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N E W RESULTS AND PROBLEMS 
ON KAHLER-RICCI FLOW 

by 

Gang Tian 

Abstract. — In this paper, I give a brief tour on a program of studying the Kâhler-Ricci 
flow with surgery and its interaction with the classification of projective manifolds. 
The Kàhler-Ricci flow may develops singularity at finite time. It is important to 
understand how to extend the Kàhler-Ricci flow across the singular time, that is, 
construct solution of the Kâhler-Ricci flow with surgery. The first task of this paper 
is to describe a procedure of constructing global solutions for the Kàhler-Ricci flow 
with surgery. This procedure is rather canonical. I will discuss properties of such 
solutions with surgery and their geometric implications. I will also discuss their 
asymptotic limits at time infinity. The results discussed here were mainly from my 
joint works with Z. Zhang, J. Song et al. Some open problems will be also discussed. 
The paper is mostly expository. 

Résumé (Nouveaux problèmes et résultats sur le flot de Kâhler-Ricci). — Dans cet article, 
nous donnons un aperçu rapide d'un programme d'études sur le flot de Kâhler-Ricci 
avec chirurgie et son interaction avec la classification des variétés projectives. Le flot 
de Kàhler-Ricci peut développer des singularités en un temps fini. Il est important 
de comprendre comment étendre le flot de Kâhler-Ricci à travers le temps singulier, 
c'est-à-dire, comment construire une solution du flot de Kàhler-Ricci avec chirurgie. 
La première tâche de cette article consiste à décrire une procédure de construction 
de solutions globales pour le flot de Kâhler-Ricci avec chirurgie. Cette procédure est 
plutôt canonique. Nous allons discuter les propriétés de telles solutions avec chirur­
gie et leurs implications géométriques. Nous allons également discuter leurs limites 
asymptotiques au temps infini. Les résultats présentés ici proviennent principalement 
de travaux communs avec Z. Zhang, J. Song et al. Nous allons également présenter 
certains problèmes ouverts. L'article est plutôt explicatif. 
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72 G. TIAN 

1. Introduction 

Let X be an n-dimensional compact Kahler manifold. We denote a Kahler metric 
by its Kahler form v, in local complex coordinates z1,..., zn, 

uü = y/^ïgijdz'1 A dz\ 

where we use the standard convention for summation and (g^) is the positive Hermi-
tian matrix valued function given by 

9ij = 9 
8 

Ric(cj 
d 

Ric(cj) = 

The Ricci flow was introduced by R. Hamilton. It has a nice property: If the initial 
metric is Kahlerian, so do any metrics which evolve along the Ricci flow. This can be 
proved by either using the uniqueness of its local solutions or applying the maximum 
principle in an appropriate way. Thus we can consider the following Kahler-Ricci flow 

(1.1) dQt 
dt 

-Ric(o)t), ÜJQ = uQì 

where u0 is any given Kahler metric and Ric(a;) denotes the Ricci form of u, i.e., in 
the complex coordinates above, 

Ric(o;) = y/^ÏRijdz* A dzj, 

where (Rtf) is the Ricci tensor of uo. 
This paper is essentially expository. In this paper, I will discuss some new results 

and open problems in recent study of the Kahler-Ricci flow. They were mainly from 
my joint works with Z. Zhang, J. Song et al. I will also describe briefly a program of 
studying the singularity formation of the Kahler-Ricci flow and how it interacts with 
the classification of projective manifolds. The results and problems discussed here 
arise from our long efforts in pursuing this program (cf. [28], [30], [20], [22], [31], [6] 
etc.). 

2. A sharp local existence for Kähler-Ricci flow 

By the local existence of Ricci flow, given any initial Kahler metric o;o, there is a 
unique solution ujt of (1.1) (t G [0,T)) for some T > 0. The following theorem was 
proved in [30] (also see [2] and characterizes the maximal T for which the solution 
ut exists for t < T. 

t1) In this cited paper, the authors claimed a proof of a related result under certain extra technical 
assumptions. 
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NEW RESULTS AND PROBLEMS ON KAHLER-RICCI FLOW 73 

Theorem 2.1. — Let X be a compact Kahler manifold. Then for any initial Kahler 
metric UQ, the flow (1.1) has a maximal solution Cjt on X x [0,Tmax), where 

Tmax = sup{t I [LÜO] -td(X) > 0(2)}. 

In particularj if the canonical class Kx is numerically effective, then (1.1) has a global 
solution Qt for all t > 0. Here, c\(X) denotes the 2-K mutiple of the first Chern class. 

In [1], Cao proved this theorem in the case that ci(X) is definite and proportional 
to the initial Kâhler class. In the case that Kx is nef, i.e., numerically effective, and 
the initial metric UJQ is sufficiently positive, H. Tsuji proved in [32] the above theorem, 
that is, (1.1) has a global solution £jt. 

Now let us sketch a proof of the above theorem following the arguments in the 
proof of Proposition 1.1 in [30]. (3) 

For any small e > 0, we can choose Te > 0 such that Te + e < Tmax and a real closed 
(1,1) form ijje such that [i/)e] = c\{X) and UJ$ — (Te + e)^c > 0. Choose a smooth 
volume form Q,e such that Ric(îîe) = ?/>e. This Q,e is unique up to multiplication by a 
positive constant. 

Set ojt = coo — ttpe for t G [0,TC]. One can easily show that Cjt — ujt + yf—ïddu 
satisfies (1.1) if u satisfies 

(2.1) 
du 
dt 

log 
r.n 
Ut ù*$ù u(0,-) = 0. 

We shall show the solution for (2.1) exists for t e [0,TC]. 
First observe that ujt is a Kahler metric for t G [0,T€] with uniformly bounded 

geometry. 
By the standard theory, u exists for small t > 0. In order to prove that u exists for 

t G [0, Te], we only need to get uniform estimates of u whenever it exists for t G [0,Te]. 
Applying the Maximum Principle to (2.1), we can easily have \u\ < Ce. ̂  In fact, 

the upper bound is independent of e. 
Taking derivative of (2.1) with respect to £, we get 

d 
!*ù$ 

(du" 
KdtJ 

mù*$ 'du 
dt 

Ric(cj) = —U) 

where Aw denotes the Laplacian of a Kahler metric u and (CJ, F) means the trace of 
F with respect to UJ for a real (1, D-form F. 

It follows 

(2.2) 
d 
dt 

du 

dt 
•ti !ù*$ù* 

du 
. dt 

u + n - (a>t,a;o>. 

(2) This means that [u>o] — tci(X) > 0 represents a Kahler class. 
(3) The flow equation in [30] is not the same as, but equivalent to (1.1). 
(4) The constant C, C€ may differ at various places. A subscript indicates the dependence on another 
constant. 
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74 G. TI AN 

Noticing (o)t, o;o) > 0 and applying the Maximum Principle, we see that the maximum 
of — u — nt is non-increasing, so we have that 

t 
du 

dt 
— u — nt ^ 0. 

Now we combine it with local existence for small time and the uniform upper bound 
for u to conclude that 

du 
dt 

:!ù*$ 

On the other hand, we have 

(2.3) d_ 

dt 
(Te + e-t)' 

du 

'dt :mù$ 

= A i , (Te + e - t] 
du 

'dt 
+ u - n + (o>t, ÜÜQ - (Tc + e)t/>€). 

Since (u>t,wo — (Te + €)ipe) > 0, by the Maximum Principle, we see that minimum of 
(T€ + e — i) ̂  + u + nt is non-decreasing. It follows 

(Te + 6 - i ) 
du 

dt 
+ u + nt^Z (Te + e)mint=c 

du 

dt 
= -ce, 

from this we can conclude 
du 

dt 
-Ce. 

Now we have gotten all the <7°-estimates needed. By using the Maximum principle 
and the standard arguments, one can derive the second and higher order estimates 
for u (cf. [30] for more details). Then one obtains the existence of solution for (2.1) 
for t e [o,rc]. 

The desired existence of the solution for (1.1) can be proved by considering the 
relations between all the equations as (2.1) for different e's as follows: 

Consider (2.1) for some 5 > 0. Assume fa = + y/—lddf for some smooth real 
function / over X. Since Ricfte = we have RicE-/QC = tp$. Thus we can take 
ils = e~f fie. Now the new uwt" is 

r]t = LÜ0 - tips = u)t - tyf^lddf. 

The equation (2.1) for 5 is 

dv 

dt 
•- log 

(m + y/^iddvr 
efQe 

v(0, •) = <>. 

Define ü = v — tf. Then 

(2.4) 

dû 

dt 

dv 

dt 
f = log 

(% + V^iddv)n 
e-fiie + f 

= log 
(wt + V-Lddü)n 

!ù*$ù 
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NEW RESULTS AND PROBLEMS ON KÄHLER-RICCI FLOW 75 

Noticing that -¿¿(0, •) = v(0, •) = 0, from the uniqueness of the solution for (2.1), we 
conclude that u coincides with u. 

This actually gives the explicit relation between solutions of (2.1) associated to 
different e's and would allow us to glue together all these solutions for (2.1) to get a 
maximal solution of (1.1) until the time Tmax. Thus Theorem 2.1 is proved. 

Remark 2.2. — Note that uot depends on e and may not be a Kahler metric for t 
sufficiently close to Tmax The above arguments also show that the solution u of (2.1) 
extends to all t < Tmax even if u;t is a Kahler metric when t is sufficiently close to 

^max-

Next we need to examine behavior of Cut as t tends to Tmax. 

3. Finite-time singularity 

In this section, we assume that T = Tmax < oo, that is, the Kàhler-Ricci flow 
develops singularity at finite time T. We want to examine the limiting behavior of Qt 
as t tends to T. We shall adopt the notations in the last section. 

First we observe 

Lemma3.1. — Let ip be any smooth (l,l)-form ip representing C\(X). Then there is 
a smooth solution, say ut, for (2.1) with ip = i/;e satisfying: 

(1) ujt=ujo-tib- y/-lddüt; 

(2) For any sequence U —> T, a subsequence of ujti converges to a positive current 
CJT weakly. ^ 

(3) / / lini£->T supx ut is not —oo, then ut converges to a unique UT in any Lp-
topology as t tends to T for any p > 1. In particular, Cbt converges to a unique 
positive current CUT weakly as t tends to T in this case. 

Proof — (1) follows directly from the remark at the end of last section. 
For (2), we notice that Cjt > 0 and 

Jx 
UtAuj^-1 = ([u>o] ~ tCl(X))[LJ0}n-\X), 

so there is a a > 0 such that (cf. [23]) 

Ix 
e-oc{ùt-snVxùt)UJn < Cil 

In particular, for any p > 1, vt = UT — supx ut - 1 has uniformly bounded LP norm. 

(5) CUT can be 0. 
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76 G. TIAN 

Furthermore, for any ô € (0,1), we have 

C > 
x 

Ric(cj) = —U) + f*LOWPRic(cj) = —U) 45 
(1 - 5)2 X 

\ V ( - v t ) ^ \ 2 ^ . O L 

Choose ¿ = 1 / 3 . By the Sobolev embedding theorem, for any sequence U with 
\\mti = T, there is a subsequence, again denoted by U for simplicity, such that 
(1 + supx ut — uti)* converges to some function (—v)* in L2-norm. Since vt have 
uniform Lp-norm for any p > 1, Vi converges to v in the Lp-topology. Then (2) follows. 

Now we prove (3). First recall that by the Maximum Principle, we have proved in 
last section 

ut<C and t 
ù*$ù 
dt 

— ut — nt < 0. 

Here C is a uniform constant. It follows that t~xut — n \ogt is non-increasing, con­
sequently ut converges to a unique function UT, which may take — oo as values, as t 
tends to T. By our assumption, UT is not identically — oo, so supx^ is uniformly 
bounded. It follows that the above v coincides with UT — sup^^T- So we have 
proved (3). • 

Let &T be a limiting positive current at the finite-time singularity from the above 
lemma. A natural question is: How regular is this limiting O)T? It is reasonable to 
expect that UT is bounded and smooth on a Zariski open subset of X. We also expect 
that it has controlled behavior along its subvariety of singularity in a suitable sense. 

We conjecture that the limiting current &T is independent of the choice of the 
sequence {U}. But we can not prove it in full generality yet. The following lemma 
gives a sufficient condition for this to be true. 

Lemma 3.2. — / / there is a representative i\) of c\{X) such that LOQ — Tift > 0 as a 
(lyl)-form. Then the limiting potential UT is unique and bounded. If, in addition, 
fx(wo — Tip)n > 0, then UT is continuous. 

Proof. — Set ut = uo — ty, then ujt > 0 for any t G [0,T]. We have derived in last 
section 

(3-1) 
d 
dt 

(T-t) 
dût 

'at 
l;mù* *$ù$ù* Ric(cj) = —U) + f*LOWP 

- n + (iJt^T)' 

By using the Maximum principle, we can deduce from this equation that the auxiliary 
function 

(T-t) 
dut 
dt 

• + ût + nt 

is non-decreasing. Since ^ is bounded form above, ut is bounded from below. Then 
the uniqueness follows from Lemma 3.1. 

ASTÉRISQUE 322 

file:////mti


NEW RESULTS AND PROBLEMS ON KAHLER-RICCI FLOW 77 

The continuity follows from the extension of S. Kolodziej's work [17] by Z. Zhang 
in [35] or [9] (also see [11], [8]) since 

lim 
Jx 

,~,n 
V 

= lim 
t-+T M 

ut -
fx 

u% > 0. 

Now let me discuss some special cases: 
First we assume that UJT = 0, that is, C\(X) = ^[UJQ] is positive. (6) Set 

u{s) = EÏL>T{1_E-±Y 

Here s goes from 0 to oo. Then we have 

(3.2) 
duj(s) 

äs 
(Ric(u;(s)) - 1 ( 

T v 

This UJ(s) is a global solution for the renormalized Ricci flow. A challenging problem 
is to show the convergence of LU(S) as s goes to oo. A folklore conjecture claims that 
there is a family of diffeomorphisms (j)(s) : X i-> X such that C/)(S)*UJ(S) converges to a 
Kähler-Ricci soliton on a variety with possible singularity of codimension 2 (cf. [14], 
[27], [18]). In the case that X — 52, u>(s) converges to the standard metric on S2 as 
shown in [13] and [7] (also see [3]). In the case that CJO has non-negative bisectional 
curvature, it was proved in [4], [5] that LU(S) converges to the unique Kähler-Einstein 
metric on X. Perelman proved that the scalar curvature and the diameter of UJ(S) are 
uniformly bounded along (3.2) (cf. [19]). It follows that the above conjecture holds 
if one can bound the Ricci curvature of (3.2) [19]. The following theorem was first 
claimed by Perelman and proved in [31]. 

Theorem 3.3. — Assume that X has no non-trivial holomorphic fields. If X admits a 
Kähler-Einstein metric and ci(X) — t̂ [U;O], then UJ(S) converges to a Kähler-Einstein 
metric. 

In [31], the above theorem was also extended to the case that X admits only a 
Kähler-Ricci soliton. The proof of the above theorem was proved by using one of 
Perelman's estimates and exploring the properness of the K-energy. 

Next we consider X = X\ x X2 with both C\(Xi) and c\{X2) definite. For sim­
plicity, we assume that H2(Xi,Z) = Z with generator represented by a Kahler form 
ßi for i = 1,2. Then the initial Kahler class [uo] = ß\[ß\] + /¿2[#2] with /ii,//2 > 0. 
We further assume that C\{Xi) = rriißi with mi > max(0,ra2). Then the flow (1.1) 
develops singularity at T = \x\jm\. First we assume that UJQ is a product metric 
^01 + ̂ 02? where UQI is a Kahler metric on Xi, then the flow becomes a product flow 
&t = ̂ t i + ^ 2 , where uti solves (1.1) on Xi with initial metric ojoi- Then Coti converges 

(6) One can easily show that the limiting current is unique in this case, in fact, it is always zero. 
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78 G. TIAN 

to 0 as t tends to T, while £ut2 exists on X2 x [0, T + e] for some e > 0. Hence, the 
flow Qt collapses to Qt2 on ^ 2 at T and continues beyond T. 

Now if UJQ is a general Kahler metric in + ^[fo], then there is a smooth 
function 0 such that ĉo = ^01 + ^02 + y/—ldd0. By the Maximum Principle, the 
solution d)t of (1.1) with initial metric is equal to ujt\ + &*2 + y/^lddOt with 
#t uniformly bounded. This implies that modulo a bounded potential function, u>t 
collapses to a current on X2 at T. I believe that this collapsing occurs in the L°°-
topology. 

In our next example, we assume that X is a projective manifold with Kodaira 
dimension > 0 and UJ0 is rational. Then T = Tmax is rational and consequently, m[uo] 
is the first Chern class of a line bundle L and a = mT is an integer for some m > 0. 
Clearly, L+aKx is nef. Since the Kodaira dimension is non-negative, for m sufficiently 
large, aKx admits a holomorphic section S. It follows that SkSf is a global section of 
k(L+aKx) for any section S' of kL, so dimH°(X, k(L+aKx)) > ckn for some c > 0. 
It follows that (L + aKx)n > 0, i.e., it is big. By a result of Kawamata [16], L + aKx 
is semi-positive, i.e., there is a k > 0 such that any basis of H°(X, k(L + aKx)) maps 
X onto a subvariety in some CPN. In particular, there is a ip representing c\{X) such 
that LJO — Tip is a semi-positive smooth form. In this case, we can say more about the 
limiting behavior of Ut as t —> T. 

The following lemma can be found in [15]. 

Lemma 3.4. — Let E be a divisor in a projective manifold X. If E is nef and big, 
then there is an effective divisor D such that E — eD > 0 for any sufficiently small 
e > 0. 

The proof follows essentially from the openness of the big cone of X which clearly 
contains the positive cone and the fact that E is in the closure of the positive cone. 
In fact one can choose D to be big. (7) 

Applying the above lemma to L + aKx, there is a Hermitian metric he on D such 
that for any small e > 0, 

Ric(cj) = — ̂ lddloghe > 0. 

Let a be a defining holomorphic section for D. Then we have 

UJT + eV-lddlogH2 > 0, 

where | • | denotes the norm induced by he. ^ 
The following theorem was essentially proved in [30]. (9) 

(7) Even if [u;o] is irrational, the arguments for proving the above lemma still work. 
(8) For simplicity, if there is no possible confusion, we will drop the subscript e in the norm later. 
(9) In [30], Kx is assumed to be big. It is clear from the arguments in the proof that this assumption 
was not used. 
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NEW RESULTS AND PROBLEMS ON KAHLER-RICCI FLOW 79 

Theorem 3.5. — LetX, L + aKx be as above. Then the solution Lot of (1.1) converges 
to a unique current LOT as t T satisfying: 

(1) COT represents the cohomology class of L + aKx; 
(2) CJT is a smooth Kahler metric outside a subvariety BT C X along which c\ (L + 

aKx) vanishes; 
(3) Cbt converges to LOT on any compact subset outside BT in the C°°-topology. 

Proof. — We will outline a proof of this theorem following [30]. 
Since L + aKx is semi-positive and big, by Lemma 3.2, we know that the limiting 

current LOT exists with locally continuous potential and satisfies (1). It suffices to 
prove (2). 

Let a be a defining section of D. Then log|cr|2 is a well-defined function outside 
D e l 

First we need a second order estimate. Set 

U*,e = ut + e\f^ldd\og\cr\2. 

Then for any t £ [0,T + 5], where S = 5(e) may depend on e, (10) ut,e is a smooth 
Kahler metric, in particular, there is a bound on their curvature which is uniform in 
t G [0, T + 6] but may depend on e. 

In order to derive the second order estimate, we need a lower bound on ^ for any 
t e [0,T]. Using the same arguments in deriving (3.1), we get 

(3.3) 
dwt 
dt 

= AcjtWt - n + (Ldt,LOT+ô,e), 

where 

wt = (T + 6-ty 
^dut 
' dt 

i-üt-e log|a|2. 

Since (a>t,̂ T+<5,e) ^ 0, by the Maximum Principle, we can show that the minimum of 
wt + nt is non-decreasing. Since ut is bounded for t € [0,T], we conclude from this 

(3.4) 
düt 
dt 

> ^log\a\2-Cs, 

where C$ is a uniform constant which may depend on Ô. 
Now we write 

#t = t̂,c + yf^ìdd(ut - elog|cr|2). 

Note that the function vt = Ut — e log |cr|2 is defined only outside D. 
On X \ D, we can rewrite (2.1) as 

(Lo^ + V^ddvt)71 = e-&CL. 

Note that Ric(fi) = ip. 

(10) One can show that ö > be for some b > 0. 
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80 G. TIAN 

As in [34], [1] and [32], using the bound on ^ and the curvature of wt>£, one can 
deduce 

eCvt 
ù*$ù$ dt 

(e-Cv*{u;t>e,wt)) 

(3.5) Ric(cj) = —U) + f*LOWPRic(cj) = —U) + f*LOWPRic(cj) = —U) + f*L 

> -C + (^-log|a|2 - C ' )H«><*> + C"Ke,ô>t>A-

Here G, C etc. are constants which may depend on e. For instance, we need to 
choose C such that C + INFM Rm(LOT,E) > 1 for t G [0,T], where Rm(u') denotes the 
bisectional curvature tensor of U/. 

Clearly, e-c(w-eiog|«R| )(UJte^t} attains its maximum in X \ {a = 0}. At such a 

maximum point, we have 

0 > -C + (C'loglal2 - C')lut,t,ût) + C<L>t.,û>t)^ 

= -C' + C'{ut,e,wt) ((ut,t,û>t)^ + C"log\a\2 - C') 

Here C" = Ce/S. Since \a\ is bounded, it follows from this 

{uT,T,ùt)<{C-C"\og\a\2)n-1. 

Hence, at this maximum point, 

e-cv*(ut,e,wt) < (C - C'loglal2)"-^-^ <Ci(l-log|a|2)|a|Ce. 

Here we have used that fact that ut is uniformly bounded and C\ is a constant which 
depends on e. 

Then we can easily deduce the second order estimate: 

(3.6) {u>o,u>t) ^C2\a\-Ce. 

Observe that our lower bound estimate on implies the volume estimate: 

LO+ > 03\a\ LOQ • 

It follows that a>t defines a Kahler metric on X \ {a = 0}. Furthermore, we have a 
uniform bound on ^ on any given compact subset outside D. 

The higher order derivative estimates for UT outside {a = 0} follow from the stan­
dard theory on Monge-Ampere equations ([10] etc.) or Calabi's third order estimates 
as shown in [34]. 

We have shown that UT = limT_+T ut exists. The above shows that UT is smooth 
and defines a smooth Kahler metric LOT outside D. Moreover, we have 

(3.7) (LOT + \f-îddÛT)n = e^'Tfi, onX\{a = 0}. 

Notice that D may not be unique. We can choose any JD'S in the above discussions so 
long as it satisfies Lemma 3.4. Since the limit UT is unique, UT is smooth and gives 
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NEW RESULTS AND PROBLEMS ON KÄHLER-RICCI FLOW 81 

rise to a Kàhler metric outside the intersection BT of all such D's. Thus this theorem 
follows. • 

Theorem 3.5 tells us that the solution £jt extends to a Kàhler metric CJT outside 
the subvariety BT C X. However, this limiting CUT does have singularity along BT-
This singular behavior can be caused by the metric's either blowing-up or failing to 
be non-degenerate along BT- In order to extend the Ricci flow across T, we need to 
study how U>T behaves along BT- Here is what we expect (also see [20]) 

Conjecture 3.6. — Let X\ be the metric completion of X \ BT with respect to the 
distance dT on X \ BT induced by CJT . Then X\ is a projective variety which can be 
obtained from X by flips or algebraic surgeries of certain "standard" type. Moreover, 
(LQ + aKx)\x\BT extends to an ample line bundle over X\. 

If X has the Kodaira dimension — oo and [UQ\ is again rational, then [UQ] —Tc\{M) 
is still rational and nef, but it is not big anymore. If [UJ0] — Tci(X) ^ 0 and the 
well-known Abundance Conjecture holds, then for k sufficiently large, any basis of 
H°(X,k(L0 + aKx)) maps to a subvariety Y C CPN for some N > 0. By Lemma 
3.2, the limit UT exists and clearly descends to a bounded function on 7. It follows 
that UT descends to a positive current on Y, denoted by CJT again for simplicity. We 
expect 

Conjecture 3.7. — The limit UT is continuous and U>T is a smooth Kahler metric out­
side a subvariety B'T of Y'. IfYi denotes the metric completion ofY\B'T with respect 
to the distance induced by CJT, then Y\ is a projective variety and {LQ + aKx)\y\B'T 
extends to an ample line bundle over Y\. 

More generally, I believe that even if X is only a Kàhler manifold (not necessarily 
projective) or CJO may be irrational, what we have shown and conjectured in the above 
still hold with slight modification. But it is harder to prove them. 

4. Extending Kâhler-Ricci flow across singular time 

In this section, we discuss how to extend the Kàhler-Ricci flow Qt across the singular 
time T, assuming that we have solved the two conjectures proposed at the end of last 
section. Then we have a projective variety XT, which can be either X\ or Y\ as 
above, and a limit CJT on XT which is smooth outside a subvariety B. A natural 
question is how to continue the Kâhler-Ricci flow on XT starting at UJT- There are 
two difficulties: 

1. XT may not be smooth; 
2. Even if XT is smooth, UJT or its potential UT may not be smooth. 
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Hence, we need a local existence theorem for (1.1) when the underlying space may be 
singular or initial Kahler potential is non-smooth. 

First we assume that XT is smooth. We have shown that the limiting current 
CUT has a bounded Kahler potential ÜT- Then, it follows from the theory of complex 
Monge-Ampere equations that u)£, where k = dime XT, is well-defined as a measure. 
So it makes sense to consider the Kähler-Ricci flow (2.1) with a weak initial value 
ÜT- IS there a smooth solution (p(t) of (2.1) for t > 0 such that limt_>o <p{t) = Cty? A 
partial answer to this question was provided in the following theorem. 

Theorem 4.1. — [6] Let X be a compact Kahler manifold and ujt be a smooth family 
of Kahler metrics (t G [0, to]). Assume that is any bounded function satisfying: 
There are smooth functions ipe (e > 0 ) such that 

(1) u;0 + V-iddip€ > 0; 

(2) lime_0 = ^0/ 
(3) The volume form UJQ + y/^lddipo is LP(M,UJ) for some p>3. 

Then there is a unique smooth solution ip(t) of (2.1), and consequently, a solution 
uj(t) of (1.1), for t G (0,£o] such that limt—o ¥>{t) — V>o and uj(t)n converges to (LÜO + 
/̂̂ Tд¿̂ 0o)n strongly in the L2-topology. 

If the Kodaira dimension of X is non-negative, then LQ + aKx is nef and big 
on XT and dimcXr = n. According to Conjecture 3.6, if XT is smooth, then UJT 
extends to be a Kahler class on XT- Since ^ is uniformly bounded from above 
for t G (0,T), we can show that the assumptions in the above theorem are satisfied. 
Then one can extend (1.1) across T and continue the flow on XT until T2 > T when 
[UJT] — (t — T)CI(XT) fails to be a Kahler class. If T2 is finite, one can proceed as we 
did for Cbt at T. 

However, in general, the resulting variety XT from the surgery at T may not be 
smooth. (n) Nevertheless, we expect 

Conjecture 4.2. — The algebraic variety XT given above has only mild singularity on 

which we can still run the Kähler-Ricci flow. 

There is an approach in [21] to this conjecture: One can try to run the Kähler-Ricci 
flow on a resolution XT of XT with the initial value being the the pull-back of UJT to 
XT , which may be a degenerate Kahler metric vanishing along the exceptional divisor 
E. 

Assuming that one can affirm the above three conjectures. When (1.1) runs into a 
finite-time singularity at T, one can apply the solutions to the above conjectures to 

(n) It will be interesting to construct an explicit example of such a singular XT, even though I 
believe it does exist. 
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extend (1.1) across T and evolve the Kahler metrics along the flow on XT until we 
run into another finite-time singularity at T2 > T. So we can get a solution (Xt,ut) 
with surgery for (1.1) for t G [0,T2) satisfying: 

(1) For t G [0, T) , Xt = X and uot is a standard solution of (1.1) with initial Kahler 
metric UJQ\ 

(2) For t G [T, T2), Xt = XT and ut is a solution of (1.1) on XT such that the 
potential ut of tbt converges to the potential UT of UJT in the L°°-topology as t tends 
to T. 

As usual, we call T a surgery time. One repeats the above process to continue 
the flow beyond T2 and so on. Thus one can construct a global solution (Xt,u>t) 
with surgery of (1.1) (t > 0). We expect that this process ends after finitely many 
finite-time singularities, that is, 

Conjecture 4.3. — There are only finitely many surgery times To = 0 < T\ < T2 < 
• • • < Tjy < 00 such that Xt = X^ and Qt is a solution of (1.1) on X^ for t G 
[Ti,Ti+i) (i = 0,1,... ,7V - 1) or t G [T/v, 00). Furthermore, for t > TN, either 
Xt = 0 or Kxt is nef and consequently, (1.1) has a global solution. 

There are two possibilities for t > TN. In the first case, Xt = 0 , i.e., (1.1) 
becomes extinct at TN. At each T{ (i = 1,..., N), we do surgery along some "rational" 
components along which c\(X) integrates positively. In particular, Xp. is birational 
to Xt for t <T{. Thus we have 

Conjecture 4.4. — The Kahler-Ricci flow (1.1) becomes extinct at finite time if and 
only if X is birational to a Fano manifold. (12) 

We will leave the second case to the next section. Note that XTN has nef canonical 
bundle if it is non-empty. 

5. Asymptotic behavior of Kahler-Ricci flow 

In last two sections, we have discussed results and speculations on singularity 
formation of the Kahler-Ricci flow at finite time. We also conjectured that there is 
always a global solution (Xt,u)t) with surgery of (1.1) with only finitely many surgery 
times. This generalized solution with surgery becomes an usual solution ut of (1.1) 
on a variety with nef canonical bundle when t is sufficiently large. In this section, we 
study the asymptotic behavior of Cot as t goes to 00. For simplicity, we assume that 
X is a compact Kahler manifold with Kx nef. The general case can be dealt with in 
the same approach as we did for Conjecture 4.3 in case of possible singular varieties. 

(12) To be safer, we may need to include some algebraic manifolds which are Fano-like if such 
manifolds ever exist. 
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It is known that (1.1) has a global solution Qt for any given initial metric. Set 
t = es — 1 and OJ(S) = e~sut, then û(s) is a solution of the following normalized 
Kàhler-Ricci flow: 

(5.1) 
dQ(s) 

ds 
• — Ric(u)(s)) — ÔJ(S), QJ(0) = UJQ. 

The advantage of doing this is that [o;(s)] = e~s[o;o] — (1 — e~s)ci(X), which converges 
to —ci(X) as s —> oo. 

We also assume that there is a (l,l)-form ip > 0 representing —c\(X). This is 
of course the case if Kx is semi-positive or equivalently, for m sufficiently large, 
H°(X,Kx) is free of base points. The Abundance conjecture in algebraic geometry 
claims that it is true for any X with Kx nef. 

Since H°(X,Kx) is base-point free, any basis of it induces a holomorphic map 
(p : X i—• CPN for some N > 0 so that ^OCPN(1) = K%. The dimension of 0's 
image is just the Kodaira dimension K = n{X) of X. 

If K(X) = 0, then ci(-X") = 0 and by the result in [1], the global solution Cbt of (1.1) 
converges to a Calabi-Yau metric on X. 

If K(X) = dimX = n, then X is minimal and of general type. It follows from 
[32] and [30] that UJ(S) converges to the unique (possibly singular along a subvariety) 
Kahler-Einstein metric with scalar curvature — n on X as s tends to oo. 

The more tricky cases are for those X with 1 < K(X) < n — 1. If X is such a 
manifold, one can not expect the existence of any Kahler-Einstein metrics (even with 
possibly singular along a subvariety) on X since K% — 0. Hence, the first problem is 
to find what limiting metrics for Cj(s) one supposes to have as s tends to oo. To solve 
this problem, we introduced a class of new canonical metrics which we call generalized 
Kahler-Einstein metrics in [20] (13) and [22]. Let us briefly describe them. 

Since we assume that Kx is semi-ample, the canonical ring 

R(X) = ®M>0H°(X,K%) 

is finitely generated, so there is a canonical model XCAN of X (possibly singular). Let 
7r : X i—> XCAN be the natural map from X onto its canonical model Xcan. Then 
generic fibers of 7r are Calabi-Yau manifolds of dimension n — « , and consequently, 
there is a holomorphic map / : X°an \-+ MCY which assigns p G X®AN to the fiber 
7T~1(p) in the moduli MCY, where X°an consists of all p such that 7R~1(p) is smooth. 

The moduli MCY admits a canonical metric, the Weil-Petersson metric. Let us 
recall its definition. Let X —> MCY be a universal family of Calabi-Yau manifolds. 
Let (U; ¿ 1 , . . . , it) be a local holomorphic coordinate chart of MCY, where I = dim At. 

(13) [20] is mainly for complex surfaces, but the part of introducing limiting metrics works for any 
dimensions. 
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Then each ^ - corresponds to an element ¿(¿̂ 7) € Hl(Xt,TXt) through the Kodaira-
Spencer map 1. The Weil-Petersson metric is defined by the L2-inner product of 
harmonic forms representing classes in Hl(Xt^Txt)' In the case of Calabi-Yau man­
ifolds, as shown in [24], it has the following simple expression: Let ^ be a nonzero 
holomorphic (n — 0)-form on the fibre Xt and \£jt(^-) be the contraction of ̂  and 
-J^-. Then the Weil-Petersson metric is given by 

(5.2) 
a d 

dti ' dtj 
ù*$% 

Ric(cj) = —U) + f*LOWPRic(cj) = —U) 

J * . * A ¥ 

Now we can introduce the generalized Kàhler-Einstein metrics. 

Definition 5.1. — Let X, XCAN etc. be as above. A closed positive (1, l)-current to on 
^CAN is called a generalized Kahler-Einstein metric if it satisfies the following. 

1. r ^ e - d p O ; 
2. u; is smooth on Xc°an; <14> 
3. Ric(u;) = — \/—199logo;K lifts to a well-defined current on X and on X®AN 

(5.3) Ric(o;) = —id + f*LdWP-

If K = n, then it is just the equation for Kahler-Einstein metrics with negative 
scalar curvature. 

Remark 5.2. — More generally, one can consider the generalized Kahler-Einstein 
equation: 

Ric(o;) = —Ao; + /*o;^p, 

where A is a constant. 

In [22], the following theorem was proved. 

Theorem 5.3. — Let X be an n-dimensional projective manifold with semi-ample 
canonical bundle Kx- Suppose that 0 < K(X) < n. There exists a unique generalized 
Kahler-Einstein metric on XCAN. 

To prove this theorem, we reduce (5.3) to a complex Monge-Ampere equation as 
in the proof of the Aubin-Yau theorem. 

First we introduce a function which will appear in such a complex Monge-Ampere 
equation. 

(14) One can establish an extra property: (tt*uj)k A 0 extends to a continuous function on X, where 
G is the (n-K, n-K)-form which restricts to polarized flat volume form on each smooth fiber (see [22], 
pl5). 
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Since Kx is semi-ample, there is a semi-ample form tt*x representing —ci(X), 
where x is defined in the following way: Xcan can be embedded into some projective 
space CPN by using any basis of H°(X, K™) for a sufficiently large m, then 

X = 
1 
m •^F5|xcan-

Let Q, be a volume form on X satisfying: 

Ric(cj) = —U) + f*LOWPRic(cj) = 

We push forward Q to get a current 7r*0, where tt : X —• Xcan as above, as follows: 
For any continuous function ib on Xcan 

•̂ CAN 
1Ï) 7T*fi = (7T»f2. 

It is easy to see that for any x G X ^ , we have 

Ric(cj) = —U) + f*LO 
:!ù*$ù* 

ù$*ù 

Definition 5.4. — We define a function F on Xcan by 

(5.4) F f - TT.ÎÎ. 

There is another way of denning F: Choose any Kahler class (3 on X, by using the 
Hodge theory, one can find a flat relative volume form 6 on X° = 7r~1(X^an) in the 
cohomology class Pn~K, this means a (n - ft, n — tf)-form 0 in (3n~K whose restriction 
to each fiber 7r_1(x) for x G Jc°an is flat, that is, 

ddlogGU-i^) = 0. 

This is possible because c\(X) vanishes along each smooth fiber. One can show 

(5.5) C7T*F = 
\G ATT*x,c> 

where c is a constant determined by 

c 
ù*$ù*$ 

Ric(cj) = —U) + f* 

where x is any point in X®an. For simplicity, assume that c = 1. In particular, it 
follows that 6 A7r*xK can be extended to X as a current. Furthermore, one can show 
(see [24]) 

f*u>WP = >/=T001og(e A XK) ~ V^ddlogx". 

The function F may not extend smoothly to Xcan, but we have some controls on 

it along the subvariety Xcan \ X®an. 

Lemma 5.5. — F is smooth on X°an and is in L1+e(Xcan) for some e > 0, where the 
Lp-norm is defined by using the metric corresponding to x-
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To prove it, we notice 

^can 
FlJrexK = 

ù*$ù 
7T*F1+e7r*x* A 9 = 

X 
yf^ddyf 

Furthermore, one can show that if i : Y —• Xcan is any resolution of Xcan, then t*F 
has at worst pole singularities on*y. The proof is a bit technical and we refer the 
readers to [22] for details. Consequently, ir*Fe is integrable for sufficiently small e > 0 
(see [22], Proposition 3.2). 

Consider 

(5.6) Ric(cj) = —U) + f*LOWPRic(cj) = —U) + f* 

If tp is a bounded solution for (5.6), then u = x + V—lddcp is a generalized Kahler-
Einstein metric. To see this, we first observe that [TT^LO] = [TT*x] = —ci(X). Next we 
observe 

Ric(cj) = -V^ïddlogtoK = -v^ddlogx" - V^ïddlogF - y/-ïddy 

is a well-defined current on Xcan. A direct computation shows 

sf^ldd log xK + yf^dd log F + v^ïddtp 

= V^ïddlogxK + V- ïdd l o g I;lmùù !ù*$^$ 
Gaxk 

+ LÜ-X 

= LU + y/^ï (-dd log(6 A xK) + dd log xK) 

= Lü - f*LÜWP-

Therefore 

Ric(cj) = —U) + f*LOWP> 

Thus, in order to prove Theorem 5.3, we only need to prove the following 

Theorem 5.6. — There exists a unique solution if G C°(Xcan) fl C°°(Xcan) for (5-6) 
with x + y/—lddip > 0. 

This is proved by using the continuity method and establishing an a priori C3-
estimate for solutions of (5.6). We refer the readers to [22] for its proof. 

We would like to point out that IT*LUK A © = tie?** is continuous since both n*tp 
and ft are continuous on X. 

Now we can discuss the limit of to(s) in (5.1) as s tends to oo. The following 
theorem was proved in [22] (also see [20] for complex surfaces). 

Theorem 5.7. — Let X be a projective manifold with semi-ample canonical bundle 
Kx- So X admits an algebraic fibration TT : X —> Xcan over its canonical model 
Xcan. Suppose 0 < dimXcan = K < dimX = n. Then for any initial Kahler metric 
LOQ, the solution tu(s) for (5.1) converges to 7r*o;cail as currents, where u;Can is the 
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unique generalized Kahler-Einstein metric on Xcan. Moreover, for any compact subset 

K C ̂ can> there is a constant CK such that 

(5.7) \ \R(ù>(s))\\L^(K))+e^SRic(cj) = —U) + f*LOWP sup 
xeK 

»||(D(s)n K\7r-i(X)\\L^(TT-1{x)) <CK, 

where R(UJ(S)) denotes the scalar curvature of u(s). 

If n = 2, then the above implies the convergence in the Cfl'a-topology for any 
a G (0,1) on any compact subset in X®an. We believe that the same can be proved in 
any dimensions. Moreover, we also expect 

Conjecture 5.8. — The solution ti(s) converges to the unique limit TT*UGKE in 
the Gromov-Hausdorff topology and the convergence is in the smooth topology in 

Ric(cj) = —U) + 

This is even open for complex surfaces. 
In the above, we assume that X has semi-ample Kx- This is indeed true if the 

Abundance conjecture holds. If Kx is nef, (5.1) still has a global solution u(s). 
Clearly, it will be extremely interesting to study the asymptotic behavior of ti(s) 
without assuming the Abundance Conjecture, namely, give a differential geometric 
proof of the convergence of UJ(S). The success of such a direct approach will yield 
many deep applications to studying the structures of Kahler manifolds. 

To solve the above conjecture or succeed in the above direct approach, we may need 
to develop a theory of compactness for Kahler metrics with bounded scalar curvature. 
For Kahler surfaces, a compactness theorem of this sort was proved in [29]. Also note 
that the scalar curvature is uniformly bounded along (5.1) on any compact projective 
manifold with big and nef canonical bundle (see [36]). 

6. The case of algebraic surfaces 

In this section, we will carry out the program described above for complex surfaces. 
Basically, all the results in this section are taken from [30] (for surfaces of general 
type) and [20] (for elliptic surfaces). We just make a few simple observations in order 
to deduce the program from those previous works. 

Let X be a compact algebraic surface. 
As before, let Qt De a maximal solution of (1.1) on X x [0,T]. If T < oo, then 

[uj0] — Tci(X) is nef. There are three possibilities: 

1. If [u)0] — Tci(X) = 0, then X is a Del-Pezzo surface and u(s) = (1 — ^)~1Cjt, 
where s = —Tlog(l — ^ ) , converges to a Kahler-Ricci soliton as s —> oo or 
equivalently, t -> T (cf. [26], [31], [33]). 
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2. If [o;0]-Tci(X) ^ 0 but ([uj^-Tc^X))2 = 0, then there is a fibration tt : X h+ E 

with rational curves as fibers (possibly with finitely many singular fibers) such 

that [ujo] — Tci(X) = 7t*[ujx] for some Kahler metric uj^, on E. It follows that 

as t —• T, o>t converges to a positive current of the form 7r*(a;s + \f^ldduT) for 

some bounded function on S. To extend (1.1) across T, one needs to solve 

(2.1) on E with ut as the initial value. This is the same as solving the following 

for t > T, 

(6.1) 
du 

dt 
= log 

Ric(cj) = —U) + f*LOWPRic(cj) = —U) + f 

fis 
t*(T, •) = tir, 

where fis is a volume form on E with Ric(fis) — ̂ s- One can solve this flow 

by using the standard potential theory in complex dimension 1. Let ujt be the 

resulting maximal solution of (6.1) (t > T). If the genus #(E) of E is zero, then 

ut becomes extinct at some finite time T2 > T or after appropriate scaling, these 

metrics converge to the standard round metric on E = S2 as t —• T2. Hence, it 

verifies Conjecture 4.4 in case of algebraic surfaces. If #(E) = 1, then Cbt exists 

for all t > T and converges to a flat metric as £ —• 00. If#(E) > 1, then Cot exists 

for alH > T and after scaling, converges to a hyperbolic metric as t —» 00. 

3. If ([ujo] — Tci(X))2 > 0, then [ujq] — Tc\(X) is semi-ample, so it can vanish only 

along a divisor. It is easy to see that for each irreducible component D of this 

divisor, Kx - D < 0. Moreover, D2 < 0. By the Adjunction Formula, D is 

a rational curve of self-intersection —1, so the divisor is made of finite disjoint 

(-1) rational curves and consequently, we can blow down them to get a new 

algebraic surface Xt- Moreover, the limit Cjt descends to a positive current 

with continuous potential and well-defined bounded volume form. By Theorem 

4.1, one can extend (1.1) across T. 

Notice that the extension Qt for t > T is smooth. Either KxT is nef and there 

is a global solution on X^,or ujt develops finite-time singularity at some T2 > T. In 

the later case, one can repeat the above steps 1, 2 and 3. Since H2(X,Z) is finite, 

after finitely many surgeries, we will arrive at a minimal algebraic surface X/v, that 

is, KxN is nef. Then (1.1) has a global solution, denoted again byô)t, on Ijy. Let us 

study its asymptotic behavior. 

There are 3 possibilities according to the Kodaira dimension k(X) of X: 

1. If k(X) = 0, then ci(X)k = 0 or a finite cover of X is either a K3 surface or an 

Abelian surface. In this case, the solution ût on X^ converges to a Ricci flat 

Kahler metric. 

In other two cases, we better use the normalized Kâhler-Ricci flow (5.1) on 

XN: 
dcj(s) 

ds 
-Ric(<D(s)) - o;(s), ô)(0) = uj0, 
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where t = es — 1 and LJ(S) = e~sujt. 

2. If K(X) = 1, then XN is a minimal elliptic surface: n : XN i—• E. It was proved 
in [20] that as s —• oo, u(s) converges to a positive current of the form 7r*(a)00) 
and the convergence is in the C1'1 -topology on any compact subset outside 
singular fibers FPL,..., FPK, where pi,.. . ,Pfc € Furthermore, a;̂  satisfies 
the generalized Kähler-Einstein equation: 

Ric(ô)00) = -oc» + f*uwp, on E \ { p i , . . . .pfc}, 

where / is the induced holomorphic map from E \ {pi, p^} into the moduli 
of elliptic curves. 

3. If K(X) = 2, then XN is a surface of general type and its canonical model Xcan is 
a Kahler orbifold with possibly finitely many rational double points and ample 
canonical bundle. By the version of the Aubin-Yau Theorem for orbifolds, there 
is an unique Kähler-Einstein metric UJQO on XCAN with scalar curvature —2. It 
was proved in [30] that as 5 —> oo, <D(s) converges to UOQ and converges in the 
C°°-topology outside those rational curves over the rational double points. 

This verifies that our program indeed works for algebraic surfaces except that 
we did not check if the blown-down surfaces coincide with the metric completions 
described in Conjecture 3.6. 

Furthermore, it should be possible to extend all the above discussions to compact 
Kahler surfaces which may not be projective. 

References 

[1] H. D. Cao - "Deformation of Kähler metrics to Kähler-Einstein metrics on compact 
Kähler manifolds", Invent. Math. 81 (1985), p. 359-372. 

[2] P. Cascini & G. La Nave - "Kähler-Ricci flow and the minimal model program for 
projective varieties", preprint arXiv:math.DG/0603064. 

[3] X. Chen, P. L u &; G. Tian - "A note on uniformization of Riemann surfaces by Ricci 
flow", Proc. Amer. Math. Soc. 134 (2006), p. 3391-3393. 

[4] X. Chen & G. Tian - "Ricci flow on Kähler-Einstein surfaces", Invent. Math. 147 
(2002), p. 487-544. 

[5] , "Ricci flow on Kähler-Einstein manifolds", Duke Math. J. 131 (2006), p. 17-73. 
[6] X. Chen, G. Tian & Z. Zhang - "On the weak Kähler-Ricci flow", preprint 

arXiv:0802.0809. 
[7] B. Chow - "The Ricci flow on the 2-sphere", J. Differential Geom. 33 (1991), p. 325-

334. 
[8] J. Demailly & N. Pali - "Degenerate complex Monge-Ampère equations over compact 

Kähler manifolds", preprint arXiv:0710.5109. 
[9] S. Dinew & Z. Zhang - "Stability of bounded solutions for degenerate complex Monge-

Ampère equations", preprint arXiv:0711.3643. 
[10] L. C. Evans - "Classical solutions of fully nonlinear, convex, second-order elliptic 

equations", Comm. Pure Appl. Math. 35 (1982), p. 333-363. 

ASTÉRISQUE 322 



NEW RESULTS AND PROBLEMS ON KAHLER-RICCI FLOW 91 

[11] P. Eyssidieux, V. Guedj & A. Zeriahi - "A priori L$$-estimates for degenerate 
complex Monge-Ampère equations", preprint arXiv:0712.3743. 

[12] D. GILBARG & N. S. trudinger - Elliptic partial differential equations of second 
order, second ed., Grund. Math. Wiss., vol. 224, Springer, 1983. 

[13] R. S. Hamilton - "The Ricci flow on surfaces", in Mathematics and general relativity 
(Santa Cruz, CA, 1986), Contemp. Math., vol. 71, Amer. Math. Soc, 1988, p. 237-262. 

[14] , "The formation of singularities in the Ricci flow", in Surveys in differential 
geometry, Vol I I (Cambridge, MA, 1993), Int. Press, Cambridge, MA, 1995, p. 7-136. 

[15] Y . Kawamata - "The cone of curves of algebraic varieties", Ann. of Math. 119 (1984), 
p. 603-633. 

[16] , "Pluricanonical systems on minimal algebraic varieties", Invent. Math. 79 
(1985), p. 567-588. 

[17] S. kolodziej - "The complex Monge-Ampère equation", Acta Math. 180 (1998), p. 69-
117. 

[18] G. Perelman - "The entropy formula for the Ricci flow and its geometric applications", 
preprint arXiv:math.DG/0211159. 

[19] N. Sesum & G. Tian - "Perelman's argument for uniform bounded scalar curvature 
and diameter along the Kähler-Ricci flow", 2005, preprint. 

[20] J. Song & G. Tian - "The Kähler-Ricci flow on surfaces of positive Kodaira dimension", 
Invent. Math. 170 (2007), p. 609-653. 

[21] , in preparation. 
[22] , "Canonical measures and Kähler-Ricci flow", preprint arXiv:0802.2570. 
[23] G. Tian - "On Kähler-Einstein metrics on certain Kähler manifolds with C1(M) > 0", 

Invent. Math. 89 (1987), p. 225-246. 
[24] , "Smoothness of the universal deformation space of compact Calabi-Yau man­

ifolds and its Petersson-Weil metric", in Mathematical aspects of string theory (San 
Diego, Calif, 1986), Adv. Ser. Math. Phys., vol. 1, World Sci. Publishing, 1987, p. 629-
646. 

[25] , "On the existence of solutions of a class of Monge-Ampère equations", Acta 
Math. Sinica (N.S.) 4 (1988), p. 250-265. 

[26] , "On Calabi's conjecture for complex surfaces with positive first Chern class", 
Invent. Math. 101 (1990), p. 101-172. 

[27] , "Kähler-Einstein metrics with positive scalar curvature", Invent. Math. 130 
(1997), p. 1-37. 

[28] , "Geometry and nonlinear analysis", in Proceedings of the International 
Congress of Mathematicians, Vol. I (Beijing, 2002), Higher Ed. Press, 2002, p. 475-493. 

[29] G. TIAN &; J. VIACLOVSKY - "Moduli spaces of critical Riemannian metrics in dimension 
four", Adv. Math. 196 (2005), p. 346-372. 

[30] G. Tian & Z. Zhang - "On the Kähler-Ricci flow on projective manifolds of general 
type", Chinese Ann. Math. Ser. B 27 (2006), p. 179-192. 

[31] G. Tian & X. Zhu - "Convergence of Kähler-Ricci flow", J. Amer. Math. Soc. 20 
(2007), p. 675-699. 

[32] H. Tsuji - "Existence and degeneration of Kähler-Einstein metrics on minimal algebraic 
varieties of general type", Math. Ann. 281 (1988), p. 123-133. 

[33] X.-J. Wang & X. Zhu - "Kähler-Ricci solitons on toric manifolds with positive first 
Chern class", Adv. Math. 188 (2004), p. 87-103. 

[34] S. T. Yau - "On the Ricci curvature of a compact Kähler manifold and the complex 
Monge-Ampère equation. I", Comm. Pure Appl. Math. 31 (1978), p. 339-411. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2008 



92 G. TIAN 

[35] Z. ZHANG - "On degenerate Monge-Ampère equations over closed Kähler manifolds", 
Int. Math. Res. Not. (2006), Art. ID 63640, 18. 

[36] , "Scalar curvature bound for Kähler-Ricci flows over minimal manifolds of gen­
eral type", preprint arXiv:0801.3248. 

G. TlAN, Department of Mathematics, Princeton University and Peking University 

ASTÉRISQUE 322 


