@incollection{AST_2008__322__39_0, author = {Bismut, Jean-Michel}, title = {A survey of the hypoelliptic {Laplacian}}, booktitle = {G\'eom\'etrie diff\'erentielle, physique math\'ematique, math\'ematiques et soci\'et\'e (II) - Volume en l'honneur de Jean-Pierre Bourguignon}, editor = {Hijazi Oussama}, series = {Ast\'erisque}, pages = {39--69}, publisher = {Soci\'et\'e math\'ematique de France}, number = {322}, year = {2008}, mrnumber = {2521653}, zbl = {1180.58001}, language = {en}, url = {http://archive.numdam.org/item/AST_2008__322__39_0/} }
TY - CHAP AU - Bismut, Jean-Michel TI - A survey of the hypoelliptic Laplacian BT - Géométrie différentielle, physique mathématique, mathématiques et société (II) - Volume en l'honneur de Jean-Pierre Bourguignon AU - Collectif ED - Hijazi Oussama T3 - Astérisque PY - 2008 SP - 39 EP - 69 IS - 322 PB - Société mathématique de France UR - http://archive.numdam.org/item/AST_2008__322__39_0/ LA - en ID - AST_2008__322__39_0 ER -
%0 Book Section %A Bismut, Jean-Michel %T A survey of the hypoelliptic Laplacian %B Géométrie différentielle, physique mathématique, mathématiques et société (II) - Volume en l'honneur de Jean-Pierre Bourguignon %A Collectif %E Hijazi Oussama %S Astérisque %D 2008 %P 39-69 %N 322 %I Société mathématique de France %U http://archive.numdam.org/item/AST_2008__322__39_0/ %G en %F AST_2008__322__39_0
Bismut, Jean-Michel. A survey of the hypoelliptic Laplacian, dans Géométrie différentielle, physique mathématique, mathématiques et société (II) - Volume en l'honneur de Jean-Pierre Bourguignon, Astérisque, no. 322 (2008), pp. 39-69. http://archive.numdam.org/item/AST_2008__322__39_0/
[1] Quillen metrics and higher analytic torsion forms", J. reine angew. Math. 457 (1994), p. 85-184. | EuDML | MR | Zbl
& - "[2] Koszul complexes, harmonic oscillators, and the Todd class", J. Amer. Math. Soc. 3 (1990), p. 159-256. | DOI | MR | Zbl
- "[3] The hypoelliptic Laplacian on the cotangent bundle", J. Amer. Math. Soc. 18 (2005), p. 379-476. | DOI | MR | Zbl
, "[4] The hypoelliptic Laplacian and Chern-Gauss-Bonnet", in Differential geometry and physics, Nankai Tracts Math., vol. 10, World Sci. Publ., Hackensack, NJ, 2006, p. 38-52. | DOI | MR | Zbl
, "[5] The hypoelliptic Dirac operator", in Geometry and dynamics of groups and spaces, Progr. Math., vol. 265, Birkhäuser, 2008, p. 113-246. | DOI | MR | Zbl
, "[6] Loop spaces and the hypoelliptic Laplacian", Comm. Pure Appl. Math. 61 (2008), p. 559-593. | DOI | MR | Zbl
, "[7] Complex immersions and Quillen metrics", Publ. Math. I.H.É.S. 74 (1991). | EuDML | Numdam | MR | Zbl
& - "[8] The hypoelliptic Laplacian and Ray-Singer metrics, Annals of Mathematics Studies, vol. AM-167, Princeton University Press, 2008. | MR | Zbl
& ,[9] An extension of a theorem by Cheeger and Müller", Astérisque 205 (1992), p. 235. | Numdam | MR | Zbl
& - "[10] Milnor and Ray-Singer metrics on the equivariant determinant of a flat vector bundle", Geom. Funct. Anal. 4 (1994), p. 136-212. | DOI | EuDML | MR | Zbl
& , "[11] Analytic torsion and the heat equation", Ann. of Math. 109 (1979), p. 259-322. | DOI | MR | Zbl
- "[12] Puits multiples en mécanique semi-classique. IV. Étude du complexe de Witten", Comm. Partial Differential Equations 10 (1985), p. 245-340. | DOI | MR | Zbl
& - "[13] Harmonic spinors", Advances in Math. 14 (1974), p. 1-55. | MR | Zbl
- "[14] Hypoelliptic second order differential equations", Acta Math. 119 (1967), p. 147-171. | DOI | MR | Zbl
- "[15] Zufällige Bewegungen (zur Theorie der Brownschen Bewegung)", Ann. of Math. 35 (1934), p. 116-117. | DOI | MR | Zbl
- "[16] Analytic torsion and -torsion of Riemannian manifolds", Adv. in Math. 28 (1978), p. 233-305. | MR | Zbl
- "[17] Determinants of Cauchy-Riemann operators on Riemann surfaces", Functional Anal. Appl. 19 (1985), p. 31-34. | DOI | MR | Zbl
- "[18] Superconnections and the Chern character", Topology 24 (1985), p. 89-95. | DOI | MR | Zbl
, "[19] -torsion and the Laplacian on Riemannian manifolds", Advances in Math. 7 (1971), p. 145-210. | MR | Zbl
& - "[20] Supersymmetry and Morse theory", J. Differential Geom. 17 (1982), p. 661-692. | DOI | MR | Zbl
- "