@incollection{AST_2008__317__345_0, author = {Carayol, Henri}, title = {La conjecture de {Sato-Tate} [d'apr\`es {Clozel,} {Harris,} {Shepherd-Barron,} {Taylor]}}, booktitle = {S\'eminaire Bourbaki - Volume 2006/2007 - Expos\'es 967-981}, series = {Ast\'erisque}, note = {talk:977}, pages = {345--391}, publisher = {Soci\'et\'e math\'ematique de France}, number = {317}, year = {2008}, mrnumber = {2487739}, zbl = {1230.11073}, language = {fr}, url = {http://archive.numdam.org/item/AST_2008__317__345_0/} }
TY - CHAP AU - Carayol, Henri TI - La conjecture de Sato-Tate [d'après Clozel, Harris, Shepherd-Barron, Taylor] BT - Séminaire Bourbaki - Volume 2006/2007 - Exposés 967-981 AU - Collectif T3 - Astérisque N1 - talk:977 PY - 2008 SP - 345 EP - 391 IS - 317 PB - Société mathématique de France UR - http://archive.numdam.org/item/AST_2008__317__345_0/ LA - fr ID - AST_2008__317__345_0 ER -
%0 Book Section %A Carayol, Henri %T La conjecture de Sato-Tate [d'après Clozel, Harris, Shepherd-Barron, Taylor] %B Séminaire Bourbaki - Volume 2006/2007 - Exposés 967-981 %A Collectif %S Astérisque %Z talk:977 %D 2008 %P 345-391 %N 317 %I Société mathématique de France %U http://archive.numdam.org/item/AST_2008__317__345_0/ %G fr %F AST_2008__317__345_0
Carayol, Henri. La conjecture de Sato-Tate [d'après Clozel, Harris, Shepherd-Barron, Taylor], in Séminaire Bourbaki - Volume 2006/2007 - Exposés 967-981, Astérisque, no. 317 (2008), Talk no. 977, 47 p. http://archive.numdam.org/item/AST_2008__317__345_0/
[1] Simple algebras, base change, and the advanced theory of the trace formula, Annals of Mathematics Studies, vol. 120, Princeton University Press, 1989. | MR | Zbl
& -[2] Monodromy for the hypergeometric function , Invent. Math. 95 (1989), p. 325-354. | DOI | EuDML | MR | Zbl
& -[3] Formes modulaires et représentations galoisiennes à valeurs dans un anneau local complet, in -adic monodromy and the Birch and Swinnerton- Dyer conjecture (Boston, MA, 1991), Contemp. Math., vol. 165, Amer. Math. Soc., 1994, p. 213-237. | DOI | MR | Zbl
-[4] Preuve de la conjecture de Langlands locale pour : travaux de Harris-Taylor et Henniart, Séminaire Bourbaki, vol. 1998/99, exp. n° 857, Astérisque 266 (2000), p. 191-243. | EuDML | Numdam | MR | Zbl
,[5] The Sato-Tate conjecture, prépublication. | Zbl
-[6] Représentations galoisiennes associées aux représentations automorphes autoduales de , Publ. Math. I.H.É.S. 73 (1991), p. 97-145. | DOI | EuDML | Numdam | MR | Zbl
,[7] On the cohomology of Kottwitz's arithmetic varieties, Duke Math. J. 72 (1993), p. 757-795. | DOI | MR | Zbl
,[8] Automorphy for some -adic lifts of automorphic mod Galois representations, prépublication. | Numdam | Zbl
, & -[9] The Taylor-Wiles construction and multiplicity one, Invent. Math. 128 (1997), p. 379-391. | DOI | MR | Zbl
-[10] Rational elliptic curves are modular (after Breuil, Conrad, Diamond and Taylor), Séminaire Bourbaki, vol. 1999/2000, exp. n° 871, Astérisque 276 (2002), p. 161-188. | EuDML | Numdam | MR | Zbl
-[11] Construction de représentations -adiques, Ann. Sci. École Norm. Sup. (4) 15 (1982), p. 547-608. | DOI | EuDML | Numdam | MR | Zbl
& -[12] Galois deformations and arithmetic geometry of Shimura varieties, in International Congress of Mathematicians. Vol. II, Eur. Math. Soc., Zurich, 2006, p. 347-371. | MR | Zbl
-[13] Systèmes de Taylor-Wiles pour , Astérisque 302 (2005), p. 177-290, Formes automorphes. II. Le cas du groupe GSp(4). | Numdam | MR | Zbl
& -[14] Potential automorphy of odd-dimensional symmetric powers of elliptic curves, and applications, prépublication. | DOI | Zbl
-[15] A family of Calabi-Yau varieties and potential automorphy, prépublication. | DOI | Zbl
, & -[16] The geometry and cohomology of some simple Shimura varieties, Annals of Mathematics Studies, vol. 151, Princeton University Press, 2001. | MR | Zbl
& -[17] Definable subgroups of algebraic groups over finite fields, J. reine angew. Math. 462 (1995), p. 69-91. | EuDML | MR | Zbl
& -[18] On modular curves over finite fields, in Discrete subgroups of Lie groups and applications to moduli (Internat. Colloq., Bombay, 1973), Oxford Univ. Press, 1975, p. 161-202. | MR | Zbl
-[19] Exponential sums and differential equations, Annals of Mathematics Studies, vol. 124, Princeton University Press, 1990. | MR | Zbl
-[20] Moduli of flat group schemes and modularity, à paraître dans Ann. of Math. | MR | Zbl
-[21] Cohomologie, stabilisation et changement de base, Astérisque 257 (1999), p. 161. | Numdam | MR | Zbl
-[22] Congruence properties of Zariski-dense subgroups. I, Proc. London Math. Soc. (3) 48 (1984), p. 514-532. | DOI | MR | Zbl
, & -[23] Groupes de Picard et problèmes de Skolem. I, II, Ann. Sci. École Norm. Sup. (4) 22 (1989), p. 161-179, 181-194. | DOI | EuDML | Numdam | MR | Zbl
-[24] On subgroups of , Invent. Math. 88 (1987), p. 257-275. | EuDML | MR | Zbl
-[25] Travaux de Wiles (et Taylor,... ). II, Séminaire Bourbaki, vol. 1994/95, exp. n° 804, Astérisque 237 (1996), p. 333-355. | EuDML | Numdam | MR | Zbl
-[26] Abelian -adic representations and elliptic curves, McGill University lecture notes written with the collaboration of Willem Kuyk and John Labute, W. A. Benjamin, Inc., New York-Amsterdam, 1968. | MR | Zbl
-[27] On nonvanishing of -functions, Bull. Amer. Math. Soc. (N.S.) 2 (1980), p. 462-464. | DOI | MR | Zbl
-[28] Automorphy for some -adic lifts of automorphic mod Galois représentations II, prépublication. | Numdam | Zbl
-[29] Remarks on a conjecture of Fontaine and Mazur, J. Inst. Math. Jussieu 1 (2002), p. 125-143. | DOI | MR | Zbl
,[30] On the meromorphic continuation of degree two -functions, Doc. Math. Extra Vol. (2006), p. 729-779. | EuDML | MR | Zbl
,[31] Ring-theoretic properties of certain Hecke algebras, Ann. of Math. (2) 141 (1995), p. 553-572. | DOI | MR | Zbl
& -[32] Compatibility of local and global Langlands correspondences, J. Amer. Math. Soc. 20 (2007), p. 467-493. | DOI | MR | Zbl
& -[33] Représentations -modulaires d'un groupe réductif -adique avec , Progress in Mathematics, vol. 137, Birkhäuser, 1996. | MR | Zbl
-[34] Modular elliptic curves and Fermat's last theorem, Ann. of Math. (2) 141 (1995), p. 443-551. | DOI | MR | Zbl
-