢(-)[~d] = Rl'{m}(—) = (—)@rP_a(R).

Then the map Tr defines a quasi-isomorphism Tr : ®_g(w[d]) — I and the dia-
gram (2.8.2) is replaced by

D (rMod)™ —Z% . DF(zMod)

(b,d (I:'—d
D, (rRMod)°P D7, (rRMod),
which is commutative up to natural isomorphisms of functors
Na:Pq==Do® g4, g:P_q=Do0PDy, &:P_qoPq= D
Ew[d]:id%@do@d, E[IidéDoD.
Here ny is given by
L L
2 4(—) = RHompg(—,w[d]) — RHornR((—)®R<I>_d(R),w[d}®1g¢>_d(R))
_ RHOIHR((I)ad(—-), (I)id(w[d]))Rllom(id‘Tr)
=Do ¢4d<_)7

RHomp(®_4(—), 1)

and 14, &y are defined as in 2.8.1, with ® (resp., Z) replaced by ®_4 (resp., Z4).
Fixing the same data as in 2.8.4, we can define the functors ®_,; and Z,4 on the level
of complexes; this will be used in the following Lemma.

2.8.12. Lemma

(i) The morphism of complezes £4(R) : ®_q(Z4(R)) = P_q(w[d]) — I is equal
to Tr.
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(ii) For every complex X* of R-modules with cohomology of finite type, the following
diagram of morphisms of complezxes is commutative:

(X ©rZa(X)) ©r ®_a(R) %N 24(R) ©r D_a(R) = ®_a(Z4(R))

1§ Tr
X ®r (Z4(X)®r P_a(R)) I
I ek ev2
Xop® g@ax) X @p D(X)
Proof. — This follows from the definitions. O

2.9. Relation to Pontrjagin duality

In this section we assume that the residue field k£ = F- is a finite field of charac-
teristic p.

2.9.1. Under this assumption, every R-module M of finite type is compact, Hausdorff
and totally disconnected in the m-adic topology. The Pontrjagin dual of M is equal
to

= Homcont(M7 R/Z) = Homcont(M7 QP/ZP)
= mlHomzp(Af/m7LM» Q,/Zy)

ll%HomR M/m"M,Homgz (R/m",Q,/Z,))

—

= lim Homg (M, Homz (R/m",Q,/Z,))

—
n

= Ho IIIR<M lim Homz, (R/m", Q,/Z)) )

- R(M7R )
It follows from 2.3.1(i) and Pontrjagin duality that RP” = I is an injective hull of k,
hence D(M) = MP for every R-module M of finite type.

2.9.2. Similarly, if N is an R-module of co-finite type equipped with discrete topo-
logy, then N = lim N[m"] and the adjunction isomorphism
NP =Homg, (N, Q,/Z,) —~ Hompg(N,Homz, (R, Q,/Z,))
factors through the submodule of the R.H.S. equal to
HomR< ,lim Homz, (R/m",Q,/Z, )> = Hompg (N, R”) = D(N)

;1M
Thus the functor D coincides with the Pontrjagin dual on both (gMod)s and
(RMOd)coﬁ,'
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2.10. Non-complete R

In this section we assume that R is local and Noetherian, but not necessarily
complete. As above, d = dim(R).

2.10.1. Denote by EzliilR/m” the m-adic completion of R, with maximal
n

ideal M = mR (similarly, put M= lim M /m" M for every R-module M). Recall that

R is faithfully flat over R ([Mat, Thm. 8.14(3)]). All statements in Sect. 2.2-2.4
and 2.4.7(ii)—(iii), (v) are true for R.

2.10.2. Proposition

(i) An injective hull Ir of k = R/m (= R/®) has a canonical structure of an
R-module. In fact, Igr = Ig.

(ii) For every R-module of finite type M we have

Dr(M) = Homg (M, I) = Homp(M,I) = D4 (M)

(where I = Ir = Ig).
(iii) For every M as in (i), the canonical maps

~ fay L 5 ~

are isomorphisms. In particular, each Hgm}(M) has a canonical structure of an R-
module.

(iv) For every M as in (i), each Hfm}(M) is an Artinian R-module.

(v) For every R-module of finite length N the canonical map € : N — Dr(Dgr(IV))
s an isomorphism.

Proof. — For (i)—(iii), see [Br-He, Ex. 3.2.14, Lemma 3.5.4(d)]. For (iv), see [Br-Sh,
Thm. 7.1.3]. Finally, (v) follows from N = N. O

2.10.3. Dualizing complex. — An object wp of D?t(lgMod) is a dualizing complex
for R if it can be represented by a bounded complex w$, of injective R-modules and
if it satisfies Grothendieck duality 2.6. If it exists, then wp is determined (up to
isomorphism) up to a shift wg — wg[n] ([RD, §V.3.1]).

If R is a quotient of a Gorenstein local ring then wp exists ([RD, §V.10]); the
converse also holds [Kaw].

2.10.4. Local Duality ([RD, Ch. V]). — Assume that wg exists. Then

(i) The undetermined shift in the normalization of wg is uniquely determined by
the condition
, ~ I, i=d
H{yy(wr) — 9
{m} 0, i+d.
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Fix an isomorphism Tr : H?m}(wR) s
(ii) For every R-module M of finite type and ¢ € Z, the Yoneda pairing

Hipy (M) x Ext§y (M, wr) — H{yy(wr) == 1
induces isomorphisms

Hiyy (M) = Dp(Bxtg (M, wr))

Ext§ (M, wr) — Dr(H{yy (M)) = Dg(H{my (M)).

(ili) wp = wr R R= wRQ%RE is a dualizing complex for R.

(iv) R is universally catenary.

(v) For every prime ideal p € Spec(R), the localization (wg), is a dualizing complex
for R,.

(vi) If " D R is a local ring, free of finite rank as an R-module, then wpr/ exists
and is isomorphic to Homg(R',wr) = RHompg(R',wr).

(vii) The statements of 2.7(i)-(iii), (vi) hold.

2.10.5. Lemma. — Let Mbe an R-module of finite type. Then
(i) If m ¢ Ass(R), then H?m}(M) C Miors.
(ii) If dim(R) = 1, then Miors C H?m}(M).
(iii) If dim(R) = depth(R) = 1, then Miors = H}(M).
(iv) Hf{im}(M) is R-divisible.
(v) If wr exists, then H(wg) is torsion-free over R.

Proof. — The statements (i)—(ii) follow from the fact that

Miors = Ker (M — Pp Mq)

q€Ass(R)
HY{ (M) = Ker <M — ]I Mq>.

q€Spec(R)—{m}
Indeed, in (i) we have Ass(R) C Spec(R) — {m}, while in (ii) Ass(R) contains all
minimal prime ideals q C R, i.e., all elements of Spec(R) — {m}. The statement (iii)
is a combination of (i) and (ii). As regards (iv) and (v), Lemma 2.8.8 and Proposi-
tion 2.10.2 (iii) imply that H?m}(M) is R-divisible and H%wR) ®r R is torsion-free
over R; we conclude by the faithful flatness of R over R (if r € R does not divide zero
in R, it is not a zero divisor in R). O

2.10.6. Example. — 1f dim(R) = 1 and R is not Cohen-Macaulay, then
Riors =0,  H{py(R) #0.
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2.10.7. Lemma. — Assume that dim(R) = 1 and fir x € m such that dim(R/zR) = 0.
(i) Let C* = [Rin] be the complex C*(R,x) (in degrees 0,1) from 2.3.3. Then

C* 9RO = [R("i—"”>Rw @ RzﬂRz]

and the morphism of complezes u : C* — C* @g C* given by idr (resp., (idg,,idr,))
in degree 0 (resp., 1) is a quasi-isomorphism satisfying s12 o uw = u. The morphism
of complexes v : C* @pr C* — C* given by idr (resp., by the projection on the first
factor) in degree O (resp., 1) satisfies vu = id and uv is homotopic to the identity.

(ii) If x is not a zero divisor in R, then the canonical map R, — Frac(R) is an
isomorphism.

Proof. — Easy exercise. O

2.10.8. Corollary. — Assume that dim(R) = 1. Then the morphisms of complexes
(X*@rC*)@r (Y ®rC*) —= (X*QrY*)®r(C*©rC")
id®@u

define a functorial cup product
L L
BRI () (X)@RRT 1) (V) 2RI () (X@RY) (X,Y € Dy (»Mod))

such that the following diagram is commutative:

L U L
RT () (X) SRRy (V) RI(m)(X&rY)

ls” 1(512)*

L U L
RE () (V) RRE () (X) 5 R () (YERX ).
Proof. — Combine Lemma 1.2.4 and Lemma 2.10.7. O

2.10.9. Assume that dim(R) = depth(R) = 1. Then the filtration o>;C* induces,
as in 2.8.7, a filtration on the complex X* ®pg C* representing RI'{ny(X*) (for every
complex X * of R-modules with cohomology of finite type). The corresponding spectral
sequence FE, from Proposition 2.8.7 for T = X = X* € th(RMod) degenerates
(B2 = Fo) into short exact sequences

(2.10.9.1) 0 — H{w (H'H (X)) — H{pny(X) — H{y (H' (X)) — 0

All terms in the above exact sequence are R-torsion (by Lemma 2.10.5 (iii)) and the
first term is R-divisible (by Lemma 2.10.5 (iv)). This implies that the cup product on
cohomology

3 7 i+ L — /
Hip (X) @ H] o (V) — H{3 (X@HY) (X,Y € Dy (rMod))
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induced by the cup product U from 2.10.8 factors through

. . it L
Uig = Hpy (H'(X)) @ Hipy (H(Y) — H{3 (X ERY),

i.e.,

(2.10.9.2) Uij © H (X )tors @ H? (Y )iors — HITI (X@Ié Y)
LU d. ij - tors YR tors {m} R 3

and satisfies

(2.10.9.3) (512)+ (2 Usj y) = (—1)Yy Uy; a.

We can drop the upper-boundedness condition if we deal not with objects of the
derived category, but with complexes of R-modules X*, Y* Z* with cohomology of
finite type. We obtain products

Hiny (X°) ®r Hfm}(y') — HEm(X' ®rY")

factoring through

Uij . Hi(X.)tors XR Hj(Y')tors h— H[;:l} (X. QR Y.)
and satisfying (2.10.9.3). If
u: X'QrY* — Z°
is a morphism of complexes of R-modules, then the induced products

Uyx 0 Uy ¢ Hi(X.)tors Qr Hj(Y.)tors — HE;;J}(Z.)

depend only on the homotopy class of w.

2.10.10. Assume that dim(R) = depth(R) = 1 and that wg exists. In the hyper-
cohomology spectral sequence

By’ = Exty(H 7(X),wr) = H™(2(X)) (X € Dy(rMod))
we have
Ey? = Extip(H(X), H(wr))

and EéJ = 0 for i # 0, 1, which gives short exact sequences
(2.10.10.1) 0 — Extp(H7TY(X), H(wR)) — HY(Z(X))

— Homp(H 7 (X), H(wg)) — 0.
Applying Dg to (2.10.10.1) gives, by local duality 2.10.4(ii), the exact se-
quences (2.10.9.1) for i = —j + 1.
2.10.11. Lemma. — Assume that dim(R) = depth(R) = 1 and that wg exists. Then

(i) Jr := H(wg) ®g Frac(R)/R is isomorphic to Ig.
(ii) The exact sequence (2.10.10.1) is isomorphic to

0 — Hompg(H (X )iors, Ir) — H'(2(X)) — Hompg(H 7 (X), H(wg)) — 0.
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(ili) HY(2(X))tors 18 isomorphic to
Hompg(H 7 (X)iors, Ir) — Homp(H 77X ) ors, H'(wr) @r Frac(R)/R).

Proof. — As R is Cohen-Macaulay, we have wg — H"(wg) in D(grMod). Fix z € m

which is not a zero divisor in R. The R-linear map « : Iz — Jg, induced by
R, — Frac(R) and
(Tr)~!
12 Y (@) = Hiy (HO(wr) = Coker(H(wr) — Hwn) @ R.),

is an isomorphism, since R, — Frac(R) is (Lemma 2.10.7 (ii)). This proves the state-
ment (i).

If M is an R-module of finite type, so is N = Exth(M,H"wg)). As
codimpg(supp(N)) > 1, we have

Exth(M, H(wg) ®g Frac(R)) = N ®pg Frac(R) = 0,
by Lemma 2.10.5 (iii). It follows that
[H(wr) ®g Frac(R) — Ig]
is an injective resolution of wg, which gives an isomorphism
Homp(P, Ir) — Exth(P, H(wg))
for every torsion R-module P. Taking P = M, the long exact sequence of Ext’s
associated to
0— M/P-M/P — M/(P+azM) — 0
shows that Extp(M/P, H(wg))/aExtp(M/P,H(wg)) = 0, hence Exty(M/P,
H%wgr)) = 0 by Nakayama’s Lemma. It follows that
Extp (M, H(wg)) = Ext(Miors, H(wg)) — Homp(Mors, Ir).
Taking M = H~7+1(X) concludes the proof of (ii). Finally, (iii) follows from (ii) and
the fact that H°(wg) is torsion-free (Lemma 2.10.5(v)). O
2.10.12. Proposition. — Assume that dim(R) = depth(R) = 1 and that wgr ewists.
Given complezes of R-modules X*,Y* with cohomology of finite type and a morphism
of complezes
u: X*®@prY* — wy(n]

(where w}, is a bounded complex of injective R-modules representing wg), denote by

Uiton—i: H{(X*)tors ©r H7"7H(Y *)tors — H{ln:;'/(wh[n]) = H{lm}(wh)

5 Igr — Hwr) ®p Frac(R)/R
the cup products from 2.10.8 and (2.10.9.2) induced by u and Tr. Complete the map
adj(u) : X* — Homy(Y*,wy(n]) =2,(Y*)

to an exact triangle in Dﬂ(RMOd)

Xy (v*) — Err — X°[1].
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Then the morphism
adj(ui,lfn—i) : Hi(X.>t0rs — HOmR(Hl_n_i(Y.)torsa IR) = D(Hl_n_i(y.>tors)

in (rRMod)q has the following properties:

(i) Ker(adj(U;1_n_;)) 4s isomorphic to a subquotient of H'~*(Err).
(ii) If H*"Y(Err) is R-torsion, then Coker(adj(U;1—-n—:)) (resp., Ker(adj(Us1—n—s)))
is isomorphic to a submodule (resp., a quotient) of H*(Err) (resp., of H*=(Err)).

In particular, if H='(Err) = HY(Err) = 0, then adj(U;1—n—;) s an isomorphism.

Proof. — This follows from the Snake Lemma applied to the following diagram, in
which the first square is commutative up to a sign and the map f is the isomorphism
from Lemma 2.10.11 (ii):

H* 1 (Err)

Hi(X.)/Hi(X.)tors —0

0 > Hi<X.)t0rs > HZ(X.)
ladj(UL‘JA”;i)
D(Hl—n—i(yo)tors) adj(u)

lf

0 —Extp(H'™"/(Y*),wr) —> H(Zn(Y*)) — Exty(H " (Y*),wr) —>0

Hi(Err) O

2.10.13. Torsion submodules

2.10.13.1. The R-torsion submodule of an R-module M is defined as
Mp-tors = Miors = Ker(M — M ®pg Frac(R)) ={meM]|(3Fr{0in R) rm = 0}.

Note that

(i) If depth(R) = 0, then Frac(R) = R and Mp_tors = 0 for all M.
(ii) The set of r € R dividing zero is equal to the union of the associated primes
of R; thus

Myors = Ker (M — P Mp>.
pEAss(R)

(iii) In particular,

(R/m)tors =0 <= m € Ass(R) <= depth(R) = 0.
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(iv) Let . C R be a multiplicative subset of R. If » € R does not divide zero in
R, the same is true for its image under the canonical morphism R — R, which then
induces a homomorphism of R -algebras

Frac(R) » = Frac(R) @ R — Frac(Ry).
Similarly, for every R-module M there is a canonical (injective) homomorphism

(A/IR—tors )ey - (]\/f(y/) I{y-tors'

(v) The maps in (iv) need not be isomorphisms, even if. = R—p for p € Spec(R).
For example, if dim(R) = 2, depth(R) = 0, dim(R;) = depth(R,) = 1, then
Frac(R), = R, # Frac(Ry).
2.10.13.2. Recall Serre’s conditions
(Rn) Ry is regular for all p € Spec(R) with ht(p) < n.
(Sn) depth(Ry) = min(ht(p),n) for all p € Spec(R).
The following implications hold ([EGAIV.2, §5.7-5.8]):

R is Cohen-Macaulay <= R satisfies (S,,) for all n > 0 = R satisfies (.51)
<= R has no embedded primes <= R satisfies (Rp) and (51)

<= Ris reduced <= R is a domain.

2.10.13.3. Lemma. — If R has no embedded primes, then

(i) There is a canonical isomorphism

Frac(R) — H Ry.
ht(p)=0

(ii) The canonical map Frac(R), — Frac(Rq) is an isomorphism, for each q €
Spec(R).

(iii) If A is a finite abelian group, then the canonical map Frac(R)[A] —
Frac(R[A]) is an isomorphism.

Proof

(i) Combine [EGAIL, §7.1.8-7.1.9] (cf. [Bou, §IV.2.5, Prop. 10(iii)] in the case
when R is reduced).

(ii) Fix p € Spec(R) with ht(p) = 0. If p C g, then (Ry)q = Ry ®r Rq) = Ry =
(Rq)p- If p & q, then thereis z € p, 2 ¢ q. As x ® 1 = 1 ® x is simultaneously
nilpotent and invertible in R, @ g Rq, we have (Rp)q = 0. Applying (i) to both R and
R, we get isomorphisms

Frac(R)qy — H (Rp)q = H Rq — Frac(Ry).

ht =0 ht(p)=0
! (p) pCaq
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(iii) The map in question is injective for arbitrary R. In order to prove surjectivity,
we must show that, for every o € R[A] which is not a zero divisor, the cokernel of
the injective multiplication map

mult, : R[A] — R[A], mult,(z) = ax
satisfies
Coker(mult, ) ® g Frac(R) Zo.
This follows from (i) and the fact that
(g, (Coker(multy,),) = £r, (Ker(mult,),) = 0
for all p € Spec(R) with ht(p) = 0. O
2.10.13.4. Corollary. — If R has no embedded primes, then the canonical map
(MR-tors)qg — (Mgq) Ry -tors

is an isomorphism, for each R-module M and q € Spec(R).

Proof. — Localize the exact sequence

0 — Mp-tors — M — M ®p Frac(R)
at g and apply Lemma 2.10.13.3(ii). O
2.10.14. Assume that wp exists, but impose no other conditions on R. In this case
the statement of Lemma 2.10.7 (i) holds if we replace C* by the following complex in
degrees 0, 1:

C' = [R—AY'—»Frac(R)]

(note that C* = C" if dim(R) = depth(R) = 1, by Lemma 2.10.7(ii)).

Let X* and Y* be complexes of R-modules. The exact sequence
0— H"'(X*)®r (Frac(R)/R) — H(X* @r C") — H(X*)1ors — 0,

together with the corresponding sequence for Y* and the construction of Corol-
lary 2.10.8, yield cup products

Uij : HY(X)tors O H (Y *)1ors — HH (X" @rY*)@r C")
satisfying
(2.10.14.1) (s12)« (2 Ui y) = (=1)y Uy; x.
If wy; is a bounded complex of injective R-modules representing wr and
u: X*@rY* — wgn]
a morphism of complexes, then u induces cup products

Ui,l—nfi : Hi(X.)tors ®R Hl_”—i(y.)tors — Hl(w;-g ®R 5.)7
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with the target sitting in an exact sequence
0 — H%wgr) ®r (Frac(R)/R) — H'(wh @ C") — H"(wgr)tors — 0.

If R is Cohen-Macaulay (resp., if depth(R,) = 1 for all p € Spec(R) with ht(p) = 1),
then H'(wr) is zero (resp., pseudo-null) and we obtain cup products

Ui,l—n—i . Hi(X.)tors KR Hl_n_i(y.)tors h— HO(LUR) SR (FI‘&C(R)/R)

in (kRMod) (resp., in (rkMod)/(pseudo-null)).

If R has no embedded primes, then it follows from Lemma 2.10.13.3(ii) and Corol-
lary 2.10.13.4 that the localization of U; 1_,,—; at each p € Spec(R) with ht(p) = 1
coincides with the cup product from Proposition 2.10.12, applied to R,.

2.10.15. Assume that wp exists and depth(R,) = 1 for all p € Spec(R) with ht(p) =
1. In the category (rMod)/(pseudo-null), the hyper-cohomology spectral sequence

Ey? = Bxtp(H 7(X),wp) = HY(@(X)) (X € Dy(rMod))
satisfies

By’ = Extp(H™ (X), H'(wn))
(by 2.7(vi)) and E5’ = 0 for i # 0,1. This yields an analogue of (2.10.10.1)
0 — Extp(H 7" (X), H(wr)) — H’(Z(X)) — Homp(H 7 (X), H(wr)) — 0
and an isomorphism
Extp(H 7T (X), H(wr)) — H(Z(X)) R-tors

in (RMod)/(pseudo-null) (using Lemma 2.10.5(v)).

2.10.16. Proposition. — Assume that wg exists and R has no embedded primes. Then,
for each X € Dy (rMod) and j € Z, there is an isomorphism in (rkMod) /(pseudo-null)

Homp(H (X )iors, H(wr) @ g (Frac(R)/R))
— EXt}?(H_jJrl (X)* HO(UJR)) e Hj (-@(X))torm

the localization of which at each p € Spec(R) with ht(p) = 1 coincides with the
isomorphism from Lemma 2.10.11(1i1), applied to R,.

Proof. — The construction in 2.10.15 yields an isomorphism in (zkMod)/(pseudo-null)
H)(P(X))eors — Extyp(M, H(wr)),
where M = H7T1(X). For each p € Spec(R) with ht(p) = 1, the canonical map
Exty (M, H(wr))p = Bxtg, (My, H'(wr)p)
— EXt}{p((A’[p)l?p-t()l‘s~ Hwr)y) = Extz(Mg-tors, H(WR))p
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is an isomorphism (using Corollary 2.10.13.4 and the proof of Lemma 2.10.11 (ii)).
This yields a canonical isomorphism in (gMod)/(pseudo-null)

Extj (M, H(wr)) — Exti(Mp-tors, HO(wR)).
The boundary map associated to the exact sequence
0 — H%(wr) — H(wg) ®r Frac(R) — H"(wg) ®g Frac(R)/R — 0
gives an isomorphism in (gMod)
8 : Homp(Mp-tors, H(wr) ® g Frac(R)/R) — Ext}%(]WR_mrs, H%wg)).
Then the composite isomorphism in (pMod)/(pseudo-null)
H(2(X))tors — Exth(M, H(wr)) = Exth(Mp-tors, H(wr))
= Hom g (Mp-tors, H(wi) @p Frac(R)/R)

has the required properties under localization at each p € Spec(R) with ht(p) = 1
(the minus sign comes from the fact that the map in 2.10.11 was defined using an
injective resolution, hence differs from that defined in terms of ¢ by a sign). O

2.10.17. Proposition. — Assume that R is Cohen-Macaulay (resp., R has no embedded
primes) and that wg exists. Given complezes of R-modules X*,Y* with cohomology
of finite type and a morphism of complezes

u: X*@pY*® — wkn]
as in 2.10.14, let
Ui,lfn—i : Hi(X.)tors QR Hl_nki(y.%ors — HO(wR) QR (FrdC(R)/R)

be the cup products in (gMod) (resp., in (rRMod)/(pseudo-null)) defined in 2.10.14.
Complete the map

adj(u) : X* — Hom%(Y*,wy(n]) =2,(Y*)
to an ezact triangle in Dy ((rRMod)/(pseudo-null))
X

Jadj(u)

——2,(Y*) — Err — X°[1].
Then the morphism

adj(Uit—n—i) s H(X*)tors — Homp(H' ™" ""(Y *)tors, H(wr) @r (Frac(R)/R))
in (RMod)/(pseudo-null) has the following properties:

(i) Ker(adj(U;1—n—;)) is isomorphic to a subquotient of H*~!(Err).

(ii) If H*~Y(Err) is R-torsion, then Coker(adj(U; 1—n—;)) (resp., Ker(adj(Ui1—n—s)))
is isomorphic to a subobject (resp., a quotient) of H'(Err) (resp., of H'~'(Err)).

In particular, if H=(Err) = H'(Err) =0 in (rRMod)/(pseudo-null), then adj(Ui 1—n—i)
is an isomorphism in (rRMod)/(pseudo-null).
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Proof. — The proof of Proposition 2.10.12 applies, with Proposition 2.10.16 replacing
Lemma 2.10.11. O

2.10.18. Proposition. — Let X andY be R-modules of finite type with support of codi-
mension > 1 in Spec(R). Assume that, for each prime ideal p € Spec(R) with
ht(p) = 1, there exists a monomorphism (resp., epimorphism, resp., isomorphism,)
of Rp-modules g, : Xy, — Y,. Then there exists a monomorphism (resp., epimor-
phism, resp., isomorphism) g : X — Y in (rRMod)/(pseudo-null).

Proof. — For each prime ideal p in the finite set

A(X) = {p € supp(X) | ht(p) = 1},
denote by f, : X — X, the canonical map. The kernel of
=) X — @ Xp
pEA(X)

is pseudo-null, and so is the cokernel of the canonical map

Im(f) — P Im(f).

peA(X)
It is enough, therefore, to consider only the case when A(X) = A(Y) = {p} and
X c X, 22y, 0.
There exists r € R —p such that - g,(X) C Y restricting the map - g, to X defines

the desired morphism of R-modules g : X — Y. O

2.10.19. Corollary. If R satisfies (Ry) and X is an R-module of finite type with
codimp(supp(X)) > 1, then X is isomorphic in (rRMod)/(pseudo-null) to

X = @ @ R/p n(pL)

ht(p)=11i=>1
where n(p, i) = 0 and only finitely many n(p,i) are non-zero.

Proof. — For each prime ideal p € A(X) (using the same notation as in the proof of
Proposition 2.10.18), the localization R, is a discrete valuation ring, hence

Xp —>@ /pR n(p.1)

i1

(where the sum is finite). The claim follows from Proposition 2.10.18 applied to X

D Hrpred. o

pEA(X) i=1

and
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2.10.20. Lemma. — Assume that dim(R) = depth(R) = 1 and that wr ezists. Let
M, N be R-modules of finite type and

h:Mor N — Hwg)
a bilinear form. Denote the corresponding adjoint maps by
« :=adj(h) : M — Homp(N, H(wg))
B :=adj(hos12) : N — Homp(M, H(wg)).
If, for each minimal prime ideal ¢ C R, the localization g is an isomorphism, then:
(i) For each minimal prime ideal q C R, 34 is an isomorphism.
(ii) Ker(a) = Miors, Ker(8) = Niors-
(iii) Dg(Coker(a)) = Coker(3).
(iv) Lr(Coker(ar)) = £r(Coker(5)).
Proof
(i) We have HO(wR)q = Ip,, hence hq : My ®r, Nqg — Igr,, aq : Mg — Dpg, (Nq);

thus
5 DRq (avq)
Bq: Ng——Dr,(Dr,(Nq))————Dg, (M)

is an isomorphism by Proposition 2.10.2(v). As regards (ii), we have M« C Ker(a),
since H%(wg) is torsion-free. On the other hand,

KCI‘((,Y) - Ker (AJ — @ ]\[q> = A]t()rsv

q
since all a4 are isomorphisms.
(iii) According to (ii), the map « factors through

M /Mors — Homp(N, H(wg))
(and similarly for 3). Fixing an injective resolution
i H(wp) — wh,
for each Z = M, N the canonical map
Homp(Z/ Ziorss HY(wr)) — Homp(Z, H(wg))
resp.,

Homp(Z/ Zyors, HY(Wr)) — Hom%(Z/ Ziors, wh) = 2(Z [ Ziors)
is an isomorphism (resp., a quasi-isomorphism, by Lemma 2.10.11). This implies that
we have an exact triangle in Dy (rMod)

M /Miyors=52 (N/Nios) —> Coker(a)
Applying &, we obtain another exact triangle

P (Coker(a)) — P (P (N/Neors)) 229 (M /Miors).
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As Z(a/)oe = and € : N/Niors — Z(Z(N/Niors)) is an isomorphism, we obtain
(again by Lemma 2.10.11) isomorphisms in Dy (rMod)

Coker(3) — 2 (Coker(a))[1] — D(Coker(a)),
hence an isomorphism Coker(3) = D(Coker(c)) in (zgMod). Finally, (iv) follows
from (iii). O
2.10.21. In the situation of Lemma 2.10.20, we use the following notation:

Cr(det(h)) := €r(Coker(a)) = £r(Coker(3)).

2.11. Semi-local R

2.11.1. Everything in Sect. 2.2-2.9 has a straightforward generalization to the case
when R is an equi-dimensional semi-local Noetherian ring, complete with respect to
its radical m. In this case R has finitely many maximal ideals my,..., m, and is
isomorphic to

R-"5 Ry, XX R,
Similarly, every R-module M decomposes canonically as

M =5 My, @+ @ My,

and the theory in 2.2-2.9 applies separately to each Ry,-module My,,.

2.11.2. If R is of the form considered in 2.11.1, so is every finite R-algebra R’
(e.g. R = R[A] for a finite abelian group A).
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CHAPTER 3

CONTINUOUS COHOMOLOGY

In this chapter we develop a formalism of continuous cohomology for a certain
class of R[G]-modules. Our approach is purely algebraic; the fundamental objects are
the “admissible” R[G]-modules, even though the cohomology can be defined even for
“ind-admissible” modules (filtered inductive limits of admissible modules). Section 3.6
can be ignored; it is unrelated to the rest of the article.

3.1. Properties of R-modules of finite type

We shall repeatedly use the following standard facts about R-modules of finite type
([Bou, Ch. III]). Let f : M — N be an R-linear map between R-modules of finite
type; equip both M and N with the m-adic topology. Then

3.1.1. M and N are Hausdorff and linearly compact.
3.1.2. f is continuous.
3.1.3. Im(f) is closed in N.

3.1.4. f is strict, i.e., the quotient topology on Im(f) = M/Ker(f) coincides with
the topology induced from N.

3.1.5. If f is surjective, then it admits a continuous (not necessarily R-linear) section.

3.2. Admissible R[G]-modules

Let G be a group acting R-linearly on an R-module M. The action can be described
either as a map
A GxX M — M, Ay(g,m)=g(m),
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or by the induced map

oy RG] — Endgp(M), PAI(ZTz‘Qi)(m) = Zh‘gi(m)-

Throughout Chapter 3, G will be a (Hausdorff) topological group.

3.2.1. Definition. — An R[G]-module M is admissible iff

(i) The image of pjs is an R-module of finite type; and

(i) The map G = R[G] ™ Tm(py;) is continuous (if Im(pas) is equipped with
m-adic topology).
A morphism between admissible R[G]-modules M, N is an R[G]-linear map f : M —
N. Admissible R[G]-modules form a full subcategory (??%G]Mod) of (R[G]Mod).

3.2.2. Lemma. — Let M be an admissible R|G]-module. Then

(i) If N C M is an R-submodule of finite type, then R[G] - N is of finite type
over R.

(i1) M is the union of its R|G]-submodules that are of finite type over R.

(iii) If N C M s an R|G]-submodule, then both N and M/N are admissible.

(iv) If f : H — G is a (continuous) homomorphism of topological groups, then
f*M (= M viewed as an H-module) is an admissible R|H|-module.

(v) If H < G is a closed normal subgroup of G, then MH is an admissible G/ H -
module.

Proof
(i) R[G]- N is contained in the image of
Im(par) ®r N — Endr(M) @r MM,

(ii) This follows from (i).

(iii) The commutative diagrams

R[G] ﬂ» EndR(]\’[) R[G] ﬂ Endu(M)
PN o PM/N 8’
o | Jpur |
Endr(N) <—— Homp(N, M) Endgr(M/N) <—— Hompg(M,M/N)

show that both Im(py) and Im(pys/n) are of finite type over R. The map

Im(pr) = o' (Im(par)) = a(Im(pn))

induced by « is m-adically continuous by 3.1.2, hence G — Im(py) is continuous
by 3.1.4. The same argument works for G — Im(paz/n ).
(iv) This follows from definitions.
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(v) The commutative diagram
RG] &% R[G/H] ™5  Endg(MH)
lpm lﬁ

[e3

Endgr(M) — Hompg(MH, M)
shows that Im(pysn) = 87" (a(Im(par))) is of finite type over R. The composite map
GG /H

pA/[Hi

Tm(par ) ——a(Im(par))

is continuous and the maps can, " (the latter is induced by ) are strict, hence
G/H — Im(py,n) is continuous. |

3.2.3. Corollary. — (%j[c]MO(D is an abelian category (satisfying (AB1), (AB2)). Its
embedding into ( R[G]Mod) preserves finite limits and finite colimits.

3.2.4. Lemma. — Let T (resp., A) be an R|G]-module of finite (resp., co-finite) type
over R. Equip T (resp., A) with m-adic (resp., discrete) topology. Then T (resp., A)
is an admissible R|G]-module iff the map A : G X T — T (resp., Aa : G x A — A)

18 continuous.
Proof. — Let M =T or A. If ppri: G — Im(ppr) is continuous, so is
Anr: Gox M2 1 (pag) x M-S M.
Conversely, assume that Ar is continuous. By 3.1.4 it is enough to check that pri :

G — Endg(T) is continuous. By a version of the Artin-Rees Lemma ([Bou, §II1.3
Prop. 2]) there is ng such that

Ker(Endg(T) — Hompg (T, T/m"*"™T)) C m"Endgr(T) (Vn > 0).
By continuity of Ay, for each n > 0 there is a neighbourhood of unity U, C G such
that par(Uy,) acts trivially on T/m" ™7 thus pr(U,) C 1+ m"Endg(T) and pri is
continuous.

If A 4 is continuous, then there is, for each n > 0, a neighbourhood of unity V,, ¢ G
stabilizing pointwise A[m"]. Put T = D(A) with G-action given by (g(t))(a) =
t(g~'(a)). Then, for g € V,, (9 — DT C Am"]*t = m"7T. This means that
Ar is continuous, hence T' is admissible. Admissibility of A follows from the next
Proposition. O

3.2.5. Proposition. — If M, N are admissible R[G]-modules, then both P = M ®p N
and Q = Homp (M, N) are admissible.

Proof. — The modules

Im(pp) C Im(Im(prr) @5 Im(pn) — Endg(M) @r Endg(N)—>Endg(P))
Im(pg) C Im(Im(par) @r Im(pn) — Endr(M) @p EndR(N)LEndR(Q))
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are both of finite type over R (the maps «a,3 are given by (a(f ® g))(z ® y) =

f@)®g(y); (B(f ®9))(q) =goqo f). The diagonal action

G- 1 (pag) x Im(px) — Tm(par) @ g Im(px )

is continuous, hence both ppi and pgi are continuous by 3.1.4. O

3.2.6. Proposition. Let M* be a bounded above complex of admissible R[G]-modules
with all cohomology groups H'(M*) of finite type over R. Then there is a subcomplex
N* — M* (of admissible R|G]-modules) such that

(i) Fach N* is of finite type over R.
(ii) The inclusion N* — M?* is a quasi-isomorphism.

Proof. — If M = 0 for all i then take N* = M*. If M7 # 0 but M = 0 for i > j,
choose an R-submodule of finite type X7 C M7 that surjects onto H’(M*). Then
N7 = R[G] - X7 C M7 is of finite type over R by Lemma 3.2.2(i). Put Y771 =
d~YNJ) D Zi7! = Ker(d : M7~' — M) and choose an R-submodule of finite
type X771 € Y71 such that dX/~! = dY7~! and that X?~' N Z7~! surjects onto
HI=H(M*). Again N7=! = R[G] - X7=! C ZI7! is of finite type over R. We put
Y772 = d'(N77!) and continue this process. O
3.2.7. Corollary. Let A® be a bounded below (resp., bounded) complex of admissible
R[G]-modules with all cohomology groups H'(A*) of co-finite type over R. Then there

is a bounded below (resp., bounded) complex B* of admissible R[G]-modules of co-finite
type over R and a map of complexes A* — B* which is a quasi-isomorphism.

Proof. —— Applying Proposition 3.2.6 to M* = D(A*) we get a subcomplex incl :
N°* — D(A*). For B* := D(N*) the canonical map

A p(D(A) 2L D(NY) = B

is a composition of two quasi-isomorphisms (using 2.3.2 and 3.2.6). If A* is bounded,

so is B*. O

3.2.8. Proposition. Denote by ('}‘%G]I\'Iod) Rt (resp., (%}(;]Mod) R-coft ) the category
of admissible R[G]-modules of finite (resp., co-finite type) over R. Then the embed-
dings
ac / ac ad
(HleMod) _, — (iigMod) —— (figMod)

R-coft
induce equivalences of categories
D*((7éi[G]l\"I()(l) R-f{,) ;’Di?,-.ft(alz(}a]MOd) (x=—.0)
* ((ad / I * a
D ((AIL?[G]I\”IOd)13-(;0/{,) ‘_’le-co_n,(nd[c;]l\[()d) (x = +,b).
Proof. Essential surjectivity follows from Proposition 3.2.6 and Corollary 3.2.7.
Full-faithfulness is a general nonsense ([Ve2, §1I1.2.4.1]). O
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3.3. Ind-admissible R[G]-modules

3.3.1. Definition. — Let M be an R|G]-module. Denote by S(M) the set of R[G]-
submodules M, C M satisfying

(a) M, is of finite type over R;

(b) The action Apg, : G x M, — M, is continuous (with respect to the m-adic
topology on M,).

3.3.2. Lemma

(i) If My, € S(M), then N € S(M) for every R|G]-submodule N C M,

(it) If f : M — N is a homomorphism of R[G)-modules and M, € S(M), then
f(Ma) € S(N).

(iii) If Mo, Mg € S(M), then Mo + Ms € S(M).

Proof. — All one needs to do is to check the condition (b) of the definition. In (i)
(resp. (ii)) the continuity of Ax (resp., Ag(az,)) follows from the continuity of Ay,
and the fact that the inclusion N < M, (resp., the surjection f : M, — f(M,))
is a strict map. The statement (iii) follows from (ii), as M, + Mg is the image of

M, @® Mg € S(M @® M) under the sum map ¥ : M ® M — M. O
3.3.3. Corollary. — Let f : M — N be a homomorphism of R|G]-modules. Then
iy = |J M.
Mo €S(M)

is an R[G]-submodule of M, j(j(M)) = j(M) and f(j(M)) C j(N).
3.3.4. Definition. — An R[G]-module M is ind-admissible if M = j(M).

3.3.5. Proposition

(i) Ind-admissible R[G]-modules form a full (abelian) subcategory (i}';[dé‘i“dl\/lod) of
( R[G]Mod), which is stable under subobjects, quotients, colimits and tensor products.

(ii) The embedding functori : (i;g[d(}?dMod) — (R[G]Mod) is exact and is left adjoint
to j : (rigMod) — ({6} “Mod). .

(iii) The functor j is left exact and preserves injectives; the category (},?Ei(,:*]“iMod)
has enough injectives.

(iv) Every admissible R[G]-module is ind-admissible.

(v) An ind-admissible R[G]-module M is admissible iff Im(ppr) is an R-module of
finite type.

(vi) An R[G]-module M of finite (resp., co-finite) type over R is ind-admissible iff
it is admissible.

(vil) For M,N € (il‘?f[‘ic};]‘dl\r'lod), the canonical maps
Homp(g)(M, N) = lim Hompgig)(Ma, N) < lim lim  Hompgjg)(Ma, Np)

M, ES(M) Mo ES(M) N5ES(N)

are both isomorphisms.
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(viil) The categories of ind-objects Ind((%‘}G]Mod)
canonically equivalent to (%‘Fc‘,]dMod).

R'ft) and Ind(%d[G]Mod) are

Proof

(i) If M = j(M) is ind-admissible and N is an R[G]-submodule of M, then
both N = UV N M,) and M/N = UM,/(N N M,)) are ind-admissible
(Mo € S(M)). This proves stability by subquotients. Every colimit lim M(3)
is a quotient of the direct sum M = @ M(3). If each M(B3) is ind-admissible,
sois M = UMB1)ay & -+ @ M(Bn)a,) (M(Bi)a, € S(M(3))). Finally, if
M = j(M) and N = j(N), then M @g N = JIm(M, ®g Ng — M @r N) =
J(M Qr N).

(ii) The functors 4,; form an adjoint pair almost by definition; ¢ commutes with
finite limits by (i).

(iii) As 4 is exact, its right adjoint j preserves injectives (and is left exact by
adjointness). For every ind-admissible R[G]-module M there is a monomorphism
i(M) — J with J injective in (pgig/Mod); then M — j(J) is a monomorphism with
4(J) injective in (}'?f[dc".‘j‘dl\lod).

(iv) Use (i), Lemma 3.2.2(ii) and Lemma 3.2.4.

(v) If M is an ind-admissible R[G]-module, then the canonical map

w:Im(par) — lim  Im(par,)

Mo ES(M)
is an isomorphism of R-modules. If, in addition, Im(pa;) is an R-module

of finite type, then wu is a homeomorphism with respect to m-adic topolo-
gies on Im(pps) and Im(pps,); thus G — Im(pas) is continuous and M is
admissible.

(vi) This follows from (v).

(vii) The first arrow is an isomorphism by definition of colimits. As regards the
second arrow, note that

lim  Hompg|g)(Ma, Ng) — Hompg (M, N)
NgeS(N)

is an isomorphism, since the image of any R|[G]-linear map M, — N is of finite type
over R, hence is contained in some Npg.

(viii) For a category C, an object of Ind(C) is a functor F : J — C, where J is a
small filtered category. Morphisms in Ind(C) are given by

Homp,a(c)(F, F') = lim lim Home (F(5). F'(5))-

T
In the special case of C = (24 . Mod), associating to F the colimit lim F(5) in
I R[G) =

(rieMod) defines functors

Ind((%i[G]Mod) R_ft) ~.Ind (“]%‘%G]I\'I()(i) L, (ilg[d(}"]‘dl\rlod) .
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It follows from (iv) (resp., (vii)) that S (resp., T o S) is an equivalence of categories.
O

3.3.6. Lemma

(i) If M € (%%G]Mod) ap d N € (}E‘fé’j‘dl\/lod), then Homp (M, N) € (E‘féTdMod).

(i) If M € (}‘{‘fiéTdMod) and H <1 G is a closed normal subgroup of G, then M ¢
(lﬁfjé:?(}ﬁf]MOd)'
Proof

(i) Write N = |JNg with Ng € S(N). The R[G]-modules Homp (M, N3) are
all admissible (hence ind-admissible) by Proposition 3.2.5; it follows from Proposi-
tion 3.3.5 (i) that Hompg (M, N) = lim Homg (M, Ng) is ind-admissible as well.

3

(ii) By Proposition 3.3.5(i), M is ind-admissible as an R[G]-module. The claim
follows from the fact that G — G/H is a quotient map (i.e., G/H has the quotient
topology). O

3.3.7. Proposition. - Let G = lim G /U be the pro-finite completion of G with the pro-
finite topology (U runs through all normal subgroups of G' of finite index). If k is finite,
then the action ppr - G — Autg(M) of G on every admissible (resp., ind-admissible)
R[G]-module M factors canonically through the natural map G — G; this makes M
into an admissible (resp., ind-admissible) R|G]-module.

Proof. — It M =M, (M, € S(M)) is ind-admissible, then each group Autpr(M,)
is finite and the map

pym 2 G — lim Autp(M,) (C Autr(M))

is continuous with respect to the pro-finite topology on the target, hence factors

canonically through a continuous homomorphism G — lim Aut r(Ma ). O
3.3.8. Corollary. — If the natural map G — G is continuous, then it induces equiva-

lences of categories

(‘1‘%} 5]Mod) =, (",‘él[G]M()d) , (xﬁé?dNIO(i) = (iﬁfl(}*]‘dl\/lod) ,

3.3.9. Proposition. — Let M* be a bounded above complex of ind-admissible R[G]-
modules with all cohomology groups H'(M?*) of finite type over R. Then there is
a subcomplex N* < M* (of admissible R|G]-modules) such that

(i) Each N is of finite type over R.
(ii) The inclusion N* — M* is a quasi-isomorphism.

Proof. The proof of Proposition 3.2.6 applies word by word. O
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3.3.10. Proposition. — The embeddings

(erMod) ., = (BEFMod) 1, — (g Mod) — (5*Mod)

induce equivalences of categories
D ((aMod) ) = D (a5 Mod)

=Dy f,( e ]Mod)—>D R ft(m[d TdMod)

R—ft) R—ft)

Proof. — As in 3.2.8. O

3.4. Continuous cochains

3.4.1. Let G be a topological group and M an ind-admissible R[G]-module.

3.4.1.1. Definition. — (Non-homogeneous) continuous cochains of degree i > 0
on G with values in M are defined as

Cont(G A[) lim C

cont,
M, €S(M)

(G, M),

where C?, (G, M,) is the R-module of continuous maps G* — M, (M, is equipped
with m-adic topology). In other words,

C(Z()IIL(G7 A/[Ot) = ll__m Ctont

(G, M, /m"M,).
3.4.1.2. The standard differential

(56)(917~ -'7gi+l)

i—1

grc(g2: - -5 giv +Z Te(grs e 9igiens - girn) + (1) Telgrs - gi)

maps C? (G, M,) to ijrml' (G, M) (by Lemma 3.2.4), hence
(G, M) 22 (@ M) —s

7
! C cont

cont,
becomes a complex C¢

*ont (G, M) of R-modules.

3.4.1.3. Let M* be a complex of ind-admissible R[G]-modules. ~We define
Coon (G, M*) to be the simple complex associated to C? (G, M?"): its compo-

cont cont
nent of degree n is equal to

C'(nom 0 ]\[ @ (011L G’Af[l)
i+j=n

(if M* is bounded below, then the sum is finite and vanishes for n << 0) and the
restriction of the differential 6577 to C7, (G, M") is equal to the sum of

cont
(dé\l')* : C(om(G M ) ! (G,]\]H'l)

cont
and

(_ ) M C(]()M(Gs ]\/[L) Cg;llf(G ]\[)
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This sign rule implies that
C.

cont

(GvM.[l]) C(;ont(G7M.)[1]‘

3.4.1.4. Every morphism f : M* — N* of complexes of ind-admissible R[G]-modules
induces a morphism of complexes of R-modules

f* (ont(G ]\/[.) —HC(()nt(G N*® )
satisfying
c:

cont (

(G,]VI ) f* C(.ont(G7 N.))

3.4.1.5. Tt follows from Proposition 3.3.5 (i) that C2, . (G, —) commutes with filtered
direct limits.

G, Cone(M"—»N )) = Cone(C',

cont

3.4.1.6. Given a continuous homomorphism of topological groups u : G’ — G, an
ind-admissible R[G] (resp., R[G'])-module M (resp., M’) and an R-linear map v :
M — M’ such that v(u(g")m) = g'v(m) for all m € M, ¢’ € G’, the pair (u,v) :
(G,M) — (G', M) induces a homomorphism

j cont(G ‘]\[) - (ont(G/ A[)
given by (f(¢)(g1, .- 9}) = v(c(ulgr), - ., ulg)))-

3.4.2. Proposition. — Let 0 — MM -2M" = 0 be an exact sequence of R[G]-
modules, with M ind-admissible. Then M', M" are also ind-admissible and

0— C: (G,M") — 0

cont

(G7 M’ )—>Cc.ont(G M)—>C.

cont,

is an exact sequence of complexes of R-modules. More generally, the statement still
holds if we allow M, M’', M" to be complexes of ind-admissible R[G]-modules.

Proof. — Ind-admissibility of M’, M" follows from Proposition 3.3.5(i). Clearly

Ker(ay) = 0 and Bia, = 0. Writing M = lim M, with M, € S(M), it is enough
[e3

to consider the case of M of finite type over R. The surjectivity of 3. then follows

from 3.1.5 and the equality Ker(8,) = Im(a,) from the fact that a is strict. The

statement for complexes is a formal consequence of the statement for modules. O

3.4.3. Corollary. The canonical map of compleves y : [M'-*>M] — M" (with M,
M" in degree zero) induces a quasi-isomorphism

: oot (G, M5 M]) — C

cont cont,

(G, M")

Proof. — The first complex in the exact sequence

0— C(.ont (G []\/[’ L ]) - C(ont(Gv []\/f/i)]\{]) - C:ont(G7 M”) —0
is acyclic, being equal (up to a shift) to the cone of the identity map on C¢, (G, M").
O
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3.4.4. Proposition. — Let M* (resp., N*) be a complex of ind-admissible R[G]-modules
(resp., flat R-modules). Then the canonical morphisms
Cc.ont(ij\'[.) Qpr N®* — C? (G]\f' HR N.)

cont
N* ®R C(:cmt(Gv ]\1.) — C¢ (GaN. ®OR M.)

cont

are isomorphisms of complezes.

Proof. — The morphisms in question are given by the following collections of maps:
Cont(G ]\[a) éQH Nb I /éont (G7 M ®H Nb)
a®@n — ((g1s-. .. 90) — (—D®a(gr, ..., ) ®@n)
respectively,
Na ®R Cg()rlt(G’ A[b) - CZOM (G’ N(L ®R ]\[b)
nE o — ((91,-...95) —n®@algr,...,9;))

(cf. 3.4.5.2 for the sign conventions). It is sufficient to treat the case when both
M* = M and N* = N consist of a single module in degree zero. N is admissible,
as G acts trivially on it; thus M ®@p N is ind-admissible by Proposition 3.3.5(i). By
Lazard’s Theorem [La], N = 11/1_}_1;N5 is a filtered direct limit of free R-modules of

finite type. Writing M = lim M, (M, € S(M)), we have

B
64

.
C(:ont

(G.M)@p N = lim(C,

cont,

(G, M,) ®r Ng)

Cc.ont(G7 M ®rN) = llﬁlll( (rmt(G M, ®r Nﬁ))

However, as N3 = R™P) for some integer n(/3), the canonical map
Cooni(G M) @ R — o (G M, 25 RMP)

cont cont

is an isomorphism for trivial reasons. The same argument works also for the second
morphism. O

3.4.5. Cup products
3.4.5.1. Let A, B be ind-admissible R[G]-modules. The cup product

(S CZont(G A) R C)()I]L(G B) - (V+l (G~ A @R B)

cont

is defined by the usual formula

(@UB) (g1, gitj) = algr, -, 9) @ (g1 9)(B(gis1. - -+ givs))-
As
S(aUp) = (6a) US4+ (=1)'aU(sp),
the maps U define a morphism of complexes

U C(tom(G‘r A) ®R C(.om (G B) ((ml (G A ®R B)
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This product is associative (with respect to the associativity of X* ® Y* (1.2.3)):

(aUpf)Uy=aU(BU~).
3.4.5.2. Let A*, B* be complexes of ind-admissible R[G]-modules. Recall that

Cérgnt(G7A.): @ Céont(G7Aa)7

i+a=m

with differential d = d4 + (—1)*§ on C!

cont
Ci (G, A1) is induced by da @ A — AT and §: C!

cont )
the cochain differential. Similarly, d = dp + (—1)"6 on C,,, (G, B®) C C(J(ﬁ (G, B*).
The differential on C* = A* ®p B* is equal to do¢ = da ® 1 4+ (=1)*1 ® dp on
A® @p B ¢ €%t The individual cup products

U Clon (G A" @ CL (G, BY) — Cill (G, A @ BY)

cont, cont

(G, A%), where d4 : C! (G, A") —

(G, A%y — CHHL(G, A%) is

cont

defined in 3.4.5.1 can be combined - with appropriate signs - to the total cup product
U= ((-1"us).
The signs are chosen in such a way that
S(aUp) = (ba)Up+ (—1)4e@a U (5p)
(deg(e) = i+afor a € C!

cont

(G, A%)). As before, this means that U defines a morphism
of complexes

U: C(:ont(Gv A.) @R Cc.ont(Gv B*) — C¢,

cont

(G’7 A* Qg B').
Again, this product is associative:

(aUB)Ury=aU(BU~)
(G,A"), B € Con(GB), 7 € Cion(G.C7); as (1) (=)0 =

cont

for « € C¢

cont

(-1 (1)
3.4.5.3. Let A, B be as in 3.4.5.1. The formulas
T: C(Z;()nt(G7 A) - C;L;orlt(G7 A)

(T(a)(g1.---,9:) = (=0T 291 gi(alg - g0 )

define a morphism of complexes

T: Cc:ont(Gv A) - C:ont(Gﬂ A)
which is an involution (72 = id) and is functorially homotopic to the identity

(see 3.4.5.5 below for more details).

The transposition 7 satisfies the relation
(3.4.5.1) T(aUB) = (-1D)9(TRU(Ta)
(for a € Cloyi (G, A), B € CLy (G, B)).

cont
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3.4.5.4. For A*, B* as in 3.4.5.2, the involutions 7 on C! (G, A%) commute with
both § and d 4, hence define a morphism of complexes 7 : C¢_ . (G, A*) — C=. .. (G, A®)

cont
(and similarly for B*). Again, 7 is an involution homotopic to the identity. The

formula (3.4.5.1) implies that o € C7, (G, A*) and § € C7_ (G, B) satisfy
(s12)«(T (@ Uf} B)) = (=1)**(=1) /(T B) U (Ta)

(where (s12). is induced by s12 : A* @r B* = B* @g A*); it follows that

(s12)+(T(@UB)) = (=) (~=1)**(=1) (= 1)/ (T B)U(T ) = (~1)* & O T B)U(T ).

In other words, the diagram

C(.unt(G> A.) ®R C(.:ont(G’ B.) i’ C(;ont(G7 A. ®R B.)
lsuo(T(}QT) l’]’o(slz)*
cont (G B ) R C(;OIIL(G’ A.) L’ C(.:ont (G7 B. ®R A.)

is commutative (all four maps are morphisms of complexes).

3.4.5.5. A homotopy id ~» 7, functorial in both G and M, can be defined as follows.
Let G be any discrete group and Z[G]® the standard bar resolution of Z by free
Z[G)-modules:

Z[G];X) = @ Z[G] - [g1] - 1gi]

with differentials
Igrl - lgil = g1lgz| -~ gl +Z ol gigial -~ 1gil + (=1)[g1] - - |gi—1].

The cochain complex C*(G, M* ) of any complex of G-modules M* is equal to
Hom’Z[n(‘]M (Z]G)2, M*).
The formula
Tlg|---lgi] = (=1 201 gilg - gy 1),

extended by Z[G]-linearity, defines an involutive morphism of resolutions 7 : Z[G]|% —
Z|G]® lifting the identity on Z. It follows from general properties of projective res-
olutions that there is a homotopy a : id ~ 7 on Z[G]¥. Moreover, any pair of
homotopies a,a’ : id ~~ T on Z[G]? is related by a second order homotopy b : a ~ a’.

Fixing a homotopy a : id ~ 7 on Z[G]¥ defines a homotopy

L]
Hom*"*(qa,idps) : id —~ T

on C*(G, M), functorial in M. Let G = F be a free group on countably many gen-
erators g; (j € N). The values of a([g1]---|gi]), expressed in terms of the generators
gj, define universal formulas for a : id ~ 7 on Z[F]?, valid for every G. Then
Hom*"*¥°(a,idy) : id ~ 7 on C*(G, M) will be functorial in both G and M (as
in 3.4.1.6).
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If we fix another homotopy @’ : id ~» T on Z[F]¥, then
Hom* ¥ (b, id ) : Hom* "™V (a,id ) — Hom"“ai"e(a’7 idas)

is a second order homotopy, functorial in both G and M.

3.5. Continuous (hyper-)cohomology
3.5.1. Let G be a topological group and M (resp., M*) an ind-admissible R[G]-
module (resp., a complex of ind-admissible R[G]-modules).
3.5.1.1. Definition. — The continuous cohomology (resp., hyper-cohomology) of
G with values in M (resp., M*) is defined as

Hione (G, M) = H'(Clon (G, M), tesp.,  Hipy (G, M*) = H'(CZpy (G, M?)).

cont

3.5.1.2. It follows from the exactness of lim that

iy
(ont(G M) 1.an Hcont(G M )
M,eS(M)

More generally, 3.4.1.5 implies that H! (G, —) commutes with filtered direct limits.

cont

3.5.1.3. Proposition. — The functors H! . (G,—) (i > 0) form a §-functor on

(}'z‘[dcadl\/[od) with values in (gkMod), satisfying HS (G, M) = MY.

Proof. — The fact that we have a J-functor follows from Proposition 3.4.2. The
cohomology in degree zero is equal to

(ont(G M) l.l_r_,n Hcont(G M )
Ma€S(M)
with
cont,(G ]\/[0&) = EE‘(MW/mnMQ) ]\/15’7
hence HY | (G, M) = M¢ as claimed. d

3.5.2. Any decreasing filtration on M* by subcomplexes FPM* of (necessarily ind-
admissible) R[G]-modules induces by Proposition 3.4.2 a filtration

FPCe (G M) =C2 (G FPM*)
satisfying
C(ont(G7 ]W‘) C(.ont(Gv gr!Ii’(]V[.))

This filtration defines a spectral sequence with

(3.5.2.1) = HP (G, grh (M*)),

cont

which under suitable conditions on the filtration FPM* converges to HZt4(G, M*).
We shall need the following two special cases of (3.5.2.1).
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3.5.3. The “stupid” filtration FPM* = o5, M* given by

M i>p
0, 1< p

(o2pM*)" = {

satisfies gri.(M*) = MP[—p] and gives rise to the first hyper-cohomology spectral
sequence
(3.5.3.1) Pt = gi (G, MP) = HPTU(G, M*),

cont

which is convergent if M* is bounded below.

3.5.4. The truncation filtration F"PM* = 7, M* on M* is defined by

0, 1> p
(repM*) =S 77 = Ker(M”id\/IP“), i=p
M7, i<p
Its graded quotients are
(3.5.4.1) gt (M*) = {M-TH /Z—P~1i>z—v]

(with Z7P in degree —p). The cokernel of the map d in (3.5.4.1) is equal to H™P(M*).
Applying Corollary 3.4.3, the spectral sequence (3.5.2.1) becomes — after renumber-
ing — the second hyper-cohomology spectral sequence

(3.5.4.2) UEpt = gP (G, HY(M*)) = HP (G, M*),

cont cont

which is convergent if M* is cohomologically bounded below.

3.5.5. Proposition. — Let u : M* — N°* be a quasi-isomorphism of cohomologically
bounded below complezes of ind-admissible R[G|-modules. Then the induced map

Us = C’(:ont(c"7 M.) C::ont(G’ N.)
s again a quasi-isomorphism.
Proof. — The map u induces a morphism of convergent spectral sequences (3.5.4.2)

HE, (M*) — "B, (N*),
which is an isomorphism on F,. Hence the induced map on the abutments
Hloo (G M) — Hl (G N*)
is an isomorphism as well. O
3.5.6. Corollary. — The functor
ct (}Q[‘gi‘dl\lod) —  C7(gMod)
M —  Ce (G, M?)
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preserves homotopy, exact sequences and quasi-isomorphisms, hence defines an exact
functor
chont(G7 _) : Dt (llg[dc_?dMOd) — D+(RMOd).
3.5.7. Asin 2.4.2, fix a system of parameters (z;) of R. The shifted tensor product
M*— (M* @p C*((2:), R))|d]

with the bounded complex of flat R-modules C*((x;), R) defines functors (independent
of the choice of (x;))

& : D* (g Mod) — D" (f5}Mod)
D" (3yMod) — D" (35 Mod)
(for x = @, 4, —,b). If T'€ Dy 4(—), then ®(T) € Dy, 0(—).
3.5.8. Proposition. For every M € DR ft(',g[dc‘]‘dMod) the canonical map
P(RT cont (G, M)) — REcont (G, (M)
is an isomorphism in DT (rMod).

Proof. — Represent M by a bounded below complex M* of ind-admissible R[G]-
modules. The L.H.S. (resp., R.H.S) is represented by the complex (C3,..(G, M*) ®r
C*(R)[d] (resp., C2,..(G,(M* ®r C*(R))[d])). The statement follows from Proposi-
tion 3.4.4.
3.5.9. Let J* be a bounded complex of injective R-modules. The functor

M* — Hom%(M*, J*®)

defined on complexes M* in (j}?[p]Mod) preserves homotopies, exact sequences and
quasi-isomorphisms; it defines an exact functor

]R,I‘I()Il’l];{(‘7 f].) : (R[( ]M d)OP D( R[G ]MOd)

which maps Di(R[( Mod) to D*(R[G]Mod).
If .J’* is another bounded complex of injective R-modules and J* — J'* a quasi-
isomorphism, then the induced map

Hom%(M*, J*) — Hom$,(M*,J'"*)
is also a quasi-isomorphism. As a result, we obtain a bifunctor
RHompg(—, ) : D (}igMod)” x D" (inj — gMod) — D (g Mod).
The same argument shows that Hom%(M*, J*) defines a bifunctor

RHomp(—,—) : D™ (§igMod)”” x D¥(rMod) — D* (%5 Mod). O
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3.5.10. Proposition. — For every ideal J C R, the functor
7 (g nieMod) — (rigiMod)
associated to the canonical projection f: R — R/J has the following property
M € ((r)neMod) is (ind-)admissible <= f*M € (rie)Mod) is (ind-)admissible.

If true, then C?

cont

(G7 M) = C(:(mt(G7 f*]\/[)

Proof. — This follows from the definitions and the fact that an R/J-module N is of
finite type iff f*IV is of finite type over R. O

3.6. Derived functor cohomology
3.6.1. Derived functors of (—)¢

3.6.1.1. Denote by I'qer(G,—) (ij‘?‘fé]adMod) — (rMod) the (left exact) functor
M — MS%. As the category (ijg[d(j]‘dMod) has enough injectives, the right derived
functor of I'yer (G, —),

R Ter(G. =)+ DT (R Mod) — DT (rMod),

exists and can be computed using injective resolutions. The cohomological derived

functors
i _ Iri(mp+ . (ind-ad i
der(Gy—) = HY (R Tyer (G, =) : (R[G] Mod) — (rMod) (i=0)
form a universal §-functor.

3.6.1.2. The derived functor RT T4, (G, M) has the usual functoriality properties
with respect to pairs of morphisms u: G’ — G, v: M — M’ as in 3.4.1.6.

3.6.1.3. In particular, for a subgroup H C G equipped with induced topology and
g € G, the morphisms v : gHg™ ' — H, u(ghg™') = h, v : M — M, v(m) = gm,
induce the conjugation map

Ad(g) : R"Tger(H, M) — R Tger(gHg ', M).

If H <« G is a normal subgroup of G, then the maps Ad(g) define an action of G

Sor(H, M) factors through
G/H (each h € H acts trivially on HS (H, M) = M"_ hence on all H}_(H,M), by
universality of this d-functor). More precisely, if J* is an injective resolution of M
in (ilg[‘;‘”]Ldl\'IO(l) and h € H, then Ad(h) is represented by the identity morphism of

(J*)H; thus the action on R Tqe, (H, M) factors through G/H.

on R*Tge(H, M). The induced action on cohomology H}
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3.6.1.4. Still assuming that H is a normal subgroup of G, the conjugation maps
Ad(g) also act on the complex of continuous cochains C?, . (H, M). For every h € H
there is a homotopy s between Ad(h) and the identity map acting on C2.(H, M); it
is given by
(sn(e)) (b1, hno1) = > (=1)"Ye(hy, o by, hoh™ by o By 1 h).
i=1

This implies that the action of G on Rl cont(H, M) factors through G/H.

3.6.2. Proposition
(i) There is a canonical morphism of functors ¢ : RTTqer(G, —) — Rl cont (G, —);
denote by 0L(—) : Hi (G,—) — H! . (G,—) the corresponding morphism of

d-functors.

(ii) If H < G is a normal subgroup of G, then 0 commutes with the action of G/ H
on both sides.

(iif) Let n > 1. If 627 "(M) is an isomorphism for all M € (ifg[dc"‘]‘dMod) and

HY (G, —) is effaceable on (ilg[dc}]adMod), then 0% (M) is also an isomorphism for
all M.

(iv) HY (G, —) is effaceable on (gfg?dl\/lod).
(v) 0%(M),0L(M) are isomorphisms for all M.

Proof

(i) Let M* be a bounded below complex in (ié‘[%‘i“dMod). Fix a morphism of com-
plexes M* — J* which is a quasi-isomorphism and such that all J* are injective. Then
the morphism 0 (M*) in DT (gMod) is represented by

(G T & (G M),

(J.)G I C\: cont

(ii) follows from the definitions and (iii) is a standard general nonsense.

(iv) Given M € (iR’f[d(;"]j‘dMod) we must show that there is a monomorphism u : M —
E in (iR“[‘E]adMod) such that the induced map on cohomology w, : HL (G, M) —
H! (G, E) is zero. Fix cocycles ¢; € C,, (G, Myj)) (for a suitable index set .J and
M,y € S(M)) such that their classes in Hl (G, M) generate H,,(G, M) as an
R-module. Let E be the R-module E' = M & @, ; R with an R-linear action of G

given by

g(m,{rj}ies) = (g(m) +Y7ei(9), {Tj}jeJ> (9€G).

jedJ

For every finite subset Jy C J and M, € S(M), the R[G]-module

E(Jo, M) = <Ma + Y Ma(j)> sE@PRCE

J€Jo Jj€Jo
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lies in S(E); as E = |J E(Jo, M,), F lies in (i}%‘[‘iéTdMod). There is an exact sequence
in (}g[%,?dMod)

0— M-“E-“EPR—0,
jeJ

with u (resp., v) being the canonical inclusion (resp., the projection). For every i € J,

the cocycle
g— ufea)) = (= (0. {r, = {(1) )

with values in F is a coboundary, hence u, is the zero map as required.
(v) 0%(M) = id; the statement about (M) follows from (iii) for n = 1 and (iv).
|

3.6.3. Let H < G be a closed normal subgroup of G. The functor I'qe; (G, —) is
equal to the composition of I'qe,(G/H, —) with the functor
Paer(G.G/H, =) = (higi"™Mod) — (&3 Mod)

sending M to M. This functor preserves injectives, since it has an exact left adjoint,
namely f* for f: R[G] — R[G/H]. We have, therefore, a canonical isomorphism of
functors

Rfl4er(G,—) =5 R Tger(G/H, =) o R Tyer(G,G/H, —)
and the corresponding spectral sequence
(3.6.3.1) Ey = HY (G/H, R'T 4o, (G, G/H, M)) = HJ (G, M)
(for M € (}z“[‘g"]ldl\/lod)).
3.6.4. Proposition. Let H < G be a closed normal subgroup of G. Denote by Resq u
the forgetful functor
Resg. i : (g[d(}"]“il\/lo(l) — (i,}f[d,;"]LdMod).
Then
(i) There is a canonical morphism of functors
Resq {1} © R T4 (G,G/H,~) — R Tyer(H, =) 0 Resg n

commuting with the action of G/H on both sides.
(ii) The induced maps on cohomology

RT4er(G,G/H, M) —> H?

der

(H, M)

are not isomorphisms in general, even for ¢ = 1.
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Proof

(i) Denote the adjoint pair of functors from Proposition 3.3.5(ii) by ig,jg. For
M ¢ (}g&ﬁdl\/lod) let J* be an injective resolution of i (M) in (gjgMod); then ja(J*)
(resp., ju(J*)) is an injective resolution of M (resp., of Resq i (M)). The inclusions
ja(JY) C ju(J?) give rise to a morphism of complexes (jo(J*))¥ — (ju(J*))H, which

represents a morphism
RQSG/H,{]} (R+Fder(G, G/H, M)) — R+chr(H, R,GSG’H(M))

in DT (gMod). This morphism does not depend on the choice of J* and has the
required functoriality properties.

(ii) Tt is sufficient to find G, H and M such that H} (H,M) = HL  (H,M) is
not an ind-admissible R[G/H]-module (since R'T e, (G, G/H, M) is ind-admissible).
For example, let p > 2 be a prime number, R = Z,, K = Qu,(p), Koo = Qp(ptps),
G = Gal(K/K), H = Gal(K/Ky), I' = G/H = Gal(Kwo/K) = Zp, M = Z,(1) =

!i_’:LIl’LLpn(K). In this case
H o (H M) = lim B (Gl (R Kc), ) = (K, %/972)

cont(Ha M) is not
an ind-admissible Z,[I']-module. -

is a non-torsion module over the Iwasawa algebra Z,[I'], hence H!

3.6.5. The whole point of Proposition 3.6.4(ii) is that the forgetful functor Resg g
need not preserve injectives. Such a pathological behaviour never occurs for discrete
groups and modules, when Resg, i has an exact left adjoint Z[G] ®zg) (—). This
point is usually glossed over in standard treatments of the Hochschild-Serre spectral
sequence, such as [We, §6.8.2].

3.7. Localization

3.7.1. Let Ry =.%"'R be the localization of R at a multiplicative subset.” C R.
Put
= lwp = Ry = wp®rRy;
WRoy = WR = WR ®R gy = WRORN;

this is an object of D°(r_,Mod) which can be represented by a bounded complex of

R
S
injective R g-modules w}, @r Ry (the localization M — & ~1 M preserves injectives).
Define
@Ry(_) = RHomRy(—,wRy);
then the canonical map

e: M %_@Ry(@Ry(]\/f))
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is an isomorphism in Dy (r ,Mod) for every M € Dy(r_,Mod). We have

R Ry
. 'RHompg(X,Y) = RHomRy(Y_lX,Y_lY)
for X € D, (rMod), Y € D" (gMod) (resp., X € D(rMod), Y € D*(inj — gMod)).

3.7.2. Definition. — An R |G]-module M is admissible (resp., ind-admissible) if it is
admissible (resp., ind-admissible) as an R[G]-module.

Admissible (resp., ind-admissible) Rc/[G]-modules form a full subcategory
(?g/’[G]MOd) of (%‘%G]Mod) (resp., (%ng}Mod) of (‘Ig[(gTdMod)). This notation is
slightly ambiguous: a priori, these categories depend not only on R, but also on R.

3.7.3. Lemma. — If M € (‘E%?}Mod) is of finite type over Rop, then M 27N for

some N € (‘}’g[d(deMod) Reft = (%}G]Mod) Rft-
Proof. — The R g-module
M= lim M,= lim . 'M,

M. €S(M) M, €S(M)
is Noetherian; thus M =.#"'N for some N = M, € S(M). O

3.7.4. Proposition

(i) All statements of Lemma 3.2.2, Corollary 3.2.3, Proposition 3.2.5-3.2.6, 8.4.4
hold if R is replaced by R .
(ii) If M € D* (}‘g[dé?dMod), then the canonical map
S REcon (G, M) — RTcont (G, ' M)
is an isomorphism in D% (RyMod).

Proof. — (i) is easy; (ii) follows from Proposition 3.4.4 applied to N = R . O
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CHAPTER 4

CONTINUOUS COHOMOLOGY OF PRO-FINITE
GROUPS

This chapter treats basic finiteness properties of continuous cohomology of admissi-
ble R[G]-modules in the case when G is a pro-finite group. Section 4.4 can be ignored;
it is unrelated to the rest of the article.

4.1. Basic properties

Throughout Chapter 4, G is a pro-finite group, t.e.,
G =1limG/U,
U

where U runs through all open normal subgroups of G (they are all of finite index
in G).

4.1.1. Recall from Lemma 3.2.4 that an R[G]-module T (resp., A) of finite (resp.,
co-finite) type over R is admissible if and only if G acts continuously on 1" equipped
with m-adic topology (resp., on A equipped with discrete topology). Assuming this
is the case, each of the G-modules M := T/m"T, Aj[m"|, A is discrete, which means
that

Cooi(GLM) = I%nC'(G/U, MY) = C*(G, M)

is the usual complex of locally constant cochains, hence

Hgont(G> ]\/-[) = Hi(Gv ]\[) (7’ Z 0)

4.1.2. Lemma. The canonical maps
li_ll')l C(:ont(G‘r A[mn]) - C:'ont(G7 A)
C’(:om, (G' T) - ll_IIl C(:ont (G7 T/mnT)

n

are isomorphisms of complexes.

Proof. — This follows from the definitions. O
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4.1.3. Corollary. — For each i > 0 there are canonical isomorphisms

lim H(G, A[m"]) = H(G, A) = H!, (G, A)

cont
and an exact sequence

0 — lim WH" G, T/m"T) — H!

cont

(G, T) — lim H(G,T/m"T) — 0.

Proof. — lim is an exact functor. As regards lim, the projective system of complexes
n +— C (G, T/m"T) is Mittag-Leffler (in fact surjective, by Proposition 3.4.2), so
the usual “universal coefficient theorem” ([We, §3.5.8]) applies. O
4.1.4. Lemma. — Assume that char(k) = p > 0 and that H < G is a closed normal
subgroup of G, with pro-finite order prime to p. Then the inflation map

inf : C(:ont(G/H’ A[”) - Cg()llt(Gv A[)

18 a quasi-isomorphism.

Proof. The inflation map is induced by the pair of morphisms G — G/H, M —
M (using Lemma 3.3.6(ii)). According to 3.5.1.2 we can assume that M = T is of
finite type over R. Corollary 4.1.3 further reduces to the case of M = T/m™T of
finite length over R. In this case M is a p-primary torsion discrete G-module and the
statement follows from the degeneration of the Hochschild-Serre spectral sequence
(4.1.4.1) Ey) = H(G/H,H’(H,M)) = H"™(G, M)

(Ey? =0 for j #0). O

4.2. Finiteness conditions

4.2.1. Consider the following finiteness conditions on G:

(F) (r(HY(G,M)) < oo for every discrete R[G]-module M of finite length over
R and every i > 0.

(F') dimy HY(U, k) < oc for every open normal subgroup U <1 G and every i > 0.

By Shapiro’s Lemma, (F) for G implies (F') for every open subgroup of G; in
particular (F) implies (F").

4.2.2. Lemma. — We have implications
(F) <= (F) = Hlop(G.T) = lim H'(G, T/m"T) (Vi >0).
Proof. Assume (F') holds. Given M as in (F'), there is an open normal subgroup

U < G acting trivially on M. Then (F') follows from the Hochschild-Serre spectral
sequence (4.1.4.1), as G/U is finite and ¢r(H’ (U, M)) < oo by (F') and dévissage.
The converse is true by Shapiro’s Lemma, as observed in 4.2.1.
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Assuming that (F') holds, the h{ﬂ(l)-term in Corollary 4.1.3 vanishes, as n —
H=YG, T/m"T) is a Mittag-Leffler system. O
4.2.3. Proposition. — If G satisfies (F), then H! (G, T) (resp., Hi . (G, A)) is of
finite (resp., co-finite) type over R for every i > 0.

Proof. — Induction on d = dim(R). There is nothing to prove for d = 0. If d > 1,
choose # € m such that dim(R/zR) = d — 1. The R-module M = H! (G, T) =
lim M, is the projective limit of a surjective projective system of R-modules of finite
n
length M,, = Im(M — HY(G,T/m"T)) satisfying m™M,, = 0. Denote by j, : M —»
M, the canonical projection. The exact cohomology sequences of
0 —T[z] —T- 2T —0
0— af —T —T/2T —0
(valid by Proposition 3.4.2) together with the induction hypothesis show that M /zM
is of finite type over R/xR. Fix an epimorphism (R/xR)* — M/xM and lift it to a
homomorphism of R-modules f: R* — M. Put N = Coker(f), N,, = Coker(j, o f),
K, = Ker(j, o f). The projective system N, /xzN,, consists of R-modules of finite
length, has surjective transition maps and its projective limit
lim(N,, /2 N,) = ( lim Nn> /;1:( lim N) =0
T T o
vanishes, being a quotient of N/zN = 0. It follows that, for all n, N,,/zN, = 0,
hence N,, = 0 by Nakayama’s Lemma. The projective systems of exact sequences
0 — m"R* — K,, — K,,/m"R* — 0, 0— m"R* — R" — (R/m")* — 0
imply that
lim M K, =lim Y m”R* = lim Y R* = 0,
T o o
and the exact sequence
0— K, — R*— M, —0
yields
R — li_mMn(: M) — !i_m(l)Kn =0,
proving that M is of finite type over R. Dually, P = H'(G,A) = lim P,, where
n

P, = Im(H*(G, Alm"]) — P) is an injective inductive system, and P[z] is of co-finite
type over R/zR. Fixing a monomorphism P[z] — (I[z])® and extending it to a
homomorphism of R-modules g : P — I°, the vanishing of

limy (P, (1 Ker(g))[m] ¢ lim (P, 1 Ker(9))la] € Ker(g)la] = 0

implies that all maps P, < P — I” are injective; thus g : P — I is also injective, as
required. O
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4.2.4. Lemma. — If G satisfies (F), then the canonical maps
limy D (e (G /")) Dl €y (G.T/m"T) )

Dl €2y (G Alm"]) ) = lim D (C (G Alm"]) )
are quasi-isomorphisms.
Proof. — The induced map on cohomology H ~*(u) is equal to the composition

lim D(H'(G, T/m"T))ﬁsD(lgLnHi(G, T/m"T)) 22D (G T))

The map u; (resp., uz) is an isomorphism by a combination of 2.3.4 and Proposi-
tion 4.2.3 (resp., by Lemma 4.2.2). Similarly, the composition of

DU (G, )" 1 (1 D2 (G- Alm)) )25 L DT (G Al

is an isomorphism by 2.3.4 and v, is an isomorphism by the argument used in the
proof of the second implication in Lemma 4.2.2. O

4.2.5. Proposition. — If G satisfies (F), then the functor M — RUcont (G, M) maps
D;_ﬂ(g[d(}?dMod) (resp., D;_Coﬁ(‘,c?[d(}?dl\/lod)) to D;E(RMod) (resp., Djoft(RMod)).
Proof. — For M = T or A this is the statement of Proposition 4.2.3. The general
case follows from the hyper-cohomology spectral sequence (3.5.4.2). O
4.2.6. Lemma. - If char(k) = p > 0 and c¢d,(G) = e < oo, then

(i) Hi. (G, M) =0 for every i > e and every ind-admissible R|G]-module M.

(i) If M* is a bounded below complex of ind-admissible R[G]-modules with
Hi(M*) =0 fori > c, then H.,, (G, M*) =0 for every j > ¢+ e.
Proof

(i) By 3.5.1.2 we can assume that M = T is of finite type over R. It follows from
Corollary 4.1.3 that H! (G, M) =0 for i > e+ 1. For i = e + 1 we have

HEENG, M) = li_x'n(”H‘*(G,T/m"T) =0,

cont,

since n — H¢(G,T/m"T) is a surjective projective system.

(i) This follows from (i) and the spectral sequence (3.5.4.2). O
4.2.7. Corollary. — Under the assumptions of 4.2.6,

(i) The functor

RIcont (G, =) : DT (igi“Mod) — D*(gMod)

maps Db(ilg[dc‘;]‘dMod) to D*(gMod).

(i) If, in a(?dirfimL, G satisfies (F), then RIcont (G, —) maps D*R_ﬁ(i}g[‘g"]“il\’lod)
(resp., D}}-wﬂ(gfgj‘dlﬂod)) to Dy, (rRMod) (resp., D:Oﬂ(RIVIod)) for x = —+,b.
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Proof. — Combine Proposition 4.2.5 and Lemma 4.2.6. O

4.2.8. Perfect complexes. — Let A be a Noetherian ring. Recall ([SGA6, Exp. I,
Cor. 5.8.1]) that a complex M* of A-modules is perfect (i.e., there exists a quasi-
isomorphism P* — M*, where P* is a bounded complex of projective A-modules of
finite type) iff the following conditions are satisfied:

(a) (Vi € Z) H'(M?*) is of finite type over A.

(b) HY(M*) = 0 for all but finitely many i € Z.

(¢) The complex M* has finite Tor-dimension, .e.,

(3c € Z) (YN € (uMod)) (Vi > ¢) Tor{ (M*,N) = 0.

Perfect complexes over A form a full subcategory D, ;(aMod) of D’(4Mod). A
theorem of Serre and Auslander-Buchsbaum ([Br-He, Thm. 2.2.7]) implies that, for
our ring R,

Ris regular <= D, (rMod) = D} (rMod).

One says that M* € D, ((aMod) has perfect amplitude contained in [a,b] (nota-

tion: M* € Dg;ff]( aMod)) if the complex P* above can be chosen in such a way that

P? =0 for every i < a and i > b. If this is the case, then

M* e DU Mod) < H*(M*)=0;

parf
more generally,

Dfl (aMod) 1 Dl (aMod) = D0l Mod)
[a,b]
parf

([SGAS6, Exp. I, Lemma 4.13]). The functor RHom4(—, A) maps D
D[fb’fa](/\l\/[od).

parf

(aMod) into

4.2.9. Proposition. — Assume that G satisfies (F'), char(k) = p > 0 and cdp(G) =
e < oo. Let.s be a multiplicative subset of R and R the corresponding localiza-
tion. If M* is a bounded complex of ind-admissible R[G]-modules such that M* ®pr

Ry € Dl[)alrbf] (RyMod) (if we disregard the G-action), then R ¢ont(G, M*) ®r Roy €
,b+e | ‘
DI[»Zer ‘! (RyIWOd) :

Proof. — It follows from Corollary 4.2.7 that RIcon(G,M*®) is an object of
D}’t( rMod); it remains to verify that R cont (G, M*) ® p R has finite Tor-dimension
over Rg. As explained to us by O. Gabber, this follows by a standard “way-out”
argument from the fact that RIcont(G, —) commutes with filtered direct limits: let
N* be a bounded complex of R g-modules; consider the canonical map

Ave  (Coony (G M*) @1 Ryp) ®R oy N* — Cloni (G, (M* @R Ry) @n, N°).
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As R is flat over R, it follows from Proposition 3.4.4 that Aye is an isomorphism
of complexes whenever N* is a complex of flat R -modules. Given an arbitrary
R g-module N, choose its resolution F'* by free R -modules:

e F2 Ll Y N .
Fix k >> 0 and consider the truncated complex

Fpi= (o5 pF?): P8 O,
it satisfies

>

(Vj <k—b) H(M* ©r Ry)0r, F}) = Tor, (M* @ Ry, N)
(Ve <k—0b) H “((Coont(G,M*) &R Rey) @R, FY)
= Tor,” (Coon (G, M*) @ Ry, N).
The cohomology of the bounded complex (of ind-admissible R[G]-modules)
B’:(M'®RRQO®QVP;

satisfies

(Vi>b—k) [H'(B)#0=>a<j<bl|.
It follows from Lemma 4.2.6 and the hyper-cohomology spectral sequence

E;7 — H

cont

(G, HY(B")) = H.}(G, B*)
that
By #20=0<i<eand(a<j<borj<b-k).

Using the fact that Ape is an isomorphism, we get
M<k—-b—e¢)
R
Tor,” (€2 (G, M*) @5 Ry, N) = Hly (GLB) £0 = —b—e < (< —a].

This finishes the proof that C¢

cont

(G, M*)®p R o has perfect amplitude contained in
[a, b+ €], since k can be chosen arbitrarily large. O

4.2.10. Proposition. Let ¥ C R be a multiplicative subset. If G satisfies (F),

then RIcont(G,—) maps D;re(sp-f‘t(ilgj-[EMOd) to D;; (};ZyIVI()<1), If, in addition,
char(k) = p > 0 and cd,(G) < o0, then Rl ¢on (G, —) maps D[I)ay-ﬁ(i“d'adl\lod) to

Ry [G]
D?’t (R‘yl\’[Od) .

Proof. Combine Lemma 3.7.3, Proposition 3.7.4(ii), Proposition 4.2.5 and Corol-
lary 4.2.7. O
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4.3. The duality diagram: T, A, T*, A*
4.3.1. Let T € D;g_ft(}‘g[déj“dMod); put A = ®(T) € Dz_wﬁ(gfa‘?dl\/[od). Proposi-
tion 3.5.8 then implies that the canonical map

(4311) (I)(chont(G7 T)) I RFcont(G7 A)

is an isomorphism in D (zMod).

If we assume, in addition, that G satisfies (F), then RIeon(G,T) (resp.,
Rl cont (G, A)) lies in D;g(RMod) (resp., D(‘;)ﬂ(RMod)). Combining the spectral
sequence (2.8.6.1) with the isomorphism (4.3.1.1) we get a spectral sequence

4.3.1.2 Bl = Exth(D(H? (G, A)),w) = HI(G,T).
2 R cont

cont

4.3.2. The construction from 3.5.9 defines functors
2(—) = RHomg(—,w) : DR,ﬂ('}‘{%G]Mod)op N DR-_ft(%i[G]MOd)
D(~) = RHompg(—, 1) : D 4 (5iMod)*” «— Dp_..q (55 Mod)

which map D* (34 . Mod) to D (2 . Mod) (hence D(3¢ . Mod) to D’(3 . Mod)).
R[C) R[G] R[G] R[G]

Together with @ these functors define a duality diagram
2

DR-fL(??(,l[G]MOd)Op DR—ft(EIL%dG]MOd)
P > P
DR-(:Uft(Z;Zd[G]MOd)OP DR—(:Oﬂ(?%d[G]MOd)7

commutative up to functorial isomorphisms defined by the same formulas as in 2.8.1.
This diagram makes sense for an arbitrary topological group G, not necessarily pro-
finite.

4.3.3. Proposition. — Let T € Dy, (i Mod); put A = ®(T). Assume that G sat-
isfies (F). Then there are spectral sequences

Ey) = Hi N (HL, (G, T)) = HIEL (G, A)

{m} cont cont,
'Ey! = H{H (D(Hogh (G, A)) = D(Heo' (G, T)).

Proof. — Apply Proposition 2.8.7 to Rl cont(G,T), Rl cont(G, A) instead of T, A
(which is legitimate by 4.3.1). Of course, the spectral sequence 'E,. is just D(4.3.1.2).
O

4.3.4. In the special case when R = Z,, and T is free over Z,, the spectral sequence
E37 degenerates (assuming (F')) into a short exact sequence

(4341) 0— Hgont(GﬁT) ®Zp QP/ZP - Hgont(Gv A) E— Hj+l (GaT)Lors — 0,

cont
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which coincides - up to a sign — with a piece of the cohomology sequence of
0—T —V-—5A—0,
where V =T ®z, Q).

4.3.5. Applying 2.8.6 and 2.8.9 to RI¢ont (G, T'), Rl cont (G, A) instead of T', A (again
assuming (F')) we obtain exact sequences in (pMod)/(pseudo-null)

0 — Exth(D(HIH (G A)).w) — Hlpp (G.T) — Exth(D(H,,, (G, A)).w) — 0

resp., in (rpMod)/(co-pseudo-nuull)
0 — Hiny (Hoou (G, T)) = Hion (G, A) — H{J(HI4 (G, T)) — 0

{m} cont
O — H?m}(D(H(J:‘ont(G7 A))) —>D(Hg()11t(G,T)) - H?n:}l (D(H({(;11t(G7 A))) - 0’
generalizing (4.3.4.1). Again, H?m}(Hgont(GﬁT)) (resp., EXt}?(D(chzllt(G’A))’w))

is the maximal R-divisible (resp., R-torsion) subobject of H! (G, A) (resp.,
H! (G, T)) in (gMod)/(co-pseudo-null) (resp., (rMod)/(pseudo-null)).

4.4. Comparing R™T'y.; and RIcont

4.4.1. Proposition. If ¢d,(G) < 1, then 0g(M) : R Taer (G, M) — RIcont (G, M)
s an isomorphism for every M € (i}‘gfg‘]’dl\dod)‘

Proof. The functors H! (G, —) arc effaceable for i = 1 (resp., i > 1) by Propo-
sition 3.6.2(iv) (resp., because they are zero, by Lemma 4.2.6 (i)). The claim follows
from Proposition 3.6.2(iii) by induction. O

4.4.2. Definition. — Denote by (i,'\}[‘l(}*]“il\f'lod){m} (resp., ( R[G]Mod){m}) the full sub-

category of (}znflc'T‘iM()(l) (resp., of (grieMod)) consisting of objects M satisfying
M = Un>1 M[m™].

4.4.3. For a given M € (11}'[‘1(;1“11\/10(1) (m}? CVery M, € §(M) is an R-module of finite
length, hence it is discrete in the m-adic topology. This implies that the normal
subgroup U = Ker(G — Aut(M,)) < G, which acts trivially on M,, is open in

G, hence M is a discrete G-module and C¢

* ot (G, M) is the usual complex of locally

constant cochains. Using the language of [Bru], (illt,‘[‘}}*]“ll\lod is the category of

) o)
discrete modules over the pseudo-compact R-algebra

R[G] = lim R[G/U].
U

As in Proposition 3.3.5(ii) there is an adjoint pair of functors ', j', where

i’ (i,",‘[d(}j"il\lo(l) my (i,‘;[d(';‘]“ll\fl(xl)
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is the (exact) embedding functor and j3'(M) = M[m™]. As in Proposition 3.3.5,
) n>1
j' preserves injectives and (}‘FG‘?dMod) (m) has enough injectives of the form j'(J),

where J is injective in (i,‘t?{jé] dMod). The following statement is not an abstract non-

sense.

4.4.4. Proposition. — The embedding functor i’ : (iR“{dC}]adMod) (m) (i]g[dc';]ldMod) pre-

serves injectives.

Proof. — Let J be injective in (¢-24Mod . We must show that for every diagram
J RIG] {m}

: ind-ad :
in (R[G] Mod) with exact row

0 — X 5 Y
s
J
there is a morphism ¢ : Y — J such that f = gu. A standard argument using Zorn’s
Lemma reduces the problem to the case when X and Y are of finite type over R. In
this case f factors through X/m"X for suitable n. By Artin-Rees Lemma, there is
k > 0 such that
Ker(tpyp : X/m"PFX — Y/m" Yy
maps to zero in X/m” X . This implies that the projection X/m"** — X/m"X factors
through Im(u,+x). In the diagram
0 — X — Y

|

0 — Inl(u”‘Hq) — Y/mn,—i-k:Y

X/m" X
J

both Im(uy1) and Y/m"**Y are objects of (ilg[dé‘]’dl\/lod) (i 6 follows that there is
h:Y/m"*FY — J extending Im(u,, ) — J. The composition ¢ : Y — Y/m"t+y LR
J satisfies gu = f as required. O
4.4.5. Lemma. If G is a finite group, then
i) (ijg[‘j(}*]‘dl\/lod) = (R[G]Mod).
ii) Coone (G, M) =C*(G,M), H!, . (G.M)=H(G,M) (M € (gjgMod),i > 0).
iii) (Vi > 1) H, (G, —) is effaceable in (i}?’f[d(}?dMod) = (R[G]Mod).

A~ N~~~

iv) (Vi > 1) Hé(),]t(G, —) is effaceable in (i}.,?[déj‘dl\/l()(i){m} = (R[G]Mod){m}.
(v) (Vi > 1) Hi, (G, =) wvanishes on injective objects of (gigMod) resp.,
(Rrie)Mod) (m}°
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Proof. — The statements (i), (ii) follow from the definitions. As regards (iii) and (iv),
every M € (grigMod) embeds to the induced module Homp(R[G], M) which has
trivial cohomology. Finally, (v) follows from (iii) and (iv). O

4.4.6. Proposition. — Let G be a pro-finite group. Then
(1) If J is injective in (iggfi(;,*]‘dl\/[od) then (Vi > 1) H! .(G,J) = H (G, J) = 0.
(i1) The map

{m}”

0 (M) : R*Taer(G, M) — RTcone (G, M)

is an isomorphism for every M € (i,gfic';]‘dl\/lod) (m)"

Proof
(i) Let U < G be an open normal subgroup. The functor Ty (G, G/U, —) :
(E[(jc_:;]l(lMod){‘n} — (iR'f[d(';;((lj]Mod){m} preserves injectives; thus

H;l;oxlt(G’ ]) = h_H} H;L:,ont
U

(G/U.JYYy=0  (Yi=1)

by Lemma 4.4.5(v). The equality Hj_,
tion 4.4.4.

(ii) Let J* be an injective resolution of M in (;g[‘é;‘j*(ll\lod) ()’ Then R e (G, M)
is represented by the complex (J*)¢ (by Proposition 4.4.4) and the canonical mor-
phism (J*)¢ — C2, (G.J*) is a quasi-isomorphism by (i) and the spectral se-

cont

quence (3.5.3.1). O

(G,J) =0 (for ¢ > 1) follows from Proposi-

4.4.7. Lemma. — Let H <1 G be a closed normal subgroup of G. Then
(i) The functor Resg m : (i;g{%TdMod){m} — (il'%‘[(}‘{"]‘dl\dod){m} preserves injectives.

(ii) For every M € (ilg[dc']adl\/lod){m} and j = 0 the canonical map RIT 4or (G, G/ H, M)

— H(]icr(H , M) is an isomorphism; it induces an isomorphism between the spectral
sequence (3.6.3.1) and the Hochschild-Serre spectral sequence (4.1.4.1).

Proof

(i) Given an injective object J of (i;z‘[(g‘]‘dMod)
: ind-ad
in ('1}[117‘ Mod) (m}
g : Y — Resg u(J) such that gu = f. As in the proof of Proposition 4.4.4 one can
assume that both X and Y are of finite type over R. In this case there is a normal
open subgroup U < G such that HNU acts trivially on X and Y. We know that JY is

ind-ad

injective in (i;{‘[d(';;‘li/]Mod){m}, hence Resg i (JY) is injective in (R[H/(ImU)]MOd){m}'

(mye @ monomorphism v : X — Y

and a morphism f : X — Resg g(J), we must show that there is

This implies that the composite map
FoX = XHW L Resg p(JH0V) < Resg i (JY)

extends to a map ¢’ : Y = YHW — Resq g (JY) such that g'u = f’; this defines the
required map )
g: Yg—>R()SG‘11(JU) — Res(;,H(J).
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(ii) If J* is an injective resolution of M in (i}’%fic‘?dMOd) (m)’ then it follows from (i)
that the morphism in Proposition 3.6.4(i) is represented by the identity map id :
(J')H N (J')H. O

4.4.8. Question. — Let H <0 G be a closed normal subgroup of G such that both
K = H and K = G/H satisty the condition
(x) K satisfies (F) and 0k (M) is an isomorphism for every M € (il’%[(}[(“]‘"Mod).

Does it follow that G also satisfies (x)?

4.4.9. A positive answer to 4.4.8 in the simplest non-trivial case, when both H and
G/ H are topologically cyclic, would considerably simplify our treatment of unramified
local conditions in Chapter 7.

4.5. Bar resolution

4.5.1. Proposition. — Every M € (i]‘z‘[dé"]‘dl\/[od) has a canonical structure of an R[G]-
module, where
R][G] = lim R|G/U].

T

Proof. — Writing M = |J M, (M, € S(M)) and M, = lim M, /m"M,, the state-

ment follows from the fact that each My /m™M, is a module over R/m"R[G /Uy »],
for a suitable open normal subgroup U,,, < G. O

4.5.2. The completed tensor products
R[G]® = R[G]®r - -- ®rR[G] = lim(R[G/U] ®r - -- ®r R[G/U))
U

=1lim R[G/U x ---x G/U]= R[G x - -- x G] = R[G']

U

form a pro-finite bar resolution
RIG)Y : - — RIG]®" — - — RIC]

of R by projective pseudo-compact R[G[-modules. For each M € (ilgfi(';‘]idl\/lod) (m}’
the complex

Hom;rgffgi]iiont(R[[G]] © M)

(where the subscript “cont” refers to homomorphisms continuous with respect to the
pseudo-compact topology on R[G?] and the discrete topology on M) is canonically
isomorphic to C¢,, (G, M).
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4.5.3. Conjugation. — Let G be a discrete group. For each o € G, the formula
Xg 2 golgil -+ 1gnl = goolo ™ gro] o gyl

defines an isomorphism
o Z[G)? — Z]G)?
between the bar resolution of Z and itself. These isomorphisms lift the identity
id : Z — Z and satisfy A,y = A\ A, (0,7 € G). For every complex of G-modules
M = M-*, the induced map Hom®()\,,id) on C*(G, M) = Homgflg]ive(Z[G]‘?,M) is
equal to the conjugation action Ad(o).
Both A\, and id lift the identity on Z. As the bar resolution is projective over Z[G],
there is a homotopy h, : id ~ A,, which induces homotopies h, (M) : id ~ Ad(c) on

C*(G, M), functorial in M. If we choose another homotopy k. : id ~ A,, projectivity

!
o

of the resolution implies that there is a 2-homotopy H, : h, ~» h’, which in turn

induces 2-homotopies H, (M) : hy (M) ~ h. (M), functorial in M.
If o, 7 € G, then the same argument shows that there is a 2-homotopy Hy r : hor ~
Ar % hy + by, inducing 2-homotopies

Hy + (M) : hor (M) —~ ho (M) x Ad(7) + h (M),

functorial in M.

4.5.4. As in 3.4.5.5, one can apply the above construction in the “universal” case,
when G is a free group on countably many generators o, 7, go,g1,... One obtains
homotopies hy, (M) and 2-homotopies H, (M) functorial in both M and G.

4.5.5. In fact, the formula 3.6.1.4 gives a choice of h,
n+1
ho s 911+ lgnl — S (=1 g -+ lggrlolo gl lo~ L guol,
Jj=1
which defines such a bi-functorial homotopy he(M) : id ~» Ad(c). Similarly, the
formula

Hyr o [g1] - lgn] — Z (=DM Ygi |+ lge—rlrlrtger| - 17 g
1<k<I<n+2 rlorlr o g or| - T o LgnoT)

defines a bi-functorial 2-homotopy H, -(M).
More generally, if G is a topological group, then the above formulas define h, (M)
and H, (M) for arbitrary M € (}‘%‘[‘g]adl\rlod).

4.6. Euler-Poincaré characteristic

Assume that G is a pro-finite group satisfying (') and T* a bounded below complex
in (i Mod) r-gr-
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4.6.1. The m-adic filtration F'T* = miT* (i > 0) of T* gives rise to a spectral
sequence (3.5.2.1)
Eiﬂj _ Hi+j(G7miTo/mi+lT.) (Z > O)
with the following properties:
4.6.1.1. (3co) (Vr = 1) EL =0 whenever i + j < ¢o (as T* is bounded below).
4.6.1.2. (Vi,j) (r(EY7) < oo (as G satisfies (F)).
4.6.1.3. (Vi,j)(3ro =ro(i,j) = 1) (Vr 2 rg) E}¥ = ELJ (by 4.6.1.2).
4.6.1.4. (Yq) (Vr > 1) H?:=@,5, B is a graded module (with B9~ of degree
i) over gry (R) = @5, m'/m' 1. The differentials (d9~*) define a graded homomor-
phism d? : H? — HZ™! of degree r, and H,,; = Ker(d?)/Im(dd™").
4.6.2. Lemma
(i) Each HY is a gry,(R)-module of finite type.
(i) (V) 31y = r1(q) > 1) (Vr > 1) HI = H,.
Proof
(i) As gre (R) is Noetherian, it is enough to consider the case r = 1. The hyper-
cohomology spectral sequence
/E{),q _ @HQ(G, miTp/mi+lT7)) — @Hp+q(G7 miTo/mH-lTo)
i>0 >0
shows that we can assume that 7* = T is a single module in degree zero.
The exact sequence of graded gry, (R)[G]-modules (discrete as G-modules)
0 — Ker(f) — griy(R) @ppm T/mT— @ m'T/m™ T (= gry (1) — 0
>0

gives an exact cohomology sequence
grn(R) ®p/m HY(G, T/mT) — H{ — H"(G, Ker(f)),

so it is enough to show that H9"1(G, X) is a gry, (R)-module of finite type, for every
q and every graded gry, (R)[G]-submodule X of gry (R) @ g/w T//mT'. By dévissage, we
can assume that 7'/mT is a simple R/m[G]-module. In this case X = J @/ T'//mT,
where J is a graded ideal in grg, (R), hence H'* (G, X) = J @p/m HI* (G, T/mT)
is, indeed, of finite type over gre, (R).

(ii) By (i), H{ is generated as a gry, (R)-module by @2":0 EVT" for some ig. We
can then take

ry = max {ro(i,q — 1) | 0 <i <ip},

by 4.6.1.3. O
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4.6.3. For each g and ¢ > 0, put H? := H? (G, T*) and
F'H? :=Tm(H?

cont

(G,m'T*) — HY) = Ker(H? — HY(G,T*/m'T*)).

Then each H? is an R-module of finite type (by Proposition 4.2.5) and the filtration
F'HY satisfies

(4.6.3.1) F'HY = H1
(4.6.3.2) mF'HYC FPYYHY (12 0)
(4.6.3.3) (VF'H' =0

i>0

The last property holds by the vanishing of the lim (D_term in Corollary 4.1.3.
n

4.6.4. Lemma

() The spectral sequence E, converges to the filtered R-module HJ, hence
gri.(HY) = ELat = Ehii

ri(q)°

(ii) For each q the filtration F*H? is good in the sense of ([Bou, Def. 111.3.1]),
ie., it satisfies (4.6.3.2) and (Fig) (Vi > ig) F'HI =mi~0FHq,

Proof
(i) The spectral sequence E, comes from the complex C* = Cg, (G, T*) equipped
with the filtration F'C* = Cg., (G, m'T*) (i 2 0). As C* = FOC* and (5, F'C* =

cont

0, convergence of E, follows from [McCl, Thm. 3.2].
(ii) The graded gry, (R)-module grs.(H?) is isomorphic to

i’q 7 1,q—1 __
DEL =DE ) =H
i>0 i>0

hence of finite type over gre (R). We conclude by ([Bou, Prop. 111.3.3]), which applies
thanks to (4.6.3.3). |

4.6.5. Hilbert-Samuel functions and multiplicities. — We recall some stan-
dard facts from [Mat §13, §14], [Br-He, Ch. 4].
IftN = EB,>0 ; is a graded gry, (R)-module of finite type, put

=Y lp(Ni)t € Z[1].
120
If M is an R-module of finite type equipped with a good filtration F*M (i.e., such
that (Vi) mF'M C F'M and (Jig) (Vi > ig) F'M = mi~ M) satisfying
M = F°M, put
FIMFe )= Cp(M/FH M) € Z[H].
20
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In particular, if FIM = mM (i > 0) is the m-adic filtration, put

FM,t) = f(M,m*,t) = Lp(M/m™ M)t

20
These generating functions have the following properties:
4.6.5.1. (1 —t)f(M,F*,t) = P(gry.(M),t).
4.6.5.2. Hilbert’s Theorem. — If N # 0, then P(N,t)(1 — t)3™WN) ¢ Z[t] and
P(N,t)(1 — )4V, _; > 0.
The multiplicity of M, defined as

er(M) := (1= )" f(M,t)]1=1 = (1 — ) P(gry, (M), 1) =1 € Z,

(where d = dim(R)) satisfies
4.6.5.5. er(M) =0, if dim(M)<d

er(M) >0, if dim(M)=d
(by 4.6.5.2, as dim(M) = dim(grs, (M))).
4.6.5.4. If d > 1 and F* is any good filtration on M, then

er(M) = (1 =) f(M,F* t)|1=1.

4.6.5.5. ((Mat, Thm. 14.7])

er(M) = Z er/p(R/P) Lryp(My).
ht(p)=0

4.6.5.6. In particular, if R is a domain, then

er(M) = er(R)rkr(M).
4.6.6. From now on, assume that T is bounded, char(k) = p > 0 and cd,(G) < oo.
This implies, by Lemma 4.2.6, that (3¢;) E}” = 0 whenever i + j > ¢, hence

H! =0 forq¢ [co,ci]
It follows from Lemma 4.6.2(ii) that

(3r2) (Vi j) By = B
Each HY and AY := Ker(d, : H! — HZ*') is a graded gre, (R)-module of finite type;
for each r > 1 put

Fo(t) =Y (1) P(HE, 1) = Y (=1)" Lr(E}) ¢

q i,J
Gr(t) = D (= 1) P(AL1) = Y (-1 LA £

According to 4.6.5.2, we have
(1= 7 Fo(0), (1 = )G, (t) € Z].
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4.6.7. Proposition
(i) (Vr=1) Fop1(t) = (1 —t")G(t) + t"Fo(t).
(ii) If d > 1, then
(L= ) F()]em1 = Y (= 1)7 er(Hin (G T*)),

for every r > 1.

Proof

(i) This follows from the exact sequence

0 AL r,g+r—1 Et r.J+r—1 Al,J El,JJrl 0
— — — L, — U.

(ii) By (i), the integer (1 — t)¢F,(t)|;=1 does not depend on r > 1. For r > ry we
have E, = E.,, hence

Fr(t) =Y (1) p(EL) = (1) (1= t)f(H, F*, 1),
2,7 q
G,T*). We conclude by 4.6.5.4 (which applies, by Lemma 4.6.4 (ii)).
Od

a—_
where H HY L (

4.6.8. Lemma. — Assume that, as before, G satisfies (F), char(k) = p > 0 and
cd,(G) < 00. Assume, in addition, that there is ¢ € Q such that

(%e) > (=1)? dimg HY(G, M) = ¢ - dimg (M)
q

holds, for every discrete k|G]-module M with dimy (M) < co. Then, for every bounded
complex M* of discrete R[G]-modules of finite length over R, we have

ST(-1) R(HYG, M")) = > (= 1) Lr(MY).

q q

Proof. Easy dévissage. O

4.6.9. Theorem. — Assume that G satisfies (F'), char(k) = p > 0, c¢d,(G) < oo and
(xc). If T is a bounded complex in (";{}G}Mod) then

R-ft’
D (D) er(HE (G T) = ¢ (1) en(TY).

Proof. — If d = 0, then er(—) = ¢r(—) and the statement reduces to that of
Lemma 4.6.8. If d > 1, then Proposition 4.6.7 (ii) gives

D (D) er(HE (G.T%) = (1 = ) Fy(t)]i=1.

q
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However, Lemma 4.6.8 implies that

Fi(t) = Z( D9 lp(HY(G, m'T* jm )t = CZ 1)7 £ (miT9 w179 ¢

i,q
_CZ 1)? P(grs, (T9), ),

hence

(1—t)'Fy(t |t1—€z (TY. O

4.6.10. Corollary. If R is a domain, then
D ()T rkp(H (G.T) = ¢ ) (=1)Trkp(T).

q q

SOCIETE MATHEMATIQUE DE FRANCE 2006






CHAPTER 5

DUALITY THEOREMS FOR GALOIS COHOMOLOGY
REVISITED

In this chapter we reformulate — and slightly generalize — Tate’s (and Poitou’s)
local and global duality theorems for Galois cohomology. As observed in 0.3, duality
with respect to the functor D follows automatically from the classical results for
finite modules (cf. 5.2.10); the full duality follows by applying the general result 3.5.8.
Throughout Chapter 5 we assume that £ = F,,» is a finite field of characteristic p.

5.1. Classical duality results for Galois cohomology

Let K be a global field of characteristic char(K') # p and S a finite set of primes of
K containing all primes above p and all archimedean primes of K (if K is a number
field). Denote by S the set of non-archimedean primes in S. In Sections 5.1-5.6, we
assume that the following condition is satisfied (the general case is treated in 5.7):

(P) 1If p=2, then K has no real prime.

Fix a separable closure K%P of K. Let Kg be the maximal subextension of K%P /K
unramified outside S; denote G ¢ := Gal(Kg/K). For each prime v € S fix a sepa-
rable closure K°P of K, and an embedding K*P — K3 extonding the embedding

K — K,. This doﬁncs a continuous homomorphism p,, : = Gal(K:?/K,) X
Gk = Gal(K*?/K) 5 G.g, hence, for each M € (”'[d ad ]Mod) a ‘restriction” map
resy : C(?ont(GKsS7 A{) - C(.ont<G’U7 AI)

Denote by M, := p}(M) € (Ef}‘*‘fMod) the R-module M, equipped with the G,-action
induced by p,.

For v € Sy, our assumptions imply the following ([Se2, N-S-W]):
5.1.1. G, and Gk s satisfy the finiteness condition (F').

5.1.2. cdp(Gy) = cdp(Gr,s) = 2.
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5.1.3. For every n > 0, local class field theory defines an isomorphism
inv, : H*(G,,Z/p"Z(1)) = Br(K,)[p"] — Z/p"Z
(where Z/p"Z(1) = pupn).

5.1.4. Local duality (Tate). — For every finite discrete Z/p™Z[G,]-module M,
the cup product
HY(Gy, M) x H* (G, Hom(M, Z/p"Z (1))~ H* (G, Z/p"Z(1)) > Z/p"Z

is a perfect pairing of finite Z/p"Z-modules (i = 0,1, 2).

5.1.5. Reciprocity law. — The sum of the local invariants invs, = ZUE g, INVy
defines a short exact sequence

0 — HX(Gr.5.Z/p"Z(1)) — @ HX (G0, Z/p"Z(1)—52/p"Z — 0.

veSy

5.1.6. Global duality (Poitou-Tate). — For every finite discrete Z/p"Z[G k. s]-
module M there is an exact sequence of finite Z/p"™Z-modules

0 — HYGx 5, M) — @ H(Gy, M) — H*(Gx5,M*(1))" —
’UGSf

— H'(Gk.5,M) — @ H'(Gy,. M) — H'(Gx.5,M*(1))" —

vESy

— H*(Gr.5, M) — @ H*(Gy. M) — H"(Gg.5,M"(1))* — 0,
’U€S/

in which (—)* = Hom(—,Z/p"Z). The maps H (Gg 5, M) — H*(G,, M) are induced
by res,; the maps H(G,, M) — H?> " (Gk s, M*(1))* by res, and the pairing 5.1.4;
the remaining two maps will be defined in 5.4.3 below.

5.2. Duality for G,
5.2.1. It follows from 5.1.2-5.1.3 that for every R-module A with trivial action of
G, we have
inv, : H2 (G, A(1)) = A
H (G, A1) = 0 (i>2).

Here A(1) = A ®z, Z,(1) = A®pr R(1), which is admissible by Proposition 3.2.5.
This implies that the canonical map of complexes

(5211) A[_Q]L”r?Q C:ont(GU‘A(l))
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(in which i, is induced by the inverse of inv,) is a quasi-isomorphism. For A =1
there is a morphism of complexes

(5.2.1.2) I[-2] 750 C2 e (Go, (1))
which is a homotopy inverse of (5.2.1.1).
More generally, if A® is a complex of R-modules with trivial action of G, then
there are canonical morphisms of complexes
CL.OII’((G’lM A.<1)) TOt(Z L C(;ont(GU? Al(l))) - 7'>2 v;ont(vaA.(l))
= TOt(i = 722 Ccont(G'U’ AZ( )))LA [_ ]
defining a canonical map in D(rMod)

RFCOnt(Gv’ A.<1)) — A® [—2]
(since 4,, induced by the inverse of inv,, is a quasi-isomorphism).
If A* is a bounded below complex of injective R-modules, then i, has a homotopy
inverse

(5.2.1.3) Ty = Ty,Ae ¢ 7—>2 Ceont(Gu, A*(1)) — A*[-2],

unique up to homotopy.

5.2.2. Fix v € Sy, a bounded complex J = J* of injective R-modules and r, =y s
as in (5.2.1.3) for A* = J. If X* is a bounded complex of admissible R[G,]-modules,
S0 is
D;(X*) = Homyi(X*,J).
The evaluation map
vo 1 X*®pr Dy (X*)(1) — J(1)

from 1.2.7 and the cup product defined in 3.4.5.2 induce a morphism of complexes

C(:ont (GU? X ) ®R Con‘r(GU? D](X )(1))

L]
Ccont

(Gv7 J(l)) - 7—]>2 (‘()nt(GW J(1)> " IJ[ 2]
hence by adjunction (see 1.2.6) a morphism of complexes

g xe - Ct;ont<GU7X ) — HomR( ont(va D,(X*)(1)), J[‘—Q]
:DJ[—Q](Ccont(vaDJ( )( )))
This construction gives a well-defined map in D?(rMod) (independent of the choice

Ofﬁ,y,])
Qg x chont(Gu»X) '_’D/ ](chont(vaDJ( )(1)))

for every X € D° ((;?(,i[G,,]MOd) (where D;(X) = RHompg(X,J) in the sense of 3.5.9).

In the same way, the evaluation map

v Dj(X) (1) ®@r X* — J(1)
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gives rise to a morphism of complexes

s xo 1 Coony(Go, Dy (X*)(1)) — Dji_g)(Ceone (G, X*))

cont

resp., to a morphism
ai],X : RFcont(Gm D, (X)(l)) — DJ[72] (R]-—‘cont(Gm X))

in D?(rMod).
The above cup products define, for each X € D”(%d[Gv]Mod), morphisms in
D*(rMod)

L
RF(:()nt(va X)®R chonL(va DI(X)(l)) —J [_2]

; L
RFCOI]';(G7)7 DJ(X)(l))®R RFcont(va X) —J [72],
which induce pairings

(5221) [{gont(G’Lﬂ X) ®R Hgoxlt(GU7 DJ(X)(I)) - Hi+]‘72(‘].)

HéonL(GTN D](X)(l)) ®H H({ont(va X) - Hi+j72(‘].)

on cohomology.

5.2.3. We shall be interested only in the following two choices of J:

(A) J = I[n] for some n € Z (hence D; = D,, in the notation of 2.3.2) and all
cohomology groups of X are of finite (resp., co-finite) type over R.

(B) J = w*[n] for some n € Z (hence D; = %,, in the notation of 2.8.11) and all
cohomology groups of X are of finite type over I2.

In both cases the canonical map
E=¢€yg: X — D](DJ(X))

is a quasi-isomorphism, by Matlis duality 2.3.2 and Grothendieck duality 2.6, respec-
tively.
5.2.4. Proposition. — Assume that either

(i) J=1Iln] and X € DEI’?(_./»L(%‘[G”]Mod) or X € Dl;?,-co./'t(%d[Gl,]MOd)’

or

(i) J =w*[n] and X € D} (%, Mod).

Then both maps o, X,af 1 x are isomorphisms in Db( rMod).

Proof. We consider only a; x; the statement for af,’ y can be proved along the
same lines (alternatively, one can use the compatibility result 5.2.7 relating the two
maps).

i)If A - B — C — A[l] is an exact triangle in D® (E‘Lpfl[GU}IVIo<1)7 then
(a(/’ A, L] B, a,],c) define a map between exact triangles

RF(:Ont(Gvs A) — RFCOT]t(G‘U? B) — Rl—‘cout(Gva C)
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and

D ji—2) (Rl cont(Gy, D(A)(1))) — D j_g) (Rl cont (G, D(B)(1)))
— DJ[_Q] (chom(Gv, D(C)(l))) .

This means that «; p is an isomorphism, provided o 4 and a ;¢ are. Applying this
observation to truncations

T<i1X — 1 X — HY(X)[~1] — (r<i1 X)[1]
we reduce to the case when X is a single module in degree zero. Lemma 5.2.5 below

further reduces to the case J = 1. For X =T € (‘}?[GU]MOd) Rejt (resp.,, X = A €

(*}Ei[GU]l\/Iod) Roco ft) there is a commutative diagram
C(.:ont (G'lu T) = Ll—m C(.?O“t(Gv’ T/mnT)
ar
D*Q(C(:ont(G"HD(T)(l))) Ua

uz

D—2 ( ll_H)l Cgont(G'lH D(T/mnT)(l))) L> ll_[l D—2 (Cc.ont(G'U? D(T/mnT)(l)))

n

in D?t(RNIod) (resp.,

hﬂ} Cc.ont (G’U ’ A[mn]) - C(tont (GU? A)

%D—2(Céorlt(G1)7 (D(A)/m™D(A))(1))) aa

ur

D (1im e (G (DAY DIAN(D)) ) "> D (€000 (o D(A)(D)))

b .
in D7, (rMod)). The maps
Ugy = liILn Q1 T/mnT, U = lirm a1 Afmn]
T n

are quasi-isomorphisms by 5.1.4 (and by the “universal coefficient theorem” for projec-
tive limits of Mittag-Leffler systems of complexes, used in the proof of Corollary 4.1.3),
U1, Uz, Us, ug by Lemma 4.1.2 and ug, u7 by Lemma 4.2.4. This implies that both o
and oy, 4 are quasi-isomorphisms, as claimed.
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(ii) Lemma 5.2.5 below implies that we can assume that J = w*[d] (hence D; =
24). Represent X by a bounded complex X* of admissible R[G,]-modules. The
functoriality of the morphisms

iy A.[_Q] I T>2 C(’onL(GU’ A.(l))
from 5.2.1 implies that, for any choices of r,, ; for J =TI and .J = w*[d], the following
diagram is commutative up to homotopy:

(P_q)-« Tr,

(G, wtd)(1)) Clont(Go, Palw*[d])(1)) Clont (G, I(1))

l”’u.w'[d] l"'ml
Tro®_4[—2]

(wed])[-2] 1[-2]
This implies, by Lemma 2.8.12, that the complexes
A C(.ont(GvﬂX.)? B C(.()nt(G'U7D(X.)(1))7 C:ont( U7@d(X.)(]'))7
U=1I-2, U'=(ld)-2. C= C'((:;:,;),R) =d_4(R)

and the maps f, f’ (resp., b,u) induced by U and r, ; (resp., by &4 : ®_40%4 — D)
satisfy the assumptions of Lemma 1.2.13, which in turn implies that the following

cont

diagram in Djl?t( rMod) is commutative:

Rl cont(Gy, X) X D_3(RIcont (G, D(X)(1)))
lawwx lD’ 2((€a(X)))
Dwiap—2) (Rl cont(Gu. Za(X)(1))) D_s(Rlcon (G, a0 Za(X)(1)))
nal~2] [Pt
D 50® g(RTeoni (G, Za(X)(1))) — D_30® g(Rlcom (G, Za(X)(1)))

The maps 1n¢[—2], £4(X) are isomorphisms by 2.8.11,
[ @ g(RTeont(Go, Z2a(X)(1))) — ®_g(Rlcont (Go,Za(X)(1)))

is an isomorphism by Proposition 3.5.8 and «j x is an isomorphism by (i); hence
Q[q),x 18 also an isomorphism.

It remains to prove the following Lemma. O

5.2.5. Lemma. — For every J, X* and n € Z (and a fized choice of r, ;) the map
@ gin),xe 8 equal to the composite map
<‘ont(GU7X )}—Y:D/[ 2] (C(ont(GlHD/( )( )))
_)D-/[H*Q] (Ccont(G'U? Dy (X.>(1)>[,LD
= DJ['II,—Z]( ('()nf(GlM D.] Vl]( )(1)))

Proof. — Apply Lemma 1.2.16 to A* = C¢,,, (G, X*), B* = C2. (Gy, Dy (X*)(1)),
C* = J[-2] and u the map from 5.2.2 (the composition of r, ; with a truncated cup
product). O
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5.2.6. Theorem. — If T, T* € D% (%o Mod), A, A" € Dy (%is, Mod) are re-
lated by the duality diagram

A*
So are
RFcont (Gv ) T) 7 RFCOnt (GU ) T (1 ) ) [2]
D
P D
RFCOHL(Gva A) RFCOM (va A*(l))[Q]

(in D';CO ) ﬂ( rMod)) and there is a spectral sequence

By = Extly(H2 (G, T (1)), w) = Extiy(D(Hlyn (Gu, A)),w) = Hiol(Gy, T).

Proof. — We first explain the assumptions: start with T € DR ft(?i’[(‘ ]Mod) and
put A = ®(T), T* = D(A), A* = D(T'). Then the canonical maps ®(T*) — A*,
CI)<RFCont<Gv» T)) - chont(va A) and q)(RFcont(Gw T*(l))) - RF(;()nt(va A*(l))
are isomorphisms by 4.3.1; this takes care of the vertical arrows. The diagonal and
horizontal arrows are given by the isomorphisms of Proposition 5.2.4. The diagram
is commutative up to the canonical isomorphisms from 2.8.1; the spectral sequence
follows by applying 2.8.6 to the diagram. O

5.2.7. Proposition. — Let f : X* — Y* be a morphism of bounded complexes of ad-
missible R|Gy]|-modules. Fixz J and r, j as in 5.2.1-5.2.2. Then

(i) The composite map

C(.ont(G’U? X* ) (E - C:ont (GV’ DJ(D](X.))) MD'I[_Q] (C(:OIW(G”’ DJ (X.)(]')))
resp.,
Ot (Goy Dy (X*)(1) 2220 D o (Ctone (Goy DS (D (X))

D« -2 ((E )* . .
LD,/[*Q}(CCOIIL(G”’X ))

is equal to oy xe (Tesp., to &y xo ).
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(ii) The following diagrams are commutative:
Cgont(GlHX.) DJ[—Q](C(:ont(GU’DJ(X.)(l)))
lf* | oat@aan.)
Ceont(Gu, V") 2 Do (Con (G Dy (Y*)(1)))

ay .xe

Cont(Gv’ D]( .)(1)) L D-][—2](CC.011L(G’U’X.))

T(DJ nay. TD.I[_M*)
C’(ont(GUva( )(1)) L D][ 2]( (()11t(G7HY.))

(iii) The composite map

1[2

C(.tont(G’U7X ) DJ[ ](DJ[—Z](C((mt(GIHX )))

Dyi_o(a); ve
D oy (oo (G Dy (X (1))

resp.,

Cc.ont(Gv’ D](X.)(l))uD][“Q] (DJ[AQ] (C(.:ont(GTM D](X.)(l))))

D i o .
el (O (G, X7

is homotopic to ay xe (resp., to afLX.).

Proof

(i) The first statement follows from Lemma 1.2.12 and the following commutative
diagram (in which C*(X*) = C¢, (G, X*)):
C*(X*) @r C*(Dy(X*)(1)) — CH(X*@r Dy(X*)(1)) Ce(J(1))

(es).@id l(a./wid)* I
u

CH(Dy(Dy(X*)) @R CHD(X*)(1) 5 CDyD(X*) @r Dy(X)(1) S C(J(1))

(eva).
—

(the second square is commutative by Lemma 1.2.9). Exchanging the factors in each
tensor product we obtain the second statement.

(ii) This follows from Lemma 1.2.11.

(iii) The diagram

U (eva).
-5

CH(X*) @r C*(Dy(X*)(1)) — C(X*®r Dy (X*)(1)) C*(J(1))
lslgo(TQQT) J,TO(SH)* lT
CH(Dy(X) (1) BRCHX?) ~= C (DX () 2r X7 S ()
is commutative by (1.2.7.1) and 3.4.5.4. We apply Lemma 1.2.14 and the fact that 7
is homotopic to the identity. O
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5.2.8. Corollary. — If f : X — Y is a morphism in D® (?%C][G,,]M()d)7 then
asx = x)) ° (E1)« = Dyg(ay x) 0 €1 g,
Do ((Ds(f)(1)s) 0 agx = azy o fa
oy x = Dy—g((e1)s) 0 ayp,x)1) = Dyj—g(asx) oey_g,
“f},x o (Dy(f)(1))s = D.][—Q](f*) o O‘fJ,Y
(equalities of morphisms in D*(rMod)).

5.2.9. Self-dual case. — If [ : X — D;(X)(1) is a morphism in D (R[(‘,,]MOd)’
denote the morphism

X=ELD,(Dy(X)) = Dy(D,(X)(1)) (1) 2420

D (X)(1)

by g. It follows from (1.2.7.1) and a derived version of Lemma 1.2.10 that the pairings
Uy : R cont (G X)% g RTcomt (G, X)

O RD (G X)E R R come (G D (X)(1) 2257 2]
Uy : R wont(Guos X) 81 R wont (G, X)

0 R (G X) i RE cont (G, D (X)(1)) 2251 [-2]
are related by
(5.2.9.1) Ug = Uy 0 812.
In particular,

(5.2.9.2) g=*f=Ufosipg==2Uy.

5.2.10. On the level of cohomology, the diagonal arrows in Theorem 5.2.6 imply that
the cup product

(()11'((GU7T) H2 T(GIHA ( ))_’chm (G777[ 1 );I
ont

cont

induces isomorphisms
7
H( ont

(Go, AT(1) = D(H (G, T))

(G, T) == D(HZ,HGy, A*(1)))

cont,

cont
(and similarly for the pair 7%(1), A). Note that, as remarked in 0.3, these isomor-
phisms follow immediately from 5.1.4 by a straightforward limit argument (a rather
pompous version of which was given in the proof of Proposition 5.2.4(i)). The only
reason for developing the cohomological machinery of Chapters 3-4 was a need to
relate cohomology of T and A, as in 4.3.2.
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5.2.11. Euler-Poincaré characteristic. — For every non-archimedean prime v
of K, the group G, satisfies the condition (x.) from Lemma 4.6.8 with

e —[K,:Qp], if K, is a finite extension of Q,
0, otherwise,

by Tate’s local Euler-Poincaré characteristic formula ([Se2, §11.5.7, Thm. 5]; [N-S-W,
Thm. 7.3.1]). As a result, Theorem 4.6.9 applies to G, and c.

5.3. Cohomology with compact support for Gk g

In this section we develop the theory of cohomology groups with compact support.
In fact, there are two possible definitions, which differ in their treatment of infinite
primes. We use the one appropriate for duality theory (see also the footnote in
Sect. 0.7.1).

5.3.1. Cochains with compact support

5.3.1.1. Definition. — Let M* be a complex of ind-admissible R[G g g]-modules. The
complex of continuous cochains with compact support with values in M* is
defined as

C2 cont(Gr,5, M*) = Cone (cgm(c:x,s,fvf'ﬁs—sL P Cooni (G, M')) [—1],

vE Sf
where ress, = (reSv)veSf~

5.3.1.2. More precisely, the ‘restriction’ map res, (v € Sf) is equal to
resy = p;k) : C(:ont(GKuqv M.) - :Ol]t(G777 ,U:(]\/[.))

If we choose another embedding K*P < K3 then «, : G, — Gk is replaced by
o = Ad(o,) o a, (for some o, € Gk ) and the map m(o,) : ps(M*) — pf(M*) is an
isomorphism of complexes of G,-modules. In the diagram

(Grs, M*) 2 Co (Gre, 7" (M*)) =2 O (G, p (M)

3 . .
res, : C ot

cont

|| lAd((r,.) lW(au)*
Ce (G, M*) 2 o

cont cont,

1%
(e}

(G 7 (M®))  ——= Ceni(Go, pyf (M?))

the first (resp., the second) square is commutative up to homotopy (resp., commuta-
tive). Choosing bi-functorial homotopies h, (M*) : id ~» Ad(c) (e.g. those from 4.5.5),

g
res, :

we obtain homotopies
/ y . !
hy = ayf * hg, (M*®) % inf : res, — 7(0y)« 0 T€S,,
h = (hy)ves; : resg, — (m(0y)«) o eSS,
The corresponding morphism of cones

Cone(id, ((04)«). h) : Cone(ress,) — Conc(resfg,.)
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is a homotopy equivalence, with homotopy inverse equal to
Cone(id, ((o; 1)), b') Cone(ress, ) — Cone(ress, ),
where h' = (a; x h,-1(M*) x inf)yes,. Indeed, this follows from 1.1.7 and the fact
that there is a 2-homotopy
B xid + (g, ")) x h = (res, * (hy-1(M*) + Ad(o; ') * he,(M*))) *inf — 0.

5.3.1.3. The cohomology of C; (G ks, M*) will be denoted by H, Gg.s,M*).

c,cont(
Asin 3.5.6, the functor M* +— C? (G s, M*) preserves homotopy, exact sequences

and quasi-isomorphisms for cohomologically bounded below complexes, hence defines
an exact functor

RFC,COIlt(GK,S7 _) . D+ (IR?[(ETIS]MOd) — D+(RMOd)
such that

(5.311)  RTecon(Gross M) — Rlcom (G5, M)—2 @D Rl com (G, M)
vESy

is an exact triangle in DT (gMod) for every M € D% (“L‘z‘[dc‘ld Mod) In particular,
there is an exact sequence

(5312) R Hé,cont(GK S M) - Hcont (GK,Sa ]\4)

ress
—t @ (ont GvaM)_)Hzcont(GKS7M)'_)'“

veESy

5.3.2. Lemma. Each of the three functors RIcont(Gr,s:—), RIcont(Gv,—),

RI: cont(Gk,s,—) maps D}‘{_ft(g[‘i(;‘fs]l\/lod) (resp., DE_COﬂ(iﬁ[‘E?S]Mod)) to D}t(RMod)

(resp., Diop(rRMod)), for « = +,b.

Proof. — This is true for Rlcon(Gk,s,—) and Rl cont(Gy, —) by Corollary 4.2.7
and 5.1.1-5.1.2. The statement for RI'c cont(Gk,s,—) follows from the exact se-
quence (5.3.1.2). O

5.3.3. Cup products
5.3.3.1. Let A*, B* be complexes of ind-admissible R[G g s]-modules. We shall write

elements of

Cicont(GK,S’ A%) = Cioni(Gros, A @ Cﬁonlt(va A)

veE ")f

in the form (a,as), where a € C’mm(GKyg,Aﬁ, as = (ay)ves;, ay € C'Z(mlt(G A*);
deg(a,ag) =i = deg(a) = deg(as) + 1. The differential is given by

d(a,as) = (da, —ress, (a) — das).
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5.3.3.2. The first cup product
IO on(Gr5,A%) @R Ol (Gr,s, B*) — CF (G s, A ©R B*)
is defined as
(a,as)cUb = (aUb,as Uress, (b))
and satisfies
d((a,as)Ub) = (d(a,as))Ub+ (—1)48) (a, ag) Udb.
5.3.3.3. The second cup product

Ue Ccont(GK,SV A.) &SR 02,0011L(GK~A5'7 B.) - C{, cont (Gk S A* @R B.)

is defined as
aJe(b,bs) = (a ub, (—1)d°g(“)re53f(a) U bs)
and satisfies
d(aUe(b,bs)) = (da)U.(b, bs) + (—1)48 @ au.(d(b, bs)).
5.3.3.4. The involutions 7 from 3.4.5.4 define morphisms of complexes
T C: cont(GK,Sv A.) - Cc (()nt(GK~57 A.)
(a,as) = (7T(a),T(as))
which are again involutions homotopic to the identity. As in 3.4.5.4, the following

diagram of morphisms of complexes is commutative (and the same is true if the roles
of .U and U, are interchanged):

C2 oo (Gre.5, A) R Coon (G5, B*) =5 Ot o(Grs. A ®p B*)
15120(7’@7) 170(512)*
C:ont(GK Sy B ) QR C (om(GK,S7A.) i? C( (()nt(GKS B* ®r A* )

5.3.3.5. The products U,U. (resp., the involutions 7) are compatible with
the product U (resp., the involution 7) defined in3.5.4 (wia the canonical maps

C( cont(GK Ss _) (()nr(Gi\ S _))

5.3.4. The statements of Propositions 4.2.9-4.2.10 and 4.3.3 also hold for the functor
RFC,C()Ilt(GK,Sv _)~

5.3.5. Euler-Poincaré characteristic. — If M is a finite discrete F,[Gk s]-
module, then Tate’s global Euler-Poincaré characteristic formula ([N-S-W,
Thm. 8.6.14]) implies that

3

> (~1)? dimp, HY (G5, M) = dimpg, (M),

q=0 v| oo

A straightforward modification of the arguments in Sect. 4.6 gives the following result.
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5.3.6. Theorem. — If T* is a bounded complex in (%i[GK‘S]Mod) e then

Z(_l)q er(H coni(Gr 5, T%)) = ZZ TG0,

vjoo g

5.3.7. For R finite and flat over Z, (and not necessarily commutative), Flach [F12]
proved a more refined Euler-Poincaré characteristic formula.

5.4. Duality for G g

5.4.1. The sequence (5.3.1.2) together with 5.1.5 define an isomorphism

c (ont(GK ’Mz/p Z( )) — Z/pnz
As in 5.2.1 we get
A i=3
CCOH G 7A 1
(Gr,s, A1) — {0 ies

for every R-module A with trivial action of G g, hence a quasi-isomorphism (induced
co—1

by IHVSf)

(5.4.1.1) A[=3]-5755 C2 ot (G5, A(1)).

Let A® be a bounded below complex of R-modules with trivial action of Gk g. For
each i € Z the map

I'eSSf : H (onh (GK S A1 @ I[(zont GU’ Al(l))

vESy

is injective, hence the canonical morphism of complexes
L] 7/
>3 CC,CO(lt(GKVS’ A (1))

— Cone (T>2 C(om(GK S A (1))*—> @ T>2 Ccont(GiﬂAz( ))) [—']‘]

vESy

is a quasi-isomorphism. This implies that the canonical map

(5412) 7—>3 Cc (‘ont(GK 5, A® ( )) = TOt(i 723 Cg,cont(GK,SvAi(l)))

— Cone <T>2 Cmnt(GK SH A @ T> c.oﬂt GMA. ) >[ 1]

(S S‘[

is also a quasi-isomorphism.
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As in 5.2.2, fix a bounded complex J = J* of injective R-modules. We claim that
there is a homotopy equivalence ig making the following diagram commutative up to
homotopy:

ress .
7-I>I2 Cc.om (GK,Sv J(l)) —L veSy 7—I>2 Ccont(GU7 J( )) . COHC(I‘QSSf)
T(iu Tis
b))
Dres, /12 = g2,

Indeed, fix vo € Sy and put ig = j 0 iy,. Then ig is a quasi-isomorphism, hence a
homotopy equivalence (as J[—2] is a bounded below complex of injectives).

Fix homotopy inverses r, j of i, (v € Sy) and also a homotopy inverse rg = rg, ; of
is. Then rg o j is homotopic to ¥ o (ry, ;). Composing rg[—1] with the map (5.4.1.2)
we obtain a quasi-isomorphism

(5413) T>3 C:c011t(GK,S7J(1)) - J[_3]7

unique up to homotopy.

5.4.2. Let X* be a bounded complex of admissible R[G g s]-modules. As in 5.2.2,
the cup product .U, together with the evaluation map evs (resp., evy) and the
map (5.4.1.3) define morphisms of complexes

CﬁJyX' : ccont(GK57 .) - HOIn;?,(C(:ont(GK S DJ( )( )) Cc cont(GKvS7 J(l)))
- HOIn;{( ront(GK ';7 J (X')( )) T>3 C;Lont(GKuS?'](l)))
) oy (Cone (s D (X*)(1), T 3]
= DJ[~3] (Cc.ont(GK,Sv D(X.)(l)))

resp.,

C/G.II‘X' : C(:,cont<GK,57 D/(X.)(l)) - HOHI;{ (Cc.ont(GK S X* ) c (()nt(GK Sy ( )))
- HOIn;% (C(.:ont(GK.Sv X ) T>3 Cc (ont(GK S e ( )))

S Homgy (oo (G X ). T [-3)

= D3 (Coom(Gres, X° ),
hence canonical maps (independent of the choice of 1)
Brx Rl cont(Gr s, X) — D j—3 (Rl eont(Gk.s, Ds(X)(1)))
resp.,
B x Rl cont(Gr.s5 Dy (X)(1)) — Dy-3)(Rlcont (G5, X))
in Db(pMod) (for every X € DP(%l ., ~ Mod)).

R[Gk.s)
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Similarly, using U, instead of .U, one obtains morphisms of complexes

Be,gxe :Coont(Gr,5, X*) — D y1_3)(Ct coni (G5, D1 (X*)(1)))
ﬁé,J,X' :C(:ont(GK,S?DJ(X.)(l)) - DJ[—3](Cc.,cont(GK,S7X.))

resp., morphisms

ﬁc,J,X : RFcont(GK,S7 X) — DJ[—3] (RFC,COnL(GK,Sa DJ(X)(l)))
/3:;7],)( : RF(:ont(GK,S7 DJ(X)(l)) — D.][A3] (RF(:,(:ont(GK,S» X))

in D*(xMod).

As in 5.2.2, U, and .U induce, for each X € D° (*}%‘}GK‘S]Mod), cup products
REecon (G5 X) B R con (G 5, Dy(X)(1)) — J 3]
RTcont(Gk.s, X)Q%R Rl cont(Gr,s, Ds(X)(1)) — J[-3]

and pairings on cohomology
(5.4.2.1) H} oni (G5, X) ®r Hlopi(Gr s, Dy(X)(1)) — HTI73(J*)
Hioni(Gr5: X) @R H. cone(Gre,s, Dy (X)(1)) — HTI73(J%),

as well as analogous products in which the roles of X and D ;(X)(1) are interchanged.

5.4.3. Proposition. — Assume that either

(i) J = I[n] and X € D} (%, gMod) or X € Dy o0 (%, o Mod),
or
(ii) J =w*[n] and X € D?%-ft(?{d[(;,(,s]MOd)'

Then the maps .37 x, C/B(/LX,ﬂ(;“LX,/B(/:“LX are isomorphisms in D®(rMod).

Proof. As in the proof of Proposition 5.2.4 one reduces to the case when M is a
finite discrete Z/p"Z[G g s]-module. In this case the statement is a variant of the
Poitou-Tate global duality theorem (5.1.6) ([Ni, Lemma 6.1]; [N-S-W, §8.6.13]).

This explains the origin of the non-obvious maps in 5.1.6: they are induced by the
cup products

Ue: H(Gk.s, M) x H¥ (G5, M*(1)) —H>(Gk 5, Z/p"Z(1)) = Z/p"Z
U HI(Grs, M) x H 7 (Gr.s, M*(1))—H>(Gk.5,Z/p"Z(1)) = Z/p"Z. O
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5.4.4. Proposition. — If f: X — Y is a morphism in D° (%%Gx,s]MOd% then

Beax =Bl p,c0m ° 1) = Dya)(f) x) 0 €s1-3),
Dy—s1(Ds(f)(1)«) © Be,sx = Be.ay © fa
Brx =B p,xy)©(E0) = Dymg)(Bryx) © €35
Dy—si((Ds(f)(1))s) 0 cBrx = By o fe
Begx = Dy—s((e1)«) 0 Begp,x)) = Dyj=3)(cBrx) 0 g-3,
Begx o (Dy(f)1)« = Dy_g)(f) o Bl sy
B x = Dy—g((e1)«) 0 eBrp,x)1) = Di—3)(Be,7.x) 0 €51-3)
B x o (Dy(f)1)e = Dyg(fe) 0By

(equalities of morphisms in D*(gMod) ).

Proof. — This follows from a variant of Proposition 5.2.7, which is proved in the
same way as 5.2.7; the only difference is that the commutative diagram from 3.4.5.4
(with A* = X°*, B* = D;(X*)(1)) has to be replaced by an analogous diagram
from 5.3.3.4. O

5.4.5. Theorem. — If T.T* € Db ft(?{d[ck Mod) A A" € DY mf,( Rlox. ]Mod) are
related by the duality diagram

A T
J@>”< |q>
A A*
so are
2
RF(‘,OHt(GK,Sv T) RFC,(:()x\L(GK,Sa T*(l))[3]
D
P P
RFcont(GK,Sa A) RFc,cont(GK,S> A*(l))[g]
(in DY (co) ﬂ(RMod) ) and there are spectral sequences

Byl = Extih(H2 2 (Gros. T*(1)),w)
— Extiy(D(HL, (Gr.5. A)).w) = H'ZI(Ggs.T)
By = Exty (oo (G5, T°(1),w)
= Extly(D(H] ot (Gr.5, A)),w) = H. L (G s.T).

Proof. — As in 5.2.6, everything follows from Proposition 5.4.3. O
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5.5. Duality for Poincaré groups

5.5.1. Recall ([Vel, §4]) that a profinite group G is a Poincaré group with respect
to a prime number p if the following two conditions are satisfied:

5.5.1.1. ¢dp(G) =n < oc.
5.5.1.2. The abelian groups D; defined by
D, = lin_rlgli%ﬂnHOIllz(Hi(U, Z/p"7Z),Q,/Z,)

(where U runs through all open subgroups of G and the transition maps are dual to
~ )0, 1#E N
D, = { #

Q,/Z,, i=n.

There is a natural action of G on each D;; under the above conditions G acts on

corestrictions) satisfy

D,, by a character
x:G—1Z,

5.5.2. Examples
(1) G is a compact p-adic Lie group with finite cd,(G).
(2) G =G, in 5.1. In this case n = 2 and yx is equal to the cyclotomic character.

5.5.3. The main duality result for Poincaré groups ([Vel, Prop. 4.4]) states that
there is a canonical isomorphism
p H’n(G7 Dn) ;’ Qp/Zp
such that for every finite p-primary discrete G-module M and i € Z the cup product
HY(G, M) x H"™'(G,Homgz(M, D,,))——=H" (G, D,,) — Qp/Z,
induces an isomorphism
H"Y(G,Homgz(M, D,,)) > Homgz(H (G, M), Q,/Zy).

5.5.4. The results and proofs in Sect. 5.2 work for a general Poincaré group G

satisfying (F). For example, a generalization of Theorem 5.2.6 yields a digram
%

chont(G, T) chont(Gv T*(X)){fl]
F : ‘¢
chont(G7 A) RFcont(G7 A* (X))[’fl],

where M (x) denotes M with the G-action twisted by the character x (for every
Z,[G]-module M).
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A generalization of Proposition 5.2.4 gives canonical isomorphisms
RFcont(G7 X) - DJ (chont(G7 DJ,G(X)))v

where
D,c(X) = D(X)(x)[n].

5.6. Localization

5.6.1. Let.¥ C R be a multiplicative subset. Everything in Sections 5.2.1-5.2.2,
5.2.7-5.2.9,5.4.1 - 5.4.2 and 5.4.4 remains valid if we replace R by R.
Instead of 5.2.3, we shall be interested in the following case:

5.6.2. J=uwj . [n] for some n € Z (hence D; =% y/v") and all cohomology groups
of X are of finite type over R .

5.6.3. Proposition. — Assume that J = why}[n] for some n € Z. Then:
(i) For every X € D’;{(y'ﬂ(%{/[(hdM"d)’ the canonical map
Qg Xx - RF(:ont(Gm X) I @Ry,n—Z (RF(:()llt (G’m@Ry,n(X)(l)))

s an isomorphism in D;ﬁt(RyMod) (and the same is true for o/; y ).

(ii) For every X € D%V_-ff(%LIGK,SJMUd)’ the canonical map

CﬁJ,X . RFC,COI](}(GK,S7 X) — —@R‘V,n72 (er‘onl(GK,S7—@R7/n(X)(]-)))

is an isomorphism in D}’t(RyMod) (and the same is true for .3 x, Be..x and B ; x ).

Proof. By dévissage we reduce to the case when X is an admissible R [G,]-
module, of finite type over Ro. Then X =Y for some Y € (%%G,,]NIOd) R-ft° by

Lemma 3.7.3, and « x is the localization
fy_lRF(:ont(G’u, Y) _)fy}71 (@R,n~2 (chont(G’u7-@1(’,,n(y)(1))))

of the isomorphism e (n),y from Proposition 5.2.4. The same argument applies in
the case (ii), with 5.4.3 replacing 5.2.4. O

5.7. In the absence of (P)

5.7.1. Assume that the condition (P) from 5.1 fails, i.e., p = 2 and K is a number
field with at least one real prime. In this case the global duality must also take
into account the Tate cohomology groups H (G, —) for real primes v (where G, =
Gal(C/R) has order two). The statements in 5.1 then have to be modified as follows:
for every real prime v,

5.7.1.1. G, and Gk g satisfy the finiteness condition (F").
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5.7.1.2. ¢d2(G,) = cd2(Gk,s) = >0
5.7.1.3. For every n > 1, local class field theory defines an isomorphism
inv, : H*(G,,Z/2"Z(1)) -~ Z/2Z.
5.7.1.4. Local duality. — For every finite discrete Z/2"Z[G,]-module M, the cup
product
HY(Gy, M) x H* (G, Hom(M, Z/2"Z(1))) —H*(G,, Z/2"Z(1)) > Z/2Z
is a perfect pairing of finite Z/2Z-modules (i € Z).
5.7.1.5. Reciprocity law. — The sum of the local invariants invg = Zve g inv,
defines an exact sequence
0 — H*(Gks5.2/2"2(1)) — @ H* (G, Z/2"Z(1)) 25 7/2"7 — 0
veS

(where inv, = 0 for each complex prime v).

5.7.1.6. Global duality (Poitou-Tate). — For every finite discrete Z/2"Z[Gk s]-
module M there is an exact sequence of finite Z/2"Z-modules

0 —H"Grs. M) — @ H (G, M)& @ H(Gy, M)

vESy K,=R
H*(Gr,s, M* (1)) —H'(Grs. M) — @ H'(G,.M)& @ H'(Gy, M)
vESy K,=R
—H"(Gk,5,M*(1))" —H*(Gr s, M) — P H*(G,,M)® @ H*(G,, M)
‘UGSJt K,=R

H(Gks, M*(1))" — 0,
in which (—=)* = Hom(—, Z/2"Z).
5.7.1.7. For each M as in 5.7.1.6 and ¢ > 2, the map
ress : H'(Gr.s, M) — P H'(G,.M)& P H'(Gy, M) = @ Gy, M)

vESy K,=R
is an isomorphism.
5.7.2. In the present situation, the constructions in 5.3 should be modified as follows.

For each real prime v of K, the usual definition of the complete (Tate) cochain complex
C (Gy, M) of a G,-module M extends naturally to complexes of G,,-modules by

cont
CM(Gy. M) = @ TV (G, M)

i+j=n
and using the sign rules from 3.4.1.3. The standard cup products ([C-E, Ch. XII))
U: C:onL(GU* AI) ® C(.ont (G N) B C(.m\t(GtH ]\/[ ® N)
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extend, using the sign rules from 3.4.5.2, to the case of complexes of G,,-modules

(G, M*) & C

cont

(5.7.2.1) u:Ce

cont

(GlﬂN.) - écoont(vaj\/[. @ N.)

For every complex M* of ind-admissible R[G k s]-modules we define

é\vc cont(GK s, M* )

COHO ( “cont (CK S A[ ‘"‘**? @ (onf ”7 A[ @ cont GU7 M.)> [_1]7

vESy K,=R
where the map res, for a real prime v is given by
C.

cont,

(Gr,s,M*) — C¢

cont (

Gy, M*) — Ce

cont

(Gy, M?*).
The cohomology groups H i eont(Gr,s,—) of CL cont(GK 5, —) lie in the exact sequence
(5.7.22) - — H! 0 (Gros. M*) — Hl(Grs. M*)
255 P Hi (G MY & P HU(Gy. M*)— HEL(Grs, M®) —
vESy K,=R
The functor
M* > C? o (G5, M)
gives rise to an exact functor
R con(Gres. —) : DY (B Mod) — D(pMod).
The formulas from 5.3.3.2-5.3.3.3 together with (5.7.2.1) define products
Gk s, M*®rN*)

o~

UC : C(?orlt(GK757 AI.) ®R ac.',cont(GK S N.) I Cc cont(

U C( cont(GK,S7 ]\/j.) ®R C::(mt(GK S N ) B Cr cont(GK’Sv A{. ®R N.)7

for any pair of complexes of ind-admissible R[G k s]-modules M*, N*.

5.7.3. Lemma
(i) If M* = M is concentrated in degree zero, then
(Vl>3) ;(()Ilt(GKb M)_O
(ii) If A is any R-module with trivial action of Gk s, then invg induces an iso-
morphism
73 ~
H(:,cont,(GK,S’ A(l)) — A
Proof. — By a standard limit procedure one reduces to the case when M is a fi-

nite discrete Z/2"Z(G k s]-module, in which case the statement follows from 5.7.1.7
and (5.7.2.2). Similarly, it is sufficient to consider only the case A = Z/2"Z in (i),
when we conclude by 5.7.1.5, 5.7.1.7 and (5.7.2.2). O
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5.7.4. Proposition. — If M is a finite discrete Z/2"Z|G k s]-module, then the cup prod-
ucts U, U induce perfect pairings of finite Z/2™Z-modules

H(Grs, M) x H*! (Gk.s, Hom(M, Z/2"Z(1)))

c,cont

773
Hc,cont

(Gr.s,Z/2"Z(1)) — Z/2"Z

ﬁ(i‘,,(:ont(GK,Sa ]\/[) X HS_i(GK,Sa HOHI(M’ Z/ZnZ(l)))

773
Hc,cont

(Gk.s,Z/2"Z(1)) — Z/2"Z
(for alli € Z).

Proof. This follows from 5.7.1.4,5.7.1.6, 5.7.1.7 and the compatibility of the various
products involved. O

5.7.5. All constructions from 5.4 work in the present context, provided that
C? cont(Gr.s, =) (resp., RI'¢ cont (G ks, —)) is replaced everywhere by C¢ ., (Gk s, —)

(resp., ﬁl:(;,CO[lt(G K,5,—)). The final result can be summed up as follows: if

<1> ®
A A*
is a duality diagram with T', T* € Df,’%_ft (%%G,‘»_S]M()d) and A, A* € Dlj{_coﬂ(%d[GK’S]Mod),

then 7
P

RFcont(GK,57 T) f{?C,cont(CTVK,Sv T*(l))[?’]

P P
RF(:ont(GK,Ss A) f{?(:,(:ont(GK,Sv A* (1)) [3]

is a duality diagram in D(Co)ﬂ(RMod).

5.7.6. As 2 ﬁi(G,,, M) = 0 for each real prime v and each G,-module M, the
canonical map in D(rMod)

RFC,COnt(GK,Sv M.) — ﬁ\r(j,(Z()llt(GK,S7 M.) (M. S Db(l]%[déi?b]MOd))

becomes an isomorphism in Db(R[l/z]Mod), where R[1/2] = R ®z, Q2.
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CHAPTER 6

SELMER COMPLEXES

Classical Selmer groups consist of elements of H! (G g, M) satisfying suitable local
conditions in H'(G,, M) at v € S. We work in the derived category, which means
that we have to modify this definition and impose local conditions on the level of
complexes rather than cohomology. This is done in Sect. 6.1-6.2. The main abstract
duality result, Theorem 6.3.4, is deduced from our version of the Poitou-Tate duality
(Theorem 5.4.5) using the cup products from Sect. 1.3. The symmetry properties of
these duality pairings are investigated in Sect. 6.5-6.6; they require additional data.
In Sect. 6.7 we introduce the main example of “elementary” local conditions, following
Greenberg [Grel, Gre2, Gre3|.

The assumptions of 5.1, including (P), are in force.

6.1. Definition of Selmer complexes

6.1.1. Let X = X* be a complex of admissible R[G i s]-modules. Local conditions
for X are given by a collection A(X) = (A, (X))ves,, where each A, (X) is a local
condition at v € Sy, consisting of a morphism of complexes of R-modules

iy (X) 1 U (X) — Cooni(Go, X).

v cont

6.1.2. The Selmer complex associated to the local conditions A(X) is defined as

C3(Gr.5, X1 A(X)) =
ress (X)
Cone (C(:onr GK 5’ @ @ U+ — - @ (,ont G”?X )[ ]
veESy vESy
(sometimes abbreviated as é;(X)), where i{(X) = (i (X))ves,. Denote by

ﬁf/(GK,S, X;A(X)) (sometimes abbreviated as l:ﬁ"f(X)) the corresponding object
of D(gpMod) and by H}(GK.S,X;A(X)) (sometimes abbreviated as H}(X)) its
cohomology.
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If X and all U}F(X) have cohomology of finite type over R, resp., of co-finite type
over R, resp., are cohomologically bounded above, resp., are cohomologically bounded
below, the same is true for C3(G s, X: A(X)).

6.1.3. For v e Sy put
—i?f(X)

U (X) = Cone(U;r (X)

v

Ug(X)= P U (x

/H€Sf

Clon (G X))

There are exact sequences of complexes (with maps induced by obvious inclusions
resp., projections)
(6.1.3.1) 0— Cn (G, X)[-1] — U, (X)[-1] — U (X) — 0

0 — Cfeont(Gr.s. X) — C3(Gr.5. X A(X)) — U (X) — 0

0 — Ug (X)[-1] — C}(Gr5. X1 A(X)) — Coon(Gr.5. X) — 0,
which give rise to the following exact triangles in D(grMod):
(6.1.3.2) UF(X) — Rleont(Go, X) — U, (X) — US(X)[1]
$(X)[-1] — RIccont(Gr.5. X) — RIp(X) — U (X)
Us (X)[=1] — RI(X) — R eont(Gr.5, X) — Ug (X).

We know from Proposition 5.4.3 that RI'c cont(Gr,s,X) is dual to Rlcont(Gk s,
D ;(X)(1))[3] (under suitable assumptions). In order to deduce from (6.1.3.2) a duality
between ﬁf(X) and ﬁf(D,;(X)(l))[B], we must ensure that Ud (X) is (close to
being) isomorphic to the dual of Ug (D (X )(1))[2]. Taking into account the duality
between RIcont(Gy, X) and Rl cont(Go, D (X )(1))[2], this boils down to a suitable
orthogonality relation between U, (X) and UM (D ;(X)(1)), for all v € Sy. This notion
of orthogonality is introduced and studied in Sect. 6.2.

It is essential to have a canonical duality map between RI #(X) and the dual
of ﬁf‘f(DJ(X)(l))[S]; this is why the additional data 6.2.1.3 enter the picture. The
duality map itself is constructed in Sect. 6.3, using the abstract cup products from 1.3.

6.1.4. In the special case when
Ug (X) — 71 Ug (X)
is a quasi-isomorphism (which is equivalent to

@ Hz U+ X) (79(X)) @ (Um G”,X

vESy vESy

being bijective for i < 0 and injective for i = 1), the canonical map

T<0 RI‘/(GK‘S. X;A(X)) — 7<o Rl cont (G5, X)
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is also a quasi-isomorphism, i.e.,

Hi(Grs0 X A(X)) = H i (Gros, X) (Vi< 0)

cont
and
H} (G5, X; A(X))
;} KOI‘( CUIlt(Gk 57 @ cont GU7X /( (X))*(HI(UJ(X)))>
vESy

coincides with a classical Selmer group given by the local conditions

(i (X)) (H' (U (X)) € Hlop(Go X) (€ Sy).

v cont

6.2. Orthogonal local conditions

Let J = J°, Dy and r,, ; (for cach v € Sf) be as in 5.2.2.

6.2.1. Assume that X, X5 are complexes of admissible R[G k, s]-modules,
m: X1 ®r Xo — J(1)
a morphism of complexes of R[Gk s]-modules and
i (Xi) 1 U (X)) — Gl (Go, X3) - (i=1,2; v € Sy)

local conditions for Xy, Xs.
6.2.1.1. Typical examples of 7 are

vi: Dy(X2)(1) @p X2 — J(1)

vo 1 Xy ®p Dy (X1)(1) — J(1).
In general, 7 factors as

adj(m)®id
—

m: X1 Qr Xo Dy(X2)(1) ®p Xo—5J(1)

and induces another morphism of complexes
S12 us
mosyy: Xo®@r X1—X1 @r Xo—J(1),

which factors into

adj(mosy2)®id
e ——

mosyg: Xo®r Xy DJ(Xl)( ) RXllh]( )

thus 7 also factors as

id®@adj(mosy2)

m: X1 ®r Xo — X1 @r Dy(X1)(1 )&J(l)-
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6.2.1.2. For cach v € Sy, denote by prod (X1 Xo, ) the morphism of complexes

prod, (X1, Xo,7) : U (X)) @R U+(X2) Cc'om(Gv7 X1) ®R Cooni (G, X2)
Gt (G X B KX)ol (Gn (1) 78l O (G (1),
6.2.1.3. Definition. — If there is a null-homotopy
hy = hy(X1, Xo,7) : prod, (X1, Xo, m) —> 0,
we say that A, (X1) is orthogonal to A, (X2) with respect to m and h,. Notation:
Ay(X1) Lrn, Au(X2).

6.2.1.4. Definition. — We say that A(X1) is orthogonal to A(X3) with respect to =
and hs = (hy)ves, (notation: A(X1) Lrns A(X2)) if Ay(X1) Lrn, Ay(X2) for all
v e Sf.

6.2.1.5. If the morphism prod, (X, Xo, ) is equal to zero, which happens very often
in practice, then A,(X1) Lro Ay(X2).

6.2.2. Local cup products. — Fix v € §; and assume that A,(X1) Lrn,
A, (X2).
Recall that, for i = 1,2, the complex

U (X)[-1] = Cone(U;L(X) ~i (X

v

Clon (G X)) [1]

has differential

d(bi,c;) = (dbg, it (b;) — de;)

(for b; € UF(X:)’, ¢ € CLot (G, X)), G =bi =G+ 1= (bi, 7).
Denote by U = U7T = 7'1212 o me o U the truncated cup product with values in

7'>2 Cooni(Gy, J(1)) from 6.2.1.2.
The formulas

(b1, e1) U p, ba = (1Uz (ba) + hy (b1 ® be)
bi Upn, (bayca) = (=12 (b1)U ey + hy (b ® by)
(cf. Proposition 1.3.2(i)) define morphisms of complexes
U— e, - Uy (X1)[-1] @R U (X2) — (7, CC’(M(GU,J(l)))[—l]L[_l]»J[—ii]
Utimany 3 U (X)) @ (U (Xa)=1)) — (78 Cl (G J(L)) -1 (-3,
hence, by adjunction, morphisms of complexes
U eh, = adj(U- ) 2 Uy (X0)[=1] — Dy5)(U; (X2))
Ut rn, = adj(Us mn,) 0 US (X)) — Doy (Uy (X2)[=1]).
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6.2.3. Error terms. — Assuming that A, (X1) Lrn, Ay(X2), put
Err, (A, (X1), Ay(X2), m) = Cone(ug x.p,)-
If A(Xy) Lans A(X2), put

Err(A(X1), A(Xa),7) = @) Erry (A, (X1), Ay (X2), 7).
vESy

6.2.4. Lemma. — Fiz v € Sy and assume that A, (X1) L n, 8o(X2). The following
diagram of morphisms of complezes is commutative and the vertical maps define a
morphism of exact triangles in D(gMod):

Ceont(Go, X1)[-1] Uy (X0)[-1] ——————= U (X1)
ay x, [—1]
(Cc.ont(GU?DJ(Xl)(l))) U—m hy Ut hy

D yi—s((adj(mosi2))x)

D (-5 (i (X2))
DJ [-3] (C(:ont(G'vv X?))

D) (UF(X2)) —— D -3 (U, (X2)[-1])
Proof. — This follows from Lemma 1.2.11 and the following equalities:

(07 Cl) U_ m.hy by = ¢ L.J7T Zj(bQ)
(b1,0) U= zn, b2 = b1 Ug 7, (b2,0). O

6.2.5. We shall be interested only in the following two cases:

(A) The complexes X1, X are bounded, J = I[n] for some n € Z (hence D; = D,,)
and - for i = 1 or 2 - all cohomology groups of X; (resp., of X3_;) are of finite (resp.,
co-finite) type over R.

(B) The complexes X1, X2 are bounded, J = w*[n] for some n € Z (hence D; =
2,,) and all cohomology groups of X, X2 are of finite type over R.

6.2.6. Lemma - Definition. —— Assume that one of the conditions (A) or (B) in 6.2.5 is
satisfied. Then the following two conditions are equivalent:

adj(m) : X1 — Dj(X2)(1) is a quasi-isomorphism

<= adj(mos12) : Xo — D;j(X1)(1) is a Qis.
If they are satisfied, we say that w is a perfect duality.
Proof. — Applying Lemma 1.2.14 to f,g,h = id, A = 7, p = 7 0 s12, we see that

adj(m o $12) is equal to

D (adj(m))(1)
_

Xo—"=Dy(Dy(X2)(1))(1)~ Dy(X1)(1)
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and adj(m) is equal to

X120 D, (D (X,)(1)) (1) 2edimen ),

Dj(X2)(1).

The statement follows from the fact that both maps ¢; are quasi-isomorphisms,
by Matlis duality 2.3.2 (resp., Grothendieck duality 2.6) in the case 6.2.5(A)
(resp., 6.2.5(B)). O

6.2.7. Lemma - Definition. — Assume that one of the conditions (A) or (B) in 6.2.5
is satisfied and m is a perfect duality. If, for a fired v € Sy, we have Ay(X1) Ly p,
A, (X32), then the following two conditions are equivalent:

Uy 7.k, 18 @ quasi-isomorphism <= u_ rp, 1S a quasi-isomorphism.

If they are satisfied, we say that A, (X1) and A,(X2) are othogonal complements of
each other with respect to m and hy; notation: Ay(X1) LLyp, Ay(X2). If they are
satisfied for all v € Sy, we write A(Xy) LLyne A(X2).

Proof. Under the assumptions (A) or (B) of 6.2.5 the vertical arrow ajx[—1]
(resp., Djj_g((adj(m o s12))«)) in Lemma 6.2.4 is a quasi-isomorphism, by Proposi-
tion 5.2.4 (resp., by Definition 6.2.6). O

6.2.8. Corollary. Under the assumptions of 6.2.7,
Ay(X1) Llgn, Ay(X2) <= Err,(A,(X1), Ay (X2),m) — 0 in D(zrMod).

6.3. Global cup products

We are going to apply results of Sect. 1.3 to Selmer complexes.

6.3.1. Assume that we are given X, Xo, m and A(X,) Lr s A(X2) asin 6.2.1. Our
goal is to define a morphism between the exact triangle

RF(:,(:()IW(GK,S,X]) — RNF](XI) B U;'F(Xl)
and the D jj_g-dual of the exact triangle
Us (X2)[~1] — RI(Xs) — Rlcont(Gr,s. Xa).
Consider the data of the type 1.3.1.1-1.3.1.4 given by the following objects:

(1) Ay :Cgom,(GK-Sr Xl) By = U:(Xl) Ci= @ cont GU? Xl)
veSy
A2 Cu)llt(GK S XQ) BQ = U;(XZ) 02 - @ Cont G7HX2)
vESy
A3:TI>[2 C(.'Ont,(GK-,Sf ‘](1)) B3=0 C3= @ 7—>2 (ont GU J( ))
vESy
(2) A; = C; %, Bj given by f; =ress,, g; = Lj;(X ) (j=1,2), g3 =0.
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(3) Products Uya, U induced by the truncated cup products L.J,r associated to w
(cf. 6.2.2) and Ug = 0.
(4) Homotopies h = (hy, hg) = (0, hg).

For these data,
Ej = C}(Gr.s, X;;A(X;) = CHX;) (1 =1,2).

As in 5.4.1 we have a quasi-isomorphism r;[1] : E3[1] — J[—2], unique up to homo-
topy, which makes the diagram

l(r.,,“/) r[1]

B,cs, /-2 — J[-2]

commutative up to homotopy.
For every r € R, Proposition 1.3.2 gives cup products

Urrh = Upp : B1 @p By — E3—5J[=3],
hence, by adjunction, morphisms of complexes
Yewhs = adj(Un ) 1 CHX1) — Dz (CH(Xa)).

The homotopy class of vz . is independent of the choices of r € R, (ry,7) and rg, s

from 5.4.1. It may depend on the homotopies (h,), but it does not change if we

replace (h,) by homotopic homotopies (hy) ~ (hy) (via a second order homotopy).
Denote by

Yrhs P REp(X1) — Dy (RIf(X2))
the corresponding map in D(rMod).
6.3.2. If X, X, are bounded and UJ(X;) (j = 1,2) are both cohomologically

bounded above, then ﬁff(Xj) ( = 1,2) both lie in D~ (gMod) and the cup product
Ur . induces (assuming that A(X;) Ly ne A(X2)) a cup product

— L
(6.3.2.1) Urhs @ RIp(X1)®Qr RTf(X5) — J[—-3]
and pairings on cohomology

(6.3.2.2) Hj(Gi.s. X1;A(X1)) @r H}(Gis, Xo; A(Xp)) — H73(J*).
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6.3.3. Proposition. — Fiz r, j and rs j. If A(X1) Lzns A(X2), then the following
diagrams of morphisms of complexes have exact columns and are commutative up to
homotopy (the vertical maps are those of 6.1.3 and their D j_3-duals):

0 0
| |

Ug (X1)[-1] —_— Dyi_5(Ug (X2))
| I

Ci(Gres, X A1) =% Dypyy(C3(Gres, Xos A(X2)))

—

3.
Coon(Grs X1)  — Dy 5(C2 (G5, X2))

O —

0

0

| |

CC (()nt(C;A 5’X1) R D.1[73](C(.:011L(GKVS7X2>)

CH(Grs. XuAXL) —5 Dy (CHGx 5. X2: A(X2)))
U;(f(l) s, D5 (Ug (X2)[-1])
0 0

Above, the maps (. resp., .3 are equal to

Beoa.xq .
Be C(()m(GK S Xl)_h_}Dl[ 3] (Cc.cont(GKvSv DJ(X1>(1)))

D s (adj(mosi2)x)
YDy (Ct

c,cont (

Gk s.X2))
B O ot (G, s,Xl)——>DJ[—3](Cf-ont(GK,swDl(Xl)(l)))
D;/[L(Lm—’ﬂl[ 3)(Coont (G 55 X2)).
Proof. This follows from Lemma 1.2.11 and the following formulas
(a1,0,¢1) Upp (az,0,0 a1U as,0 (lL'J7T ress, (az))
(0,b1,¢1) Ug.n (0,b2,0 0,0, 10y (i (b2)) + hs(by @ b))
(0,0, (=1)P (i% (b1)) Uz €2 + hs(by @ b))

(valid in our case, since Up = 0 and hy = ()). O

)=

(a1,0,0) Up.p (a2,0,c2) = (alu,T a2,0,(—1 )‘“rcsS'/.(al)L'J,T c2)
) =(
) =

(0,’)1,()) Utk ( ), ba, co
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6.3.4. Theorem. - Assume that one of the conditions (A) or (B) in 6.2.5 is salisfied
and m is a perfect duality. If A(X1) Lrne A(X2), then there is an exract triangle in
D(rMod)

— - ——

R (X)) =D g (R f(X2)) — Err(A(X1), A(X2), 7).
In particular, the map

Yene : ROp(X)) — D ji_3 (R[;(X2))
is an isomorphism in D(grMod) if and only if A(X1) L1, ne A(X2).
Proof. — In the second diagram in Proposition 6.3.3, the map .8 is a quasi-
isomorphism by Proposition 5.4.3. This implies that Cone(yx 1) is isomorphic
in D(gMod) to Cone(uy xpny) = Err(A(X1), A(X2), ), which proves the Theorem
(using Corollary 6.2.8). O
6.3.5. On the level of cohomology, Theorem 6.3.4 gives exact sequences
- — H" Y (Err) — f[}(Xl) — Hq‘3(DJ(R\ff(X2))) — HY(Err) — ---

(where Err = Err(A(X1), A(X2),7)). Under the assumptions of 6.2.5(A), we have
J = I[n] and

HT*(D;(RT4(X2))) = D(H} " (X2)).
Under the assumptions of 6.2.5 (B), we have J = w*[n]. If, in addition, all cohomology
groups of Ud (X2) are of finite type over R, then ﬁf(Xz) € Dy (rMod) and there is
a spectral sequence

By’ = Exty (H} " (X2),w) = H™ (D, (R (X)),
which degenerates in the category (rMod)/(pseudo-null) into exact sequences
0 — Ey?' — HI3(Dy(RI4(X2))) — B9 — 0.

The term EY? is torsion-free over R (by Lemma 2.8.8), while codim g (supp(Ey ?~")) >
1. In particular, there is a monomorphism in (gMod)/(pseudo-null)

(117 (0 (BT (X))

which is an isomorphism if R has no embedded primes.

N Ext}{ (H}l—n*(1(X2)7 w),

R-tors

6.3.6. In the situation of 6.2.5(B), there is a straightforward generalization
of 6.2.6, 6.3.4 and 6.3.5, if we insist on adj(m) to be a quasi-isomorphism only
in D((rMod)/(pseudo-null)).

6.4. Functoriality of Selmer complexes

Let J be as in Sect. 6.2.
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6.4.1. Let X, X5, 7 be as in 6.2.1 and assume that Y;,Y5,p: Y1 ®@p Yy — J(1) is
another triple of the same kind. Consider the following data:

6.4.1.1. Orthogonal local conditions
A(Xy) Lrnsx) A(X2), A1) Lrngv) A(Ya).
6.4.1.2. Morphisms of complexes of R[Gk s]-modules \; : X; — Y, (j = 1,2); set
A=A R X1 ®p Xy — Y, Qp Yo,
6.4.1.3. Morphisms of complexes of R-modules
B U (X)) — US(Y;)  (G=1.2).
6.4.1.4. Homotopies
vjig (Vi) oy = (M) 0id(Xy)  (=1,2).
6.4.1.5. A homotopy k:po X~ 7.
6.4.1.6. A second order homotopy
K :hs(Y)x (81 @ Ba2) == hs(X) + ku* (i5(X1) @i 4 (X2)) + U, % (v1 @ v2)1
2

K': (US(X1) 08 U (X2)' — @D (7 Clone (G T1))" .

vESy
Given 6.4.1.1-6.4.1.6, we obtain the following data of the type considered in 1.3.3:
(Aj.B;,Cj, f5,95,Us, h) as in 6.3.1, (A;, B;,Cj, fj,Gj,Us, h) the corresponding ob-
jects for (Y1, Y2, p),
aj, v =N Bi=8; (=12), azy=id, p3=0,

u; =0, vyj=v; (j=12), wuszv3=0,

k'(y,k"y:k“ kJB:O, [(fZO, Kg:K.
Applying Proposition 1.3.4, we obtain the following result.

6.4.2. Proposition

(i) The data 6.4.1.1-6.4.1.4 (it is not necessary to assume orthogonality of local
conditions at this point) define morphisms of complezes

e(Aj) = @(X;, B, v5) : C3(X;) — C3(Yj),
given by the formula in Proposition 1.3.4(i). The homotopy class of ¢(\;, Bj,v;) is
unchanged if v; is replaced by 'z,r;- related to v; by a second order homotopy 1/9 ~ 04

(ii) Given the data 6.4.1.1-6.4.1.6, the following diagram of morphisms of com-
plexes is commutative up to homotopy (for every r € R):

~ X Unrhg(X)

C}(Xl) @R C}(X2) —— J[-3]
P(A1)@p(A2) I

=~ =~ Upirhg(Y) .

Ci(Y1) @p C3(Y2) J|-3).
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6.4.3. Corollary. — Gliven the data 6.4.1.1-6.4.1.6, the following diagram is commu-
tative up to homotopy (for every r € R):
5’}(X1) DJ[AS](C;}(X2))
w(A1) TD./[73](<P()\2))

Ym.rhg(X)
—_—

e Yo, rhg(Y) e
Cs(vy) —50 Dy (C3(Y)).
Proof. — Apply Lemma 1.2.11 to the diagram in Proposition 6.4.2(ii). O

6.4.4. If we are given the data 6.4.1.1-6.4.1.3 such that hg(X) = hg(Y) = 0, m = poA
and i (Y;) o B = (A\j)« 0i&(X;) (j = 1,2) — which happens quite often in practice —
then we can take v; = 0 (j = 1,2), k = 0, K = 0. The formula in Proposition 1.3.4 (ii)
then gives H = 0, which implies that the diagrams in Proposition 6.4.2 (ii) and Corol-
lary 6.4.3 are commutative, not just commutative up to homotopy.

6.4.5. A special case of the functoriality data 6.4.1 occurs if we replace m by a
homotopic morphism of complexes 7’ : X; @ g Xo — J(1). Taking
Y, =X,, AY))=AX;), A=id, g;=id, v; =0 (j=1,2),
p=r', ki1 —m,
all we need in order to apply Proposition 6.4.2 are new homotopies
h! = hy (X1, Xo, ') : prod,, = prod, (X1, Xo,7") —~ 0
and a second order homotopy
K hly — hg + ke x (i§(X1) ® i (X2)).

For example, if i : J — J is homotopic to the identity via a homotopy ¢ : u ~~ id and
7w = pom, then we can take

k={(xm, h =pxh,, K=(K,= —lhy)ves,

since
K, : —(dl +td) x hy = h!, — hy —~ —€*x (dh, + h,d) = £ x prod,,.

6.5. Transpositions

In order to exchange the roles of X; and Xs in 6.2.1 we need additional data.

6.5.1. Definition. — Given X as in 6.1.1 and a local condition A,(X) at v € Sy, a
transposition operator for A,(X) is a morphism of complexes

7" (X) 1 US(X) — US(X)
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such that the diagram o
US(X) 5 (G, X)

v
lT,T(X) lT
oy
Ur(X) 5 Gl X)
commutes up to homotopy (recall that 7 denotes the transposition operator defined
in 3.4.5.3-3.4.5.4).

cont(

6.5.2. Lemma. — Assume that we are given m : X1 @p Xo — J(1) as in 6.2.1 and local
conditions A, (X;), j = 1,2 (for some v € Sy) that both admit transposition operators

T,7(X;). Then the following two conditions are equivalent:

Ay(X1) Lrn, Au(X2) for some b, <= Ay(X2) Lrosiy.n, Au(X1) for some b,
Proof. — This follows from the fact that the following diagram and its analogue in

which the roles of X; and X, are interchanged are commutative up to homotopy
(by 3.4.5.4):

sioo(T T+
U (X)) @5 U (X2) St Ui (Xa) @5 U (X))
ol |t
s120(T&T)
C’c.'ont (G'U’ Xl) Or C’(."ont (GU? X2) —1_2_’—) Cc.ont (G’U? XZ) Or C(.:()nt(G'lH Xl)
L.J,r L.on s12

T;Z C(nnt (GU7 J(1>) 7—>2 cont(Gva ]( )) O

6.5.3. Assume that we are given X, Xo, 7 as in 6.2.1. Consider the following addi-
tional data:
6.5.3.1. Orthogonal local conditions

A(AXI) —Lﬂ'.hs A(X2)7 A(XZ) ‘Lﬂ'Oslg h’ A(*XI)

5.3.2. Foreach Z = X, Xo and v € Sy a transposition operator 7,7 (Z) : U,F (Z) —
U’,T(Z)’ put 74(Z) = (1,5 (Z))ves, -
6.5.3.3. For each Z = X, X5 and v € Sy a homotopy
Vi i5(Z) 0 TH(Z) — T o il (2);
put Vz = (Vz.)ves, (the existence of Vz follows from 6.5.3.2, by definition).
5.3.4. For each Z = X, X5 and v € S, homotopies
kz:id =T onC(Gks,Z)
kY, tid — T,5(Z) onUS(2)

kzy:id—~T onC: (G, Z)

cont,
satisfying

res, x ky = kyz., xres,
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and such that there exists a second order homotopy

if(Z)xk , + Vzw = kzoxif (Z).

6.5.3.5. For each v € Sy, a second order homotopy

H’l} T hv(Xl,XQa 7() + L.Jﬂ' * (Vxl.v @ VX2»’U)1
— (X, X1, 7o s12) * (s12 0 (T,7(X1) ® 7,7 (X2)))
H,: (UF (X)) @ U (X2))' — (2 Coop (G 1 (1))
6.5.4. Proposition
(i) Given the data 6.5.3.1-6.5.3.3, the formula

Tz(a,b,c) = (T(a). T (Z)(0). T(c) = Vz(b))  (Z=X1,Xz)
defines a morphism of complexes
Tz : C3(Gr.5, Z: A(Z)) — C3(Gi s, Z; AM(Z).

If, in addition, we are given 6.5.3.4, then Ty is homotopic to the identity.
(ii) Given the data 6.5.8.1-6.5.3.3 and 6.5.3.5, then the following diagrams com-
mute up to homotopy (for every r € R).

Ur b

C3(X1) ©r C3(Xa) =3
15120(73«*1@7)(2) H
— ~ Uﬂ»oxlz.] ~r.h! .
C(Xs) @ C3(X1) J[-3]
~ REN e
C3(X1) : D j(_a (Cf(XZ))

la'/[_s]OTxl Dyi-a(y Tx,) |
~ J=31Vrosio.1—rnl, 04Xy ~
Djj-s5(Di-s (C}(Xl))) = - D3 (C}(X'z))

~ Vwo.clg,l—r',hg,oTX’z ~

C3(Xa) D yi-5(C3(X1))
15(/[—31 lDJ[_S](TX”

=~ D‘ 3( ™, Lq) =~
D j_3 (DJ[—:;](C}(XQ))) LA D3 (C}(Xl))

Proof
(i) This follows from 1.1.7.
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(ii) We are going to apply Proposition 1.3.6 to the data 6.5.3.1-6.5.3.4 together
with

Ta,Tc =T, Tp=T"(X1)resp., TH(Xo),
Uy U =Ur, Uy =0
h'f =0, h; = h,
Uj=0 (j=123),
Va=0, Vi=Vyx, (j=12),
ta =tg=1t,=0,
Hy =0, Hy=(Hy)ves,-
Proposition 1.3.6 then implies that the first diagram is commutative up to homotopy

(as T3 = T ~» id and U’1_7_JL, = Unrosig.1—rn ). Commutativity up to homotopy of the
second and third diagrams then follows from Corollary 1.3.7. O

6.5.5. Corollary. Given the data 6.5.3.1-6.5.3.5 and r € R, the diagram
Uz

C3(X1) @r Cp(Xy) ——  J[-3]
||

CA;/,'v(Xz)@R C~'}(Xl) - J[=3]

mosyg.1—r.h/

is commutative up to homotopy and the composite maps

D j_g (D.I[—-.‘S] (CN’;(XI )))

D.][f.'ll(‘hro,\vlz.l rh',

) _
=D 5(C3(X2))

=~ £J[-3)

C3(Xa)

€y[-3) Dy—sy(vmorng)

C3(X2) Dyi_a(Dyp5(C3(X2))) Dji—5(C3(X1))

are homotopic to Yrrne and Yrosia,1—r ks respectively. Under the assumptions as

in (6.3.2.1), the corresponding cup products make the diagram
,\_, |
Urn hs © RIV"(X])@RRF/'(XQ) — ,][—3]
||
—— L —— .
U‘n’oslg,hfg : RF/(X2)®RRI j(X1> I J[_‘}]

commutative in D™ (rpMod).

6.6. Self-dual case

6.6.1. Let X and A(X) be as in 6.1.1. Assume that we are given a morphism of
complexes of R[Gk s]-modules 7 : X ®r X — J(1) such that A(X) Ly, A(X) for
suitable homotopies hs = (hy)ves,, and that 7' := 7 o 515 is equal to

7 =mosp=c-m, c==+1.
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This implies that L.Jﬂ/ =c- L.J,r and
A(X) L ny, A(X), hg=c-hg.
The formula in Proposition 1.3.2(i) implies that the cup products
Un s Ut = C3H(X) @1 CHX) — J[=3]
are related by
(6.6.1.1) Un’ b = €+ Uz pope

6.6.2. Proposition. — Under the assumptions of 6.6.1, assume, in addition, that Z =
X admits transposition operators T,* (X) (v € Sy) and the data 6.5.3.5-6.5.3.5, where
6.5.8.5 consists of second order homotopies

Hy T xhy+Upx (Vi @ Vi)t = ¢ hyx (120 (TT(X) @ TH(X))  (veSy).

Then the following diagram is commutative up to homotopy:

Ur . rh

CH(X) @ C}(X) J[-3]
||
C(X) @p CH(X) — =" J[-3]
and the morphism
£7[-3) Dyi—3)(Vm,rihg) ~

CH(X) Dy (D5 (C3(X)))

is homotopic to ¢ - Yx1—r hs-

Dy-3(CH(X))

Proof. This is a special case of Corollary 6.5.5 for X; = X, = X, if we take into
account (6.6.1.1). O

6.6.3. Corollary. If, in addition, 5}(X ) is cohomologically bounded above, then the
cup product (6.3.2.1)

. L
Ur hg * RF/(X)@RRI’J((X) —_— J[—3]
satisfies

Urhs = €+ (Unng © S12).

6.6.4. Hermitian case. — In 6.6.4-6.6.7 we assume that R is equipped with an
involution ¢, i.e., with a ring homomorphism ¢ : R — R satisfying ¢ o ¢ = id.
For an R-module X, set X* = X ®p,, R; this is an R-module in which

rlzer)=xxr’, (ra)or =z@r)’ (r,r € R,z € X).
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For any R-modules X,Y there are canonical isomorphisms of R-modules

(6.6.4.1) (X)X, (z@2r)@r — u(r)r'a,
X' @rY" = (X ®rY)", (@)@ yor)— (zoy) @ rr,
(=t ®id): R* = R®p, R R, rx o —(r)r,
Homp(X,Y)" = Homp (X", Y"), for— (z@r — f(z)@rr).

For f : X — Y we denote by f*: X* — Y* the image of f ® 1 under the last
isomorphism in (6.6.4.1). With this notation, the isomorphism

~ (RL)L RL
is given by r — 1®r. The functor X — X" extends in an obvious way to complexes of

R-modules, and the isomorphisms (6.6.4.1) also hold for X*®rY* and Homy (X, Y*).
Assume that we are given a morphism of complexes

v:Jt—J
(where J is as in 6.2) such that
v S (I — Tt
is a homotopy inverse of v.
6.6.5. Let X, A(X) beasin 6.1.1. The local conditions A(X) define local conditions
A(XY) = A(X)" for X4
Lrer(X’) = Lj<X)[ : U;(X)L - C(()nt(GW X) - C(mlt(G'U*XL)

and a canonical isomorphism of complexes

~ Lt~ e L

CHX) — CHXY).
Assume that 7 : X®@pX* — J(1) is a morphism of complexes of R[G i s]-modules such
that A(X) Lxns A(XY) for suitable homotopies hs = (hy)ves,, and that 7 1= 70512
is equal to

7 =mosp=c-(vor'), c==+1.
It follows that Uy = c - (v ( ~)") and
A(X") Ly, AX),  hg=c-(vohy).
Asin (6.6.1.1), the cup products
Uit : CHX) @ CH(X) — J[-3)]
Unrarn : CHX) @ CHX) — J[-3)

are related by
Urr',v'.h,/ =C- (V o (Um7‘,}L)L)-

ASTERISQUE 310



6.7. AN EXAMPLE OF LOCAL CONDITIONS 151

6.6.6. Proposition. — Under the assumptions of 6.6.5, assume, in addition, that Z =
X admits transposition operators T;F(X) (v € Sy) and the data 6.5.3.3-6.5.3.4. Ap-
plying the functor M — M?", we obtain the same data for Z = X*. Assume, further-
more, that the triple (X, X*, m) admits the data 6.5.3.3, i.e., second order homotopies

H,: T*hy"'oﬂ—*(VX,v@VXL’v)] —~ e (vohl)*(s120(T,H(X) T, (X)) (v e Sy).

Then the following diagram is commutative up to homotopy:

Uz, rh

CyX)orC3(X) —— J[-3] = J[-3
N L J,812~ " ) TI/ lw
Cy(X) ®rCHX) ———"— J[-3] = J[-3].
Proof. This is a special case of Corollary 6.5.5 for X; = X, Xy = X" O

6.6.7. Corollary. — If, in addition, 5'}(X ) is cohomologically bounded above, then the
cup product (6.3.2.1)
—— L —— L
Ur ks * RFf(X)@RRFf(X) — J[—3]
satisfies

Unhs = ¢+ (V0 (Unng) 0 812).

6.7. An example of local conditions

In this section we consider local conditions analogous to those studied by Greenberg
[Grel, Gre2, Gre3|. Let J be as in 6.2, X,Y complexes of admissible R[Gk s]-
modules, and 7 : X ® g Y — J(1) a morphism of complexes of R[Gk,s]-modules.

6.7.1. Fix v € Sy. Assume that we are given for Z = X, Y a complex of admissible
R[G,]-modules Z and a morphism of complexes of R[G,]-modules
iz zH — Z.
These data define local conditions
i+
AU(Z) : U:_(Z) = CL.’ont(GUV ZU+)JU—(Z)>C(:()M(GU7 Z)
Put .
—Jii(Z
Z; = Cone(Zj——>J"'( )
then Uv_(Z) = Cgorlt(GU7 Zv_)

2);

6.7.2. Definition. — We say that X, L, Y," if the morphism

1 iTX)eit ()

XI ®rY, X @rY—"—=J(1)

is zero.
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6.7.3. Lemma

(i) Xf L Y)F = AL(X) Lo Ay(Y).
(i) X;F LrY," <= Yt L,os, XiF.

v

Proof. — This follows from the definitions. O

6.7.4. The morphism 7o (7 (X) @ j7(Y)) in 6.7.2 factors through X @g Y,". By
adjunction we obtain a morphism of complexes

(6.7.4.1) X — Hom%y(Y,'

v

J(1)) = Dy(Y,))(1).

If X;f L. Y, then (6.7.4.1) induces a morphism of complexes

(6.7.4.2) X7 — Hom(Y,', J(1)) = Dy (Y;H)(1).

We say that X7 L1, Y, if (6.7.4.2) is a quasi-isomorphism.

6.7.5. We shall be interested only in the following two cases:

(A) The complexes X, Y, X, Y, are bounded, J = I[n] for some n € Z and
either all cohomology groups of X, X, (resp., of Y, Y,;7) are of finite (resp., co-finite)
type over R, or all cohomology groups of X, X' (resp., of Y, Y,") are of co-finite
(resp., finite) type over R.

(B) The complexes X, Y, X', Y,I are bounded, J = w*[n] for some n € Z and all
cohomology groups of X, Y, X, Y, are of finite type over R.

6.7.6. Proposition. — Assume that one of the conditions (A) or (B) of 6.7.5 is satis-
fied, X.F L. Yt and 7 is a perfect duality. Then

(i) X} L1 Y, <<= Y L1, X,
(i) X;f L1, Y,F = A,(X) LLlroA(Y).

(iil) Y5 Llyos, XJf = Ap(Y) Llrosi,.0 Au(X).

(iv) Completing the morphism (6.7.4.2) to an exact triangle W, — X, —
Dy (Y;H)(1) — W,[1] in D (‘;{/}G“]Mod), then there is an isomorphism in D(gMod)

v

Errv(Av(X), A,,(Y), 7T) - RIcont (G‘Lh Wv)

Proof. The map (6.7.4.2) and the dual of its analogue for mwos;9 fit into a morphism

of exact triangles in D? (%J[G”]Mod)

X7 —

X
(6.7.6.1) l l
Homp(Y,", J(1)) — Homp(Y,J(1)) — Homy(Y,", J(1)),

— X~

v
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in which the middle vertical arrow is an isomorphism, since 7 is a perfect duality; this
proves (i). As regards (iv), applying the functor RT cont(G,, —) to (6.7.6.1) we obtain
a morphism of exact triangles in D?(zMod)

RFCOIlt(G7M X{,F) — chont (G’U7 X) — RFcont(Gva Xv_)

Jo 1 I

RTcont(Gv, Dy (Y,7)(1)) — Rlcont(Go, Dy (Y)(1)) = RIcont(Go, Dy(Y;5)(1)),
in which the middle vertical arrow is again an isomorphism. This gives isomorphisms
Err, (A, (X), A, (Y),7) = Cone(uy »0) — Cone(A)[—1] — Rl cont(Gy, Wy)
in D?(gpMod), proving (iv) and (ii) (hence also (iii), if we replace 7 by 7o s12). [
6.7.7. Proposition. — Assume that we are given Z¥ — Z (7 = X,Y) satisfying

X7 Lx Y, for all v € Sy, Assume that one of the conditions 6.7.5(A) or (B) is
satisfied. Then

ﬁ‘j(X) o DJ[—B] (ﬁ\ff(y)) - @ RFcont(Gvan)a
vESy

where W, was defined in Proposition 6.7.6(iv), is an ezxact triangle in D?t(RMod)
(resp., D’C’Oﬂ(RMod)). In particular, if X;7 L1 Y," for all v € Sy, then the map

Yr0 : RTf(X) — D5 (RT(Y))
is an isomorphism in D/bt(RMod) (resp., Dléoﬁ(RMod)).

Proof. — Apply Theorem 6.3.4. O

6.7.8. Transpositions. — Assume that we are given Z;F — Z (Z = X,Y) sat-
isfying X7 L, Y, for all v € Sy. Then the following objects are the data of the
type 6.5.3.1-6.5.3.5:

AU(X) —L7T,O A'U(Y)7 AU(Y) J—71'0512,0 A?J(X)y 7;;+(Z) = T7 VZ,U = Hv = 07
kz, k:;v, kz , given by a functorial homotopy id — 7.

6.7.9. Assume that X,Y, X, Yt (v € Sy) satisfy the condition 6.7.5(B) with J =

we. Write T'= X, T.)F = X,F, T*(1) =Y, T*(1)} =Y, and put
A=D(Y)(1), Ay =D, )1)

v

A*(1) = D(X)(1), A*(1)] = D(X;)(D).
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If X;F L1, Y, for all v € Sy, then the previous discussion and Theorem 6.3.4 imply
that the Selmer complexes of T, A, T*(1), A*(1) are related by the duality diagram

RT,(T) RT (T*(1))[3]
[ >k
RT(A) RT;(A*(1))[3]

(in Dé’co)ft( rMod)). This diagram gives a spectral sequence

B = Extiy (1}7(1°(1),2) = Bty (DUTH(A)). ) = T79(T)

6.8. Localization

6.8.1. Let.¥ C R be a multiplicative subset. Everything in Sections 6.1-6.7 is still
valid for R, instead of R; the only difference is that references to 5.2.3 should be
replaced by those to 5.6.2. For example, the same proof as in 5.6.3 gives a localized
version of the duality Theorem 6.3.4.

6.9. In the absence of (P)

6.9.1. In the situation of 5.7, we must also consider the complexes CA'C’Om

(Gy, X) and
local conditions

U (X) — Gy (G X)
at all real primes v of K. Everything in 6.1-6.7 works with obvious modifications,
provided we consider only bounded complexes X,Y. The easiest method is to put
UF(X)=UF(Y) =0 for all real primes v; then the complex

@ EI“I“U(AU(X), Av(y)v 71—)

K,=R
becomes acyclic in D (g /2 Mod), where R[1/2] = R ®z, Q2.
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CHAPTER 7

UNRAMIFIED COHOMOLOGY

Let v € Sy,v {f p. The aim of this chapter is to define a suitable generalization
of unramified cohomology H! (G, M). In the absence of a good Hochschild-Serre
spectral sequence on the level of complexes, we use explicit “small” complexes com-
puting continuous cohomology in this case. Unramified local conditions turn out to be
orthogonal with respect to the Pontrjagin duality (Proposition 7.5.5, 7.6.6), but not
with respect to the Grothendieck duality; generalized local Tamagawa factors appear
at this point (7.6.7-7.6.12). Combining unramified local conditions with those from
Sect. 6.7, we obtain Selmer complexes associated to the Greenberg local conditions;
these are studied in Sect. 7.8.

7.1. Notation

7.1.1. We use the standard notation: K2 (resp., K!) denotes the maximal
unramified (resp., tamely ramified) extension of K, contained in K5°P and
I, = Gal(K3P/KY) (resp., I¥ = Gal(KP/K!)) the inertia (resp., wild iner-
tia) group. Put

G, =G, /IY = Gal(K!/K,)

I, =1,/I" = Gal(K!/K") (= the tame inertia group)

7.1.2. For M € (ind-2d\Mod) we define the unramified local conditions A% (M) to be
R[G,] v

inf .
U?T(M) = C(?ont(G’U/]?H MI“)—)Ccont(GU’ M)
The inflation maps induce isomorphisms
Héont(GU/I1)7 le“)
MGU 1=0
- H&r(GU? M) = Ker(Hclom(Gv, M)ﬁ)Hclont(LH M)) i=1
0 1>1

(this is well-known for discrete modules; the general case follows by taking limits).
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We would like to define AUT(M*) for a (bounded below) complex M* of ind-
admissible R[G,]-modules. The naive definition

Coont(Go/ I, (M) e (G, M)

cont

is not very useful, as it does not factor through the derived category. Note that M is
quasi-isomorphic to <o C3n: (I, M); it would be natural (especially from a perverse

point of view) to define AW (M*) as

(7121) “C(:011t(G'“/[U7 T<0 Cc.,ont (I"“ AI')) - Cc.onL(G’U/I’U? C(:OHL(I'L” A[.))
— Cgont(Gv’ ]\’[.)” .

Unfortunately, we have not been able to make sense of the Hochschild-Serre spec-
tral sequence for continuous cohomology even in this very simple case. The prob-
lem is, as explained in 3.6.1.4, that in general 7<o C2,(I,, M*) is not a complex
of G,/I,-modules (let alone of ind-admissible R[G,/I,]-modules). Instead of in-
terpreting (7.1.2.1) literally, we use explicit “small” complexes quasi-isomorphic to
Ceni (G, M) for G =G,, I,,Gy /L.

7.2. Complexes C(M)

7.2.1. For every M € (g[déi‘fMod), the inflation map

(Gy, MY — Ct

cont

inf : C?

cont

(Go, M)  (M'= M)

is a quasi-isomorphism, by Lemma 4.1.4. This means that it will be sufficient to
(G, M) for “tame” modules M = M? € (il‘;%j(]llVI()d).

Fix a topological generator t = t,, of I, = Z/Z; (where [ # p is the characteristic
of the residue field k(v) of v) and a lift f = f, € G, of the geometric Frobenius

element Fr(v) € G, /I, = G,/I,. Then
Gy = (t) x (f)
has topological generators ¢t and f, with a unique relation

tf = ft*. L =I[k(v)| = N(v).

consider only C'?

cont,

The element
O=f+t+---+t'"1 e Z[G,)
satisfies
Ot —1) = f(t" 1) =(t - 1)f
(O =Dt =1) = (-1 -1).
For every G,-module M denote by C(M) the complex
(f-1,4-1)

C(]\/[) = I:_]\/[ MaM (1—t,0—1) ]\,{]
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in degrees 0,1,2 and by C* (M) (resp., C~ (M)) the subcomplex of C(M) equal to
CH(M) = [MfﬂLMt:l]
in degrees 0,1 (resp., the quotient complex equal to
o~ (M) = [M/(t S OM= 1)M} - [M/(t— DM v - 1)M}
in degrees 1,2). The canonical projections define a quasi-isomorphism
C(M)/CH(M)-20= (M),
hence an exact triangle
CT(M) — C(M) — C~ (M) — CT(M)[1].

On the level of cohomology this gives

~

HY(CH(M)) — H°(C(M))
0 — H{CT(M)) — HY(C(M)) — H(C~(M)) — 0
H2(C(M)) =5 H2(C~(M)).

We are now going to define functorial quasi-isomorphisms

C(M)L5Ce, (G, M)y20 (M) (M € (

cont

Ric,) Mod))

satisfying A o u = id.

7.2.2. Let G = (o) be a topologically cyclic pro-finite group with a fixed topological
generator 0. Assume that the order of G is divisible by p>; then cd,(G) = 1. In this
case the complex

[MZ=hn | (M € (gtiMod)
in degrees 0, 1 is canonically quasi-isomorphic to Cg,,, (G, M). Indeed, writing M =
lim M, (My € S(M)) and M, = lim M, /p" M,, it is sufficient to construct functorial
quasi-isomorphisms

A:C?

cont

(G, M) — [M"_—%M}
for discrete p-primary torsion G-modules M (such as M, /p™ M., above). The formulas
Ao =id, Ay ((‘) = C(()’)7 Ai=0 (Z > 1)

define such a A.  There is another functorial quasi-isomorphism in the opposite
direction

(G, M),

H [MU—_I)M] - Cgont
given by
po = id

(i (m)(@*)=1+0c+ -+ Hm (a € Ny)
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(with the convention that 1 + 0+ -+ 0%~ = 0 for a = 0). This formula defines the

2

values of pq(m) only at 1,0,0%,..., but pui(m) extends uniquely by continuity to a

continuous 1-cochain (in fact a 1-cocycle).

As Ao p =id, the maps A, p induce mutually inverse isomorphisms in the derived
category.

All of the above applies, in particular, to G, /I, = (f) and I,, = (t).

7.2.3. Proposition. — The formulas
o = id
Ar(c) = (e(f), c(t))
Ao(z) = —2(t, f) + z(f, ") + fgtiz(t, =11y
AN=0 (i>2) =

define functorial quasi-isomorphisms

A GGy, M) — C(M) (M€ (i;;[‘gj?Mod)).
Proof. — Asin 7.2.2 we can assume that M is a discrete p-primary torsion G,-module.

Let us first explain the origin of the map A\. We begin with a morphism of complexes
N O (G M) — [MLM@(QL“)—LM@QL}
given by
Ay = id

X (e) = (e(f)se(ft),- . e(fth) elt), .. e(th))

MNo(2) = (2(fot), 2(f 2), oo 2(FotR), 2t t), oo 2(E, t5 1), 2(8, f)).
The differentials are uniquely determined by § o M = X o ¢:
So(m) = ((f — V)ym, (ft — Dm, ..., (ft" = Dym, (t = Dm, ...<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>