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FAMILIES OF GALOIS REPRESENTATIONS 
AND SELMER GROUPS 

Joël BELLAÏCHE & Gaëtan CHENEVIER 

Abstract — This book presents an in-depth study of the families of Galois repre
sentations carried by the p-adic eigenvarieties attached to unitary groups. The study 
encompasses some general algebraic aspects (properties of the space of representations 
of a group in the neighbourhood of a point, reducibility loci, pseudocharacters), and 
other aspects more specific to Galois groups of local or number fields. In particular, 
we define and study certain deformation functors of crystalline representations of the 
absolute Galois group of Q p , namely trianguline deformations, which are naturally 
associated to the families above. As an application, we show how the geometry of 
these eigenvarieties at "classical" points is related to the dimension of certain Selmer 
groups. This, combined with conjectures of Langlands and Arthur on the discrete 
automorphic spectrum of unitary groups, allows us to prove, amongst other things, 
new cases of the Bloch-Kato conjectures (in any dimension). 

Résumé (Familles de représentations galoisiennes et groupes de Selmer). — Ce livre 
présente une étude approfondie des familles de représentations galoisiennes portées 
par les variétés de Hecke p-adiques des groupes unitaires. Cette étude comprend des 
aspects algébriques généraux (propriétés de l'espace des représentations d'un groupe 
au voisinage d'un point, lieux de réductibilité, pseudo-caractères), et d'autres plus 
spécifiques aux groupes de Galois des corps locaux ou des corps de nombres. Nous 
définissons et étudions notamment certains foncteurs de déformations des représen
tations cristallines du groupe de Galois absolu de Qp (déformations triangulines) 
qui sont naturellement associés aux familles ci-dessus. En guise d'application, nous 
montrons comment la géométrie de ces variétés de Hecke aux points « classiques » est 
reliée à la dimension de certains groupes de Selmer. Ceci, conjugué aux conjectures 
de Langlands et Arthur sur le spectre automorphe discret des groupes unitaires, nous 
permet entre autres de démontrer de nouveaux cas des conjectures de Bloch-Kato 
(en toute dimension). 
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INTRODUCTION 

This book (1) takes place in a now thirty years long trend of researches, initiated by 

Ribet ([96]) aiming at constructing "arithmetically interesting" non trivial extensions 

between global Galois representations (either on finite p°°-torsion modules, or on p-

adic vector spaces) or, as we shall say, non-zero elements of Selmer groups, by studying 

congruences or variations of automorphic forms. As far as we know, despite of its great 

successes (to name one: the proof of Iwasawa's main conjecture for totally real fields by 

Wiles [123]), this current of research has never established, in any case, the existence 

of two linearly independent elements in a Selmer group—although well-established 

conjectures predict that sometimes such elements should exist. ( 2) The final aim of 

the book is, focusing on the characteristic zero case, to understand the conditions 

under which, by this kind of method, existence of two or more independent elements 

in a Selmer space could be proved. 

To be somewhat more precise, let G be reductive group over a number field. We 

assume, to fix ideas, that the existence of the p-adic rigid analytic eigenvariety £ of 

G, as well as the existence and basic properties of the Galois representations attached 

to algebraic automorphic forms of G are known ( 3 ) . Thus 8 carries a family of p-adic 

Galois representations. Our main result takes the form of a numerical relation between 

the dimension of the tangent space at suitable points x € S and the dimension of the 

(x) During the elaboration and writing of this book, Joel Bellaiche was supported by the NSF grant 
DMS-05-01023. Gaetan Chenevier would like to thank the C.N.R.S. for their support, as well as the 
I.H.E.S. for their hospitality during part of this work. 
(2) By a very different approach, let us mention here that the parity theorem of Nekovar [89] shows, 
in the sign -hi case and for p-ordinary modular forms, that the rank of the Selmer group is at least 2 
if nonzero (see also [90, Chap. 12] for a more general result concerning potentially ordinary Hilbert 
modular forms). 
(3) Besides GL2 over a totally real field and its forms, the main examples in the short term of 
such G would be suitable unitary groups and suitable forms of GSp4. Concerning unitary groups in 
m > 4 variables, it is one of the goals of the book project of the GRFA seminar [60] to construct 
the expected Galois representations, which makes the assumption relevant. All our applications to 
unitary eigenvarieties for such groups (hence to Selmer groups) will be conditional to their work. 
However, thanks to Rogawski's work and [78], everything concerning C/(3) will be unconditional. 
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2 INTRODUCTION 

part of Selmer groups of components of adp x that are "seen by E'' , where px is the 

Galois representation carried by £ at the point x. 

Such a result can be used both ways: if the Selmer groups are known, and small, 

it can be used to study the geometry of £ at x, for example (see [73], [9]) to prove 

its smoothness. On the other direction, it can be used to get a lower bound on the 

dimension of some interesting Selmer groups, lower bound that depends on the di

mension of the tangent space of £ at x. An especially interesting case is the case of 

unitary groups with n + 2 variables, and of some particular points x G £ attached 

to non-tempered automorphic forms ( 4 ) . These forms were already used in [5] for a 

unitary group with three variables, and later for GSp 4 in [112], and for U(3) again 

in [8]. At those points, the Galois representation px is a sum of an irreducible n-

dimensional representation ( 5) p, the trivial character, and the cyclotomic character 

X. The representations p we could obtain this way are, at least conjecturally, all irre

ducible n-dimensional representations satisfying some self duality condition, and such 

that the order of vanishing of L(p, s) at the center of its functional equation is odd. 

Our result then gives a lower bound on the dimension of the Selmer group of p. Let 

us call Sel(p) this Selmer group ^ \ This lower bound implies, in any case, that Sel(p) 

is non zero (which is predicted by the Bloch-Kato conjecture), and if £ is non smooth 

at x, that the dimension of Sel(p) is at least 2. 

This first result (the non-triviality of Sel(p), proved in chapter 8) extends to any 

dimension n a previous work of the authors [8] in which they proved that Sel(p) ^ 0 in 

the case n = 1, i.e. G — U(3), and the work of Skinner-Urban [112] in the case n = 2 

and p ordinary. Moreover, the techniques developed in this paper shed also much light 

on those works. For example, the arguments in [8] to produce a non trivial element 

in Sel(p) involved some arbitrary choice of a germ of irreducible curve of £ at x, and 

it was not clear in which way the resulting element depended on this choice. With 

our new method, we do not have to make such a choice and we construct directly a 

canonical subvector space of Sel(p). Let us mention here that while the second half 

of this book was being written, other special cases of Bloch-Kato's conjectures have 

been announced by Skinner-Urban in [114]. 

In order to prove our second, main, result (the lower bound on dim(Sel(p)), see 

chapter 9) we study the reducibility loci of the family of Galois representations on £. 

An original feature of the present work is that we focus on points x G £ at which the 

Galois deformation at p is as non trivial as possible (we call some of them anti-ordinary 

(4) In general, their existence is predicted by Arthur's conjectures and known in some cases. 
(5) Say, of the absolute Galois group of a quadratic imaginary field. 
(6) Precisely, this is the group usually denoted by Hj(E,p). 
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INTRODUCTION 3 

points) (7\ We discovered that at these points, the local Galois deformation is highly 

irreducible, that is not only generically irreducible^8^, but even irreducible on every 

proper artinian thickening on the point x inside £ (recall however that px = 1 0 x 0 p 

is reducible). In other words, the reducibility locus of the family is schematically equal 

to the point x. It should be pointed out here that the situation is quite orthogonal to 

that for Iwasawa's main conjecture (see [86], [123]), for which there is a big known 

part in the reducibility locus at x (the Eisenstein part), and this locus cannot be 

controlled a priori. In our case, this fact turns out to be one of the main ingredients 

in order to get some geometric control on the size of the subspace we construct in 

Sel(p), and it is maybe the main reason why our points x are quite susceptible to 

produce independent elements in Sel(p). 

The question of whether we should expect that this method constructs the full 

Selmer group of p at x remains a very interesting mystery, whatever the answer may 

be. Although it might not be easy to decide this even in explicit examples (say with 

L(p,s) vanishing at order > 1 at its center), our geometric criterion reduces this 

question to some computations of spaces of p-adic automorphic forms on explicit 

definite unitary groups, which should be feasible. Last but not least, we hope that it 

may be possible to relate the geometry of £ at x (which is built on spaces of p-adic 

automorphic forms) to the L-function (or rather a p-adic L-function) of p, so that our 

results could be used in order to prove the "lower bound of Selmer group" part of the 

Bloch-Kato conjecture. However, this is beyond the scope of this book. 

The four first chapters form a detailed study of p-adic families of Galois represen

tations, especially near reducible points, and how their behavior is related to Selmer 

groups. There are no references to automorphic forms in them, in contrast with the 

following chapters 5 to 9 which are devoted to the applications to eigenvarieties. In 

what follows, we very briefly describe the contents of each of the different chapters 

by focusing on the way they fit in the general theme of the book. As they contain a 

number of results of independent interest, we invite the reader to then consult their 

respective introductions for more details. 

When we deal with families of representations (px)xex of a group G (or an al

gebra) over a "geometric" space X , there are two natural notions to consider. The 

most obvious one is the datum of a "big" representation of G on a locally free sheaf 

of Ox-modules whose evaluation at each x £ X is px. Another one, visibly weaker, is 

(7) A bit more precisely, among the (finite number of) points of x E S having the same Galois 
representation px, we choose one which is refined in quite a special way. 
(8) Note that although we do assume in the applications of this paper to Selmer groups the existence 
of Galois representations attached to algebraic automorphic forms on U(m) with m > 4, we do not 
assume that the expected ones are irreducible, but instead our arguments prove this irreducibility 
for some of them. 
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4 INTRODUCTION 

the datum of a "trace map" G — • 0(X) whose evaluation at each x G X is tr (p x ) ; 
these abstract traces are then called pseudocharacters (or pseudorepresentations). As 
a typical example, the parameter space of isomorphism classes of semisimple represen
tations of G usually only carries a universal family in the sense of traces. This is what 
happens also for the family of Galois representations on the eigenvarieties. When all 
the px are irreducible, the two definitions turn out to be essentially the same, but the 
links between them are much more subtle around a reducible px and they are related 
to the extensions between the irreducible constituents of p x , our object of interest. 

Thus our first chapter is a general study of pseudocharacters T over a henselian lo
cal ring A (having in view that the local rings of a rigid analytic space are henselian). 
There is no mention of a Galois group in all this chapter, and those results can be 
applied to any group or algebra. Most of our work is based on the assumption that 
the residual pseudocharacter T (that is, the pseudocharacter one gets after tensoriz-
ing T by the residue field of A) is without multiplicity, so it may be reducible, which 
is fundamental, but all its components appear only once. Under this hypothesis, we 
prove a precise structure theorem for T, describe the groups of extensions between the 
constituents of T we can construct from T, and define and characterize the reducibil-
ity loci of T (intuitively the subscheme of Spec A where T has a given reducibility 
structure). We also discuss conditions under which T is, or cannot be, the trace of a 
true representation. This chapter provides the framework for many of our subsequent 
results. 

In the second chapter we study infinitesimal (that is, artinian) families of p-adic 
local Galois representations, and their Fontaine theory, with the purpose of character
izing abstractly those coming from eigenvarieties. A key role is played by the theory of 
((p, r)-modules over the Robba ring and Colmez' notion of trianguline representation 
[46]. We generalize some results of Colmez to any dimension and with artinian coeffi
cients, giving in particular a fairly complete description of the trianguline deformation 
space of a non critical trianguline representation (of any rank). For the applications 
to eigenvarieties, we also give a criterion for an infinitesimal family to be trianguline 
in terms of crystalline periods. 

In the third chapter, we generalize a recent result of Kisin in [73] on the analytic 
continuation of crystalline periods in a family of local Galois representations. This 
result was proved there for the strong definition of families, namely for true represen
tations of Gal(Q p /Q p ) on a locally free O-module, and we prove it more generally for 
any torsion free coherent O-module. Our main technical tool is a method of descent by 
blow-up of crystalline periods (which turns out to be rather general) and a reduction 
to Kisin's case by a flatification argument. 

In the fourth chapter, we give our working definition of "p-adic families of refined 
Galois representations", motivated by the families carried by eigenvarieties, and we 
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INTRODUCTION 5 

apply to them the results of chapters 2 and 3. In particular, we are able in favorable 
cases to understand their reducibility loci in terms of the Hodge-Tate-Sen weight 
maps, and to prove that they are infinitesimally trianguline. 

In the fifth chapter we discuss our main motivating conjecture relating the dimen
sion of Selmer groups of geometric semi-simple Galois representations to the order of 
the zeros of their L-functions at integers. We are mainly interested in "one half" of 
this conjecture, namely, giving a lower bound on the dimension of the Selmer groups, 
as well as in a very special case of it that we call the sign conjecture. As was explained 
in [5], an important feature of the method we use is that we need as an input some 
results (supposedly simpler) about upper bounds of other Selmer groups. For the sign 
conjecture, we only need the vanishing of Sel(x) (for a quadratic imaginary field) 
which is elementary. However, we need more "upper bounds results" for our second 
main theorem, and we cannot prove all of them in general. Thus we formulate as 
hypotheses the results we shall need, which will appear as assumptions in the results 
of chapter 9. Using results of Kisin and Kato, we are able to prove all that we need 
in most cases when n = 2, and in all the cases for n = 1. 

The sixth chapter contains all the results we need about the unitary groups, their 
automorphic forms, and the Galois representations attached to them. In particular, 
we formulate there the two hypotheses (AC(7r)) and (Rep(ra)) that we use in chapters 
8 and 9. This chapter may be read in conjonction with the appendix of this book, 
which is a detailled discussion of Langlands and Arthur's conjectures. 

In the seventh chapter, we introduce and study in details the eigenvarieties of def
inite unitary groups and we prove the basic properties of the (sometimes conjectural) 
family of Galois representations that they carry. We essentially rely on the thesis of 
one of us [36] and actually go a bit further on several respects. Eigenvarieties furnish 
a lot of interesting examples where all the concepts studied in this book occur, and 
provides also an important tool for the applications to Selmer groups. The first half 
of this chapter only concerns eigenvarieties and may be read independently, whereas 
the second one depends on chapters 1 to 4. 

Finally, in chapters 8 and 9 we prove our main results, and we refer to those chapters 
for precise statements. 

The first four chapters of this book appeared as a preprint on the ArXiV on Febru
ary 2006. The book was made available in full, there, on January 2007. The few im
portant additions made in the final revision completed in October 2008 are explicitely 
mentionned in the core of the text. 

We made considerable efforts all along the redaction of this book to develop con
cepts and techniques adapted to study eigenvarieties. We hope that the reader will 
enjoy playing with them as much as we did. 
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CHAPTER 1 

PSEUDOCHARACTERS, REPRESENTATIONS 
AND EXTENSIONS 

1.1. Introduction 

This section is devoted to the local study (in the sense of the etale topology) 
of pseudocharacters T satisfying a residual multiplicity freeness hypothesis. Two of 
our main objectives are to determine when those pseudocharacters come from a true 
representation and to prove the optimal generalization of "Ribet's lemma" for them. 

Let us specify our main notations and hypotheses. Throughout this section, we will 
work with a pseudocharacter T : R —• A of dimension d, where A is a local henselian 
commutative ring of residue field k where d\ is invertible and R a (not necessarily 
commutative) A-algebra^1). To formulate our residual hypothesis, we assume ^ that 
T <g) k : R® k —• k is the sum of r pseudocharacters of the form tr pi where the 
Pi's are absolutely irreducible representations of i?<g) k defined over k. Our residually 
multiplicity free hypothesis is that the p^'s are two by two non isomorphic. In this 
context, "Ribet's lemma" amounts to determining how much we can deduce about the 
existence of non-trivial extensions between the representations pi from the existence 
and irreducibility properties of T. Before explaining our work and results in more 
details, let us recall the history of those two interrelated themes: pseudocharacters 
and the generalizations of "Ribet's lemma". 

We begin with the original Ribet's lemma ([96, Prop. 2.1]). Ribet's hypotheses are 
that d = r = 2, and that A is a complete discrete valuation ring. He works with a 
representation p : R — • M2(A), but that is no real supplementary restriction since 
every pseudocharacter over a complete strictly local ( 3) discrete valuation ring is the 

t1) See § 1.2.1. for the definition of a pseudocharacter. In the applications, R will be the group algebra 
A[G] where G a group, especially a Galois group. However, it is important to keep this degree of 
generality as most of the statements concerning pseudocharacters are ring theoretic. 
(2) Since we are not interested here in the field of coefficients of our representations and extensions, 
we may replace k by a separable extension, so this assumption is actually not a restriction. 
(3) A local ring is said to be strictly local if its residue field is separably closed. 
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8 CHAPTER 1. PSEUDOCHARACTERS, REPRESENTATIONS AND EXTENSIONS 

trace of a true representation (4). Ribet proves that if p<g>K (K being the fraction field 
of ^4) is irreducible, then a non-trivial extension of pi by p2 (resp. of p2 by pi) arises 
as a subquotient of p. This seminal result suggests numerous generalizations: we may 
wish to weaken the hypotheses on the dimension d, the number of residual factors r, 
the ring A, and for more general A, to work with general pseudocharacters instead 
of representations. We may also wonder if we can obtain, under suitable hypotheses, 
extensions between deformations pi and p2 of pi and p2 over some suitable artinian 
quotient of A, not only over k. 

A big step forward is made in the papers by Mazur-Wiles and Wiles ([86], [123]) 
on Iwasawa's main conjecture. As their work is the primary source of inspiration for 
this section, let us explain it with some details (our exposition owes much to [58]; see 
also [9, §2]). They still assume d = r = 2, but the ring A now is any finite flat reduced 
local Ao-algebra A, where AQ is a complete discrete valuation ring. Though the notion 
of pseudocharacter at that time was still to be defined, their formulation amounts to 
considering a pseudocharacter (not necessarily coming from a representation) T : 
R —• A, where R is the group algebra of a global Galois group. The pseudocharacter 
is supposed to be odd, which implies our multiplicity free hypothesis. They introduce 
an ideal / of A, which turns out to be the smallest ideal of A such that T ® A/1 is the 
sum of two characters pi, p2 : R —> A/1 deforming respectively pi and p2- Assuming 
that I has cofinite length I, their result is the construction of a finite A/J-module of 
length at least I in Ex t J^^p i , P2). We note that it is not possible to determine 
the precise structure of this module, so we do not know if their method constructs, 
for example, I independent extensions over k of p2 by pi or, on the contrary, one 
"big" extension of p2 by pi over the artinian ring A/1, that would generate a free 
^//-module in Ext^//i?(pi, P2). 

The notion of pseudocharacter was introduced soon after by Wiles in dimension 2 
([123]), and by Taylor in full generality ([117]), under the name of pseudorepresen-
tation. Besides their elementary properties, the main question that has been studied 
until now is whether they arise as the trace of a true representation. Taylor showed 
in 1990, relying on earlier results by Procesi, that the answer is always yes in the case 
where A is an algebraically closed field of characteristic zero; this result was extended, 
with a different method, to any algebraically closed field (of characteristic prime to d\) 
by Rouquier. The question was settled affirmatively in 1996 for any local henselian 
ring A, in the case where the residual pseudocharacter f is absolutely irreducible, 
independently by Rouquier ([102]) and Nyssen ([91]). 

We now return to the progresses on Ribet's lemma. 

(4) We leave the proof of this assertion to the interested reader (use the fact that the Brauer group 
of any finite extension of K is trivial, e.g. by [110, XII §2, especially exercise 2]). 
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1.1. INTRODUCTION 9 

Urban's work ([119]) deals with the question of obtaining, using the notations of 
the paragraph describing Mazur-Wiles modules, a free A/I-module of extensions of 
Pi by P2- His hypotheses are as follows: the dimension d is arbitrary, but the number 
r of residual factors is still 2. The ring A/1 is an arbitrary artinian local ring, and 
the pseudocharacter T is (over A/1) equal to trpi + trp 2 , but he also assumes that T 
comes from a true representation p (at least over A/1), which moreover is modulo the 
maximal ideal of A a non-trivial extension of p\ by p2. Then he proves that p is indeed 
a non trivial extension of p\ by pi- Thus he obtains a more precise result than Mazur 
and Wiles, but with the much stronger assumption that his pseudocharacter comes 
from a representation that already gives the searched extension modulo the maximal 
ideal. Our work (see § 1.7) will actually show that the possibility of producing a free 
A/J-module of extensions as he does depends fundamentally on that hypothesis, which 
is very hard to check in practice excepted when A is a discrete valuation ring, or when 
T allows to construct only one extension of pi by p2> 

One of us studied ([6]) the case of an arbitrary number of residual factors r (and 
an arbitrary d) but like Ribet with A a complete discrete valuation ring. The main 
feature here is that the optimal result about extensions becomes more combinatorially 
involved. Assuming that p is generically irreducible, we can say nothing about the 
vanishing of an individual space of extensions E x t ^ ^ p ^ , pj). What we can say is 
that there are enough couples (i, j) in { l , . . . , r } 2 with non-zero Ext^^pi, pj) for 
the graph drawn by the oriented edges (i, j) to be connected. This result was soon 
after extended to deal with extensions over A/1 assuming the residual multiplicity one 
hypothesis, in a joint work with P. Graftieaux in [12]. The combinatorial description 
of extensions we will obtain here is reminiscent of the results of that work. 

Let us conclude those historical remarks by noting that two basic questions are 
not answered by all the results mentioned above: about Ribet's lemma, is it possible 
to find reasonable hypotheses so that two independent extensions of pi by p2 over k 
exist? About pseudocharacters (over a strictly local henselian ring A, say), for which 
conceptual reasons might a pseudocharacter not be the trace of a true representation? 

In this chapter, we will obtain the most general form of Ribet's lemma (for any 
A and T, and implying all the ones above) as well as a satisfactory answer to both 
questions above, and others. Indeed we will derive a precise structure theorem for 
residually multiplicity free pseudocharacters, and using this result we will be able to 
understand precisely and to provide links (some expected, others rather surprising) 
between the questions of when does a pseudocharacter come from a representation, 
how many extensions it defines, and how its (irdeducibility behaves with respect to 
changing the ring A by a quotient. 

We now explain our work, roughly following the order of the subparts of this section. 
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10 CHAPTER 1. PSEUDOCHARACTERS, REPRESENTATIONS AND EXTENSIONS 

The first subpart § 1.2 deals with generalities on pseudocharacters. There A is not 
local henselian but can be any commutative ring. Though this part is obviously influ
enced by [102], we have tried to make it self-contained, partly for the convenience of 
the reader, and partly because we needed, in any case, to improve and generalize most 
of the arguments of Rouquier. We begin by recalling Rouquier's definition of a pseu-
docharacter of dimension d. We then introduce the notion of Cayley-Hamilton pseu-
docharacter T: it means that every x in R is killed by its "characteristic polynomial" 
whose coefficients are computed from the T(xl), i = 1,... ,d. This notion is weaker 
than the notion of faithfulness that was used by Taylor and Rouquier, but it is stable 
by many operations, and this fact allows us to give more general statements with often 
simpler proofs. This notion is also closely related to the Cayley-Hamilton trace alge
bras studied by Procesi (see [93]). Every A-algebra R with a pseudocharacter T has 
a bunch of quotients on which T factors and becomes Cayley-Hamilton, the smallest 
of those being the unique faithful quotient R/KerT. We also prove results concerning 
idempotents, and the radical of an algebra with a Cayley-Hamilton pseudocharacter, 
that will be useful in our analysis of residually multiplicity free pseudocharacters. 
Finally, we define and study the notion of Schur functors of a pseudocharacter. 

In § 1.3 and § 1.4, we study the structure of the residually multiplicity free pseu
docharacters over a local henselian ring A. We introduce the notion of generalized ma
trix algebra, or briefly GMA, over A. Basically, a GMA over A is an A-algebra whose 
elements are square matrices (say, of size d) but where we allow the non diagonal 
entries to be elements of arbitrary .A-modules instead of A - say the (z^-entries are 
elements of the given A-module Aij. Of course, to define the multiplications of such 
matrices, we need to suppose given some morphisms Aij ®A AJ^ — • A^k satisfying 
suitable rules. The result motivating the introduction of GMA is our main structure 
result (proved in § 1.4), namely: if T : R — • A is a residually multiplicity free pseu
docharacter, then every Cayley-Hamilton quotient of R is a GMA. Conversely, we 
prove that the trace function on any GMA is a Cayley-Hamilton pseudocharacter, 
which is residually multiplicity free if we assume that AijAjj C m (the maximal 
ideal of A) for every i ^ j , which provides us with many non trivial examples of such 
pseudocharacters. This result is a consequence of the main theorem of our study of 
GMA's (§ 1.3) which states that any GMA over A can be embedded, compatibly with 
the traces function, in an algebra Md(B) for some explicit commutative A-algebra 
B. Those two results take place in the long-studied topic of embedding an abstract 
algebra in a matrix algebra. It should be compared to a result of Procesi ([93]) on 
embeddings of trace algebras in matrix algebras: our results deal with less general al
gebras R, but with more general A, since we avoid the characteristic zero hypothesis 
that was fundamental in Procesi's invariant theory methods. 
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1.1. INTRODUCTION 11 

In §1.5, we get the dividends of our rather abstract work on the structure of 
residually multiplicity free pseudocharacters. Firstly, for such a pseudocharacter, and 
for every partition of { 1 , . . . , r } of cardinality k, we prove that there exists a greatest 
subscheme of Spec A on which T is a sum of k pseudocharacters, each of which being 
residually the sum of tr pi for i belonging to an element of the partition. We also show 
that on that subscheme, this decomposition of T as a sum of k such pseudocharacters 
is unique, and that that subscheme of Spec (A) does not change if R is changed into 
a quotient through which T factors. That subscheme is called the reducibility loci^ 
attached to the given partition, and it will become one of our main object of study 
in Section 4. Moreover, if S is any Cay ley-Hamilton quotient of i?, hence a GMA 
defined by some A-modules A^-'s, we give a very simple description of the ideals of 
the reducibility loci in terms of the Aij. 

Secondly, we construct submodules (explicitly described in terms of the modules 
Aij) of the extensions modules Extjj(pj, pi). This is our version of "Ribet's lemma", 
as it provides a link between non-trivial extensions of pj by pi and the irreducibility 
properties of T encoded in its reducibility loci, and we show that it is in any reasonable 
sense optimal. 

Nevertheless, and despite its simplicity, this result may not seem perfectly satisfac
tory, as it involves the unknown modules A^s. It may seem desirable to get a more 
direct link between the module of extensions we can construct and the reducibility 
ideals, solving out the modules Aij. However, this is actually a very complicated task, 
that has probably no nice answer in general, as it involves in the same times combina
torial and ring-theoretical difficulties: for the combinatorial difficulties, and how they 
can be solved (at a high price in terms of simplicity of statements) in a context that 
is ring-theoretically trivial (namely A a discrete valuation ring), we refer the reader 
to [12]; for the ring-theoretical difficulties in a context that is combinatorially trivial 
we refer the reader to § 1.7. In this subpart, we make explicit in the simple case r = 2 
the subtle relations our results implies between, for a given pseudocharacter T, the 
modules of extensions that T allows to construct, the existence of a representation 
whose trace is T, the reducibility ideal of T and the ring-theoretic properties of A. We 
also give some criteria for our method to construct several independent extensions. 
Finally, let us say that the final sections of this paper will show that our version of 
Ribet's lemma, as stated, can actually easily be used in practice. 

In § 1.6, we determine the local henselian rings A on which every residually multi
plicity free pseudocharacter comes from a representation. The answer is surprisingly 

(5) We stress that we could not define those loci without the assumption of residually multiplicity 
one (see [10]). 
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12 CHAPTER 1. PSEUDOCHARACTERS, REPRESENTATIONS AND EXTENSIONS 

simple, if we restrict ourselves to noetherian A. Those A's are exactly the unique 

factorization domains. The proof relies on our structure result and its converse. 

Finally, in § 1.8, we study pseudocharacters having a property of symmetry of order 

two (for example, selfdual pseudocharacters). It is natural to expect to retrieve this 

symmetry on the modules of extensions we have constructed, and this is what this 

subsection elucidates. Our main tool is a (tricky) lemma about lifting idempotents 

"compatibly with an automorphism or an anti-automorphism of order two" which may 

be of independent interest. 

It is a pleasure to acknowledge the influence of all the persons mentioned in the 

historical part of this introduction. Especially important to us have been the papers 

and surveys of Procesi, as well as a few but illuminating discussions with him, either 

at Rome, the ENS, or by email. 

1.2. Some preliminaries on pseudocharacters 

1.2.1. Definitions. — Let A be a commutative ring^6) and R an A-algebra (not 

necessarily commutative). Let us recall the definition of an A-valued pseudocharacter 

on R introduced by R. Taylor in [117, §1]. Let T : R —> A be an A-linear map which 

is central, that is such that T(xy) = T(yx) for all x, y £ R. For each integer n > 1, 

define a map Sn(T) : Rn —• A by 

Sn(T)(x) 
creen 

e{a)T°{x), 

where Ta : Rn —• A is defined as follows. Let x = (a?i,... , xn) € Rn. If a is a cycle, 

say ( j i , . . . , im), then set Ta(x) = T(XJx · · 'Xjm)y which is well defined. In general, 

we let Ta(x) = n i= i Tai(x), where a = n i= i a% * s the decomposition in cycles of the 

permutation a (including the cycles with 1 element). We set SQ(T) := 1. 

The central function T is called a pseudocharacter on R if there exists an integer 

n such that Sn+i(T) = 0, and such that n\ is invertible in A. The smallest such n is 

then called the dimension of T, and it satisfies T ( l ) = n (see Lemma 1.2.5 (2)) ( 7 \ 

(6) In all the book, rings and algebras are associative and have a unit, and a ring homomorphism 
preserves the unit. 
(7) The definition of a pseudocharacter of dimension n used here looks slightly more restrictive than 
the one introduced in [117] or [102], as we assume that n! is invertible. This assumption on n\ is 
first crucial to express the Cay ley-Hamilton theorem from the trace, which is a basic link between 
pseudocharacters and true representations, and also to avoid a strange behavior of the dimension of 
pseudocharacters with base change. Note that Taylor's theorem is only concerned by the case where 
A is a field of characteristic 0, hence n! is invertible. Moreover, Lemma 2.13 of [102] is false when 
n\ is not invertible (and correct if it is), hence this hypothesis should be added in the hypothesis of 
Lemma 4.1 and Theorem 5.1 there (see Remark 1.2.6) below. 
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1.2. SOME PRELIMINARIES ON PSEUDOCHARACTERS 13 

These notions apply in the special case where R = A[G] for some group (or monoid) 

G. In this case, T is uniquely determined by the data of its restriction to G (central, 

and satisfying S„+i(T) = 0 on G n + 1 ) . 

If T : R —• A is an A-valued pseudocharacter on R of dimension d and if A' is a 

commutative A-algebra, then the induced linear map T ® A' : R® A' —• A' is an 

^'-valued pseudocharacter on R of dimension d. 

1.2.2. Main example. — Let V := Ad and p : # —> End^(^) be a morphism 

of A-algebras. For each n > 1, V®An carries an A-linear representation of 6N and a 

diagonal action of the underlying multiplicative monoid of Rn. If e = ^ a G e n

 £ ( < J ) c r € 

i4[6 n ] , then a computation^8^ shows that for x G Rn, 

tr(xe\V®An) 5 n ( t r (p))(x) . 

As e acts by 0 on V®An if n > the central function T := tr (p) is a pseudocharacter of 

dimension d (assuming that d\ is invertible in A). Moreover, when p is an isomorphism, 

an easy computation using standard matrices shows that T is the unique A-valued 

pseudocharacter of dimension d of R = Md(A). By faithfully flat descent, these results 

also hold when End^(V) is replaced by any Azumaya algebra of rank d2 over A, and 

when tr is its reduced trace. 

Let us now recall the main known converse results. If T : R — • A; is a pseudochar

acter, where k is a separably closed field, then T is the trace of a unique semi-simple 

representation p : R — • Endfc(V). This is [117, Thm. 1.2] in characteristic 0, who 

relies on the work of Procesi in [92], and [102, Thm. 4.2] in general. When k is a 

field, but not necessarily separably closed, then [102, Thm. 4.2] proves that if T is 

absolutely irreducible, that is T ® A: s e p is not the sum of two non trivial pseudochar

acters, then T is the reduced trace of a surjective fc-algebra morphism p : R —• S for 

some central simple algebra S over k (S and p are even unique up to isomorphism). 

More generally, for any commutative ring A, if T : R —> A is a pseudocharacter 

such that T 0 A/m is absolutely irreducible for all m G Specmax(A), then T is the 

reduced trace of a surjective A-algebra homomorphism p : R — • 5, where S is an 

Azumaya algebra over A ([102, Thm. 5.1], [91] when A is local henselian). When 

A is strictly local henselian, any Azumaya algebra over A is isomorphic to a matrix 

algebra Md(A), so the above theorem implies that over a stricly local henselian ring, 

any pseudocharacter T : R —> A such that T (g) A/m is (absolutely) irreducible is the 

trace of a true representation p : R —• Md(A). 

(8) For instance, reducing to the case where R = EIH1A(V) and using the polarization identity for 
symmetric multi-linear forms, it suffices to check it when x = (y,y,..., y) (see also [92, §1.1], [102, 
prop. 3.1]). 
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14 CHAPTER 1. PSEUDOCHARACTERS, REPRESENTATIONS AND EXTENSIONS 

One main goal of this section is to study the new case where A is local henselian 

and T®A/m is reducible (but satisfies a multiplicity one hypothesis (def. 1.4.1, § 1.6)). 

1.2.3. The Cayley-Hamilton identity and Cayley-Hamilton pseudocha

racters. — Let T : R —• A be a pseudocharacter of dimension d. For x £ R, 

let 

Px,T(X) Xd 
d 

k=l 

( - 1 ) * 
fc! 

Sk(T)(Xl...,x)Xd-k eA[X}. 

In the example given in § 1.2.2, PX,T{X) is the usual characteristic polynomial of x. 

We will say that T is Cayley-Hamilton if it satisfies the Cayley-Hamilton identity, 

that is if 

for all x € R, PX,T{X) 0. 

In this case, R is integral over A. The algebra R equipped with T is then a Cayley-

Hamilton algebra in the sense of C. Procesi [93, def. 2.6]. 

An important observation is that for a general pseudocharacter T : R —> A of 

dimension d, the map R —• R, x i—• PXJT(^)? is the evaluation at (x, . . . , # ) of a 

d-linear symmetric map CH(T) : —> R, explicitly given by: 

CH(T)(x i , . . . , xd) ( - D d 
d! 

7,(7 
(-l)l/"5d_m(T)({a:i,i g /})Xct(1) · • ·a^,,,). 

where / is a subset of { 1 , . . . , d} and a a bijection from { 1 , . . . , \I\} to J. A first 

consequence of the polarization identity ([28, Alg., Chap. I, §8, prop. 2], applied to 

the ring SymmdA(R)) is that T is Cayley-Hamilton if and only if CH(T) = 0. In 

particular, if T is Cayley-Hamilton then for any A-algebra A!, T' ® A' is also Cayley-

Hamilton. 

In the same way, we see that for x\,..., xa+i € R, we have 

(1) Sfd+i(T)(a?i,... ,Xd+i) d\T(CK(T)(x1,...,xd)xd+1), 

hence a good way to think about the identity 5^+1 (T) = 0 defining a pseudocharacter 

is to see it as a polarized, A-valued, form of the Cayley-Hamilton identity. 

1.2.4. Faithful pseudocharacters, the kernel of a pseudocharacter. — We 

recall that the kernel of T is the two-sided ideal Ker T of R defined by 

KerT [x e R, Vy £ R, T(xy) 0 

T is said to be faithful when KerT = 0. If R —> S is a surjective morphism of 

A-algebras whose kernel is included in KerT, then T factors uniquely as a pseu

docharacter Ts : S —• A, which is still of dimension d, and which will be often 

denoted by T. In particular, T induces a faithful pseudocharacter on jR/KerT. 
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1.2. SOME PRELIMINARIES ON PSEUDOCHARACTERS 15 

If T is faithful, then T is Cayley-Hamilton: indeed, for any x i , . . . ,Xd+i G R, we 

have Sd+i(T)(xi,... ,Xd+i) = 0 by definition of a pseudocharacter of dimension d, 

hence T(CH(T) (x i , . . . , Xd)%d+i) = 0 by formula (1) above and the fact that d\ is 

invertible in A\ since this holds for all Xd+i G A, and T is faithful, we deduce that 

CH(T)(x! , . . . , a : d ) = 0. 

More generally, let {Ti)r

i=l be a family of pseudocharacters R —• A such that d\ is 

invertible in A where d = dimTi H hdimT r . Then T := 1$ is a pseudocharacter 

of dimension d, and for all x £ R, 

Px,T 
r 

i=l 
Px,Ti 

(we may assume that r = 2, in which case this follows from [102, Lemme 2.2]). 

As a consequence, PX,T(X) € (KerTi)(KerT 2) · · · (KerT r) C f | i K e r ? i , hence T : 

/^/(fliKerTi) —> A is Cayley-Hamilton. The following lemma is obvious from the 

formula of PXTT(X), but useful. 

Lemma 1.2.1. — LetT : R —• A be a Cayley-Hamilton pseudocharacter of dimension 

d, then for each x G KerT we have xd = 0. In particular KerT is a nil ideal, and is 

contained in the Jacob son radical of R. 

Remark 1.2.2. — If A' is an ^4-algebra and T is faithful, it is not true in general that 

T (g) A' is still faithful. Although we will not need it in what follows, let us mention 

that this is however the case when A' is projective as an ^-module (so e.g. when A 

is a field), or when A! is flat over A and either R is of finite type over A (see [102, 

prop. 2.11]) or A is noetherian (mimic the proof loc. cit. and use that Ax is flat over 

A for any set X). This is also the case when A! = S~XA is a fraction ring of A such 

that A —> S~lA is injective, as for such an S the natural map 

5~ 1 KerT Ker (T&S-1 A) 

is an isomorphism for any pseudocharacter T : R —> A. Indeed, the natural map 

5 _ 1 K e r T —• S~XR is injective as S~XA is flat over A, and its image is obviously 

included in Ker (T 0 S~XA). Moreover, if x G Ker (T <g> S~1A), then we may write 

x = y/s with y £ R and s € S. For any z G R, then T(yz) = 0 as its image in S^A 

is T(sxz) = sT(xz) = 0, so y G Ker T and the surjectivity follows. 

1.2.5. Cayley-Hamilton quotients 

Definition 1.2.3. — Let T : R —• A be a pseudocharacter of dimension d. Then a 

quotient S of R by a two-sided ideal of R which is included in Ker T, and such that the 

induced pseudocharacter T : S —> A is Cayley-Hamilton, is called a Cayley-Hamilton 

quotient of (i?, T). 
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16 CHAPTER 1. PSEUDOCHARACTERS, REPRESENTATIONS AND EXTENSIONS 

Example 1.2.4. — (i) R/KeiT is a Cayley-Hamilton quotient of (R,T). 
(ii) Let / be the two-sided ideal of R generated by the elements PX,T(X) for all x e R. 

Then S0 := R/I is a Cayley-Hamilton quotient of (R,T). Indeed, / C KerT 
by formula (1) (which, applied to x\ = · · · = Xd = x and x<i+i = y, gives, 
using that its right hand side is zero by definition of a pseudocharacter, that 
T(PXtT(x)y) = 0 for all x,y G R, so that PXyT(x) € KerT for all x G R) and T 
is obviously Cayley-Hamilton on So. 

(iii) Let B be a commutative ^4-algebra and p : R — • Md(B) be a representation 
such that tr o p = T. Then p(R) is a Cayley-Hamilton quotient of T. Indeed, 
Ker p is obviously included in Ker T and tr is Cayley-Hamilton on p(R) by the 
usual Cayley-Hamilton theorem. 

The Cayley-Hamilton quotients of (i?, T) form in a natural way a category: mor-
phisms are A-algebra morphisms which are compatible with the morphism from R. 
Thus in that category any morphism S\ — • S2 is surjective, and has kernel Ker Ts± 

which is a nil ideal by Lemma 1.2.1. Note that So is the initial object and R/KerT 
the final object of that category. 

1.2.6. Two useful lemmas on pseudocharacters. — Let T : R —• A be a 
pseudocharacter of dimension d. Recall that an element e G R is said to be idempotent 
if e 2 = e. The subset eRe C R is then an ^4-algebra whose unit element is e. 

Lemma 1.2.5. — Assume that Spec (A) is connected. 

(1) For each idempotent e G R, T(e) is an integer less than or equal to d. 
(2) We have T ( l ) = d. Moreover, if A! is any A-algebra, the pseudocharacter T 0 A! 

has dimension d. 
(3) If e G R is an idempotent, the restriction Te of T to the A-algebra eRe is a 

pseudocharacter of dimension T(e). 
(4) IfT is Cayley-Hamilton (resp. faithful), then so is Te. 
(5) Assume that T is Cayley-Hamilton. IJrei,..., e r is a family of (nonzero) orthog

onal idempotents of R, then r < d. Moreover, if T(e) = 0 for some idempotent 
e of R, then e = 0. 

Proof. — Let us prove (1). By definition of S d +i(T) and [102, cor. 3.2], 

(2) 5 d + i ( T ) ( e , e , . . . , e ) 
OEGd+1 

e(a)T(e) a T(e)(T(e) - 1) • • • ( T ( e ) - d ) 0 

in A, where \a\ is the number of cycles of a. The discriminant of the split polynomial 
X(X - 1) · · · (X - d) G A[X] is d\ , hence is invertible in A. As Spec (A) is connected, 
we get that T(e) = i for some i < d. This proves (1). 

ASTÉRISQUE 324 



1.2. SOME PRELIMINARIES ON PSEUDOCHARACTERS 17 

To prove (2), apply (1) to e = 1. We see that T ( l ) = i is an integer less than or 

equal to d. But following the proof of [102, Prop. 2.4], there is an x G A—{0} such that 

x(T(l) — d) = 0. Then x(i — d) — 0, and because i — d is invertible if non zero, we must 

have i = d = T ( l ) . In particular, 5 d ( T ) ( l , 1,..., 1) = T ( 1 ) ( T ( 1 ) - 1 ) . . . ( T ( l ) - d + l ) = 

d\ is invertible, hence 5 d ( T <g> A')(l,..., 1) is non zero, which proves (2). 

Let Te := T\eRe : eRe —• A. For all n, we have Sn(Te) = Sn(T)^eRe^n+i, so that Te 

is a pseudocharacter of dimension < d. As e is the unit of eRe, and T(e)! is invertible 

in A by (1), part (2) implies that dimT e = T(e). 

If x € eRe and y £ R, then T(xy) = T(exey) = T(xeye) = Te(xeye), hence T e 

is faithful if T is. Assume now that T is Cayley-Hamilton and fix x G eRe. Let us 

compute 

e C H ( T ) ( a r , . . . , a : , ( l - e ) > . . . , ( l - e ) ) 

where x appears r := T(e) times. As x(l — e) = e(l — e) = 0, we see that the only 

nonvanishing terms defining the sum above are the ones with (/, a) satisfying |7| < r 

and c r ( { l , . . . , | / | }) C { 1 , . . . , r } . For such a term, it follows from [102, Lemme 2.5] 

that 

Sd„m(T)({Xi,i <£ I}) 5 r _ m ( T ) ( x , . . . , x ) 5 d _ r ( T ) ( l - e , . . . , l - c ) 

As we have seen in proving part (2) above, and by (3), S d _ r ( T ) ( l - e , . . . , l - e ) 

5 d _ r ( T 1 _ e ) ( l - e , . . . , l - e ) (d-r)\ is invertible. We proved that: 

e C H ( T ) ( a r , . . . , x , ( l - e ) , . . . , ( l - e ) ) 
(d-r)\2 

d\ 
CH(r e ) ( i , . . . ,x )e , 

hence Te is Cayley-Hamilton if T is. 

Let us prove (5), we assume that T is Cayley-Hamilton. Let e be an idempotent 

of R. If e satisfies T(e) = 0, then we see that Pe^{X) = Xd, hence ed = e = 0 by 

the Cayley-Hamilton identity. Thus if e is nonzero then T(e) is non zero, hence by 

(1) is an integer between 1 and d, so is invertible in A. Assume now by contradiction 

that e i , . . . ,ed+i is a family of orthogonal nonzero idempotents of R. Then we get 

that Sd+i(ei , . . . ,ed+i) = T{e\) · · -T(ed + i ) , which has to be invertible and zero, a 

contradiction. 

Remark 1.2.6. — Lemma 2.14 of [102] is obviously incorrect as stated, and must be 

replaced by the part (5) of the above lemma (it is used in the proofs of Lemma 4.1 

and Theorem 5.1 there). 

We conclude by computing the Jacobson radical of R when T is Cayley-Hamilton. 

In what follows, -A is a local ring with maximal ideal m and residue field k := A/m. 

We will denote by R the fc-algebra R <8u k — R/mR, and by f the pseudocharacter 

T®k:R—>k. 
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Lemma 1.2.7. — Assume thatT is Cayley-Hamilton. Then the kernel of the canonical 
surjection R —• R/KerT is the Jacobson radical rad(i?) of R. 

Proof. — Let J denote the kernel above, it is a two-sided ideal of R. By [102, Lemma 
4.1] (see precisely the sixth paragraph of the proof there), R/(KerT) is a semisimple 
A;-algebra, hence rad(i2) C J. 

Let x G J; we will show that 1 -f x G R*. We have T(xy) G m, Vy G R, hence 
T(xl) G m for all i, so that by the Cayley-Hamilton identity xd G ra(A[#]). Let us 
consider the commutative finite A-algebra B := A[x). Then B is local as B/mB is, 
and its maximal ideal is (m,x). As a consequence, 1 + x is invertible in B, hence in 
JR. As J is a two-sided ideal of R such that 1 + J C R*, we have J C rad(i2). 

1.2.7. Tensor operations on pseudocharacters. — In this section we assume 
that A is a Q-algebra. All the tensor products involved below are assumed to be over 
A. 

Let R be an A-algebra, T : R —• A be a pseudocharacter of dimension d, and m 
a positive integer. We define T®m : R®m —• A as the A-linear form that satisfies 

(3) T(xi <g> · · · ® Xm) T{x1)...T{xrn). 

Let us denote by i 2 ® m [ 6 m ] the twisted group algebra of 6 m over R®m satisfying 

a · X\ 0 · · · <g> Xm Χσ(1) (8) · · · (g) Xa(m) · CT. 

We can then extend T®m to an ^-linear map i ^ 0 m [ 6 m ] — • A by setting 

U(Xi®--®Xm'Cr) T (x\, . . . , Xrn) 

(see § 1.2.1, note that this map coincides with T 0 m on the subalgebra R®m). 

Proposition 1.2.8. — j1®™ and JJ a r e pseudocharacters of dimension dm. 

Proof. — By [93], there is a commutative A-algebra £?, with A C B, and a morphism 
p : R —• Md(B) = End# (£ d ) of A-algebras such that trp(x) = T(x)lB for every 
x G R. Let p 0 m : R®m —> E n d B ( ( £ d ) ® m ) = Mdm(B) be the mth tensor power of 
p. The equality trp®rn{z) = T®m(z)lB follows from (3) for pure tensors z G R®m 

and then by A-linearity for all z. We deduce tr p®m = T as A C B. Thus T®m is a 
pseudocharacter, being the trace of a representation. 

We can extend the morphism p®m : R®m — • E n d B ( ( B d ) ( 8 > m ) into a morphism 
pf : i ? ^ 7 7 1 ^ , , , ] — • EndB{{Bd)®m) by letting 6 m act by permutations on the m 
tensor components of (Bd)®m. It is an easy computation to check that the trace of p' 
is U. So U is a pseudocharacter. 
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Remark 1.2.9. — It should be true that more generally, if for i — 1,2, Ti : Ri —> A 
is a pseudocharacter of dimension di, and if T : Ri <g> R2 — • A is the A-linear map 
defined by 

T(xi®x2) r i(xi)r 2 (x 2 ) , 

then T is a pseudocharacter of dimension d\d2. It is probably possible to deduce 
directly the formula Sdid 2 +iCO = 0 fr°m t n e formulas S^+^Ti) = 0, i = 1,2, but we 
have not written down a proof ( 9 ) . 

To conclude this paragraph, we give an application of the preceding proposition to 
the construction of the Schur functors of a given pseudocharacter in the case when 
R:= A[G] with G a group or a monoid. 

Let T : A[G] —> A be a pseudocharacter and let m > 1 be an integer. There is a 
natural A-algebra embedding 

im : A[G] R®m[®m] A[Gm x 6 m ] 

extending the diagonal map G —> Gm. Let e G Q[<3m] be any central idempotent. 
As the image of tm commutes with ( 5 m , the map 

rj-ie A[G] A, x U(im(x)e), 

is a pseudocharacter by Proposition 1.2.8. 

Remark 1.2.10. — (i) In the special case when e 2 
ra! OEGm 

e(cr)(j), then we set 
as usual A m ( T ) := T e . Note that Te(g) 2 

ra! 
Sm(T){gi...,g)îoi geG. 

(ii) It follows easily from the definitions that when T (resp. T\ and T2) is the trace 
of a representation G —> GL{V) (resp. of some representations V\ and V2), 
then Te (resp. TiT2) is the trace of the representation of G on e(V®m) (resp. 
on Vi 0 V2). 

1.3. Generalized matrix algebras 

Let d i , . . . , d r be nonzero positive integers, and d := d\ + h d r . 

(9) Note also that the proof of the proposition above would break on the fact that if pi : Ri —• 
Md(B{) are representations of trace T{ given by [93], it does not follow from A C Bi that the map 
A —• Bi (S>A B2 is injective, so that we cannot find a representation whose trace is T, but only a 
representation whose trace coincides with T after reduction to the image of A in B± ®A ^2· However 
this line of reasoning would imply that T is a pseudocharacter in two cases: if A is reduced, because 
in that case, we can take B\ = B2 equal to the product of algebraic closures of residue fields of 
all points of Spec (A), and pi : Ri -—• Md(B) be the "diagonal" representation deduced from T̂ ; 
and if A is local henselian, T{ residually multiplicity free (see § 1.4.1), since in this case we may use 
Proposition 1.3.13 to produce representations pi : R —> M^Bi) of trace 7* such that A is a direct 
factor of Bi, so that we know that A C B± (g>̂  B2. 
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1.3.1. Definitions, notations and examples 

Definition 1.3.1. — Let A be a commutative ring and R an A-algebra. We will say 

that R is a generalized matrix algebra (GMA) of type (d i , . . . ,dr) if R is equipped 

with: 

(i) a family of orthogonal idempotents e i , . . . , er of sum 1, 

(ii) for each i, an A-algebra isomorphism ^ : eiRei —> Mdi(^4), 

such that the trace map T : R —> A, defined by T(x) := Y^-i tr ( ^ ( e ^ e i ) ) , satisfies 

T(xy) = T(yx) for all x,y G R. We will call £ = {eiyi(;i,i = l , . . . , r } the data of 

idempotents of R. 

Remark 1.3.2. — If R is a GMA as above, then R equipped with the map T ( « ) l # is 

a trace algebra in the sense of Procesi [93]. 

Notation 1.3.3. — If (R, £) is a GMA as above, we shall often use the following no

tations. For 1 < i < r, 1 < k, I < di, there is a unique element E^1 G eiRei such that 

ifji(Ei'1) is the elementary matrix of Md.(A) with unique nonzero coefficient at row k 

and column I. These elements satisfy the usual relations 

Eik,l Eik,l 6i,6i',k' Eik,l', 

ei l<k<di 
Tpk,k and AEl'1 is free of rank one over A. Clearly, the data of the E^1 

satisfying these last three conditions is equivalent to condition (ii) in the definition of 

R. For each i, we also set E* := EJ'1. 

Example 1.3.4. — Let A be a commutative ring, and B be a commutative A-algebra. 

Let Aij, 1 < i,j < r, be a family of A-submodules of B satisfying the following 

properties: 

(4) For all z, jy k, Ai i A, AijAj^k c A{^ 

Then the following A-submodule R of Md(B) 

(5) 

MdMhi) 

Md2idl{A2,l) 

Mdr,dl(Ar,i) 

Mdud2(Ah2) 

Md2{Mt) 

Afdr|da(i4r,2) 

Afdlidr(i4ir) 

Md2,dr(A2,r) 

Md(Arr) 

is an A-subalgebra. Let e» G Md{B) be the matrix which is the identity in the ith 

diagonal block (of size di) and 0 elsewhere. As Aij = A, ei belongs to R, and in R 

we have a decomposition in orthogonal idempotents 

1 ei + e2 H V er. 

ASTÉRISQUE 324 
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We also have canonical isomorphisms ^ e^Re^ Mdi(A) Hence R together with 

{ei, tpi,i = 1,..., r } is a GMA, and the trace T is the restriction of the trace of Md(B). 

Note that assuming d! invertible in A, § 1.2.2 shows that T is a pseudocharacter of 

dimension d over R, which is Cayley-Hamilton (see § 1.2.3). 

The GMA R is called the standard GMA of type ( d i , . . . , d r ) associated to the 

A-submodules Aij of B. 

1.3.2. Structure of a G M A . — Let R be a GMA of type (d i , . . . , d r ) . We will 

attach to it a canonical family of A-modules Aij C R, 1 < i, j < r, as follows. Set 

Ai j E i REj. 

For each triple 1 < i, j , k < r, we have 

^ijAjyk Cu «Â fc 

in JÎ, hence the product in R induces a map 

<¿>¿,7\fc Ai j Aj,k Ai,k. 

Moreover, T induces an A-linear isomorphism 

Ai,i A. 

By Morita equivalence, the map induced by the product ( 1 0 ) of R 

eiREi Ai j EjRej e i R¿e j 

is an isomorphism of eiRei ®ejRoppej-modules. In particular, with the help of ^ and 

ipj, we get a canonical identification 

c¿ Rej Mdi4j(Ai¿), 

as a module over e îSe*® ejRoppej = M d i (A)®Mdj (^4) o p p . Moreover, in terms of these 

identifications, the natural map induced by the product in R, eiRe^e^Re^ —• CiRe^, 

is the map Mdi,di(Aij) <g> Md.dh(Ajlk) — • Mdiidk(Ailk) induced by (piJik. 

To summarize all of this, there is a canonical isomorphism of A-algebras 

(6) R 

MdMi,i) 

Md2idl (A2,i) 

Mdr,dl (Ar,i) 

Mdlid2(Alt2) 

M d 2 ( ^ 2 , 2 ) 

Mdrtd2(Ar,2) 

Mdi,dr(AUr) 

Md2,dr(A2,r) 

Mdr(Ar,r) 

where the right hand side is a notation for the algebra that is 0 ^ · Mdiidj (Aij) as an 

A-module, and whose product is defined by the usual matrix product formula, using 

the ifitjlks to multiply entries. Moreover, we have canonical isomorphisms Ai,i ^> A. 

(10) All the tensor products below are assumed to be over A. 
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By an abuse of language, we will often write this precise isomorphism as an equality 

A%^% = A. 

Let us consider the following sets of conditions on the tpij^s: 

(UNIT) For all 5̂ Ai i A and for all i,j, <fi,i,j A Ai j Ai j (resp. tpijj : 

Ai j A Ai ,j is the A-module structure of Aij. 

(ASSO) For all i,j, k, I, the two natural maps Ai j Aj,k Ak,l Au coincide. 

(COM) For all i,j and for all x G Aij, y G Ajj, we have (fijii(x<S)y) Pj,i,j (y O x) 

Lemma 1.3.5. — The <Pijtk's above satisfy the conditions (UNIT), (ASSO) and 

(COM). The ipijj's are all nondegenerate if and only if T : R 0 R —• A, 

x 0 y i—• T(xy), is nondegenerate. 

Proof. — First, (ASSO) follows from the associativity of the product in R. To check 

(UNIT), we must show that for all i,j, and for all x,y G R, then EixEiyEj = 

T(EixEi)EiyEj and EixEjyEj = T(EjyEj)EixEj. As T(R) = A is in the center of 

R, it suffices to check that for all i, and for all x G R, 

EÌXEÌ T(EixEi)Ei, 

but this is obvious. The property (COM) holds as T{xy) = T(yx) for all x,y G R, 

Note that if x G R and i ^ j , T(eixej) = T{ejCiX) = 0. Hence for x G eiRej 

and y G e^Rey we have T(xy) = 0, except in the case j = i' and i = j f . As an A-

module, R ~ (BijMd^dj (Aij), and by the above remark, the pairing T : i ? 0 R —> A 

is the direct sum of the pairings Tij : e^Rej 0 ejRei —> A, for all ordered pairs 

(i,j). Thus T is nondegenerate if and only if all the pairings Tij are non degenerate. 

But Tij is isomorphic to the pairing Mdud.(Aij) 0 Mdj,di(Aj,i) —• A, induced by 

^ij,i · Aij 0 Ajj —• A and the trace. By Morita's equivalence, this pairing is 

nondegenerate if and only if ipij,i is, hence the last assertion of the lemma. 

Reciprocally, if we have a family of A-modules Aij, 1 < i,j < r, equipped with 

A-linear maps <pijtk : Aij 0 Ajtk —> Ai,k satisfying (UNIT), (ASSO) and (COM), 

then we leave as an exercise to the reader to check that R := ®ijMdudj(Aij) has a 

unique structure of GMA of type (d\,...,dr) such that for all i,j, EiREj — Aij. 

1.3.3. Representations of a G M A . — If R is an A-algebra, we will call represen

tation of R any morphism of A-algebras p : R —> Mn(B), where B is a commutative 

A-algebra. If R is equipped with a central function T : R —> A, we will say that p is 

a trace representation if tr o p{x) = T(x)lB for any x G R. 

Let (R,£) be a GMA of type (d\,... ,dr). We will be interested by the trace 

representations of R, and especially by those that are compatible with the structure 

S, as follows: 
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Definition 1.3.6. — Let B be a commutative A-algebra. A representation p : R —• 

Md(B) is said to be adapted to £ if its restriction to the A-subalgebra Ç&ri=1eiRei is 

the composite of the representation ®£=1^i by the natural "diagonal" map Md1(A) ® 

•••®Mdr(A) Md(B). 

Obviously, an adapted representation is a trace representation. In the other direc

tion we have: 

Lemma 13.7. — Let B be a commutative A-algebra and p : R —• Md(B) be a trace 

representation. Then there is a commutative ring C containing B and a P G GL¿(C) 

such that PpP~x : R —• Md(C) is adapted to £. Moreover, if every finite type 

projective B-module is free, then we can take C = B. 

Proof. — As tr o p = T, the p(ü7*'fc)'s form an orthogonal family of d idempotents of 

trace 1 of Md(B) whose sum is 1. As a consequence, in the .B-module decomposition 

Bd ^kp{^k){B% 

the modules p(Ek,k)(Bdys are projective, hence become free (necessarily of rank 1) 

over a suitable ring C containing B (and of course we can take C = B if those 

modules are already free). We now define a C-basis / i , . . . , fd of Cd as follows. For 

each 1 < i < r, choose first gi a C-basis of p(Ei '1)(Cd). Then for 1 < k < di, 

fd1 +…+di-1 + k Р ( Я - Д ) Ы 

is a C-basis of p(E\'l)(Cd). By construction, in this new C-basis, p is adapted to £. 

Let us call G the natural covariant functor from commutative A-algebras to sets 

such that for a commutative A-algebra B, G(B) is the set of representations (not 

considered "up to isomorphism") p : R —• Md(B) adapted to £. 

Let B be a commutative algebra and p G G(B). By a slight abuse of language we 

set Ei := p(Ei) G Md{B). By definition, for each i, j , p(EiREj) = Eip{R)Ej, hence 

it falls into the 5-module of matrices whose coefficients are 0 everywhere, except on 

line d\ + · · · + di-i -j- 1 and row d\ + · · · + dj-i -f 1. We get this way an A-linear 

maP fi,j : —• B, whose image is an A-submodule of B which we denote by Aij. 

Hence 

Proposition 1.3.8. — The subalgebra p(R) of Md(B) is the standard GMA of type 

(d i , . . . ,dr) associated to the A-submodules Aij of B (see example 1.3.4)-

Moreover, the fij's have the two following properties: 

(i) fij is the structural map A —• B, 

(ii) the product · : B <S> B —• B induces the ipi,j,ksi he-

Vi,j, k, fi,k o Pi,j,k fid ' fj,k-
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This leads us to introduce the following new functor. If B is a commutative A-algebra, 

let F(B) be the set of (fij)i<ij<r, where fcj : Aij —> B is an ^-linear map, 

satisfying conditions (i) and (ii) above. It is easy to check that F is a covariant 

functor from commutative A-algebras to sets. In the discussion above, we attached to 

each p G G(B) an element fp = (fij) G F(B). 

Proposition 1.3.9. — p n fp induces an isomorphism of functors G —> F. Both those 

functors are representable by a commutative A-algebra B u m v . 

Proof. — Let B b e a commutative A-algebra and / := (fij) G F(B). Then / induces 

coefficient-wise a natural map 

Pf R i,jMdudj(Ai¿) ijMdi4j(B) Md(B). 

This map is by definition a morphism of A-algebras which is adapted to £. We get 

this way a morphism F —> G which is obviously an inverse of p i—• fp constructed 

above. 

To prove the second assertion, it suffices to prove that F is representable. If M 

is an A-module, we will denote by Symm(M) := 0fc> oSymm f c(M) the symmetric 

A-algebra of M. We set 

B Symm 
i=j 

Ai j 

Let J be the ideal of B generated by all the elements of the form b ® c — (p(b ® c), 

where b G Aij, c G Ajtk
 a n d <p = <Pij,k, for all i, j and k in { 1 , . . . , r } . It is obvious 

that Buniv := B/I, equipped with the canonical element (fij : Aij —>. Buniv)ij G 

F(Bunlv), is the universal object we are looking for. 

1.3.4. An embedding problem. — It is a natural question to ask when a trace 

algebra (R, T) has an injective trace representation of dimension d, that is, when it 

can be embedded trace compatibly in a matrix algebra over a commutative ring. A 

beautiful theorem of Procesi [93] gives a very satisfactory answer when A is a Q-

algebra: (R, T) has an injective trace representation of dimension d if and only if T 

satisfies the d-th Cayley-Hamilton identity (see [93] and § 1.2.3). 

Assume that (R,£) is a GMA. Then we may ask two natural questions: 

(1) Is there an injective d-dimensional trace representation of R? 

(2) Is there an injective d-dimensional adapted representation of Rl 

Actually, it turns out that those questions are equivalent. Indeed, if p : R —• Md(B) 

is an injective trace representation, then Lemma 1.3.7 gives an injective adapted 

representation R —• Md(C) for some ring C D B. By elementary reasoning, question 

(2) is equivalent to the following questions (3) or (4). 

(3) Is the universal adapted representation p : R —• Md(B
umv) injective? 
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(4) Are the universal maps fij : Aij Buniv injective? 

For a GMA for which we know a priori that T is a Cayley-Hamilton pseudochar

acter of dimension d (residually multiplicity free Cayley-Hamilton pseudocharacters 

over local henselian rings are examples of such a situation - see § 1.4), Procesi's result 

gives a positive answer to question (1), hence to questions (2) to (4) as well, in the 

case where A is a Q-algebra. We shall give below a positive answer in the general case 

to those questions. As a consequence, by Proposition 1.3.8, any GMA is isomorphic 

to some standard GMA of Example 1.3.4, and its trace is a Cayley-Hamilton pseu

docharacter of dimension d. Note that it does not seem much easier to prove first this 

last fact. 

This result (the positive answer to questions (1) to (4)) will be used in its full 

generality only in the proof of the Theorem 1.6.3 (and here only for r = 2), and also 

to prove the converse of Theorem 1.4.4 (i) (see Example 1.4.2). In particular, it is 

not needed for the Galois theoretic applications of the following sections. However, 

we shall use several times this result in a special case (see § 1.3.5 below) where there 

is a much simpler proof, and where more precise results are available. Hence, for the 

convenience of the reader, we first give the proof in this special case. 

1.3.5. Solution of the embedding problem in the reduced and nondegener

ate case. — Let / = { 1 , . . . , r } and assume that we are given a family of A-modules 

Aij, i,3 € / , and for each i,j, k in I an A-linear map ( n ) 

Pij,k Aij Aj,k Ai^ki 

which satisfy (UNIT), (ASSO) and (COM). We denote by F again the functor from 

commutative A-algebras to sets which is associated to this data, as defined in § 1.3.3. 

Lemma 1.3.10. — (i) Assume that the Aij ;s are free of rank 1 over A, and that the 

<Pij,k a r e isomorphisms. Then there is a (fij) G F (A) such that the fij's are 

isomorphisms. 

(ii) The relation i ~ j if and only if, Aij is free of rank one and <fij,i is an 

isomorphism, is an equivalence relation on I. Moreover, ifi~j~k, then (fij,k 

is an isomorphism. 

Proof. — We first show (i). Let e^- be an ^4-basis of Aij- As <Pij,k is a n isomorphism, 

there exists a unique \ijtk € A* such that <Pij,k(eij ® £j,k) = Kj,k£i,k- Let us fix 

some ¿0 G / . For all i,j, set \iij := Xi,iQj- We claim that the A-linear isomorphisms 

fij ' Aij —> A defined by fij(eij) = Hij satisfy (fij) G F(A). It suffices to check 

that for all i,j,k, we have µi,j µj,k = K,j,kl^i,k' But this is the hypothesis (ASSO) 

applied to ¿,¿0, j and k. 

( n ) All the tensor products below are assumed to be over A. 
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Let us show (ii). By (UNIT) we have i ~ i, and by (COM) i ~ j implies j ~ i. If 
i ~ j and j rsj k we claim that < ,̂j,fc a n d is an isomorphism. It will imply that Ai,k 
and *4fĉ  is free of rank 1 over A, and that (fiyk,i is an isomorphism by (ASSO), hence 
i ~ k. Using (UNIT) and (ASSO), we check easily ( 1 2 ) the equality of linear maps 

ψί,ΐζ,ί ° ψί,ΐζ,ί ψί,ΐζ,ί ψί,ΐζ,ί . ψί,ΐζ,ί Ai,j Aj,k 
Ak,j Aj,i A. 

As i ~ j and j rsj k, it implies that (pij,k is injective. The surjectivity of <fij,k comes 
from the fact that the natural map 

Ai^k Ak,j Aj,k Ai,k 

is an isomorphism (as j ~ k) whose image is contained in Im (<pi,j,k) by (ASSO). 

Before stating the main proposition of this subsection, we need to recall some 
definitions from commutative algebra. If A is a commutative ring, recall that the 
total fraction ring of A is the fraction ring Frac(A) := S_1A where S C A is the 
multiplicative subset of nonzerodivisors of A, that is / G S if and only if the map 
9 ^ 9Îi A —> A, is injective. We check at once that the natural map A —> S~XA 
is injective and flat, and that each nonzerodivisor of S~XA is invertible. Of course, 
S~XA is the fraction field of A if A is a domain. 

Proposition 1.3.11. — Assume A is reduced. The following properties are equivalent: 

(i) A has a finite number of minimal prime ideals, 
(ii) A embeds into a finite product of fields, 

(iii) S~XA is a finite product of fields. 

If they are satisfied, S~XA = Y[P Ap where the product is over the finite set of minimal 
prime ideals of A. 

Proof. — It is clear that (i) and (ii) are each equivalent to the following assertion: 
"there exist a finite number of prime ideals P i , . . . , Pr of A such that Pi D- · -nP r = 0". 
In particular, (i) and (ii) are equivalent. 

Note that Spec (5 - 1 A) C Spec(A) is the subset of prime ideals that do not meet 
S. For P any minimal prime ideal of A, and / G 5, remark that the image of / in 
Ap = Frac(i4/.P) is not a zero divisor of this latter ring by flatness of Ap over Ar so 
S fl P = 0 . In particular, A and S~lA have the same minimal prime ideals, and (iii) 

<12) If (x,y,z , t) G (Aij x Aj^k x Akj x Ajti), using (ASSO), (ASSO) again, and (UNIT), we have 
with the obvious notations: (xy)(zt) = x(y(zt)) = x((yz)t) = (yz)(xt). In general, to check this kind 
of identities with values in some Ak,i, it suffices to do it in the GMA of type (1,1,..., 1) denned by 
the Ai j, which might be a bit easier (e.g. in the proof of Proposition 1.3.13). 
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implies (i). Moreover, if A has a finite number of minimal prime ideals, say P i , . . . , P r , 
then we have an injection 

A APi, 
i=l. ..r 

SO 

(7) S = A\ (Pi U · · · U Pr). 

Assume now that (i) holds, we will show (iii) as well as the last assertion of the 
statement. As A and S~XA have the same minimal prime ideals, we may assume that 
S~XA = A, i.e. that each nonzerodivisor of A is invertible. By (7), we get that for 
each maximal ideal m of A, m C Ui =i . . . rPf. By [29, Chap. II, §1.1, Prop. 2], this 
implies that each Pi is maximal, hence 

A 
i=l...r 

Api 

and we are done. 

An A-module M is said to be torsion free if the multiplication by each / G S on M 
is injective, i.e. if the natural map M —• S~lM is injective. An A-submodule M of 
S~XA is said to be a fractional ideal of S~lA if fM c A for some / G A which is not 
a zerodivisor. Assume that A is reduced and that 5 - 1 A = J | s Ks is a finite product 
of fields. Note that if As = Im (A — • Ks), then JJS A s is a fractional ideal of If. As 
a consequence, M C K is a fractional ideal if, and only if, for each s, Im (M —> Ks) 
is a fractional ideal of Ks. We will often denote by K the total fraction ring 5 - 1 A 

Proposition 1.3.12. — Assume that A is reduced and that its total fraction ring K is 
a finite product of fields. Assume moreover that the maps pij,i Aij ®Ajj —> A are 
nondegenerate (13). 

Then there exists (fij) G F(K) such that each fcj : Aij —> K is an injection 
whose image is a fractional ideal of K. Moreover, if A = K is a field, the relation 
i ~ j if, and only if, Aij =̂  0 coincides with the one of Lemma 1.3.10. 

Proof. — Write K = Y[3 Ks as a finite product of fields. As Aij embeds into 
HomA(v4j,i, A) by assumption, it is torsion free over A, hence embeds into Aij ® K. 
As A —> K is an injection into a fraction ring, we check easily that <Pijti ® K is again 
nondegenerate ( 1 4 \ hence so are the tfijj <8> i^s's. By (ASSO) applied to i, j , i,j, and 
by (COM) and (UNIT), we have: 

VxjX7 G Aij^y G Aj,i, (fij,i(x',y)x <Pi,jÀx>y)x'' 

(!3) That is, that the induced maps Aij —• Hom^^^, 4̂) are injective. 
(14) If A is any commutative ring with total fraction ring S~1Ay and M any A-module (not necessarily 
of finite type), then the natural map 5-1HomA(M, A) —• Homs-iA(S~1M,S~1A) is injective. 
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hence Aij <8> Ks has Ks-dimension < 1 and Aij is isomorphic to a fractional ideal of 
K. It remains only to construct the injections fij of the statement. By what we have 
just seen, we can assume that A = K is a field, and in this case each Aij is either 0 
or one dimensional over K, and the (pij,i's are nondegenerate, hence isomorphisms. 

For i, j G / , say i ~ j if Aij ^ 0. As the <Pijyi are isomorphisms, this relation 
coincides with the one defined in Lemma 1.3.10 (ii). On each equivalence class of the 
relation ~ , we define some fij's by Lemma 1.3.10 (i), and we set fij := 0 if i ^ j . 

1.3.6. Solution of the embedding problem in the general case. — Same 
notations as in § 1.3.5. We recall that B u m v is the universal A-algebra representing F 
(see Proposition 1.3.9). 

Proposition 1.3.13. — The universal maps fij : Aij ûniv are A-split injections. 

Proof. — We use the notations of the proof of Proposition 1.3.9. Recall that / = 
{ l , . . . , r } and set Q := { ( « , j ) , i, j G I,i ^ j}; if x = (if,f) G Q we will write 
i(x) :— if and j(x) := j ' . 

If 7 = (#1 , . . . , xs) is a sequence of elements of Q such that for all k G { 1 , . . . , s — 1} 
we have j(xk) = i(xk+i), then we will say that 7 is a path from i(xi) to j(xs), and we 
will set A1 := Ai(Xl)j(Xl) ® · · · 0 A ^ ) , ^ ) - If moreover i(xi) = j(x8)1 we will say 
that 7 is a cycle. In this case, rot(7) := (xs, x\,..., xs-i) is again a cycle. Let i,j G / , 
7 a path from i to j , and c i , . . . , c n a sequence of cycles (which can be empty). We 
will call the sequence of paths T = ( c i , . . . , c n , 7) an extended path from i to j . If T is 
such a sequence and (i\jt) G fi, we denote by T^jt the total number of times that 
(i*appears in the c^'s or in 7. It will be convenient to identify N n with the set of 
oriented graphs ( 1 5 ) with set of vertices / , by associating to r = (^ij)(ij)eQl ^ n e graph 
with Tij edges from i to j . If T is an extended path from i to j , we shall say that 
r(r) := (Ti'jr) G N f i is the underlying graph of T. 

Let deg : N n —> Z1 be the map such that, for r G N n , i G / , deg(r)i is the number 
of arrows in r arriving at i minus the number of arrows departing from i. If (i,j) G fi, 
let r(i,j) be the graph with a unique arrow, which goes from i to j . If i G / , set 
r(i, i) = 0. The following lemma is easily checked. 

Lemma 1.3.14. — Let i,j G J 

(i) J/r is an extended path from i to then deg(r(r)) = deg(r(i, j)). 
(ii) If r is a graph such that deg(r) = deg(r(i,j))f then r = r(F) for some extended 

path T from i to j . If moreover T^JI ^ 0 and Tj'^k' 7̂  0 for some i1\f\k' G I, 

(15) In an oriented graph, we authorize multiple edges between two vertices i and with i ^ j , but 
we do not authorize edges from a vertex to itself. 
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then we can assume that the sequence T has a path containing ((i',jf), (j' ,k')) 
as a subpath. 

By (ASSO), for each path 7 from i to j, we have a canonical contraction map 
y?7 : *47 —> A,.? - If 7 is a cycle, < 7̂ goes from Ay to A by (UNIT), and the assumption 
(COM) implies that ^ r ot( 7) = ^7 0 rot, where rot : Arot(7) — • Ay is the canonical 
circular map. We claim now that the following property holds: 

(SYM) For any cycle c having some (i\f) € M in common with some path 7', the 
map (pc ® id : Ac ® Ay' — • Ay' is symmetric in that two A ^ ^ ' s . 

Indeed, by the rotation property we can assume that c begins with (if,jf), and by 
(ASSO) and (UNIT) that 7' = ( * ' , / ) . By (ASSO) and (UNIT) again, we can assume 
then that c = ((i',f),(j',i')), in which case it is an easy consequences of (ASSO) 
(applied with ij,ij), (UNIT) and (COM). 

Fix i,j G / . Let T = ( c i , . . . , c n , 7) be an extended path from i to j. We can 
consider the following ^-linear map (pr : A C l … Acn *A~y Ai,j, 

n 

k=l 
xk y 

n 

,k=l 
Vck(Xk) <P-y(y) 

By the property (SYM), (pr factors canonically through a map 

pr 
(k,l)€Q 

Symm r f c. '(A f c,i) Ai,j 

It is clear that: 

(i) for any permutation a e e n , V ( C f f ( 1 ) C f f ( B ) i 7 ) ¥>(ci,...,cn,7) 
(ii) as the <pCh's are invariant under rotation, ̂ (rot(ci),...,cn,7) ^(ci,...,c„,7) 

Let 7 = ( x i , . . . , xs) be a path from i to j and c = (2/1,..., ys) be a cycle. We will 
say that 7 and c are linked at i' e I if there exists Xk £ 7 and 2/̂  E c with same 
origin, that is such that i(xk) = i(yk') = i'- Then can consider the path 7 U c := 
(a?i,...,a;fc_i,2/fc/,.,.,y a/,2/i,...,yjfe/_i,Xib,...,x a), which still goes from i to j. Then 
we see that </?7Uc = ^,7? a n o ^ ^ does n o ^ depend in particular on the i' such that 7 
and c are linked at i'. As a consequence, going back to the notation of the paragraph 
above, we have: 

(iii) if 7 and C\ (resp. c\ and C2) are linked, then ^(ci,...,cn,7) ^(ca Cn^Ud) ( r e SP« 
<^(ci,c2,.--JCn,7) ^(ciUc2,c3,...,cn,7)-

Let now Tf be another extended path from i to j. Then using several times the 
"moves" (i), (ii) and (iii), we check at once that TpT = TpT,. Let r € № satisfies 
deg(r) = deg(r(i, j ) ) . By Lemma 1.3.14 (ii), we can choose an extended path V from 
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i to j with underlying graph r, and define 

pr Pr 

(k,l) EM 
Symm^1 (Ak,i) Ai,j, 

which does not depend on T (whose associated graph is r) by what we said above. 
Let us finish the proof of the proposition. The A-algebras B and is naturally graded 

by the additive monoid № . We have B = 0 r G N n S T , where BT = O i = j Symm 7 ^ (Aij). 
The map deg : Q —> Z 7 is additive, hence we get a Z7-graduation ( 1 6 ) on B. Obviously, 
if n G Z 7 , then Bn = 0T€№,deg(r)=n^r- For this latter graduation, the ideal J C B 
is homogeneous, hence £ u n i v is also graded by Z 7 . 

Fix now i , j G / , and let n := deg(r(i , j)) . If deg(r) = n, we constructed above a 
map TpT : Br —> Aij. By summing all of them we get an A-linear map: 

Pn Bn Aij. 

We claim that ipn(In) — 0. Assuming that, <pn factors through a map 

Wn 
/ ouniv\ \ B )n Aij 

Let fij : Aij —> ( i ? u n i v ) n denote the canonical map. Then by construction, ipn o 
fcj = Jprfaj) is the identity map. It concludes the proof. 

Let us check the claim. Let b G *4i',j'> c € ^j',kf and = (pi',j',k', for some 
(if,j'): ( j ' , A/) G fi. By A-linearity, is suffices to show that Tpn vanishes on the elements 
of the form x = f (b® c — ip(b <8> c)), where / is in BT for some graph r satisfying 
deg(r-hr(z /, kf)) = n. By Lemma 1.3.14 (ii), we can find an extended path T from i to 
j with underlying graph r + r ( г / , j , ) + r ( j ' , A/), such that some path 7' of T contains 
((i',f), ( j ' , k')) as a subpath. Let V be the extended path from i to j obtained from 
T by replacing 7' = ( . . . , (z', j')> ( j 7 , * / ) , . . . ) by ( . . . , ( z ' ,& ' ) , . . . ) . By construction, 
V0r(/<8> c<8>6) <pr,(f <8> <p(b<g) c)) hence </?(x) 0. 

Remark 1.3.15. — When r = 2, a slight modification of the above proof shows that 
the A-linear map A 0 0 n > 2 (Symm n (^ i , 2 ) 0 Symm n (^ 2 , i ) ) — • £ u n i v , induced by 

/1,2 and /2,1, is an isomorphism. This describes . B u m v completely in this case. 

As we have noted in § 1.3.4, we have: 

Corollary 1.3.16. — / / (R, £) is a GMA of type ( d i , . . . , dr), and ifd\ is invertible in A 

(where d = d\ -\ \-dr), then the trace T of R is a Cayley-Hamilton pseudocharacter 

of dimension d. 

(16) Actually, it is even graded by the subgroup of Z1 whose elements (n̂ ) satisfy . n. = 0. 
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1.4. Residually multiplicity-free pseudocharacters 

1.4.1. Definition. — In all this section, A is a local henselian ring (see [94]), m 

is the maximal ideal of A, and k := A/m. The henselian property will be crucial 

in what follows because it implies strong results on lifting idempotents. Let R be an 

A-algebra and let T : R — • A be a pseudocharacter of dimension d. We recall that 

this implies that d\ is invertible in A. Let R R®Ak and T T <S>A k : R k be 

the reductions mod m of R and T. 

Definition 1.4.1. — We say that T is residually multiplicity free if there are represen

tations pi : R —• Md.(k), i = 1,... , r, which are absolutely irreducible and pairwise 

nonisomorphic, such that T r 
i=l tipi. 

We set di := dim p¿, we have r 
¿=1 

di = d. 

Example 1.4.2. — Let us give an important example. Let (R,S) be a GMA (§ 1.3.1), 

then its trace T : R —• A is a Cayley-Hamilton pseudocharacter by Corollary 1.3.16. 

We use the notations of § 1.3.2. Assume moreover that for all i ^ j , we have 

T(AiìjAjìi) C ra. 

Now, for each i, let p¿ : R Mds(k), r [i/>i(eirei] mod m Then the pi are 
surjective representations^17^ which are pairwise non isomorphic since Pi(ei) ^ 0 

while Pi{ej) = 0 for j ^ i, and T r 
s=l 

tr pi, hence T is residually multiplicity free. 

The main result of this section shows that this example is the general case. 

1.4.2. Lifting idempotents. — Let A, R and T be as in § 1.4.1, and assume 

that T is residually multiplicity free. In particular, we have some representations 

Pi : R — • Mdi(k) as in definition 1.4.1. 

Lemma 1.4.3. — Suppose T Cayley-Hamilton. There are orthogonal idempotents 

ei,. . . , er in R such that 

(1) r 
i=1 ei = 1. 

(2) For each i, T(e¿) = di 

(3) For all x e R, we have T(eiXei) = tr pi(x) (mod ra) 

(4) If i ^ j , T(eixejyei) G ra for any x,y G R. 

(5) There is an A-algebra isomorphism i\>i : eiRei —> Mdi{A) lifting (pi)\eiRei '· 

eiRei —> Mdi{k), and such that for all x G e^Rei, T(x) = tr (^(x)). 

Moreover, ife[,..., e'r is another family of orthogonal idempotents ofR satisfying (3), 

then there exists x G 1 + rad(i?) such that for all i, e'{ — xe^x~x. 

(17) Note that the maps fi,j : Ai,i —• k, defined to be 0 if i ^ j, and A can 
k if i = j, define an 

element of F(k). 
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Proof. — Let p : R —• Md(k) be the product of the p^s. We obviously have 
Kerp C KerT. Because the p^s are pairwise distinct, the image of p is ni=i Mdi(k). 
In particular, the image J of Ker T in this latter product is a two-sided ideal. But J 
is a nil ideal by Lemma 1.2.1, so J = 0 and 

Kerp KerT. 

We have the following diagram 

(8) R/KerT 
p r 

2 = 1 Pi r 
i=l Mdi(k) 

T tr 
k 

which commutes by assumption on T, and whose first row is an isomorphism. Let us 
call €i, for i = 1,..., r, the central idempotents of R/KeiT corresponding to the unit 
of Mdi (k) in this decomposition. 

By the Cayley-Hamilton identity, and following [29, chap. Ill, §4, exercice 5(b)] ( 1 S \ 
there exists a family of orthogonal idempotents ei G i?, i = 1,..., r, with ei lifting 
the €{. The element 1 — Y^=i ei is an idempotent which is in the Jacobson radical of 
R by Lemma 1.2.7, hence it is 0, which proves (1). By Lemma 1.2.5(1) T(ei) is an 
integer less than or equal to d, and because T(e^) = Tfa) = di, we have T(e^) = di, 
which is (2). 

The assertion (3) follows from the diagram (8). In order to prove (5) it suffices to 
show that the image of eixejyei is zero in R/KerT. But this image is €iX€jy€i which 
is zero by the diagram (8), and we are done. 

Now consider the restriction Ti of T to the subalgebra eiRei (with unit element 
ei) of R. By Lemma 1.2.5(3-4), Ti is a pseudocharacter of dimension di = T(e^), 
faithful if T is. By (3), Ti is moreover residually absolutely irreducible. If we had 
assumed T faithful, we could have applied [102, Thm. 5.1 or cor. 5.2] to get (5). As 
we assume only T Cayley-Hamilton, we have to argue a bit more. By Lemma 1.2.5 (4), 
Ti is Cayley-Hamilton, hence we may assume that r = 1, and we have to prove that 
R = Md(A). By Lemma 1.2.7 and [29, chap. Ill, §4, exercice 5(c)], we can lift the basic 
matrices of i i /Ker(pi) = Md1(k), i.e. find elements (Ek,l)i<k,i<d in R satisfying the 
relations Ek'lEk'>1' = 6llk'Ek>1'. By Lemma 1.2.5 (1), for each k G { 1 , . . . , d } , T(Ek>k) 
is an integer in { l , . . . d } . As this integer is furthermore congruent to 1 modulo m 
by definition of Ek>k, and as d\ G A*, we have T(Ek'k) = 1. By Lemma 1.2.5 (4), 

(18) The statement is that if A is a henselian local ring, R an A-algebra which is integral over A, 
and J a two-sided ideal of R, then any family of orthogonal idempotents of R/1 lifts to R. Note that 
is stated there with R a finite A-algebra, but the same proof holds in the integral case. 
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Tfc : Ek,kREk,k —• A is Cayley-Hamilton of dimension 1, hence Tk is an isomorphism 

and Ek>kREk>k = AEk>k is free of rank 1 over A. Now, if x G Ek>kREl>1, then 

x Ek>l(El>kx) Ek'l(T(El'kx)E1'1) T{El*x)Ek>1 G AEk,\ 

hence R = Y^k,iAEk'1. This concludes the proof of (5) (we even showed that 

Rouquier's Theorem 5.1 holds when faithful is replaced by Cayley-Hamilton). 

To prove the last assertion, note first that the hypothesis on the e\ means that 

e\ = €i, hence by the work above properties (1) to (5) also hold for the e^'s. As 

eiRei ~ Md^A) is a local ring, the Krull-Schmidt-Azumaya Theorem [49, Thm. 

(6.12)] (see the remark there, [49, prop. 6.6] and [49, chap. 6, exercise 14]), there 

exists an x G R* such that for each z, xCiX~x = e\. Up to conjugation by an element 

in Y^ifeiRei)*, we may assume that x G 1 + rad(i?). 

1.4.3. The structure theorem. — Let A, R, T be as in § 1.4.1. 

Theorem 1.4.4. — (i) Let S be a Cayley-Hamilton quotient of (R, T). 

Then there is a data £ = {ei,tpirl < i < r} on S for which S is a GMA 

and such that for each i,i/>i®k = (pi)\eiSei' Two such data on S are conjugate 

under 5*. Every such data defines A-submodules Aij of S that satisfy 

•Â-iijAj^ (Ζ >Á-i,ki T '. Aij A, T(AitjAjti) c m 

and 

S 

Mdl(Ahl) 

Md2,dl C A 2 , i ) 

Mdr,dx (Ar,i) 

Mdl,d2(Aio) 

M d 2 ( A , 2 ) 

Mdr,d2(Ar,2) 

Mdl,dr(A1}r) 

Md2ìdr(A2,r) 

Mdr(Ar,r) 

(ii) Assume that A is reduced, and that its total fraction ring K is a finite product 

of fields. Take S = R/KerT. Choose a data £ on S as in (i). Then there exists 

an adapted injective representation p : S —• Md(K) whose image has the form 

Md2 (A2,i) 

Md2,dl (A 2,i) 

Mdr,dl(
Ar,i) 

Mdl,d2(Ah2) 

Md2(A2,2) 

Mdr,d2(Arr2) 

Mdl,dr(Ai,r) 

Md2,dr(A2,r) 

Mdr{Ar,r) 

where the Aij are fractional ideah of K that satisfy 

A-ijAj^k c Ai^k, Ai,i — A, AijAjj (Z 771. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2009 



34 CHAPTER 1. PSEUDOCHARACTERS, REPRESENTATIONS AND EXTENSIONS 

Moreover the Aij's are isomorphic to the Aij's of part (i), in such a way that 

the map Aij 0 ^ Ajik —• Ai^ given by the product in K and the map Aij 0 A 

Aj,k —> Aitk given by the product in R coincide. 

(iii) Let P £ Spec(A) ; L := Frac(A/P) ; and assume that T 0 L is irreducible (19\ If 

S is any Cayley-Hamilton quotient of (R,T), then S 0 L is trace isomorphic to 

Md(L). In particular, T 0 L is faithful and absolutely irreducible. 

Proof. — As 5 is Cayley-Hamilton, Lemma 1.4.3 gives us a data £ = {ei, i\>i, 1 < i < 

r} satisfying (i). 

Assume now moreover that A is as in (ii), and set S := R/KerT. Since T is faithful 

on S, Lemma 1.3.5 proves that the (fijjs are nondegenerate. Then Proposition 1.3.12 

gives us a family of injections fij : Aij —> L, (fij) £ F(L) whose image are frac

tional ideals. Set Aij := fij(Aij). By Proposition 1.3.9, (fij) defines an adapted 

representation p : S —• Md(L) that satisfies (ii). 

Let us prove (iii). Note that A/P is still local henselian and that S 0 A/P is a 

Cayley-Hamilton quotient of (R<S> A/P,T 0 A/P), hence we may assume that A is a 

domain and that P = 0. By Remark 1.2.2, the natural map 

(Ker T) 0 L Ker (T 0 L) 

is an isomorphism as L is the fraction field of A. By this and by (i) applied to 

T : 5/Ker T — • A, we see that Sf := (50L)/ (Ker T 0 L ) is a GMA of type ( d i , . . . , dr) 

over L whose trace T 0 L is faithful. As T 0 L is irreducible by assumption, Proposition 

1.3.12 implies that 5 ' is trace isomorphic to Md(L), as the equivalence relation there 

may only have one class. Let us consider now the surjective map 

é : 5 0 L 5 0 L Ker T 0 L Md(L). 

By Lemma 1.2.1, its kernel is in r ad (50L) . By an argument already given in part (5) 

of Lemma 1.4.3 (using the lifting of the Ek>hs of Md(L) to S 0 L, and checking that 

they span S 0 L by Lemma 1.2.5 (1) and (4)), ip is an isomorphism, which concludes 

the proof. 

Remark 1.4.5. — If A is reduced and noetherian, it satisfies the conditions of (ii), 

hence the A* / s and R/KerT are finite type torsion free A-modules. 

1.5. Reducibility loci and Ext-groups 

1.5.1. Reducibility loci. — Let A be an henselian local ring, R an A-algebra and 

T : R —> A a residually multiplicity free pseudocharacter of dimension d. We shall 

use the notations of § 1.4.1. 

(!9) This means that T 0 L is not the sum of two L-valued pseudocharacters on S 0 L. 
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Proposition 1.5.1. — Let V = (Pi,...,Vs) be a partition of {1,... ,r}. There exists 

an ideal I-p of A such that for each ideal J of A, the following property holds if and 

only if I-p C J: 

(deep) There exists pseudocharacters T\,... ,TS : R <g> A/J —> A/J such that 

(i) r ® A / J = £ ? = 1 T , , 

(ii) for each l G { 1 , . . . , s}, Tt <g> k = Y^ieVl tr pi. 

If this property holds, then the Ti's are uniquely determined and satisfy Ker T\ C 

Ker (T®A/J). 

Moreover, if S is a Cayley-Hamilton quotient of (R, T) then, using the notations 

of Theorem 1.4-4) w e have (for any choice of the data £ on S) 

Iv 

(i,3) 
i.j are not in the same Vi 

^(AijAj^i) 

Proof. — Let 5 be a Cayley-Hamilton quotient of (R,T). We can then choose a 

GMA data £ for S as in Theorem 1.4.4 (i), and consider the structural modules 

Aij EiSEj. We set 

Iv(T,S,£) 

ij are not in the same V\ 

^(AijAj^i) 

By Theorem 1.4.4 (i), I-p(T,S,£) does not depend on the choice of the data £ used 

to define it. We claim that it does not depend on S. Indeed, we check at once that 

the image of £ under the surjective homomorphism ib : S —• R/KeiT is a data 

of idempotents for R/KerT (and even that ^ is an isomorphism on r t=1eiSci As 

T o ip = T, we have that 

T(w(Ai,j)W(Aj,i)) ^(AijAj^i), 

which proves the claim. We can now set without ambiguity I-p :— Iv(T). As a first 

consequence of all of this, we see that if J C A is an ideal, then I-p(T <g> A/ J) is the 

image in A/ J of / p (T) . 

To prove the proposition we are reduced to showing the following statement: 

T : R —• A satisfies I-p = 0 if and only if we can write T = T\ + h Ts as a sum 

of pseudocharacters satisfying assumption (ii) in (deep). 

Let us prove first the "only if" part of the statement above. Let S — R/KerT and 

fix a GMA data £ as in Theorem 1.4.4 (i). Set 

(9) fi 
ieVi 

e» G S, 
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then 1 = fi H h fs is a decomposition in orthogonal idempotents. In this setting, 

the condition Ip — 0 means that for each /, 

(10) T(/«.5(l - fi)Sft) 0. 

As a consequence, the two-sided ideal fiS(l — fi)Sfi of the ring fiSfi is included in 

the kernel of the pseudocharacter Tft = T\flRft : fiRfi —• A (see Lemma 1.2.5 (3)). 

The map T\ : R —> A defined by Ti(x) := T(fixfi) is then the composite of the 

A-algebra homomorphism 

(11) s fiSfi/(fiS(l - / 0 5 / , ) X fixfi + / ,5(1 - fOSft, 

by Tfn hence it is a pseudocharacter. As 1 = f\ H h / s , we have T = Ti H h T s , 

and the T/'s satisfy (ii) of (deep) by Lemma 1.4.3 (3), hence we are done. In particular, 

we have shown that I-p always satisfies (deep). 

Let us prove now the "if" part of the statement. Let K = KerT^, by assumption 

K C KerT. By §1.2.4, T : R/K —• A is Cayley-Hamilton, hence we can choose 

a data £ for S := R/K and consider again the fi G S"s defined from the e$'s as in 

formula (9) above. To check that Ip = 0, it suffices to check that lp(T, 5, £) = 0 or, 

which is the same, that T(fiSfaSfi) = 0 for I ^ As T = Tx H + T s , it suffices to 

show that for all x e S, Tt(fi>x) = 0 if I ^ V. But if I ^ V, Ti(fv) is in the maximal 

ideal m by assumption (ii) of (deep) and Lemma 1.4.3 (3). By Lemma 1.2.5 (1), it 

implies that T/(/^) = 0. By Lemma 1.2.5 (5), we get / j / G KerT/, what we wanted. 

In particular, we proved that for all x G S, Ti(x) = T(fix). As a consequence, 

KerT/ C KerT, K KerT, S R/KerT, and the T/'s are unique. 

Definition 1.5.2. — We call Jp the reducibility ideal ofT for the partition V. We call 

the closed subscheme Spec (A/I-p) of Spec A the reducibility locus ofT for the partition 

V. When V is the total partition { { 1 } , { 2 } , . . . , { r } } , we call I-p the total reducibility 

ideal and Spec (A/Ip) the total reducibility locus of T. 

Note that Ip C Ip' if V is a finer partition than V. 

1.5.2. The representation pi. — We keep the assumptions of §1.5.1, and we 

assume now that {i} G V. Then for each ideal J containing ip , there is by Proposition 

1.5.1 a unique pseudocharacter Ti : R® A/J —• A/J with Ti 0 k = tr pi and T = 

T; + T with T' ®k = Ej=1tr ft. If J C J ;, the pseudocharacter T* : R ® ^4/J ; — • J 7 

is just Ti OR/jR/J't hence it is not dangerous to forget the ideal J in the notation. 

As pi is irreducible, we know that there is a (surjective, unique up to conjugation) 

representation pi : R/JR — • M ^ ( A / J ) of trace Ti which reduces to pi modulo m. 

Definition 1.5.3. — If {%} G V and J D Ipy we let p< : i? /J i i —> Mdi(A/J) be the 

surjective representation defined above. 
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As usual, by a slight abuse of notation, we will denote also by pi the .R-module 

(A/J)di on which R acts via pi. It will be useful for the next section to collect here 

the following facts which are easy consequences of the proof of Proposition 1.5.1: 

Lemma 1.5.4. — Let S be a Cayley-Hamilton quotient of (R,T), £ = ( e ^ , ^ ) an as

sociated data of idempotents for S, and V a partition of { 1 , . . . , r} such that {i} € V 

and J D I-p. 

(i) Ifj^i=ien, et(SIJ)ej{SIJ)ei 0. 

(ii) The canonical projection 

a{ti : S/JS • ei(S/JS)ei Mdi{A/J), X e^xei, 

is an Aj J-algebra homomorphism and satisfies T o a ^ = T{. As a consequence, 

pi factors through S/JS, a^i ~ p%, and pi(ek) = Si,kid. 

(iii) Assume moreover that {j} £ V for some j ^ i, then we have 

dij{xy) (a^i(x)aij(y) ^j(x)ajj(y)) E 

k^ij 

ei(S/J)ek(S/J)eô, Vx, y e R, 

where aij : S/JS ei{S/JS)ej, x eixej, is the canonical projection. 

Proof. — The idempotent f\ corresponding to {i} is then e .̂ Note that ei(S/JS)(l — 

ei){S/JS)ei is a two-sided ideal of ei(S/JS)ei ~ M^iA/J) whose trace is 0 by as

sumption and formula (10), which implies that ei(S/JS)(l — ei)(S/JS)ei = 0. Since 

for j ^ i we have (1 — e^e? = e.-, we have 

ei(S/JS)ej(S/JS)ei ei(S/JS)(l-ei)(S/JS)ei 0 

which shows (i). As a consequence, a^i coincides with the map in formula (11) (with 

of course S replaced by S/JS), which proves (ii). The last assertion is immediate from 

the fact that eixyej — (eix(ei + ej)yej) lies in 

e i ( 5 / J 5 ) ( l - ( e i + e J ) ) {S/JS)ej 

k=i,j 

ei(S/JS)ek(S/JS)ej. 

1.5.3. An explicit construction of extensions between the p^s. — First let 

us recall that if R is an ^4-algebra and pi : R —• M ^ ( A ) , i = 1,2, are two A-algebra 

representations (that we identify with the i2-modules Adi they define), an extension 

of p2 by pi is an i2-module V and an exact sequence of i?-modules 

0 Pi V P2 0. 

Note that the exactness of this sequence implies that V is a free A-module of rank 

di + ¿2· Such an extension defines an element in the module Ext1

R(p2, pi), and two 

extensions V and Vf define the same element if and only if there exists an isomorphism 

V —> V1 of 12-modules that induces the identity on pi and p2. We will make constant 
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use of the following simple remark: if Rf is another A-algebra with a surjective map 

of A-algebras R' —• R, then the natural map 

Ext 1 
R 

p2, p1 Ext 1 
R' 02, Pi 

is injective (of course, for the right hand side Ext 1 we view each pi as a representation 

of R' via the given map R' —> R). Indeed, an i2-module extension of p2 by p\ which 

is split as an extension of .R'-modules is a fortiori split as an extension of i?-modules 

since Rr —» R is surjective. 

We keep the assumptions of §1.5.1, and we fix a Cayley-Hamilton quotient S of 

(R, T). We fix a data £ on 5, using Theorem 1.4.4 (i), such that (S, £) is a GMA and 

set 

At- • 

k=i,j 
Ai^kAk,j -

We have by definition A[j C Aij. 

Fix i ^ j £ { 1 , . . . , r}. Let V be any partition of { 1 , . . . , r } such that the singletons 

{i} and {j} belong to V, and J an ideal containing Ip. By Definition 1.5.3, for 

k = i,j, we have a representation pk : R/JR —> Mdk(A/J). By an extension of 

pj by pi we mean a representation R/JR — • End^/j(V r) together with an exact 

sequence of R/JR-modu\e 0 — • pi —> V —> pj —> 0. Hence V is in particular a 

free A/J-module of rank d\ + d2. Such an extension defines an element in the module 
E x tfl/jfl(Pj>P*)-

Theorem 1.5.5. — There exists a natural injective map of A/J-modules 

li,j RomAiAij/Aij^A/J) ExtR/JR(pj>Pi)' 

Proof. — The map tij is constructed as follows. Pick an / £ llom A(A% j / A'^^ A/J). 

We see it as a linear form / : Aij —> A/J, trivial on j . It induces a linear appli

cation, still denoted by / M d j ; d . ( A , j ) Mdudj(
A/J) We consider the following 

j4-linear application R S Mdi+dj(A/J), 

(12) X 
0>i,i(X) (mod J) f(ai,j(x)) 

0 aj,j(x) (mod J) 

We claim that the map (12) is an A/J-algebra homomorphism which is an extension 

of pj by pi. By Lemma 1.5.4(h), the upper and lower diagonal blocks are respectively 

pi(x) and pj(x), so the only thing to check is that this map is multiplicative. Since ai,i  

mod J = pi and djj mod J = pj are A-algebra morphisms, we only have to check 

that for all x,y £ S 

(13) f(aid(xy)) aiìi{x)f(aiìj{y)) •a>jAy)f(a>iAy)y 
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But by assumption, / is trivial on Y,k&j Mdi,dk (Ai,k)Mdkydj (Akj) C Mdudj(A'^j), 

hence on the right hand side 1.5.4 (iii). The vanishing of the left hand side is exactly 

(13). 

As a consequence, the map (12) defines an element tij(f) in Ex t^ / J i ? (p j , pi). 

It is clear by the Yoneda interpretation of the addition in Ext 1 that the map tij(f) 

is linear. Let us prove that tij is injective. Assume tij(f) = 0. This means that the 

extension is split. As it factors by construction through S/JS, it is certainly split when 

restricted to any subalgebra of S/JS. Let us restrict it to the subalgebra eiS/JSej 

(without unit, but we can add A/J(ei + ej) if we like). The restricted extension is 

x 
0 

0 

/ K ¿ ( s ) ) 

0 

and such an extension is split if and only if / = 0. 

The construction above is a generalization of the one of Mazur and Wiles, directly 

giving the matrices of the searched extensions. We will give a second construction in 

the next subsection, more in the spirit of Ribet's one, which will realize the extensions 

constructed before as subquotient of some explicit jR-modules. Our second aim is to 

characterize the image of tij and to verify that this image is the biggest possible 

subset of the above Ext-group seen by S. 

1.5.4. The projective modules Mi and a characterization of the image of 

tij. — We keep the assumptions and notations of § 1.5.3. For each i, we define the 

A-modules 

Mi SEi r 
j=1ejSEi. 

Note that Mi is a left ideal of 5, hence an 5-module. It is even a projective 5-module 

as S Mi S(l-Ei). 

Theorem 1.5.6. — Let j G { ! , . . . , r } , V a partition containing {j} and J an ideal 

containing I-p, then 

(0) there is a surjective map of S-modules Mj/JMj —• pj whose kernel has the 

property that any of its simple S-subquotients is isomorphic to pk for some 

k ^ j . Moreover Mj is the projective hull of pj (and of pj) in the category of 

S-modules. 

Let i 7̂  j G { l , . . . , r } , V a partition containing {i} and {j}, and J is an ideal 

containing I-p. Then moreover: 

(1) the image of the map tij of Theorem 1.5.5 is exactly Ext1

s^JS(pj,pi) C 
ExtR/JR(pj,Pi)> 

(2) any S/ JS-extension of pj by pi is a quotient ofMj /JMj@pi by an S-submodule, 

every simple S-subquotient of which is isomorphic to some pk for k ^ j . 
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Proof. — First note that we may replace A by A/J and S by S/JS, that is we 
may assume that J = 0 in A (which simplifies the notations). Indeed, (S/JS)Ej ~ 
MJ<8>AA/J = Mj<S>sS/JS = Mj/JMj. Hence assertions (1) and (2) are automatically 
proved for A once they are proved for A/J. As for assertion (0), if we know the 
corresponding assertion for A/J, namely"The S/JS-module Mj/JMj is the projective 
hull of pj'', then (0) follows, because the map of ̂ -modules Mj —• Mj/JMj —• pj 
is essential as JS C mS C rad(S), and because Mj is projective over S. 

Assume that V contains {j} and that J D I-p. Let us consider the natural exact 
(split) sequence of A-modules 

(14) 0 Ni i=j eiSEj •Mj ejSEj 0. 

We claim that Nj is an S-submodule of Mj, and that Mj/Nj ~ pj. It suffices to show 
that for k j , ejSekNj C Nj. But this follows from Lemma 1.5.4 (i), as ejSekSej = 0. 
As a consequence, Mj/Nj ~ CjSEj is an S-module, which is isomorphic to pj by 
Lemma 1.5.4 (ii). 

Let us prove the first assertion in (0). Recall that by Lemma 1.2.7, we have 

S/rad(S) 
r 

i=l 
End*, (p.) 

(see the formula (8) in the proof of Lemma 1.4.3). So if U is a simple S-subquotient 
of Nj, then U ~ pk for some k G { 1 , . . . , r } . But by construction, ejNj = 0, hence 
ejU = 0, and Pj(ej) = 1 by Lemma 1.4.3, so k ^ j and we are done. 

We prove now that Mj —• pj is a projective hull. We just have to show that 
this surjection is essential. If Q C Mj is a S-submodule which maps surjectively to 
Mj/Nj = ej(Mj/Nj), then ejQ C ejSEj maps also surjectively to Mj/Nj, hence 
ejQ = ejSEj. But then Ej G Q, hence Q = Mj, and we are done. 

Now we suppose that V contains {i} and {j}. Let us apply Homs(—,pi) to the 
exact sequence (14). As Mj is a projective 5-module, it takes the form: 

0 Boms (pj, pi) Roms (Mj, pi) Roms (Nj, pi) s Ext s (pj, Pi) 0 

We claim first that S is an isomorphism. We have to show that any 5-morphism 
Mj —• pi vanishes on Nj. But by Lemma 1.5.4 (ii), if k ^ j we have e^Pj = 0. We 
are done as Nj = J2k^j ekNj by definition. 

It is well known that if / G Roms(Nj, pi), we have the following commutative 
diagram defining 5(f): 

(15) 0 Nj Mj Pj 0 

f X >,0 id 

S(f) 0 Pi 
X (0,x) 

Mj O pi 

Q Pj 0 
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where Q is the image of the 5-linear map u : Nj —> M3; 0 pi, x — (#, 0) — (0, / ( # ) ) . 
This will prove (2) if we can show that each simple subquotient of Q is isomorphic 
to some pk with k ^ j. But as in the proof of (0), this follows from the fact that 
ejQ = uiejNj) = 0. 

We claim now that we have a sequence of isomorphisms 

Uoms(Nj,pi) Homei5ei eiSEj k=j,i eiSekSEj Pi 
HoniA Aij k^j,i Ai^kAkj, E 

The first one is induced by the restriction map, the fact that it is an isomorphism 
is a simple matter of orthogonal idempotents, using that CkPi = 0 if k ^ i and that 
Nj = (Bk&ekSEj. The second one is induced by the Morita equivalence A = EiA —> 
eiSei = Mdi(A). 

It is now easy, using the diagram (15) and the fact that (Mj 0 Pi)/Q is naturally 
isomorphic as A-module to ejSEj(BeiSEi, to check that in terms of the isomorphisms 
above, the map S is exactly the map tij given by formula (12), which proves (1). Note 
that the inclusion property between the two Ext1 of the statement of assertion (1) 
has already been discussed in the beginning of § 1.5.3. 

Remark 1.5.7. — By the same method, we could give an expression for the higher 
Ext-groups Extjjj/js(PjiPi) m terms of the Aij's. For example, when r = 2, the exact 
sequence (14) implies that Ext2S/JS(pj, pi) Ext1A^J(Aij ® A/J, A/J). However, 
for the usual applications of pseudocharacters, this is less interesting because when 
n > 2, the natural map 

Exts/Js(Pi>Pi) ExtR/JR(Pj>Pi) 

is not in general injective, and we usually only care about the extensions between the 
piS in the category of representations of R, not of its auxiliary quotient S. (Compare 
with the discussion in the beginning of § 1.5.3.) 

Remark 1.5.8 (Dependence on S). — All the constructions of § 1.5.3 and § 1.5.4 depend 
on the choice of a Cayley-Hamilton quotient S of (R,T). If 5i — • 52 is a morphism 
in the category of Cayley-Hamilton quotients (cf. 1.2.5), then it is surjective and 
we have obviously Ext1^/IS2(pj,pi) C Ext^/ISi(pj,pi). Thus our methods construct 
the biggest group of extensions when working with S = So, and the smallest when 
S = R/KerT. We stress that even in the most favorable cases, the inclusion above 
may be strict: an example will be given in Remark 1.6.5 below. However, we will not 
be able to get much information about the Ext^jg except when S = R/KerT. On 
the other hand, as proved in Proposition 1.5.1, the reducibility ideals do not depend 
on S. 
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Remark 1.5.9. — Assume we are under the assumptions of Theorem 1.5.6. We claim 

that for i ^ j , the natural inclusion 

(16) ExtS/J<?(pj>Pi) Exts (Pj, Pi) 

is an isomorphism. Indeed, it is injective since S —> S/JS is surjective, and the image 

of (16) is exactly the subspace of 5-extensions of pj by pi in which the ideal JS C S 

acts by 0. Let U be an S-extension of pj by pi, we have to show that JU — 0. But for 

/ G J, the multiplication by / induces an 5-linear map 

Pj Pi 

which is necessarily 0 as Horns (p¿, p¿) H-omS/js(Pj,Pi) 0 by Lemma 1.5.4 (i). 

1.5.5. Complement: Topology. — We keep the hypotheses of §1.5.1. We assume 

moreover that A is a Hausdorff topological ring such that the natural functor from the 

category of topological Hausdorff finite type A-modules to the category of .A-modules 

has a section endowing A with its topology. We fix such a section, hence every finite 

type A-module is provided with an Hausdorff A-module topology, and any A-linear 

morphism between two of them is continuous with closed image. For example, this is 

well known to be the case when A is a complete noetherian local rings, and it holds 

also when A is the local ring of a rigid analytic space at a closed point (see [9, §2.4]). 

Proposition 1.5.10. — Assume that R is a topological A-algebra and that T : R —• A 

is continuous. 

(i) Let I be an ideal containing I-p where V is a partition containing {i}. Then the 

representation pi : R/IR — • Md^A/I) is continuous. 

(ii) Let I be an ideal containing I-p where V is a partition containing {i} and {j}, 

i T¿ j . If A is reduced and S = R/KerT, then the image of LÍ¿ of Theorem 1.5.5 

falls into the A-submodule of continuous extensions ExtX

R?cont(Pi> Pj)-

Proof. — By Lemma 1.5.4 (ii), we can find e G R such that for all x G R, Ti(x) = 

T(ex) (any lift of the element ei G S/JS loc. cit. works for e), which proves (i). Let 

us show (ii). Fix / G H.omA(Aij/A'ij, A/I). By the formula (12) defining ^,j(/)> it 

suffices to show that the natural maps 7T{j : R —> Aij, x EixEj, are continuous. 

Note that this makes sense because by Theorem 1.3.2 (iii), the A , j 's are finite type 

A-modules. Let us choose a family of A-generators x\,..., xn of Aj^. As T : S —• A 

is faithful by assumption, and by Lemma 1.3.5, the map 

p : Aij 
n 

s=l 

A, X p(x) (T(xxs))s, 

is injective. By assumption on the topology of finite type A-modules, the map above is 

an homeomorphism onto its image. It suffices then to prove that p o IIij is continuous, 
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which we can check componentwise. But for each s, (po7Tij)s is the map x 1—> T(exfg), 

where (e, / , g) G R? denotes any lift of (Ei, Ej,xs) G S3. This concludes the proof. 

1.6. Representations over A 

We keep the notations and hypotheses of §1.4.1: A is local henselian and d\ is 

invertible in A. In this subsection we are mainly concerned with the following nat

ural question which is a converse to Example § 1.2.2: if T : R —• A is a residually 

multiplicity free pseudocharacter of dimension d, does T arise as the trace of a true 

representation R —• Md(A)7 

When T is residually absolutely irreducible, the theorem of Nyssen and Rouquier 

([91], [102, corollaire 5.2]) we recalled in § 1.2.2 shows that the answer is yes. Although 

for a given residually multiplicity free pseudocharacter, it may be difficult to determine 

if it arises as the trace of a representation (see next subsection for interesting particular 

cases), it turns out that there is a simple sufficient and (almost) necessary condition on 

A for this to be true for every residually multiplicity free pseudocharacter of dimension 

d on A. 

Proposition 1.6.1. — Assume that A is a factorial domain (that is, a UFD). Then any 

residually multiplicity-free pseudocharacter T : R —> A of dimension d is the trace 

of a representation R —• Md(A). 

Proof. — We use the notations of § 1.4.1 for T. As A is a domain, its total fraction 

ring is a field K. By the point (i) of Theorem 1.4.4, there is a data £ on R/KerT 

that makes it a GMA, and by the point (ii) of the same theorem, there is an adapted 

(to £) representation p : R/KerT —• Md(K) whose image is the standard GMA (see 

example 1.3.4) attached to some fractional ideals Aij of K, i,j G { 1 , . . . , r } . 

Let v be an essential valuation of A. Recall that since A is a UFD, every essential 

valuation is discrete, attached to an irreducible element of A. Let Vij be the smallest 

integer of the form v(x) for a nonzero x G Aij—this makes sense since Aij is a 

fractional ideal. Because Ai i A A- A • • 
1 t)3 3)1 

A and AijAj^ A^k, we have 

(17) Vi,i = 0, Vij H~ 0, vi,j + vj,k Vi,k 

Moreover, all of the v^j are zero except for a finite number of essential valuations. 
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Because A is factorial, there exists for each i an element Xi G K* such that v(xi) = 

vn for every essential valuation v. Let P be the following diagonal matrix 

xilddl 

#2ldd 2 

xilddl 

Let p' := P~lpP. Then pf is adapted to £ and its image is the standard GMA attached 

to the modules A^j = XjX~1Aij. 

If x G Af

ijy and v is an essential valuation on A, we have v(x) > V(XJ)—v(xi)+Vij = 

Vj,i — Vi^i + Vij which is nonnegative by (17). Hence x G A since A is factorial, and 

A'ij C A. That is, p' is a representation R — • Md(A) of trace T. • 

Remark 1.6.2. — Let A be a valuation ring, with field of fractions K, and valuation 

v : K* — • r, where T is a totally ordered group. Assume v(K*) = T. 

Then the proof above shows that the result of Proposition 1.6.1 holds also for this 

ring A if the ordered group T admits infima. Indeed, it suffices to define Vij to be 

the infimum of the v(x) with x G Aij nonzero, and to choose Xi G K* such that 

v(x{) = v1,i, which is possible by the assumption v(K*) = V. 

Consider for example a valuation ring A as above, with T = R (such a valuation ring 

exists by [29, chapitre VI, §3, n° 4, example 6]). Then the result of Proposition 1.6.1 

holds for A, though A is not a UFD (̂ 4 has no irreducible elements!). Note however 

that A is not noetherian. 

If on the contrary we do not assume that T admits infima, the result fails as showed 

for the ring Ocp in [11, remark 1.14]. 

We are now interested in the converse of Proposition 1.6.1. Because of the remark 

above, we shall assume that A is noetherian. 

Theorem 1.6.3. — Assume d > 2 and A noetherian (in addition of being local 

henselian). If each residually multiplicity free pseudocharacter of dimension d is the 

trace of a representation R —> Md(A), then A is factorial. 

Proof. — We claim first that the hypothesis implies the following purely module-

theoretical assertion on A: 

For any A-modules B and C, and every morphism of A-modules <p : B <S)C —• m 

such that 

(18) <t>(b,c)b' <S>{b',c)b, for any 6, b' G B, c G C, 

there exist two morphisms f : B —• A, and g : C —• A such that 4>(b<g>c) = f(b)g(c) 

for any b G By c G C. 
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Let us prove the claim. Let B, C be two A-modules with a morphism <j>: B<g>C —• 

m satisfying the property above. Set A\$ ·= B, Ai$ = G, Aij = 0 for i ^ j and 

{i,j} ^ { 1 , 2 } , Aiti = A for i = 1,... ,d, 0i,2,i := </>, 02,i,2(c0&) = <t>(b®c), and 

<j>ijj be the structural morphism. Then we check at once that these Aij's and </>ijtk& 

satisfy the properties (COM), (UNIT), and (ASSO) (see §1.3.2), and thus defines a 

GMA (R, £) whose they are the structural modules and morphisms. As <j>(B®C) C m, 

we are in the case of Example 1.4.2, and the trace function T : R —• A of (R,£) is 

a residually multiplicity free pseudocharacter of dimension d. 

The hypothesis of the theorem then implies that there is a trace representation 

R —• Md(A). Because A is local, every finite-type projective ^4-module is free and 

by Lemma 1.3.7, there is an adapted (to £) representation p : R —• Md(A), that 

is an element of G(A) where the functor G = Gr^ is the one defined in § 1.3.3. By 

Proposition 1.3.9, F(A) is not empty. If (fij) G F(A), then by definition (f,g) := 

(/1,2 »/2,1) satisfies the claim, and we are done. 

Using the assertion above, we will now prove in three steps that A is a factorial 

domain. 

First step. — A is a domain. 

Choose an x G A, x ^ 0, and let I be its annihilator. Set B = A/xA, C = I and 

let (/> : B 0 C —> A be the morphism induced by the multiplication in A. Then 

<j)(B 0 C) = I C m and the property (18) is obvious. Thus there exist / : B —> A 

and g : C —> A such that </)(b(g>c) = f(b)g(c) for any b € B, c G C. As xC = xl = 0, 

we have xg(C) = 0 hence g(C) C i". As xA/xA = xB = 0 we also have f(B) c / . 

Hence I = (f)(B<S)C) = f(B)g(C) C I2. Because A is local and noetherian, this implies 

1 = 0. Hence A is a domain. 

Second step. — If A is a domain, then A is normal. 

Let K be the fraction field of A. Assume, by contradiction, that A is not normal, and 

let B C K be a finite A-algebra containing A, but different from A. Let C = {x G 

K, xB C A}. We have then: 

i. by definition, C is a 5-submodule of K (hence an A-module too). 

ii. C C Ar because 1 G B. Hence C is an A-ideal. 

iii. We have C C m. Indeed, C is an A-ideal by ii. As A is local, we only have to 

see that C ^ A. But if 1 G C, B C C C A by i. and ii. , which is absurd. 

iv. C is non zero: if (pi/qi) is a finite family of generators of B as an A-module, 

with pi, qi G A, qi^ 0, then 0 ^ Qi e C-

Now let (j) : B 0 ^ C — • K be the map induced by the multiplication in K. By iii. 

<f)(B (g) C) C m. Moreover, hypothesis (18) is obviously satisfied. Thus there exist two 

morphisms / : B —• A and g : C —• A such that (j)(b 0 c) = f(b)g(c) for any b G 5 , 

c G C. Since i? 0,4 K = K,f%K\K —• K is the multiplication by some element 
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x G K*, and so is / . As C ®A K = K by iv. , g has to be the multiplication by x 
We thus get 

(19) xB c A, and x'xC C A. 

The first relation implies x G C, so 1 G x~1C. As x~xC is a B-module, 5 C x - 1 C 
and by the second relation, B C A, which is absurd. (The reader may notice that this 
step does not use the noetherian hypothesis). 

Third step. — If A is a normal domain, then A is factorial. 
We may assume that the Krull dimension of A is at least 2, because a normal noethe
rian domain of dimension < 1 is a discrete valuation ring, hence factorial. Let C be 
an invertible ideal of A, and set B = mC~x C K. Let <j): B <8>A C —> m be induced 
by the multiplication in K. Then reasoning as in the second step above, we see that 
there is an x G K* such that xmC~x C A and x~xC C A, as in (19). 

Now, since A is normal and noetherian, it is completely integrally closed, and even 
a Krull ring ([29, chapter VII, §1, n° 3, corollary]). Recall from [29, chapter VII, §1, 
n° 2, Theorem 1] the ordered group D(A) of divisorial fractional ideals of A, and the 
projection div from the set of all fractional ideals of A to D{A). Since x~xC C A, we 
have (using [29, chapter VII, §1, n° 2, formula (2)]) 

diva; 1 divC div (x^C) 0, 

that is div C > div x. Prom xmC 1 C A we have 

diva? div m d i v C " 1 0, 

but since m has height greater than or equal to 2, divm = 0 by [29, chapter VII, §1, 
n° 6, corollary (1)], and since A is completely integrally closed, d i v C - 1 = —divC by 
[29, chapter VII, §1, n° 2, corollary]. Hence divx > divC. Thus diva: = divC, and 
if C is divisorial, then C = Ax is principal. But a Krull ring where every divisorial 
ideal is principal is factorial, cf. [29, chapter VII, §3, n° 1]. 

When a trace representation p : R —> Md{A) does exist, we may ask what its 
kernel and image are. In some favorable cases, we can give a satisfactory answer: 

Proposition 1.6.4. — Assume A is reduced with total fraction ring K a finite product 
of fields Ks. Let T : R —• A be a residually multiplicity free pseudocharacter and 
assume T 0 Ks irreducible for each s. If p : R —> Md(A) is a trace representation 
then Kerp = KerT and p(R) ®K = K[p(R)] = Md(K). 

Proof. — We obviously have Kerp C KerT. Set S := p(R) C Md(A)y which is a 
Cayley-Hamilton quotient of ( i? ,T). To show that T : S —• A is faithful, it suffices 
to show the last statement. By the irreducibility assumption and Theorem 1.4.4 (iii), 
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S <S> K is (trace) isomorphic to Md(K). As a consequence, the injective map p <g> K : 
S <g> K —• Md(K) is an isomorphism, which concludes the proof. • 

Remark 1.6.5. — The proof above shows in particular that under the hypotheses of 
the proposition, the only Cayley-Hamilton quotient of R that is torsion free as an A-
module is R/KerT. We cannot omit the hypothesis "torsion free". Here is a counter
example: with the notations of the proof of Theorem 1.6.3, take A = Zp, and set 
B = Zp, C = Zp 0 Z/pZ and let <j> : B ® C —• Zp be defined by 0(6 <8> (c, c')) = pbc. 
As it is clear that 0 satisfies (18), those data define a GMA R of type (1,1). Its trace 
function T is a Cayley-Hamilton residually multiplicity free pseudocharacter. Hence 
R is Cayley-Hamilton, we have R = SQ in the notation of § 1.2.5, but R ^ R/KerT 
because Ker T ~ Z/pZ. Moreover this example provides a case where Ext 1 

So/pSo PliP2 
has dimension 2 whereas Ext .1 

R/Ker T 'p(R/KerT [PUP2 has dimension 1 

1.7. An example: the case r = 2 

Let A be a reduced, noetherian, henselian local ring and T : R — • A be a mul
tiplicity free, d-dimensional, pseudocharacter. As before, K is the total fraction ring 
of A, which is a finite product of fields Ks. In this subsection, we investigate the 
consequences of our general results in the simplest case where f is the sum of only 
two irreducible pseudocharacters trpi and trp2. Note that in this case, the only re-
ducibility locus is the total one, of ideal I-p with V = { { 1 } , { 2 } } . 

Let S be a given Cayley-Hamilton quotient of (R,T) We are first interested in 
giving a lower bound on the dimension of Ext\/mS(pi, p2)r hence of Ext^/mi?(pi, p2)-

Proposition 1.7.1. — Let n be the minimal number of generators of the ideal I-p. Then 

[dimk Ext1s/rnS(pl,p2) dimk Ext5/m5(p2,Pi) n 

Proof. — By Remark 1.5.8, we may and do assume S = R/KerT. Let p : 
R/KerT —> Md(K) be as in Theorem 1.4.4 whose we use notations. If i ^ j , 
let rtij be the minimal number of generators of the finite A-module Aij. 

By Theorems 1.5.5 and 1.5.6(1), we have 

dimfc RomA(Aij,k) dimk Ext],/nsipj, pi) 

But Rom.A(Aijyk) = Homk(Aij/mAij,k) and by the theory of duality on vector 
spaces, this space has the same dimension as Aij/mAij] by Nakayama's lemma, this 
dimension is nij. Thus Uij = dim^ Exig/mS(pj,pi). 

On the other hand, since /p = ^ 2 ^ 2 , 1 ? we have 721,2^2,1 > n and the proposition 
follows. 
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This easy observation is one of the main theme of the book: to produce many 
extensions of pi by p2 we shall not only construct a pseudocharacter over a local ring 
A lifting tr pi + tr p2, but do it sufficiently non trivially so that the reducibility locus 
of that pseudocharacter has a big codimension. The most favorable case occurs of 
course when I-p is the maximal ideal m of A. In this case, the above result writes 

dim* ExtLm5(pbp2) [dimk Ext i S/mS P2,Pl dim/- m/m2 dim A. 

When moreover T is the trace of a true representation, we can say more: 

Proposition 1.7.2. — Assume that each T <g> Ks is irreducible, that I-p is the maximal 
ideal and that there is a trace representation R —> Md(A), then 

max dim*; Ext 1 
S/mS P\,P2 dim*; Ext 1 

S/mS P2,P\ dim*; m/m2 

Proof. — Again we may and do assume that S = R/KerT. Moreover we also have 
p(R) = R/KerT = S by Proposition 1.6.4. By Lemma 1.3.7, and Lemma 1.3.8 we 
may assume that the image of p is a standard GMA attached to ideals Ait2, ^2,1 of 
A. Then Ai£ and ^2,1 are ideals of A such that ^ 2 ^ 2 , 1 = Iv — m- Hence m C Ai^ 
and m C ^2,1? but we cannot have A\^ = -^2,1 = A, hence one of those ideals is m. 
The proposition follows. • 

Remark 1.7.3. — The inequality above does not hold when T has no representation 
over A. Indeed, let k be any field and set A — k[[x, y, z]]/(xy — z2) which is a complete 
noetherian normal local domain, but not factorial. Let K be its fraction field, and 
^1,2 = yA + zA, A2,i = f A + A in K, Ai,i = A2^ = A. Let R be the standard GMA 
of type (1,1) associated to these Aij C K. As ^1,2^2,1 — ^ the trace T of R is 
an ^-valued residually multiplicity free pseudocharacter. Its reducibility locus I-p = 
^4.1,2-̂ 2,1 = y,z) = m is the maximal ideal of A, and T<g>K is obviously irreducible 
but m/m2 has dimension 3, whereas dim*; Ext 1 

R/mR Pl>P2 dim*; Ext 1 
R/mR P2,Pl 

2. 

We now give a result relating the Ext groups and the existence of a trace represen
tation over A: 

Proposition 1.7.4. — Assume that each T (g) Ks is irreducible. The two following as
sertions are equivalent: 

(i) There is a representation p : R —• Md(A) whose trace is T, and whose reduction 
modulo m is a non split extension of pi by p2, 

(ii) Ext(fl/KerT)/m(H/KerT)(pi,p2) has k-dimension 1. 

Moreover, if those properties hold, then the representation p in (i) is unique up to 
isomorphism. 
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Proof. — Let us prove first (i) =$> (ii). Fix p as in (i). By reasoning as in the proof of 
the proposition above, we can assume that p(R) has the standard GMA attached to 
some ideals Aii2, ^2,1 of A for image, and has KerT for kernel. Hence 

p®k R<g)k 
Mdl(k) 

Md2,dl (A 2,i) 
Mdud2{Ah2) 

Md2(k) 

where Aij is the image of the ideal Aij in A/m = k. The hypothesis tells us that 
Ait2 = 0 and ^2,1 7̂  0? hence Ait2 C m and A2,i = A. But by Theorems 1.5.5 and 
1.5.6(1), 

Ext 1 
(R/KerT)/m(R/Ker T) Pu Pi Horn*; A2,uk k. 

which is (ii). 
Let us prove (ii) (i). Let p : R — • Md(K) be a representation as in Theo

rem 1.4.4, (ii), whose kernel is KerT and whose image is the standard GMA of type 
(dijfife) attached to fractional ideals Aii2i A2ii of A. Since 

k Ext 1 
(R/Ker T)/m( R/Ker T) Pu Pi Homjfe(i42,i,ife), 

we have ^ 2 , 1 / ^ 2 , 1 — k hence by Nakayama's lemma A2^\ = fA for some / G K. 
By Theorem 1.4.4 (iii), A2^K = K, hence / G K*. Then, if we change the basis of 
Ad, keeping the d\ first vectors and multiplying the d2 last vectors by / , we get a 
new representation p' : R — • GL2(A) whose image is the standard GMA attached 
to A'{j, with A'21 = A2^/f = A, hence A'12 c m. It is then clear that the reduction 
modulo m of that representation is a non split extension of p\ by p2. We leave the 
last assertion as an exercise to the reader. 

In the same spirit, we have 

Proposition 1.7.5. — Assume that each T <g> Ks is irreducible. The two following as
sertions are equivalent: 

(i) Ext 1 
( R/Ker T)/m( R/Ker T) \pUPl and Ext 1 (R/Ker T)/m( R/Ker T),T P2,Pl have k-

dimension 1. 
(ii) The reducibility ideal I-p is principal, with a non-zero divisor generator. 

Proof. — We will use the notations p and Ai,2, A 2 , i of the part (ii) =$> (i) of the proof 
of the above proposition. 

Proof of (i) (ii). Reasoning as in the proof of the proposition above, we see 
that Ah2 = fA and A2,i = f'A with / , / ' G K*. Hence Ip = Ali2A2il = ff A with 
/ / ' G K* f l A. Hence the ideal Ip is generated by / / ' which is not a zero divisor. 

Proof of (ii) (i). By hypothesis, A\,2A2,\ = fA with / not a zero divisor. Hence 
there is a family of G Aij2, b% G A 2 , i such that 71, i = 1 a^bj f. Let x G A i ) 2 , then 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2009 

file:///pUPl


50 CHAPTER 1. PSEUDOCHARACTERS, REPRESENTATIONS AND EXTENSIONS 

xbi G jA so we can write abi = fxi for a unique Xi G A. Hence 

fx 

i 

dibi \x 
i 

ai(xbi] 

l 
Qifxi-

Because / is not a zero divisor, x = ^ a ^ . This shows that the ai generate ^1,2, 

and the morphism An —> A\^-> · · ·, ^n) *-> °"ixi has a section x 1—> (#1 , . . . , xn). 

Hence A\£ is projective of finite type, hence free, and since A\^ C K, it is free of 

rank one. The same argument holds of course for ^2,1, and we conclude by Theorems 

1.5.5 and 1.5.6(1) applied to J = m and S = R/KerT. 

1.8. Pseudocharacters with a symmetry 

1.8.1. The set-up. — In this section we return to the hypotheses of §1.4.1: A 

is a local henselian ring where d\ is invertible, T : R — • A is a d-dimensional 

pseudocharacter residually multiplicity free. 

Moreover, in this section, we suppose given an automorphism of yl-module r : 

R —> R, which is either a morphism or an anti-morphism of A-algebra and such that 

r 2 = idR. We note that in both cases T o r is a pseudocharacter on R of dimension d, 

and we assume 

(20) T or = T. 

If B is any A-algebra, and p : R —• Mn(B) is any representation, then we shall 

denote by p1- the representation p o r : R —> Mn (B) if r is a morphism of algebra, 

and t(por) if r is an anti-morphism of algebra. Note that px is a representation whose 

trace is (tr p) o r . If p : R —> Md(K) is a semisimple representation of trace T, where 

K is a field, then the hypothesis (20) is equivalent to 

(21) p+ 

P 

The hypothesis (20) also implies that T o r = T, hence p1- ~ p. Thus there is a 

permutation a of { 1 , . . . , r} of order two, such that for each i G { 1 , . . . , r } , we have 

Ti o r = 7 .̂(1), and equivalently, pi o r ^ pa{%)' This implies di = da^). 

Remark 1.8.1. — (i) We check at once that the ideal KerT C R is stable by r, 

hence r induces an automorphism, or an anti-automorphism, on R/KerT which 

we will still denote by r. 

(ii) In the same vein, we have for each x G R an equality of characteristic polyno

mials 

PX,T PT(X),T, 

hence r factors also through the maximal Cayley-Hamilton quotient of R (see 

§1.2.5). 
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1.8.2. Lifting idempotents. — In the following lemma, A is a local henselian ring 
in which 2 is invertible. 

Lemma 1.8.2. — Let S be an integral A-algebra, r an A-linear involution of S which is 
either a morphism or an anti-morphism of algebra, and let I C rad(S) be a two-sided 
ideal of S such that r(J) = J. 

Let (ei), i = 1,..., k, be a family of orthogonal idempotents in S/I, and assume 
that the set {e ,̂ i = 1,..., k} C S/I is stable by r. Then there is a family of orthogonal 
idempotents (e^) in S, i = 1,... ,k, lifting (e^) and such that {ei,i = 1,...,k} is stable 
by r. 

Proof. — We prove the lemma by induction on A:. It is obvious for k = 0. Assume it 
is true for any k' < k. We will consider two cases. 

First case. — T(€I) = ei. Let x be any lifting of e\ in S. Set y = (x + r{x))/2. Then 
r(y) = y. Let Si be the A-subalgebra of S generated by y. It is a commutative, finite 
A-algebra on which r = Id. Set h := J fl S\. Then S\/I\ C S/I and S\/I\ contains 
the reduction of y which is ei. As A is henselian, there exists t\ G S\ an idempotent 
lifting e\. Then r(ei) = e\. 

The A-subalgebraW S2 := ( l - e i ) S ( l - e i ) is stable by r, and if I2 := InS2, then 
S2/I2 C S/I contains the family e2,..., e& that is stable by r. By induction hypothesis, 
this family can be lifted as an orthogonal family of idempotents e2,..., ek, stable by 
r, in S2, and then e±,..., ek is an orthogonal family of idempotents lifting e i , . . . , ek 

in S that is stable by r. The lemma is proved in this case. 

Second case. — ^(^I) =fi e\. Then up to renumbering, we may assume that r(ei) = e2. 
We claim that 

there are two orthogonal idempotents e\ and e2 in S 
lifting €\ and e2 respectively, such that r(ei) = e2. 

This claim implies the lemma since we may apply the induction hypothesis to lift the 
family e 3, ,..,€& in (1 — (ei + e2)S{l — (e\ + e 2 ) ) by the same reasoning as above. 
Moreover, in order to prove the claim, we may assume that e\ + e2 = 1. Indeed, set 
e = ei + e2. This is an idempotent of S/I stable by r. By the first case above, there 
is an idempotent e in S lifting e and such that r(e) = e. Replacing S with eSe, and J 
with I HeSe, we have now €1+62 = 1, and we are done. To prove our claim, we have 
to distinguish again two cases: 

(20) Recall that if e G S is an idempotent and / a two-sided ideal of S, then ele = I D eSe and 
rad(e5e) = erad(5)e. 
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First subcase. — r is an automorphism of algebra. Let / G S be any idempotent 

lifting 61. Set / ' := / (1 - r ( / ) ) . Then fr(f') = / (1 - r ( / ) ) r ( / ) ( l - / ) = 0 and 

T ( / ' ) / ' = r ( / ) ( l - / ) / ( l - r ( / ) ) = 0. Hence the subalgebra Si of 5 generated by 

/ ' and r ( / / ) is commutative and stable by r. Moreover, the reduction of / ' modulo 

I\ := In Si is ei(l — r(ei)) = ei(l — 62) = e\ and the reduction of r(f') is r(ei) = €2-

Now, let p be an idempotent in Si lifting ei, and again let g' = g(l — r(g)). The 

same computation as above shows that g'r(gf) = r(g')g' = 0, but now, since Si is 

commutative, g' is an idempotent. Set ei := gie2 = : T(</), and the claim is proved, 

hence the lemma in this subcase (we could also have concluded by using the fact that 

the lemma is easy if 5 is a finite commutative A-algebra). 

Second subcase. — r is an anti-automorphism. Let / € S be any idempotent lifting 

€1. Set x := fr(f). Then x.e I and r(x) = x. Let Si be the A-subalgebra of S 

generated by x, Ii := JflSi. This is a finite commutative A-algebra stable by r. Note 

that i i C rad(Si). Indeed, /1 C rad(S), hence for all y G / 1 , 1 + y is invertible in S, 

hence in Si as it is integral over A. We conclude as Ii is a two-sided ideal of Si. In 

particular, x G rad(Si). Since A is henselian and 2 is invertible in A, there exists a 

unique element it G 1 + rad(Si) such that u2 = 1 — x. Such an element u is invertible 

in Si and satisfies r(u) = u. Set g = u~lfu. Then g is an idempotent lifting ei and 

from ur('u) = u2 = 1 — fr(f) we get 

gr(g) u-1 f(1 - fr(f))r(f)u-1 

0. 

Finally, we set ei g 1 
2 r (#)# and e 2 

r(e1) r(g) 1 
2 T ( # ) # Then ei lifts £i and 

we claim that e2 = e^ and eie2 = e2ei = 0. Indeed, this follows at once from the 

following easy fact: 

Let R be a ring in which 2 is invertible, and let e, / be two idempotents of R such 

that ef = 0. If we set e' 1 f 
2 

e and f f 1 e 
2 

then e' and f are orthogonal 

idempotents. 

To check this fact, note that e / 2 = 1 f 
2 e 1 f 

2 e 1 
2 ee e as ef 0 and 

e 2 = e. Similarly, / ' 2 = / ' . Moreover, it is clear that e'f = 0, and 

f'e' 
/ l e 

2 
1 

f 

2 
e 

f 1 e + r 
2 e / e 

/e + /e 

2 
0, 

which concludes the proof. 

Lemma 1.8.3. — Assume that T is Cayley-Hamilton. There are idempotents ei , . . . , er 

in R and morphisms if) : e^Re^ —> M^iA) satisfying properties (1) to (5) of 

Lemma 1.4-3 of prop 1.4-3 and moreover 

(6) For i G { 1 , . . . , r}, r(e<) = e a ( i ) . 

Proo/. — We call ê , i = 1,... ,r the central idempotents of R/KerT. Note that we 

have r(ei) = ea^y Applying the preceding lemma to S = R and I := Ker(R —• 
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R/KerT) = mdR (Lemma 1.2.7), there exists a family of orthogonal idempotents 

e i , . . . , er lifting e i , . . . , e r that is stable by r. Hence rfe) = e a ( i ) , which is (6), and 

the other properties are proved exactly as in Lemma 1.4.3. • 

1.8.3. Notations and choices. — Prom now we let S be a Cayley-Hamilton quo

tient of R which is stable by r. For example, by Remark 1.8.1 the faithful quotient 

R/KerT has this property. As a2 = Id, we may cut the set I = { 1 , . . . , r } into three 

parts 

I = Io I1 I2 

with i € Jo if and only if o~(i) = i, and with o~(h) = h> If i € Ji and j = a(i), we 

definitely choose pj := p^~, which is permitted since pj and pf- are isomorphic. 

We now choose in a specific way a GMA datum on S taking into account the 

symmetry r. First, Lemma 1.8.3 provides us with a family of idempotents ei such 

that 
r(ei) eo(i), vi E I. 

Moreover, by property (5) (actually Lemma 1.4.3 (5)) we also have isomorphisms 

fa : eiSei — • M ^ ( A ) for i £ I. We are happy with the ipi for i £ Jo U Ji, but for 

j G J2, j = o~(i) with i G Ji we forget about the ijjj given by (5) by setting 

(22) Wj wo(i) 
Wi 

Of course, we also have ipi = tyj- as r 2 = id. From now on, we fix a choice of e '̂s and 

^iS on S as above, and this choice makes S a GMA. 

Let i G Jo- Note that the two morphisms ifii and ^ : eiSei —> Md^A) have the 

same trace and are residually irreducible. Hence by Serre and CarayoPs result ([33]), 

that is also the uniqueness part of the Nyssen and Rouquier's result, there exists a 

matrix Pi G GL^(^l) such that ipi = Piip^-P'1. Note that Pi is determined up to the 

multiplication by an element of A*. We fix the choice of such a matrix Pi for each 

i G Jo- For i G Ji ]J I2 we set Pi := Id. Note that obviously Pi = Pa^). We have, for 

any i G J, 

(23) Wo(i) 
PiWi Pi

-1 

Wi 

PiW0(i) Pi

-1 

Lemma 1.8.4. — If r is an automorphism (resp. an anti-automorphism) P2 (resp. 

PfPf1) is a scalar matrix x j d ^ where Xi G A* (resp. Xi G { ± l } j . 

Proof. — Assume that xj) is an anti-automorphism (we leave the other, simpler, case 

to the reader). Using the two equalities of (23) we get 

fa ptp-^iiptp-1)-1 

hence P%tPi

 1 is a scalar matrix xjol with Xi G A* and we have Xi Pi — Pi hence 

x2 = 1. The result follows since A is local and 2 is invertible in A. 
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1.8.4. Definition of the morphisms r ^ . — Recall from § 1.3 that the idempotent 

Ei of 5 is defined as ^x(Eiti) and that Aij is the A-module EiSEj. Set pi = 

^l~1(Pi) € eiSei. This is an invertible element in the algebra CiSei and we denote its 

inverse in this algebra by p~x. 

Applying (23) to rlEi) we get easily 

r(Ei) P<r(i)Ea{i)Pa(i) 

Assume first that r is an automorphism. We have 

r{Ai,j) T(EÌ)ST(EÌ) po(i) Eo(i)Po(i) S Po(j) Eo(j) P o(j) 

Hence we may define a morphism of .A-modules n.j : Aij — • Ar(i),(rO') by setting 

Ti,j P -1 
O(i) R/Ai,j Po(j). 

Assume now that r is an anti-automorphism. We define similarly a morphism 

nj : Aij — • Ar(i),^(0 by setting 

Ti,j P - i T\AitjP*{i)-

Lemma 1.8.5. — Assume T is an automorphism (resp. an anti-automorphism). 

(i) For all i,j, the A-linear endomorphism To(i),o(j) ° Tij (resp. Ta^j)j(T^ o nj) of 

Aij is the multiplication by an element of A*. 

(ii) For all i,j, Tij is an isomorphism of A-modules. 

(iii) For all i,j,k and x E Aij, y € A^k we have Tij{x)rj^{y) = T~i,k{%y) in 

Ax(z),a(fc) (^Sp. Tjik(y)Tij(x) -Titk(xy) in Aa{k)^i)). 
(iv) WehaveTij{AfiJ) = Afa{i)Mj) (resp. Tij{A^) = A'a{j)(r{i)). 

Proof — The assertion (i) is an easy computation using Lemma 1.8.4. The assertion 

(ii) follows immediately from (i). The assertion (iii) is a straightforward computation 

and (iv) follows from (iii), (ii) and the definition of the A\j (see § 1.5.3). 

1.8.5. Definition of the morphisms _Lij<7-. — Let V be a partition of { 1 , . . . , r } 

such that the singletons {i} and {j} belong to V. Let I-p be the corresponding re

ducibility ideal. Note that by Lemma 1.8.5, Ip = IA(V) so that we mav assume without 

changing Ip that the singletons {cr(i)} and (o(j)) belong to V. Let J be an ideal of 

A containing Ip. 

Recall that we denned a representation pi : R/JR —• Md{A/J) in Def. 1.5.3. By 

point (ii) of Lemma 1.5.4, pi is the reduction mod J of the composite of the morphism 

ipi with the surjection R —> S —• eiSei. Hence we have 

(24) Po(i) PiPiPr1 
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Let c be an extension in E x t ^ J j R ( p j , pi). We can see it as a morphism of algebra 

pc : R/JR Mdi+dj{A/J) 

x 
pi(x) 

0 

c(x) 

Pj(x) 

where c(x) G Mdudj(A/J). Then setting Qij = diag(P i 5Pj) G Mdi+dj(A/J) we see 
using (24) that if r is an automorphism, 

(25) Qi,jP^(x)Q-} 
Ρσ(τ)(χ) 

0 

c'(x) 

Po(j) (x) 
where c'(x) Pi c(r(x)) P-1, 

and that if r is an anti-automorphism, 

(26) QijPci^QZi 
P<rU)(x) 

c'(x) 

0 

Ρσϋ)(Χ) 
where c'(x) Pj *C(T(X)) Pr\ 

Hence QijPcQij represents an element c1 in 

13?!?! 1 
R/JR Pa(j)iP(r{i) resp. in u s ! 1 

R/JR Pa(i)yPa(j) 

and we set 

- k i ( c ) c', 

thus defining a morphism 

Ai,j Ext R/JR PjiPi Ext 1 
R/ JR P<T(j),Pa(i) 

resp. Tij E E S 1 
R/JR PjiPi mi il1 R/ JR .P<j{i),Pa{j) 

Note that all we have done also works when R is replaced by its r-stable Cayley-
Hamilton quotient 5, and that the morphisms ±ij thus defined on the Ext S/JS 's are 
simply the restriction of the morphisms Ti,j on mi 1 

R/JR' 

1.8.6. The main result 

Proposition 1.8.6. — If r is an automorphism, the following diagram is commutative 

RomA{Aij/A,

i i,A/J) i,j Ext 1 
S/JS PjiPi 

(T."1)* 

H o m A ( X ( i ) , „ ( j ) / ^ ; W a ( i ) , A / J µo(i), o(j) Ext 1 
S/JS Pa(j),Pa(i) 

Ti,j 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2009 



56 CHAPTER 1. PSEUDOCHARACTERS, REPRESENTATIONS AND EXTENSIONS 

If r is an anti-automorphism, the following diagram is commutative 

ЯотА(Л^/Л^,А/^ ti,j Ext 1 
S/JS Pj,Pi 

(Ti,j

-1)* Ti,j 

Н о т л ( Л Й 1 „ ( о / Л и , , ( < ) > А / ; ) 
lO(j), o(i) Ext 1 

S/JS P<r{i),P*{j) 

Proof — This follows immediately from the definitions of the morphisms Tij 
(see § 1.8.4), _Uj (see § 1.8.5, especially (25) and (26)) and L^S (see § 1.5.3). • 

1.8.7. A special case. — We keep the assumptions of § 1.8.1 and the notations 
above, but we assume that 

(i) the ring A is reduced, of total fraction ring a finite product of fields K = 
m s=l 

Ks 

(ii) the pseudocharacters T 0 Ks are irreducible, 
(iii) r is an anti-automorphism. 

Let p : S := R/KerT —> Md(K) be a representation as in Theorem 1.4.4 (ii). By 
assumption (ii) above and Theorem 1.4.4 (iii), p induces an isomorphism 

(27) S A K Md(K). 

For s £ { 1 , . . . , n } , denote by ps the composite S p MAK) MAKS) 

Lemma 1.8.7. — For each s 6 { ! , . . . , n } there exists a matrix Qs € GLAKg) such 

that 

(28) fit QspsQs1 

and there is a well-determined sign es — ±1 such that tQs = esQs. If d is odd then 

es = 1. 

Proof — The representations ps and p^- are irreducible by hypothesis (ii) and have 

the same trace hence are isomorphic. Moreover ps is absolutely irreducible by (27), 

hence the existence of a Qs such that p^ = QspsQ~l, and its uniqueness up to the 

multiplication by an element on K*. Using that (ps

L)± = p s , we see that tQsQ71 

centralizes p s , hence is a scalar matrix. Thus tQs — csQs and es = ± 1 . The last 

assertion holds because there is no antisymmetric invertible matrix in odd dimension. 

We will now relate these signs es to other signs, and prove that they are actually 

equal in many cases. Recall that if k G { 1 , . . . , r} is such that a(k) — h, we fixed in 

§1.8.3 a Pk G GLdk(A) such that ipk = P ^ P ^ 1 , and we showed that ^kP^1 = 

±1 G A* is a sign in Lemma 1.8.4. As explained there, Pk is uniquely determined up 

to an element of A*, so this sign is well defined, let us call it e(k). By reducing those 

ASTÉRISQUE 324 



1.8. PSEUDOCHARACTERS WITH A SYMMETRY 57 

equalities mod m, e(k) is also "the sign" of the residual representation pk ̂  p^ in the 
obvious sense. 

Lemma 1.8.8. — Assume that o~(k) = k for some k G { l , . . . , r } . Then for each s, 
e = e(k) is the sign of pk* 

Proof. — As r(ek) = ea(fc) = e^, we have r(ekSek) = e^Se^. Recall that by the 
assumptions in § 1.8.3, we have 

P\ekSek • ^k ekRek Mdk{A) 

with Wk

t Pk^kPk For each s G { 1 , . . . , n}, we also have 

ek Ps (ek) • Qsps{ek)Qs1 QsekQl1 

so Qs commutes with e& = tek1 and CkQs and Qs are both symmetric or antisym
metric. Since ^k · ek(S ®A K)ek —-> Md(if) is an isomorphism, we get that for some 
a s e k;, 

ekQs AsPk

-1. 

In particular, the three matrices ekQs, Qs and Pk (which does not depend on s) are 
simultaneously symmetric or antisymmetric, and we are done. 

Let us fix now i ^ j two integers in { 1 , . . . , r } such that cr(i) = j . Under hypothesis 
(iii), the morphism ±ij is an endomorphism of the ^4-module Ext^JS(pj1 pi) and is 
canonically defined. We will study it using Proposition 1.8.6 and in terms of the signs 
above. Recall that we also defined some A-linear isomorphism Tij of Aij = AtO"),*^)-

Lemma 1.8.9. — The morphism Tij : Aij —> Aij is the multiplication by the ele
ment (€i, . . . ,€„) ofK*. 

Proof. — Let Q G GLd(K) be the matrix whose image in GLd(Ks) is Qs for 5 = 
1,..., n. The representation p identifies S with a standard GMA p(S) in Md(K) and 
it follows from (28) that the anti-automorphism r on p(S) is the restriction of the anti-
automorphism M I—> QtMQ~1. Remember that p{Ei) is the diagonal matrix whose 
all entries are zero but the (di H h ^ - i + l ) t h which is one, and similarly for p(Ej). 
Remember also that p identifies Aij = EiSEj with Aij = p(Ei)p(S)p(Ej). Since 
T(E{) = Ej we have p(E5) = Qtp(Ei)Q~1 = Qp(Ei)Q'1. Thus the 2 by 2 submatrix 
of Q, keeping only the (di + h d^-i + l ) t h and (di + · · · + d^_i + l ) t h lines and 
row, is antidiagonal: 

p(Ei)Qp(Ei) 

p(E3)Qp(Ei) 

p(Ei)Qp(Ej) 

piE^QpiEj) 

0 a 

0 
G M2(K) 

But by the lemma we have fQ = ( e i , . . . , en)Q, hence 

b ei,...,en a. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2009 



58 CHAPTER 1. PSEUDOCHARACTERS, REPRESENTATIONS AND EXTENSIONS 

Now Tij : Aij —• Aij is by définition the restriction of M \-> QMQ~X to Aij — 
p(Ei)Sp(Ej). By the formula above, this map is the multiplication by a b - 1 , that is 
by the élément ( c i , . . . , en) of K*. 

Thus, by Proposition 1.8.6 and the lemmas above: 

Proposition 1.8.10. — (i) If all the signs es are equal, then for each pair i =̂  j with 
j = o~(i) the endomorphism 

Ti,j Ext 1 S/JS pj, pi Ext 1 
S/JS PjiPi 

is the multiplication by ei = ± 1 . 
(ii) If a has a fixed point k, then all the es are equal to the sign of pk = pk — 

(iii). If d is odd, all these signs are +1 . 

Remark 1.8.11. — Note that the hypothesis of the corollary holds obviously when A 
is a domain. Note also that the fact that _U?J is the multiplication by ±1 implies (and 
in fact is equivalent to) that every extension p in Ext^JS(pj, pi) is isomorphic to p1-
as a representation (not necessarily as an extension). 
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CHAPTER 2 

TRIANGULINE DEFORMATIONS OF REFINED 
CRYSTALLINE REPRESENTATIONS 

2.1. Introduction 

The aim of this section is twofold. First, we study the d-dimensional trianguline 

representations of 

Gp Gal (Q p /Q p ) 

for any d > 1 and with artinian ring coefficients, extending some results of Colmez 

in [46]. Then, we use them to define and study some deformation problems of the 

d-dimensional crystalline representations of Gp. 

These deformation problems are motivated by the theory of p-adic families of au

tomorphic forms and the wish to understand the family of Galois representations 

carried by eigenvarieties. They have been extensively studied in the special case of 

ordinary deformations (e.g. Hida families), however the general case is more subtle. 

When d = 2, it was first dealt with by Kisin in [73]. He proved that the local p-adic 

Galois representation attached to any finite slope overconvergent modular eigenform / 

admits a non trivial crystalline period on which the crystalline Probenius acts through 

ap if Up(f) = apf, and also that this period "varies analytically" on the eigencurve. 

These facts lead him to define and study some deformation problem he called Dh 

in loc. cit. §8. In favorable cases, he was then able to show that the Galois defor

mations coming from Coleman's families give examples of such "/i-deformations" (see 

§10, 11 loc. cit). In this section, we define and study a deformation problem for the 

d-dimensional case via the theory of (<£, r)-modules. It turns out to be isomorphic to 

Kisin's one when d = 2 but in a non trivial way. We postpone to chapters 3 and 4 the 

question of showing that higher rank eigenvarieties produce such deformations. 

The approach we follow to define these problems is mainly suggested by Colmez's 

interpretation of the first result of Kisin recalled above in [46]. Precisely, Colmez 

proves that for a 2-dimensional p-adic representation K of G p , a twist of V ad

mits a non trivial crystalline period if, and only if, the (if, T)-module of V over the 
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Robba ringt1) is triangulable ([46, Prop. 5.3]). For instance, the (<p, r)-module of a 2-

dimensional crystalline representation is always trigonalisable (with non étale graded 

pieces in general) even if the representation is irreducible (that is non ordinary), which 

makes things interesting. This also led Colmez to define a trianguline representation 

as a representation whose (y?, r)-module over 11 is a successive extension of rank 1 

(</?, r)-modules. Although this has not yet been proved, it is believed (and suggested 

by Kisin's work) that the above triangulation should vary analytically on the eigen-

curve, so that the general "finite slope families" should look pretty much like ordinary 

families from this point of view ^ . 

In what follows, we define and study in detail the trianguline deformation functors 

of a given d-dimensional crystalline representation for any d, establishing an "in

finitesimal version" of the above program, that is working with artinian Qp-algebras 

as coefficients (instead of general Qp-affinoids which would require extra work). This 

case will be enough for the applications in the next sections and contains already 

quite a number of subtleties, mainly related to the notion "non criticality". We prove 

also a number of results of independent interest on triangular (y>, r)-modules, some 

of them generalizing to the d-dimensional case some results of Colmez in [46]. Let us 

describe now more precisely what we show. 

In § 2.2, we collect the fundamental facts we shall use of the theory of (tpy Y)-modules 

over the Robba ring 1Z. We deduce from Kedlaya's theorem that an extension between 

two étale (y?, r)-modules is itself étale (Lemma 2.2.5). A useful corollary is the fact 

that it is the same to deform the (<£>, r)-module over 1Z of a representation or to deform 

the representation itself (Proposition 2.3.13). We prove also in this part some useful 

results on modules over the Robba ring with coefficients in an artinian Qp-algebra. 

In § 2.3, we study the triangular (<£, r)-modules over IZA ·= TZ 0q p A where A is 

an artinian Qp-algebra. They are defined as (<£>, r)-modules D, finite free over IZA, 

equipped with a strictly increasing filtration (a triangulation) 

(Filj(D)) i = 0,...,d, d гк*л(Л), 

of (</>, r)-submodules which are free and direct summand over TZA When D has 
rank 1 over IZA, we show that it is isomorphic to a "basic" one TZA(S) for some 

(x) Recall that the category of r)-modules over the Robba ring TZ is strictly bigger than the 
category of Qp-representations of GPi which occurs as its full subcategory of etale objects. 
(2) A related question is to describe the A-valued points, A being any Qp-afBnoid algebra, of the 
parameter space S of triangular (</>, r)-modules defined by Colmez in [46, §0.2]. The material of this 
part would be e.g. enough to answer the case where A is an artinian Qp-algebra, at least for "non 
critical" triangulations. See also our results in chapter 4. 
(3) It is important here not to restrict to the etale D, even if in some important applications this 
would be the case. Indeed, most of the proofs use an induction on d and the Fil̂ (D) C D will not 
even be isocline in general. 
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unique continuous character W —> A* (Proposition 2.3.1) of the Weil group W of 
Qp, hence the graded pieces of Fili(D)/Fili-i(D) have the form 7^A№) in general. 
The parameter (#i)i=i,...,d of D defined this way turns out to refine the datum of 
the Sen polynomial of D (Proposition 2.3.3). A first important result of this part 
is a weight criterion ensuring that such a (ip, r)-module is de Rham (Proposition 
2.3.4); this criterion is a generalization to trianguline representations of Perrin-Riou's 
criterion "ordinary representations are semistable" ([1, Exposé IV, Théorème]). In 

the last paragraphs, we define and study the functor of triangular deformations of 

a given triangular (ip, r)-module Do over 11: its A-points are simply the triangular 

(ip, r)-modules deforming Do and whose triangulation lifts the fixed triangulation of 

Do- In the same vein, a trianguline deformation of a trianguline representation Vb is a 

triangular deformation of its (ip, r)-module ( 4) Do (it depends on the triangulation of 

Do we choose). The main result here is a complete description of these functors under 

some explicit conditions on the parameter of the triangulation of DQ (Proposition 

2.3.10). 

In §2.4, we show that crystalline representations are trianguline and study the 

different possible triangulations of the (ip, r)-module of a given crystalline represen

tation ( 5) V. We show that they are in natural bijection with the refinements of V in 

Mazur's sense [85], that is the full ^-stable nitrations of Dcrys(V). More importantly, 

we introduce a notion of non critical refinement in § 2.4.3 by asking that the (^-stable 

filtration is in general position compared to the Hodge filtration on Dcrys(V). We 

interpret this condition in terms of the associated triangulation of the (ip, T)-module 

(Proposition 2.4.7), and compare it to other related definitions in the literature (Re

mark 2.4.6). This notion turns out to be the central one in all the subsequent results. 

The main ingredient for this part is Berger's paper [13]. 

In § 2.5, we apply all the previous parts to define and study the trianguline de

formation functor of a refined crystalline representation. It should be understood as 

follows: the choice a refinement of V defines, by the previous results, a triangula

tion of its (ip, r)-module, and we can study the associated trianguline deformation 

problem defined above. When the chosen refinement is non critical, we can explicitly 

describe the trianguline deformation functor (Theorem 2.5.10), and also describe the 

crystalline locus inside it. A striking result is that "a trianguline deformation of a 

non critically refined crystalline representation is crystalline if and only if it is Hodge-

Tate" (Theorem 2.5.1). This fact may be viewed as an infinitesimal local version of 

Coleman's "small slope forms are classical" result; it will play an important role in the 

(4) In this section, all the r)-modules are understood with coefficients in the Robba ring 1Z. 
(5) For simplicity, we restrict there to crystalline representations with distinct Hodge-Tate weights. 
In fact, the results of this part could be extended to the representations becoming semi-stable over 
an abelian extension of Qp, and even to all the de Rham representations in a weaker form. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2009 



62 CHAPTER 2. TRIANGULINE DEFORMATIONS 

applications to Selmer groups of the subsequent chapters (see e.g. Corollary 4.4.5). In 
the last paragraph, we give a criterion ensuring that a deformation satisfying some 
conditions in Kisin's style is in fact trianguline (Theorem 2.5.6). Combined with the 
extensions of Kisin's work studied in chapter 3, this result will be useful to prove that 
the Galois deformations living on eigenvarieties are trianguline in many interesting 
cases ( 6 ) . 

In a last § 2.6, we discuss some applications of these results to global deformation 
problems. Recall that a consequence of the Bloch-Kato conjecture for adjoint pure 
motives (see Remark 5.2.4) is that a geometric, irreducible, p-adic Galois represen
tation V (say crystalline above p) admits no non trivial crystalline deformation ( 7 ) . 
Admitting this, we obtain that the trianguline deformations of V for a non critical 
refinement T (and with good reduction outside p say) have Krull-dimension at most 
dim(F) (Corollary 2.6.1). This "explains" for example why the eigenvarieties of reduc
tive rank d have dimension at most d, and in general it relates the dimension of the 
tangent space of eigenvarieties of GL(n) at classical points (about which we know very 
few) to an "explicit" Selmer group. As another good indication about the relevance of 
the objects above, let us just say that when such a (V, T) appears as a classical point 
x on a unitary eigenvariety X (say of "minimal level outside p"), standard conjectures 
imply that 

R T 
d 

mX!,...^}], 

where R prorepresents the trianguline deformation functor of (V, J7), T is the com
pletion of X at x, and K is the morphism of the eigenvariety to the weight space. 

The authors are grateful to Laurent Berger and Pierre Colmez for very helpful dis
cussions during the preparation of this section. We started working on the infinitesimal 
properties of the Galois representations on eigenvarieties in September 2003, and since 
we have been faced with an increasing number of questions concerning non de Rham 
p-adic representations which were fundamental regarding the arithmetic applications. 
We warmly thank them for taking the time to think about our questions during this 
whole period. As will be clear to the reader, Colmez's paper [46] has been especially 
influential to us. We also thank Denis Benois and an anonymous referee for their 
remarks. 

(6) 
However not in all cases; part of this result may be viewed as a trick allowing one to circumvent 

the study of a theory of families of triangular r)-modules alluded above. 
(7) As Q-motives are countable, it is certainly expected that there is no non trivial 1-parameter 
p-adic family of motives, but the infinitesimal assertion is stronger. 
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2.2. Preliminaries of p-adic Hodge theory and (<£, r)-modules 

2.2.1. Notations and conventions. — In all this section, 

Gp Gal(Q p/Q p), 

is equipped with its Krull topology. Let A be a finite dimensional local commutative 

Qp-algebra equipped with its unique Banach Qp-algebra topology, m its maximal 

ideal, L := A/m. 

By an A-representation of Gp, we shall always mean an A-linear, continuous, rep

resentation of Gp on a finite type A-module. We fix an algebraic closure Q p of Q p , 

equipped with its canonical valuation v, and norm |.|, extending the one of Q p (so 

v(p) = 1 and \p\ = 1/p), and we denote by Cp its completion. We denote by Bcrysi 

BdRi Dcrys(—), £>DR(—) etc. the usual rings and functors defined by Fontaine ([1, 

Exposés II et III]). 

We denote by Q p ( l ) the Qp-representation of Gp on Q p defined by the cyclotomic 

character 

X Gp z*. 

If V is an A-representation of Gp and m € Z, then we set V(m) ;=V® x m . 

Our convention on the sign of the Hodge-Tat e weights, and on the Sen polyno

mial, is that Q p ( l ) has weight —1 and Sen polynomial T + 1. With this conven

tion, the Hodge-Tate weights (without multiplicities) of a de Rham representation V 

are the jumps of the Hodge filtration on DDR(^)? that is the integers i such that 

F i l i + 1 ( I } D R ( F ) ) C FÌP(DDR(10), and also the roots of the Sen polynomial of V. 

2.2.2. (<p, r)-modules over the Robba ring TZA> — It will be convenient for us 

to adopt the point of view of (<p, r)-modules over the Robba ring, for which we refer 

to [54], [45], [71], and [14]. 

Let IZA be the Robba ring with coefficients in A, i.e. the ring of power series 

/ ( * ) 
nez 

aJz-l)n an e A 

converging on some annulus of Cp of the form r(f) < \z — 1| < 1, equipped with its 

natural A-algebra topology. If we set 

n RQp, 

we have IZA = TZ 0q p A. Recall that IZA is equipped with commuting, ^4-linear, 

continuous actions of (p and of the group 

r Z*

p 

defined by 
P(f)(z) 

f(zp) 7 ( / ) W 
f(zy) 
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To get a picture of these actions, note that if z G Cp satisfies z - 1 1 we have 

z n - l \ z - 1 for n G Z*, whereas z*-l z - 1 p when z - 1 1 p-1 

Definition 2.2.1. — A (p, r)-module over IZA is a finitely generated TS^-module D 

which is free over 1Z and equipped with commuting, 7^-semilinear, continuous ( 8) 

actions of (p and T, and such that IZcp(D) = D. 

Of course, the (</?, r)-modules over 71A form a category in the obvious way: if D\ 

and £>2 are two such (< ,̂ r)-modules, we define a homomorphism D\ —• £>2 as a 

T^^-linear map commuting with the actions of cp and T. We shall call {ip,T)/A this 

category; it is obviously additive, and even A-linear, but it is not an abelian category. 

2.2.3. Some algebraic properties of IZA* — In the first part of this section, we 

assume that A = L is a field, and we will now recall some algebraic properties of 

modules over 1ZL> 

A first remark is that IZL is a domain. Moreover, although it is not noetherian, 

a key property is that IZL is an adequate Bezout domain (this is essentially due to 

Lazard [79], see also [13, prop. 4.12] in these terms), hence the theory of finitely 

presented T^L-modules is similar to the one for principal rings: 

(Bl) Finitely generated, torsion free, 1ZL-modules are free. 

(B2) For any finite type T^c-submodule M C 1Z\, there is a basis (e^) of 7^2, and 

elements (fi)i<i<d € ( f t i , \ { 0 } ) d , such that M = ®f=lfiTZLei. The /» may be 

chosen such that fi divides fi+i in IZL for 1 < i < d — 1, and are unique up to 

units of IZL if this is satisfied (they are called the elementary divisors of M in 

ni). 

Let M C 7££ be a T^L-submodule, the saturation of M in Wl is 

M s a t m G IZl, 3 / G 1ZL\{0}, fm G M M®UL Frac(f t L ))nft£ 

and we say that M is saturated if M s a t = M, or which is the same if IZ^/M is torsion 

free^9). By (Bl) (resp. (B2)) such an M is saturated if, and only if, it is a direct 

summand as T^L-module (resp. if its elementary divisors are units). Note also that by 

property (B2), if M C 1Z\ is finite type over IZL, then so is M s a t . 

It turns out that in a (<£>, r)-module situation, we can say much more. Let t := 

log(z) G 1Z be the usual "2i7r-element". It satisfies <p(t) = pt and j(t) = jt for all 

7 G Z*. Note that t is not an irreducible element of 1Z. 

(8) It means that for any choice of a free basis e = (ei)i=i,...,d of D as 7̂ -module, the matrix map 
7 i—• Me(7) G GLd(7l), denned by 7(ej) = Me(7)(ej), is a continuous function on T. If P £ GLd(7£), 
then Mp(e)(7) = 7(P)M e(7)P - 1, hence it suffices to check it for a single basis. 
(9) As FracT̂ L = Frac7£ ®q L, an T -̂module is torsion free over IZL if, and only if, it is torsion 
free over 1Z. 
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Proposition 2.2.2. — Let D be a T)-module overl^L and D' a (y,T)-submodule. 

(i) L>' s a t D'[l/t]nD. 

(ii) IfD' has rank 1 over KL, then Dl = tkD's&t, keN. 

Proof. — Part (ii) is [46, rem. 4.5]. To prove part (i), it suffices to show that the 

product of the elementary divisors of D' is a power of t. But this follows from (ii) 

applied to h?(D') C Aj(D) with j = rk^ L (£>')· 

We end this section by establishing some basic but useful facts when working with 

artinian rings; in what follows A is not supposed to be a field any more. 

Lemma 2.2.3. — (i) Let E be a free A-module and E' c E a free submodule, then 

E' is a direct summand of E. 

(ii) Let E be a IZA-module (resp. HA[l/t]-module) which is free of finite type as 

IZ-module (resp. 1Z[l/t]-module), and free as A-module. Then E is free of finite 

type over 1Za (resp. TZaWIì])-

(iii) Let D be a finite free 1ZA-module. Assume that D contains a submodule D' free 

of rank 1 such that Df/mDf is saturated in D/mD as IZ-module. Then Df is a 

direct summand as 1Za-submodule of D. 

Proof. — Let n > 1 denote the smallest integer such that mn = 0. As m is nilpotent, 

the following version of Nakayama's lemma holds for all A-modules F: F is zero (resp. 

free) if, and only if, F/mF = 0 (resp. Tor^(F, A/m) = 0). For a proof, see [29] [Chap. 

II, §3, no.2, Prop. 4, and Cor. 2 Prop. 5]. 

To prove (i), consider the natural exact sequence 

0 Torf (E/E\ A/m) E'/mE' E/mE. 

We have to show that the Tor above is zero, i.e. that mEnE' = mEf. But this follows 

from the fact that for a free A-module F, 

mF F [ m n - 1 ] f E F, mn-1 f 0 

Let us show (ii) now, set VJ = TZ[l/t] or 1Z. As E is free over A we have mE = E[mn~1} 

hence mE is a saturated T^'-submodule of E. As a consequence, E/mE is a torsion 

free, finite type, VJL = T^/raT^-module, so it is free over VJL by property (Bl) . 

As E is free over A, Nakayama's lemma shows that any H'A-lift {TVA)
d —• E of an 

^-isomorphism (TZf

L)
d ^> E/mE is itself an isomorphism. 

Before we prove (iii), let us do the following remark. 

Remark 2.2.4. — Let D be a (< ,̂ T)-module free over Ha and D' C D be a submodule 

also free over 11 a- Then part (i) shows that D' is a direct summand of D as A-module. 

In particular, for any ideal I C A, the natural map D'/ID1 —• D/ID is injective, 
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and D' n ID = ID'. Note that this remark gives sense to part (iii) of the proposition 

(take I = m). 

To prove (iii), let us argue by induction on the length of A to show that D' is 1Z-

saturated in D. We are done by assumption if A is a field. Let / C A be a proper ideal, 

then Dfj ID1 C D/ID satisfies the induction hypothesis by the Remark 2.2.4 above, 

hence D'/ID' is a saturated 7£-submodule of D/ID. As ID is a direct summand as 

7?,-module, it is saturated in D, hence we only have to show that D' n ID = ID' 

is saturated in ID. We may and do choose an ideal / of length 1. But in this case, 

ID' C ID is D'/mD' C D/mD, which is saturated by assumption. We proved that 

D' is 1Z saturated in D. As a consequence, D/D' is 7^-torsion free, and free over A 

by part (i), hence it is free over 1ZA by part (ii). 

2.2.4. Étale and isocline (^-modules. — Assume again that A = L is a field. Let 

D be a (^-module over 1ZL, i.e. a free of finite rank 7^-module with a T^L-semilinear 

action of ip such that 1Znp(D) = D. Recall that Kedlaya's work (see [71, Theorem 

6.10]) associates to D a sequence of rational numbers s\ < · · · < Sd (where d is 

the rank of D) called the slopes of D. The </>module D is said isocline of slope s if 

si = · · · = Sd = s and étale if it is isocline of slope 0. A (ip, r)-module is étale (resp. 

isocline) if its underlying (^-module (forgetting the action of T) is. For more details 

see [71], especially part 4 and 6, [72] or, for a concise review, [46], part 2. 

Lemma 2.2.5. — Let 0 — > D\ —> D —> D2 — > 0 be an exact sequence of tp-

modules free of finite rank over 1ZL- If D\ and D2 are isocline of the same slope s, 

then D is also isocline of slope s. 

Proof — Up to a twist (after enlarging L if necessary) we may assume that s = 0, 

that is D\ and D2 étale, and we have to prove that D is étale as well. 

Assume that D is not étale, so it has by Kedlaya's Theorem ([71, Thm 6.10]) a 

saturated <^-submodule TV which is isocline of slope s < 0. Note n the rank of N and 

consider the y?-module AnD which contains as a saturated (^-submodule the ^-module 

A n iV, of slope ns < 0. By assumption, AnD is a successive extension of y?-modules of 

the form 

A a(Z>i)®* r, Ab(D2) a + 6 n, 

which are all étale (see [71, Prop. 5.13]). Since AnN has rank one, it is isomorphic to 

a submodule of one of those étale ^-modules A a ( D i ) 0nL Ab(D2). But by [72, Prop. 

4.5.14], an étale (^-module has no rank one <£>-submodule of slope < 0, a contradiction. 
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2.2.5. Cohomology of (<£>, r)-modules. — As in the context of Fontaine's (<£,T)-

modules (see e.g. Herr's paper [64]), we define the cohomology groups Hl(D) of a 

(<p, r)-module D over 1Z as the cohomology of the 3-terms complex of Qp-vector 

spaces: 

0 D do D D d1 D 0, 

where 7 is a topological generator t 1 0 ' of T, d0(x) = ((j— l)x, ((p — l)x) and di(x,y) — 

(<p — l)x — (7 — l)y. We refer to Colmez's paper [46, §3.1] for a discussion of this 

definition and for its basic properties. Let us simply say that by definition, Hl(D) 

vanishes for i £ {0,1,2}, 

H°(D) 7-^=1,(^=1 x e D, ip(x) x,l(x) x V7 G r 

and we have a long exact sequence of cohomology groups associated to any short exact 

sequence of (<p, r)-modules. When D is a (<p, r)-module over IZA, then the HL(D) are 

^.-modules in a natural way. 

As usual, it turns out that HX(D) parameterizes the isomorphism classes of exten

sions of 1Z by D. To be a little more precise, if D2 and D\ are two (<£, r)-modules over 

IZA, by an extension of Di by D2 in ((p,T)/A we mean a complex of (<p, r)-modules 

over IZA 

0 D2 
D D1 0 

which is exact (hence split) as 7^-module. As usual, two such sequences are said 

equivalent if there is a morphism between them which is the identity on Di and D2-

The set of equivalence classes of such extensions form an ^-module in the usual way 

(Baer), that we shall denote by 

E x t ( , r ) / i P b ^ ) 

One checks at once (see [46, §3.1]) that for any (</?, r)-module D over IZA there is a 

natural A-linear isomorphism 

H\D) E x t ( ^ r ) M ( 7 ^ , L > ) 

2.2.6. (ip, r)-modules and representations of Gp. — Works of Fontaine, 

Cherbonnier-Colmez, and Kedlaya, allow to define a 0-equivalence DT[g between the 

category of (^-representations of Gp and etale (in the sense of § 2.2.4) (<£, r)-modules 

over 1Z ([46, prop. 2.7]). By [13, §3.4], Drig(V) can be defined in Fontaine's style: 

(10) When p = 2 there is no such generator, and the definition has to be modified as follows: let 
A C r be the torsion subgroup and choose 7 G T a topological generator of T/A, then replace each 
D in the complex above by its subspace DA C D of A-invariants. 
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there exists a topological Qp-algebra B (denoted B^Tlg there) equipped with com

muting actions of Gp and (p such that BKeT x = 1Z (with its induced actions of ip and 

of r via x -1 ) , and we have 

DriS(V) (V®QpB)Ke*x 

Some properties of these constructions are summarized in the following proposition. 

Proposition 2.2.6. — (i) The functor DTlg induces an equivalence of categories 

between A-representations of Gp and étale (ip,Y)-modules over IZA- We have 

TkQp(V) = Tkn(Drie(V)). 

(ii) For an A-representation V of Gp, DT[g(—) induces an isomorphism 

Ext A[Gp],cont A,V Ext p,R A nA,Dris{V) H\Dvis(V) 

Proof. — Part (i) is [46, prop. 2.7], part (ii) follows from (i) and Proposition 2.2.5. 

Lemma 2.2.7. — An A-representation V of Gp is free over A if, and only if, DT-lg(V) 

is free over HA · 

Proof. — Assume first that V is free over A. Let M be any finite length A-module 

M, and fix a presentation An —> A171 —> M —> 0. As the functor DT[g(—) is exact 

by Proposition 2.2.6 (i), and by left exactness of — <8>A DT[g(V), we deduce from this 

presentation that we have a canonical ^-linear (hence T^-linear) isomorphism 

Drig(^) A M Dlig(V AM). 

Prom the special case M = A/m, we obtain that DTlg(V)/mDTig(V) is generated by 

d := rk>i(Vr) elements as 7^-module, hence so is DT\g(V) by Nakayama's lemma since 

TUTZA is nilpotent. In other words, there is a 7^A-linear surjection TZ^ — • Drig(V). 

As 

rknDlig(V) dimQp(V) ddimQp(4) rk*(fci) 

by Proposition 2.2.6 (i), any such surjection is an isomorphism by property (BI). 

The proof is the same in the other direction using the natural inverse functor of 

DTlg. 

2.2.7. Berger's theorem. — We will need to recover the usual Fontaine functors 

from Dr[g(V), which is achieved by Berger's work [13] and [14] that we recall now. 

Let us introduce, for r > 0 G Q, the Qp-subalgebra 

Tlr f(z)e1Z, f converges on the annulus p r z - ì 1 

Note that lZr is stable by T, and that ip induces a Qp-algebra homomorphism TZr 

7Zpr when r v-l 
p 

which is finite of degree p. The following lemma is [14, Thm 1.3.3]: 
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Lemma 2.2.8. — Let D be a (ip,T)-module over 7Z. There exists a r(D) > p-1/p such 
that for each r > r(D), there exists a unique finite free, V-stable, 1Zr-submodule Dr of 
D such that 1Z<S)nrL>r D and that 7ZprDr has a 1Zpr-basis in <p(Dr). In particular, 
for r > r(D), 

(i) for s r Ds KsDr 
Rs Rr Dr; 

(ii) <p induces an isomorphism 7Zpr <8>пг,ц> &r Dpr 
7Z izr Dr-

If n(r) is the smallest integer n such that pn~1(p — 1) > r, then for n > n(r) the 
primitive p n-th roots of unity lie in the annulus p~i < \z — 1| < 1. For such a root £, 
the evaluation map 7Zr —» Q P (C) is surjective and its kernel is independent of £: it is 
the ideal of Kr generated by t n = (zpU - l ) / ( z p n _ 1 - 1). Set 

Kn nr/{tn) Qp 
pn 

i 
As t € 7Zr is a uniformizer at each primitive p n-th root of unity, the complete local 
ring lim. TZr/(tny is naturally isomorphic to ^ Kn[\t]\, and we obtain a natural map 

(29) lr,n 
Rr Kn[[t}]; n n(r), r r(D), 

which is injective with t-adically dense image. As the action of T on 7Zr preserves 
tn7Zr, we have a natural action of T on lfn[[£]] for which t r > n is equivariant. ^ For 
any (y>, r)-module D over 71, we can then form for r > r(D) and n > n(r) the space 

Dr ®ПгКп[Щ), 

the tensor product being over the map Lr,n- It is a free i^n[[t]]-module of rank гкт^(/)) 
equipped with a natural semi-linear action of Г. By Lemma 2.2.8 (i), this space does 
not depend on the choice of r such that n > n(r). Moreover, for a fixed r, the same 
lemma part (ii) shows that ip induces a Г-equivariant, ifn +i[[t]]-linear, isomorphism 

{Dr •тгг Kn[[t}} t—pt Kn+l[[t]] Dr Rr 

Kn+1 ((t)) 

(Note that the map (p : 7Zr —• 7Zpr induces the inclusion ifn[[£]] —> Kn+i[[t]] such 

that 11—> pt.) 

We use this to define functors V§en(D) and T>dR(D), as follows. Let Koo = 

| J n > 0 Kni it is equipped with a natural action of T identified with Gal(ifoo/(Q)p) via 

the cyclotomic character %. For n > n(r) and r > r(D), we define a l^-vector space 

with a semi-linear action of T by setting 

DSen (D) Dr TZr Kn Kn K00 

( n ) As Kn is finite étale over Qp, it lifts canonically to a subfield of this local ring, that we still 
denote by Kn. 
(12) For the convenience of the reader, let us explicit this Qp-algebra action. First, Y acts on Kn 

through the natural surjection Z* —• (Z/pnZ)* = Gal(iCn/QP). Moreover, the action of Y on Kn[[*]] 
is continuous for the t-adic topology, coincides with the one just defined on Kn, and satisfies j(t) = *yt 
for all 7 € Z;. 
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(Of course, the first tensor product is over the map lZr —• Kn = 1Zr/(tn).) By the 

discussion above, this space does not depend on the choice of n, r. In the same fashion, 

the Qp-vector spaces 

I>dR(£>) K00 Kn 

Kn ((t)) 7lr 
Dr 

r 

FiP(D d R (D) ) K00 Kn t
i Kn((t)) Rr 

Dr 
r 2>dn(I>), W g Z , 

are independent of n > n(r) and r > r(D). As Jfoo((£))r = Q p , V$&(D) so de

fined is a finite dimensional Qp-vector-space whose dimension is less than or equal to 

rk^(jD), and (FiP(D<iR(£>)))i€Z is a decreasing, exhausting, and saturated, filtration 

on V$R(D). This filtration is called the Hodge filtration. 

We end by the definition of VCTys(D). Let 

VCTys(D) D[l/tf 

It has an action of Qp[<p] induced by the one on D[l/i\. It has also a natural filtration 

denned as follows. Choose r > r(D) and n > n(r), there is a natural inclusion 

T>ciys{D) 2>dR(D) 

and we denote by (</?n(Fil (T>CTys(D)))iez the filtration induced from the one on 

Air(-D)- By the analysis above, this defines a unique filtration (FiP(V C T y s(D)))i ez, in

dependent of the above choices of n and r, and called the Hodge filtration of VCTys(D). 

We summarize some of Berger's results ([13], [14], [45, prop. 5.6])) in the following 

proposition. 

Proposition 2.2.9. — Let V be a ^-representation of Gp, and 

* G {crys,dR,Sen}. 

Then T**(DTig(V)) is canonically isomorphic to D*(V). 

Definition 2.2.10. — We will say that a (not necessarily étale) (<£, r)-module D over 

TZ is crystalline (resp. de Rham) if Vcrys(D) (resp. VdR(D)) has rank rkn(D) over 

Q p . The Sen polynomial of D is the one of the semi-linear T-module T>sen{D). 

Due to the lack of references we have to include the following lemma. 

Lemma 2.2.11. — Let 0 —> D' —• D —> D" — • 0 be an exact sequence of (<£,T)-

modules overlZ. If r > r(D),r(D,)1r(D,f) is big enough, then D" — I m ( D r —> D") 

and Df

r = DrnDf. 

Proof. — Fix r 0 > r(D),r(D'),r(D"). By Lemma 2.2.8, 

(30) X 

r>ro 

Xr, for X <E D.D'D" 
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We can then find n > r 0 such that D'ro C Dri and Im(Dro —• D") C L>"x- As 

D — • -D" is surjective, we can choose moreover some r2 > r\ such that Im(Dr2 —• 

D") contains a 7ZRI -basis of D^. The exact sequence of the statement induces then 

for r > r2 an exact sequence of 7£r-modules 

(31) 0 Kr DrnD' Dr 
D''r 0, 

with Kr D Df

r. As D" is free, this sequence splits, hence remains exact when base 

changed to 1ZS, s > r. Using Lemma 2.2.8 (i), this implies that 1ZSKT = Ks for 

s > r > r2. Moreover, Kr is finite type over 1ZR. Indeed, Dr is (free of) finite type 

over 1ZR and the sequence (31) splits. By formula (30), we can then choose > r2 

such that Kr2 C Df

r3, and we get that Kr = HrKr2 = D'r for r > r 3 . 

2.3. Triangular r)-modules and trianguline representations over ar-

tinian Qp-algebras 

In all this subsection, A is a finite dimensional commutative local Qp-algebra with 

maximal ideal m and residue field L := A/m. 

2.3.1. (<py r)-modules of rank one over 1ZA* — We begin by classifying all the 

(<p, r)-modules which are free of rank 1 over TZA- Let 5 : Q* —> A* be a continuous 

character. In the spirit of Colmez [46, §0.1], we define the (</?, r)-module T^^(^) which 

is IZA as 7^^-module but equipped with the 7^^-semi-linear actions of (p and T defined 

by 

P('1) •S(p), 7(1) 5 ( 7 ) , v 7 e r . 

Let W C Gp be the Weil group of Qp and let 0 : W a b Q* be the isomorphism 

of local class field theory normalized so that geometric Probeniuses correspond to 

uniformizers. We may associate to any Ô as above the continuous homomorphism 

S o 9 : W — • A*. Such a homomorphism extends continuously to Gp if, and only if, 

v(S(p) mod m) is zero, and in this case we see that 

Ka(6) DTlg(6o6). 

When S is the character defined by S(p) = 1 and 6\%* = id, then 8 o 9 = X\w*h-

Note that if / C A is an ideal, it is clear from the definition that TZA (8) <8>A A/1 —> 

1ZA/I(S mod I). Moreover, if D is a (y?, T)-module over TZA, we will set D(5) := 

D <g>nA KA{5), and 

D6 

x e D,(f(x) 6(p)x, 7(x) Sh)x V7 G r H°(D(6~1)) 

Proposition 2.3.1. — Any (<£, T)-module free of rank 1 over TZA is isomorphic to TZA(S) 

for a unique S. Such a module is isocline of slope v(S(p) mod m). 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2009 



72 CHAPTER 2. TRIANGULINE DEFORMATIONS 

Proof. — By Lemma 2.2.5, a (<£>, r)-module D of rank 1 over IZA is automatically 

isocline of same slope as D/mD. As 1ZL(5 mod m) has slope v(S(p) mod m), and as 

IZA(S)(ô') = TZA(ÔS'), we may assume that D is étale. But in this case, the result 

follows from the equivalence of categories of Proposition 2.2.6 (i), Lemma 2.2.7, and 

the fact that the continuous Galois characters Gp —• A* correspond exactly to the 5 

such that v(ô(p) mod m) = 0. 

2.3.2. Definitions 

Definition 2.3.2. — Let D be a (ip, T)-module which is free of rank d over IZA and 

equipped with a strictly increasing filtration (Fili(25))i==o...d : 

Fil0(£>) { 0 } C F i l x ( D ) C . . .ÇFi l i (£>)Ç • . . Ç F i l d _ i ( £ ) Ç Fild(I>) D, 

of (ip, r)-submodules which are free and direct summand as 7^^-modules. We call 

such a D a triangular (ip, r)-module over IZA, and the filtration T := (Fi\i(D)) a 

triangulation of D over IZA-

Following Colmez, we shall say that a (ip, F)-module which is free of rank d over 

IZA is triangulable if it can be equipped with a triangulation T; we shall say that 

an A-representation V of Gp which is free of rank d over A is trianguline if DT{g(V) 

(which is free of rank d over IZA by Lemma 2.2.7) is triangulable. 

Let D be a triangular Up, r)-module. By Lemma 2.3.1, for each i G { 1 , . . . , d} 

8г4(£>) Pili(-D)/Fil»-i(-D) 

is isomorphic to TZA^I) for some unique Si : W —> A*. It makes then sense to define 

the parameter of the triangulation to be the continuous homomorphism 

8 Si i=l d q; A* d 

2.3.3. Weights and Sen polynomial of a triangular (ip, r)-module. — As 

the following proposition shows, the parameter of a triangular (ip, r)-module refines 

the data of its Sen polynomial. It will be convenient to introduce, for a continuous 

character ô : Q* — • A*, its weight^: 

w(6) 
D6/r 

#7 
7=1 

log(«(l+p)) 

log(l+p) 
G A. 

(13) 
Let A1 C A* be the subgroup of elements a such that ap —• 1 when n —> oo; it is also the direct 

product of its subgroups l+m^ and AXC\L*. For any finite set F C A1, we can find a submultiplicative 
norm |.| on A such that \a — 1| < 1 for all a € F. In particular, log(a) := 5^ n> 1(

_l) n" ," 1( a — l) 7 1/^ 
converges absolutely in A for a G A1 and we check easily that log : (A1, ·) —• (A, +) is a continuous group homomorphism. Moreover, for any a € A1, apn -1 

pfi 
• log(a) when n —y oo. This shows the 

second equality in the expression defining u(6), as 6(1 + p) G A1. 

ASTÉRISQUE 324 



2.3. TRIANGULAR (y>, T)-MODULES 73 

Proposition 2.3.3. — Let D be a triangular (<p, T)-module over TZA and ô the parameter 

of a triangulation of D. Then the Sen polynomial of D is 

d 

i=l 

T-U>(6i) 

Proof. — Assume first that d = 1, i.e. that D = TZA(5). We see that we may take 

r(D) = (p - l)/p and that Dr = ATZR for r > r{D). But then VSen(D) has a K^-

basis on which V acts through 8\Y, and the result follows. The general case follows by 

induction on d from the case d = 1 and Lemma 2.2.11. 

2.3.4. De Rham triangular (<£, r)-modules.— We now give a sufficient condition 

on a triangular (<p, r)-module D over TZA to be de Rham (see Definition 2.2.10). 

A necessary condition is that the TZA^I) are themselves de Rham, i.e. that each 

Si := u(5i) is an integer (see the proof below). 

Proposition 2.3.4. — Let D be a triangular (</?,T)-module of rank d over TZA, and let 

5 be its parameter. Assume that Si := w(Si) G Z , and that si < s2 < · · · < s^; then D 

is de Rham. 

If moreover, DQ := D/mD is crystalline and satisfies Hom(Do, £>o(x - 1 )) = 0 

(resp. is semi-stable), then D is crystalline (resp. semi-stable). 

Proof. — In this proof, lCx>[[£]] will always mean |Jn>i Kn [[*]]· 

Assume first that d = 1 and D = TZA{8). If s := u(5) G Z, then S\rx
s is a finite 

order character of V. We see easily that 

*oo [[*]][!/*] ®QP *|r r tSKoo <8>qp 8\r] r 

and the latter A-module is free of rank 1 by Hilbert 90. This concludes the case d = 1. 

Let us show now that D is de Rham by induction on d. Let 7 G T be a topological 

generator ( 1 4 \ and consider the cyclic subgroup TQ := (7) C T. By Lemma 2.2.11 we 

have for r large enough and i G Z an exact sequence 

0 Fili 

2>dR(Fild_i (£>))! Fir(P d R(L>)) Fil\TZA(od)) 

#Hr 0,(Fild-i(£>) r) K00((t))t
i 

By the induction hypothesis applied to Fild-i(D), FilSl(£>dR(Fild_i(-D))) has dimen

sion (d - l ) d i m Q p ( A ) and FiP(P d R (Fil d _i(£>))) = 0 for i > sd-i. By the case d = 1 

studied above, it suffices then to show that 

iJ^ro, F i l l i p ) , Rr Koo[[t]]t°*) 0. 

(14) If p = 2, choose 7 such that 7 is a topological generator of T modulo its torsion subgroup. 
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But the r 0-module Fi\d-i(D)r <S>nr ^oo[[£]]£Sd is a successive extension of terms of 

the form 
TSD K00((t)) OQp 6i. 

But the cohomology group H 1(TQ, —) of each of these terms vanishes. Indeed, sd > Si 

if i < d, and if X = ifoofft]]*-7' with j > 0, we see at once that 

ffr(ro,x) X/(j-l)X 0, 

This concludes the proof that D is de Rham. 

Recall that Berger's Theorem [14, théorème A] associates canonically to any de 

Rham (</?, r)-module D over 1Z a filtered (</?, TV, G p)-module X(D). We see as in Lemma 

2.2.7 that X(D) carries an action of A and is free as A-module if (and only if) D is 

free over IZA- Moreover we have 

X(D0) X{D)/mX(D), where Do D/mD. 

But if Do is semi-stable, the action of the inertia group Ip C Gp on X(D)/mX(D) is 

trivial, hence so is its action on the mtX(D)/m'l+1X(D) X(D)/mX(D) for i > 1. 

As the action of Ip on X(D) has finite image by definition, it is semisimple and the 

/p-module X(D) is also trivial. If moreover 

Horn DQ,D0{X-
1) o, 

then we get by induction on i > 1 that 

N : X(D) ^ ( £ > ( X - 1 ) ) / m ^ ( £ > ( X - 1 ) ) 

is zero, hence N = 0 and so D is crystalline. 

Remark 2.3.5. — (i) The proposition above may be viewed as a generalization of 

the fact that ordinary representations are semi-stable (Perrin-Riou's Theorem 

[1, Exposé IV]). 

(ii) There exist triangulable étale (<£>, r)-modules of rank 2 over TZL which are Hodge-

Tate of integral weights 0 < fc, but which are not de Rham (hence they have 

no triangulation whose parameter S satisfies the assumption of the Proposi

tion 2.3.4. Instead, we have si = k and s2 = 0 with the notation of that propo

sition). For example, this is the case of the (<p, r)-module of the restriction at p of 

the Galois representation attached to any finite slope, overconvergent, modular 

eigenform of integral weight k > 1 and C/p-eigenvalue ap such that v(ap) > k — 1. 

(iii) It would be easy to show that a de Rham triangulable (<£, r)-module over 1ZL 

becomes semi-stable over a finite abelian extension of Q p , because it is true 

in rank 1. Reciprocally, a (<£>, r)-module which becomes semi-stable over a fi

nite abelian extension of Qp is triangulable over TZL, where L contains all the 

eigenvalues of <p (to see this, mimic the proof of Proposition 2.4.1). 
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2.3.5. Deformations of triangular (<¿>, r)-modules 

Let D be a fixed (</?, r)-module free of rank d over IZL and equipped with a triangu-

lation T = (Fili(D)) i =o,...,d with parameter (Si). We denote by C the category of local 

artinian Qp-algebras A equipped with a map A/m —> L, and local homomorphisms 

inducing the identity on L. 

Let XD : C — > Set and XD,T ' C — > Set denote the following functors. For an 

object A of C, XD(A) is the set of isomorphism classes of couples (DA,K) where DA 

is a (ip, r)-module free over IZA and n : DA — • D is a 7^-linear (</?, r)-morphism 

inducing an isomorphism DA ®A L D\ XD,T(A) is the set of isomorphism classes 

of triples (DA, TT, (Fil^JDyi))) where : 

(i) (DA, (Fili(DA))) is a triangular (<p, r)-module of rank d over 7 ^ , 

(ii) 7r : DA — • D is a 7^^-linear r)-morphism inducing an isomorphism .D^ (8>A 

L^> D such that ^(Fi l^D^)) = Fil^D). 

There is a natural "forgetting the triangulation" morphism of functors Xd,t —• 

Xd that makes in favorable cases Xd,t a subfunctor of Xd (as in [46], we denote by 

x the identity character Q* — • Q*). 

Proposition 2.3.6. — Assume that for all i < j , SiSj £ xN. Then Xd,t is a subfunc

tor of XD. 

Proof. — We have to show that if A is an object of C, and (DA,K) € XD(A) is a 

deformation of D, then DA has at most one triangulation that satisfies (ii) above. That 

is to say, we have to prove that if T = (Fil^Z}^)) is a triangulation of DA satisfying 

(ii), then Fill (DA) is uniquely determined as a submodule of DA, Fi^-D^/Fil^D^) 

is uniquely determined as a submodule of DA/Y^I(DA), and so on. For this note that 

Fiij(D)/Filj-i(D) ~ IZL(SJ), and that D/Filj(D) is a successive extension of 1ZL(SI) 

with i > j , so that 

H o m i ^ L ^ O ^ / F i l ^ D ) ) 0 

by the hypothesis on the Si and Proposition 2.2.2 (ii). So we can apply the following 

lemma, and we are done. 

Lemma 2.3.7. — Let (DA,TT) e XD(A), S : Q* — • A* be a continuous character and 

S = S (mod m). Assume D has a saturated, rank 1, (<p,T)-submodule D0 ^ 1ZL($) 

such that (D/DQ)6 = 0. Assume moreover that DA contains a IZ-saturated (</?, T)-

module D' isomorphic to 1ZA(S). Then S is the unique character of Q* having this 

property, and D' the unique such submodule. 

Proof. — We may assume by twisting that S = 1 (hence S — 1 also). Let S' : Q* — • 

A* lifting 1, and assume that DA has some 7£-saturated submodules D\ —> TZA and 
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D2 
KA(S

f). By assumption, H°(D/D0) = 0, and Di/mD* = D0 for i = 1,2 (see 

Remark 2.2.4). A dévissage and the left exactness of the functor H°(—) show that 

tfiDA/Di) 0, i 1,2. 

This implies that the inclusion H°(Di) — > H°(Da) is an equality, hence 

H°(D1) H°(D2) c D2. 

As Di = TZH°(Di), we have Di C D2, and D\ = £>2 since £>i and D2 are saturated 

and have the same 7^-rank. We conclude that 5' = 1 by Proposition 2.3.1. 

We will give below a criterion for the relative representability of XD,T — • X D , 

but we need before to make some preliminary remarks. Let F(—) be the functor on 

(</?, r)-modules over IZL defined by 

F(E) v e Ey 3n > 1 V 7 G T, (7 - l)nv 0, (<p-l)nv 0 

This is a left-exact functor, and F(jE) inherits a commuting continuous action of ip 

and r, hence of Q*, as well as a commuting action of A if E does. 

Lemma 23.8. — We have: 

(i) For any (ip,T)-module E over 1lL, F(E) ^ 0 ^ Hom ( ( ^ r ) ( f t L ,E) ^ 0. 

(ii) F(1ZL(S)) = 0if6<£ x~N, and F(1ZL) = L. 

(iii) Let A G C and 6 : Q* — • A* a continuous homomorphism such that 5 = 1. 

The natural inclusion A C TZa(S) induces a Q*-equivariant(15^ isomorphism 

A ^+ F(1Za(^)), as well as an isomorphism F(1Za(^)) <8>qp H 7^A(5)-

Proof. —- Assertion (i) is an immediate consequence of the definition and of the fact 

that (p and T commute. Let us check assertion (ii). We may assume that S = 1 by (i) 

and Prop. 2.2.2 (ii). Let 7 G T be a nontorsion element. We claim that for / G IZL 

and n > 1 

( 7 - 1 ) " / 0 feL. 

Assume first n = 1, then f(z7) = f(z) so / is constant on each circle \z — 1| = r 

with r > r ( / ) , hence constant because 7 is nontorsion and an analytic function on a 

1-dimensional affinoid has only a finite number of zeros. Assume now n = 2, by the 

previous case (7 — 1)( / ) is a constant C, which means that 

f(zy) f (z) + C 

on r(f) < \z — 1| < 1. Let us choose a p m -th root of unity £ in the annulus r(f) < 

|£ — 1| < 1 which is sufficiently close to the outer boundary so that the (finite) orbit 

of C under (7), namely { C 7 , k G Z} , is non-trivial. Let M be the cardinality of this 

(15) Note that A C 11A{$) has a natural A-linear action of (<̂ ,T), hence of Q*, namely via the 
character 5 by definition. 
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orbit, we obtain by applying M times the previous equation that / ( C ) = / ( C ) + MC, 
so C = (7 — 1)(/) = 0 and / is constant by the case n = 1. Assume now n > 3. If 
(7 — l ) n ( / ) = 0, then (7 — l ) n _ 2 ( / ) is constant by the previous case, so (7 — l ) n _ 1 ( / ) = 
0 and we conclude that / is constant by induction. 

Let us check assertion (iii). It is clear that A c F(TZA(8)). Moreover, as F(1ZL) = L 
by (ii), the left-exactness of F shows that the length of F(1ZA(5)) is less than or equal 
to the length of A. In particular, the previous inclusion is an equality, and the last 
assertion of the stament holds by definition of TZA{^)-

Proposition 2.3.9. — Assume that for all i < j , 8i5- 1 ^ xN. Then Xd,t — • Xd is 
relatively representable. 

Proof. — By Prop. 2.3.6, we already know that Xd,t is a subfunctor of Xd> By [84, 
§23], we have to check three conditions (see also §19 of loc.cit.). 

First condition: if A —• Af is a morphism in C and if (Da, ft) G Xd,t{A), then 

DA ®A A',TT®a A' G Xnr(A') 

This is obviously satisfied as (FH^DA) <8>A A') is a triangulation of DA ®A A' lifting 
D. 

Second conditionS1^ if A —> A' is an infective morphism in C, and if (D^,7r) G 
XD(A), then 

DA 0 A A',it®a A' G XdAA') Ρ Α, π e Xd,t(A) 

Arguing by induction on d = dim^^ D, it is enough to show that DA has a (</?, T)-
submodule E which is free of rank 1 over TZA, saturated, and such that the natural 
map 

7T E D 

surjects onto Fili(D) (the fact that E is a direct summand as 7^^-module will follow 
then from Lemma 2.2.3). By twisting if necessary, we may assume that Si = 1. 

By (ii) of Lemma 2.3.8, the left-exactness of F, and the assumption on the S{, we 
have 

(32) F(D) F(Fili(£>)) L. 

Let DA' = DA ®A A', T{ := Fili(D^/) and Tx := T{ D DA. Lemma 2.3.8 (ii) again 
and a dévissage show that F{DA/T{) c F(DA'/T{) = 0, so the natural inclusions 

(33) F(T1) F(DA) and F(T{) F(DA') 

(!6) This is actually called condition (3) in loc.cit. 
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are isomorphisms. Moreover, the fact that F(D) = L and another dévissage ( 1 7 ) show 
that for each ideal / of A, and each finite length A-module M, if / denotes the length 
function (so that L has length 1) then 

l(F(IDA)) 1(1) and l(F(DA ®A M)) l(M). 

The inequalities above combined with the exact sequences 

0 F{DA) F(Da') F (DA ®a A11 A) 

0 F(mDA) F(DA) F(D). 
show then that 

(34) № ) ) 1(A), and F(DA) ) A L ¿0 
F(D) FCFiUD)) L. 

In particular, there is an element v G F (DA) C DA whose image is nonzero in 

F(D) C DA/TUDA, thus this element v generates a free^18) A-submodule of F(DA)-

By (34) we get that F (DA) = Av is free of rank 1 over A and the nonzero map there 

is actually an isomorphism. Of course, the same assertion holds if we replace the A's 

in it by A', as A! = F(T[) = F(DA>) by Lemma 2.3.8 (iii) and (33). As a consequence, 

the natural map 

(35) F(TX) ®A A1 • F(T{) 

is an isomophism, at it is so modulo the maximal ideal ( 1 9 \ Set 

E KFfr) C DA. 

We claim that E has the required properties to conclude. Recapitulating, we have a 

sequence of maps 

F(T1)®ATlA F(Ti) ®A KA, F(T{) ®A, KA, T'1. 

As E is the image of the composition of all the maps above, we get that 

F(Ti)<8u KA 
E 

is free of rank 1 over TZA- We already showed that TT(E) = Fili(£>), hence it only 

remains to check that E is saturated in DA- But this holds as E is saturated in T{, 

which is saturated in D'A, and we are done ( 2 0 ) . 

(17) For more details about this dévissage, the reader can have a look at Lemma 3.2.9 of the next 
section, in which it is studied in a more general situation. 
(18) rpjie c 2 a i m n e r e is that for A G C (or more generally for any commutative local ring A), any free 
A-module M and any v G M, if the image of v in M/mM is nonzero, then Av ~ A. Indeed, if (ê ) 
is an A-basis of M, then v writes as a finite sum J \ Afe*. If v £ mM, then G A* = A\m (as A 
is local) for some i, thus the map a i—> av, A —+ M, is injective. 
(19) In particular, if we write T[ = T^A'{^)i * n e isomorphism above and Lemma 2.3.8 (iii) show that 
ô(Qp) C A*. 
(20) Actually, using Lemma 7.8.7 we even see that E — T\. 
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Third condition:(21> for A and A' in C, if (DA,TT) G XDJT (A) and (DA>,-K') G 

XD,T(A'), then for B = A XL A!, the natural object 

DB DA XD DA'^B 7Г О prx 7г' Opr2 

lies in XD,T(B). But it is clear that the filtration (Fil^D^) xD FHi(DA')) is a trian
gulation of DB lifting T , and we are done. 

Let us consider the natural morphism 

diag XD,T 

d 

i=l 

Xgri (D). 

Recall that x is the identity character Q* —> Q*; recall also that \ — x\x\ is the 
cyclotomic character. 

Proposition 2ЗЛО. — Assume that for all i < j , SiSj 1 ̂  xxN, then 

(i) XD,T is formally smooth, 
(ii) for each A G Oh(C), diag(A) is surjective. 

Proof. — Recall that (i) means that for A € C and I C A an ideal such that I2 = 0, 
the natural map Xr)^(A) —> XD,T(A/I) is surjective. 

Assume first that d = 1, so the assumption is empty. The maps diag(A) are bijective 
(hence (ii) is satisfied), and by Proposition 2.3.1, XD,T is isomorphic the functor 
Homcont(W, —) which is easily seen to be formally smooth (and even pro-representable 
by Spf(L[[X, Y]])), hence (i) is satisfied. 

Let us show now (i) and (ii), we fix A G C and / C m an ideal of length 1. Let 
U e XDTT (A/I), and let V = (V*) 6 Ui(X^(D)(A)) be any lifting of 11^(17). 

We are looking for an element U' € XD^(A) with graduation V and reducing to U 
modulo i*. We argue by induction on d. By the paragraph above, we already know 
the result when d = 1. By the case d = 1 again, we may assume that gTd(U) is the 
trivial (<£>, r)-module over HA/I (note that the assumption on the Si is invariant under 

twisting), and we have to find a Uf whose grd(U') is also trivial. Let Tf denote the 

triangulation (Fili(JD))i=o,...,d-i of Fild_i(D). By induction, XFiid_i(D),T' is formally 

smooth and satisfies (ii), hence we can find an element U" G -STFiid_i(D),r/(̂ ) lifting 

Y\\d-i(U) and such that gr^U") lifts Vi for i = 1,..., d — 1. It suffices then to show 

that the natural map 

H\U") H^ud-iV)) 

(21) Precisely this is what is left to check condition (2) in loc. cit once (1) and (3) are known to 
hold, because with the notations there AxeB C AXLB if L is the residue field of C. This reduction 
is also explained in the proof of [73, Prop. 8.7]. 
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is surjective. But by the cohomology exact sequence, its cokernel injects into 

F 2(Fil < J_ 1(£>(¿- 1))). 

But this cohomology group is 0 by assumption and by Lemma 2.3.11. 

Lemma 2.3.11. H2(nA(ô)) 0 if (Ô mod m) ^ x x N -

Proof — By the cohomology exact sequence, we may assume that A = L. But then 

H2(nL(S)) = H°(1lL{x5-1)) = 0 by [46, prop. 3.1]. The fact that for any (<p,r) 

module D over 1Z, we have 

(36) H°(D) HomL(H
2(D*(X),L)) 

should hold by mimicking Herr's original argument. We warn the reader that at the 

moment, there is unfortunately no written reference for that result. ^ 

Remark 2.3.12. — Under the assumptions of Prop. 2.3.10, and if we assume moreover 

that 5i8~l £ xN for i ^ j , then we can show that 

dim L XDr{L[e)) 
d{d+l) 

2 n 

where n = dim^ End(y?)r)/L,r(-^) and End( y ? jr)/L,r(^) is the subspace of elements 

u G Hom( y ) )r)/L,r such that u(Fili(D)) C Fil^(-D) for all i (we always have n < d, 

and for instance n = 1 when D is irreducible). A proof of this result will be given 

elsewhere. 

2.3.6. Trianguline deformations of trianguline representations. — The no

tions of the last paragraph have their counterpart in terms of trianguline represen

tations. Let V be a trianguline representation over L, and suppose we are given a 

triangulation T on D := Drig(V). 

We define the functor 

Xv c Set 

as follows: for A G Ob(C), Xy{A) is the set of equivalence classes of deformations of 

V over Ay that is, ^-representations VA of GP which are free over A and equipped 

with an A [GP]-morphism TT : VA — • A inducing an isomorphism VA 0 A L — • V. In 

the same way, we define a functor 

Xv,r '> C Set 

such that XV,T{A) is the set of equivalence classes of trianguline deformations of 

(V, T ) , that is couples (VA, TT) G Xy (A) together with a triangulation Fil̂  of A.ig(K4) 

which makes (A-ig(VA), Drig(7r), Fil^) an element of XD,T{A). 

The main fact here is that those functors are not new: 

(22) Added in proofs: (36) is now a theorem of Liu [80]. 
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Proposition 2.3.13. — The functor DTLG induces natural isomorphisms of functors 
Xy ~ Xp and XV,T — XD,T-

Proof. — The second assertion follows immediately from the first one, since 
Xv,r(A) = Xv(A) XXD(A) XD,T{A) for any A in C. 

To see that DTLG induces a bijection Xy(A) — • XD(A), we note that the injectivity 
is obvious because of the full faithfulness of jD rig, and that the surjectivity follows from 
the fact that if (DA, IT) is an element of XD(A), DA is a successive extension of D as 
a r)-module over 7£, hence it is etale by Lemma 2.2.5; so DA is A-igCVk) for some 
representation VA over L which is free over A by Lemma 2.2.7. • 

2.4. Refinements of crystalline representations 

(See [85, §3], [36, §7.5], [8, §6].) 

2.4.1. Definition. — Let V be a finite, d-dimensional, continuous, //-representation 
of Gp. We assume that V is crystalline and that the crystalline Probenius <p acting on 
DCRY8(V) has all its eigenvalues in L*. 

By a refinement of V (see [85, §3]) we mean the datum of a full ^-stable L-filtration 
^ = № W d of Dcrys(V): 

To 0 c Tx ç · · · ç Td ^crys(^). 

We remark now that any refinement T determines two orderings: 

(Refl) It determines an ordering (<^i,... ,(pd) of the eigenvalues of (p, defined by the 

formula 

d e t ( T - ^ ) 
i 

¿=1 
T - <Pi. 

Obviously, if all these eigenvalues are distinct such an ordering conversely de

termines T. 

(Ref2) It determines also an ordering ( $ i , . . . , sd) on the set of Hodge-Tate weights of 

V, defined by the property that the jumps of the Hodge filtration of -DCrys(^0 

induced on T% are ( « i , . . . , Si) ^ . 

More generally, the definition above still makes sense when D is any crystalline 

(ip,F)-module over TZL (see Definition 2.2.10), i.e. not necessarily étale, such that (f 

acting on VCTys(D) = D[l/t]r has all its eigenvalues in L*. It will be convenient for 

us to adopt this degree of generality. 

(23) As Ti C ̂ i+ij the weights of Ti are also weights of Ti+1, hence the definition of the Si makes 
sense. 
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2.4.2. Refinements and triangulations of (<p, r)-modules. — The theory of 

refinements has a simple interpretation in terms of (</?, r)-modules that we now ex

plain. Let D be a crystalline (<£, r)-module as above and let T be a refinement of D. 

We can construct from T a filtration (Fil* (£>))$=() , .of D by setting 

Fili(L>) (n[i/t)Ti) H £>, 

which is a finite type saturated 7^-submodule of D by Lemma 2.2.2. 

Proposition 2.4.1. — T/ie map defined above (Fi) ·—• (Fili(Z>)) induces a bijection 

between the set of refinements of D and the set of triangulations of D, whose inverse 

isTi := Fili(£>)[l/*] r. 

In the bijection above, for i = 1,... , d, the graded piece Fili(D)/Fili-i(D) is iso

morphic to 1ZL(SI) where 8i(p) = y>iP~Si and Si\r = x~Si, where the (pi and Si are 

defined by (Refl) and (Ref2). 

Proof. — We have Frac(7?,L)r = L, hence the natural (<£,r)-map 

D[l/tf >L nL[l/t) D[l/t] 

is injective. But it is also surjective because D is assumed to be crystalline, hence it 

is an isomorphism. We deduce from this that any (</?, r)-submodule Df of D[l/t] over 

lZL[l/t] can be written uniquely as 1ZL[l/t] 0 L F = KL[l/t]F, where F = D,v is a 

L[<£>]-submodule of D[l/t]F. This proves the first part of the proposition. 

Let us prove the second part. By what we have just said, the eigenvalue of ip on 

the rank one L-vector space, (Fil^(-D)/Fili_i(D)[l/t])T is ipi. As a consequence, the 

rank one (<p,r)-module Fi\i(D)/Fili-i(D), which has the form 1ZL(SI) for some Si by 

Proposition 2.3.1, satisfies 

Si(p) 
piP-ti, 6i/r X U 

for some U £ Z by Proposition 2.2.2 (ii). By Proposition 2.3.3, the U are (with 

multiplicities) the Hodge-Tate weights of V, and it remains to show that U = Si. We 

need the following essential lemma. 

Lemma 2.4.2. — Let D be a ((p,T)-module over IZA, A G A*, and v G /DCTys(D)(p~x. 

Then v G Fir(P c r y s (D)) if and only if v G tlD. 

Proof — For any r > 0 and any i G Z, Lazard's theorem [79] shows that 

(37) ftr[l/i] 
n>n(r) 

Knlltp fIZr. 

Let D be a {(p, r)-module over TZA and fix some r > r(D) such that T>crys(D) C 

Dr[l/t]. By definition of the filtration on VCTys(D) (§ 2.2.7), we have for any n > n(r) 

(38) ^(Fir(D c r y s(£>))) 2>crys(£>) \t\Dr ®KTKn[[t}}) 
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both terms in the intersection above being viewed inside Dr <S>nr Kn[[t]][l/i\. Let 

v G VCTVS(D) be such that ip(v) = \v,\ € A*: for each integer n, we have 

v 
1 

An 
pn(v) 

Let e i , . . . , ed be an 7£r-basis of Dr and write v d 
3 = 1 

for some v3- G 7lr[l/i\; 

for i G Z, t> G £*Dr if, and only if, G £*7£n for all j . Relations (37) and (38) show 

then that v G FiP(P c r y s (£>)) if, and only if, v G tlD. 

We now show that ti = ti(D,T) coincides with st = Si(D,T) by induction on d. 

Let v ^ 0 G J7!. As 

t; G F i l S l (^crys (^ ) ) \F i l S l + 1 (P c r y s (D)) 

by assumption, Lemma 2.4.2 above shows that t~Slv G D\tD. By Proposition 2.2.2 

(ii), this shows that lZT\t~Sx is saturated in D, hence is Fili(Z}), and si = t\. Let us 

consider now the (<£>, T)-module 

D' = D/Fi\i(D). 

It is crystalline with T>CryS(D') — Vcrys(D)/*T\, with Hodge-Tate weights (with 

multiplicities) the ones of D deprived of si, and has also a natural refinement 

defined by T[ = Ti+\jT\. The Hodge filtration on P c r y s ( J D
/ ) is the quotient filtra

tion ((FiP(Z> c r y s(£>)) -f T\IT\))i€L- As a consequence, si(D
/,Jr/) = si+1(D,T) 

if i = l , . . . , d — 1. But by construction, for i — 1… d— 1 we have also 

ti(D'— ti+i(D,F). Hence U = Si for all i by the induction hypothesis. • 

Remark 2.4.3. — In particular, Proposition 2.4.1 shows that crystalline representa

tions are trianguline, and that the set of their triangulations is in natural bijection 

with the set of their refinements. 

Definition 2.4.4. — Let T be a refinement of D (resp. of V) . The parameter of (D, J7) 

(resp. (V, J7)) is the parameter of the triangulation of D (resp. DTig(V)) associated to 

J7, i. e. the continuous character 

ô (Si)i=l,...,d Q; (L*)d 

defined by Proposition 2.4.1. 

2.4.3. Non critical refinements. — Let (D^J7) be a refined crystalline (<p,T)-

module as in § 2.4. We assume that its Hodge-Tate weights are distinct, and denote 

them by 

fci < · · · < kd. 
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Definition 2.4.5. — We say that T is non critical if T is in general position compared 
to the Hodge filtration on VCTys(D)r i.e. if for all 1 < i < d, we have a direct sum 

2>crys(£>) ^ e F i l f c i + 1 ( P c r y s ( D ) ) . 

Remark 2.4.6. — Assume that D = DT[g(V) for a crystalline V in what follows. 

(i) If d = 1, the unique refinement of V is always non critical. If d = 2, all refine
ments of D are non-critical, excepted when V is a direct sum of two characters. 

(ii) Another natural definition of non criticality would be the condition 

(39) 
ν(φι) < k2ì 

V ¿ € { 2 , . . . , d - 1 } , v((pi) + - ' + V((fi) ki H h ki-i + ki+1. 

We call a refinement satisfying this condition numerically non critical^. The 

weak admissibility of Dcrys(V) shows that a numerically non critical refinement 

is non critical in our sense, but the converse is false. However, as the following 

example shows, it may be very hard in practice to prove that a refinement is 

non critical when it is not already numerically non critical. 

Assume d = 2. The numerical non criticality condition (39) reduces to 

^(<£i) < &2 5 note that this is the hypothesis appearing in the weak form of 

Coleman's classicity of small slope Up-eigenforms result ([42]). 

Assume (V, T) is the non ordinary refinement of the restriction at p of a p-adic 

Galois representation V/ attached to a classical, ordinary, modular eigenform / 

of level prime to p. Then T satisfies v((pi) = k2, so it is not numerically non-

critical. On the other hand T is non critical if and only if V is not split: 

— When / is a non CM cuspform, it is expected that V is not split but this 

is an open problem. 

— When / is an Eisenstein series of level 1, and for a well-chosen Vf (globally 

non semisimple and geometric), this problem and its relations with the 

properties of the eigencurve have been studied by the authors in [9]. In 

particular, it is equivalent to a standard conjecture on the nonvanishing 

of certain values of the Kubota-Leopold p-adic zeta function. ( 2 5 ) 

In any case, note that from the existence of overconvergent companion forms 

[30, Thm. 1.1.3], the numerically critical refinement T of V is non critical if 

and only if the evil twin of / is not in the image of the Theta operator, which 

(24) when d = 2 some authors call such a refinement of non-critical slopes. Mazur introduced in [85] 
a variant of this condition, namely v((fi-i) < ki < v(<pi+i) for i = 2,..., d — 1 which is equivalent 
to ours for d < 3. 
(25) xhjg iast statement is also a consequence of Iwasawa main conjecture. The main result of loc. cit. 
is actually that the tame level 1 eigencurve is smooth at the critical Eisenstein points. The higher 
level case, as well as the CM case, can also be studied by the method of the paper. 
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is exactly the condition found by Coleman in his study of the boundary case of 

his "classicity criterion". We take this as an indication of the relevance of our 

definition of non criticality. 

(iii) If (p is semisimple (which is conjectured to occur in the geometric situations), we 

see at once that V always admits a non critical refinement in our sense. However, 

all the refinements of V may be numerically critical. Examples occurs already 

when d = 3. Indeed, (39) is equivalent in this case to v(ipi) < k2 < v(<ps) (use 

that v((fi) + v((p2) + v((fs) = ki + k2 + ks). Thus any V with weights 0,1,2, 

semisimple ip, v(ipi) = 1 for i = 1,2,3, and with generic Hodge filtration, is 

weakly admissible, hence gives such an example. 

The following proposition is an immediate consequence of Proposition 2.4.1. 

Proposition2.4J. — T is non critical if, and only if, the sequence of Hodge-Tate 

weights (si) associated to T by Proposition 2.4-1 is increasing, i.e. if si = ki Vi. 

It is easy to see that non criticality is preserved under crystalline twists and duality. 

However, we have to be more careful with tensor operations, for even the notion of 

refinement is not well behaved with respect to tensor products. We content ourselves 

with the following trivial results, that we state for later use. 

Lemma 2.4.8. — (i) Assume that (D^J7) is a non-critically refined crystalline 

(<p,T)-module over TZL- Then the weight of A1^) C 2>Crys(A*(Z})) is the 

smallest Hodge- Tate weight of A1 (D). 

(ii) Let Di and D2 be two ((p^T)-modules over TZL with integral Hodge-Tate-Sen 

weights, equipped with a one dimensional L-vector space Wi C T>CTys(Di). If the 

weight of Wi is the smallest integral weight of Di for i = 1 and 2, then the 

weight ofW\ <8>L W2 is the smallest integral weight of Di <®nL D2. 

2.5. Deformations of non critically refined crystalline representations 

An essential feature of non critically refined crystalline representations is that they 

admit a nicer deformation theory. 

Let (V, T) be a refined crystalline representation. Let us call T the triangulation of 

A-ig(V) corresponding to F as in Proposition 2.4.1. Recall from §2.3.6 the functors 

Xy = X£>rig(y) : C —> Set (resp. Xy^r = ^D r i g(V),r) parameterizing the defor

mations of V (resp. the trianguline deformations of (V,T)) . We shall use also the 

notation Xy,T for Xv,r and we call a trianguline deformation of (V, T ) a trianguline 

deformation of (V, T). 
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2.5.1. A local and infinitesimal version of Coleman's classicity theorem 

Theorem 2.5.1. — Let V be a crystalline L-representation of Gp with distinct Hodge-

Tate weights and such that Hom<3p(V, V(—1)) = 0. Let F be a non critical refinement 

of V and VA a trianguline deformation of (V, F). Then VA is Hodge- Tate if, and only 

tf, VA is crystalline. 

Proof. — Assume that VA is Hodge-Tate, we have to show that DT{E(VA) is crystalline 

by Proposition 2.2.9. By assumption, DR[G(VA) G XDT. ^^(A) for the triangulation 

T of DViG(V) induced by which has strictly increasing weights Si as T is non critical 

and by Proposition 2.4.7. As VA is Hodge-Tate, DT-LG(VA) satisfies by Proposition 2.3.3 

the hypothesis of Proposition 2.3.4, hence the conclusion. 

This result has interesting global consequences, some of which will be explained 

in § 2.6 below. It is most useful when combined with the main result of the following 

paragraph, which gives a sufficient condition, à la Kisin, for a deformation to be 

trianguline. 

2.5.2. A criterion for a deformation of a non critically refined crystalline 

representation to be trianguline. — Let D be a (<£>, r)-module free over HA, we 

first give below a criterion to produce a ((p, r)-submodule of rank 1 over TZA- This 

part may be seen as an analogue of [46, prop. 5.3]. 

Lemma 2.5.2. — Let D be a (<p, V)-module free over HA, 8 : Q* —> A* be a continu

ous character, and S := 5 mod m. 

(i) Let M C D8 be a free A-module of rank 1. Then TZAW/^M is a (<p, Y)-submodule 

of D[l/t] which is free of rank 1 over HA[1 ft], and a direct summand. 

(ii) Same assumption as in (i), but assume moreover that 

Im M D/mD)6 <jL t{D/mD) 

Then IZAM is a (y>, T)-submodule of D which is free of rank 1 over IZA and a 

direct summand. 

(iii) Assume that k G Z is the smallest integral root of the Sen polynomial of D/mD 

and let A G A*. Let M c T>x:rys(D)ipz=:X be free of rank 1 over A such that 

Fi l f c + 1 M/mM 0. 

Then IZt kM is a (ip,T)-submodule of D which is free of rank 1 over TZA and 

a direct summand. 

Proof. — The natural map 

1Z®Qp M TZA AM TZAM C D 
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is injective by a standard argument as (Frac(7£))r = QP. As a consequence, 11 AM 

is free of rank 1 over IZA- In particular, 7ZA[1/Ì\M is free of rank 1 over 7^[l/£], 

hence a HA[1/Ì\M direct summand of D[l/t] as 7 -̂module by Proposition 2.2.2, and 

we conclude (i) by Lemma 2.2.3 (i) and (ii). To prove (ii), it suffices by Lemma 2.2.3 

(iii) to show that Im(7^M —> D/mD), which is ^ / m ( M / m M ) by Remark 2.2.4, 

is 7 -̂saturated in D/mD. But this is the assumption. 

For part (iii), write M = Av, ip(v) = Xv. Lemma 2.4.2 shows that v G tkD and 

that v £ tk+1D/mD. Part (ii) above applied to M' := t~kM concludes the proof. • 

Remark 2.5.3. — When A = L is a field, a (ip, r)-module D over IZA is triangulable 

over 1ZA if and only if D[l/t] is triangulable over TJ^l/t] (with the obvious definition). 

However, this is no longer true for a general A. 

An immediate consequence of Lemma 2.5.2 (iii) is the following proposition, which 

could also be proved without the help of (<£>, T)-modules (see § 2.3.5 for the definition 

of C). 

Proposition 2.5.4 (The "constant weight lemma"). — Let V be any L-representation of 

Gp and \ e L*. Assume that DCTys(V)(p=x has L-dimension 1 and that its induced 

Hodge filtration admits the smallest integral Hodge-Tate weight k of V as jump. Let 

A e Ob(C), \' e A* a lift of X, and VA a deformation ofV such that AaysCVA)^"*' 
is free of rank 1 over A. 

Then the Hodge filtration on DCTyS(VA)ip=x has k as unique jump. In other words, 

k is a constant Hodge- Tate weight of VA . 

We are now able to give a criterion on a deformation VA of a refined crystalline rep
resentation (V, J7) ensuring that it is a trianguline deformation. We need the following 
definition. 

Definition 2.5.5. — We say that the refinement T of V is regular if the ordering 

(<£>i,..., ifd) of the eigenvalues of tp it defines has the property 

(REG) for all 1 < i < d, tp\<p2 ''' <Pi is a simple eigenvalue of A*(<£>). 

In particular, the <pi are distinct, and J7 is the unique refinement such that A * ( ^ ) = 

(A*(D c r y s (F)))^"^. 
The next theorem is the bridge between this chapter and chapter 3. 

Theorem 2.5.6. — Assume that T = {</?i,..., tpd} is a non critical, regular, refinement 

of a crystalline L-representation V of dimension d. Let VA be a deformation of V, 

and assume that we are given continuous homomorphisms 

such that for all i, 
S = («i)*=i,...,d : Q* —• A* 

(i) D^ÌAUVAW! •. . ^ - ^ I M ' - ' Ì C P ) is free of rank 1 over A. 
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(ii) <5i|r m ° d m = x ** for some U G Z , and cpi = (Si(p) mod m)pti. 

Then VA is a trianguline deformation of (V^J7) whose parameter is (<SiXti_fc<)*=i,...,<*• 

Proof — Note that the assumptions and conclusions do not change if we replace each 
5i by SiXmi for mi G Z. Thus we can assume that U = 0 for all i, i.e. 5i\T = 1 mod m. 

Fix 1 < i < d and set Wi := Al(V) (gu A(#I • • • Si)^}. By assumption (ii), Wi/mWi 
is crystalline with smallest Hodge-Tate weight Wi := fci -f h ^ . Moreover, by the 
regularity property of T, №{Ti) = ArysW/raWi)^'1'"^ As T is non critical, 
A * ( ^ ) nF i l W i + 1 (J9 c r y 8 (Wi /mWi) ) = 0. Lemma 2.5.2 (iii) shows that 

t-w*7ÌL©cry8(Wi)^ l ( p )"'' i ( p ) C Dlig(Wi) 

is free of rank one over TZA and direct summand. As a consequence, if we set D := 

Aig(VA), then Al(D) = DTig(Wi(Si • • -<^)|r) contains a (</?, r)-submodule A which is 

free of rank 1 and direct summand as T^-module, and such that 

(40) LÌ^+TIA(61.--6ÌX-WÌ). 

Set Do = 0. We claim that for i = 1,..., d, there exists a (<£, r)-submodule A C D 

over HA which is free of rank i and direct summand as 7^^-module, and such that: 

(а) A - i C A , 
(б) A * (A ) = Li. 

This would conclude the proof. Indeed, for each i we necessarily have Di/mDi = 
Fil»(Ai g(V')) by (6), (40), and the regularity of T, so ( A ) is an A-triangulation of D 
lifting (Fili(Ai g(^)))- Moreover, (a) and (6) imply that for i = 2 , . . . , d 

Li = A*(A) A^HA-i) ®nA (A/A-i) = A-i ®nA (A/A-i) , 
and (40) forces then the parameter of the triangulation ( A ) to be (SiX~ki). 

We now prove the claim by induction on i. Of course, we set A •= A C D. 
Let i G { 2 , . . . , d} and assume that A , A , • • • have been constructed up to A - i -
Consider the natural exact sequence of (<p, r)-modules over TZA'-

(41) 0 — A ^ A - i ) ®nA (D/A-i) —+ A*(Z?) — Qi —> 0, 
where Qi is defined as the cokernel of the first map. By Lemma 2.5.7 below applied 
to B = 1ZA, M = A P — A - i and r = i — 1, there exists a ^ - d i r e c t summand 
A '= P' C D containing A - i and such that A = A 2 ( A ) if, and only if, 

L i C A * - 1 ^ - ! ) ® ^ (B/A-i) 
inside A*(Z>). If it is so, note that A is necessarily (</?, Testable. Indeed, inside the 
(<£>, r)-module Al(D) we have 

A = A-i 0 ^ A / A - i c A ORa £>/A-i 
and A , A - i are (</?, Testable by definition, as well as A - i by induction on i. 
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Therefore we only need to show that the image of Li in Qi is zero. Note that the 

natural map Ai(D) —• Qi is (<£, r)-equivariant. By a dévissage, it is enough to show 

that any (<£>, r)-homomorphism 

Li ®A A/m = KL(wi ---(piX Wi) -+ Qi ®A A/m 

vanishes, or better that <pi<p2 • * * <Pi is not an eigenvalue of cp on Dcrys(Qi ® a A / m ) . 

But by definition (41) these eigenvalues have the form <Pjx(pj2 • • <Pjt for some integers 

j i < J 2 < " ' < 3i in { 1 , . . . , d ] such that (Ju . . . J { - i ) ^ ( 1 , 2 , . . . , i - 1), and we are 

done by ( R E G ) . • 

In the following lemma, it is understood that all tensor and exterior products are 

taken over the ring B. 

Lemma 2.5J. — Let B be a commutative ring, M a free B-module of finite type, 

P C M a B-submodule which is a direct summand and free of rank r, and let 

L C A r + 1 ( M ) be a B-submodule which is a direct summand and free of rank 1. 

The following conditions are equivalent: 

(i) L<zkr{P)®M/P, 
(ii) there exists a B-submodule Pf C M containing P, which is a direct summand 

in M and free of rank r + 1, such that L = A r + 1 ( P ' ) . 

// they are satisfied, the submodule P' satisfying (ii) is unique. 

Proof. — Choose a 2?-submodule Q c M such that P 0 Q = M. We have a natural 

decomposition 

A r + 1 ( M ) = 0 ^ ( P ^ A ^ Q ) . 

z+j=r+l 
Assume that (i) holds, that is, L C A r ( P ) ® Q. As L is a direct summand in A r + 1 ( M ) , 

it is also a direct summand in A r ( P ) 0 Q. As L and A r ( P ) are free of rank 1, we may 

write L = A r ( P ) <g> Be for some e G Q such that Be is a direct summand in Q. 

This shows (ii) where P' = P 0 Be. Conversely, it is obvious that (ii) (i). As 

P' = P0 (Pf n Q) and (P' HQ) = A r ( P ) - 1 <g>L, P' is uniquely determined by L. • 

2.5.3. Properties of the deformation functor Xy^. — In fact, we can in many 

cases describe quite simply Xy^ when T is non critical. The following results will 

not be needed in the remaining sections, but are interesting in their own. Recall that 

by definition we have a natural transformation 

Xyjr > Xy. 

Proposition 2.5.8. — Assume that the eigenvalues ofip on DCTYS{V) are distinct. Then 

Xy^ is a subfunctor of Xy and Xy^ —• Xy is relatively representable. Moreover, 
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if T is non critical, the subfunctor XyiCTys C Xy of crystalline deformations factors 

through Xy^. 

Proof — As the eigenvalues of ip are distinct, the characters Si of the parameter S 

of D r i g ( V ) associated to T satisfy SiSj1 0 xz for i ^ j (see Prop. 2.4.1). The first 

sentence thus follows from Prop. 2.3.6, Prop. 2.3.9 using Prop. 2.3.13. 

Assume that T is non critical and let VA be a crystalline deformation of V. We 

have to show that DA '= Aig(VA) admits a (necessarily unique) triangulation lifting 

the one associated to T. As the ipi are distinct, the characteristic polynomial of ip 

on VCRYS(DA) writes uniquely as Yli(T — Xi) G A[T] with Â  = (pi mod m. As VA is 

Hodge-Tate with smallest Hodge-Tate weight ki, and as T is non critical, Lemma 

2.5.2 (iv) shows that 

nt-k^Vcrys(DAV
=Xl 

is a submodule of DA which is a direct summand as 1Z^-module. We construct this 

way by induction the required triangulation of DA- • 

Remark 2.5.9. — In the last part of the statement of Prop.2.5.8, it is necessary to 

assume that T is non-critical. Indeed, let V = Qp(l — k) 0 QP with k > 1 an integer 

and let T = ( p f e _ 1 , 1 ) be its critical refinement. Consider the filtered (^-module 

N = Ae1®Ae2ì A = Q p[e], 

whose Hodge-Tate weights are 0 and k — 1, with Filk~1(N) = Ae\, and with the 

following .A-linear <£>-action: (pfa) = e2 and <p(v) = Xv where v = e\ + ee2 and 

A = pk~1(l + e) G A*. Then N is weakly admissible, hence it is the Arys of a 

crystalline deformation VA of V, but this deformation does not belong to Xy^{A): 

the Hodge filtration induced on Av C N admits the two jumps 0 and k — 1. This 

example also shows that the assumption of non-criticality of T is necessary in the 

statement of Theorem 2.5.6. 

The main theorem concerning non critical refinements is then the following, which 

may be viewed as a d-dimensional generalization of some computations of Kisin in 

[73, §7] (giving a different proof of his results when d = 2). Recall that (V^T) is a 

refined crystalline L-representation of dimension d. 

Theorem 2.5.10. — Assume that T is non critical, that cpiip,1 0 {l ,p 1} ifi < j , and 

that HomGp(V
r, V(—1)) = 0. Then Xy^ is formally smooth of dimension d(d+l) 

2 4- n, 

where n = dim jL(EndG p(^)). Moreover, the parameter map induces an exact sequence 

of L-vector spaces: 

0 — » Xv,crys(L[e]) —> XvAHe]) —> Hom(Z; ,L d ) — 0. 
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Proof. — Let (Si) be the parameter of (V, T). If i ^ j , then SiSj1 £ xz since (fi ^ ipj. 
Moreover if i < j , then k{ < kj and SiSj1 0 x%N a s ^» 7̂  P~1(Pj D V assumption. 
Except for the dimension assertion, the result follows from Propositions 2.3.10, 2.4.7, 
2.3.4 and 2.5.8. It only remains to show that 

(42) dimL(Xy,crys№])) 
did - 1) 

2 
+ 71. 

One way to prove this equality is to reduce to a linear algebra problem via the equiva
lence of category between crystalline representations and filtered (^-modules proved by 
Colmez and Fontaine. We give another proof based on results of Bloch and Kato [23] 
(actually, there would be a third one, based on Remark 2.3.12 and Prop. 2.5.8). 

If U is any crystalline //-representation, we denote by Hj(Gp, U) C i J 1 (G p , U) the 
subset parameterizing extensions of 1 by U which are crystalline (following Bloch-Kato 
[23]). By a classical result of Fontaine, the category of crystalline representations of 
Gp is stable by subquotients, so Hj(Gp, U) is actually an L-subvector space. For the 
same reason, we have a natural isomorphism 

XVìCTys(L[e}) --->^ H}(GPiEndL(V)). 

As a consequence of their exponential map, Bloch and Kato show ([23, Cor. 3.8.4]) 

that for any U: 

(43) dimL(H}(GPi U)) = dimL(tf°(G p, U)) + dimL(DDR(U)/Fil°(DDR(U)))., 

which shows (42) for U = EndL(V). 

2.6. Some remarks on global applications 

We now derive some consequences of these results in a global situation. 

Let V be a finite dimensional L-vector space equipped with a geometric continuous 

representation of Gal(Q/Q) and assume that Vp := V\QP is crystalline, with distinct 

Hodge-Tate weights and distinct Frobenius eigenvalues. Let Xy : C —• Ens (resp. Xyp) 

denote the deformation functor of the representation V (resp. of the (^-representation 

Vp), as in § 2.3.6. 

Let us choose a refinement T of Vp, and consider the trianguline deformation func

tor Xyp,jr of (Vp.J7), it is a subfunctor of Xyp by Prop. 2.5.8. Let Xy,r denote the 

subfunctor of Xy consisting of the deformations whose restriction at p is in Xyp^ 

(that is, ^-trianguline), and whose restriction at an inertia group at each I ^ p is 

constant (this is the usual condition / , for instance these deformations are unrami-

fied at / if V is, see § 7.6 for a more complete discussion). By Prop. 2.3.9, Xy,T is 

prorepresentable by a complete local noetherian L-algebra when V has no nontrival 

L-endomorphism. Theorems 2.5.1 and 2.5.10 imply: 
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Corollary 2.6.1. — If T is non critical, then there is a natural exact sequence 

0 —> H}(QM(V)) — XvAL[e]) Hom(Z;,X). 

In particular, if Hj(Q, a,d(V)) = 0 (which is conjectured to be the case ifV is abso

lutely irreducible), then dimL(Xy^(L[e])) < dimL(V). 

In this setting, the question of the determination of dlm.L(Xy^(L[e])) seems to be 

quite subtle, even conjecturally. Among many other things, it is linked to the local 

dimension of the eigenvarieties of GL^, which are still quite mysterious (see the work 

of Ash-Stevens [4] and of M. Emerton [53]). 

However, there are similar questions for which the theory of p-adic families of 

automorphic forms suggests a nice answer ( 2 6 ) . As an example, let us consider now an 

analogous case where V is an irreducible, d-dimensional, geometric L-representation of 

Gal(E/E), E/Q a quadratic imaginary field, satisfying Vc>* ~ V(d— 1). Assume that 

p = vv' splits in E, fix an identification Gp Gal(Ev/Ev), and assume that Vp := 

(Vj(3p,.F) is crystalline and provided with a refinement J7, with distinct Hodge-Tate 

weights. Let Xy^ denote the subfunctor of the full deformation functor of V consisting 

of deformations whose restriction at v is in Xyp,F satisfying VA c '* = VA(C? — 1) and 

the / condition outside p. 

Conjecture. — Assume that T is non critical, then Xy^ is prorepresented by 

Spf ( £ [ [ * ! , . . . , W d ] ] ) 

and K is an isomorphism. 

In the subsequent paragraph §7.6, we will give more details about the proofs of 

the facts alluded here and we will explain how we can deduce this conjecture in many 

cases assuming the conjectured vanishing of Hj(E, ad(V)), and using freely the results 

predicted by Langlands philosophy on the correspondence between automorphic forms 

for suitable unitary groups G (in d variables) attached to the quadratic extension E/Q. 

As we will explain, we can even get an "R = T" statement for Spf(i2) = Xj? and T the 

completion of a well chosen eigenvariety of G at the point corresponding to (V,^ 7 ) . 

To sum up, the eigenvariety of G at irreducible, classical, non-critical points should 

be smooth, and neatly related to deformation theory. By contrast, a much more com

plicated (but interesting) situation is expected at reducible, critical points, and this 

is the main object of subsequent sections of this book. 

(26) yjre consider here a simplified setting, an appropriate condition on the Mumford-Tate group of 
V should suffice in general. 
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CHAPTER 3 

GENERALIZATION OF A RESULT OF KISIN 
ON CRYSTALLINE PERIODS 

3.1. Introduction 

In this section, we solve, generalizing earlier results of Kisin, some questions of 
"Fontaine's theory in families" concerning the continuation of crystalline periods. 

Let X be a reduced rigid analytic space over QD and M a family of p-adic repre
sentations of Gp = Gal(Qp/Qp) over X , that is, in this section, a coherent torsion-free 
sheaf of Ox-modules with a continuous action of the group Gp. Note that we do not 
assume that M is locally free. ^ For each point x G X o f residue field k(x) the k(x)-
vector space Mx is then a continuous representation of Gp, to which we can apply 
the p-adic Hodge theory of Tate and Sen and all its generalizations by Fontaine. The 
questions concerning "Hodge-Tate theory in families" were completely solved by Sen: 
in particular he shows in our context that there exist d analytic functions K\,..., Kd 
on X, where d is the generic rank of M, such that K,I(X), . . . , Kd(x) are the Hodge-
Tate-Sen weights of Mx for a Zariski-dense open set of X. We shall assume in this 
introduction, to simplify the discussion, that K\ = 0. We shall also assume that in our 
family the other weight functions K2 , . . . , Kd move widely (in a technical sense we do 
not want to make precise here, but see 3.3.2 below), as it happens for families sup
ported by eigenvarieties. In particular, the families we work with are quite different 
from the families with constant weights studied by Berger and Colmez. 

Suppose we know that Mz is crystalline with positive Hodge-Tate weights for a 
Zariski dense subset Z of points of X and that for all z e Z it has a crystalline period, 
that is, an eigenvector of the crystalline Frobenius ip with eigenvalue F(z), F being a 
fixed rigid analytic function on X. In other words, assume that -DcrysCMs)^^^ is 
non zero for z G Z. Can we deduce from this that 

t1) Indeed, we will apply the results of this section to modules associated to pseudocharacters in the 
neighborhood of a reducible point, and it is one of the main results of Section 1 that they do not in 
general come from representations over free modules. 
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(1) for each x in X, Mx has a crystalline period, which is moreover an eigenvector 
for {p with eigenvalue F(x)l 

Or, more generally, that 

(2) for each x G X, and Spec A a thickening of x, (i.e. A an artinian quotient of the 
rigid analytic local ring Ox of x at X) M has a non-torsion crystalline period 
over A which is an eigenvector for ip with eigenvalue the image F of F in A ? In 
other words, is it true that Dcrys(M <g> A)(p==F has a free A-submodule of rank 
one? 

Kisin was the first to deal with those questions and most of his works in [73] is 
an attempt to answer them in the case where M. is a free Ox-module. Under this 
freeness assumption (plus some mild technical hypothesis on Z that we will not state 
nor mention further in this introduction), he proves question (1) and also many cases 
of question (2), although these results are scattered along his paper and sometimes 
not explicitly stated. If we collect them all, we get that Kisin proved that question 
(2) has a positive answer (when M is free) for those x that satisfy two conditions: 

(a) The representation Mx is indecomposable, 
(b) Dcrys("M^S)^=F^) has dimension 1. 

Condition (b) is probably necessary. But condition (a) is not, and appears because 
of the use by Kisin of some universal deformation arguments. In § 3.3, using mostly 
arguments of Kisin, but simplifying and reordering them, we prove that when M. is a 
locally free module, question (2) has a positive answer for all x satisfying the condition 
(b) above. We hope that our redaction may clarify the beautiful and important results 
of Kisin. 

But our main concern here is to generalize those results to the case of an arbitrary 
torsion-free coherent sheaf M. We are able to prove that question (2) (hence also 
question (1)) still has a positive answer in this case, provided that x satisfies hypothesis 
(b) above. This is done in § 3.4. 

Let us now explain the idea of the proof: basically we do a reduction to the case 
where M is locally free. To do this we use a rigid analytic version of a "flatification" 
result of Gruson-Raynaud which gives us a blow-up X' of X such that the strict 
transform M! of M on X' is locally free. Hence we know the (positive) answers to 
questions (1) and (2) for M! and the problem is to "descend" them to M. This is the 
aim of §3.2.3. 

For this the difficulty is twofold. The first difficulty is that if x' is a point of X' 
above x (let us say to fix ideas with the same residue field, since a field extension here 
would not harm) then Mxf is not isomorphic to Mx but to a quotient of it. Since the 
functor Dcrys(—)(p=F is only left-exact, the positive answer to question (1) for x' does 
not imply directly the positive answer for x—and of course, neither for question (2). 

ASTÉRISQUE 324 



3.2. A FORMAL RESULT ON DESCENT BY BLOW-UP 95 

The second difficulty arises only when dealing with question (2): it is not possible in 
general to lift the thickening Spec (A) of x in X to a thickening of x' in X\ whatever 
x' above x we may choose ^ . So the direct strategy of descending a positive answer 
to question (2) from a Spec (^4) in Xr to Spec (A) in X can not work. To circumvent 
the second difficulty, we use a lemma of Chevalley to construct a suitable thickening 
Spec (A') of Spec (A) in X\ and then some rather involved arguments of lengths to 
deal with the first one as well as the difference between Spec (A') and Spec (A). As 
Chevalley's lemma requires to work at the level of complete noetherian ring, and as we 
have to use rigid analytic local rings when dealing with interpolation arguments, we 
need also at some step of the proof to compare various diagrams with their completion. 
For all these reasons, the total argument in § 3.2.3 is rather long. 

Finally let us say that the idea of using a blow-up was already present in Kisin's 
argument in the free case ( 3 \ and is still present in the locally free case in § 3.3. This is 
why our descent result of § 3.2.3 is used twice, once in § 3.3 and once in § 3.4. However, 
were it to be used only in the locally free case, the descent method could be much 
simpler ( 4 ) . 

3.2. A formal result on descent by blow-up 

3.2.1. Notations. — Let X be a reduced, separated, rigid analytic space over Qp, 
Ox (or simply O) its structural sheaf, and let M be a coherent O-module on X. 
For x a point of X, we shall note Ox the rigid analytic local ring of X at x, mx its 
maximal ideal, and k(x) = Ox/mx its residue field. Moreover, we denote by Aix the 
rigid analytic germ of M at x, that is Mx = M(U) ®o(U) ®x where U is any open 
affinoid containing x, and by A4X := M.x ®ox k(x) the fiber of M. at x. 

Let G be a topological group and assume that M is equipped with a continuous 
0-linear action of G. This means that for each open affinoid U C X, we have a 
continuous morphism G —> Auto(u)(-M(U)), whose formation is compatible with 
the restriction to any open affinoid V C U. For x a point of X , Mx (resp. Mx) is 
then a continuous Ox[G]-module (resp. k(x)[G]-module) in a natural way. 

(2) The reader may convince himself of this assertion by looking at the case where X = 
Spec L[[T2,T3]] is the cusp and X' = Spec (L[[T]]) the blow up of X at its maximal ideal (that 
is, its normalization). The principal ideal T2L[[T2,T3]} has not the form L[[T2,T3]} nTnL[[T}] for 
n > 0, hence A = L[[T2 ,T3]]/(T2) is a counter-example. 
(3) There Kisin does not use the blow-up to make M free, since it already is, but instead to make an 
ideal of crystalline periods locally principal. He does not prove a direct descent result as ours, using 
instead a comparison of universal deformation rings. 
(4) The first difficulty above vanishes, since in that case the strict transform of M is simply its 
pull-back, and the second may be dealt with much more easily. 
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Remark 3.2.1. — (On torsion free modules) In this section and the subsequent ones, 
we will sometimes have to work with torsion free modules. Recall that a module M 
over a reduced ring A is said to be torsion free if the natural map M —• M <S>A K is 
injective where K = Frac(A) is the total fraction ring of A (see § 1.3.5). 

If X is a reduced affinoid and Ai a coherent Ox-module, then M(X) is torsion 
free over O(X) if, and only if, Mx is torsion free over Ox for all x G l . Indeed, this 
follows at once from the faithful flatness of the maps 0(X)X —> Ox and the following 
lemma. 

Lemma 3.2.2. — Let A be a reduced noetherian ring and M an A-module of finite 
type. The following properties are equivalent: 

(i) M is torsion free over A, 
(ii) M is a submodule of a K-module, 

(iii) M is a submodule of a finite free A-module, 
(iv) Mx is torsion free over Ax for all x G Specmax(A), 
(v) there is a faithfully flat A-algebra B such that M ®A B is a B-submodule of a 

finite free B-module. 

Proof. — It is clear that (i), (ii) and (iii) are equivalent (for (ii) (iii) note that any 
If-module embeds into a free iif-module as if is a finite product of fields). The equiv
alence between (i) and (iv) follows now from the injection M — • HxeSpecmaxA Mx, 
and the fact that Ftsc(Ax) is a factor ring of K: namely the product of the fraction 
fields of the irreducible component of Spec (A) containing x. 

Note that condition (iii) is equivalent to ask that the natural map M —> 
Hom^ (Hom^ (M, A), A) is injective. But this can be checked after any faithfully flat 
extension B of A as the formation of the Horn's commute with any flat base change 
when the source is finitely presented, thus (i) & (v). • 

3.2.2. The left-exact functor D. — Fix a point x G X and let FL(OX) denote the 
category of finite lenght OX-modules. Any such OX-module is a finite dimensional QP-
vector-space, hence a topological Qp-vector-space in a canonical way. Let FLG(OX) be 
the category of finite length O^-modules equipped with a continuous C^-linear action 
of G and fix 

D : FLG(OX) — FL(OX) 

an Ox-linear left-exact functor. If M is an object of F L ^ ^ ) , we shall denote by l(M) 
its length as an O x-module. If an object M G FLG(OX) is annihilated by the maximal 
ideal of OX, then so is D(M), and l(M) = dimk(x)(D(M)). 

Here are some interesting examples: 

(i) Let G := Gp = Ga l (Q p /Q p ) and let B be any topological Qp-algebra equipped 
with a continuous action of Gp. Assume that B is Gp-regular in the sense of 
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Fontaine [1, Exposé III, §1.4]. For Q any (9x-module of finite length equipped 
with a continuous Gp-action (hence a finite dimensional Qp-representation of 

we let Gp), 
D{Q) := ( Q ® Q p B)Gf. 

The functor D satisfies our assumptions by loc. cit. 
(ii) Fix F e O * . For any Q as above, then 

D(Q) := D+YS{QY=F = {v€(Q ® Q p B^f'M*) = Fv}, 

where B+ys is the subring of I?crys defined by Fontaine in [1, Exposé II, §2.3], 

satisfies again our assumptions. 

In the sequel, we will be mainly interested in the case (ii) above. 

3.2.3. Statement of the result. — Assume that Mx is torsion free over Ox (recall 
that Ox is reduced). Let 7r : X' —> X be a proper and birational morphism of rigid 
spaces with X' reduced. Here birational morphism means that TT is a morphism such 
that for some coherent sheaf of ideals H C Ox, 

• U := X — V(H) is Zariski dense in X (where V(H) is the closed subspace defined 
by H), 

• 7r induces an isomorphism 7r~1((7) — • 17, 
• and 7r _ 1(l7) C X' is Zariski dense in X'. 

As an important example, we may take for 7r the blow-up ( 5) of H. Let Mr be the 
strict transform of M by this morphism (see below). 

Proposition 3.2.3. — Assume that for all x' G ir r(x) and for every ideal I' ofOx> of 
cofinite length, we have 

l(D(M'x,®Ox,/I')) = l(Ox,/I'). 
Assume moreover that 

dim f c ( x ) (D (AC)) < 1 

Then we also have, for every ideal I of cofinite length of Ox: 

l(D(Mx 0 Ox/I)) = l(Ox/I). 

Remark 3.2.4. — (i) More precisely, we shall show that Proposition 3.2.3 holds 
when we replace the assumption on Mx by the following slightly more gen
eral one: for any fc(#)[G]-quotient U of Mx, dimk^(D(U)) < 1 (see the proof 
of Lemma 3.2.9, which is the only place where the assumption is used). 

(5) \y e r ef e r to [95, §5.1] for the basics on blow-ups and to [48, §2.3, §4.1] for the notion of relative 
Spec and blow-ups in the context of rigid geometry. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2009 



98 CHAPTER 3. GENERALIZATION OF A RESULT OF KISIN 

(ii) As will be clear, the analogue of Proposition 3.2.3 in the context of schemes 
instead of rigid analytic spaces would hold by the same proof. 

This whole subsection is devoted to the proof of the proposition. Let us fix a 
coherent sheaf of ideals H C Ox such that U := X — V(H) is Zariski dense in X , 
that 7r is an isomorphism over [/, and that 7r - 1((7) C X' is Zariski dense in X'. The 
strict transform M' of a coherent O^-module M is denned as follows: it is a coherent 
Ox'-module which is locally the quotient of the coherent sheaf 7r*M. by its submodule 
of sections whose support is in the fiber of re over V(H) C X. In other words, if H' 
is a coherent sheaf of ideals of Ox1 defining the closed subset 7r - 1 (F( i i r ) ) C X', then 
M.' is the quotient of 7r*M by its H'00-torsion. Note that it depends on the choice of 
H in general. This description makes clear that the action of G on the Ox-module 
M defines an Ox'-linear continuous action of G on M' and that the natural map 
7r*M —> M! is G-equivariant. A useful fact about the notion of strict transform 
is that the subsheaf of il / 0 0-torsion of 7r*M is precisely the kernel of the natural 
morphism^6) ir*M — • J*(TT*A1 1^-1(^7)), where j is the open immersion of 7r~1(C/") 
into X'. As a simple application, if M. is torsion free then M! is torsion free as well 
and does not depend on the choice of H as above. 

Since Mx is torsion free over Ox, it can be embedded in a free of finite rank 
Ox-module, so we can choose an injection 

i : Mx —> On

x. 

Fix xf € 7r~1(x); i induces a morphism i' : Mx®ox Ox> —• (D%,. We check easily using 
the aforementionned useful fact that the kernel of i' is the submodule of Mx ®ox Ox> 
whose elements are killed by a power of Hf

x, so the image of i' is Mf

x,. We thus have 
a commutative diagram of Ox-modules (and even of Ox>-modules for the half right of 
the diagram) 

(44) Mx »- Mx ®ox Ox »- M'x, 

Ol »- 0%,. 

(6) We are grateful to Brian Conrad for pointing this to us. Here is the general statement: if 5 is a 
rigid space, J c Os a coherent sheaf of ideals, j : U = S — V(I) <-> S the inclusion of the complement 
of V(I) and T a coherent ö^-module, then the J°°-torsion of T is the kernel of the natural map 
T 3*T\u* Indeed, we may assume that S is affinoid. Set F = F(S) and take m g F such that 
ms = 0 g F <g) Os for all s € U\ we want to show that m is killed by a power of I(S). The faithfull 
flatness of 0(S)S —• Os shows that the closed points of the support of m lie in V(/(5)), and we 
conclude as O(S) is a Jacobson ring. 
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We call OX (resp. OX>) the completion of the local ring OX (resp. of OX>) for the mx-
adic (resp. rax/-adic) topology, and MX = MX ®ox OX (resp. M'X, = M'X, ® o x , OX>) 
the completion of MX (resp. of .M^.,). 

As OX —• OX> is a local morphism, it is continuous for the ra^-adic topology at 
the source and the rax/-adic topology at the goal. This is also true for any morphism 
form a finite type 0 x-module to a finite type CV-module. Hence such a morphism 
can be extended in a unique continuous way to their completion. We get this way 
morphisms OX —• OX> and 

MX —> MX (8>ox Oxi (MX 0 o x OX>) 0 o x , OX* = MX ®dx Ox> 

the last equality being obtained by applying twice the transitivity of the tensor prod
uct. We thus have a commutative diagram 

(45) MX — ^ MX ®DX 6X> ^ M'X 

on

x ^ on

x,. 

The injectivity of the vertical maps comes from the injectivity of the analogue maps 
in (44) and the flatness of Ox over Ox and of Ox> over Ox>. The surjectivity of the 
upright horizontal map comes directly from the surjectivity of the analogue map 
from (44). 

To simplify notations, we shall note A the local ring Ox, k its residue field and M 
the A-module MX. We set 

A' := J ] ^Qx 
x'Eir~1 (x) 

and we will see it with the product topology. We call M the completion of M, that is 
also M (8)A A. By definition, it is MX. We set 

M' := f i M'z-
x'Eir~1 (x) 

Note that M' is an A'-module. 

Lemma 3.2.5. — For each open (hence coftnite length) ideal J' of A'', 

l(D(M'/J'M')) = l(A'/J'). 

Proof. — Since J' is open, A'/J' is a finite product of finite length rings of the form 
Ox>JJ[. For each such z, J[ is open in Qxi so the ideal J[ := J[ D Ox> of Ox{ satisfies 
Ox'J J[ — Ox'J J[. By the hypothesis of the proposition we are proving, we thus have 
1{D(M'Xi,/J'iM'i,)) = l(Ox>/J[). The lemma then results from the additivity of the 
functor D and of /. • 
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Lemma 3.2.6. — ([73, Lemma 10.7]) ( 7) The morphism A —• A' is injective. 

By (45), we have a commutative diagram 

(46) ïM—^ M OAA' M' 

ÂnC *- Â'n 

The injectivity of the vertical maps is obvious from (45) and the injectivity of the 

horizontal lower map is Lemma 3.2.6. The injectivity of the upper horizontal map 

follows. 

The following lemma is an application of Chevalley's Theorem (cf. [83, ex 8.6]) 

which we recall: let A be a complete noetherian local ring, M a finite type A-module, 

/ a cofinite length ideal of A and Mn a decreasing, exhaustive (that is O n M n = (0)) 

sequence of submodules of M. Then for n big enough, Mn C IM. 

Now we go back to the proof of Proposition 3.2.3. Let / be a cofinite length ideal 

of A, and note / C A its completion. We recall also that M C Mf by diagram (46). 

Lemma 3.2.7. — There exist a cofinite length ideal J Cl of A and an open ideal J' 

of A' such that 

(i) j = j>nÂ, 
(h) {JfM'f)M)cIM. 

Proof — We let J'n := (Ux>e*-^x)™x') C A' By Krull's theorem, nnJ'n = 0 and 

n n ( j ; M ' ) = o. ^ _ _ _ 
We set Jn := J^DA, the intersection being in A'. Similarly, we set Mn = (J^M')D 

M, the intersection being in Mf. Then f l n Jn = 0 and C\nMn = 0. 

By Chevalley's theorem, applied twice, once to the finite module M over the local 

complete noetherian ring A, and once to A as a module over itself, we know that for 

n big enough, Mn c / M , and Jn C / . 

We fix such an n. We set J := Jn. It is clear that J is of cofinite length since it 

contains ra£. We thus have by construction J C I, J = J'nC\A and ( J^M' )nM c IM. 

However, J'n is not open. If F is a finite subset of 7r _ 1 (x) , we let J'F be the ideal 

EL^eF mnx Ilx'en-1(x)-F &xf of A!. It is clear that J'n = C\FJF> an(ltnat tne J'F ARE 

open ideals of A!. Because A/J and M/Mn are artinian, there is a finite F such that 

J'F n A = J and J'FM' D M = Mn. We set J 7 equal to this J ' n and we are done. • 

(7) As stated there, the lemma assumes that 7r is a blow-up, but the proof only uses that 7r is proper 
and birational. 
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By (i) of this lemma, the morphism of A[G]-modules M —> M' induces a morphism 

of (A/J)[G]-modules 

/ : M/JM —> M ' / J ' M ' . 

Indeed, the image of JM C M in M' is included in JM' which is included in J'M'. 

We shall denote by K, C and Q the kernel, cokernel and image of / , respectively. 

Thus we have two exact sequences of (A/J)[G]-modules: 

(47) 0 — • K —» M/JM —> Q — • 0 

(48) 0 — • Q —• M'/J'M' —» C —y 0 

Note that the five modules involved here are all of finite length as ^4/J-modules. 

Lemma 3.2.8. — As an A[G]-module, C is a quotient of (M/JM)®~(A'/J')/(A/J). 

Proof. — This is formal. Indeed, we have a commutative diagram, where the vertical 

arrows are surjective: 

M " • M ®£i4' M' 

M/JM- M®2Â'/J' M'/J'M' 

This diagram makes clear that h is surjective, since s is. Hence the cokernel C of 

/ is a quotient of the cokernel of 

g : M/JM —> M Œ^Â'/J' = (M/JM) Œ^Â'/J' 

and this cokernel is, by right-exactness of the tensor product by M/JM, the module 

(M/JM) ®2{Â'/J')/(Â/J). 

We now prove an abstract lemma concerning the left-exact functor D and length 

of modules. 

Lemma 3.2.9. — Let V be an A-module of finite length with a continuous action of 

G, such that 

l{D((V®k)ss) < 1. 

Let N be an A-module of finite length^ and ix : V <S>A N —> Q a surjective A[G]-

linear map. 

(i) l(D(Q)) < 1{N). 

(8) We view it as a G-module for the trivial action. 
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(ii) Assume that equality holds in (i), and that there is a surjective map of A-modules 
N —> Nf such that the natural induced surjection V (&A N —• V ®A N' factors 
through 7T. Then l(D(V 0 A N')) = l(N'). 

(iii) Let J be a cofinite length ideal of A. If l(D(V/JV)) = l(A/J), then for each 
ideal J' D J, l(D(V/J'V)) = l(A/J'). 

Proof — First remark that the hypothesis l(D((V 0 k)ss) < 1 implies, by left exact
ness of D, that l(D(U)) < 1 for any A;[G]-module U which is a subquotient of V 0 k. 
Indeed, Uss is a A;(x)[G]-submodule of (V 0 k)ss, so 

l(D(U)) < l(D(Uss)) < l(D((V®k)ss)) < 1. 

Let us prove (i). There is a filtration N0 C • • • C Ni C • • • C N^N) = N of N such 
that Ni/Ni-i ~ A:. We denote by VNi the image of V ®A Ni into V ®A N and by 
Qi the image of VNi in Q. It is clear that VNi/VNi-i is a quotient of V 0 k, and 
that Qi/Qi-i is a quotient of VNi/VNi-i, hence we have l(D(Qi/Qi_i)) < 1 by the 
remark beginning the proof. By left exactness of D, this proves (i). Note also that if 
l(D(Q)) = /(iV), all the inequalities above have to be equalities, so that l(D(Qi)) = i 
for each i. 

Let us prove (ii). In the proof of (i) above, we can certainly choose the Ni such that 
one of them, say iV*, is the kernel of the surjection N —» N*. Then k = l(Nf) — l(N). 
We have an exact sequence 0 — • VN^ —• V 0 N —• V 0 Nf —> 0, hence (using 
the hypothesis) an exact sequence 

0 —>Qk —>Q —>V ®N' — • 0. 

Because D is left exact, we have l(D(V®N')) > l(D(Q)) - l(D(Qk)). But by hypoth
esis, we have l(D(Q)) = l(N), which implies by the remark at the end of the proof of 
(i) that l{D(Qk)) = k. Hence 

1{D(V 0 N')) > l(N) -k = l(N) - (l(N) - l(N')) = l(Nf). 

The other equality follows from (i), hence l(D(V 0 N')) = l(N'). 
The assertion (iii) is a special case of (ii): apply (ii) to N = A/J, Q = V <S>A N = 

V/JV, 7T = Id and N' = A/J'. • 

Going back to the proof of the Proposition 3.2.3 we get the following lemma. 

Lemma 3.2.10. — We have 

(i) l(D(C)) < l(Â'/J') - l(A/J), 
(ii) l(D(Q))=J{Â/J), 

(iii) l(D(M/IM)) = l(A/T). 
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Proof. — Lemma 3.2.8 tells us that C is a quotient of the module 

(M/JM)®2(Â'/J')/(Â/J). 

We now apply the point (i) of Lemma 3.2.9 to V = M/JM and TV = (Af/J')/(A/J). 

We note that VOAk that is M <g>£ A: = M (gu k, satisfies the hypothesis of Lemma 

3.2.9 by hypothesis. So l(D(C)) < l(D(N)), hence (i). 

To prove (ii) note that by the exact sequence (48), 

l(D(Q)) > l(D(Mr /J' M')) — l(D(C)) 

> l{D(M'/J'M'))-l(A'/J') + l(A/J), by(i). 

Since l(D{M'/J'M')) = l(A'/Jf) by the Lemma 3.2.5 we get 

l(D(Q)) > l(A/J). 

To get the other inequality, recall that Q is by construction a quotient of M/JM = 

M <g>-A/J, so by point (i) of Lemma 3.2.9 we have l(D(Q)) < l(A/J). 

Let us prove (iii). Assertion (ii) of Lemma 3.2.7 tells that M/JM —• M/IM 

factors through the canonical surjection M/JM —> Q. We apply point (ii) of 

Lemma 3.2.9 to Q, with V = M / J M , N = A/J, N' = A/I. This is possible because 

l(D(Q)) = l(N) by (ii) above, and that gives us l(D(V <g> N')) = l(Nf), which is 

(iii). • 

Now recall that since / is of cofinite length, A/I ^ A/I and M/IM ~ M/IM. 

Hence by (iii) of Lemma 3.2.10 above, 

l(D(M/IM)) = 1{A/I). 

The proof of Proposition 3.2.3 is complete. 

3.3. Direct generalization of a result of Kisin 

3.3.1. Notations and definitions. — We keep the general notations of para

graph 3.2.1. We fix p a prime number and set 

Gp = Ga l (Q p /Q p ) . 

Recall that a subset Z C X is said to be Zariski-dense if the only analytic subset 

of X containing Z is Xre<\ itself. We shall need below some arguments involving the 

notion of irreducible component of a rigid analytic space, for which we refer to [47]. 

We will say that a subset Z C X accumulates at x G X , or that x is an accumulation 

point of Z, if there is a basis of affinoid neighborhoods U of x such that UC\Z is Zariski-

dense in U. We say moreover that a subset Z c X is an accumulation subset if for 

any z G Z then Z accumulates at z. 
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We shall use the notation X(QP) as a shortcut for the union of the X(K) for all 
K C QP finite over Qp. By a slight abuse of language, we shall sometimes say that a 
subset Z C X(QP) is Zariski-dense, or accumulates at some point. By this we shall 
always mean that the subset \Z\ C X consisting of the underlying closed points of Z 
has this property. 

3.3.2. Hypotheses. — We assume that we are given a couple of functions (F, K) g 
0 ( I ) * x O ( I ) , and a Zariski-dense subset Z c X satisfying the following conditions. 

(CRYS) For z G Z, Mz is a crystalline representation of Gp whose smallest Hodge-Tate 
weight is K(Z) g Z, and that satisfies Dcrys(Mz)C=px(z)F(z) # 0 

(HT) For any non-negative integer G, if Zc denotes the subset of z G Z such that the 
Hodge-Tate weights of Mz other than K(Z) are bigger that K(Z) + G, then ZQ 
accumulates at any point of Z. 

Remark 33.1. — The assumption (HT) together with the Zariski-density of Z in X 
imply that Z accumulates at each z G Z. This stronger density condition on Z, 
introduced in [37] under the terminology "Z is very Zariski-dense in X", turns out to 
be rather well-behaved and allows to avoid some pathological Zariski-dense subsets. (9) 

For some technical reasons, we shall also need to know that: 

(*) There exists a continuous character Z* — • 0{X)* whose derivative at 1 is the 
map K and whose evaluation at any point z E Z is the elevation to the K,(z)-th. 
power. 

Condition (*) allows us to define by composition with the cyclotomic character x 
a continuous character 

1> : Gp ^ Z ! — 0(Xy 
x y 

whose evaluation of at any point z G Z is then the ft(z)-th power of the cyclotomic 
character (whence crystalline). 

Definition 3.3.2. — We shall often denote by « : Gp — • 0(X)* the character ip 
defined above, and if N is any sheaf of 0[G p]-modules on X, we will also denote by 
N(K) the O-module N whose Gp-action is twisted by the character tp. 

(9) As an exercise, the reader can check that there are Zariski-dense subsets of A2 whose intersection 
with any affinoid subdomain V C A2 is not Zariski-dense in V. However, if Z is a very Zariski dense 
subset of a rigid space X, then for any irreducible component T of X there is an open affinoid of T 
in which Z is Zariski-dense. 
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3.3.3. The finite slope subspace Xfs. — The arguments in this part will follow 

closely Kisin's paper [73, §5]. Under the extra assumption that M is a free Ox-

module, Kisin defines in [73, Prop. 5.4] a canonical Zariski closed subspace 

Xfs c x , 

that he calls "the finite slope subspace", which is attached to the Ox-module M(K) 

and the function F G O(X)*. The properties of Xfs are rather technical and we shall 

not repeat them here (see [73, Prop. 5.4]). 

Under the weaker assumption that M is locally free, we claim that there exists a 

unique Zariski closed subspace Y C X such that for any admissible open C / c I on 

which M is free we have Y f l U = £//s, where Ufs is the finite slope subspace of U 

attached as above to (M(K,)\I/,F\U). AS X is admissibly covered by such admissible 

open subspaces, Y is unique if it exists. For the same reason, Y exists if and only if 

for any pair of admissible open ¡7, V C X on which M is free, we have 

ufanv = (unv)f8. 

Replacing V by U f l V, we may assume that V C U, and then this equality follows 

from the last assertion of [73, Prop. 5.4] applied to the (flat) open immersion V —• U. 

This shows the existence of Y. When M is free then Y = Xfs by definition, hence it 

is harmless to set Xf8 := Y in the general case as well. Our first aim will be to show 

that Xfs = X. 

Theorem 3.3.3. — Assume M is locally free. 

(i) For all x G X, then D^RYA(Mx(K(x)))(p~F^ is non zero. Moreover, Xfs = X. 

(ii) Let x G X and assume that D+YS(MXS(K(X)))(P=f(x>> has k(x)-dimension 1 

Then for all ideal I of cofinite length of OX, D+YS((MX/'IMX)(K))(P=f is fret 

of rank 1 over OX/I. 

Remark 3.3.4. — Part (i) of this theorem is a combination of results of Kisin in [73]. 

Moreover, he proved loc. cit some cases of part (ii), essentially the cases where Mx is 

an indecomposable k(x) [Gp]-module (although it is not stated explicitly, this is done 

during the proof of Proposition 10.6 of [73], page 444 and 445). The proof we give 

here simplifies a bit some arguments of [73, section 8] and avoids all use of universal 

deformation rings, using some length arguments and our lemma of descent by blow-up 

instead. It also paves the way for the proof of Theorem 3.4.1 below. 

Proof. — By replacing M by M{K), we may assume that K, = 0. Let 

TQ(T) e 0(X)[T] 

be the Sen polynomial of M (see [108]), whose roots at x G X are the generalized 

Hodge-Tate weights of Mx. Let W C X denote the subset consisting of the points 
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x e X such that the Sen polynomial of Mx has 0 as unique root in the integers N 
(and which is a simple root). 

Lemma 3.3.5. — For each admissible open U of X, W C\U is Zariski-dense in U. 

Proof — For each k > 0, and U C X admissible open, let Uk denotes the (reduced) 
zero locus of Q(k) in (7, so 

wnu = u - ( J uk. 
k>0 

Let X be a closed analytic subset of U such that U — T \J \Jk>0 Uk- Let X" be any 
irreducible component of U. If T" ^ T, then V C Uk for some k by [73, Lemma 5.7]. 
Let T" be an irreducible component of X such that T" n U D T', then T" C Xk, 
which is not possible by (HT) applied to C = k + 1. Hence T = U, which proves the 
lemma. • 

To prove that Xfs = X it suffices to show (as Kisin does to prove his Theorem 
6.3) that 

Lemma 3.3.6. - The set {x G W, D+ys(Mxr=F^ ф 0} is Zariski-dense in X. 

Indeed, by Tate's computation of the cohomology of Cp(i) for i G Z, the natural 
map 

DÌR(MX) — (Mx ®Qp Cpf* 

is an isomorphism between fc(x)-vector-spaces of dimension 1 when x G W. In partic

ular, if x is in the subset of Lemma 3.3.6, the natural injection 

D+ys(Mxy=F^ D+R(MX) 

is an isomorphism, hence x G Xfs. 

Proof. — Let us fix first some z G Z and choose an open affinoid U C X containing 

z which is small enough so that M is free over U, U is F-small ([73, (5.2)]), and such 

that Z is Zariski-dense in U (it exists by (HT)). Assumption (HT) implies then that 

Zc H U is Zariski-dense in U for any C. 

We now apply [73, Prop. 5.14] and its corollary [73, Cor 5.15] to 11 := 0(U), M := 

M\u, I •= ZDU, TZi '•= k(i) and Ik := Zfc+suPt7 |F|+i- Note that we just checked condi

tion (3) there (that is, Ik is Zariski-dense in U) and that condition (2) follows from our 

assumption (ii). Moreover, condition (1) follows from (CRYS) and the weak admis

sibility of DCTys(Mx), x G ifc, applied to the filtered (^-submodule D^Tys(Mx)ip==F^. 

As a consequence, [73, cor. 5.15] tells that for all xeU, Dtrys{MXY=F{X) ± 0. We 

conclude the proof by Lemma 3.3.5. • 

Applying now [73, cor. 5.16], we first get the point (i) of our Theorem 3.3.3. 
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Remark 3.3.7. — (i) We note the extreme indirectness of this method of proof 
(which is entirely Kisin's): to prove that D+vys(Mx)ip=F<<x>} ^ 0 for every x G X, 
knowing that this is true for the points of Z, we use the closed set Xfs, which 
by definition contains the points satisfying this properties provided that they 
are in the set W - in particular, not in Z\ 

(ii) The proof of Lemma 3.3.6 shows that if X is an affinoid space, F-small, on 
which M is free, then in the proof of point (i) of Theorem 3.3.3 condition (HT) 
may be replaced by the weaker condition 

(HT') : for every non negative C, Zc is Zariski-dense in X. 

We now prove point (ii) of our Theorem 3.3.3. Let us fix some x G X (but not 
necessarily in Z) and choose an F-small open affinoid neighborhood U of x such 
that M is free over U. As U C X = Xfs by the corollary loc. cit. we get that 
D+ys(M{U))v=F is generically free of rank 1 over 0(U). More precisely, if H C 0(U) 

denotes the smallest ideal such that (10) 

Dtiys(M(U))v=F C H(M(U)®QpB+ys), 

then U — V(H) is Zariski-dense in U. Let 

ir:U' —> U, 

be the blow-up of the ideal H and Mf the pullback of M on Uf. 

Lemma 3.3.8. — Let x' £ U' and let V C U' be a sufficiently small open affinoid 

containing x'. 

(i) The ideal of 0(V) generated by all the coefficients (see the footnote 10) of 

D+ys(M'(V)r=F c M'(V)®QpB+ys is 0(V) itself. 

(ii) If I' is a cofinite length ideal of Ox' then D+vys{M.'xl/TMfx,)(p==F is free of rank 

1 over Oxr/I'. 

Proof — By the universal property of blow-ups, for V sufficiently small HO(V) is 

a principal ideal generated by a non zero divisor fy of 0(V). As a consequence, 

the ideal of the statement is 0(V) itself, as it contains HO(V)/fy. Indeed, it is 

clear that if D+ys(M'(V))<P=F contains fv for some non zero divisor / € 0(V) and 

v G A/(/(Vr)0QpB ;̂ys, it contains v. This proves (i). 

(10) The Banach (9(t/)-module M{U)®QpB+ys is ON-able, H is the ideal of G(U) generated by all 
the coefficients in a given OiV-basis of all the elements of Di~Tys(M(U))lp=F. It does not depend on 
the choice of the ON-basis as the ideals of 0(U) are all closed. 
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It follows that the natural map D+^(M'X, /1'M'X,)*=F —* D+ys(Mx,)*=F is 

non-zero. Moreover D+ys(Mxiy=F = D^Tys(Mx)<f=F <8)fc(a.) fc(x'), hence it has k(x')-

dimension 1 by assumption on Mx and part (i) of Theorem 3.3.3. So the first as

sertion of the following lemma (applied to D = D+ys(—)¥?==F, A = Ox', J = If, 

V = M'x,/rM'x,) implies the result. • 

Lemma 3.3.9. — Let J be a cofinite length ideal of A, V a continuous (A/J)[GP]-

module that is free of finite rank over A/J and such that D(V <8U k) has k-dimension 

1. Assume moreover that one of the following two conditions holds: 

(i) D(V) —• D(V <8>A k) is non-zero, 

(ii) l(D(V)) = l(A/J). 

Then D(V) is free of rank one over AI J. 

Proof — Under assertion (i), the lemma is exactly [73, Lemma 8.6]. Under assertion 
(ii), it can be proved using similar ideas: we prove that D(V 0 A A/J') is free of rank 
one over A/J' for any ideal J' containing J, by induction on the length of A/J'. 

There is nothing to prove for J' = m. Assume the result known for ideals of colength 
< fc, and let J' be an ideal containing J of colength k. Let J" be an ideal such that 
J' C J" C ra, the first inclusion being proper and of colength one. We have (since 
V <8U A J J' is free over A/J') an exact sequence: 

0 — • D(V ®A k) ®fc J"/Jf —> D(V ®A A/J') —* D{V ®A A/J"). 

By (hi) of Lemma 3.2.9, l(D(V <8>A A/J')) = l(A/J') and similarly for J". Hence 
the last morphism of the exact sequence above is surjective. So we have D(V <S>A 

A/J') ®A A/J" = D(V0A A/J"), hence D(V<8>A A/J') (g>A k = D(V®A A/J") ®A k. 

By induction, the latter has /̂ -dimension 1. Hence by Nakayama's lemma, the A/ J'-
module D(V0A A/J') is generated by a single element and since its length is l(A/J'), 

it is free of rank one over A/Jf. • 

We can now use our "descent result" (Proposition 3.2.3) for the blow-up n : Uf —• 

U. Assertion (ii) of Lemma 3.3.8 shows that for every xf G ir~1(x), and every cofinite 

length ideal / ' of Ox', 

l (D+ys(M'x, ®cv Ox,/lT=F) = l(0X'/ï). 

Thus by Proposition 3.2.3, we have for every cofinite length ideal / of (Dx, 

I (D+ys(Mx ®ox Ox/iy=F) = l(Ox/I). 

To conclude that D+ys(Mx ®ox Ox/I)(p=F is free of rank one over Ox/I we simply 

invoke Lemma 3.3.9 (ii) with / = J, V — MX/JMX. The proof of Theorem 3.3.3 is 

now complete. • 
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3.4. A generalization of Kisin's result for non-flat modules 

In this subsection we keep the assumptions of §3.3.2, but we do not assume that 
M is locally free, but only that M is torsion-free. 

Theorem 3.4.1. — Let x e X and assume that(11) I)+ys(A^s(«(x)))v?=F^) has k(x)-

dimension 1. Then for all ideal I of cofinite length of Ox, 

l {D+{MX/IMX{K)Y=f) = l(OX/I). 

We will rely on the following flatification result whose scheme theoretic analogue 
is an elementary case of a result of Gruson-Raynaud ([95, Thm. 5.2.2]). Recall that 
X is reduced and separated. 

Lemma 3.4.2. — There exists a proper and birational morphism n : X' —• X (with 
X' reduced) such that the strict transform of M by TT is a locally free coherent sheaf 
of modules M1 on Xf. More precisely, we may choose n to be the blow-up of the 
normalization X of X along a nowhere dense closed subspace. 

Proof — Let / : X —> X be the normalization of X (see [47, §2.1]), then X is 
reduced, / is finite (hence proper), and / is birational by [47, Thm. 2.1.2]. More
over, the strict transform M1 of M by / is torsion free as M is, hence by replacing 
(X,M) by (X,Mf) we may assume that X is normal. We may also assume that X 
is connected. 

We claim that there is an integer r > 0 such that for each open affinoid U C X, 
M.(U) is generically free of rank r over 0(U). If U is connected (hence irreducible), let 
us denote by ru this generic rank. There is an injective 0({7)-linear map M(U) —• 
0(U)ru which is an isomorphism after inverting some / ^ 0 G 0(U). In particular, 
for each x in a Zariski-open subset of U, we have Mx Orxu. As a consequence, for 
each open affinoid U' C J7, the C^-module Mx is free of rank rjj on a Zariski open 
and dense subset of U', thus ruf — ru if Uf is connected. A connectedness argument 
shows then that ru is independent of U C X, and the claim follows. In particular, for 
all x G X the torsion free C^-module Mx has also generic rank r. 

Let us recall now some facts about the Fitting ideals (see [77, XIX,§2], [95, §5.4]). 
For each open affinoid U C X it makes sense to consider the r-th Fitting ideal 
Fr(M(U)) of the finite 0(E/)-module M(U). Its formation commutes with any affinoid 
open immersion so those {Fr(M(U))} glue to a coherent sheaf of ideals Fr(M) C Ox-
A point x e X lies in V(Fr(M)) if and only if dimk^(Mx) > r and X - V(Fr(M)) 
is the biggest admissible open subset of X on which M can be locally generated (on 
stalks) by r elements. By what we saw in the paragraph above, X - V(Fr{M)) is 

(n) In fact, the result holds more generally under the assumption of Remark 3.2.4, but we state it 
as such for short. 
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actually Zariski dense in X. Moreover, if x G X — V(Fr(M)) then Mx is free of rank 
r over Ox. Indeed, it can be generated by r elements and we saw that 

Mx C Mx ®0x Frac(Ox) A Fr&c(Ox)r 

for each x G X, and we are done. 
Let 7r : X' —• X be the blow-up of Fr(M), we will eventually prove that TT has all 

the required properties. Note that X' is reduced as X is and that n is birational as 
X — V(Fr(M)) is Zariski dense in X. As a general fact, the coherent sheaf of ideals 
Fr(M)Oxf coincides with the r-th sheaf of Fitting ideals Fr(n*M) of 7t*M, and it 
is an invertible sheaf by construction. Let Q c 7r*M. be the coherent subsheaf of 
Fr(M) Ox '-torsion of n*M. We claim that (7r*M)/Q is locally free of rank r. This 
can be checked on the global sections on an open affinoid U C X'. But if A is a 
reduced noetherian ring and M a finite type A-module such that M is generically free 
of rang r and whose r-th Fitting ideal Fr(M) is invertible, then M/AmiM(Fr(M)) is 
locally free of rank r by [95, Lemma 5.4.3]. This proves the claim if we take A = 0(U) 
and M = 7c*(M)(U). 

By definition, the strict transform M! of M is the quotient of ir*M. by its 
(Fr(M)Ox')°°-torsion. The natural surjective morphism n*M —> M! factors then 
through {-K*M)/Q, which is locally free of rank r by what we just proved, so 
(TT*AA)/Q ^> M' is locally free of rank r, and we are done. • 

Proof. — (of Theorem 3.4.1) Let us choose a n as in Lemma 3.4.2, as well as a coherent 
sheaf of ideals H C Ox attached to 7r as in § 3.2.3. As X — V(H) is Zariski dense 
in X, and as Z accumulates at Z by assumption (HT), Z D (X — V(H)) is Zariski-
dense in X. Moreover (CRYS), (HT) and (*) are still satisfied when we replace Z by 
Z f)(X — V(H)) in their statement, so we may assume that Z fl V(H) = 0. 

Let us denote by Zf the set of zf G Xf such that TT(Z/) G Z. Since X' — 
7r~1(Vr(jHr)) A X - V(H) is Zariski-dense in X' , Z' is Zariski dense in Xf. Note 
that for z1 G Z' , we have Mz, = Mz if z = TT(Z'). Define d and F' on X' as n o n 
and F on. Then it is obvious that X',Z',M',F',K' satisfy the hypothesis (CRYS), 
(HT) and (*). Because M1 is locally free we may apply to it Theorem 3.3.3 at any 
x' G X'. This implies Theorem 3.4.1 by our descent Proposition 3.2.3. • 

Remark 3.4.3. — (i) In the applications of Theorem 3.4.1 to Section 4, we will use 
some coherent sheaves M on an affinoid X which are in fact direct sums of 
coherent torsion-free 0-modules of generic ranks < 1, for which Lemma 3.4.2 is 
obvious. 

(ii) As Brian Conrad pointed out to us, there is an alternative proof of the first 
assertion of Lemma 3.4.2 using rigid analytic Quot spaces (see [48, Thm. 4.1.3]). 
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CHAPTER 4 

RIGID ANALYTIC FAMILIES 
OF REFINED p-ADIC REPRESENTATIONS 

4 .1 . Introduction 

In this section, we define and study the notion of p-adic families of refined Galois 
representations. As explained in the general introduction, the general framework is 
the data of a continuous d-dimensional pseudocharacter 

T : G — • 0(X), 

where X is a reduced, separated, rigid analytic space. Here G is a topological group 
equipped with a continuous map Gp = Gal(Q p/Q p) —> G, and we shall be mainly 
interested in the properties of the restriction of T to Gp. The presence of the group 
G is an extra structure that will only play a role when discussing the reducibility 
properties of T, and we invite the reader to assume that G = Gp at a first reading. 

We assume that for all z in a Zariski-dense subset Z c l , the semisimple contin
uous representation pz of G whose trace is the evaluation Tz of T at z (see § 1.2.2), 
has the following properties after restriction to Gp (see §4.2.3): 

(i) pz is crystalline, 
(ii) its Hodge-Tate weights are distinct, and if we order them by Ki(z) < • • • < Kd(z)> 

then the maps z i—• K,n(z) extend to analytic functions on X and each difference 
Kn+i — Kn varies a lot on Z. 

(iii) its crystalline eigenvalues ipi(z),..., <Pd{z) are distinct, and their normalized 
versions z i—* Fn(z) := <pn(z)p~Kri^ extend to analytic functions on X. 

These hypotheses may seem a little bit complicated, but this is because we want 
them to encode all the aspects of the families of Galois representations arising on 
eigenvarieties. We refer to §4.2.3 for a detailed discussion of each assumption. Let 
us just mention two things here. First, although families with "constant Hodge-Tate 
weights" have been studied by several people, the study of the kind of families above 
has been comparatively quite poor, except for works of Sen and Kisin. A reason may 
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be that the very fact that the weights are moving implies that the generic member of 
such a family is not even a Hodge-Tate representation, and in particular lives outside 
the De Rham world. Second, each pz is equipped by assumption (iii) with a natural 
ordering of its crystalline Frobenius eigenvalues, that is with a refinement Tz of pz 

(hence the name of the families). 
Our aim is the following: we want to give a schematic upper bound of the reducibil-

ity loci at the points z G Z and to prove that the infinitesimal deformations of the 
pz inside their reducibility loci (that we defined in Section 1) are trianguline, and 
in favorables cases even Hodge-Tate or crystalline. Let us describe now precisely our 
results. 

Assume first that z G Z is such that pz is irreducible^1^ and that Tz is a non 
critical regular refinement of pz. Then on each thickening A of z in X, we show that 
T<8>A is the trace of a unique trianguline deformation of (p^ , ^ ) to the artinian ring 
A (Theorem 4.4.1). 

When pz is reducible, the situation turns out to be much more complicated, but still 
rather nice in some favorable cases(2) Assume that pz = 0j"=1Pi is multiplicity-free. 
The relevant combinatorical information contained in the data of that decomposition 
of pz and the refinement Tz is summarized in a permutation a G &d that we construct 
in § 4.4.3. Assume again that Tz is regular, but not that Tz is non critical. Instead, we 
assume only that the refinement Tz^ induced by Tz on each of its sub-representation 
pi is a non critical refinement, and that each Tz^ is a "subinterval" of Tz (see §4.4.4). 
Our main result concerns then the total reducibility locus, say Red^, of T at the point 
z. We show that each difference of weights 

Kn - Ko(n) 
is constant on this reducibility locus Redz. We stress here that this result is schematic, 
it means that the closed subscheme Redz lies in the schematic fiber of each map 
Kn—K>cr(n) a ^ z. Moreover, on each thickening Aof z lying in the reducibility locus Redz, 
we show that T®A can be written uniquely as the sum of traces of true representations 
Pi over A, each pi being a trianguline deformation of (pir!FZii) (Theorem 4.4.4). We 
end the section by giving another proof of the assertion above on the weights on the 
reducibility locus under some slightly different kind of assumptions (Theorem 4.4.6). 

As an example of application of the results above, let us assume that a acts transi
tively on { 1 , . . . , a1} (in which case we say that Tz is an anti-ordinary refinement), so 
each difference of weights K n — K m is constant on Redz. If some « m is moreover con
stant (what we can assume up to a twist), we get that all the weights Ki are constant 

(x) This irreducibility assumption applies for pz viewed as a representation of G, which is weaker 
than being irreducible as a representation of Gp. 
(2) In the applications to Selmer groups, we will "luckily" be in that case. 
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on the total reducibility locus at z, hence are distinct integers. In particular the defor
mations pi above of pi are Hodge-Tate representations, and our work on trianguline 
deformations shows then that they are even crystalline (under some mild conditions 
on the pi, see Corollary 4.4.5). This fact will be very important in the applications to 
eigenvarieties and global Selmer groups of the last section, as it will allow us to prove 
that the scheme Redz coincides with the reduced point z there. 

We end this introduction by discussing some aspects of the proofs and other results. 
We fix z G Z as above, let A := Oz and we consider the composed pseudocharacter 

T : G —• 0(X) —• A 

again denoted by T. It is residually multiplicity free and A is henselian, hence T fulfills 
the assumptions of our work in Section 1. Some important role is played by some 
specific A[G]-modules called Mj (introduced §1.5.4) whose quite subtle properties 
turn out to be enough to handle the difficulties coming from the fact that T may not 
be the trace of a representation over A. We extend those modules, with the action 
of G, to torsion free coherent O-modules in an affinoid neighborhood U of z in X 
(§ 4.3.3) to which we apply the results of Section 3. 

However, this only gives us a part of the information, namely the one concerning 
the first eigenvalue tpi of the refinement. Indeed, this eigenvalue is the only one that 
varies analytically (if K\ is normalized to zero say) and therefore the only one to 
which we can apply the results of Section 3. To deal with the other eigenvalues as 
well, we will work not only with the family T, but with all its exterior powers AkT. 
Some inconvenience of using these exterior products however appears in the fact that 
our definition of a refined family is not stable under exterior powers (see § 4.2.4, and 
the last paragraph of this introduction). This leads us to introducing the notion of 
p-adic family of weakly refined Galois representations, which is a modification of the 
one given above where we only care about Ki and F\ (see Definition §4.2.7). Any 
exterior power of a refined family is then a weakly refined family. Let us note here 
that an important tool to get the trianguline assertion at the end is Theorem 2.5.6 of 
Section 2. 

In fact, our results mentioned above have analogues in the context of weakly refined 
families (in which case they hold for every x £ X) , that we prove in Theorems 4.3.2 and 
4.3.4. Another interesting result here is the proof (Theorem 4.3.6) that there exists 
a non-torsion crystalline period attached to the eigenvalue <pi in the infinitesimal 
extensions between the pi constructed in Section 1 (that is, in the image of iij). 

In the last subsection of this chapter (§ 4.5), we give much weaker results concerning 
any reducibility locus, not only the total reducibility locus. 

Though the trick of using exterior powers is not at all unfamiliar in the context of 
Fontaine's theory, we have the feeling that it is not the best thing to do here, and that 
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the use of exterior products is responsible for some technical hypotheses that appear 
later in this section (e.g. assumptions (REG) and (MF') in §4.4.1). But we have not 
found a way to avoid it. Actually, by using only arguments similar to the ones in [73], 
it seems quite hard to argue inductively (as we would like to) by "dividing modulo 
the families of eigenvectors for <pi". Among other things, a difficulty is that although 
the points in Z belong to Kisin's Xfs, they do for quite indirect reasons (see e.g. [73, 
Remark 5.5 (4)]), which makes many arguments there—and here also—quite delicate. 
As a possible solution, our work in this section and in Section 2 confirms Colmez's 
idea that the construction of Xfs in [73] should be reworked from the point of view of 
(<£, r)-modules over the Robba ring (3) and suggests that Xfs should directly contain 
the points of Z which are non critically refined. As this would have led us quite away 
from our initial aim, we did not follow this approach. We hope however that the 
present work sheds lights on aspects of this interesting problem. 

4.2 . Families of refined and weakly refined p-adic representations 

4 .2 .1 . Notations. — As in sections 2 and 3, we set GP = Gal(Q p/Q p). Moreover we 
suppose given a topological group G together with a continuous morphism G P —• G . 

Example 4.2.1. — The main interesting examples (4) are 

(a) G = Gp and the morphism is the identity. 
(b) G = GK,S = Gal(Ks/K) where K is a number field, S a set of places of K, and 

Ks C K the maximal extension which is unramified outside 5; the morphism 
sending Gp to a decomposition group of K at some prime ?p of K such that 

Kb = Qp 

If p is a representation of G, it induces a representation of GP that we shall denote by 
P\GP- We will replace p\Qp by p without further comments when the context prevents 
any ambiguity, for example in assertions such as "p is Hodge-Tate", or "p is crystalline". 

(3> E.g. for any x in a refined family X, px should be trianguline. 
(4) Actually, our result in the case (a) would implies our result in the case (b), were there not 
the technical, presumably unnecessary, irreducibility hypothesis (MF) in §4.4.1 below, that we can 
sometimes verify in case (b) and not in case (a). 
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4.2 .2 . Rigid analytic families of p-adic representations 

Definition 4.2.2. — A (rigid analytic) family ofp-adic representations is the data of a 

reduced and separated rigid analytic space X/QP and a continuous (5) pseudocharacter 
T : G —> 0(X). 

The dimension of the family is the dimension of T; it will usually be denoted by d 
in the sequel. For each point x G X, we call evaluation of T at x and note 

TX:G — • fe(x), 

the composition of T with the evaluation map: 0(X) —• k(x) at the residue field k(x) 
of x. Then T x is a continuous A:(x)-valued pseudocharacter. By a theorem of Taylor, 
it is the trace of a (unique up to isomorphism) continuous semisimple representation 

p x : G - ^ GLd(k(x)), 

which is actually defined over a finite extension of k(x). 
In other words, a family of p-adic representations parameterized by the rigid space 

X is a collection of representations {pXix € X} for which we assume that the trace 
maps T(g) : x i-> tr (px(g)) are analytic functions on X for each g G G, and such that 
# i-> T(g) is continuous. Examples are given by the continuous representations of G 
on locally free 0-modules on X, but our definition is more general as we showed in 
Section 1.6. In particular, the families of p-adic Galois representations parameterized 
by Eigenvarieties turn out to be families in this "weak" sense only in general. 

4.2 .3 . Refined and weakly refined families of p-adic representations 

Definition 4.2.3. — A (rigid analytic) family of refined p-adic representations (or 
shortly, a refined family) of dimension d is a family of p-adic representations {X, T) 
of dimension d together with the following data 

(a) d analytic functions « i , . . . , «<* G 0(X), 

(b) d analytic functions F\,..., Fd G 0(X), 
(c) a Zariski dense subset Z of X; 

subject the following requirements. 

(i) For every x € X, the Hodge-Tate-Sen weights of p x are, with multiplicity, 

(ii) If z £ Z, p z is crystalline (hence its weights Ki(z),..., Kd(z) are integers). 
(iii) If z e Z, then Ki(z) < «2 (2 ) < • •• < K^(Z). 

KX(x),...,Kd{x). 

(5) We recall that for each admissible open U C X (not necessarily affinoid, e.g U = X), 0(U) 
is equipped with the coarsest locally convex topology (see [105]) such that the restriction maps 
0(U) —• O(V), V C U an open affinoid (equipped with is Banach algebra topology), are continuous. 
This topology is the Banach-algebra topology when U is affinoid. 
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(iv) For z G Z, the eigenvalues of the crystalline Frobenius acting on Dcrys(pz) are 
distinct and are (pKl(z)Fi(z),... ,pKd(z)Fd(z)). 

(v) For C a non-negative integer, let Zc be the set of z G Z such that 

tfn+iO*) - Kn(z) > C(Kn(z) - Kn-i(z)) for all n = 2, . . . ,d - 1, 

and /^2(2) — ^i(^) > C- Then for all C, Zc accumulates at any point of Z. In 
other words, for all z G Z and C > 0, there is a basis of affinoid neighborhoods 
U of z such that 17 fl Z is Zariski-dense in U (see §3.3.1). 

(*) For each n, there exists a continuous character Z* —• 0(X)* whose derivative 
at 1 is the map Kn and whose evaluation at any point z G Z is the elevation to 
the Kn(z)-ih power. 

The data (a) to (c) are called a refinement of the family (X,T). 

Definition 4.2.4. — Fix a refined family as above and let z G Z. The (distinct) eigen
values of (p on DCTys(pz) are naturally ordered by setting 

<Pn(z)--=PKn{z)F„(z), ne{l,...,d}, 

which defines a refinement Tz of the representation pz in the sense of § 2.4. 

Example 4.2.5. — The main examples of refined families arise from eigenvarieties ( 6). 
A refined family is said to be ordinary if |F n(x)| = 1 for each x G X and n G { 1 , . . . , d}. 
Many ordinary families (in the context of example 4.2.1 (b)) have been constructed 
by Hida. In this case we could show that T\QP is a sum of 1-dimensional families. Non 
ordinary refined families of dimension 2 have been first constructed by Coleman in 
[43] (see also [44], [85]), and in this case T\QV is in general irreducible. Examples of 
non ordinary families of any dimension d > 2 have been constructed by one of us in 
[36]. 

Let us do some remarks about Definition 4.2.3. 

Remark 4.2.6. — (i) ( Weights) If (X, T) is a family of p-adic representations, and 
Z a Zariski-dense subset of X that satisfies condition (ii) of the definition of 
a refined family, Sen's theory implies that, after replacing X by a finite cover, 
there exist functions « i , . . . , nn satisfying the condition (i) (and obviously (ii)) 
of the definition of a refined family; but it does not imply that, even after a 
suitable reordering, the K n ' s satisfy condition (iii). 

Condition (v) imposes that the Hodge-Tate weights Kn (and their successive 
differences) vary a lot on Z. Condition (*) appears for the same reason as in 
§3.3.2. 

( 6) In particular, their construction if mostly global at the moment. 
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(ii) (Frobenius eigenvalues) Assumption (iv) means that the eigenvalues of the crys
talline Frobenius (p acting on Dcrys(pz) do not vary analytically on Z, but rather 
that they do when appropriately normalized. Note that when d > 1, even if some 
eigenvalue varies analytically, i.e. if some Kn is constant, then the others do not 
by assumption (v). Moreover, because of the fixed ordering on the KU by as
sumption (iii), ( { « n } 5 {Fa(n)}, Z) is not a refinement of the family (X, T) when 
o + 1 G & d . 

(iii) (Generic non criticality) Let Znum c Z be the subset consisting of points z G Z 
such that Tz is numerically non critical in the sense of Remark 2.4.6 formula 
(39). Then Znum is Zariski-dense in X (use (v) and the fact that around each 
point of X, each |F n | is bounded). In particular, the Tz are "generically" non 
critical in the sense of § 2.4.3. 

(iv) (Subfamilies) If (X, T) is a refined family, and if T is the sum of two pseudochar-
acters T\ and T 2 , then under mild conditions (X, T\) and (X, T<z) are also refined 
families. See Prop. 4.5.3 below. 

It will also be useful to introduce the notion of weakly refined families (resp. of weak 
refinement of a family). 

Definition 4.2.7. — A weak refinement of a family (X, T) of dimension d is the data 
of 

(a) analytic functions Kn G O(X) for n = 1,..., d, 
(b) an analytic function F G O(X), 
(c) a Zariski dense subset Z C X. 

subject to the following requirements 

(i), (ii) as in Definition 4.2.3. 
(iii) If z G Z, then K,I(Z) is the smallest Hodge-Tate weight of pz. 
(iv) For C a non-negative integer, let Zc — {z G Z, V N G { 2 , . . . , d}, Kn(x) > 

Ki(z) H- C}. Then Zc accumulates at any point of Z for all C. 
(v) For z G Z, <pi(z) := pKl (z)Fi(z) is a multiplicity-one eigenvalue of the crystalline 

Frobenius acting on DCTys(pz). 
(*) There exists a continuous character Z * —• 0 (X)* whose derivative at 1 is the 

map K\ and whose evaluation at any point z G Z is the elevation to the «i(z)-th 
power. As in Def. 3.3.2, we denote also by K\ : Gp —• O(X)* the associated 
continuous character. 

Of course, if (X, T, { « n } , { F n } , Z) is a refined family, then (X, T, JK N }, F^Z) is a 
weakly refined family. 
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Remark 4.2.8. — The conditions (i) to (v) and (*) are invariant by any permutation 
in the order of the weights «2,. • •, K>d (notK1). Two weak refinements differing only 
by such a permutation should be regarded as equivalent. 

4.2.4. Exterior powers of a refined family are weakly refined. — Let (X, T) 
be a family of p-adic representations of dimension d. For k < d, then (X, AkT) is a 
family of p-adic representations of dimension (^) (see § 1.2.7), and we have (AkT)x = 
tr (Akpx) for any x e X. 

Assume that (X,T, { « n } , { F n } , Z) is refined. The Hodge-Tate-Sen weights of AkT 
are then the 

Ki := 

jC 

Kj 

where J runs among the subsets of cardinality k of { 1 , . . . ,d}. Moreover, the Akpz 

are crystalline for z G Z. However, there is no natural refinement on (X,A*T) in 
general ( 7). We set 

F:= 

¿€{1,...,*} 

Fj, K[ := «{!,...,*;} = K\ H h K f e , 

and K'2 K'(dk) any numbering of the « j for J running among subsets of { 1 , . . . , d} 

of cardinality k which are different from { ! , . . . , & } . The following lemma is clear. 

Lemma 4.2.9. — The data K'1 K'(dk) F,Z is a weak refinement of the fam

ily (X,AkT). 

4.3 . Existence of crystalline periods for weakly refined families 

4 .3 .1 . Hypotheses. — In this subsection, (X, T, «1,..., Kd, F, Z) is a family of 
dimension d of weakly refined p-adic representations. 

Fix x e X. As in Section 3 we shall denote by A the rigid analytic local ring Ox, 
by m its maximal ideal, and by k = A/m = k{x) its residue field. We still denote 
by T the composite pseudocharacter G —• 0(X) —> A. Our aim in this section is 
to prove that the infinitesimal pseudocharacters T : G —• A/1, I C A an ideal of 
cofinite length, have some crystalline periods in a sense we explain below. For this, we 
will have to make the following three hypotheses on x, that will stay in force during 
all §4.3. 

(7) For one thing, there is no natural order on the set of subsets J of { 1 , . . . ,d} of cardinality k that 
makes the application J t-+ KI(Z) increasing for all z £ Z. Compare with Remark 4.2.6(i). 
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(ACC) The set Z accumulates at x^s\ 
(MF) T is residually multiplicity free ( 9 ). 

(REG) D+yiipxfaix)))^^ has fc(x)-dimension 1. 

Recall from Definition 1.4.1 that (MF) means that 

Px = Oi=1P i 

where the pi are absolutely irreducible, defined over k(x), and two by two nonisomor-
phic^10). In particular, this holds of course when px is irreducible and defined over 
k(x). As in § 1.4.1 we shall note di = dim^ p ,̂ so that Y^=i = d. Note that A is 
a henselian ring ([16, §2.1]) and a Q-algebra. In particular, d\ is invertible in A, and 
T : A[G] —> A satisfies the hypothesis of § 1.4.1. 

Note moreover that hypothesis (REG) (for "regularity") is, as (MF), a kind of 
multiplicity free hypothesis. Indeed, Theorem 3.4.1 implies easily (see below) that for 
any x satisfying (ACC), D^rys(px(Ki(x)))(p=F^ has fc(x)-dimension at least 1. 

Remark 4.3.1. — The assumptions above define a j G { 1 , . . . , r} as follows. By prop
erty (REG), F(x) is a multiplicity one eigenvalue of tp on 

D+^PMX))) = z?+^(pi(«i(aO)) e • • • e £c

+

rys(/v(M*))) 

Hence this is an eigenvalue of ip on one (and only one) of the D+vys(pi(ni(x))) say 
D+ys(pj(K,I(X)))> which defines a unique j G { 1 , . . . , r}. 

4.3 .2 . The main results. — We will use below some notations and concepts intro
duced in Section 1. Let K be the total fraction ring of A and let p : A[G] —• Md(K) 
be a representation whose trace is T and whose kernel is Ker T. It exists by Theorem 
1.4.4 (ii) and Remark 1.4.5 as A is reduced and noetherian. Fix a GMA structure on 
S := A[G]/KeiT given by the theorem cited above, j as defined in Remark 4.3.1, and 
let Mj C Kd the "column" 5-submodule defined in § 1.5.4. It is of finite type over A 
by construction and Remark 1.4.5. 

(8) This hypothesis is probably unnecessary but to remove it would require quite a big amount of 
supplementary work, such as a global generalization of what was done in Section 1 (that is on X 
instead of A). Note that any z:. 6 Z satisfies (ACC). Moreover, in the applications to eigenvarieties, 
(ACC) will be satisfied for all the t's corresponding to p-adic finite slope eigenforms whose weights 
are in Z p , which is more than sufficient for our needs. 
(9) This hypothesis is imposed to us by our reliance on chapter 1. However, though we did not write 
down the details, we are certain that all the results in this subsection hold, with essentially the same 
proofs, with the weaker assumption than only the representation denoted by pj below appears with 
multiplicity one in T 0 k. 
(10) rpjle resufts of this section will apply also in the case where the pi are not defined over k(x). 
Indeed, it suffices to apply them to the natural weakly refined family on X Xqp L, L any finite 
extension of Q p over which the pi are defined. 
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Let moreover V be a partition of { 1 , . . . , r } . Recall that if V contains { j } , then 
for every ideal / containing the reducibility ideal I-p (see § 1.5.1), there is a unique 
continuous representation 

Pj:G-^GLdi(A/I), 
whose reduction mod m is pj and such that T(g>A/I = tr pj+T'y where X" : G —• A/1 
is a pseudocharacter of dimension d — dj (see Definition 1.5.3, Proposition 1.5.10). 

Theorem 4.3.2. — Assume that V contains {j} and let I be a cofinite length ideal of A 
containing I-p. Then D^Tys(pj(Ki))(p=F and D^rys(Mj/IMj(K>i))(p=F are free of rank 
one over A/I. 

Proof. — We will prove the theorem assuming the following crucial lemma, whose 
proof is postponed to the next subsection. 

Lemma 4.3.3. — Let I be a cofinite length ideal of A, then 

(i) the Sen operator of Dsen(Mj/IMj) is annihilated by Y\n==i(T — nn), 
(ii) l(D+ys(Mj/IMJ(K1))'?=F)=l(A/I). 

By Theorem 1.5.6(0), there is an exact sequence of (^4/7)[G]-modules 

0 —> K —> Mj/IMj —• pj —• 0 

where K has a Jordan-Holder sequence, all subquotients of which are isomorphic to pi 
for some i ^ j . If X is a finite length A-module equipped with a continuous A-linear 
action of Gp we set D(X) := J D + y s ( X ( « 1 ) ) ^ = F . As D(p<) = 0 for i ^ j by (REG), we 
have D(K) — 0, hence applying the left exact functor D to the above sequence, we 
get an injection 

DiMj/IMj) - D(Pj). 

Thus by Lemma 4.3.3 (ii) we have l(D(pj)) > l(A/I). Applying Lemma 3.2.9(i) to 
the ^4/I-representation pj gives l(D(pj)) = l(A/I), hence an isomorphism 

D(Mj/IMj) ^ D(pj), 

and case (2) of Lemma 3.3.9 gives that D(pj) is free of rank 1 over AjJ. Hence the 
result. • 

Theorem 4.3.4. — Assume that px has distinct Hodge-Tate-Sen weights and that the 
weight k of D+ys(pj(Ki(x)))(p=F(x>} is the smallest integral Hodge-Tate weight of 
PJ(KI(X)). Then for the unique I such that KI(X) — Ki(x) = k, we have that KI is a 
weight of pj and 

(«z - «i) ~ (Kl(x) - ~ «i0*0) € Iv if {j} e V. 
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Proof. — Let I D be a cofinite length ideal of A. By Theorem 4.3.2, 

Dcrys(pj(«1))^=F 

is free of rank one over A/1. Moreover, k is the smallest integral Hodge-Tate weight 
of PJ(KI(X)). Thus we can apply Proposition 2.5.4 to V := PJ{KI) which shows that 
V has a constant weight fc, i.e. that (V ®Q P Cp)Hp contains a free A/J-submodule of 
rank 1 on which the Sen operator acts as the multiplication by k. By Lemma 4.3.3(i), 
this implies that 

d 

n=l 
[k - (KU - KX)) = 0 in A/I. 

The difference of any two distinct terms of the product above is invertible in (the 
local ring) A jI as Kn(x) ^ v ( ^ ) if n ̂  n'. Hence one, and only one, of the factor 
k — {nn — n — 1,..., d, of the above product is zero, and reducing mod m gives 
that this factor is the one with n = I. In particular, «j is a Hodge-Tate-Sen weight of 
pj and 

k = Ki — K\ = Ki(x) — K\(x) in A/I. 

We conclude the proof as I-p is the intersection of the / of cofinite length containing 
it, by KrulPs theorem. • 

Remark 4.3.5. — (i) The conclusion of the theorem can be rephrased as: KI — K\ is 
constant on the reducibility locus corresponding to P if V contains {j}. 

(ii) The hypothesis that k is the smallest weight is satisfied in many cases. For one 
thing, it is obviously satisfied when k is the only integral Hodge-Tate weight of 
PJ(KI(X)), which is the generic situation. More interestingly, it is also satisfied 
for crystalline p x whenever v(F(x)) is smaller than the second (in the increasing 
order) Hodge-Tate weight of PJ(K>I) since, by weak admissibility, k < v(F(x)). 
This is always true when pj has dimension < 2, since by admissibility, the second 
(that is, the greatest) weight is greater than or equal to the valuation of any 
eigenvalue of the Frobenius. 

(iii) The assumption that p x has distinct Hodge-Tate weights implies that p x has no 
multiple factors, hence (MF) if these factors are denned over k(x). 

Now let i ^ j be an integer in { 1 , . . . , r } . Recall that if V contains {i} and {j}, 
and if / contains 7-p, then there is a map Lij whose image is Ext^/JScont(pj, pi) (see 
Theorem 1.5.3 , Theorem 1.5.6(1) and Proposition 1.5.10). 

Theorem 4.3.6. — Assume that V contains {i} and {j} and let I be a cofinite length 
ideal of A containing Ip. Let pc : G —> GLdi+djiA/I) be an extension of pj by pi 
which belongs to the image oftij. Then D^Tys(pc(K))(p=F is free of rank one over A/1. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2009 



122 CHAPTER 4. RIGID ANALYTIC FAMILIES OF REFINED p-ADIC REPRESENTATIONS 

Proof. — The proof is exactly the same as the proof of Theorem 4.3.2 except that we 
start using point (2) of Theorem 1.5.6 instead of point (0). • 

4.3.3. Analytic extension of some ^4[G]-modules, and proof of Lemma 4.3.3 

We keep the assumptions and notations of § 4.3.2. Let M C Kd by any S-submodule 
which is of finite type over A. 

Lemma 4.3.7. — There is an open affinoid subset U of X containing x in which Z is 
Zariski-dense and a torsion-free coherent sheaf M on U with a continuous action of 
G such that M(U)®o(x)A ~ M as A[G]-modules and topological A-modules. 
If moreover K.M = Kd, we may choose U and M such that M(U) <8>o(U) 

Frac((9(£/)) is free of rank d over Fr&c(0(U)), and carries a semisimple representa
tion of G with trace T ®o(x) 0(U). 

Proof. — By (ACC), we may choose a basis of open affinoid neighbourhoods (Vi)iei 
of x 6 X such that Z is Zariski-dense in V$ for each i. We may view I as a directed 
set if we set j > i if Vj C V$, and then indlimO(Fi) = A. 

By construction we have tr (p(G)) C Oi(X). As each OiVi) is reduced and noethe-
rian, a standard argument implies that the 0(Vi)-module 

0(VÙ\G\/Kec(T<2>0W 0(Vi)) 

is of finite type (see e.g. [8, Lemma 7.1 (i)]). As a consequence, its quotient 
0(Vi)[p{G)) C Md{K) is also of finite type over G(Vi). 

As M is of finite type over A, we can find an element 0 G / and a finite type 
0(Vb)-submodule M 0 of M such that AM0 = M. We define now iVo as the smallest 
(D(Vb)-submodule of M containing Mo and stable by G. It is finite type over 0(VQ) as 
we just showed that O(V0)[p(G)] C Md(K) is. Moreover, the map G —> Auto(Vo)(^o) 
(resp. G —• Aut^(M)) is continuous by [8, Lemma 7.1 (v)] (resp. by its proof). 

For i > 0, we set Ni = 0(Vi)No c M. The following abstract lemma implies that 
for i big enough, the morphism Ni ®o(Vi) A —> M is an isomorphism. We fix such 
an i, set U = Vi and define M as the coherent sheaf on V* whose global sections are 
Ni. It is torsion free over 0(Vi) as Ni C M c Kd, which concludes the proof of the 
first assertion. 

Assume moreover that K.M = Kd and let Ni C Kd the module constructed above, 
so K.Ni — Kd. The kernel of the natural map 

Ni ®o(Vi) Rrac(0(Vï)) —• Ni ®o(Vi)K = Kd 

is exactly supported by the minimal primes of the irreducible components of 0(Vi) 
that do not contain x, and at the other minimal primes Ni is free of rank d with 
trace T, and it is semisimple because so is its scalar extension to K by construction 
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and Lemma 4.3.9 (i) below. Let U1 C V% be the Zariski open subset of Vi whose 
complement is the (finite) union of irreducible components of Vi not containing x. 
Choose j > i such that Vj C U then U := Vj and M(U) := Ni ®o(Vi) O(Vj) nave 
all the required properties. • 

Lemma 4.3.8. — Let (Ai)iej be a directed family of commutative rings and let A be 
the inductive limit of (Ai). Assume A is noetherian. Let M be a finite type A-module 
and N0 a finite-type A0-submodule of M such that AN0 = M. For i > 0, set Ni := 
AiN0 C M. 
Then for i big enough, the natural morphism Ni 0^. A —• M is an isomorphism. 
Proof. — Define Ki by the following exact sequence: 

0 —• Ki —• Ni A —> M —> 0. 

For i < j , we have a commutative diagram 

0 — Щ ^ Щ ®Ai A ^ M >- 0 

V y v 

0 >- Kj » Nj ®A A ^ M ^ 0 
The horizontal lines are exact sequences, the right vertical arrow is the identity and 
the middle one is surjective by the associativity of the tensor product. Hence the left 
vertical arrow Ki —• Kj is surjective. Because KQ is a finite type A-module, and A 
is noetherian, there is an i such that for each j > i, Ki —• Kj is an isomorphism. 

Let x € Ki. We may write x = Ylknk <8> a>k with nk € Ni and a& € A, and 
^2k nkO>k = 0 in M. Take j > i such that all the a^'s are in Aj. Then the image of x 
in Nj <g>Aj A is 0, and x is 0 in Kj. But then x = 0 in Ki, which proves that Ki = 0 
and the lemma. • 

Lemma 4.3.9. — (i) S ®A K is a semisimple K-algebra. 
(ii) There exists a finite type S-module N C Kd such that (N 0 Mj)K = Kd and 

that (N ®A k)ss is isomorphic to a sum of copies of pi with i ^ j . 

Proof. — Recall from §4.3.2 that 5 = A[G]/KerT. Since К D A is a fraction ring 
of A, we have Ker (T 0д К) = К.КетТ in if [G]. As a consequence, the natural map 
S <S>A К —> if [G]/Кег (Г 0A if) is an isomorphism, and Lemma 1.2.7 proves (i). 

Let us show (ii). By (i) we can chose a if .5-module Nf С if d such that K.Mj^N' = 
Kd. As S is finite type over A by Remark 1.4.5, we can find a 5-submodule N С Nf 

such that N is finite type over A and if.iV = N'. We claim that N has the required 
property. By construction we only have to prove the assertion about (N ®A A:)S S. 

Arguing as in the proof of Theorem 1.5.6 (0), it suffices to show that ejN = 0, where Cj 
is as before the idempotent in the fixed GMA structure of S. But ej(Kd) = ej(K.Mj) 
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by definition of Mj and Theorem 1.4.4 (ii). So ej(K.N) = 0 = ejN, and we are 
done. • 

We are now ready to prove Lemma 4.3.3. 

Proof. — (of Lemma 4.3.3). Let us show (ii) first. We set M = N 0 Mj, where N is 
given by Lemma 4.3.9. 

By Proposition 1.5.6(0) and Lemma 4.3.9 (ii), 

(49) (M ® k)ss ~ ®r

i=lniPi where ni >1 for all i, and rij = 1. 

But by (REG) D+ y.(fc(«i0«0r = F ( x ) has dimension Sij. In particular, 

(50) dim f c(D+ r y s((M ® fc)(«(x))sT=F(*>) = 1. 

Moreover, D+ys(M/IM(Kl))=Dcrys+^Mj/IMji^QD+^N/INiKi)) and 

(51) D+yB{N/IN(K1))"=F = 0 

by a dévissage and the same argument as above. 
We claim now that the equality follows directly from Theorem 3.4.1 applied to the 

module M over U associated to M given by Lemma 4.3.7 (applied in the case K.M = 
Kd). By formula (51), we just have to verify that M satisfies the hypotheses (CRYS), 
(HT) and (*) of §3.3.2, and we already checked that £>+rys((M ® A 0 ( « ( x ) ) M ) * = F ( x ) 

has length one in (50). 
By assumption (iv) of weakly refined families, Zc H U accumulates at every point 

of Z n U. As M(U) is torsion free of generic rank d and with trace T, and by the 
generic flatness theorem, there is a proper Zariski closed subspace F of U such that for 
y E U — F, My = p y . Recall that the Prac(0(C/))[G]-module M ®0{U) Erac(0(E/)) 
is semisimple. So enlarging F is necessary, we have that for y G U — F, M.y = My 
hence My = p y . We replace Z by (Z C\U) — (F C\ Z H U), so by (ACC) Z is a Zariski 
dense subset of U and still has the property that ZQ accumulates at any point of Z. 
Property (CRYS) follows then from (ii) and (v) of the definition of a weak refinement, 
and property (HT) from (iii) and (iv). This concludes the proof. 

Let us show (i) now. If E is a Qp-Banach space, we set^11) Eçp := E<g>qpCp. 
Recall that Sen's theory [108] attaches in particular to any continuous morphism 
r : Gp —> S*, B any Banach Qp-algebra, an element ip G Bcp whose formation 
commutes with any continuous Banach algebra homomorphism B —> B'. When r is 

( n ) All the Qp-Banach spaces of this proof to which we apply the functor —cp are discretely normed. 
We use freely the fact that any continuous closed injection E —• F between such spaces induces an 
exact sequence 0 —• Ecp —• Fcp —• (F/E)cp —• 0 by [109, 1.2], and also that any submodule 
of a finite type module over an affinoid algebra is closed. 
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a finite dimensional Qp-representation of Gp, this element is the usual Sen operator 
Applying this to the Banach algebra 

B:=Endoiu)(M(U)) 
we get such an element (p. 

We claim that (p is killed by the polynomial 

P:= 
d 

n = l 

[T-Kn) 

Indeed, arguing as in the proof of (ii) above me may assume that for all z G Z we 
have Mz — pz and B/mzB ~ Endk^(Mz). As a consequence, using the evaluation 
homomorphism B —• B/mzB and assumption (i) in Definition 4.2.7, we get that 
P(<p) € rnzBcp. But 0(U)cp is reduced by [47, Lemma 3.2.1(1)], so Bcp is a (finite 
type) torsion free 0(U)cp-module. Since Z is Zariski-dense in U, hence in C/(CP), 
and since affinoid algebras are Jacobson rings, we obtain that P(<p) = 0 in Bcp- We 
conclude the proof as the operator of the statement of Lemma 4.3.3(i) is the image of 
<p under BCp —> E n d A / / ( M 7 / / M 7 ) C p . • 

We now present a variant ( 1 2) of Lemma 4.3.3. Suppose we keep hypotheses (ACC) 
and (REG) from §4.3.1 but release hypothesis (MF). Instead we assume that 

(FM) There exists a free A-module M of rank d with an A-linear action of G whose 
trace is T, and such that M (g)A K is a semisimple K[G]-module. 

For example, (FM) holds if T is absolutely irreducible (by Rouquier-Nyssen's theo
rem), or, under (MF), if A is a UFD (by Proposition 1.6.1). 

Under those hypotheses, we claim that Lemma 4.3.3, and even a little bit more, 
holds with Mj replaced by the module M. More precisely, we have 

Lemma 4.3.10. — Let I be a cofinite length ideal of A, then 
(i) the Sen operator of Dsen(M/IM) is annihilated by H^ = 1(T — K n ) , 

(ii) l(Divys{M/IM(Kl)y=F)=l{A/I), 
(iii) D+ s(M/IM(Ki)y-F is free of rank one over A/1. 

Proof. — First, note that the natural A-algebra homomorphism p : A[G] —• 
End^(M) factors through S := A[G]/Ker(T). Indeed, M ®A K is a semisimple 
K[G]-module, so p(K[G\) C End^(M ®A K) is a semisimple artinian ring, of which 
K.p(Ker (T)) is a nilpotent 2-sided ideal by Lemma 1.2.1, hence vanishes. As a 
consequence, p\Q is continuous, as T is. 

< 1 2) Added in 2008. 
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We claim that the proof of Lemma 4.3.3 holds with Mj replaced everywhere by 
M, it is actually only easier. Indeed, the reader may observe that there are only two 
points where the specific nature of Mj is used, besides being an 5-module of finite 
type over A. 

The first one is in the proof of Lemma 4.3.9(ii). But that assertion holds trivially 
for M with N := 0, since M has rank d so K.M = Kd. The second one is for the proof 
of formula (51) (note that (50) is irrelevant here, and in any case obviously satisfied 
as N = 0). But since M is free, M 0 ^ k is a d-dimensional representation of trace 
T = Tz, hence its semi-simplification is exactly p z , so that formula (51) is nothing 
more than assumption (REG) at x. Hence the proof of Lemma 4.3.3 holds for M, 
giving (i) ( 1 3) and (ii). Then (hi) follows from (ii) and Lemma 3.3.9(h). • 

4.4. Refined families at regular crystalline points 

4 .4 .1 . Hypotheses. — In this subsection, (X, T, « i , . . . , Kd, i*i,.. •, Fd, Z) is a fam
ily of dimension d of refined p-adic representations. We fix z G Z (and not only in X). 
As in §4.3.1 we write A = Oz and still denote by T the composite pseudocharacter 
G —> 0{X) —• A. We assume moreover that T is residually multiplicity free, and 
we use the same notation as before: 

Pz = ®i=iPt, di = dim pi 

Recall from Definition 4.2.4 that p z is equipped with a refinement 

Tz = ((pi(z),...,(pd(z)) 

satisfying Vn(z) =pKn^Fn(z). As Dcrys(pz) = ®ri=1DCTys(pi) this refinement induces 
for each i a refinement of pi that we will denote by Tz^. We will make the following 
hypotheses on z. 

(REG) The refinement Tz is regular (see Example 2.5.5): for all n G { l , . . . , d } , 
p«i(«)+-+«n(«)jp1(^ m t m Fn(z) is an eigenvalue of ip on Dcrys(Anpz) of multiplic
ity one. 

(NCR) For every i G { 1 , . . . ,r}, Fz,i is a non-critical refinement (cf. § 2.4.3) of pi. 

Note that the hypothesis (NCR) does not mean at all that the refinement of p z is 
noncritical: if for example d = r, that is the pi are characters, any refinement of p z 

satisfies (NCR). 

(13) Actually, Dsen(̂ /-̂ -̂ ) is free over A/1 and its Sen polynomial coincides with J ^ J ^ = 1 (T" — « n ) 
(note that for our M, we may choose in Lemma 4.3.7 an M which is free over U). 
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4.4 .2 . The residually irreducible case (r = 1). — We keep the hypotheses 
above ( 1 4 ) . We first deal with the simplest case for which p z is irreducible and defined 
over k(z). In this case (REG) and (NCR) mean that Tz is a regular non critical 
refinement of p z . 

Recall that in this residually irreducible case, there exists a unique continuous 
representation p : G —• GLd(A) whose trace is T by the theorem of Rouquier and 
Nyssen (the continuity follows from Proposition 1,5.10 (i)). We define a continuous 
character S : Q* —• (A*)d by setting: 

6(p) := (Fu...,Fd), Ô\K = («i > • • • , ) • 

Recall that each Kn may be viewed as a character Z * —• A* in the same way as in 
Definition 3.3.2, using property (*) of Definition 4.2.3. 

Theorem 4.4.1. — For any ideal I C A of cofinite length, p 0 A/I is a trianguline 
deformation of (pz^z) whose parameter is 5 ® A/1. 

Proof — Fix / as in the statement and V := p <8> A/1. By Theorem 2.5.6, it suffices 
to show that for each 1 < k < d, Dcrys(AkV(Ki • • • Kk))(p=Fl"'Fk is free of rank 1 over 
A/1. Indeed, by definition of the characters K{ and of the ti loc. cit. , we have U = k{ 
for each i. 

Fix 1 < k < d and consider the family (X, AkT). As seen in §4.2.4, this family is 
naturally weakly refined, with same set Z, 

F = 
k 

n=l 
Fn 

and first weight 

K = 
k 

n=1 
Kn 

We check that this family satisfies the hypotheses of Lemma 4.3.10. Namely, (ACC) 
comes from the fact that z is in Z, (REG) from (REG), and (FM) is clear with 
M := Akp except maybe the fact that M 0A K is a semisimple K[G]-module. But 
this follows from the irreducibility of P<S>AK and a well-known result of Chevalley: over 
a field of characteristic zero, a tensor product of two finite dimensional semisimple 
representations is again semisimple. Thus, we can apply (iii) of Lemma 4.3.10, and 
we are done. • 

(14) In 2006, Theorem 4.4.1 was proved with the additional hypothesis (MF')—see §444 below. 
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4.4.3. A permutation. — In order to study the reducible cases we need to define 
a permutation a of { 1 , . . . , d} that mixes up the combinatorial data of the refinement 
of px and of its decomposition px — pi 0 • • • 0 p r . 

The refinement Tz together with the induced refinements Tz^ of the p '̂s define 
a partition Ri ]J . . . ]J Rr of { 1 , . . . , d}: Ri is the set of n such that pKn^Fn(z) is a 
(̂ -eigenvalue on DCTys(pi). In the same way, we define a partition W\ ]J. . . ] \ Wr of 
{ 1 , . . . ,d}: Wi is the set of integers n such that nn(z) is a Hodge-Tate weight of pi. 
This is a partition as the Kn(z) are two-by-two distinct. 

Definition 4.4.2. — We define a as the unique bijection that sends Ri onto Wi and 
that is increasing on each Ri. 

Note that a does not depend on the chosed ordering on the pi. 

Example 4.4.3. — (Refined deformations of ordinary representations) Assume that 
r = d, so p z is a sum of characters pi,...,p<*- Since there is an obvious bijection 
between this set of characters and the set of eigenvalues of <p on DCTys(pz), the refine
ment determines an ordering of those characters. We may assume up to renumbering 
that this order is pi> • • • >Pd- By definition of the permutation above, the weights of 
pi,.. . ,pd are respectively ^^(z),..., Ka(d)(z)' Note that in this case, a determines 
the refinement. We refer to this situation by saying that the representation pz is 
ordinary. 

Assume that pz is ordinary. We say that the point z (and the refinement Tz) is 
ordinary if moreover a — Id, that is if the valuation of the eigenvalues in the refinement 
are increasing. For example, the families constructed by Hida (see Example 4.2.5) are 
ordinary in this strong sense: each z £ Z is ordinary. 

When, on the contrary, a is transitive on { l , . . . , d } we call the corresponding 
refinement, and the point z, anti-ordinary. For d = 3, examples of families with such 
z have been constructed and studied in [8]. Intermediary cases are also interesting. 
For example, Urban and Skinner consider in [112] a refined family of dimension d = 4 
with a point z G Z where pz is ordinary and a is a transposition. They call such a 
point semi-ordinary. 

In general, let us just say that we expect that any ordinary representation and any 
permutation a should occur as a member of a refined family in the above way. 

4.4.4. The total reductibility locus. — Keep the assumptions and notations of 
§4.4.3 and §4.4.1. In particulat we keep assumption (REG) and (NCR). In addition, 
we shall need 
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(MF') For every family of integers (ai)z=i,...,r with 1 < ai < di, the representation 
P(ai) : = 0 i= i &aiPi is absolutely irreducible. Moreover, if (a$) and (oQ are two 
distinct sequences as above with Y^i=i ai — S)i=i a'%-> tnen P {<*>%) 9̂  

The assumptions (REG), (NCR), and (MF) remain in force during all § 4-4-4- Al
though it does not seem possible to weaken significantly the hypotheses (REG), (NCR) 
in order to prove Theorem 4.4.6 below, hypothesis (MF') is probably unnecessary. It 
is equivalent to the assertion that for all k G { l , . . . , d } , AkT is a residually mul
tiplicity free pseudocharacter with residual irreducible component the traces of the 
representations p( t t i) with YA=I °>i = k. 

We will use again some notations and concepts introduced in Section 1, applied to 
the residually multiplicity free pseudocharacter T : A[G] —> A. Let V be the finest 
partition { { 1 } , . . . , { r } } of { 1 , . . . , r } 5 so I-p is the total reducibility ideal of T. Recall 
that for every ideal I C A containing I-p (see §1.5.1), there is for each i a unique 
continuous representation 

Pi-.G—>GLdi(A/I) 
whose reduction mod m is pi and such that T® A/1 = YA=I ^ r Pi (see Definition 1.5.3, 
Proposition 1.5.10). 

Let 1 < i < r and write Ri = {ji,..., jd^} with s t—• j s increasing. We define a 
continuous character Si : Q* —> (A*)di by setting: 

Si(p) := ( ^ p ^ i W - ^ ü i ) ^ ) Fj1Pkjdi(^p^iW-^üi)^) 

Si|Z*p = (Ko(j1).......Ko(dj1) 

We will need to consider the following further assumption on the partition Ri 
defined in § 4.4.3: 

(INT) Each Ri is a subinterval of { 1 , . . . , d}. 

Theorem 4.4.4. — Assume (INT) and let I<p C / C A be any cofinite length ideal. 
Then for each i, pi is a trianguline deformation of {pi,TZyi) whose parameter is 5i. 

Moreover, for each n € { 1 , . . . , d}, we have 

Ko(n) - Kn = Ko(n)(Z) - Kn(Z) in A/I-p. 

Proof — We argue as in the proof of Theorem 4.4.1 taking into account the extra 
difficulties coming from the reducible situation. By (INT), we have for each i that 
Ri = {%i + 15 Xi + 2 , . . . , Xi + di} for some Xi € { 1 , . . . , r} . Up to renumbering the pi, 
we may assume that x\ = 0 and that Xi = d± + h di-i if * > 1. 

We fix I" as in the statement. We will prove below that each pi is a trianguline 
deformation of (pi^z.i) whose parameter S[ coincides with S{ on p, but satisfies 

^|z; = ( ^ 1 V » C Z ) - ' ^ ) ( Z ) , Fj1Pkjdi(^p^iW-^üi)^) 
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As the Sen polynomial of pi is 
di 

a=1 
( T " M i s ) ) 

by Lemma 4.3.3 and by definition of a (use the fact that the Kn(z) are distinct), 
Proposition 2.3.3 will then conclude the second part of the statement (argue as in the 
proof of Theorem 4.3.4 to go from / to I-p). 

Let us prove now the result mentioned above. Fix j G { l , . . . , r } and if j > 1 
assume by induction that for each i < j pi is a trianguline deformation of (pi,!Fz,i) 
whose parameter is S[ defined above. Note that Tz,i is regular by (INT) and (REG) 
(see the proof below for more details about this point), and non critical by (NCR). 
So by Proposition 2.5.6, it suffices to prove that for h = 1,..., cL, 

(52) Dcrys((Ah

Pj) [KXJ+I H h KXj+h)y = Fxj+1...Fxj+h is free of rank 1 over AjI, 

what we do now. 
For k = Xj + h any number in Rj, let ai(k) = \Ri fl { 1 , . . . , k}\ for i G { 1 , . . . , r}. 

In other words, we have di(h) = di (resp. a,i(k) = 0) for all i G { 1 , . . . , j — 1} (resp. 
for i > j ) , and dj(k) = h. We want to apply Theorem 4.3.2 to the weakly refined 
families A f cT, k G Rj, as in the proof of Theorem 4.4.1. We set again F = Yln=i Fn 
and K, = X)/b=i Kn- A s already explained in the proof of Theorem 4.4.1, the family 
AkT satisfies the assumption of §4.3.1. 

We note first that the (unique by (REG)) irreducible subrepresentation of Akpz 

that has the (̂ -eigenvalue pK^F(z) in its Dciys is P(ai(k)) wrfch the notations of (MF ;). 
This representation is exactly A.h(pj) twisted by each det(p^) with i < j (twisted by 
nothing if j = 1). With the obvious definition for the p(a.) when (a^) is any sequence 
as in (MF'), we have a decomposition 

kkT®A/I = tr (p(ai))> 

hence i" contains the total reducibility ideal of AkT (AkT is multiplicity free by (MF')). 
Theorem 4.3.2 implies then that 

(53) ^crys^a^fc))^))^ F 

is free of rank one over A/1. 
By induction, we know that pi is a trianguline deformation of (pi,J:

z,i) whose 
parameter is 5[ for each i < j . In particular, for any such z, 

det(pi)(KXi+1 + • • • + KXi+di) 

is a crystalline character of Gp whose Frobenius eigenvalue is i ^+ i • • • -FXi+di- As 

P(ai(A:))(«) Ah(pj)(KXj^1 + • • • + KXj+h) 
i<j 

det(pi)(/cXi+i + h KXi+di), 
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we get from formula (53) that 

DCTys((Ah

Pj) (KX.+I + h KXj+h)) (f=FXj+1---FXj+h 

is free of rank 1 over A/1 for h = 1,..., dj, which is the assertion (52) that we had 
to prove. • 

Note that the theorem implies that KN — KM is constant on the total reducibility 
locus whenever n and m are in the same cr-orbit. 

Corollary 4.4.5. — Assume (INT) and that the permutation a is transitive. 
(i) Every difference of weights KN — «m is constant on the total reducibility locus. 

(ii) Assume moreover that one weight «m G A/1 is constant, and that for some i 
we have Hom<3 (pi,pi(—1)) = 0. Then pi is crystalline. 

Proof — The assertion (i) follows immediately from the second assertion of Theorem 
4.4.4. 

As a consequence, if Km is constant for some m, every KN is constant on the total re
ducibility locus. By Theorem 4.4.4 and Proposition 2.3.3, this means that each pj, seen 
as a representation pj : G —> G L ^ A / I ) , Ip C I C A, is Hodge-Tate. On the other 
hand, each pj is a trianguline deformation of the non critically refined representation 
(pi,Tz j) again by Theorem 4.4.4, hence pi is crystalline by Proposition 2.5.1. • 

It turns out that the "non-trianguline" part of Theorem 4.4.4, namely that the 
Kn — K<j(n) are constant on the total reducibility locus, can be also proved even if we 
do not assume (INT), but instead the different kind of assumption: 

(HT') For each k € { 1 , . . . , eZ}, Akpz has distinct Hodge-Tate weights. 

Theorem 4.4.6. — Assume (HT') (or (INT)). Then for all n = 1,..., d, 

(K>a(n) - ^n) - (K*(n)(z) - Kn(z)) G IV 

In other words, Ka(n) — Ku is constant on the total reducibility locus. 

Of course, part (i) of Corollary 4.4.5 also holds assuming (HT') instead of (INT). 

Proof — It is obviously sufficient to prove that for all k in { 1 , . . . , r} , we have 

(54) 
k 

n=l 
(«<7(n) - Kn - («<7(n)(*) - «nW)) G IV' 

We consider the family (X, AkT). As seen in § 4.2.4, this family is naturally weakly 
refined, with same set Z, 

(55) F = 
k 

71=1 
F 
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and first weight 

(56) K = 
k 

n=l 
K>N. 

As already explained in the proof of Theorem 4.4.1 this family satisfies all the hy
potheses of §4.3.1, and we want to apply to it Theorem 4.3.4. 

For this, we note first that the (unique by (REG)) irreducible subrepresentation of 
Akpz that has the (̂ -eigenvalue pK^F(z) in its Dcrys is the one denoted p(tt.) above, 
with ai being, for i = 1,..., r, the numbers of n < k such that pKn^Fn(z) is an 
eigenvalue of Dcrys(pi). In other words, ai is the number of n G { 1 , . . . , k} such that 
n G Ri, that is ai = \Ri n { 1 , . . . , k}\. 

It follows from (NCR) and Lemma 2.4.8 that D c r y s ( p ( o i ) ( « ( ^ ) ) ) ^ = F ^ ) has weight 
K'(Z) — K(Z), where K'(Z) is the smallest weight of p(ai)- Hence K'(Z) is the sum, for 
n = 1,..., k of the sum of the an smallest weights of pn. In other words, 

(57) K'(Z) = 
k 

71=1 
Ko(n) (Z) 

We now are in position to apply Theorem 4.3.4, which tells us that 

K' - K - (n'lz) - K(Z)) G / 

where / is the total reducibility ideal for the pseudocharacter AkT. But it follows 
immediately from the definition of reducibility ideals and from hypothesis (MF') that 
I <Z I-p, the total irreducibility ideal of T. So 

K! — K — (K'{Z) — K(Z)) G I-p, 

which, using (56) and (57) is the formula (54) we wanted to prove. 

4.5. Results on other reductibility loci 

It would be nice, and certainly useful, to have a result analogous to Theorem 4.4.6 
for arbitrary reducibility ideals /7?, not only the total reducibility ideal. This result 
should probably be that certain differences of weights Ki - Kj for suitable couples 

combinatorically defined in terms of the permutation a and the partition V, 
should be constant of the reducibility locus attached to V. 

But when we try to apply the methods used above, we get into trouble because 
there does not exist in general a module Mj for / a subset of { 1 , . . . , r } , analogous 
to the module Mj for j G { 1 , . . . , r} , in the sense that for J a cofinite-length ideal of 
A, the isotypic component of the p J 5 j G / in Mi/J Mi is free over A/ J. This lack 
of freeness prevents to apply the "constant weight lemma" to this module, and more 
generally any of our main results of section 2. This may be a strong motivation to 

(i,j) 
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extend the results of section 2 to the non-free case, but this does not seem to be easy, 
and we postpone this question to subsequent works (of us or others). 

However, we can still get an interesting although much coarser result on arbitrary 
reducibility loci by the method of our Theorem 9.1 in [8]. We shall give a sufficient 
condition for the other (non-trivial) reducibility ideals at a point z to be torsion free. 
This is equivalent to saying that the pseudocharacter T is generically irreducible over 
every irreducible component of X through z. 

As our result is coarse, we do not need for it our hypotheses of § 4.4.1, so we release 
(NCR), and (MF'), and we only assume below that z is a point of Z that satisfies 
(REG). In that context the definitions of the subsets Wi and Ri (for i = 1,..., r) of 
{ 1 , . . . , d} in § 4.4.3 still make sense. For every P C { 1 , . . . , r} we define the subset 

WP := UieP W i and RP '•= UieP Ri-

Theorem4.5.1. — Let V — {P,Q} be a non-trivial partition o / { l , . . . , r } . Assume 
that Wp ^ Rp. Then Ip is a non-zero torsion-free ideal of A. 

Remark 4.5.2. — In particular, if the permutation a of § 4.4.3 is transitive, then the 
hypothesis of this theorem holds for all P since a(Rp) = Wp. In this case, the conclu
sion may be rephrased as: T is generically irreducible on each irreducible component 
of X through z. 

When pz is ordinary, the hypothesis of the theorem, for all P, is equivalent to the 
transitivity of a. In general, the transitivity is a stronger assumption. 

Proof — Let K = JJKS be the total fraction ring of A. We have to prove that 
IpK = K, that is that for all s, IpKs = Ks. Replacing X by its normalization X, A 
by its integral closure in Ks, the Fi and Ki by their composition with X —> X, and 
Z by its inverse image in X, we may assume that A is a domain, that X is normal 
irréductible, and what we have to prove is now that Ip ^ 0. 

Assume by contradiction that Ip = 0. Then there are two A-valued pseudocharac-
ters Tp and TQ such that 

T = TP + TQ, and T*®k = 
iE* 

tipi. 

Reducing X, we may assume that X is an affinoid neighbourghood of z (note that 
z G Z), that TP and TQ take values in O(X), that for i ^ j the Ki Ki j are invertible 
on X (since so they are at z), and that Tp is the generic trace of a representation of G 
on a finite type torsion free 0(X)-module ( 1 5 \ say M(X). By the maximum principle, 
the v(Fn), n = 1,..., d are bounded on X. Hence Prop. 4.5.3 below implies that there 

(15) As Tp is residually multiplicity free, the existence of such a module follows for example from 
Lemma 4.3.7. 
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is a set J C { 1 , . . . , d} and Z\ C Z such that Tp is refined by the Kn, the Fn for n E I 

and Z\. 

We now claim that the eigenvalues of the crystalline Probenius on 

(PP)Z '= ®iePPi 

are the pKn^Fn(z) for n E I (in other words, we claim that we could assume that 
z E Z\). Indeed, by Kisin's theorem applied to the torsion free quotient of AkM(X) 

(apply Theorem 3.3.3 to a flatification of the latter module as in the proof of Theorem 
3.4.1), 1 < k < \I\ = dim Tp and to the maximal ideal of A, we get denoting by Ik 

the first k elements in / , 

Dciys(Ak(pP)zf)C N6IKPKN^(«)F.(») ¿0. 
The claim follows from this and (REG). 

By definition, we thus have Rp = I. Similarly, since the weights of pz are the Kn(z), 

n G / , we have Wp = I. But this implies that Wp = Rp, a contradiction. • 

Proposition 4.5.3. — Let (X, T) be a refined family as above. We assume that X is 

connected, that the Ki - Kj G ö(Xy for all i ^ j , and that the v(Fn), n = 1,..., d 

are bounded on X. IfT = Xi 4-T2 where Ti, ¿ = 1,2 are pseudocharacters G —» O(X), 

then there is a subset I of { 1 , . . . , d} and a subset Z\ of Z such that (X, Ti) is refined 

by{16) ( ( K n W , f t W ^ i ) . 

Remark 4.5.4. — As we saw in the proof of Theorem 4.5.1 we can actually enlarge Z\ 
to contain all the points of Z that satisfy (REG). 

Proof. — We denote by (pi)x (resp. (p2)x) the semi-simple representation of trace 
the evaluation of Ti (resp. T2) at x, so that we obviously have 

(58) Px ̂  (Pl)x © (p2)x> 

We first prove that there is an / C {1,..d}. with \I\ = dimTi, such that for 
all x G X, the Hodge-Tate-Sen weights of (pi)x are the Kn(x), n E I. For this we 
will only use property (i) of Definition 4.2.3 of a refined family. Since X is connected, 
and the weights everywhere distinct, it is obviously sufficient to prove it when X is 
replaced by any connected open subset U of an admissible covering of X. So we may 
assume that X is an affinoid. Since 0{X) is noetherian, and by replacing X by a finite 
surjective covering if necessary, we may assume that there exists (see [8, Lemme 7.1]) 
a finite type torsion-free module M.\ (resp. M2) on O(X) with a continuous Galois 
action whose trace (defined after tensorizing by the fraction field of O(X)) is 7\ (resp. 
T2). Replacing X by a blow-up X' as in Lemma 3.4.2, we may also assume that Mi, 

M2 are locally free, and by localizing again, that X is a connected affinoid and that 

(16) The implicit ordering on J here is the natural induced by {!,... ,d}. 
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Mi(X), M.2{X) are free modules. The Sen polynomial of the module M i © M2 is 
]~[^= 1(T — KN). Since it is split and X is connected, it is easy to see that the Sen 
polynomial of M\ has the form Y\nei(T — KN) for some subset / of { 1 , . . . , d}. This 
proves the first assertion. 

Now choose an integer C greater than J2n=i suPx v(Fn) and also greater than 
d2 + 1. Let z G Zc- By (58), there is a subset J of { 1 , . . . d}, with \ J\ = dimXi, such 
that the Probenius eigenvalues of pi(z) are pKn^Fn(x), n G J. By admissibility of 
Dcrys((pi)z), we have 

716/ 
Kn(z) = 

nCJ 
(v(Fn(s))+ «„(*)), 

that is 
KI(Z) - KJ(Z) = 

neJ 
v{Fn{z)), 

where K*(X) = J2ne* Kn{%)- That implies 

\KI(Z) - KJ(Z)\ < 
d 

n=l 
\v(Fn(z))\ < C, 

so by Lemma 4.5.5 below we have 3 = 1. Thus it is clear that ((/s n) n ( Ej, (Fn)neI, Zc) 
is a refinement of (X, T\). d 

The following lemma is a formal consequence of property (v) of refined families. 

Lemma 4.5.5. — Assume that C > d2 4- 1. / / / and J are two distinct non empty 
subsets of { 1 , . . . , d} with the same cardinality, then for all z G Zc we have 

\KAZ) - KJ(Z)\ > C. 

Proof. — Let n + 1 be the greatest integer that is in / or J but not both. We assume 
that n + l G / . In n = 1, then KI(Z) — KJ(Z) = «2 (2 ) — K\(z) and the lemma is clear 
by definition of Zc- So assume that n > 2. We have 

K;/(Z) - KJ(Z) = nn+1(z) + n 

1=1 
CjKl(Z) 

with ei G {—1,0,1} and J2?=i ei = By adding terms of the form KI(Z) — Ki(z), we 
may write Yl?=i eiKi{z) as ~~ «nW phis a sum of at most (n + l ) 2 < d2 terms of the 
form ±(KI(Z) — KI-I(Z)), 2 < I < n. Those terms are, in absolute value, no greater 
than \Kn(z) — Kn-\(z)\ by definition of Zc- Thus 

\KI(Z) - KJ(Z)\ > |« n + i (z) - Kn(z)\ - d2\Kn(z) - Kn-i(z)\. 

By the definition of Zc, and the fact that C > d2 + 1, we thus have 

\m{z) - KJ(Z)\ > (d2 + 1 - d2)\Kn{z) - « n _ ! ^ ) | > C. 
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C H A P T E R 5 

S E L M E R G R O U P S A N D 
A C O N J E C T U R E OF B L O C H - K A T O 

We recall in this section the Galois cohomological version of the standard con
jectures on the order of vanishing of arithmetic L-functions at integers. The main 
references are [23] and [55]. 

5.1. A conjecture of Bloch-Kato 

5.1.1. Geometric representations. — Let E be a number field, p a prime and F 
a finite extension of Q p . Let 

p : GE —• GL n(F) 

be a continuous representation of the absolute Galois group GE of J57, which is geo
metric in the sense of Fontaine and Mazur (see [55]), that is: 

• p is unramified outside a finite number of places of E, 
• P\GEV LS ^e Rnam for each place v dividing p. 

It is known that the natural Galois representation on the étale cohomology groups 

Hit{X^Zp) ®zpF{d), 

where X is proper smooth over E and d G Z, is geometric. The Fontaine-Mazur conjec
ture is the statement that every irreducible geometric continuous G^-representation 
p is a subrepresentation of such a representation on an étale cohomology group. 

5.1.2. Selmer groups. — We now define the Selmer group Hj(E, p) of a geometric 
representation p. This is the F-subvector space of the continuous Galois cohomology 
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group (1) HX{GE^P) that parameterizes the isomorphism classes of continuous exten
sions 

(59) 0 —> p —>U —> F —• 0, 

where F denotes the trivial F[GE]-module, satisfying for each finite place v of E: 

i) dim UIv = 1 + dim pIv if v does not divide p, 
ii) dimDcrys(C/|GJ = 1 + dim£>crys(p|GJ if v divides p. 

For example, such an U is unramified (resp. crystalline) at a place v whenever 
p is. Moreover, at places v dividing p, condition ii) implies d imAIRC^C) = 1 + 
dimDdR(p\Gv) so U is De Rham since p is. In particular, U is geometric. As a conse
quence (see e.g. [104, Prop. B.2.7]), Hj(E,p) is a finite dimensional F-vector space. 

Similarly, if v is a place of E and p a continuous representation of GEV , we define 
the local Selmer group Hj(Ev,p) as the subspace of H1(EV, p) that parameterizes the 
extensions of 1 by p that satisfy condition i) if v is prime to p, or condition ii) if v 
divides p. 

Remark 5.1.1. — i) The formation of Hj (E, p) commutes with any finite extension 
of the field F of coefficients of p. 

ii) The functors V i—> VIv and V i—• Dcrys(V) (on the category of continuous 
F[GEV]-modules) being left exact, both conditions i) and ii) may be viewed as 
the requirement that they transform the short exact sequence (59) of F[GE]-
modules into a short exact sequence of vector spaces. 

iii) By Grothendieck's Z-adic monodromy theorem, condition i) is automatic if 
(UIv)ss does not contain the cyclotomic character. 

Example 5.1.2. — i) Assume that p = Q p ( l ) is the cyclotomic character. Kummer 
theory (or Hilbert 90) shows that there is a canonical isomorphism 

0*E®Z% m(E,Qp(l)). 

Under this identification, it is well known that (2) 0*E®Z%----->m(E,Qp(l)). 
If we relax the hypothesis / at a finite set S of places of E, we get 5-units 
instead of units of E. 

ii) Assume that A is an abelian variety over E and take p = TP(A) 0 QP. Then 
it known that the / condition at a place v cuts out precisely the elements of 

t1) For the basic properties of continuous cohomology in this context, see e.g. [104, App. B]. 
(2) First show the local analogue with E replaced by any EVi and conclude using the finiteness of 
the class number of E. 
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the H 1(GE, TP(A)) coming locally at v from an ^-rational point of A (when v 
divides p, see [23]). The Kummer sequence becomes then: 

0 —• A(E) ®z QP H){E,TV(A)) Shap(A)(g)Qp —»0 , 

where Shap(A) is the dual of the Tate-Shafarevich group of A. Assuming the 
finiteness of the Tate-Shafarevich group, Hj(E,Tp(A)) appears to be a purely 
Galois theoretic description for A(E) QP. 

5.1.3. The general conjecture. — Let p be as in § 5.1 and fix embeddings Q —> 
QP and Q —> C. 

It is expected that the Artin L-function L(p, s) attached to p and these embeddings 
converges on a right half plane and admits a meromorphic (even entire when p is not 
a Tate twist of the trivial character) continuation to the whole of C. This is known for 
example when p corresponds to a cuspidal automorphic representation of GL n(A#). 
The general conjecture is then the following. 

Conjecture 5.7.5. ord f l = 0L(p,a) = dim F fr ) (E,p*( l ) ) -d im F (p*( l ) )^ . 

Note that this is a conjectural equality between two terms, the one on the left being 
only conjecturally defined in general! There are more precise conjectures predicting 
the leading coefficient of L(p, 5) at 0, but we shall not deal with them in this book. In 
view of Examples 5.1.2, the above conjecture generalizes the Dirichlet units theorem 
(together with his theorem on the finiteness of the class number) and (assuming the 
finiteness of the Tate-Shafarevich group) the Birch and Swinnerton-Dyer conjecture. 

When p is a cyclotomic twist of a representation with finite image, the conjecture is 
a theorem of Soule [115]. Moreover, in the case n = 1 and E totally real or imaginary 
quadratic, the conjecture follows from Iwasawa's main conjecture for those fields, 
proved by Wiles and Rubin respectively. Aside from some sporadic results concerning 
the sign conjecture (see below), only a few cases are known when n = 2 and E — Q, 
and then the terms in the equality are 0 or 1 (Wiles, Rubin, Gross-Zagier, Kato). 
Needless to say, each of those particular cases is a very deep theorem. 

Remark 5.1A. — Assume that p is pure of motivic weight w. Apart from the case 
where w = - 1 , the conjectural left hand side of the equality in Conjecture 5.1.3 can 
be defined explicitly without any mention of L-function. 

i) (w < —2) Indeed, if w < —2, then 0 > 1 + w/2 should be in the domain of 
convergence of the Euler product defining L(p, 5) by Weil's conjectures, thus 
ord5==o£(p, $) should be 0 (and so should be Hj(E,p)). If w = —2 then 0 is 
on the boundary of the domain of convergence, and a conjecture predicts that 
in this case ord s = 0 £(p, s) should be — dim(p*(1))GE (this is known when p is 
automorphic, cf. [68]). 
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ii) (w > 0) Recall that we expect a functional equation 

(60) A(p,*) = £(p,s)A(p*(l),-«) 

where A(p, s) is the completed L-function, a product of L(p, 5) by a finite number 
of some simple explicit T-factors (see [116] for the recipe). Since p*(l) has weight 
—w — 2, and by i) above, the term ord s =oL(p, s) is determined when w > 0 by 
the order of the poles of the T-factors. 

However, although we can predict the integer of Conjecture 5.1.3 when w ^ —1? 

it is still completely conjectural that drnip H}(E, p) is actually this number. When 
w = — 1, e.g. as in the Birch and Swinnerton-Dyer conjecture, the situation is even 
much worse (and more interesting) as the integer in question is completely mysterious. 

5.1.4. The sign conjecture. — Among the cases where the motivic weight of p 
is —1, of special interest are the ones where (3) A(p) = A(p*(l)), that is where the 
equation (60) takes the form: 

(61) A(p, s) = e(p, s)A(p,-s), 

In this case, 0 is the "center" of the functional equation of p, and we have 

€(P,0) = ± 1 . 

This number is called the sign of the functional equation of p (or shortly the sign 
of p). As the T-factors do not vanish on the real axis, Conjecture 5.1.3 leads to an 
important special case, that we will call the sign conjecture: 

Conjecture 5.1.5. — Assume p satisfies (61). Ife(p,0) = —1, then 

HJ(E,p*(l))^0. 

Remark 5.1.6. — (i) The sign conjecture for E = Q implies the sign conjecture for 
any E. For if p is a geometric irreducible representation of GE whose functional 
equation satisfies ( 6 1 ) with sign — 1 , r = Ind^p is a semi-simple representation 
of Gq with same sign, isomorphic Selmer group, and satisfies r ~ r*(l) by 
Lemma 5 . 1 . 7 . It follows that r is a direct sum of a subrepresentation r 0 0 TQ ( 1 ) 

(whose sign is 1 ) and of irreducible subrepresentations T I , . . . , r/ such that r» ~ 
T * ( 1 ) for i = 1 , . . . , / . Since the product of the signs of the factors of a direct 
sum is the sign of that direct sum, if p has sign — 1 there must be an i such that 
Ti has sign — 1 . Thus the sign conjecture for Q asserts the existence of a non 

zero element in ff}(Q,Ti) hence in H}{Q,T) = H}(E,p) 

(3) Of course, this happens for instance when (60) holds and when p (or some Galois conjugate) is 
isomorphic to p*(l), see Lemma 5.1.7 below. 
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(ii) Even if the analytic continuation at 0 of L(p, s) is not known, it is possible to 
give a non conjectural meaning to the sign e(p, 0) (which is a product of local 
terms), hence to the sign conjecture (see [57, §3]). 

As an exercise, let us determine when equation (61) holds. We need a notation: 
for a G Aut(E'), we denote by pa the representation (well denned up to isomorphism) 
g i—• p{rgr~l) where r G GQ is an element inducing a on E. 

Lemma 5.1.7. — We assume (60). Then equation (61) holds if there exists a a £ 
Aut(E) such that p*(l) ~ p°. When E is Galois (resp. E = Q) and p is irreducible 
(resp. semisimple), the converse holds. 

Proof. — In view of equation (60), equation (61) holds if and only if p and p*(l) have 
equal A-functions. As any a G Aut (E) induces a norm-preserving bijection on primes 
ideal of E, it is clear that A(p, s) = A(/?a, s) and the first assertion follows. 

For the converse, it is enough to show that when E is Galois, if two irreducible, 
continuous and almost everywhere unramified, representations p and p' of GE have 
the same L-function, there exists a a G Gal(i£/Q) such that p ~ p/cr. When E = Q 
and p and p' are more generally semisimple, that is true because they have equal 
characteristic polynomials of Probenii for almost all p, hence p ~ p' by Cebotarev's 
theorem. Now for E any number field, if p and p' are semi-simple representations of 
GE having the same L-functions then this still holds for Ind^p and Ind^p' which 
hence are isomorphic. Taking the restrictions to GE, we find that if E is Galois, we 
have 

®a€GaHE/Q)Pa — ®<rEGal(£/Q)P-

Hence, if p is irreducible, then it is isomorphic to a pa. 

5.2. The quadratic imaginary case 

5.2.1. Assumptions and notations. — Throughout this paper, we will assume 
that E is an imaginary quadratic field, and we shall denote by a a complex con
jugation in Gal(E/Q), and by c its image in Gal(E/Q), so that a2 = c2 = 1. For 
U any representation of GE, we set Ua(g) = U(aga) and we denote by U1- of the 
representation 

U1 := {U°y. 

We shall fix a continuous geometric n-dimensional representation p of GE over F, and 
we shall assume that 

(62) / 9 - / ( 1 ) 
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Hence p should satisfy Equation (61) by Lemma 5.1.7. Note that in this case 

H}(E,p*(l)) ~ H}(E,p°) ~ H}(E,p) 

Our main objectives are, assuming some widely believed (and that might well be 
proved soon) conjectures in the theory of automorphic forms: 

(1) to prove the sign conjecture for such p; 

(2) to give a lower bound of the Selmer groups Hj(E, p) depending on the geometry 
of an explicit unitary eigenvariety, at an explicit point. 

5.2.2. An important example. — Aside from the case n = 1, which is already of 
interest, an important class of examples is provided by base change to E of classical 
modular forms. 

Let k be an even integer, N an integer prime to p, and / a normalized cuspidal 
newform for TQ(N). If F denotes the completion at a place dividing p of the field of 
coefficients of / , we shall denote by pf the representation GQ —> GL>2(F) attached 
to / and normalized in such a way that p}(l) — pf and that det(p/) is the cyclotomic 
character. (This uses that k is even: p/ is the twist of the usual normalization by 
Qp(k/2).) In particular, pf has weight —1. We note p / ^ the restriction of pf to GE-

Obviously pf^E satisfies (62). For suitable choices of E the Selmer group of p/5£ 
turns out not to be bigger than the Selmer group of p/, as the following well known 
proposition shows. 

Proposition 5.2.1. — Let f be as above, and S any finite set of primes. There is an 
imaginary quadratic field E, split at every prime of S, such that pf^E is irreducible 
and 

H1

f(Q,pf) = H}(E,pf,E)-

Proof. — Indeed, we have HJ(E,pf,E) ^ Hj(Q,pf) 0 H}(Q,pf <8> XE) where XE is 
the non trivial quadratic character of GQ with kernel GE- By the main result of [66], 
generalizing [121], there is an infinite number of quadratic imaginary fields E that 
split at every prime of S and such that L(pf <8)X£,0)^0. For such an E, [70, Thm 
14.2 (2)] proves that i?i(Q, p/ 0 XE) = 0, hence the proposition. • 

5.2.3. Upper bounds on auxiliary Selmer groups. — In [5] as well as in sub
sequent works using an automorphic method to produce elements in Selmer groups 
([112], [8], this book), an important input is a result giving an upper bound (for 
instance, 0) on the dimension of auxiliary Selmer groups. 

The most elementary case of such a result is the next proposition, which is of 
crucial importance in both proofs of chapter 8 and 9. It would become false if E were 
replaced by a CM field of degree greater than or equal to 2, and it is actually the only 
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point in the proof of the sign conjecture where the fact that E is quadratic is really 
used. 

Proposition 5.2.2. WehaveH}(E,Qp(l)) = 0. 

Proof. — By Example 5.1.2(1), H)(E, Qp(l)) is isomorphic to 0*E ®z Q p , which is 0 

as OE is finite. 

This vanishing result turns out to be the only one necessary to the proof of the 
sign conjecture. However, we shall need quite a number of other vanishing results to 
get our second main result. The easiest ones are dealt with the following proposition. 

Proposition 5.2.3. — i) H}(E,Qp) = 0, 

ii) H}(E,QP(-1)) = 0. Moreover, for e = ±1, the subspace of HX{E,Qp(—1)) pa
rameterizing extensions U of Qp(l) by Qp such that U±(l) ~ eU (as extensions) 
has dimension < 1. 

Proof. — Let U be a Gp-representation which is an extension of Qp by Qp. Recall 
that U is crystalline (resp. Hodge-Tate) if and only if it is unramified. Indeed, the only 
non trivial fact is to show that "U is Hodge-Tate" implies "U is unramified", but this 
follows for instance from the following general result of Sen [107, §3.2, Corollary]: in 
any Hodge-Tate representation of Gp with all of its Hodge-Tate weights equal to 0, the 
inertia acts through a finite quotient. So Hj(E,Qp) = Hom(Gal(£ , u r/£'),Qp) where 
Eur is the maximal unramified everywhere algebraic extension of E. By class-field 
theory we thus have 

HUE,QP) = CI(OE)®Z Q p = 0, 

which proves (i). It is well known that part (ii) follows from results of Soule and from 
the invariance of Bloch-Kato conjecture under duality. For sake of completeness, we 
give an argument below. 

First, note that if F/Qp is a finite extension, Bloch-Kato's theorem shows that 
iJ}(F ,Q p (- l)) = 0 (see e.g. formula (43) in the proof of Thm. 2.5.10). By Soule's 
theorem [115, Thm. 1] 

H2(OE[l/p],Qp(2)) = 0. 

The version of Poitou-Tate exact sequence given in [55, prop. 2.2.1] shows then that 
Hj(E,Qp(—l)) = 0 when applied to the Galois module Q p(2). So we get an injection 

tf^.QpC-l)) tf^.Qpt-l)), 

v\p 

which is compatible with the operation U Ua on the domain and the exchange of 
v and v on the range when p — vv splits in E. We conclude as Jfl r l(£' v, Qp(—1)) has 
dimension 1 by Tate's theorem. • 
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The two other vanishing results we will need are somehow deeper. Since they are 
expected to be proved by completely different methods (e.g. using Euler systems) 
than those used in this paper, it would be artificial to limit ourselves to the case 
where those results have actually been proved, hence we take them as assumptions as 
follows. 

Hypothesis BKl(p). H1

f(E,p(-l)) = 0. 

Hypothesis BK2(p). — Every deformation p of p over F[e] (the ring of dual num
bers) that satisfies /^(l) — p and whose corresponding cohomology class lies in^ 
Hj(E,&dp) is trivial. 

Remark 5.2.4. — Note that both hypotheses should follow from Conjecture 5.1.3 for 
any p that is pure of weight —2 (for BK2(p)) or —3 (for BKl(p)), and they are precisely 
in case i) of Remark 5.1.4. Fortunately, those assumptions have already been proved 
in interesting cases. 

This conjectural vanishing of Hj(E, adp) is actually fundamental for understanding 
eigenvarieties. Intuitively, it can be understood as follows. Let 

R:GE—+ GLn(L(t)) 

be a continuous morphism, where L(t) is the Tate algebra over L, and assume that 
for each t G Zp the evaluation Rt of R at t is a geometric irreducible representation. 
Then the Fontaine-Mazur conjectures implies that R is conjecturally constant (up to 
isomorphism). Indeed, each Rt is conjecturally cut out from an ^-motive. But there 
is only a countable number of such motives, hence of tr(i^), so tr(R) is constant. 
The assertion Hj(E,a>dp) = 0 is actually a slightly stronger variant of that fact, in 
which we replace the Tate algebra L(t) by L[t]/t2. 

Proposition 5.2.5. — BKl(p) holds in the following two cases: 
i) n = 1 and 0 is not a Hodge-Tate weight of p. 

ii) n = 2 and p is of the form pf,E (using notations of § 5.2.2) for some eigenform 
f of weight k > 4. 

Proof — By the theory of CM forms, case i) follows from case ii), which in turn is a 
result of Kato [70, Thm. 14.2 (1)]. • 

Proposition 5.2.6. — BK2(p) holds if n = 1 or if n = 2 and p is of the form pf,E 
whenever f is not CM and satisfies one of the following conditions: 

(i) At every prime I dividing N, f is either supercuspidal or Steinberg. 

(4) Or, in an equivalent way, such that for each finite place tu, P\EW *s geometric (automatic condition 
if w is prime to p) with constant monodromy operator acting on Dpst(p\EW )• 
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(ii) The semi-simplified reduction pf of pf is absolutely reducible, and is (over an 
algebraic closure) the sum of two characters that are distinct over Gq^p00y 

(iii) For any quadratic extension L/Q with L C Q(Cp3)> (Pf)\GL i>s absolutely irre
ducible. 

Proof. — Let x GE —• F* be any geometric character. Every deformation of x to 
F[e] whose associated class lies in Hj(E,ad(x)) is trivial by Prop. 5.2.3 i), as ad% is 
the trivial character. In particular, BK2(p) holds for n = 1. 

Assume now that p = p/,# as in the statement. Let 

p:GE-^ GL2(F[e}) 

be a lift of p such that p ~ p*(l), and whose associated class in if1(-E,adp) belongs 
to Hj(E,&dp). By the previous case, the character det(p) is constant, hence equals 
det(/?/,£;) = Q p ( l ) . As for any 2-dimensional representation over any ring, we have 
p ~ p* 0 det p, thus we get 

P = P(1) 
Together with the hypothesis p ~ / ^ ( l ) , we get p ~ pG. That is, there is an A G 
GL2(F[e]) such that for all g G GE, 

Ap(g)A 1 = p{(rga x). 

Since a2 = Id, A2 centralizes P(GE)- AS pf^E is absolutely irreducible we have 
A[P(GE)] = M2(F[e]), so A2 = A for some A G F[e\*. If A denotes the reduction 
of A modulo e, we have for all g G GE 

Ap(g)A 1 = pf(a)p(g)pf(a x), 

thus A~1pf(a) centralizes P(GE)- Thus we have A = fipf{a) for some // G F*. In 
particular A = A2 = p? (mod e). Let fi be the square root of A in F[e]* lifting p,. For 
g G GE, set pf(ag) = jl~1Ap(g) and Pf(g) = p{g)'. this defines a deformation 

/5/ : Gn — GL2(F[e]) 

of p/ whose restriction to GE is p. 
Since (p/)|GE = p is geometric, so is p/. But such a deformation of p/ is trivial by 

[74, Theorem, page 2] in the cases (ii) and (iii), and by [122, theorem 5.5] in case (i), 
hence so is its restriction p. • 

We shall actually use assumption BKl(p) to bound the subspace 

НШ,р(-1)) С Н\Е, р(-1)) 

parameterizing extensions that satisfy condition i) of § 5.1.2 but not necessarily con
dition ii). 
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Proposition 5.2.7. — Assume that p = vv' splits in E, that p,p~2 are not eigenvalues 
of the crystalline Frobenius on Dcvys(p\GEV), and that 0 and — 1 are not Hodge-Tate 
weights of P\GEv - Then 

dim F Hi,(£,p(-l)) < n + dim F H}(E,p(-l)). 

In particular, if BKl(p) holds we have dim^ Hj,(E, p(—1)) < n. 

Proof — We have by definition an exact sequence 

0 —tf}(£,p(-l)) H},(E,p{-l)) H1

S(EV,P(-1)ÌGEV)XHI(EV,,P(-1)ÌGEI), 

where H]{EW,-) := H1(Ew,-)/Hj(Ew,-). Since p1- ~ p(l), the last term of the 
exact sequence above is isomorphic to 

Hl{Ev,W)®Hl

s{Ev,W*{-l)), 

where we have set W = p(—l)\GEV- I n order to conclude, it is enough to show that 
the dimension of this latter sum is < n. 

For any de Rham p-adic representation U of Gal(Qp/Qp), Bloch-Kato's computa
tion [23, Cor. 3.8.4] (see also the proof of Theorem 2.5.10), together with Tate's Euler 
chararacteristic formula for dimjp(iJ1(Qp, U)), imply that 

dimF(Hl(Qp,U)) dim F(î7)+dim F(F°(Q p,C/*(l)))-dim F(£»D R([/)/Fil°(DD R(C/))). 

The proposition would then follow from the two following facts: 

dimF(DDR(W)/Fil°(DDR(W))) +d im F (D D R (W*(- l ) ) /F i l ° (D D R (W*(- l ) ) ) ) = n, 

H°(QP, W*(l)) = JT°(Qp, W(2)) = 0. 

The sum in the first formula is the number of Hodge-Tate weights of W (with multi
plicities) which are either < 0 or > 1. As neither 0 nor 1 is a Hodge-Tate weight of W 
by assumption, the equality holds. The second equality also holds, by the assumption 
on the eigenvalues of the crystalline Frobenius. • 
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CHAPTER 6 

AUTOMORPHIC FORMS 
ON DEFINITE UNITARY GROUPS: 

RESULTS AND CONJECTURES 

6.1 . Introduction 

This chapter recalls or proves all the results we shall need from the theory of 
representations of reductive groups and of automorphic forms. 

As explained in the general introduction, the main steps of our method regarding 
the proof of our two main theorems are, very roughly, as follows: starting with an n-
dimension Galois representation p such that e(p, 0) = — 1, we construct a very special, 
non tempered, automorphic representation 7 r n for a unitary groups in m = n + 2 
variables. We deform it p-adically, in other words, we put it in an eigenvariety of the 
unitary group. We associate to this deformation of automorphic forms a deformation 
of Galois representations, or rather, a Galois pseudocharacter on the eigenvariety 
of the unitary group. This Galois pseudocharacter gives us the desired non trivial 
elements in the Selmer group of p. 

Unfortunately, some results needed to make work two of those steps in their nat
ural generality have not yet been published or even written down: the first step, the 
existence of the "very special" automorphic representation 7r n , has been announced, 
but a written proof is only available in small dimension, namely m < 3; the third step 
relies on the existence and the basic properties of the Galois representations attached 
to (some) automorphic representations of unitary groups. Here again the desired re
sults are only known for m < 3. Fortunately, this result is also in the process of being 
proved: it is one of the main goals of an ambitious project gathering many experts 
and participants of the GRFA seminar of the "Institut de mathématiques de Jussieu" 
in Paris, under the direction of Michael Harris. Their work should result in a four-
volumes book ([60]) in the next few years that is expected to contain a construction of 
the Galois representations attached to automorphic forms on unitary groups in many 
cases, and in particular in the cases we need. An important input in this project is 
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the recent proof by Laumon and Ngo of the so-called fundamental lemma for unitary 
groups. 

In this chapter we formulate the two needed results as conjectures (namely con
jecture REP(m) on Galois representations attached to automorphic forms on unitary 
groups with m variables, and conjecture AC(7r) on the existence of the automorphic 
representation irn constructed from the automorphic counterpart 7r of p), and we shall 
assume those conjectures in the proof of our main theorems in chapters 8 and 9. In 
view of the situation explained above, it would have been pointless to limit ourselves 
to the case where the needed results are already written down. 

The main reason for which we are able to write down some still unwriten results 
and rely confidently of them is not that we are told they will be proved very soon, but 
because they are part of a much larger and very well corroborated set of conjectures 
called "the Langlands program" (and its extension by Arthur). 

We believe it will be of interest to explain in greater detail how our conjectures 
(and much more) appear as consequences of the Langlands program, and in particular 
how the existence of our very special non tempered automorphic forms is enlightened 
as a special case of the beautiful "multiplicity formulas" of Arthur. This is the aim 
of the appendix to this book, that recalls the part of the Langlands and Arthur's 
program that we need, and where we show how our conjectures follow from theirs. This 
appendix may be read independently, as an introduction to Langlands and Arthur's 
parameterizations and multiplicity formulas. Although logically independent of it, the 
rest of the chapter will make frequent references to this appendix for the sake of the 
reader's intuition. 

Although we may expect that results much more general than the modest conjec
tures we state to be true, and even to be proved soon, we made a great deal of effort, 
in this chapter and throughout this book, to keep our conjectural input to the theory 
of automorphic forms at the lowest possible level. One reason for doing this is obvious: 
the weaker the assumptions we have to assume, the stronger is our result, and the 
sooner it will become an unconjectural theorem. Another more serious reason is that 
part of our work (especially chapter 7) is also expected to be used in the book [60] for 
the construction or the proof of some properties of the Galois representations in some 
"limit" cases which one can not handle with a direct comparison of trace formulae. 
So the logical scheme would be as follows: in [60] should be proved "directly" for a 
quite "generic" set of automorphic representations the existence and properties of the 
associated Galois representations, which should be enough to check our conjecture 
Rep(rn). In turn, our work on eigenvarieties should complete the picture by providing 
existence and properties of the Galois representations attached to the remaining (co-
homological) automorphic forms. For example, our conjecture Rep(m) only requires 
the Galois representations for automorphic forms of regular weights. To give another 
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example, our method (hence our conjecture Rep(ra)) makes no irreducibility hypoth
esis on the Galois representations, ̂  but instead may be used to prove many cases of 
irreducibility (see e.g. Theorem 7.7.1). 

Let us now explain more specifically the content of the chapter. 
The subsection §6.2 deals with some general facts about unitary groups, with 

an emphasis on the definite ones and their automorphic representations. We define 
explicitly the unitary groups U(m) we will work with. We need a group that is quasi-
split at every finite place (otherwise, the representation 7 r n can not be automorphic, as 
explained in the appendix - see Remark A. 12.4), but that is also compact at infinity -
so that we can apply the theory of eigenvarieties of [36]. ̂  This leads to the restriction 
that m ^ 2 mod 4. 

The subsections §6.3 to §6.7 are local preliminaries. The short subsection §6.3 
recalls the local Langlands correspondence for GL m , as characterized by Henniart 
and proved by Harris and Taylor. It will be used very frequently. The subsection § 6.4 
develops the theory of refinements (sometimes called p-stabilizations) of unramified 
representations of GL m (Q p ) which a representation theoretic counterpart of the theory 
of refinements of crystalline Galois representations that we explained in chapter 2. 
We invite the reader to look at the introduction § 6.4 of that subsection for a more 
precise discussion on this concept. The subsection § 6.7 recalls two descriptions of the 
continuous irreducible representations of the compact group U(m)(R) and compares 
them. 

Next come two other subsections of local preliminaries. They are both devoted to 
the crucial question of monodromy. (3) By "monodromy" of an admissible irreducible 
representation ni of Um(Q/) we mean the conjectural notion encoded in the nilpotent 
element that appears as part of the conjectural morphism of the Weil-Deligne group 
of Qi to LU(m) attached to 7r j . Concretely, what we need is threefold. We need to 
give a non-conjectural meaning to expressions such as U 7T/ has no more monodromy 

(1) Let us say that this is anyway a subtle point, as only the stable tempered automorphic represen
tations should have irreducible associated Galois representations, and this property is very hard to 
detect in practice. This actually introduces an extra difficulty in the applications to the construction 
of nontrivial elements in the Selmer groups that we will explain how to circumvent. This feature was 
already present in [8], but was absent of the earliest stages of the method, like in [5] or later in [112]. 
(2) Note that we may not use in this context the construction of p-adic families announced recently 
by Urban, since the "virtual multiplicity" of our nn might be zero. 
(3) Let us say that monodromy is bound to play a crucial role in our final arguments. Indeed, it 
follows from the Arthur multiplicity formula that under the hypothesis e(p, 0) = 1 (not —1) there 
should exist an automorphic representation n'n for U(m), isomorphic to 7rn at every place except 
one, say I with I inert in the splitting quadratic field E of U(m), and such that n'™ has the same 
L-parameter as TTnl on Wqt but a greater monodromy. If it was possible to apply our method to 7r/n, 
it would eventually lead to a construction of a non-trivial element in the Selmer group of p, element 
which should not exist when L(p, 0 ) ^ 0 according to the conjecture of Bloch-Kato. This shows that 
a precise control of monodromy has to play a role in our argument. 
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that 7Tj" or "TTI has no monodromy at all". We need tools to be able to show in chapter 
7 that some full irreducible components of the eigenvarieties of U(m) containing 7r n 

"have no more monodromy at every place I than TTnl has". Finally, we need to be able 
to translate this "control on monodromy of 7 r j " into a control on the action of the 
inertia subgroup at I on the Galois representations attached to n. The latter is a part 
of our conjecture Rep(m). The objective of §6.5 and §6.6 is to meet the two first 
needs. 

In §6.5, we deal with the monodromy of representations of U(ra)(Qj) for I split in 
that is for GLm(Qz). In this case the meaning of the monodromy is non conjectural, 

thanks to the local Langlands correspondence, that associates to a representation 717 
a conjugacy class of nilpotent matrices N(TTI) G GLm(C); we can simply say that -K\ 
has more monodromy than 7r[ if the closure of the conjugacy class of N(717) contains 
N(7r[). T O be able to control the variation of the monodromy in a family of such 717, 

we use then the existence of some particular K-types. As we shall see, this will fullfill 
our second need since a general property of the eigenvarieties we will study is that the 
locus of points whose associated U(ra)(Qj ̂ representation contains a given if-type 
is a union of irreducible components (this actually holds for every I). Of course, the 
simplest example of such a if-type is the trivial representation of GLm(Zj), which 
cuts out precisely the unramified constituent of the unramified principal series (that 
is, the non monodromic ones). For a general monodromy type, we use suitable K-
types that have been constructed by Schneider and Zink (see §6.5). Note that the 
types constructed by Bushnell and Kutzko are a priori of no use for our purposes 
because they "do not see monodromy". However, let us stress that the construction of 
Schneider and Zink actually relies on those types. 

In § 6.6, we deal with representations of U(m)(Qj) for I inert or ramified in E. The 
group U(ra)(Qz) is a quasi-split group, but it is not split, and the situation in this 
case is much less favorable. First we do not know the local Langlands correspondence 
for those groups, neither we know the base change to GLm/E (from a conjectural 
point of view, see the final appendix). Hence there is no obvious way to define "having 
less monodromy than" or "having no monodromy at all" for a representation n of 
U(ra)(Qj). Even worse, we were not able to come up with a plausible characterization, 
in terms of group theory, of those irreducible admissible representations of U(ra)(Qj) 
that conjecturally have no monodromy ( 4). Second, there is no theory of types a la 
Bushnell-Kutzko for U(ra)(Qz), m > 3, not to speak of a theory a la Schneider-
Zink. The first solution we imagined to solve those problems was to avoid them: 

E 

(4) To convince the reader that this question is not easy, let us say that for m = 3, there is a 
supercuspidal representation of U(3)(Qj), discovered by Rogawski and called ns, whose base change 
has a non trivial monodromy. See § A. 10 in the final appendix. 
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that is, to assume all our automorphic representations to be unramified (5) at inert or 
ramified I. An unramified representation should certainly be "non-monodromic", and 
unramifiedness is easy to control in deformation as explained in the GLm-case above. 
But the problem is: for odd ra, there is no representation of U(m) of the form 7rn 

that is unramified at ramified primes. (6) So this assumption is much too restrictive. 
Instead, we introduce a special class of principal series representations of U(m)(Qj) 
that certainly should have no monodromy, and which will enable us to deal with a 
large number of p also when m is odd. We call those representations Non Monodromic 
(Strongly Regular) Principal Series. We show in §6.6 that to be a non monodromic 

principal series is a constructible property in a family. 
After these local preliminaries, we turn to global questions. In subsection §6.8, 

we state our assumption Rep(m) on existence and simple properties of the Galois 
representations attached to (some) automorphic forms of U(m). In subsection §6.9 
we construct place by place a representation 7rn of U(ra)(AQ) starting from a cuspidal 
automorphic representation 7r of G L n ( A # ) satisfying some properties (recall that ra = 
n + 2). We then state as a conjecture AC(7r) (even if as we said earlier this has been 
announced) that this 7 r n , under the assumption that e(7r, 1/2) = —1, is automorphic. 

6.2. Definite unitary groups over Q 

6.2 .1 . Unitary groups. — Let be a field, E/k an étale fc-algebra of degree 2 with 
non trivial /.-automorphism c, and A a simple central -E-algebra of rank ra2 equipped 
with a fc-algebra anti-involution x i—> x* of the second kind, i.e. coinciding with c on 
E. We can attach to this datum (A, *) a linear algebraic fc-group G whose points on 
a fc-algebra A are given by 

G (A) := {x e (A <8>fc A)*,xx* = 1}. 

The base change G x & E is then isomorphic to the £"-group A* of invertible elements 
of E, hence G is a twisted fc-form of GL m . Actually, as is well known, every twisted 
A;-form of GL m is isomorphic to such a group. 

Example 6.2.1. — They are two different cases. 

(5) Recall that the notion of unramified representation makes sense for any quasi-split group: it 
means having a non-zero fixed vector by a "very special" maximal compact subgroup, in the sense of 
Labesse. 
(6) More precisely, for odd m any discrete automorphic representation ir of U(m) whose A-packet 
lies in the image of the endoscopic transfert L(U(n) x U(2)) —• LU(m) has the property that its 
base change TTE to GLm/E is ramified at each prime of E ramified above Q (see the appendix § A.9). 
The reason is that for odd m the aforementionned L-morphism contains in its definition a Hecke 
character y, of E such that fi1- = /i but which does not descend to U(l). Such a Hecke character is 
automatically ramified at the primes of E ramified over Q (see §6.9.2). 
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i) If E —> k x k, then A Ai x A 2 and * : Ai —> A ^ is an isomorphism. 
In this case, the choice of i E {1,2} induces a fc-group isomorphism G A*. 
In particular if A -̂ -> Mm(E), then the choice of i determines a ^-isomorphism 
G -̂ -> GL m which is canonical up to inner automorphisms. 

ii) If E is a field, then we say that G (and G(k)) is a unitary group attached to 
E/k. When moreover A = Mm(E), then * is necessarily the adjunction with 
respect to a non degenerate c-Hermitian form / on Em, hence G is the usual 
unitary group attached to this form. If / is the standard anti-diagonal form 

f(xeuyej) = c(x)y6jim-i+u 

then G is quasi-split, and will be referred in the sequel as the m-variables quasi-
split unitary group attached to E/k. 

6.2.2. The definite unitary group U(m). — Suppose from now that k = Q, E 
is a quadratic imaginary field, and assume that A = Mrn(E) and * is attached to 
some form / on Em as in ii) above. Then G is a unitary group over Q. For each place 
v of Q, the local component G XQ QV is then the Qv-group attached to the datum 
(A ®Q Q V , *), hence by Example 6.2.1: 

i) If p = xx' is a finite prime split in E, then x : E —• Qp induces an isomorphism 
G(Q„) ^ GL m (Q p ) , 

ii) if p is inert or ramified, then G(QP) is a unitary group attached to Ep/Qp, 
iii) each embedding E —> C gives an isomorphism between G(M) and the usual real 

unitary group U(p, q), where (p, q) is the signature of / on Em <S>Q M, p + q = m. 
We say that G is definite if G(R) is compact, or which is the same if pq = 0. We 

will be interested in definite unitary groups G with some prescribed local properties. 
Their existence can be deduced from the Hasse's principle for unitary groups over 
number fields for which we refer to [40, §2] but for subsequent computations, it may 
be useful to give them explicitly. 

Let N : E —• Q, x xc(x) be the norm map, m > 1 an integer. 

Definition 6.2.2. — U(m) is the m-variables unitary group attached to the positive 
definite c-hermitian form q on Em defined by 

q((z1,.....,zm)) = 
m 

i=l 
Nlzi). 

Proposition 6.2.3. — (i) U(m) is a definite unitary group. 
(ii) If I does not split in E, and m # 2 mod 4, then U(m)(Q/) is the quasi-split 

m-variables unitary group attached to Ei/Qi. 
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Ifm # 2 mod 4, the group U(ra) is the unique m-variables unitary group attached 
to E/Q that is quasi-split at every finite place and compact at infinity. //ra = 2 mod 4, 
there is no group with those properties. 

Proof. — (i) is obvious and (ii) is an immediate consequence of Lemma 6.2.4 below, 
since disc(g) = 1 (see [51, chap. VI] for the basics on hermitian forms and unitary 
groups). The other assertions (that we shall not use) follow from Hasse's principle 
([40, §2]). 

In the following lemma, we write disc(g) G Q*/N(E*) for the discriminant of a 
non degenerate c-hermitian form q and denote by qo the hyperbolic form qo(x,y) = 
xc(y)+yc(x) 

2 
on Ef. Note that disc(go) = —1-

Lemma 6.2.4. — Let q be a non degenerate c-hermitian form on E™. 

(a) / / ra is odd, then q is equivalent to 
m-l  2 

i=l 
qo(z2i-i,Z2i) + (-1) 

m-l  2 disc(ç) N(Zm). 

For A G Q*, disc(Ag) = Adisc(g), therefore there is a unique non-degenerate 
c-hermitian form up to a scalar. 

(b) / / ra is even, then q is equivalent to 
m — 2 2 

1=1 
qo(z2i-iiz2i) + N(zm-i) + (-1) 

m 2 -1 disc(ç) N(zm). 

The index of q is ra/2 if and only if (- l) m / 2 disc(ç) G N(Ef). 

Proof — Recall that a quadratic form on Qf with s > 5 always has a zero (see e.g. 
[I l l , Chap. IV Thm. 6]). We may view E™ as a Qj-vector space of rank 2ra and q 
as a quadratic form on that space, so q has a zero when ra > 3. As a consequence, q 
contains a hyperbolic plane and we may assume ra = 2 by induction (or ra = 1, but 
this case is obvious). Applying the previous remark to the form q((zi, z2)) — N(zs) on 
Ef, we get that q(v) = 1 for some v G J5z

m, which concludes the proof. 

6.2.3. Automorphic forms and representations. — Let G be a definite unitary 
group. We denote by A the Q-algebra of Q-adèles and A —> A/ the projection to the 
finite adèles. We have the following two important finiteness results: 

i) As G(R) is compact, G(Q) is a discrete subgroup of G(A/), hence for each 
compact open subgroup K C G(A/), the arithmetic group K D G(Q) is finite. 

ii) By Borel's general result on the finiteness of the class number ([25]), for any K 
as above G(Q)\G(Af)/K is finite. 
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The space of automorphic forms of G is the representation of G (A) by right transla
tions on the space A(G) of complex functions on X := G(Q)\G(A) which are smooth 
and G(R)-finite. The space X is compact by i) and ii). It admits a G (A)-invariant 
finite Radon measure, so that A(G) is a pre-unitary representation. 

Lemma 6.2.5. — The representation A(G) is admissible and is the direct sum of ir

reducible representations ofG(A): 

(63) A(G) = ra(7r)7T, 
7T 

where n describes all the (isomorphism classes of) irreducible admissible representa

tions ofG(A), and m(7r) is the (always finite) multiplicity of n in the above space. 

It will be convenient to denote by Irr(R) the set (of isomorphism classes) of irre
ducible complex continuous (hence finite dimensional) representations of G(R). For 
W G Irr(R), we define A(G,W) to be the G (A/^representation by right transla
tions on the space of smooth vector valued functions / : G(A/) —> W* such that 
f{79) = 7oo/(<?) for all g G G(Af) and 7 G G(Q). 

Proof. — As G(R) is compact the action of G(R) on A(G) is completely reducible, 
hence as G(A) = G(R) x G(A/) representation we have: 

A(G) = 
WGlrrÇR) 

W ® ( A ( G ) ® W * f m . G ( R ) 

But we check at once that the restriction map / i—• f\iXG(Af) induces a G(A/)-
equivariant isomorphism 

(A(G) 0 W*)Gm A(G, W). 

As a consequence, ii) shows that A(G) is admissible, which together with the pre-
unitariness of A(G, W) proves the lemma. 

Definition 6.2.6. — An irreducible representation n of G (A) is said to be automorphic 

if m(ir) ï 0. 

Let W G Irr(R) and let us restrict it to G(Q) G(R). As is well known (see § 6.7), 

W comes from an algebraic representation of G, hence the choice of an embedding 

Q —> C equips W with a Q-structure W(Q) which is G(Q)-stable. As a conse

quence, the obviously defined space A(G, W(Q)) provides a G(A/)-stable Q-structure 

on A{G,W). 

Corollary 6.2.7. — Ifir = TToo 0 TTf is an automorphic representation of G, then 7Tf is 

defined over a number field. 
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6.3. The local Langlands correspondence for GL m 

Let m > 1 be any integer and p a prime. Let F/Qp be a finite extension, WF its 
Weil group, Ip C W F the inertia group, and |.| the absolute value of F such that the 
norm of a uniformizer is the reciprocal of the number of elements of the residue field. 
We normalize the reciprocity isomorphism of local class-field theory 

rec : F* —• Wf 

so that uniformizers correspond to geometric Probenius elements. By an Tri
dimensional Weil-Deligne representation (r, N) of F we mean the data of a continuous 
homomorphism 

r : W F — GLm(C) 

such that r(Wf) consists of semi-simple elements, and of a nilpotent matrix 

NeMm(C), 

satisfying r(w)Nr(w~1) = |rec _ 1 (w)\N for all w e Wp-
Recall from [62, Thm. A] that the Langlands correspondence is known for the 

group GL m (F), and we shall use it with the normalization given loc. cit. This param
eterization is a bijection 

7T I—• L(7r) = (r(7T), JV(7r)) 

between the set Irr(GLm(F)) of isomorphism classes of irreducible smooth complex 
representations ir of GL m (F) and the set of isomorphism classes of ra-dimensional 
Weil-Deligne representations of F. It satisfies various properties. For example: 

— When m = 1, GLi(F) = F*, we have N(x) = 0 and r(x) = Xo rec - 1 for any 
smooth character x : ^* — > C*. In general, the L-parameter of the central 
character of TT is det(L(7r)), and for any smooth character x : F* —* C*, 
L(7T <S>x° det) = L(TT) (g) L(x). 

— 7T is superscuspidal (resp. ess. square integrable) if, and only if, L(7r) is irreducible 
(resp. indecomposable). 

— If 7Ti is an ess. square integrable representation of GL m i (F) , and J2im">> = m"> 
then ®¿L(7r¿) is the L-parameter of the Langlands quotient 0 ¿ 7r¿ (when it makes 
sense). 

6.4. Refinements of unramified representations of GL m 

In this subsection, we explain some aspects of the representation theoretic coun
terpart (7) of the theory of refinements developed in Section 2. The simplest example 

(7) Actually, the theory developed in this part is comparatively much simpler than the Galois theoretic 
one of Section 2, as we are reduced here to see refinements as some orderings of some Frobenius 
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of this notion is the well known fact that any classical modular eigenform of level 
1 (weight k, say) generates a two-dimensional vector space of p-old forms of level 
To(p). These old forms all have the same T\-eigenvalues for I ^ p, and the Atkin-
Lehner Up operator preserves this two-dimensional space with characteristic polyno
mial X2-tpX + pk~l 

From a representation theoretic point of view, this last computation is a purely 
local statement, namely the computation of the characteristic polynomial of Up, a 
specific element of the Hecke-Iwahori algebra, on the space of Iwahori invariants of a 
given irreducible unramified smooth representation of GL^Qp). In what follows, we 
explain how this theory generalizes to GL m (Q p ) , focusing essentially on the unramified 
case. In [36, §4.8] and [8, §6], we explained how to deduce them from the Bernstein 
presentation of the Hecke-Iwahori algebra. Here we use an alternative approach based 
on the Borel isomorphism and the geometrical lemma. 

6.4.1. The Atkin-Lehner rings. — Let F be a finite extension of Qp with uni-
formizer w and ring of integer OF- We denote by G the group GL m (F), B its upper 
Borel subgroup, N the unipotent radical of B, and T the diagonal torus of G. Let 
K := GLm((9 jp), T° = K n T, and let / be the Iwahori subgroup of G consisting of 
elements of K which are upper triangular modulo w. 

The Hecke-Iwahori algebra is the Z[^]-algebra CC(I\G/I, Z[^]) of bi-I-invariant and 
compactly supported functions on G with values in Z[~], for the convolution product 
normalized such that I has mass 1. If g G G, we denote by [Igl] the characteristic 
function of Igl. We introduce now two important subrings of CC{I\G/I, Z[^]), that 
we call the Atkin-Lehner rings following Lazarus. Let U C T be the subgroup of 
diagonal elements whose entries are integral powers of w, U~ C U the submonoid 
whose elements have the form 

diag(^ai,^a2,...,^a-), ai G Z, ai > ai+1 Vi 

We define A~ C CC(I\G/I,Z) as the subring generated by the [lui], u G U~. Recall 
that for each u G U~, [lui] is invertible in CC(I\G/I, Z[^]) by [67, §3], hence it makes 
sense to define also 

APCCC(I\G/IÌZ 
.1. 

P 
as the ring generated by the elements [Iul], u eU , and their inverses. 

Proposition 6.4.1. — (i) The subset M := IU I C G is a submonoid, and the map 
M —• U, iui' i—> u, is a well defined homomorphism. 

eigenvalues in the complex world. The relation could certainly be pushed much further, in the style 
of the work of M. Emerton for GL2(QP) [52]. 
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(ii) The map U —• Ap , u i—> [Iul], extends uniquely to ring isomorphisms 
Z[U~] A- and Z[U] Ap. 

We warn the reader that when m > 1, the above homomorphism does not in general 
send u eU to [Iul], but rather on [ia/j.f/W] - 1 for any a, b G U~ such that u = ab~l. 

Proof. — By [35, Lemma 4.1.5], M := ]J u G[/- Iul C G is a disjoint union, Vtz,u' G 
U~, IuIufI = luu'I, hence M is a submonoid of G, and also [IuI].[IufI] = [Iuu'I], 
which proves (i) and the first part of (ii). The proposition follows then from the easy 
fact that U~ —> U is the symmetrisation of the monoid U~. 

Example 6.4.2. — As a consequence of Prop. 6.4.1, we will systematically view Ap-
modules as {/-modules. For example, let 7r be a smooth representation of G, say with 
complex coefficients. The vector space n1 of Iwahori invariant vectors inherits a C-
linear action of C c(/\G/7, Z[^]), hence of Ap, hence is a (7-module in a natural way. 
It turns out that this [/-module structure on TT1 is related to the Jacquet-module of 
7r via the following result of Borel-Casselman. 

If V is a représentation of G, we dénote by VN the Jacquet-module of V with 
respect to N (see e.g. §6.6.1), that is the space of coinvariants of N, with its natural 
action of T. 

Proposition 6.4.3. — For any smooth complex representation TT of G, the natural map 

TT7—*(7Ttf)T°®<S51

: 

is a C[U]-linear isomorphism. 

Proof. — As the [iW] are invertible in the Hecke-Iwahori algebra, we have n1 = 
[Iul].^1 for each u G U~. The result follows then from Prop. 4.1.4 and Lemma 4.1.1 
of [35], and from the fact that [Iul]v = 8Q1{U)VI{U{V)) for each u G U~ and v G n 
by Lemma 1.5.1 of loc. cit. 

6.4.2. Computation of some Jacquet modules. — In order to use the previ
ous result, we recall now the computation of the Jacquet module of some induced 
representations, following [19]. Fix P D B a parabolic subgroup of G, L its Levi 
component containing T. Let x : L —• C* be a smooth character, viewed also as a 
character on P which is trivial on the unipotent radical of P. Denote by Indp(x) the 
unitary smooth parabolic induction of x, that is the space of complex valued smooth 
functions f on G such that 

f(P9) = x(p)Sp(9)1/2f(g) WpeP, geG, 

viewed as a G representation by right translations. Here 5p is the module character 
of P. 
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Let U [ = i Ii = {1, • • • ,TTI} be the ordered partition associated to P. If rrii = \Ii\, 
then L = Yli=i GL m i (F) . The subgroup W = 6 m of permutations of { 1 , . . . , m} is a 
subgroup of G in the usual way (w = (<5i,™(j)))- Let W(P) C W be subset of elements 
w £ W such that w(k) < w(l) whenever k < I and both k and Z belong to the same 
Ii. The group W acts on the characters of T by the formula ipw(t) = ip(w~1tw). 
Moreover, % may be viewed as a character of T by restriction T C P. 

Proposition 6.4.4. — The semi-simplification of the C[T]-module (Indpx);v is 

wew(P) 
xws1J2. 

Proof. — This is a special case of the general geometrical lemma [19, Lemma 2.12] 
(see also [125, Theorem 1.2]). 

6.4.3. Unramified representations. — An irreducible smooth representation of 
G is said to be unramified if it has a non zero vector invariant by K. The classification 
of unramified representations is well known and due to Satake. 

Let x T —• C* be a smooth character. It will be convenient for us to write \ as 
a product of smooth characters x% : F* — y ^* sucn tnat 

X((xi, . . . ,a; m )) 
771 

1=1 
Xi(xi) 

Assume that x(T°) = 1 and consider the induced representation Ind^(x)- As is 
easily seen, the space of its K-invariant vectors is one-dimensional hence this induced 
representation has a unique unramified sub-quotient 7r(x). It turns out that: 

— 7r(x) — 7r(x') if? and only if, x — Xw f ° r some w G 6 m (see §6.4.2 for this 
notation). 

— each unramified representation is isomorphic to some 7r(x). 

The Langlands parameter of 7r(x) is easy to describe. The isomorphism class of 
Weil-Deligne representations L(7r(x)) = (r,N) associated to 7r(x) satisfies N = 0, 
T(IF) = 1 (hence the name unramified). It is uniquely determined by the conjugacy 
class of the image of a geometric Frobenius element of Wp, namely the class of 

diag(xiM, • • •, XmM) £ GLm(C). 

Of course, this diagonal element is unique only up to permutation. We will frequently 
refer to this class as the semi-simple conjugacy class associated to 7r(x). 
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6.4.4. Refinements. — We fix TT an irreducible unramified representation of G. 

Definition 6.4.5. — A refinement of TT is an ordering of the eigenvalues of the semi-
simple conjugacy class above associated to TT. In an equivalent way, a refinement of TT 

is a character x : U ~ T/T° —• C* such that TT ~ 7r(x), the bijection being 

X^ ( X l M v , X m W ) . 

Let us chose some refinement \ of 7r, SO that TT ~ 7r(x) is an irreducible subquotient 
of Ind^(x). By Propositions 6.4.3 and 6.4.4, we get that as a {/-module 

(64) (TTT - ( Ind£ X ) / , s s ®weemX
wSB1/2-

As a corollary, we have the following Proposition-Definition. 

Definition 6.4.6. — If a character x ^ 1 ^ 2 : U — > C* occurs in 7rJ, or equivalently if 
X<$]/2 occurs in 7T̂ °, then x is a refinement of TT. We say that a refinement of TT is 
accessible if it occurs this way. Equivalently, x is an accessible refinement of TT if, and 
only if, TT occurs as a ^^representation of Ind# (x) • 

The equivalence in the definition above follows from Probenius reciprocity. Note 
moreover that for a character of the abelian group U, it is the same to appear as 
a subrepresentation of TT1 or as a subquotient, since TT1 is finite dimensional. Any TT 

always has at least one accessible refinement. 

Remark 6.4.7. — Let TT be an irreducible representation of G which is not necessarily 
unramified, but such that TT1 ^ 0. Although we shall not use it in this book, note that 
it still makes sense to define a refinement of n as an unramified character x : T —» 
C* such that 7r occurs as a subquotient of Ind^(x). The above notion of accessible 
refinement also applies verbatim to this extended context. 

For most of the representations 7r, all the refinements are accessible. Indeed, by 
[19] [Theorem 4.2] and formula (64) we have the following positive result. Set 

q := \OF/W\. 

Proposition 6.4.8. — Assume that (Xi/Xj)(w) # Q for all i # 3- Then 7r(x) = Ind^(x) 
and all the refinements of 7r(x) are accessible. 

Example 6.4.9. — i) If 7T ~ 7r(x) is tempered, then % is known to be unitary hence 
Proposition 6.4.8 applies. More generally, if IT is generic Proposition 6.4.8 applies, 

ii) On the opposite, if n is the trivial representation then it has a unique accessible 

refinement, namely SB — 1/21 .It corresponds then to the ordering 

q 
m — 1 2 q 

m-3  2 q 
m — 1 2 
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iii) Actually, by [19] [Rem. 4.2.2], 7r(x) — Ind^(x) if and only if the assumption of 
Prop. 6.4.8 is satisfied. 

6.4.5. Accessible refinements of almost tempered unramified representa
tions. — In the applications, we will need to study the accessible refinements of 
some 7r which are not tempered, which leads us to introduce the following class of 
unramified representations. 

Let 7r be an unramified irreducible representation of G, and X the set of eigenval
ues (with multiplicities) of the semi-simple conjugacy class attached to 7r, \X\ = m. 

Assume that X has a partition X = JJi=1 Xi such that: 

(ATI) for each i, Xi has the form {x,x/q,... , # /g m i 1 } with rrii = \Xi\, 

(AT2) the real number | flxex* # | 1 / / m i does not depend on i. 

Proposition 6.4.10. — The accessible refinements of TT are the orderings (x±,... ,xm) 
on X such that there exists a bisection r : { 1 , . . . , m} —> X with the following property: 
whenever r(k) and r(l) are in the same Xi and x^ = qxi, then k < I. 

Proof. — Let us choose a refinement (x±,..., xm) of 7r satisfying the condition of the 
statement and such that { # i , . . . , £ m i } = Xi, { x m i + i , . . . , x m i + m 2 } = X2 and so on. 
It exists by (ATI). Let % : T —> ̂ * D e the corresponding character, n is then the 
unramified subquotient of Ind^x and we are going to identify it. 

Consider the standard parabolic P of G with Levi subgroup 

L = GLmi(F) x GL m 2 (F) x • • • x G L m ( F ) . 

One checks immediately that the character x4 / 2 ( *p ) r B

1 / 2 of T extends uniquely to 

a character ip : L —• C*. Explicitly, ip(gi,....gr) = FL^G?*)? where ipi is the 
unramified character of GL m i (F) obtained by composing the determinant GL m i (F) —• 
F* with the character of F* trivial on Op and sending w to the element 

Vi '= xq 2 

where x is the element of Xi appearing in (ATI). As a consequence, we have an 

inclusion of G-representations: 

I n d ^ C Indgx-

Up to a twist, we may assume that the real number occurring in property (AT2) is 

1. In terms of the Yi it means that \yi\ = 1 for all i, i.e. that ip is unitary. A theorem 

of Bernstein [18] shows then that IndpV is irreducible. As it contains obviously the 

/^-invariant vectors of Ind#x> w e conclude that 

7T ~ Indp^. 
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Now that we have written TT as a full induced representation, the proposition is an 
immediate consequence of Propositions 6.4.3 and 6.4.4. 

Definition 6.4.11. — Let us say that TT is almost tempered if X admits a partition {Xi} 
satisfying (ATI) and (AT2), or equivalently if up to a twist TT is the full parabolic 
induction of a unitary character. 

The equivalence of the two definitions above is a consequence of the proof of Propo
sition 6.4.10. 

Example 6.4.12. — i) If 7T is tempered, it is almost tempered (and the X^s are 
singletons). If 7T is one dimensional, it is also almost tempered, for the trivial 
partition of X in one subset. 

ii) Assume that TT is the local component of a discrete automorphic representation 
of a unitary group (resp. of GL m ) . A consequence of Arthur's conjectures (resp. 
of Ramanujan conjecture and Moeglin-Waldspurger's theorem [87]) is that n 
should be almost tempered. This is actually the main reason why we introduced 
this definition. 

iii) We will need the following explicit example. Assume that TT is such that X 
contains q1/2 and q~1^2 with multiplicity 1, and all of whose other elements 
have norm 1. Then the accessible refinements of TT are exactly the orderings of 
X of the form 

(.....,q1/2,.......,...q1/2,..........) 

that is the ones such that q1/2 precedes q xl2 in the ordering. 

6.5. if-types and monodromy for GL m 

We keep the notations of the preceding subsections. 

6.5.1. An "ordering" relation on I r r (GL m (F)) . — Recall that the relation TT ~/F 

TT' if and only if r{jr)\iF ~ r(jr')\iF on Irr(GL m (F)) is called the "inertial equivalence" 
relation. We define an order relation -<iF on each equivalence class for ~ / F as follows. 

Definition 6.5.1. — Let 7T, 7rf e Irr(GLm(F)), we will write n -<iF n' if n ~ / F 7r ' , and 
if N(7r) is in the Zariski closure (8) of the set of matrices PiV(7r /)-P _ 1 in M m ( C ) where 
P runs among the matrices in GL n(C) such that Pr^Ol / .P- 1 = r(7T)|/F 

Remark 6.5.2. — i) In an inertial equivalence class, the minimal elements for -<jF 

are precisely the TT with N(TT) = 0, and each of them is actually a smallest 
element. 

(8) Or in the closure for the complex topology, which amounts to the same here. 
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ii) Assume m > 1 and let 1 and St be the trivial and the Steinberg representation 
respectively. We have r ( l ) ( i » = r(St)(IF) = 1, JV(1) = 0 and N(St) has 
nilpotent index ra, hence 1 -<iF St. As is well known, the TT -<jF 1 are exactly 
the unramified representations. Moreover, the TT -<Jf St (i.e. TT ~jF 1) can also 
be abstractly characterized by the property that TT1 ^ 0, where / is a Iwahori 
subgroup, or which is the same by the property that 

HomK(r,7r) ^ 0, 

with r = Indf 1/ and K = G L m ( 0 F ) . 
iii) Take m = 2 in the example above, the representation r is then the direct 

sum of the trivial 1# and the Steinberg Stn representation of the finite group 
H := GL2(Fq). Of course, TT -<JF 1 if and only if Hom(l#, TT) / 0. As an exercise, 
the reader can check that the relation Homx (StH , TT) ^ 0 cuts exactly the 7r in 
the trivial inertial class which are not 1-dimensional. 

6.5.2. Types. — Using works of Bernstein, Zelevinski, Bushnell-Kutzko and 
Schneider-Zink, it turns out that Remarks 6.5.2 ii), iii) are the simplest case of a 
general phenomenon. We are grateful to J.-F. Dat for drawing our attention to the 
reference [106]. 

Proposition 6.5.3. — Let TT g I r r (GL m (F)) . There exists an irreducible complex rep
resentation T o /GL m ( (9p) such that 

i) 7 r |GL m (0 F ) contains r with multiplicity 1, 
and for any TT1 G I r r (GL m (F)) , 

ii) YLomG^o^T^Tr') ^ 0 TT' - < I F TT, 
iii) if TT' is tempered and TT' -<IF TT, then HoraGLm(o F)( r>TT') # 0-

Proof. — Up to the dictionary of local Langlands correspondence, this is exactly 
[106, Prop. 6.2]. For the convenience of the reader, we explain below the relevant 
translation. 

Fix TT as in the statement, and let Q, be the (unique) Bernstein component of 
Irr(GLm(F)) containing TT. This component is uniquely determined by the cuspidal 
support of TT. By the properties of the local Langlands correspondence, which is built 
from its restriction to the supercuspidal representations and Zelevinski's classification, 
this support is in turn uniquely determined by r(7r)|/F: for a TT' G Irr(GLm(F)), we 
have TT' G if and only if TT' is in the same inertial class as TT. 

The additional datum of the matrix N(TT) determines then the way Zelevinski 
realizes TT as a Langlands quotient, that is the "partition" V(TT) such that TT lies in 
Qj>(n) in the notations of [106, §2]. Such a "partition" is by definition a family of 
Young diagrams (see below) indexed by the cuspidal support of 7r, the size of a diagram 
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being the multiplicity of the associated supercuspidal. By Gerstenhaber's theorem (see 
Prop. 7.8.1) and by definition of the ordering on partitions loc. ext. §3 (which is the 
opposite of the dominance ordering recalled in Appendix 7.8.1), we have for a TX' G Cl: 

n' -<IF TT & V(7TF) y V(TT). 

They define then loc. cit. §6 an explicit representation called crv^ (A) of a maximal 
compact subgroup of GL m (F), here A is Bushnell-Kutzko's type of the Bernstein 
component Q,. Up to conjugation we may assume that this maximal compact subgroup 
is GLm(Oi?), and we set r := crp(7r)(A). The proposition is then [106, Prop. 6.2]. 

6.6. A class of non-monodromic representations for a quasi-split group 

In this subsection, we let / be a prime number, and G the group of rational points 
of a connected reductive quasi-split group over a field F which is a finite extension 
of Qi. We denote by 5 a maximal split torus in G, T the centralizer of 5, which is a 
maximal torus in G, and B = TN a Borel containing T (where N is the unipotent 
radical of B). We denote by W the Weyl group of S: W = N(S)/C(S) = N(S)/T; 
this groups acts on T by conjugation. 

We denote by F' a finite Galois extension of F on which G splits. We denote with 
the same letter with a prime the set of points over F' of the algebraic group defining 
one of the subgroups of G defined above: hence G', its Borel B' — T'N1', where T' 
is a maximal torus of G' (which is split). We denote by W the Weyl group of T': 
W = N(T)/T. We have a natural inclusion W C W. 

6.6 .1 . Review of normalized induction and the Jacquet functor over a base 

ring. — Let A be a commutative Q-algebra that contains a square root of /. We 
denote by 5B the modulus character of B which takes values in Zz and we choose once 
and for all a square root 5^2 : G —> A* of 5B-

We recall some terminology concerning an A [G]-module M: the module M is 
smooth if every v G M is fixed by some compact open subgroup U of G and it is 
A-admissible if for every small enough compact open subgroup U, Mu is a finite type 
^4-module. 

If V is a smooth A[T]-module, we denote by Ind^(F) the normalized induction of 
V from B to G, that is the A-module of all locally constant functions / : G —> V 
such that f(bg) = bSB(b)1/2f(g) for all b G B, g G G. The representation Iad%(V) is 
smooth and its formation commutes with every base change A —> A1'. 

If M is an j4[G]-module, we denote by MN the Jacquet module of M relatively to TV, 
that is the AT-coinvariant quotient M/M(N), where M(N) = {v G M, JNQ 7r(n)v dn = 

0 for some compact subgroup N0 c iV}, seen as a representation of T = B/N. 
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Proposition 6.6.1. — (a) If M is smooth, then so is MN-
(b) The functor M i-> MN from the category of smooth A[G]-modules to the category 

of smooth A[T]-modules is exact, and commutes with — 0 ^ M ' for any A-module 
M'. 

(c) If M is flat (resp. if A is reduced and M is torsion free) as an A-module, then 
so is MN. 

(d) If M is A-admissible and of finite type as an A[G]-module, then MN is of finite 
type as an A-module. 

Proof. — (a) is clear. The exactness in (b) is proved exactly as in the classical case 
(e.g. [35, Proposition 3.2.3]) once noted than N0 is a pro-Z-group, hence of pro-order 
invertible in A. (See also [120, page 96]) 

For M' an A-module and M an A[G]-module, we see M ® A M' as an A[G]-module 
for the trivial action of G on M'. The natural map 

(65) MN ®A M' —> (M ®A M')N 

is an isomorphism. Indeed, using a free presentation of M' over A, the exactness of 
V i—> Vjv and the left exactness of tensor products, we are reduced to the case where 
M' is free over A, which is obvious, hence (b) is proved. 

The "torsion free" part of (c) is obvious from the exactness in (b). Assume that 
M is flat over A and let X->Y be an injective morphism of A-modules. Then 
M®AX —> M®AY is an injection of A[G]-module. Hence (M®AX)N ^ (M<S)AY)N 

by (b), which is MN ^ X I M MN ®A Y by (65). Thus MN is flat. 
Let us prove (d) (a proof is sketched in [120, page 96]). Since M is of finite type 

over A[G], we deduce easily from the compactness of B\G (see e.g the first paragraph 
of the proof of [35, Thm 3.3.1]), that MN is finitely generated as an A[T]-module. 
Since MN is smooth and T is abelian, there is a compact open subgroup To of T such 
that MU° = MN- Up to replacing TQ by a smaller group, we see by [35, Prop. 1.4.4 
and Thm 3.3.3] that there is a compact open subgroup Uo with Iwahori factorization 
UQ = NQT0M0 of G such that the natural map MU° -> MTON is surjective. Since MU° 
is of finite type over A by ^-admissibility of M, then so is M^° = MN. 

We recall the following easy reciprocity formula: 

Lemma 6.6.2. — If M is a smooth A[G]-module and V a smooth A[T]-module, we 
have a canonical isomorphism 

Hom A [ G ] (M, IndiOO) = KomA[T](MN,V ® #2). 

6.6.2. Non Monodromic Strongly Regular Principal Series. — In this para
graph, we keep the preceding notations but we also assume that A = k is a field. We 
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recall that a smooth character x : T ^ A:* is regular when there is no w ^ 1 in W such 
that xw = X- We also recall the following elementary result (cf. [97, Proposition 1]): 

Lemma 6.6.3. — Assume x : T ~~> is a smooth regular character. Then: 

(a) The representation Ind#(x) has a unique irreducible subrepresentation S(x)-
(b) The Jacquet module S(x)N contains X&B1 /2 as a T-subrepresentation. 

(c) Any smooth G-representation M such that MN contains X$B1 /2 AS A T-
subrepresentation has a subquotient isomorphic to S(x)-

Proof. — By the geometric lemma, the Jacquet module Ind^x)^ is semi-simple 
as a T-representation and is the direct sum of the distinct characters XW$B1 /2 ̂ OR 
w G W. Since the Jacquet functor is exact, and as Ind^(x) is of finite length (use 
Prop. 6.6.1 (d) and [17, Rem. 3.12]), one and only one of the Jacquet modules of its 
irreducible subquotients contains x^i/2- Let us call this irreducible subquotient 5(x), 
which makes (b) tautologic. 

On the other hand, by Lemma 6.6.2, the Jacquet module of any subrepresentation 
of Ind^(x) contains X$B^' • ̂  nas an irreducible subrepresentation, hence S(x) is the 
unique irreducible subrepresentation of Ind^(x), which is (a). Finally if M is as in 
(c), we have by Lemma 6.6.2 a non-zero morphism M —• Ind^(x)- Its image admits 
S(x) as a subrepresentation by (a), and (c) follows. 

Recall that the base change of a smooth character x of T is the character x' of T' 
defined as x' :== X ° Nm, where Nm : T' —• T is the Galois norm. 

Definition 6.6.4. — A smooth character x of T is said strongly regular\f its base change 
XR is regular as a character of T'. 

Since W C W, a strongly regular character x is also regular. 
We now recall some notations of [97], [98]. Let A be the root system of G' with 

respect to V. Let X*(Tf) be the group of rational characters on T' and V = X*(T)<S)z 
R. If a G A, its associated coroot 2 is a linear form on V. The chambers of V are 
the connected components of V — \JA£A Ker a. The Borel subgroup B' determines the 
choice of a "positive" chamber C+. 

Let X*(Tf) be the group of 1-parameter subgroups of T'. There is a canonical 
pairing X*(Tf) x X*(Tf) —> Z. Hence each coroot a determines canonically a 1-
parameter subgroup ta : Ff* —> T'. 

If x' is a smooth character T' —> k* we define the set H(xO as the set of the coroots 
a such that x! °ta(a) = \a\ G k* for every a G F'*. When k = C, Rodier's theory [97] 
shows that if x! is regular, the set S(x;) determines the reducibility of Ind^,(x/) (in 
particular, this representation has length 2 ' s ^ x 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2009 



166 CHAPTER 6. AUTOMORPHIC FORMS ON DEFINITE UNITARY GROUPS 

Definition 6.6.5. — An irreducible representation of G is said to be a non monodromic 
principal series if it is isomorphic to a representation S(x) where 

(a) x is strongly regular. 
(b) For every a G £(x')> we NAVE Û?(C +) < 0. 

A more appropriate terminology may have been non monodromic strongly regular 
principal series, but we shall use the one above for short. 

Remark 6.6.6. — (1) For a split group G' and a regular character x' of T', the local 
Langlands correspondence has been denned by Rodier ([98]) for the subquotients 
of Ind^,(x/)5 m a waY that is compatible to the usual (that is, Henniart-Harris-
Taylor's) local correspondence in the case of GL n(F). The representation L(TT) = 
(r(7r), N(TT)) of the Weil-Deligne group of F' corresponding to any of those 
subquotients TT has the same r(7r) namely the composition 

Vy : WF* —• LT' —• LG' 

where the first map is the L-parameter of x' for the torus TF. The action of the 
monodromy N depends on the chosen subquotient. Hypothesis (b) is equivalent 
to saying, by [98, 5.2], that S(\f) has no monodromy, that is, that N(S(x')) — 0-
In other words, the L-parameter for 5(x') is just the map tyx>. 

(2) In the case G' = GLN(F
F), hypothesis (b) simply says that if T' is the diagonal 

torus and B' the upper diagonal Borel, and x' — (xi 5 • • • ? Xn)> then Xi — Xj \ ' I 
implies i > j . 

(3) There should exists a base change map, sending L-packets of G to L-packets to 
G'and corresponding to the obvious restriction map on the L-parameters. If 
X is strongly regular, it is natural to expect that the base change to G' of the 
L-packet of G containing the representation S(x) contains the representation 

s(x')-
In the few cases where the base change has been defined, this is actually 

true: when G = GL n(F) and F'/F is cyclic, this follows immediately from the 
compatibility of local base change with the local Langlands correspondence and 
from remark (1) above. In the more interesting case where G = U(3) is the 
(unique) unitary group over F that splits over the quadratic extension F'/F, 
and G' = GL3(F'), this is satisfied for the base change map defined by Rogawski 
in [99]. 

Hence the conjectural L-parameter for 5(x) should be the composition ipx : 
WF —• LT —• LG. In particular, it should be non monodromic (that is, 
N(S(x)) = 0 with the notation of § 6.3.) 

(4) Rodier's theory does not seem to have been extended to any quasi-split group, 
even to unitary groups. Therefore we have not felt comfortable in assuming that 
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for any regular x satisfying the analog of condition (b) but for the root system 
of G (which might be not reduced), S(x) should have a non monodromic L-
parameter. This is however the case for the rank one group U(3) by results of 
Keys and Rogawski (see [99, 12.2]). 

6.6.3. The locus of non monodromic principal series is constructible. — 
In this paragraph, we keep the notations of § 6.6.1, and we assume moreover that A is 
a noetherian ring. We suppose given an A-admissible smooth A[G]-module which is 
of finite type over A[G]. For every x e X := Spec(A), we denote by k(x) = Ax/xAx 

the residue field of Ax, and we set Mx := M <8>A AX and Mx := M <S>A k(x). 
Let us denote by X0 the subset of x G X such that the A;(x)[G]-module Mx has an 

irreducible subquotient which is a non monodromic principal series . 

Proposition 6.6.7. — (i) XQ is a constructible subset of X. In particular, there is a 
subset U C XQ which is dense and open in XQ. 

(ii) Assume that A is reduced and that M is torsion free over A. Then XQ is a 
(possibly empty) union of irreducible components of X. 

Proof. — By Proposition 6.6.1, the A[T]-module E := MN is of finite type over A. 
We view E as an A[T']-module via the map A[Tf] —• A[T] induced by the norm Nm. 
Let B be the image of the A-algebra A[T'] in End A(E). It is a finite A-algebra, let 
Y = Spec(B) and g : Y —> X the structural map. 

A point y G Y with residue field k(y) defines an A-algebra morphism B —> k(y) = 
By/yBy, hence a character x'y T' —> k(y)*. Let us consider the subset Yb C Y 
of points y G Y such that the character x'y is regular and satisfies condition (b) of 
Definition 6.6.5. By definition, we have 

Yn = 
w€W'\{l} teT' 

D(tw -1) 
{aeA\a(C)>0} feF> 

D(t«(f)-\f\) 

where D(b) for b G B is the open subset of Y = Spec B defined by the condition 6 ^ 0 . 
Hence YQ is an open subset of Y as both intersections are finite. 

We claim that X0 = g(Y0). First, by Lemma 6.6.3(c) and 6.6.1(b), observe that 
XQ is also the subset of points x of X such that E (g>A k(x) contains a character 
T —> k(x)* satisfying (a) and (b) of Def. 6.6.5, i.e. such that the support of the 
E-module E (gu k(x) meets Y0. In particular, it is clear that X0 C g(Y0). 

Let x G X. As Ax is henselian and g is finite, 

Bx := B®AAX^+ 
{y I g(y)=x} 

By, 
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hence we can write accordingly Ex := E<S>AAX = (ByE(y) as a direct sum of B®A AX-
modules. Moreover, by flatness of A —> A X , B X identifies with its image in End-^(EX) 
hence E(y) ^ 0 for all y € g~1(x). In particular, if x = g(y) with u E YQ, then 

E®A k(x) = Ex/xEx D E(y) 0 — k(x) 

and the latter 5-module is non zero by Nakayama's lemma, hence has support {y}. 
This proves that g(Y0) C X 0 , hence the equality g(Y0) = X0. 

In particular, by Chevalley's theorem (see e.g. [63, exercise II.3.19]) XQ is con
structive as YQ is open and g is of finite type, which proves the first part of (i). 
The second part of (i) is a standard consequence of being constructible (see e.g. [63, 
exercise 11.3.18(b)]). 

Let us prove (ii). As YQ is an open subset, its closure is a finite number (possibly 
zero) of irreducible components of Y. As g(Yo) = Xo and g is finite, we only have to 
check that each irreducible component of Y maps surjectively to an irreducible com
ponent of X. Note that E is torsion free over A by assumption and Proposition 6.6.1, 
hence so are End^^) and B C End^(.E). We conclude then by Lemma 6.6.8. 

The following lemma is a variant of [36, Lemma 2.6.10]. 

Lemma 6.6.8. — Assume that A is a reduced notherian ring and that B is a finite, 
torsion free, A-algebra. Then each irreducible component o/Spec(B) maps surjectively 
to an irreducible component o/Spec(A). 

Proof. — We check at once that a finite type A-module M is torsion free if, and only 
if, it has an ^4-embedding M An for some n. In particular, if M is torsion free over 
A, then for all x G Spec(A) the A^-module Mx is torsion free. 

As the finite map g : Spec(B) —• Spec(A) is closed, it suffices to show that the 
image of the generic point x of an irreducible component of Spec(B) is the generic 
point of an irreducible component of Spec(A). By localizing A at g(x), we may assume 
that A is local and that g(x) is a closed point. As g~1(x) is a discrete closed subspace 
of Spec(B), x is also a closed point, hence it is open as it is minimal as well, and Bx 

is a direct factor of B. Thus we may assume that B = Bx is artinian. As B C An and 
A is reduced, it implies easily that A is itself artinian, which concludes the proof. • 

Remark 6.6.9. — (A variant) Assume that we have a finite number of quasisplit 
groups G{, possibly over local fields of different characteristics, each one being 
equipped with a datum (Gi,Bi,Ti,G^,B'^T!) as in the beginning of §6.6. Then we 
may form G = m[[i Gi, as well as B, T, G', B' and T", and all the propositions and 
lemmas of this §6.6 apply verbatim to this case, as all the arguments are group 
theoretic. For example, in this context, a non monodromic principal series of G is a 
tensor product of non monodromic principal series 7T; of G{. 
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6.7. Representations of the compact real unitary group 

Recall that the continuous, irreducible, complex representations of the compact 
group U(ra)(R) are all finite dimensional. There are two ways to describe them: ei
ther by their highest weight or by their Langlands parameters. We give here both 
descriptions, as well as the relation between them. 

If k := (fci,...,fcm) e Zm satisfies ki > k2 > - - - > kmi we denote by Wk the 

rational (over Q), irreducible, algebraic representation of GL m whose highest weight 
relative to the upper triangular Borei is the character (9) 

8k : (zi,... ,zm) 
m 

i=l 

zk\ 
I 

For any field F of characteristic 0, we get also a natural irreducible algebraic repre
sentation Wk(F) := W <g>Q F of GL m (F), and it turns out that they all have this 
form, for a unique k. 

Let us fix an embedding E C, which allows us to see U(ra)(R) as a subgroup 
of GLm(C) well defined up to conjugation (see §6.2.1). So for k as above, we can 
view Wfc(C) as a continuous representation of U(m)(R). As is well known, the set 
of all Wfc(C) is a system of représentants of all equivalence classes of irreducible 
continuous representations of U(m)(R). We will say that Wk has regular weight if 
ki > k2 > - ' > km. 

On the other hand, the L-parameters of the irreducible representations of U(ra)(R), 
are determined by their restrictions to the Weil group of Wc = C* of C, which are, 
up to conjugation, all the morphisms <\> : C* —> GLm(C) of the form 

^ ) = d i a g ( ( 2 / ¿ r , . . . , ( ^ ) a - ) 

where ai,... ,a m e Z + m+l 
2 and oi > • • • > am. For the proof, see [15, Prop. 4.3.2]. 

The relation between the two descriptions is given by 

di — ki -\-
m+1 

2 
z, i = 1... m. 

6.8. The Galois representations attached to an automorphic representation 
of U(m) 

6.8.1. Settings and notations. — In this section, m > 1 is an integer such that 
m ^ 2 (mod 4). Let us fix a prime number p that is split in E, algebraic closures Q 
of Q and Qp of Q p , and embeddings tp : Q -* Q p , ¿00 : Q -+ C. As G(R) is compact, 
for any automorphic representation TT then ir^ is algebraic and the finite part 7T/ is 

(9) This means that the action of the diagonal torus of GLm on the unique Q-line stable by the uppei 
Borel is given by the character above. 
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defined over Q by Lemma 6.2.7, so that we may view it over Qp using LPL^. Let us 
fix such a 7r. 

If I = xx is a prime that splits in E, then we will denote by nx the representation 
of GLm(Qj) deduced from 7T/ and the identification G(Qi) — > x GLm(Q/) defined by 
x as in § 6.2.2. 

We recalled in § 6.3 the Langlands-Harris-Taylor parameterization of complex ir
reducible smooth representations. This parameterization holds actually if we replace 
C everywhere there by any algebraically closed field of characteristic 0, e.g. Qp. As 
a consequence, to each 7rx as above viewed with Qp coefficents via LPL^, is attached 
a unique Qp-valued Weil-Deligne representation (r(7rx), N(7rx)). We recall also that 
from Grothendieck's Z-adic monodromy theorem (see e.g. the Appendix 7.8.3), for 
any local field F over Qi with / ^P there is a bijection between the isomorphism 
classes of continuous representations Wp —• GL m (Q p ) , and the isomorphism classes 
of m-dimensional Qp-valued Weil-Deligne representations of F. We shall use these 
bijections freely in the sequel. 

We let v denote the (split) place of E above p induced by tp : E —> Q p , and by Voo 
the complex place of E induced by ¿00 : E —> C. 

Let I be a prime that does not split in E. If E is unramified at Z, then G(Qi) 
is an unramified unitary group hence it makes sense to talk about its unramified 
representations: they are the irreducible smooth representations having a nonzero 
vector invariant under a maximal hyperspecial subgroup. For example, for the obvious 
model of U(m) over Z then GÇZi) is maximal hyperspecial. When I is ramified, we will 
also say that TTI is unramified if it has a nonzero vector invariant under a very special 
maximal compact subgroup. Following Labesse's terminology [76, §3.6], we say that 
a special maximal compact subgroup is very special if all of its constant qa/2 defined 
by Macdonald in [81] [§3.1] are > 1. These compact subgroups and their spherical 
functions have been studied in [81] and [34]. It seems to be known to experts that 
any reductive group over a local field admits very special maximal compact subgroups 
(for instance, this is claimed in [34, p.390-391] or in [76, §3.6]), but we warn the reader 
that there seems to be no written proof of this fact in the littérature. 

6.8.2. Statement of the assumption Rep(m). — We now formulate a conjecture 
about the existence and the basic properties of the Galois representation attached to 
an automorphic representation of U(m). We expect and hope that this conjecture (and 
much more) will be proved in the forthcoming book [60] on unitary groups written 
under the direction of Michael Harris in Paris. 

To make this hope likely, we have made a special effort throughout this book to 
keep the properties of those Galois representations we need under control, and in the 
next conjecture to formulate the weakest statement that we need. 
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Conjecture 6.8.1 (Rep(ra)). — Let n be an automorphic representation of U(m) such 
that 7TQO has regular weight. There exists a continuous, semisimple, Galois represen
tation: 

p„:GE-^ GL m (Q p ) , 

such that the following properties are satisfied: 
(PO) if I = xx' ^ p is split and 717 is unramified, then p is unramified above I and 
the characteristic polynomial of a geometric Frobenius at x is given by the Langlands 

/ • 1 1 1 1 — m 

conjugacy class of TTX | det | 2 . 
(PI) If I ^ p is a prime and if ni is unramified, then pn is unramified at each prime 
above I. 
(P2) / / / = xx' ^ p is a prime that splits in E, then the nilpotent monodromy op
erator of the Weil-Deligne representation attached to Pn\wE ^s ^n ̂ e c^osure of the 
conjugacy class of Nin^detl1-^) in Mm(Qp) 
(P3) If I ^ p is a prime, x a place of E above I, and 7Ti is a non monodromic principal 
series (see Definition 6.6.5) then the Weil-Deligne representation attached to pn\wEx 

has a trivial monodromy. 

(P4) The p-adic representation P<K\Ge ^s &e Rham, and its Hodge Tate weights are 
the integers 

-a1+ m — 1 
2 

-dm 4 
m — 1 

2 
where ai,. . . ,am are such that the restriction to C* of the L-parameter of TTQO is 
z 1—• diag((*/S) a i , . . . , (z/z)a™) (see § 6.7). 
(P5) If 7rp is unramifed, then pN\GE Is crystalline and the characteristic polynomial 
of its crystalline Frobenius is the same as the one of ̂ ^L^ldetl^™). 

Remark 6.8.2. — (i) By the Cebotarev density theorem, and since the primes of E 
which split above Q have density 1, the property (PQ) alone determines pn up 
to isomorphism. Moreover, it implies that pn is conjugate self dual in the sense 
that: 

pi - P7v{m - 1). 
(ii) The properties (PO), (PI) and (P4) imply that pn is geometric. 

(iii) The Langlands program and Arthur's conjectures predict that there should exist 
local and global base change from U(m) to GL m , that a 7r with regular weight as 
in the conjecture should be tempered, and that for such a tempered TT the global 
base change TTE should be compatible at every place with the local base change 
(see A.7 below). Moreover it also predicts the existence of a Galois representation 
pn of GE, and the Weil-Deligne representation attached to the restriction at W^, 
for every place x (prime to p) of E should be isomorphic to L((nE\aet\^)x) 
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The properties (PO) to (P3) are very special cases of those predictions. This 
is clear for (PO), (PI), (P2); as for (P3), if I ^ p is a prime such that 717 is a non 
monodromic principal series and x a place of E above 5, then the //-parameter 
of the base change (TTE)X should be non-monodromic (see Remark 6.6.6). 

Moreover, properties (P4) and (P5) are also part of the standard expectations 
for the Langlands correspondence at places dividing p . 

(iv) The property (P3) for split primes I is a special case of (P2). This should be 
clear from the preceding remark. 

(v) In the following chapter, the property (P2) will allow us to work with represen
tations pn that have arbitrary ramification at split primes. However, because of 
the weak form of (P3), we shall have to assume that the ramification, if any, is 
of a very special kind at non-split places, namely is a non monodromic principal 
series . 

(vi) When m < 3, the properties (PO) and (PI) and (P3) to (P5) are known by 
the work of Blasius and Rogawski (cf. [20] and [21] and also [8, §3.3] for some 
details). Property (P2) is not completely known but anyway is not necessary, 
since (P3) is known, and all the TT to which we shall need to apply Rep(m) are 
non monodromic principal series at every places if m < 3. Thus, in the sequel, 
we will allow ourselves to say that Rep(m) is known for m < 3. 

(vii) Properties (PI) to (P5), except maybe (P3), are also known for any m when n 
admits a base change to a representation satisfying the assumptions of Harris-
Taylor ([62], [118]) and which is compatible with the local base change at the 
split places. This includes e.g. the case of a TT that is supercuspidal at two split 
places ([61, §3]). Unfortunately, the representations to which we shall apply 
Rep(m) will never be of this type. 

Moreover, let us consider the slighty different setting where U(m) is replaced 
by a definite unitary group G such that G(QP) ~ GL m (Q p ) , and that for some 
split I ^ p , G(Qi) is isomorphic to the group of invertible elements of a central 
division algebra over Qi. In this case, the existence of p^ satisfying (PO), (PI), 
(P2), (P4) and (P5) is known by [62] and [61, Thm. 3.1.3]. 

(viii) We of course expect that in the forthcoming book [60] by Harris et al, the 
representation p n (or some well chosen base change of it) will be cut off in the 
etale cohomology of some explicit local system of the Shimura variety of some 
inner form of U(m), since TTOQ has regular weights. Hence (PO), (PI), (P4) and 
(P5) should follow directly from the construction and a few standard arguments 
(see e.g. [8, Prop. 3.3] for (P4) and (P5) and [8, Prop. 3.2] for (PI) at ramified 
primes). 

The properties (P2) and (P3) are special cases, concerning monodromy, of 
the compatibility of the construction of the Galois representation to the local 
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Langlands correspondence that might be harder to prove. However, they only 
ask for an "upper bond" on the monodromy of the Galois representation, which 
is the "easy direction", and this should follow from an accessible (maybe already 
known) study of the local geometry of the special fiber of the relevant Shimura 
varieties. 

At any rate, (P3) would follow easily if the base change (local and global, 
with compatibility) was known, by an argument completely similar to [8, Prop. 
3.2]). 

(ix) Note that the Langlands and Arthur's conjectures also predict some irreducibil-
ity results on the representation pE (for example, if 7r is not endoscopic). Those 
results might be much harder to prove. However, a feature of our method, al
ready present in [8], is that we have absolutely no need of them. Instead, we 
shall be able to prove, as a by-product of our work, that in many cases pn is 
irreducible, or not too reducible. See Theorem 7.7.1. 

(x) (added in 2008). Since the first version of this manuscript was made available 
(December 2006), important progresses have been made toward a proof of the 
conjecture Rep(m) by S. Morel [88], S.W. Shin, and all the authors of the book 
[60] (of which many chapters have been made avalailable). 

6.9. Construction and automorphy of a non-tempered representation of 
U(ra) 

In this subsection we fix an integer n > 1 that is not divisible by 4, and we set 
m := n + 2, so that m ^ 2 (mod 4) as above. For a representation IT of GLn(Ev), 
v a non split place of E (resp. of GLn(A£-)), we note n1- the representation g H-> 
7r*(c(g)), where n* is the contragredient of n and c denotes the map on GLn(Ev) 
(resp. GLn(AE)) induced by the non trivial element c G Gal(E/Q). 

6.9.1. The starting point. — We start with a cuspidal tempered ( 1 0) automorphic 
representation TT of GLn(AE). We make the following assumptions on n: 

(i) We have TT1- ~ TT. 
(ii) The L-parameter of TToo has the form 

z»àiag((z/z)a\...,(z/z)a") 

where the â 's are distinct, = \ (mod 1), and are different from ±1/2. 
(iii) If I is a nonsplit prime, then either 

(10) This temperedness should be a consequence of the cuspidality, according to the generalized 
Ramanujan's conjecture. 
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(iiia) 7Ti is unramified and its central character x satisfies ( n ) x{wi) = (—l) n, or 
(iiib) the representation -к\ is a non monodromic principal series representation 

5(77), where rj = (771,..., r}n) is a regular character of the standard maximal 
torus of G\jn(Ei), and there is no (resp. exactly one) г G { 1 , . . . , n} if n is 
even (resp. if n is odd) such that 77/- = щ. 

The aim of this section is to describe, place by place, a representation of U(m), 
called 7 r n (the n stands for "non-tempered", as 7 r n turns out to be non tempered at 
every finite place) depending on 7r, and to state a conjecture AC(7r) that 7rn is auto-
morphic if (and actually only if) e(ir, 0) = — 1. The representation TT71 is an endoscopic 
transfer of 7r, and the conjecture we state is a particular case of the far reaching 
multiplicity formula of Arthur, as will be explained in Appendix A. 

Remark 6.9.1. — (i) When n is even, properties (i) and (ii) are conjecturally suffi
cient conditions for 7T to be the base change of a discrete automorphic represen
tation of the quasisplit unitary group U(n)* attached to E/Q. When n is odd, 
on the contrary, a representation satisfying (ii) is not a base change from U(n)*, 
but (i) and (ii) should rather ensure that TT <g> ¡i is a base change from U(n)* for 
any Hecke character ¡i as in Lemma 6.9.2(iii) (see Example 6.9.3 below), 

(ii) Property (iii) is not really needed for the conjecture we are going to state, 
but it simplifies the exposition, allowing in particular to give a non conjectural 
description of 7rn at non split places. 

To be more precise, and conjecturally speaking, condition (iii) on -K\ is the 
condition needed for 7T™ to be either unramified or a non monodromic principal 
series at I. Without this condition, there should still exist a 7r¿n with suitable 
properties, but it could be square integrable or even supercuspidal, and it is not 
possible in the present state of knowledge on the representation theory of local 
unitary groups to construct the needed representation. 

Moreover, the hypothesis that it™ is unramified or a non monodromic princi
pal series is what we will need in the following sections to be able to deal with 
the monodromy at the nonsplit I. So it is not a big loss to assume it from now. 

6.9.2. Hecke characters. — If ¡1 is a Hecke character of E, that is a continuous 

morphism 

ц : A*E/E* —> С*, 

( n ) Here w\ is a uniformiser of E\. When I is inert, x(wl) = x(0 an(i the condition on x is 
automatically satisfied, see Rem. 6.9.4. The reason for the appearence here of this condition on 
X basically comes from the fact that it is not equivalent for a character of U(l)(Qi) to be unramified 
(i.e. trivial), and to have an unramified base change. However, the two notions coincide when I is 
inert. 
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recall that LI1- is the Hecke character x i—> LI(C(X)) X. We say that a Hecke character 
[x descends to U(l) if ii = ip(x/c(x)), for some continuous character W of 

\l(l)(AE) = {xe A*E, xc(x) = 1}. 

Obviously a character LI that descends to U(l) satisfies LL1- = \x. If a character satisfies 
jji1- = we have /¿00(2) = (z/c(z))a for all z G (E ® K)* and some weight a which is 
either an integer or a half integer. 

Lemma 6.9.2. — (i) The subgroup of Hecke characters of E that descend to U(l) 

is of index 2 in the group of all Hecke characters of E that satisfy uL= 11. 
(ii) For a Hecke character fx such that fx1- = fx the following are equivalent: 

— the character fx does not descend to U{1), 

— the weight a of fx is not an integer, 

— the restriction of fx to Aq is the order 2 character UJE/Q corresponding via 

class field theory to the extension E/Q. 

In particular, a character that satisfies the above conditions is ramified at every 

ramified places of E/Q, since so is LUE/Q-

(iii) There exists a Hecke character fx of E, satisfying fx1- = fx with weight 1/2 and 

which is ramified only at ramified places of E/Q. 

Proof. — Both (i) and (ii) result from the following observations: 

— a Hecke character descends to U(l) if and only if it is trivial on Aq/Q*, 
— a Hecke character fx satisfies fx1- = fx if and only if it is trivial on the norm group 

N(A*E/E*), 

— by class field theory, N(A*F/E*) = Ker UJE/Q 1S an open subgroup of index 2 in 
A*q/Q* 

For (iii), let S be the set of rational primes that ramify in E. For each / G 5, 
choose any finite order character in : C^^q, —• C* extending WE/Q,I- We fix also 
an isomorphism E (g) R ^ > C for convenience, and set /JLOO(Z) = (z/z)1/2 for z GC. 
Assume first that the cyclic group U = (u) of units in OE reduces to {±1} . Then 
we can define ¡1 on C* x Q*E to be /ioo Y[i ul As \x coincides with W ^ q on M* x Z*, 
/JL(U) = {1}. As £*n(C* x OE) = U, \x extends uniquely to an E'*-invariant continuous 
character of the open subgroup G := E*(C* x 0*E) of A^. Note that G is open of 
finite index in A*E by the finiteness of the class number of E, hence we can extend 
¡1 to a continuous character of AE/E*. Note that G contains Aq and that fx extends 
WE/Q by construction, hence ii1-= u which concludes the proof. 

When |J7| > 2, then E = Q(i) or Q(j), and S = {/} contains only one prime. In this 
case, note that U flZ* = {±1} hence we may first extend (JE/QJ t° UZ* by choosing 
Hi(u) := u-1 and then extend it anyhow to a finite order character of O^^. Again, 
if we define /x as before, we have LX(U) = {1} and the same proof works. 
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Example 6.9.3. — The central character of TT is a Hecke character ¡1 that satisfies 

ji1- = \i by condition (i) of § 6.9.1, with weight a = YA=I a*> which is an integer if and 
only if n is even by (ii) of §6.9.1. Hence /1 descends to U(l) if and only if n is even, 
which is also the conjectural condition for n to descend to U(n). 

Remark 6.9.4. — Assume that I is inert in E and, in the notations of §6.9.1, that 
7T/ is unramified. We claim that the central character x of TTI automatically satisfies 
x(l) = (—l)n- Indeed, x is trivial on 0*E as ni is unramified, and it satisfies xL = X-
By Lemma 6.9.2 and the example above, X|Q* = 1 if* and only if, n is even, hence the 
claim. 

Notation 6.9.5. — We choose a Hecke character ¡1 of E as follows: /x is a character as 

in Lemma 6.9.2(iii) if n is odd, and // = 1 if n is even. 

We are now going to construct, place by place, a representation nn of U(m) = 
U(n + 2) whose conjectural base change to GLm(E) has //-parameter 

L(7r)M0|r / 2 AI©l l" 1 / 2 M. 

6.9.3. Construction of 7r[% for I split in E. — We denote by P the upper 
parabolic subgroup of GLm(Q/) of type (n, 2), whose Levi subgroup is M = GLn(Qj) x 
GL2(Qz). For x a place of E above Z, we set 

7£:=Ind£L- ( Q«> [7rx(fxx o det) (8) (/jlx o det)). 

Here Ind is the normalized induction. Since 7rx is unitary, 7rJ is irreducible (see [18]). 

Remark 6.9.6. — Let P' be the upper parabolic of type (n, 1,1). Since nx is tempered 
by hypothesis, Langlands' classification theorem shows that 

I n d ^ - № ) {irx{iix o det) <g> I | 1 / 2 / x x 0 11 1/2fjLx), 

has a unique irreducible quotient (that is, the Langlands quotient). As we have a nat
ural GLm(Qp)-equivariant surjection from the representation above to the irreducible 
representation 7r£, this Langlands quotient is actually 7r£. Thus, the //-parameter of 

7r£ is L(7Tx)flx 0 I \1/2HX 0 I r 1 / 2 Mx 

Let us write / = xx. By (i) of §6.9.1, 7tx(/jlx O det) is dual to itx(/jlx O det), so 7r£ is 
dual to 7r£. The place x defines, up to conjugation, an identification 

ix ' U(m)(Q0 - GLm(Qj) 

and so does the place x, in such a way that ixoi'1 is conjugate to g H-> tg~1. Hence we 
see that ix7r™ ~ ix7r™ using the well known result of Zelevinski that the representation 
g 1—• r(tg~1) is the contragredient of r for any irreducible admissible representation r 
of GLm(Qj). 
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We thus may set 7rz

n := z*7r™ and 7r;

n does not depend on the choice of the place x 
above I. 

6.9.4. Construction of nf, for I inert or ramified in E. — We denote also by 
I the place of E above I. In this case G := U(ra)(Qf) is a quasi-split unitary group, 
and we shall use notations compatible to those of § 6.6. We may assume that G is the 
unitary group defined by the following hermitian form on EJ71: 

f{xei,yej) = c(x)ySjtm-i+u 

so that the group of diagonal matrices in G, 

T = {diag(ai,... , a m ) , a{ G E*l am_f+i = c(di) 1 , i = 1,..., m}, 

is the centralizer of a maximal split torus in U(m)(Q/). Let B be a the upper triangular 
Borel. The group G' := XJ(m)(Ei) is naturally identified with GLn(Ei) and V is the 
standard diagonal torus. Its Weyl group W is canonically identified with &N+2- The 
action of the non trivial element c of Gal(Ei/Qi) on T' is 

c(diag(a?i,...,arm)) = diag(c(xm) 1 , . . . , c ( ^ i ) x ) , 

and T is the subgroup of invariants of c in T". There is a norm map Nm : T' —• T, 

x = (#i, . . . ,xm) £c(#) = (zic(a;m) 1 ,rc 2c(x m_i) 1 , . . . , x m c ( x 1 ) x ) . 

By hypothesis (iii) of §6.9.1, and point (iii) of the remark therein, TTI is a subquo-
tient of the normalized induction of a character (771,..., rjn) of the standard torus of 
GL n, with rj^- = r)a(i) for all i and some a G &n. As 7rj is tempered, each rji is a 
unitary character. 

We are going to define a character \ f = (x'n • • • > X™ = Xn+2) °f Up to reorder
ing, the x-, 2 = l , . . . ,m = n + 2 are the 77^, z = 1,..., n and | | ± 1 / 2 / / / . The order is 
as follows: 

— First we define X'i = 11-1/2№, x'm = I l V V 
— Next, consider the set / c { 1 , . . . , n} of i such that rji rjj-. Clearly \I\ is even, 

say 2r, and we may define x' 2 , . . . , x'r+i and x'm-n • • • > Xm-i in sucn a way that 
Xm-j+i — x'j" f ° r i £ {2, m — 1}. Finally, in case (iiib) we have \I\ — n if n = 2r 
is even (in which case we are done with the definition of x') and \I\ = n — I 
if n = 2r + 1 is odd. In this case we have only left to define the "midpoint" 
character x'r+i f°r which we take (we have no other choice) rjjfii, where rjj ~ rjj-
(this holds for a unique j). 

— In case (iiia), the characters rji for i £ I satisfy rji = 77̂ , but since they are 
unramified, this implies rji(wi) = ±1 (here w\ is a uniformizer of E\). By the 
assumption on the central character of 717, the set {i £ J, rji(wi) = +1} always 
has an even number of elements, say 2rf. For r + 1 < i < r -f r', we set then 
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x'i = Xm-i+i = +ul (with the obvious abuse of language), so for the remaining 
ones we have x'i — 

Lemma 6.9.7. — The character x' descends to T i.e. there is a smooth character x 
of T such that x' — X ° Nm. Moreover, x satisfies properties (a) and (b) of Defini
tion 6.6.5 in case (iiib). In case (iiia), x is unramified if m is even or if I is inert in 
E. 

Proof. — By construction, in both cases, we have x'm-i+i ~ X* f°r a^ When 
m = 2q is even, we define x(diag(ai,..., a^q)) = Xi( a i ) • • • Xq(

aq) and it is clear that 
X o Nm = x' -

When m = 2# + 1, we remark that the middle character Xq+i °f E* actually 
descends to a character x<?+i °f U(l)(Qi). Indeed 

Xq+l 
q 

i=2 

xWt = det(x') 

is the central character of ttilli. Since the central character of ttu has an integral weight 
(namely E?=iOi+"/2) it descends to U(l) by Lemma 6.9.2, and so does the central 
character of TTlul hence also Xo+i-

Let ip be a smooth character of U(l)(Qi) such that x'q+i(x) = ^(x/c(x)) for all 
x e Ef. We define x(diag(ai,... ,a 2 g+i)) = Xi( a i ) • • • XgfagMag+i) and aSain it is 
obvious to see that x ° Nm = x' -

The other assertion is clear in case (iiib) as the r\i are unitary, as well as in case 
(iiia) when m is even. In the remaining case, the x'i are unramified for i ^ q + 1 by 
choice of ¡1 (i.e. Lemma 6.9.2 (iii)), so we only have to check that i\) is trivial. But 
Xq+i is trivial since it is unramified and satisfies Xg+i(0 — Â CÔ g+iCO = +1» nence 
the result follows from Hilbert 90. • 

We now define it™ as the unramified subquotient of Ind^x m case (iiia) and as the 
unique subrepresentation S(x) of Ind#x in case (iiib) (see Def. 6.6.5). 

Remark 6.9.8. — The L-parameter of the conjectural base change of nf to GLm(Ei) 
should be, by Remark 6.6.6 in case (iiib) and by [76, §3.6] in case (iiia), the L-
parameter attached to the character x' of T", which is by construction 

L(iri)fMi®\\1/2ßi®\\'1/2ßi, 

as in the split case. 
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6.9.5. Construction of TT^. — Consider the morphism C* —• GLm(C) (recall 
that m = n + 2) 

ZVoo{Z)à\*g{{ZLZ)A\...,(Z/Z)A«,{Z/ZY!2,{Z/Z)-1'2) 

diag((z/z)°',..., (z/z)°», (z/z)1/*, (z/z)"1/2) if n is even 

diag ( (2 /rr . . . , ( z / z )^ 1 / 2 , (z/z), 1) if n is odd 

Since the a¿ are half-integers, and different from ±1/2, we see by §6.7 that this 
morphism is always the restriction to C* of the L-parameter of a unique irreducible 
representation nf^ of U(m). Here the s stands for square integrable. The notation 7r£, 
would be misleading since ir^ is, like any irreducible representation of a compact 
group, finite dimensional, square integrable, hence tempered. 

6.9.6. Assumption AC(n) 

Conjecture 6.9.9. — Assume thate(7T, 1/2) = —1. Then the irreducible admissible rep
resentation 

7Tn
 := TT̂  G 

i 

'n 

is automorphic. 

The proof of this conjecture has recently been announced by Harris in the intro
duction of his preprint [59] (maybe under some local assumptions). Since a written 
proof is not yet available, we prefer to be conservative and state it as a conjecture 
rather than as a theorem. 

Remark 6.9.10. — (i) The case m = 3 (that is n = 1) of this conjecture has been 
proved by Rogawski ([101]), using the Theta correspondence. In the case m = 
4, the needed local computations have been published recently by Konno and 
Konno ([75]). 

(ii) This conjecture is a very special case of the multiplicity formula of Arthur. Its 
derivation from that formula is explained in detail in the appendix. From that 
we shall see that the e(7r, 1/2) = —1 should also be a necessary condition for the 
automorphy of 7rn. 

(iii) Although the construction of TT71 depends on the choice of the Hecke character 
fi (for odd n: see Notation 6.9.5), it is clear that the conjecture is independent 
of this choice. Indeed, if ¡1 is changed into another character /¿1, then ¿¿1 = fjicj)' 
where </>' is a Hecke character of A*E that descends to a character (j) of U(l). By 
construction the representation 7rf defined using ¿¿1 is simply 7rn(0odet) and it 
follows that the automorphy of 7rn is equivalent to the automorphy of 7rf. 

Note also that the hypothesis in the conjecture is about £(71-, 1/2), not about 
e(7r(jL6odet),l/2). 
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CHAPTER 7 

EIGENVARIETIES OF DEFINITE UNITARY GROUPS 

7.1. Introduction 

In this section, we introduce and study in detail the eigenvarieties of definite uni
tary groups and we prove the basic properties of the (sometimes conjectural) family 
of Galois representations that they carry. These eigenvarieties give a lot of interest
ing examples where all the concepts studied in this book occur, and provide also an 
important tool for the applications to Selmer groups in the next chapters. As a first 
application, we define some purely Galois theoretic global deformation rings and dis
cuss their relations to those eigenvarieties at some specific classical points (including 
R = T like statements). We give a second application to the construction of many 
irreducible Galois representations. We prove also quite a number of results of indepen
dent interests regarding the theory of eigenvarieties that we explain in details below. 
The organization of this section is as follows. 

In the first Subsection 7.2, we give an axiomatic definition of eigenvarieties, as well 
as their general properties. In particular, we show that an eigenvariety is unique (up 
to unique isomorphism) if it exists (Prop. 7.2.8). One interest is that there are in 
principle many different ways two construct eigenvarieties: using coherent or Betti 
cohomology, a group or its inner forms (or any transfer suggested by Langland's 
philosophy), using Emerton's representation theoretic approach etc. Each of those 
constructions has its own advantages but they sometimes should lead to the same 
eigenvariety. The uniqueness statement alluded above will often show that they are 
indeed the same^. 

(x) It may be also useful to combine it with the results of [37]. 
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The context is the following: (2) E/Q is a quadratic imaginary field and G/Q is 
a unitary group in m > 1 variables attached to E/Q. We assume that G(R) is the 
compact real unitary group (G is definite) and we fix a prime p such that G(QP) ~ 
GLm(Qp), as well as embeddings Q —• Q p and Q —> C. An (irreducible) automorphic 
representation TT = TTOO (g> 7r/ of G is automatically algebraic and has cohomology in 
degree 0. The finite dimensional representation ir^ is determined by its weight which 
is a decreasing sequence of integers k = (ki > • • • > fcm), and 717 is defined over Q 
hence may be viewed over Qp via the chosen embeddings. We fix also a commutative 
Hecke-algebra 

H = AP <g> HUR 

that contains the Atkin-Lehner algebra AP of C/-operators at p and a spherical part 
HUT outside p. We are interested in p-adically interpolating the systems of Hecke 
eigenvalues ^ > W —> Qp cut out from the 7r as above, and more precisely the 
pairs (̂ 71-5 &) where k is the weight of 7r. Note that the systems of eigenvalues of AP 

on the Iwahori invariants of np (say, if irp is unramified) are in bijection with the 
refinements of TTP in the sense of § 6.4, so that ipn contains the extra datum of a choice 
of a refinement 1Z of TTP. TO keep track of this refinement, we actually denote tp^ by 
ip(Tr,ii)' Let us fix now a collection 

2cHom r ing(«,Qp)xZm 

of such (VVTT,^)'^)- ^ n e^envanety for Z is a 4-uple (X,I/J,U, Z) where 
(a) X is a reduced rigid analytic space over Q p , 
(b) tj) : H —• O(X) is a ring homomorphism, 
(c) u : X —> W := Hom((Z*)m, G m ) is a morphism to the weight space W, 
(d) Z C -X"(QP) is a Zariski-dense subset, 

such that the evaluation of V> induces an injection 

X ( Q p ) ^ H o m ( W , Q p ) x W(Q P) 

which itself induces a bijection (3) Z ^> Z. To have the uniqueness property we need 
of course to impose some extra conditions on (tp,uj,Z) for which we refer to Definition 
7.2.5. We show that for an eigenvariety X, the unit ball O(X)0 is a compact subset 

(2) The choice of a quadratic imaginary field in this chapter rather than a general CM field (as 
well as the choice of a split p) is made mainly to simplify the exposition and also because this the 
only case that we shall use in the applications to Selmer groups (see §9.5.1). All the constructions 
actually extend to this more general setting by combining the arguments here (or of [36]) and those 
of [32] (see also Yamagami's work [124]). Alternatively, the general definite case is now covered 
by Emerton's paper [53]. The main reason why we fix a split prime p is Galois theoretic: at the 
moment, Kisin's arguments [73] and the theory of trianguline representations are only written in the 
case where the base field is Qp rather that any finite extension of Qp. 
(3) This makes sense as W(QP) naturally contains Z m , see §7.2.3. 
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of O(X), which (together with (d)) is the basic property needed for the construction 
of Galois pseudocharacter on X. 

In the second subsection § 7.3 we recall the results of one of us on the existence of 
eigenvarieties ([36]). The statement is that for any idempotent e in the Hecke-algebra 
CC(G(AP), Q) commuting with H, there is an eigenvariety for the set ZE parameterizing 
all the p-refined n such that e(7r) ^ 0. We discuss in Example 7.3.3 which sets Z can 
be obtained this way, in representation theoretic terms (Bernstein components, type 
theory). In fact, those eigenvarieties of idempotent type have stronger properties than 
the general ones. As their structure plays a crucial role in our main theorem on 
Selmer groups, as well as in some subsequent constructions in this section, we found 
it necessary to review their construction in detail, as well as the theory of p-adic 
automorphic forms of G developed in [36]. This is the aim of § 7.3.2 to § 7.3.6. In fact, 
this part is essentially self-contained and slightly improves some results of [36] {e.g. we 
do not restrict to the "central part" of the weight space, or to a neat level, we release 
the assumption that p ^ 2 at some point, and we prove a stronger control theorem). 
We rely on the work of Buzzard on eigenvarieties [32]. Let us also mention here that 
if we had been only interested in the subset Ze,oxd C ZE of n which are p-ordinary, 
the existence of X would be due to Hida (actually in a much wider context [65]). 
Moreover, there is an alternative construction of X due to Emerton in [53]. 

In a third Subsection 7.4, we show how to define some quasicoherent sheaves of 
admissible G(A^ ̂ representations on an eigenvariety of idempotent type, and we prove 
their basic properties. As an application, we show the existence of an eigenvariety for 
the subset ZE^ parameterizing the p-refined n in ZE such that 717 is a non monodromic 
principal series (in the sense of §6.6) for each I in a fixed finite set of places such 
that G(Qi) is a quasisplit unitary group. We don't know if those latter eigenvarieties 
are of idempotent type. As a consequence of all those constructions, we introduce 
in Def. 7.5.2 the convenient notion of minimal eigenvariety containing a given p-
refined automorphic representation, it is defined at the moment only when 717 is either 
unramified or a non monodromic principal series at each nonsplit prime I. 

In the fourth part § 7.5, we explain how the existence of the expected p-adic Galois 
representations associated to (sufficiently many of) the TT parameterized by Z gives 
rise to a continuous Galois pseudocharacter 

T : G E - ^ O(X). 

Our results in this part are unconditional when G is attached to certain division 
algebras, and conditional to the assumption (Rep(ra)) when G is the definite unitary 
group U(m) which is quasisplit at each finite place (so m ^ 2 mod 4). For each 
x G X(Qp), we have then a canonical semisimple representations 

PX'GE—* GL m (Q p ) , 
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whose trace is the evaluation of T at x. The game is to understand with this weak 
notion of families of Galois representations (namely the mere existence of T) how to 
deduce from a property of the pz for (a Zariski-dense subset of) z G Z a similar prop
erty for px for any x G X(Qp). We are typically interested in a property concerning 
the restriction to a decomposition group at a finite place w of E. 

At a prime w above p, we show that T is a refined family in the sense of § 4.2.2 
hence we can apply to (X, T) the results of section 4. At a prime w not dividing p, it 
is convenient to introduced the generic representation 

pfn : GE — GLm(/C x), 

whose trace is the composition of T : GE —• 0(X) —> Kx := Frac((9x) and where 
Kx is a product of algebraic closures of each factor field of Kx (i.e. of the fraction 
fields of the germs of irreducible components of X at a;). The representations px and 
p | e n have associated Weil-Deligne representations that we compare, and that we also 
compare with the ones of the pz for z G Z. For example, when X is the minimal 
eigenvariety containing some TT of the type of Harris-Taylor, these Weil-Deligne repre
sentations are constant on X when restricted to the inertia group. The proofs rely on 
some lemmas on nilpotent elements in general matrix rings or GMA. Those facts are 
proved separately in the first subsection of an appendix § 7.8 that we devote to the 
general study of p-adic families of Galois representations of Gal(Qj/F) when I ^ p 
and F/Qi a finite extension. In this appendix, we also recall the dominance ordering 
-< on nilpotent matrices and on Weil-Deligne representations, which is convenient to 
state our results. 

In the next subsection § 7.6 we give an application of the techniques and results of 
this book to study some global Galois deformation rings, as was announced in § 2.6 
of section 2. We fix a continuous absolutely irreducible Galois representation 

P : GE,s —> GLm(L) 

(L a finite extension of Q p , 5 a finite set of primes of E containing the primes dividing 
p) such that p1- ~ p(m — 1), and which is crystalline with two-by-two distinct Hodge-
Tate weights and crystalline Probenius eigenvalues at the primes above p. 

We are interested in the deformations pA of p such that p-^ p^(m — 1), where 
A is a local artinian ring A with residue field L. We introduce two subfunctors of the 
full deformation functor: the fine deformation functor Xpj, whose tangent space is 
Hj(E, ad(p)), and the refined deformation functor Xp^^ which depends on the choice 
of a refinement T of p\Ev (p = vv). We show that those functors are pro-represent able, 
we compare them when T is non critical, and we formulate two conjectures (Cl) and 
(C2) concerning their structure (see Conj. 7.6.5). 

ASTÉRISQUE 324 



7.2. DEFINITION AND BASIC PROPERTIES OF THE EIGENVARIETIES 185 

For a quite general p, we also introduce in § 7.6.2 a definite unitary eigenvariety X 
and a point z G X. If T (resp. Rp,p) denotes the completion of the local ring of X at 
z (resp. the ring pro-representing XP,F), we show the existence of a natural map 

RPtr —* T. 

In this context, this arrow and the properties of eigenvarieties allow us to show that our 
conjectures (CI) and (C2) are actually consequences of the Bloch-Kato conjecture ( 4 \ 
which provides strong evidence for them. This leads us to conjecture that the arrow 
above is an isomorphism ("RP,F = T"), and that a strong infinitesimal version of the 
non critical slope forms are classical property should hold: "eigenvarieties should be 
etale over the weight space (hence smooth) at non critical irreducible classical points". 
In turn, these last two conjectures imply (CI) and (C2). 

Finally, as a simple application of the theory of refined families, we show in § 7.7 
how we can construct many m-dimensional Galois representations of GE which are 
unramified outside p and crystalline, irreducible, and with generic Hodge-Tate weights 
at the two primes of E dividing p. This application is conditional to (Rep(ra)) but does 
not use any irreducibility assertion for the automorphic Galois representations. We 
rather start from the trivial representation and move in the tame level 1 eigenvariety 
to find the Galois representations we are looking for. 

7.2. Definition and basic properties of the Eigenvarieties 

7.2.1. The setting. — Let E be a quadratic imaginary field and G be a definite 
unitary group in m > 1 variables attached to E/Q, as in §6.2, e.g. the group U(m) 
defined in § 6.2.2. Let us fix once and for all a rational prime p as well as field embed-
dings 

tP : Q —• Qp, too : Q —• C. 

We assume that G(QP) ~ GLM(QP). In particular, p splits in E and if we write 
p = vvc where v : E —> QP is defined by tp, then v induces a natural isomorphism 

. The embedding E —> C given by ¿00 induces an embedding 
veil defined up to conjugation. 

We fix a model of G over Z and a product Haar measure fx on G(Af) such that 
/JL(G(Z)) = 1. We use the standard conventions for adeles: A5 (resp. A^) denotes the 
ring of finites adeles with components in (resp. outside) the set of primes S. Moreover, 
we denote by Z5 = Ylie$ Z/ the ring of integers of A5. 

The definition of an eigenvariety for G depends on the choice of a commutative 
Hecke algebra H that we fix once for all as follows. We fix a subset So of the primes / 

G(QP) ^ GL m (Q R 

G(R) — 6 o o GLm(C) 

(4) More precisely, they are equivalent to the vanishing of Hj(E, a,d(p)). 
(5) Which means that we also fix once for all an algebraic closure Q (resp. Qp) of Q (resp. Qp). 
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split in E such that G(Qi) ~ GLm(Q/) and G(Zi) is a maximal compact subgroup ( 6 \ 
and set 

Hur :=C(G(Z 5 o )\G(A 5 o )/G(Z 5 o ) ,Z). 

Recall that we defined in §6.4.1 a subring^7) Ap C C(I\G(Qp)/I,Z[l/p]) where J c 
G(QP) —>v GLm(Qp) is the standard Iwahori subgroup. We set (8) 

H :=Ap®Hur. 

7.2.2. p-refined automorphic representations 

Definition 7.2.1. — We say that (TT,1Z) is a p-refined automorphic representation of 
weight k if: 

• 7r is an irreducible automorphic representation of G (see §6.2.6), 
• TToo -^Loo Wfc(C) (see §6.7), 
• 7TP is unramified and 1Z is an accessible refinement of 7rp (see §6.4.4). 

Recall from § 6.4.3 that an accessible refinement of np is an ordering 

1Z = (<pi,...,<pm) 

of the eigenvalues of Langlands'conjugacy class associated to 7rp, such that 7rp occurs as 
a subquotient of the normalised induction Ind^x, where \ is the unramified character 
of (Q*) m sending (1 , . . . , 1 ,p1 , . . . , 1) to ^ if V occurs at place i. 

Definition 7.2.2. — If A is a ring, an A-valued system of Hecke eigenvalues is a ring 
homomorphism H —> A. 

Let (7r, IV) be as above, we can attach to it a Qp-valued system of eigenvalues 

W(T,R): H --> Qp 

as follows. By Definition 6.4.6, if x : U —> C* is the character of the refinement 1Z 
then X$Bl /2 occurs in 7rpj. Moreover, the restriction of the highest weight character of 
the algebraic representation Wk(Qp) (see §6.7) to the subgroup U C (Q*) m defines a 
character Sk : U —> p z , so there is a unique ring homomorphism ipp : Ap —>• C such 
that 

(66) tpp\u — xSB

1/2sk' 

(6) In most applications, So will contain almost all of the primes / as above, or at least have Dirichlet 
density 1. The reader may assume it from now on to fix ideas. 
(7) Let us assume that ¡¿(1) = 1. 
(8) We limit ourselves a bit the choice of 7i here only for notational reasons and later use. We could 
add for example inside H any commutative subring of C(K\G(As°u{p})/K, Qp) for some compact 
open subgroup K and everything would apply verbatim. 
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Moreover, 7rĜ Zsro) is one dimensional hence it defines a ring homomorphism i/jur : 

HUT —• C. By Lemma 6.2.7, the complex system of Hecke-eigenvalues ipp ®z ipUT is 

actually Q-valued. 

Definition 7.2.3. — We call ty^jt) the Qp-valued system of Hecke eigenvalues as

sociated to the p-refined automorphic representation (7r,7£) of weight k defined by 

lpl -1 (Yp O Yur). 

Remark 7.2.4. — We have ^(TT,^) = V v , ^ ' ) if> and only if? — n't for each t e 

S0 U {p} and U = llf. 

7.2.3. Eigenvarieties as interpolations spaces of p-refined automorphic rep

resentations. — Let C Homring(W, Qp) x Z M be the set of pairs (^(TTW'^O as

sociated to all the p-refined automorphic representations 7r of any weight and let 

us fix Z C ZQ a subset. It will be convenient to give a formal definition of what is an 

eigenvariety attached to Z. We shall actually never use here the group G and the set 

Z could be replaced by any subset of Homing(W, Qp) x Z M . 

The weight space is the rigid analytic space over Qp 

W := Horn gì—cont 
(T0, Grig m) 

whose points over any affinoid Qp-algebra A parameterize the continuous characters 

T° = ( Z * ) M — • A*. It is isomorphic to a finite disjoint union of unit open Tri

dimensional balls. We view Z M as embedded inside W ( Q P ) , by mean of the map 

[k\, . . . , km) I—• ((#i, • • • , #m) 3 fci 
1 

• • • X km 
fi 

) , 

and we denote by Z M ' ~ the subset of Z M consisting of strictly decreasing sequences. 

We will also need to fix an element of U~. Its choice is not really important, but to 

fix ideas we set 

u0 := diagfp m—l t...,p,l)eU- CJ;. 

Let us fix L C Qp a finite extension of Qp. In the definition below and in the sequel, 

we will always view >V, Gm, and the affine line A1, as rigid analytic spaces over L 

even if we do not make it appear explicitly: for example, we will write W for WxqpL. 

Definition 7.2.5. — An eigenvariety for Z is a reduced p-adic analytic space X over 

L equipped with: 

— A ring homomorphism : H —> 0(X)Tlg, 

— An analytic map u : X —• W over L, 

— An accumulation and Zariski-dense subset Z c X(Qp), 

such that the following conditions are satisfied: 

(i) The map v := (u, ^ (^o) -1 ) • X —> W x Gm is finite. 
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(ii) For all open affinoid V C W x Gm, the natural map 

ф <8> V* : П ®z < W —» Oíi/-1^)) 

is surjective. 

(iii) The natural evaluation map X(Qp) —• Homring(W, Qp), 

x := (ft ^ il)(h)(x)), 

induces a bijection Z Z, z i—• (ipZiuj(z)). 

Recall from § 3.3.1 that a Zariski-dense and accumulation subset Z C X is a subset 

that meets any irreducible component of X and such that for all 2 in Z, there is a 

basis of affinoid neighbourhoods U of z such that Z D U is Zariski-dense in U. 

The maps u> and v determine each other, so in the sequel we shall use either the 4-

uple (X/L, ip,uj,Z) or (X/L, I/J,V,Z) to denote an eigenvariety. The choice of ^(^o)-1 

rather than ^(uo) in (i) is a convention (of [44]). 

Remark 7.2.6. — i) In other words, (-0, X) is a rigid analytic family of systems of 

Hecke-eigenvalues interpolating the ones in Z —> Z. The Zariski-density of Z 

and (i) ensures that X is minimal with that property in some sense (see Prop. 

7 .2 .8 ) . 

ii) We may like to think of (or define) such an eigenvariety as the "Zariski-closure" 

of Z in W x Gm x Homring(W, A1). However, as this latter space is not a rigid 

space if 7i is not finitely generated (which will be the case in the applications), 

we have to be a little careful. The requirement (ii) above is a way to circumvent 

this problem. 

It turns out that such an eigenvariety, if exists, is unique. 

Lemma 7.2.7. — Let (X,ip,u),Z) be an eigenvariety: 

(a) X is an admissible increasing union of open affinoids of the form z/-1(F), for 

VCWxGM open affinoid. In particular, any two closed points of X lie in such 

an open affinoid. 

(b) For any x,y G X(Qp), x = y if and only if ipx = ^y and u(x) = u(y). 

Proof — Assertion (a) follows from property (i) of eigenvarieties and the fact that 

W x GM is an admissible increasing union of open affinoids. Part (b) is then a conse

quence of (a) and property (ii). • 

Proposition 7.2.8. — / / (Xi/L,^1,^1,^1) and (X2/L, fo, ^2, Z2) are two eigenvari

eties for Z, there exists a unique L-isomorphism £ : X\ —> X2 such that v2 • £ = u\, 

and Vft G H, ^i(ft) = Mh) • C € 0{XX). 
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Proof. — Fix (Xi,ipi,Ui,Zi), i = 1,2 satisfying (i) to (iii), and denote again by 

YI = (o^ x ^ ( ^ o ) - 1 ) : Xi —• W x Gm the finite map of (i). As a consequence of 

Lemma 7.2.7 (b) and assumption (iii), there is a unique bijection £ : Z\ Z2, such 

that for all z G Z\, = V ^ * ) and ^i(^) = ^2 (COO)- We will eventually prove that 

£ extends to an isomorphism £ : X\ —> X2 as in the statement. By Lemma 7.2.7 (b), 

and as the Xi are reduced, such a map is actually unique if it exists. 

For any admissible open V C W x Gm, we set Xiy := u^x(V), and let Ay denote 

the affine line over V. For each finite set / C H and such a V, we have a natural 

V-map 

fi,v,i : Xitv — • A I V 
x (h(x))heI 

inducing a natural map Xiy —> proj Y\mIcH Ay, and commuting with any base change 

by an open immersion V C V. The morphism fiyj is closed by (i). 

Assume V is moreover afiinoid. Assumption (i) shows that there exists Iy such 

that for I D Iy, fi,v,i is a closed immersion for both i. We claim that for I D Iy, we 

have an inclusion fiyj(Xiy) C f2y,i(X2y). By exchanging 1 and 2 and using that 

both Xiy are reduced, it will follow that as closed subspaces of Ay, for / D iV, we 

have fiyj{Xiy) = f2yi(X2y). 

Let x G Xiy. If x G Z\ then fiyj(x) G f2yj(X2y) by definition of In general, 

by the Zariski density of Z\ in X\, Lemma 7.2.7 (a) and Lemma 7.2.9 thereafter, we 

can find an open affinoid V D V such that some z G Z\C\ X\y* lies in the same 

irreducible component T of Xiy as x. By the accumulation property of Z, Z is 

Zariski-dense in T, hence for V D IU Iy, 

fiyj'(T) C ̂ v v P ^ V " ) -

In particular, for such an V we have fiyj'(x) G f2,y,i'{X2y) and by projecting to 

Ay we get that this holds also when / ' = I, hence the claim. 

We define now a ^-isomorphism C^y : X\y —• X2y by setting, for I D Iy, 

Cv : = f -1 
2,V,I ' hyj-

This map does not depend on J and it obviously extends the previously defined map 

£ on Z\ DXiy. The independence of I implies that 

Vft G U, ^{h) = Mh) • € 0(X1y). 

We check at once that Cv xv V = Cv f°r any V <ZV open affinoid, hence the £v 

glue to a unique isomorphism £ : X i — • X2 and we are done. • 

Lemma 7.2.9. — Let X be a rigid space over Qp and let U C X be a quasi-compact 

admissible open of X. For any two points x,y G X which are in the same irreducible 

component, there is a quasi-compact admissible open U' C X containing U, x and y, 

and such that x and y are in the same irreducible component of U. 
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If moreover X is an admissible increasing union of open affinoids Xi, then we may 
choose U' to be one of the Xi. 

Proof. — Let / : X —• X be the normalization of X. Choose x' and y' in X lifting 
respectively x and y, and in the same connected component. We may then choose 
a connected, quasi-compact, admissible open V C X containing x' and y'. Let X = 
Uiei Ui be an admissible covering of X by open affinoids Ui C X. The space X is 
the admissible union of the affinoids f~l(Ui) (as / is finite), so we may find a finite 
subset J C I such that V C U{ejf~1(Ui). The admissible open 

U' :=UU 
ieJ 

Ui 

does the trick. The last assertion is obvious from the first one. • 

Definition 7.2.10. — We say that a rigid space X over Qp is nested if it has an ad
missible covering by some open affinoids {Xi,i > 0} such that Xi C Xi+i and that 
the natural Qp-linear map 0(Xi+{) —> O(Xi) is compact. 

Note that any such X is separated, and that any finite product of nested spaces 
is nested. For example, A1, Gm and W are easily checked to be nested, hence so is 
W x Gm. However, quasicompact rigid spaces (like affinoids) are not nested. 

Lemma 7.2.11. — Assume that X/Qp is nested. 

(i) If Y —> X is a finite morphism, then Y is nested. 
(ii) Assume that X is reduced. Then 

0{X)° := { / e 0(X), Vz € X,\f(x)\ < 1} 

is a compact subset of O(X). 

Recall that O(X) is equipped the coarsest locally convex topology such that all 
the restriction maps O(X) —> @(U), U C X an affinoid subdomain, are continuous 
(0(U) being equipped with its Banach algebra topology). It is a separated topological 
Qp-algebra. 

Proof. — To show (i), it suffices to check that for each Qp-affinoid X , each coherent 
Ox-module M, and each affinoid subdomain U C X such that O(X) —> 0(U) is 
compact, then the natural map M(X) —> M(U) is compact. Of course, M(U) and 
M(X) are equipped here with their (canonical) topology of finite module over an affi
noid algebra. Let us fix an O-epimorphism On —> M, and consider the commutative 
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diagram of continuous (QL-linear maps 

0(X)n M(X) 

0(U)n M(U) 

Let B C M(X) be a bounded subset. By the open mapping theorem, there is a 

bounded subset Bf C 0(X)n whose image under the top surjection is B. By assump

tion the left vertical arrow is compact hence the image of B' in 0(U)n has compact 

closure, hence so has the image of B in M(U). 

We show (ii) now. Let us fix X = U{Xi a nested covering of X, and set 

Yi := Im(0(X)0 O ^ ) ) . 

It is a compact subspace of O(Xi) as is the image of the unit ball of ö(Xi+i) by 

assumption. But the injection 

0(X)0 
I 

0{Xi) 

has a closed image, and is a homeomorphism onto its image. We conclude as it lies in 

the compact subspace iYi-

Corollary 7.2.12. — Eigenvarieties are nested. 

For later use, let us introduce another notation. Let (X/L,ip,i/, Z) be an eigenva

riety. For i = 1,..., m, let 

UI = diag(l,...,l,p, !,...,!) e U cAl 

where p occurs at place i. 

Definition 7.2.13. — For i € { 1 , . . . ,ra}, F{ := tp(ui) e 0{X)*. By definition and by 

formula (66) of § 7.2.2, they are the unique analytic functions on X such that for each 

z — (̂ (7r,-fc)>£) € % ——> we have 

V ~ 0 £ • \V\M) = (Fi(z)p-k\.. .,Fi(z)p~ki+i~1,... ,Fm(z)p-fc™+"1-1). 

7.3. Eigenvarieties attached to an idempotent of the Hecke-algebra 

7.3.1. Eigenvarieties of idempotent type. — We keep the notations above, and 

we fix an idempotent 

e € Cc(G(Af°),Q) ® l«ur C Cc(G(Ap,Q). 

Let Ze C Z be the subset of (^(TT,^)^) sucn tnat; e(7rp) ^ 0. We will say that such a 

7r is of type e. Note that by construction, there is a compact open subgroup of G(Af) 
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such that each TT of type e has nonzero vectors invariant under this subgroup, thus 
the admissibility of the space of automorphic representations (Lemma 6.2.5) shows 
that the natural map 

(67) Ze -----Zm, (Y, k) ----k, 

has finite fibers. (9) We assume from now on that Ze is nonempty. 
We fix L C Qp a sufficiently large finite extension of Qp such that ip(e) G 

Cc(G(Ay),L). We will also write e instead of tp(e) or for too(e) G CC(G(A^),C) when 
there is no possible confusion. Recall that we defined some functions in Def.7.2.13. 

Theorem 7.3.1. — ([36, Thm. A]) There exists a unique eigenvariety (X/Lyip,v, Z) 
for Ze. It has the following extra properties: 

(iv) X is nested and equidimensionnal of dimension m. Moreover, v(X) is a Fred-
holm hypersurface o / W x G m , hence X inherits a canonical admissible covering. 
Precisely, X is admissibly covered by the affinoid subdomains ft C X such that 

w C W is an open affinoid and that LU : Q, — • UJ(U) is finite and surjective 
when restricted to any irreducible component ofQ. 

(v) Let Z' be the subset of x G X(Qp) such that 
(a) LU(x) = (ku...,krn)eZm>-, 
(b) Vi G { 1 , . . . ,ra — 1} v(F1(x)F2(x) • • • Fi(x)) <ki- ki+1 + 1, 
(c) ififi := Fifâp-****'1 then Vi ^ j , (pwj1 ^ P-

Then Z' C Z, and Z' is an accumulation Zariski-dense subset of X. 
(vi) i>{Hm) C O(X)0. 

Proof. — The uniqueness assertion is Prop. 7.2.8. The existence of X/L satisfying 
(i)-(vi) is [36, Thm. A] (using [32]) when: 

• e = exp for a net compact open subgroup K = I x Kp c G ( A / ) , 
• W is replaced by its open subspace of analytic characters (10\ 
• p ^ 2 for assertion (v) and the accumulation property of Z , 

(9) By definition, these fibers are empty outside Zm,_. Moreover, if d(k) dimc(Wfc) denotes the 
polynomial in k given by Weyl's formula, then the cardinal of the fiber of (67) above k is appoximately 
a constant times d(k) (this constant actually depends in general on some congruence on k modulo a 
fixed integer). In particular, if Ze ̂  0, this cardinal goes to infinity when k goes off the walls. 
(10) Recall that a continuous character \ '• %p L* is analytic if the induced map Zp —• L, 
11—• x(l is tne restriction to Zp of an element of the Tate algebra L(t). The analytic characters 
are exactly the ones that coincide over 1 + pZp with the character i h x s (defined by the binomial 
power series) where s G L is any element such that v(s) > l/(p— 1) — 1. A finite order character is 
analytic if, and only if, its order is prime to p. 
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• and under a stronger condition for part (b) in (v), namely that 

V(I/>(UQ)(X)) < 1 + Min m—1 
1=1 

(ki - ki + 1 

(note that by definition ip(uo) = m—1 
i=1 

F1F2...Fi). 

We will explain in § 7.3.2 to § 7.3.6 below how to extend the construction of [36] 

to the generality above, in the spirit of [32]. • 

Remark 7.3.2. — i) An independent construction of X has been given by M. Emer-

ton in [53]. The admissible open subspace Xord C X denned by \i>(v>o)\ = 1 was 

previously constructed by H. Hida in a much more general context (see [65]). It 

is actually closed and the induced map u : Xord — • W is finite. 

ii) Assume that e = e\ + e2 is the sum of two orthogonal idempotents. Although 

we will not use it in what follows, let us note that by [37], the eigenvariety Xi of 

(e$,W) has a natural closed embedding into X commuting with (ip, v). Moreover, 

X = X\ U X2 (the intersection might be non empty). Actually, we could even 

show that X is precisely the abstract gluing of X\ and X2 "over (^, v)". 

iii) (A variant with a fixed weight) Let ¿0 G { ! , . . . , m} and k G Z , and consider the 

subset ZeikiQ=k C Ze whose elements are the (ip^^ik) such that k has its Zq1 

term ki0 equal to k. Then there exists also a unique eigenvariety X' for Ze^iQ=k 

satisfying all the properties of Thm. 7.3.1, except that it is equidimensional of 

dimension m — 1. This follows verbatim by the same proof (see below) if we 

replace everywhere the space W in this proof by its hypersurface WfciQ C W 

parameterizing the characters whose i^1 component is fixed and equal to Xi0 t—> 

XiQ. In most cases, X turns out to be isomorphic to X' x X\ where X\ is a 

suitable eigenvariety of U ( l ) . As those X\ are explicit {e.g. they are finite over 

Wi) , it is in general virtually equivalent to study X or X'. 

We end this paragraph by a discussion on idempotents, so as to shed light on the 

kind of sets Ze that we can obtain. Of course, in the applications we will mostly choose 

e as a tensor product of idempotents e% G Cc(G(Qj),Q) (I ^ p) such that e\ = 1G(Z,) 

for I G So or I large enough. 

Example 7.3.3. — (See e.g. [31, §2].) 

i) Of course, the simplest class of idempotents of Cc(G(As),Q) are the 

eK := ß(K)-HK G C ( Ä - \ G ( A 5 ) / ^ Q ) 

for any compact open subgroup K C G(As). 

ii) A little more generally, if r is an irreducible smooth Q-representation of such a 

K (hence finite dimensional), the element 

eTeCc(G(As) ,Q) 
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which is zero outside K an(l coincide with dimô7 
µ(K) 

tr (n*) on K is an idempotent. 

We see at once that for e^ch smooth representation V of G(Ab), eTV C V is 

the r-isotypic component 0f V. 

iii) (Special idempotents) Let ft be a field of characteristic 0, H — Cc(G(As), k), e G 

H an idempotent, and Mode be the full subcategory of the category of smooth 

fc[G(As)]-representations whose objects V are generated by eV. Following the 

terminology of [31, §3], we say that e is special if the functor V i—> eV, Mode —> 

Mod(eiJe) is an equivalence of categories. If e is special, the induction functor 

W G Mod(eHe) J(W) := ife ®cHe W G Mode. 

is a quasi-inverse of V »-> eV, hence is exact, and for any V G Mode, the natural 

surjection induced an isomorphism (n) 

(68) I(eV) V. 

iv) Set 5 = { /} to simplify. If e — eTl for some if/-type TJ, then e is special if, 

and only if, n is a type in the sense of Bushnell and Kutzko [31]. The simplest 

example, due to Borel, is the case where e = CKX and K\ is a Iwahori subgroup of 

G(Q/), in which case Modeis the unramified Bernstein component. Moreover, by 

[17, Cor. 3.9], there exist arbitrary small compact open subgroups K\ of G(Qi) 

such that eKx is special. However, as is well known, if K\ is a maximal compact 

subroup then is not special in general (e.g. when G(Qi) —> GLm(Q/) for 

m > 1). 

v) (Bernstein components) Set again S = { / } . By results of Bernstein (see [17] 

or [31, 3.12, 3.12]), if e is special then there is a finite set £j of Bernstein 

components of G(Qi) such that Mode is the direct sum of these components 

([31, Prop. 3.6]). Reciprocally, for any finite set £/ of components we can find a 

special idempotent G C(G(Q/),Q) whose associated set of components is £/. 

This idempotent is not unique however in general, but all the equivalent ones 

will give rise to the same set ZE, hence to the same eigenvariety by virtue of the 

uniqueness Prop. 7.2.8. 

This remark allow us in particular to say that there exist eigenvarieties for 

the subset Z C ZQ parameterizing p-refined automorphic representations whose 

local components in a finite set of primes all lie in a given Bernstein component. 

Remark 7.3.4. — (if-types versus general idempotents.) The aim of type theory is 

to show that the special idempotents e^t above can be chosen of the form eT for 

some explicit K/-type r. In our context, this extra information is helpful from a 

<n> Indeed, as eI(W) = W for all Wt the induced map eI(V) —* eV is necessarily an isomorphism, 
hence the kernel of the map (68) is killed by e, whence is zero as e is special property. This argument 
shows actually that e is special if, and only if, Mode(G(Qi)) is stable by subobjects. 
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computational point of view. For example, if e = eT then we will see that the space 
of p-adic automorphic form of type e is 

5(V, r) = r®L {F{C(V, r)) 0 L O Kp 

which is computable in theory. In general, some esz are given abstractly by images of 
some idempotents in the Bernstein center of G(Qj) and we have very few control on 
them. 

7.3.2. Review of the construction of the eigenvariety ([36]). — The eigen
variety X associated to e is constructed by some formal process ([43], [44], [36], 
[32]) from the action of the Hecke operators on the orthonormalizable Banach family 
of spaces of p-adic automorphic forms of G. For example, X(Qp) turns out to pa
rameterize exactly the Qp-valued systems of Hecke eigenvalues on finite slope p-adic 
eigenforms of type e for G. 

As our main theorem relates some Selmer group to the smoothness of X at some 
point, and for sake of completeness, we give below an essentially self-contained 
overview of the construction of X and of the theory of p-adic automorphic forms 
alluded to above (12\ Actually, we shall use also some objects occurring in this 
construction to define the families of admissible G(A^ ̂ representation on X in § 7.4.1, 
as well as to define their non monodromic principal series locus in §7.4.2. The 
construction proceeds in four steps. 

7.3.3. Step I. The family of the [/"-stable principal series of a Iwahori 
subgroup. — The theory of p-adic automorphic forms of G relies essentially on the 
existence and properties of the p-adic family of the [/""-stable principal series of the 
Iwahori subgroup / of GLm(Qp). We take here and below the notations of § 6.4.1 with 
F = QP and w = p, except that we shall write G(QP) GLm(Qp) for the G loc. 
cit. which is already used here for the unitary group over Q. 

Let NQ be the subgroup of lower triangular elements of I. The product map in 
G(Q„) induces an isomorphism 

N0xB IB. 

If u e U~ then U^NQU C iV0, therefore (see Proposition 6.4.1) M~lIB c IB. Let 

X : T° —> 0(W)* 

denote the tautological character. If V C W is either an open affinoid or a closed 
point we denote by \v • T° —• A(V)* the induced continuous character. Fix such 
a V. There exists an smallest integer ry > 0 such that for any integer r > ry, xv 

(12) ^e warn the reader that some of the various conventions that we use in this book differ from 
the ones used in [36]. 
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restricts to an analytic A(V)-valued function on the subgroup of elements of T° with 

coefficients in 1 + prrLp. Viewing the character x of T° as a character of B which is 

trivial on UN, it makes then sense to consider for r >ry the space 

C(V,r) = 
f:IB—+ A(V), f(xb) = Xv(b)f(x) V x G IB, b G B, 

f\jjQ is r—analytic. 

Let us recall what r-analytic means. Let {ni,j}i>j be the obvious matrix coefficients 

but divided by p, viewed as algebraic functions on the lower unipotent subgroup 

of G(QP). This collection of maps induces a homeomorphism NQ Z ^ N _ 1 ^ 2 . A 

function / : NQ —> A(V) is said to be r-analytic if for each a G iV0, the induced map 

fa:N0-^A(V), n»->/(an), 

lies in the Tate algebra A(V)({prnij}i>j). If we endow this latter algebra with the sup 

norm, then the norm | / | := supa |/a| makes C(V, r) a Banach ^4(Vr)-module which is 

A(V)-ONsble by construction. (13) It is equipped with an integral ^4(F)-linear action 

of M by left translations: (m.f)(x) = f(m~1x). If we set 

U~ ={u= (pa\... ,pa™) eU, ai > a2 > • • • > am}, 

then an immediate computation shows that the action of any u G U on C(V, r) is 

A(V)-compact. 

The family {C(V,r),V, r > ry} of M-modules defined above satisfies some com

patibilities. If V C V is another open affinoid or closed point, then the natural 

map C(V,r) —> C(V',r) induces an M-equivariant isomorphism C(V, r)<g>A(V)A(V). 

Moreover, the natural inclusion C(V,r) —> C(V,r + 1) is A(V)[M]-equivariant and 

compact. If r > 0 and u G U , then the action of u factors through the compact 

inclusion C(V,r — 1) — • C(V, r) above. 

For any continuous character i\) : T — • L* and r > := 0, let us consider 

similarly the L-Banach space iI^{Xir) of functions / : IB —> L* whose restriction 

to NQ is r-analytic and which satisfy f{xb) = ip(b)f(x) for all x £ IB and b £ B. 

The difference with the previous spaces is that ^ic/ may be nontrivial. It has again 

an action of M by left translations. If : T — • L* is another continuous character 

and r > r^^r^i, we define a natural map 

i 
TR 
B 

(^,r) — • i IB 
B (Y' Y, r), f -- (x -- Y' (x) f (x)), 

where for x G IB, ipf(x) := ip'(t) for t G T the unique element such that x G NotN. 

We check at once that this map is well defined and that it induces an M-equivariant 

(13) It is isometric to A(V)({nifj}i>j>-7rm(m-l)/2 
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isomorphism (14) 

(69) (i IB 
3 

C0,r)) ®1p r-1 i IB 
B 

(YY', r). 

Assume now that V = {k} with k G Zm' , in which case ry = 0. The choice of an 

highest-weight vector in Wk(Qp) with respect to B gives an M-equivariant embedding 

Wk(L)* —• * IB 
B ( 4 , 0 ) . 

Hence we get by (69) a canonical (up to multiplication by L*) M-equivariant embed

ding <15) 

Wk(L)*®6k —>C(*,0) = i; R 
3 

(x*,0). 

Actually, the subspace of C(k, 0) denned above is exactly the subspace of functions 

on IB which are restrictions of polynomial functions on the whole of G(QP). 

7.3.4. Step II. p-adic automorphic forms. — Using the M-modules defined 

above as coefficient systems, we can define various Banach spaces of p-adic automor

phic forms for G. Consider the subring H~ := A~ 0 HUT C H. It will be convenient 

to introduce a functor F : Mod(L[M]) —> Mod(^~ <g> Z[G(Apf)]) by 

F(E) := 

f : G(Q) \G(A/) — E, 

/ (^(1 x fep)) = fc-1/^), G G(A/ ) , A:p G / , 

/ is smooth outside p. 

By / is smooth outside p we mean that / is invariant by right translations under 

some compact open subgroup of G(A^). The group G ( A p acts on this space in a 

smooth fashion by right translations, and it commutes with the natural action of 

Ap. The direct summand eF(E) C F(E) is then a W~-module in a natural way. Let 

K = I x Kp c G(A/ ) be a compact open subgroup which is sufficiently small so that 

e = e.e^p, and such that K\ = G(Zj) for each I £ So. Let be the class number 

\G(Q)\G(Af)/K\ (see §6.2.3 ii)) and let us choose a decomposition 

G(A, ) = 
hK 

i=l 

G(Q)XÌK, Ti := x~1G(Q)xi n X . 

Then Ti is a finite group, and we may even assume by reducing K that I\ is trivial 

for each i. The map / *-> (f(xi),..., f{xhK)) induces a L-linear isomorphism 

(70) eKF(E) h E . 

1̂4) Recall that by Proposition 6.4.1 (i), each character of U~ extends uniquely to a character of M 
trivial on I. 

(15)The twists appearing there comes from the fact that we chose to extend trivially on U the 
induced character in the definition of C(V, r). This choice could have been avoided by introducing 
the space of p-adic characters of T rather than T°. However, as Zm is not Zariski-dense in that space, 
this would have introduced other nuisances... 
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In particular, the functor E h-> eF(E), Mod(L[M]) —> Mod(W~), is an extremely 
well behaved functor, as a direct summand of CKF. If furthermore E is equipped with 
a norm |.| of L-vector space, then so is F(E) by setting 

l/l == sup 
xeG(Af) 

l/(*)l = 
hK 
sup 
2=1 

IMI 

The normed space F(E) is isometric to EHK , therefore it inherits many of the prop
erties of E. 

Let V C W is an affinoid subdomain or a closed point, and r > ry. We define an 
H~-module by setting 

5 ( V , r ) : = eF(C(V,r)). 

This is the space of p-adic automorphic forms of weight in V, radius of convergence r 
and type e. It has a natural structure of Banach A(V)-mod\ile which is a topological 
direct summand of an ONable Banach module (16\ which is a property that Buzzard 
calls (Pr) in [32]. It is equipped with an A(V)-lmeai action of H~, each h G H~ being 
bounded by 1 and each element of U C H~ being A(V)-compact. By formula (70), 
the collection of spaces {<S(V, r), V, r > ry} satisfies exactly the same compatibilities 
as {C(V,r), V, r > rv}. 

7.3.5. Step III. Classical versus p-adic automorphic forms. — Let 

k = (k1,...,km)eZm>-. 

We check at once using LPL~^ that eF(Wk(L)*) is a H~-stable L-structure on the 
space Loo(e)A(G, Wk(C)) of complex automorphic forms of weight W^(C) and type e. 
Moreover, we have a natural H~-equivariant inclusion 

(71) eF(Wk{LY) 0 4 ^ S(k, 0) = eF% 0), 

whose image is usually referred as the subspace of classical p-adic automorphic forms. 
In the remaining part of this paragraph § 7.3.5, we are going to prove the control 

theorem, which is a criterion ensuring that an element / G S(k,r) is classical, that 
is, belongs to the subspace eF(Wk(L)*). A necessary condition is that / be of finite 
slope at p. Recall that an element / € S(k,r) is of finite slope if for some u € U 
(viewed as en element of A~): 

— the subspace L[u].f C S(k,r) is finite dimensional, 
— and U\L[U]J is invertible. 

<16) The isomorphism (70) induces an isometry eKF(C(V,r)) C(V,r)hx hence eKF(C(V,r)) is 
A(V)-ONab\e. We give S(V, r) C CKF(C(V, r)) the subspace topology, it is closed as the image of 
the continuous linear projector e on CKF{C{V^ r)). 
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As such a u acts compactly on <S(fc, r), and as Ap is commutative, this implies that 

the whole subspace A~.f is finite dimensional over L, and that u is invertible on 

A-.f. As 

(72) G U—,W G CT, 3fc G N, 3ti" G I/", ti'u" = ufc, 

we see that if / is of finite slope, then for all u G U , L[u].f is finite dimensional and 

w|L[u]./ is invertible. As a consequence, the finite slope elements form an L-subspace 

%,r)fsc5(fc,r) , 

over which all the elements of U are invertible, and S(k, r)fs extends naturally to an 

An-module. Note that 

eF(Wä(L)*)®öä c S{k,r) fs 

as the *4~-module structure on the finite dimensional space S(k, r)fs extends to Ap 

(and even to the full Hecke-Iwahori algebra, see §6.4.1). Recall that for i = 1,..., m, 

Ui = ( 1 , . . . , 1,..., 1) G U where p occurs at place i. 

Proposition 7.3.5. — (17) Let f G S(k,r){s<S)LQP be an eigenform for allu eU C Ap. 

For i = 1,..., m write Ui(f) = \ f for Xi G Q*. / / we have 

v(AiA2 - - Xi) < hi - + 1, Vz = 1,..., m - 1, 

then f is classical. 

More precisely, under the same condition the full generalized Ap-eigenspace of f in 

S(k, r)fs ®L QP i>s included in the subspace eF(Wk(L)*) ®LQp of classical forms. 

This result is a variant of [36, Prop. 4.7.4], which is stated there with some stronger 

conditions on / , for instance that u(/) = Xf with u = (pm_1,pm-2,... ,p, 1) and 

A G QP* such that 

(73) v(X) < Mm m—1 
¿=1 

(hi - fci+i) + 1. 

The conditions of the statement first appear in the work of Emerton in [53] (he 

obtains them using his "Jacquet-module" functor). This is also what we would expect 

by a Verma module argument. These conditions are actually more meaningful than 

(73) above, or than the ones that the second author introduced in [36, §4.7, §7.5] 

under the name of {/-non criticality, in the sense that they match perfectly with the 

notion of numerically non critical refinement that we encountered in our study of 

the Galois side in chapter 2 (see Remark 2.4.6 (ii) of §2.4, as well as §7.5.4). The 

proof of the proposition that we give below is a slight variant of the elementary proof 

originally given in [36, Prop. 4.7.4] which relies on a coarse but useful presentation of 

the M-representations C(V, r), given by the Pliicker embedding of GLm(Qp). 

<17) Added in 2008. 
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Proof. — Choose a net compact open subgroup K as in § 7.3.4 such that e.ex = 

e#.e = e. As the action of e and commute with A~, we may assume that e = e^. 

Moreover, we may assume that r = 0 as 

<S(fc,r)ts C5(fc,0), Vr G N. 

Indeed, fix a it € 17 . For r > 1, the operator u : e#jF(C(A;,r)) —• e/cF(C(fc,r)) 

factors through the (compact) restriction eKF(C(k,r)) —> eKF(C(k,r — 1)), as this 

holds without applying the functor e^F (see §7.3.3). As a consequence, a standard 

argument shows that the characteristic power series det(l — Tu\s(k,r)) *s independent 

of r > 0, thus so is <S(fc, r)fs. 

In order to define the Pliicker presentation of W£(L) and of C(fc, 0), we have to 

introduce a collection of objects which are similar to the ones introduced in § 7.3.3 

(actually, they are simpler). Let us recall first a well-known construction of linear 

algebra. Let V be any finite dimensional Qp-vector space, H = GLqp(V)) v G V a 

nonzero vector, P C H the stabilizer of the line Qp v C V, and let 

X : p ---- Q*p 

be the character of P acting on the line Qp v. For n > 0 an integer, the L-vector space 

of homogeneous polynomial functions V —• L which have degree n is isomorphic 

(with its natural iJ-action) to the L-vector space ip(xn) of algebraic functions / : 

H —• L such that f(hb) = xn(b)f'(h) for all h G H and b G P (where H acts by left 

translations). Indeed, the map ip i—• (h i—• (p(h(e))) provides such an isomorphism. In 

other words, we have for n > 0 an L[if]-equivariant isomorphism 

(74) i 1 :xn) -- Symmn(F0Qp I,)*. 

We go now a bit further and construct a representation which is to ip{xn) what 

C(k,0) is to W£(L). For that, we assume furthermore that we give ourselves a lattice 

C of V of the form 

L = Zpv O R. 

Let AT c H be the subgroup fixing pointwise i? and V/i i [ l /p] , it is the radical unipo-

tent of the parabolic subgroup which is opposite to P with respect to the decompo

sition above. Consider also the (parahoric) compact subgroup 

J = {h G GLZp(£), h(v) G Zpv + pR}. 

We have an Iwasawa decomposition 

J = (N DJ) x ( P n J), 

and a natural isomorphism of topological groups 

(75) a : N H J R, n n a(n) = (n(v) - v)/p. 
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Let il~ C H (resp. it C H) be the submonoid consisting of elements u such that 

for some integer a G Z we have u(v) — pav and u(R) D paR (resp. u(R) D pa~1R). 

Let 9JI C H be the submonoid generated by J and it-. It is an exercise using Iwasawa 

decomposition to check that 

(76) Wl=m-J, m^JPcJP, V u G i ! " u^a^iR^Ca'^pR). 

Define 0(R) as the Tate algebra of L-valued analytic functions over R: if t i , . . . , tr is 

a Zp-basis of Homzp(jR, Zp), then it is the standard Tate algebra 

0(B) = L(ti,...,tr>, 

which is a Banach L-algebra equipped with its Gauss norm. By means of the isomor

phism (75) above, we define the L-algebra 0(N fl J) of L-valued analytic functions 

on N fl J as the functions / : N D J —• L such that / o a-1 G 0 ( # ) . This being said, 

let us consider the space 

C(n) = 
f-.JP^L, f(xb) = x(b)nf(x) V x € JP, b e P, 

fimjeO(NnJ). 
. 

As an L-vector space, we have canonically C(n) 0(N fl J) = O(R), which gives 
OL 

C(n) a structure of Banach space over L. By (76) it has a natural action of 3DÎ by left 

translations, (18̂  and the elements u G il act by compact operators. An algebraic 

L-valued function on H restricts to an analytic function on AT fl J, so we get a natural 

9Jl-equivariant map 
i H 
p Xn) —* C(n), 

which is injective as the open subset JP C H is Zariski-dense in H. For integrality 

reasons, it will be convenient to twist those representations by a power of the (unique) 

character 

6 : 5PÎ — • L* 

such that 6( J) = 1 and 6(u) = pa if u = (pa, U\R) G it . Indeed, we claim that: 

Lemma 7.3.6. — (a) The elements of 9)1 all have norm < 1 on C(n) <g> 8n. 

(b) For m G Jil J, /ms norm < 1 on the quotient {C(n)/ip(x)) 0 <Sn. 

(18) That the action of J preserves the analyticity, and even Zp(ti,... ,£r)> can be checked by an 
explicit computation of the natural map 

J x TV D J —y Nf)J x P H J, 

(J,n) - (a, b) where (a, 6) is the Iwasawa decomposition of jn G J. An alternative, more conceptual, 
argument is to note that this map is induced by a morphism of formal schemes over Spf(Zp). 
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Proof. — We leave as an exercise to the reader to check that for m G J, m has norm 
1 on C(ri). If u = (pa,u\p) G i t- and if n G N fl J, then u~lrn = u~1nг¿.г¿~'1 where 

u~lnu € N C\ J satisfies 

(77) aiu^nu) = pau~1(a(n)). 

As xn(u~1)fi(u)n = 1> this shows (a). 
To check (b) it is now enough to assume that m G ii . We may write m = uuf 

with u = (p, idfl) and it' G so we may actually assume that m = u. Let us identify 

C(n) with Z/(£i,... ,tr) as above, by means of a. By (74), ip(xn) is its subspace of 

polynomials in t\,. . . ,tr with total degree < n. But by (77), u acts on L(ti,...,£r) 

by sending / ( ¿ 1 , . . . , tr) to f(pt\,... ,ptr), and (b) follows. • 

All of this being done, we can define the Plucker presentation. Let f\,..., fm be 

the canonical basis of Q™. For i = 1,..., m, we apply the above construction to: 

— the space Vt := A*(Q™), 

— the element Vt := /1 A /2 A • • • A / i , 

— the integer nl = ki — k{+i > 0 if i < m, nm = /cm otherwise, 

— the lattice d = A*(Z™), 

— the decomposition Ci = ZpVi 0 Ri where R{ is the Zp-module generated by the 

elements fh A fJ2 A • • • A fu with ji < • • • < ji and ( j i , . . . , ji) ^ ( 1 , . . . , i ) . 

This gives rise to a collection of objects 

(Hi, PÌ,XÌÌ^ 
HI 
Pi (X ni 

i 
), iVi, Ji, o?i,ilJ, On», Ci(rii)), i = l , . . . , m . 

For each 2 we can furthermore consider the fundamental representation 

A* : G(Qp) — If*. 

We check at once that A*(B) C P*, A{(N0) C AT*, A* (J) C Ji, Al(U*) C il*, and 

Al(M) C 3Jli. We shall denote by Wi(L)* the space ip* (x?*) viewed as a representation 

of G(Qp) via A1. In particular, 

^ ( ^ - Symm^A*!,™). 

Recall that the representation Wk(L)* of G(QP) is irreducible and isomorphic to the 

L-vector space of functions / : G(QP) — • L such that f(gb) = Sk(b)f(g) (for left 

translations) where Sh is the highest weight character of Wk- As a consequence, the 

map ( / i , . . . , /m) (9 M 
1=1 

fi(Al(g))) induces an L[G(Qp)]-equivariant surjection 

m 

i=l 

Wi(L)* —• Wk(L)*. 

(Note that x*1 x\2 • • • xfc = xkl-k2(x1x2)k2-k^(x1x2x3)k^ • • • (xxx2 • • • xm)k™ for 

all (xi , . . . , xm) G (Q*)m.) This is the Plûcker presentation of Wfc(L)*. 
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Similarly, let us denote by Ci(ni)f the representation Ci(rti) ® 6™* viewed as a 

representation of M via A*. As for Wk(L)*, the natural map ( / 1 , . . . ,/m) *-> (<7 ^ 

m 
I=L fi(Al{g)) induces an L[M]-equivariant map 

-m 
1=1 

Cite)7—>C(fc,0). 

This map is continuous of norm < 1 and surjective, as the natural map 

N0 
TO 

i=l 

Ni, g I • (Ai(g)), 

is easily seen to induce a norm deacreasing surjection on the Tate algebra of analytic 

functions (for instance as the injection above is induced by a closed immersion of for

mal schemes over Spf(Zp)). We get this way a commutative square of L[M]-modules: 

v m 
1=1 

WAD* ® S rii 
1. 

Wk(L)* gk 

-TO 
1=1 

Ci (ni)' C(k,0) 

where the horizontal arrows are surjective and the vertical ones are injective. As the 

functor 6KF is exact, there is a similar diagram of H~-modules with CKF applied 

everywhere. Let us introduce the L[M]-modules 

Q = C(*,0)/(Wfc(L)*®*fc), Q' = m 
i=l 

^ K ) ' ) / I TO 
2=1 

Wi(L)*®l Hi 
i . 

We have then a natural surjection 

(78) eKF{Q') — f eKF(Q) —> 0, 

as well as a tautological injection 

(79) 0 — eKF{Q') —+ 
TO 

1=1 

eKFiQ'i), 

where we have set 

Q'i = (ßitiCjinj)') ® (dim)'/(WW ® 6?)). 

Let us now prove Prop. 7.3.5. Let w G exF(Q) be such that Ui(w) = XiW where 

the Xi are as in the statement. All we have to show is that w = 0. By the L[M]-

equivariant surjection (78), and as U acts compactly on exF(Q), the generalized 

*4~-eigenspace of w in e^F(Q) is the image of a generalized ^4~-eigenspace E C 

£KF{Q') for the same system of eigenvalues as w. It is enough to show that any 

w' e E which is an eigenvector, i.e. such that Ui(w') = A2n/ for all i, vanishes. Fix 

such a w'. By the L[M]-equivariant injection (79) it is enough to show that its image 

w\ € eKF{Q\) 
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vanishes for all i = 1,..., m — 1 (of course, Qfm = 0). Set 

Ui = 
i 

j=1 
Ui eU . 

We claim that the element UI 

pTii + l 
has norm < 1 on eKF(Q,i). This will conclude the 

proof as its eigenvalue on w\ is 
À1À2 • • • \% 

pTii + l 
which has norm > 1 by assumption. 

Let us check the claim. By the definitions of the norm on e ^ F ( - ) (see § 7.3.4) and 

of Hecke operators (see e.g. [36, Lemme 4.5.2]), it is enough to show that each element 

of the form , for g,g' G / , has norm 1 on Q\. By Lemma 7.3.6 (a), gUig' acts 

by norm < 1 over C(nj)f for all j . As Al(gUig') G J2il J2, assertion (b) of the same 

lemma conludes the proof of the claim. • 

7.3.6. Step IV. Fredholm series and construction of the eigenvariety. — As 

any h G U H~ acts compactly on the (Pr)-family of Banach modules {<S(V, r), V, r > 

rv}, there is a unique power series Ph(T) G l+TO(W){{T}} such that for any V C W 

open affinoid or closed point and r > t v , 

Ph(T),v = det(l - Th{siv,r)) € 1 + TA(V){{T}}. 

A power series P £ 0(W){{T}} with P(0) = 1 is often called a Fredholm series. 

Set P := PUQ1 and consider the Fredholm hypersurface Z(P) C W x Gm, that is the 

closed subspace defined by P = 0. As any Fredholm hypersurface, Z(P) is canonically 

admissibly covered by its affinoid subdomains fi* such that prx(Q*) is an open affinoid 

of W and that the induced map prx : Q* — • prx(^*) is finite. Here prx is the first 

projection W x Gm —> VV. Let us denote by C* this canonical covering. This covering 

is easily seen to be stable by finite intersections, by pullback over affinoid subdomains 

of W, hence to satisfy the following good property: 

(*) if Ql, 0,2 € C* then ill ^ ^2 *s an open-closed subspace of ill xVl (V\ fl V2). 

The eigenvariety X will then be constructed as a finite map v : X —• Z(P) as 

follows. Let fi* G C* and V := pr1(fi*). There is a unique factorization P = QR 

in A ( y ) { { r } } where Q G 1 + 2\A(V)[T] has a unit leading coefficient and is such 

that il* = Z(Q) is a closed and open subspace of Z(P) x w V. To this factorization 

corresponds, for r > t v , a unique Banach A(y)-module decomposition 

5(V,r) = S(fi*)0JV(fî*,r), 

which is W -stable, and such that: 

— S(ft*) is a finite projective A(V)-module, which is independent of r > rv, 
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— the characteristic polynomial of UQ on 5(1}*) is the reciprocal polynomial Qrec(T) 

of Q(T), and Qrec(u0) is invertible on N(Q*,r). 

The local piece Q of X is then by definition the maximal spectrum of the A(V)-

algebra generated by the image of H = H~ [wo]-1 in End^(^) (S(Q*)). It is equipped by 

construction with a ring homomorphism H —• A(fl), with a finite map v : Q, — • ft*, 

and with a finite A(ft)-module S(Q,*). We check then that the Q, and the maps above 

glue uniquely over C* to an object (X,ip, v) as in the statement of Proposition 7.3.1, 

which is easy using the property (*) mentioned above of the admissible covering C*. 

In other words, the coherent sheaves of O-algebras {A(il),Q* G C*} glue canonically 

to a coherent Oz(p)-algebra, and v : X —• Z(P) is its relative spectrum (see [48, 

§2.2]). The space X constructed this way is actually reduced by [37, Prop. 3.9]. In 

the same way, the locally free coherent sheaves {£(Q*),ft* G C*} glue canonically to 

a coherent sheaf on Z(P). This sheaf is a v*Ox-module in a natural way, hence has 

the form v*S for as a coherent sheaf 5 o n X . 

Definition 73.7. — We denote by C the admissible covering i/-1C* of X and by S the 

coherent sheaf on X defined above. If ft = i/_1(ft*) G C, then S(Sl) = S(Q*). 

Remark 73.8. — (On quasicoherent and coherent sheaves on rigid spaces) Let X be 

a rigid analytic space over k. An Ox-module T is said to be quasicoherent (resp. 

coherent) if there exists an admissible covering {Ui} of X by affinoid subdomains 

such that T\ui is the sheaf Af» associated to some 0(C/i)-module Mi (resp. such that 

Mi is finite type over 0(Ui)) (see [27, §9.4.2], [48, §2.1]). Contrary to the case of 

schemes, this does not imply in general that for any affinoid subdomain U, T\u is 

associated to an 0(£/)-module (see Gabber's counterexample [48, Ex. 2.1.6]). This 

holds however when U lies in some Ui, when T is coherent ([27, §9.4.3]), or when T is 

globally on X a direct inductive limit of coherent Ox-modules ([48, Lemma 2.1.8]). 

In our applications, we will define some quasicoherent sheaves on X using the 

covering C, but they will all be direct inductive limits of coherent sheaves. 

7.4. The family of G(A^ ̂ representations on an eigenvariety of idempotent 

type 

In all this part, we keep the notations of § 7.3.1. In particular, X is the eigenvariety 

associated to the idempotent e given by Theorem 7.3.1, or its variant with one fixed 

weight as in Remark 7.3.2 (iii). 
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7.4.1. The family of local representations on X. — Let us fix some finite set 

S of primes (19) such that S fl (So U {p}) = 0 . Assume moreover that the idempotent 

e decomposes as a tensor product of idempotents at l G S and outside /: e = es ® es 

and es = ®i€sei, = et e C(G(QZ),Q). 

The eigenvariety X carries a natural sheaf of admissible G(As)-representations 

that we will describe now. For V C W an open affinoid and r > TV, we have by 

definition a split inclusion 

(80) S(V, r) = eF(C(V, r)) C F(C(V, r)), 

and the latter space is a smooth G(As)-module as p £ S. We fix now ft* G C*, set 

ft = iz-^fl*), V = pri(îî*), and we consider S(ft*) C S(V,r) as in § 7.3.6. 

Definition 7.4.1. — We define IIs(fi) as the Z[G(A5)]-submodule of F ( C ( V » ) gen

erated by S (SI*). 

By definition, l is (ft) is an H~ 0 A(Vr)-submodule and the natural map H~ (g) 

A(V) —> End(IIs(fî)) factors through A(fl) as it does on the generating subspace 

<S(fT) of Il5(îî). As a consequence, l is (ft) is an A(ft)-module in a natural way. It is 

independent of r > ry as S (ft*) is. 

Proposition 7.4.2. — Let ft G C 

(i) Ils(ft) is an A(Q)-admissible smooth representation of G(A$). 

(ii) The natural inclusion S (ft) — • eslls(ft) is an equality. 

Moreover, 

(iii) The sheaves of O-modules {lis(ft) , ft € C} glue canonically to a quasicoherent 

smooth Ox[G(As)]-module, and (ii) glue to an isomorphism S eslls-

(iv) For each compact open subgroup J C G(As) the subsheaf of J-invariants Ug C 

Ils *5 a coherent Ox-module, and l is = U J ^ S -

(v) For all x G X, (Jls)x is torsion free over Ow(x), hence also over Ox. 

Proof. — We check first assertion (ii). Let Q G i4(V)[T] be the polynomial attached 

to ft* as in §7.3.6, so that <S(ft*) is the Kernel of Qrec(u0) on eF(C(V,r)). As p £ 5, 

<2rec(îx0)ns(ft*) = 0, hence (ii) holds by definition. 

We know that l is (ft) is smooth as F(C(V,r)) is, hence (i) follows from (ii) and 

Lemma 7.4.3 (i). Assertion (iii) follows easily from the properties of the admissible 

covering C*, the proof is similar to the gluing argument for the sheafs S and v*Ox so 

(19) We hope that there will be no possible confusion with the letter S occurring in the spaces 5(f2*) 
or S(V,r). 
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we leave the details to the reader. To prove (iv), note that for any Q-algebra A, any 
A-linear representation V of J, and any A-module M, the natural map 

VJ ®AM—>(V ®a M)J 

is an isomorphism (argue as in Lemma 6.6.1 (b)). Part (iv) follows now from (i) and 
(in). 

Before showing (v), let us recall that by construction Ox is a C^^-subalgebra of 
the endomorphism ring of a finite free Ou(x)-module, hence the total fraction ring 
of Ox identifies with Ox (^ow(l) Frac(Oa,(x)). As a consequence, it suffices to check 
that (Us)x is torsion free over 0^x). But for each ft*, V and ft as above, Il5(ft) is a 
subpace of F(C(V,r)), which is clearly torsion free over A(V). • 

Lemma 7.4.3. — (Bernstein) Let k be a field of characteristic 0, A a noetherian k-
algebra and V a smooth A[G(As)]-representation. Assume that for some decomposed 
idempotent e G Ci(G(As), k), eV is finite type over A and generates V as an A[G(Qi)]-
module. Then: 

(i) V is A-admissible, 
(ii) if A is moreover finite dimensional over k, V is of finite length on A[G(Qi)]. 

Proof. — Let us show (i). By induction on |5 | , we may assume that S = {I}. By [17, 
Prop. 3.3], and more precisely by "variante 3.3.1" and the remark following Corollary 
3.4 loc. cit, V is Z(G(Qi)) <g>k ^-admissible where Z(G(Qi)) is the center of the k-
valued Hecke-algebra of G(Qt). As A[G(Qi)]eV = V, the action of Z(G(Qt)) ®k A on 
V factors through its faithful quotient A! C End^ELO- As eV is finite type over A 
by assumption, and A is noetherian, so is A!, hence V is A-admissible. 

The second assertion follows from (i) as V is then A:-admissible and of finite type 
over k[G(As)} (use [17, Cor. 3.9]). • 

For sake of completeness, we end this discussion with a study of the fibers of l is at 
a point of X. We fix x G X with residue field k(x), hence we get a natural system of 
Hecke-eigenvalues i/>x : H —• k(x). To this system of Hecke-eigenvalues corresponds 
a generalized 7^-eigenspace S^X C S(uj(x),r) — eF(C(uj(x),r)), for r big enough. 

Definition 7.4.4. — We denote by IÎ X the Oxjm^x^O^-representation of G(As) gen
erated by the (finite dimensional) subspace S^X of F(C(LJ(X), r)). It is a finite length 
admissible representation of G(As) by Lemma 7.4.3 (ii). 

Definition 7.4.5. — Assume moreover that x G Z, so ijjx(li) C Q. We denote by II^ 
the k(x)-moo\e\ (2°) of the complex G(As) subrepresentation of AlG.Wk) generated 

(20) Defined by iv and too-
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by the W-eigenspace of e(A(G, Wk)) for the system of eigenvalues tp 1(ipx). It is a 

semisimple ^^-representation. 

Proposition 7.4.6. — (i) The natural map (HS)X/^UJ(X)0^S)X — • n^x is surjective 

and induces an isomorphism Sx/m^^Sx S^x. 

(ii) If x £ Z, then Ux is a subrepresentation of Tig*. 

(iii) If x G Z is numerically non critical, in the sense that it satisfies property (v) 

(b) of Thm. 7.3.1, then Ux n^x. 

Proof. — Let ft* G C* containing x as above, we will argue as in the proof of Prop. 

7.4.2 (ii) of which we take the notations. As <S(ft) C <S(V, r) = eF(C(V, r)) is projective 

and direct summand, the natural map 

5(fi)/mwW5(fl) — eF(CMx)) ,r) , 

is injective and the Fredholm series of u$ on S(Q)/mu/^x)S(il) is the evaluation of 

Q(T) at K(X). By taking the ^-generalized eigenspace we get that 

Qx/mw(x) Sx -- QYx, 

and (i) follows. The point (ii) follows from (71) of § 7.3.5, and (iii) from the control 

theorem Prop.7.3.5. • 

When es is special (see 7.3.3 (iii)), most of our results hold in the stronger form. 

Corollary 7.4.7. — Assume that es is special. 

(i) The natural surjection induces an isomorphism 

CC(G(AS),L) '5 esCc(G(As),L)es 5 U S. 

(ii) For all x G X, (IIs)x ¿5 flat over O^y 

(iii) For all x G X, the map of Prop. 7.4-6 (i) is an isomorphism. 

Proof. — By Prop. 7.4.2 (ii), e^IIs = <S, thus (i) follows from the discussion in 

Example 7.3.3. Assertion (ii) follows formally from (i), the fact that for each x G X, 

Sx is finite free over O ^ ) , and from the exactness of the functor J defined in Example 

7.3.3. The map of Prop. 7.4.6 (i) induces an isomorphism after projection to es by 

loc. cit., hence is an isomorphism as es is special, which proves (iii). • 

7.4.2. The non monodromic principal series locus of X. — We keep the 

assumptions and notations of §7.3.1. We fix a finite set SN of primes / such that 

G(Qi) is quasisplit and assume that e is a tensor product of idempotents e\ with / G S 

by an idempotent outside SN- Recall that we defined some Ox[G(Qi)]-modules IIs^ 

in §7.4.1. 

Let Xq C X be the subset of points x such that for each I G S, I I ^ ® ^ k(x) contains 

a non monodromic principal series G( As ̂ representation in the sense of § 6.6.2 (see 
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Remark 6.6.9 when l̂ l > 1). Let XN C X be the Zariski-closure of Xo, we view it as 
a reduced closed subspace of X. Let also ZE^ C ZE be the subset parameterizing p-
refined automorphic 7r such that 7T/ is non monodromic principal series for each I G S. 
We assume that ZE^ ^ 0-

Proposition 7.4.8. — There exists a unique eigenvariety for ZE^N, namely 

(X N,V>\XN,V\X N ' znxN). 

XjM is a union of irreducible components of X, hence equidimensional of dimen
sion m. It satisfies also properties (iv), (v) and (vi) of X (see Theorem 7.3.1). 

Proof. — For any open affinoid V C X, set VQ = VC\Xo and define Vo C V to be the 
Zariski-closure of Vo in V, equipped with its reduced structure. By Prop. 7.4.2 (see also 
Remark 7.3.8), ILsN\v is the sheaf associated to the A(Vr)-admissible representation 
HsN(V), to which we can apply the construction of §6.6.3. By definition, Vb is the 
intersection of Spec(A(V))o defined there with its subspace V = Specmax(A(Vr)), and 
the Zariski-topology of V is by definition the topology induced from Spec(A(V)). As 
A(V) is a Jacobson ring, and as Spec(A(F))0 is constructible by Prop. 6.6.5 (i), we 
check easily that we also have 

Vro = VrnSpec(A(F); 
o-

By Prop. 6.6.5(h) and by Prop. 7.4.2 (v), we know that Vo is a (possibly empty) 
union of irreducible components of V. 

We claim that for any two open affinoids V, W C X. 

(81) v0 n W = (V n W] o-
Note that V fl W is affinoid as X is separated, so by replacing W by V fl W in (81), 
we may assume that W C V. Moreover, the inclusion D above is clear as Vo fl W = 
(V n W)o, thus it only remains to prove that Vo n W C Wo- As we know that Vo 
has a Zariski-dense open subset V C Vb by Prop. 6.6.5 (i), V'flVT is Zariski-dense in 
W fl Vo by Lemma 7.4.9 (applied to Y = V0, U = V, Ct = W fl Y), and we are done. 

As a consequence of (81), all the Vo glue to a reduced closed subspace T c X. By 
construction, XQ C T is Zariski-dense, as it satisfies the much stronger assertion that 
for any open affinoid V,Vo = VC\X0 is Zariski-dense in Vo = V fl T. Hence T = XN 
and the proposition follows at once. • 

Lemma 7.4.9. — Let Y be an affinoid, U CY a Zariski-open subset, and ft C Y an 
affinoid subdomain. If U is Zariski-dense in Y, then ft fl 17 is Zariski-dense in ft. 

Proof. — Set F := Y\U, we have to show that Fflft does not contain any irreducible 
component of ft. If it was the case, F fl ft would contain an affinoid subdomain of 
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ft, hence F would contain an affinoid subdomain of V, as well as each irreducible 

component of Y containing it, but this is a contradiction. • 

7.5. The family of Galois representations on eigenvarieties 

In this part, we explain how the existence of Galois representations attached to 

classical automorphic representations for G give rise to a family of Galois representa

tions on eigenvarieties. We keep the notations and assumptions of §7.2.1, as well as 

those of §6.8.1 <21>. 

7.5.1. Setting. — So as not to multiply the statements, let us assume once and for 

all that G is: 

(a) either the group U(m) defined in § 6.2.2, in which case we assume that hypothesis 

(Rep(ra)) of §6.8.2 holds, 

(b) or a definite unitary group such that for any finite prime /, G(Qi) is either 

quasisplit or isomorphic to the group of invertible elements of a central divi

sion algebra over Q/, this latter case occurring at least for one I =: q. Assume 

moreover that G(QP) ~ GLm(Qp). 

As explained in Remark 6.8.2 (vii), recall that in the second case, the obvious analog 

of condition (Rep(m)) is known except for property (P3). 

We assume moreover that the set So defining Hur has Dirichlet density one, and 

we fix a decomposed compact open subgroup KP C G(A^) as well as a finite set S of 

primes, such that p G S and that for each I £ S or in So, Ki is a maximal hyperspecial 

or a very special compact subgroup. We choose the decomposed idempotent e such 

that eexp = e^p. If we are in case (b), we assume moreover that eq vanishes on the 

one dimensional representations of the division algebra ^ G(Qq). We fix also a finite 

set of primes Sjv C S that we assume to be empty in case (b), and define Z C ZE to 

be the set parameterizing p-refined automorphic representations of type e which are 

non monodromic principal series at primes in SN (note that G(AsN) is quasisplit), 

with one of the weights fixed if we like (see Rem. 7.3.2 (iii)), and let 

(X,TL>,U>,Z) 

be the corresponding eigenvariety given by Prop. 7.4.8, which is a closed subspace of 

the eigenvariety Xe associated to e. 

In the following important example-definition, we introduce the "minimal level" 

eigenvariety containing a given refined automorphic representation of G. 

(21) Of course, we take the same choice of Q, Qp> IV and ¿00 in both cases. 
(22) ^e need to make this technical condition to ensure that automorphic representations of G admit 
associated Galois representations (see [61, Thm. 3.1.4] and §6.8.2 (vii)). 
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Example 7.5.1. — The minimal eigenvariety containing n. Let (7r,7£) be a p-refined 

automorphic representation of G. 

In case (a) (resp. in case (b)), assume that 7r is either a non monodromic principal 

series or unramified (resp. is unramified) at all the finite nonsplit primes. Define S 

as the finite set consisting of p and of the primes I such that either 7r/ is ramified or 

G(Qi) is the group of invertible elements of a division algebra (which occurs only in 

case (b)). Define also SN C S as the subset of nonsplit primes I such that TTI is a non 

monodromic principal series (this set is empty in case (b)). Choose e = es such that: 

(i) For I € SN, &I — e^i is a special idempotent attached to the Bernstein compo

nent attached to the inertial class of ni (see Example 7.3.3 (v)). 

(ii) For I = ww ^ p e S\SN such that G(Qz) = GLm(Qj), e* = en where 77 is 

the finite dimensional irreducible representation of G L m ( C ^ ) attached to TTI 

by Prop. 6.5.3. 

(iii) For I = ww such that G(Qi) is the group of invertible elements of a division alge

bra, ei = eTl where r% is a Bushnell-Kutzko's type for the Bernstein component 

of 717. Such a r\ exists by [31, Prop. 5.4]. 

Choose a finite extension L/Qp which is sufficiently big so that ipi^^f and each e\ 

is defined over L. 

Definition 7.5.2. — Under these assumptions, the unique eigenvariety over L for Ze^ 

given by Prop. 7.4.8 will be referred as the minimal eigenvariety of G containing n 

(or (7r,7e)). 

Of course, in this context, if we are interested in the variant with the IQ1 weight 

fixed as in Rem. 7.3.2 (iii), we shall always choose the integer k to be the i^1 weight 

of HOC. 

We now go back to the Galois side. Recall that GE,S is the Galois group of a 

maximal algebraic extension of E which is unramified outside the primes above S. 

For each regular automorphic representation 7r, properties (PO) and (PI) assert the 

existence of a unique semisimple continuous representation 

P* : GE,s —> GLm(Q ), 

such that for each prime / = ww e So, the trace of a geometric Frobenius at x, say 

Frob 
w 

EG E, S, 

is the trace of the Langlands conjugacy class of LVL -i 
oo 7rw.\det 

l-m 
2 ). Let 

hw € C(Kl\C(G(Ql)/Kl,Z) --
W C(GLm(Z/)\GLm(Qz)/GLm(Zz),Z) 

be the usual Satake element [Ki(l, 1,..., l)Ki], it satisfies 

tr (pn(Frobw)) = il>frtTi)(hw). 
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Let us denote by 

r̂eg C Z • %e 

the subset of points parameterizing the p-refined (7£, n) such that TTQO is regular, and 

such that the semisimple conjugacy class of TTP (see § 6.4.3) has m distinct eigenvalues. 

If z G Zreg parameterizes the regular p-refined 7r, we will set 

pa := pu 

The following lemma shows that Zreg is sufficiently large. 

Lemma 7.5.3. — ZTeg is a Zariski-dense subspace of X accumulating at each 

point of Z. 

— Let U C X be an open affinoid, and letYcU be a Zariski-dense subset such 

that LL>(Y) C Zm. Consider the subset Y' cY whose points y satisfy 

Fi(y)/Fj(y) = p ki - kj - i + j + 1 Vi = j 

where uj(y) = ( fc i , . . . , km). Then Y' is Zariski-dense in U. 

Proof. — Let (a>i,... ,<JM) : W —> Am be the analytic map such that for i = 

1,..., m, and x G X, Ui(x) is the derivative at 1 of the restriction to the ith copy of 

Z* of the character u(x) (for more details about this construction, see §7.5.4 below). 

For i ^ j , the closed subset of X defined by the equality 

UJi = LJj + 1 

is nowhere dense by property (iv) of the eigenvariety X (see Theorem 7.3.1). As Z is 

an accumulation and Zariski-dense subset of X, the first assertion is a consequence of 

the second one. 

Let Y' C Y C U be as in the second assertion. As the are invertible in 0(U), 

the maximum modulus principle shows that there are two integers a, b G Z such that 

pa <\Fi(x)/Fj(x)\<pb 

for all x G U and i ^ j . In particular, Y\Y' is included in the closed subspace of U 

defined by a finite number of relations of the form u;* — UJ3; = A with i ^ j and A G Z. 

We conclude as such a subspace is nowhere dense by property (iv) of the eigenvariety 

X again. • 

7.5.2. The family of Galois representations on X. — We adopt also from now 

on the notations of § 4.2.2. The first result is that the pz with z G Zreg interpolate 

uniquely to a rigid analytic family of p-adic representations of GE,S on X. It uses 

only properties (PO) and (PI). 
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Proposition 7.5.4. — There exists a unique continuous pseudocharacter 

T : GE,s — O(X) o 

such that for all z G Z, Tz = tr (pz'). Moreover: 

(i) Ticg^c-1) = T(g)X{g)m-1 for each g G GE,s (see § 5.2.1), 
(ii) for each prime I = ww in So, we have T(Frob-u;) = ip(hw). 

In the statement above, \ : GE,S — • is the p-adic cyclotomic character. More
over c is the outer complex conjugation (see § 5.2.1). 

Proof. — By property (vi), ip(HUr) C O(X) is a relatively compact subset, and by 
Lemma 7.5.3 Zreg is Zariski-dense in X. The existence and uniqueness of T follows 
then from [36, Prop. 7.1.1]. The equalities in (i) and (ii) hold as X is reduced and as 
they hold on the Zariski-dense subspace Zreg (see Remark 6.8.2 (i)). • 

For x G X , recall that Ox is the rigid local ring at x, k(x) its residue field and k(x) 
an algebraic closure of k(x). As Ox is reduced and noetherian, its total fraction ring 

Kx := Frac(0x) 

is a finite product of fields, and we will denote by Kx a (finite) product of algebraic 
closures of each of those fields. By Taylor's theorem [117, Thm. 1.2], we have then 
two canonical representations attached to x: 

(a) px : GE,S — • GLm(&(#)), which is the unique (up to isomorphism) continuous 
semisimple representation with trace TX : G —> OX — • k(x). 

(b) p|en : GE,S — > GLm(/Ca;), which is the unique (up to isomorphism) semisimple 
representation with trace T <8> ICX : GE^s —* OX —> JCX. 

Corollary 7.5.5. — For each x G X, and for each prime I = ww in So, we have 
pi- ~ px(m - 1) and pfn± ~ n(m - 1). 

7.5.3. Properties of T at the primes / ^ p in S. — Let / ^ p G S and w a prime 
of E above I. We are interested in the restriction to W#x — • GE,S of the family T. 
We invite the reader to read first the Appendix 7.8 of which we will use concepts and 
notations. 

Lemma 7.5.6. — For each x G X and s(x) a germ of irreducible component of X at 
x, there exists z G \ZTeg\ in the same irreducible component as x such that 

A gen 
s{x) IEw N Z' 

Proof. — It follows from Prop. 7.8.19 (i) and (ii), and the Zariski-density of \ZTeg\ in 
X. • 

Assumption (P3) has the following consequence. 
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Proposition 7.5.7. — Assume that I G 5jy. For each x G X, Nx = iVfen = 0. 

Proof. — By assumption (P3), Nz = 0 for each z G |Zreg|, hence we are done by 
Lemma 7.5.6 and Prop. 7.8.19 (iii). • 

Assume now that I = ww ^ p splits in E and that G(Qi) ~ GLm(Q/). Let us fix 
a Qp-valued d-dimensional Weil-Deligne representation (ro,iVo) of Ew. Assume that 
the idempotent 

ei G Cc(G(Qi),Q„) -^w Cc(GLm(Qz),Qp) 

occurring in the definition of X (see § 7.5.1) has the property that for all the irreducible 
smooth representations n of Qp[G(Qj)], we have 

(82) C(TT) ^ 0 JV(TT) -<! N0. 

Note that such idempotents exist by Prop. 6.5.3. 

Proposition 7.5.8. — Assume that I = ww ^ p splits in E and that e\ is as above. For 
each x G X, and each germ s(x) of irreducible component at x, then 

Nx^fi ffen 
s(x) 

< N0. 

Proof. — By assumption (P2), we have Nz -< No for all z G l̂ regl- As -<iEw implies 
-<, we conclude by Lemma 7.5.6 and Prop. 7.8.19 (iii). • 

Remark 7.5.9. — For the sake of completeness, let us consider also the following 
stronger variant of condition (P2): let I = ww' ^ p be a prime that splits in E, 
and (r, N) (resp. (rf,Nf)) the Qp-valued Weil-Deligne representation attached to 
nw| det | ( r e s p . pn\wB ) - V ^ ~<IEW NO, then Nf -<iEw No. Under this stronger 
assertion, the proof of Prop. 7.5.8 shows that we even have Nx -<iEw Nf^ ~<iEw N. 

Let us give another application in a more specific situation. Let us fix x G X and 
assume that px is irreducible and defined over k(x). Let us view T as a continuous 
pseudocharacter 

T : GE,S — • Ox, 

and consider the faithful Cayley-Hamilton algebra (23) 

S:= Ox[GE,s\lKerT. 

Then S ^ MdiPx) by Thm. 1.4.4 (i), so that T is the trace of a unique (continuous) 
representation 

P ' GES —> GLm(Ox). 

(23) It actually coincides with the universal Cayley-Hamilton quotient (see § 1.2.5) of (OX[GE,S],T) 
by Theorem 1.4.4 (i). 
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Let K be the total fraction ring of Ox, then p ® K is absolutely irreducible as 

OX[GE S] — • Mm(OX) is surjective. In particular 

p gen 
X 

~ p<g> K. 

By Lemma 4.3.7 and Prop. 7.8.14, p admits an associated (9x-valued Weil-Deligne 

representation, say (r,iV), N G M^(Ox). 

Corollary 7.5.10. — We keep the assumptions of Prop. 7.5.8. Assume that 

N 
X - IEw ?Vo, 

then N admits a Jordan normal form over Ox (see §7.8.1) and N ~iEw NQ. 

Proof. — Note that N\ -<iE N2 and N1 ~ N2 imply N1 ~iEw iV2. In particular, by 

Prop. 7.5.8 and the assumption, we get that for each germ of irreducible component 

s(x) at x, 

A 0 ~IEW N * ^IEW N sen 
8(X) 

< N0, 

hence all the -< above are ~iEw. The corollary follows then from Lemma 7.8.9 (ii). • 

7.5.4. Properties of T at the prime v. — We are interested in the restriction of 

the family T to 

G a l ( Q J Q P ) ^ V GE,s 

given by the prime v above p, as in section 4. For any representation p of G, we will 

simply say that p is Hodge-Tate, crystalline etc. if its restriction by the map above is. 

Let z G Zreg parameterizing the p-refined automorphic form (n, 1Z) of weight k = 

(fei , . . . , km). By properties (P4) of (Rep(ra)), pz is Hodge-Tate, with Hodge-Tate 

weights the following strictly increasing sequence of integers: 

—fci, —ko + 1, . . . , —KM + m — 1. 

For convenience, and also in order to fit with the notations of sections 2 and 3 of this 

book, this shift leads us to modify a little the map UJ as follows. Let 

logp : W — • Homgr(T0, A 1 ) . 

be the map induced the usual p-adic logarithm G M —> A1 (killing p), and let us 

identify 

Homgr(T0, A 1 ) ^ HomQ (Lie(T), A1 ) AM 

via the diagonalisation T ( Q £ ) M . Under these identifications, logp : W —> AM 

associates to the character x = (xi> • • •>Xm) G W(L) the element 

logp(x) = . . . , 
dXi 
#7 7=1 

, . . . eLm. 

In particular, the composition of the embedding Z M <̂-> W defined in § 7.2.3 with logp 

is the natural inclusion Z M C A M . 
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Definition 7.5.11. — The morphism K = (aci, ...,Km):X — • Am is the composition 
of the map log -u by the affine change of coordinates 

(a?i,... ,xm) I • (-Ж1, -ж2 + 1,..., -хш H- m — 1). 

For each 2 G Zreg, «1(2;),. . . , «»(2;) is the strictly increasing sequence of Hodge-Tate 
weights of pz. 

It turns out that this is enough to imply that for each x G X(QD), the Sen poly
nomial of px is m 

i=l [T-Ki(x)). 

Lemma 7.5.12. — Let T : Gal(Qp/Qp) — • 0{X) be any m-dimensional continuous 
pseudocharacter on a separated rigid analytic space overQp, K = ( « 1 , . . . , KM) : X —• 
Am an analytic map, and Z C X(Qp) a Zariski-dense accumulation subset. Assume 
that for each z G Z, the Sen polynomial of pz is YliLi(T — Ki(z)). 

Then for each x G X(Qp), the Sen polynomial of px is Y\£=\{T — Ki(x)). In partic

ular, px is Hodge-Tate whenever the Ki(x) are distinct integers. 

Proof. — By replacing X by its normalization X and Z by its inverse image in X, 

we may assume that X is normal and irreducible. 

Let ft C X be an open affinoid. Let g, g',Y,Y' and y and be as in Lemma 

7.8.11. For each open affinoid V C y, Sen's theory [108] attaches to the locally free 

continuous 0(y^representation of Gal(Qp/Qp) on My(V) a canonical element 

<pv G End0(v)(My(V))cpì 

whose formation commutes with any open affinoid immersion V С V. The charac
teristic polynomial P^y of each ipv lies in C?(V)[T], and all of them glue to a single 
polynomial P^ G 0(У)[Т]. 

Let S С ft be a Zariski-dense subset. Then p_1(5) is Zariski-dense in Y by [36, 
Lemme 6.2.8], hence П У is Zariski-dense in У. Assuming that the conclusion 
of the lemma holds for all x in 5, P^ coincides with n*=i(^ ~ Ki) on ^red, so the 
conclusion of the lemma holds actually on the whole of ft (note that g and g' are 
surjective). In particular, by a connectedness argument it is enough to show that the 
conclusion of the lemma holds for each x in a single affinoid subdomain of X. 

As Z is a Zariski-dense accumulation subset of X, there is an affinoid subdomain 
ft of X such that Z is Zariski-dense in ft. We claim that the conclusion of the lemma 
holds for each x G ft. Indeed, this follows from the previous paragraph for that specific 
ft and for S = Z П ft, and we are done. • 

Let again z G ZTGg parameterizing the p-refined automorphic form (7Г, TZ) as above, 
and set 

Fz = (F1(z)p «I (z) 
, . . . , Fm(z)t km(z) 

. 
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By Definition 7.2.13, 
Fz = lpl -1 

oo 
[K\p 

1-m 2 

is an accessible refinement of 7rp | det | 
1 —m 2 . By properties (P4) and (P5) of (Rep(ra)), pz 

is a crystalline representation and Tz is an ordering of the eigenvalues of its crystalline 
Probenius. As z G ZTeg, all these eigenvalues are distinct hence Tz is also the ordered 
set of Probenius eigenvalues of a unique refinement of px in the sense of § 2.4, that we 
will call also Tz. If furthermore z G 2' in the sense of property (v) of X , note that 
Tz is numerically non critical (see Remark 2.4.6 (ii)). 

Proposition 7.5.13. — (X, T,/Ci,{Fi},Zreg) is a refined family in the sense o/§^.#.#. 

Proof. — By Lemma 7.5.12 and what we just explained, (X, T, { i ^ } , ZTeg) satisfies 
properties (i) to (iv) of Definition 4.2.3 of a refined family. It also satisfies (*) of loc. 
cit. as for any x G X the character u{x) of ( Z * ) M lifts . . . , «m) (up to a harmless 
translation) by Def. 7.5.11. To prove property (v) of the definition of a refined family, 
we need to prove for any z G Z and any integer C that the set (Zreg)c accumulates 
at z. 

Let z G Z. By the second assertion of Lemma 7.5.3, it is actually enough to show 
that Zc accumulates at z. By property (iv) of Thm 7.3.1, there is an open affinoid 
Q C X such that K,(Q) is an open affinoid and K\Q is finite and surjective when 
restricted to any irreducible component of Q. Thus K(Q) contains an open affinoid 
ball B of center K(Z), and replacing fl by Q, f) K~1(B)1 we way even assume that 
K(Q.) = B. There is an integer N such that B contains the set Y C Z M of m-uples 
(fc i , . . . , km) with k\ < k2 < • • • < km and (fci , . . . , km) = K(Z) (mod (p - l)pN). For 
C G E , let Yr> C Y be the subset of elements ffci k^) such that 

(83) 
k2-h> C", 

fci+i - > C'{ki - ki-x + 1), Vt G { 2 , . . . , m - 1}. 

Then by definition, Zc contains K~1(YC) fl Z for all C > C. By the maximum 
modulus principle, we may choose C > C such that for all i = 1,..., m — 1 and all 
x G ft, we have \Fi(x)F2(x) • — Fi(x)\ < C — 1. By property (v) of the eigenvariety X , 
K~1(1C/) C ZQ. From the properties of K recalled above and by [36, Lemma 6.2.8], 
it is thus enough to prove that YQ> accumulates at K{Z) in the closed ball B, which is 
obvious. • 

7.6. The eigenvarieties at the regular, non critical, crystalline points and 
global refined deformation functors 

In this part, we give an application of the techniques and results of this book 
to study some global deformation rings, as we announced in § 2.6 of section 2. This 
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has some counterparts concerning the geometry of the minimal eigenvarieties at the 
classical, non critical, crystalline points. We will show that those eigenvarieties should 
be smooth at those points and that they are very neatly related to deformation theory. 
By contrast, a much more complicated situation is expected at reducible, critical 
points, and this will actually be the main theme of the last sections 8 and 9. 

7.6.1. Some global deformation functors and a general conjecture. — Let 
m > 1 be an integer, E/Q a quadratic imaginary field, S a finite set of places of E, 
and 

P : GE,s — GLm(L) = GL(V) 

an absolutely irreducible continuous representation with coefficients in the finite ex
tension L/Qp. We assume (see § 5 . 2 . 1 ) that 

V1- ~ V(m - 1 ) . 

Let us assume also that the prime p = vv splits in Ey that Vp := V\Ev is a crystalline 
representation whose crystalline Probenius has m distinct eigenvalues in L*, and that 
the Hodge-Tate weights of Vp are two-by-two distinct. 

Choice. — Let us choose a refinement T ojVv in the sense o /§ 2.4-

We will introduce below a deformation functor of V depending on this choice, but 
let us first remind some general facts of deformation theory. Let C be the category of 
finite dimensional local Qp-algebras with fixed residue field L, that we introduced in 
§ 2 .3 .5 , H a topological group and V a finite dimensional continuous L-representation 
of H. Following Mazur [841, let 

Xv : C —> Ens 

be the deformation functor of the if-representation V. For any A G C, Xy{A) is by 
definition the set of isomorphism classes of pairs (VA,TT) where VA is a finite free 
^-module equipped with a continuous A-linear action of H and 7r : VA <8>A L ^+ V 
an ff-equivariant isomorphism. If V is absolutely irreducible and if the continuous 
cohomology group ^(H, ad(V)) is finite dimensional, we know from [84, §10] that Xy 
is prorepresentable by a complete local noetherian ring, with tangent space isomorphic 
to the cohomology group above. 

Remark 7.6.1. — Note that in Mazur's theory [84], the residue field k of the coef
ficient rings is a finite field. However, everything also applies verbatim when A; is a 
finite extension of Qp (in which case it is actually even a bit simpler as k automati
cally lifts as a subfield of the coefficient rings). The adequate version in this setting 
of the p-finiteness condition of loc. cit. is the following: for any finite dimensional 
continuous Qp-representation U of if, the continuous cohomology group if1 (if, U) is 
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a finite dimensional Qp-vector space. By [104, Prop. B.2.7] and Tate's theorems, this 

condition holds if H = GE,S or the Galois group of a local field. 

Let us denote by Xy and Xyp the deformation functors associated respectively 

to the ^-representation V and to the Gp-representation Vp. The choice of any 

embedding E — • Qp extending v defines a natural transformation by restriction 

Xy —• XVp, 

that is (VA,7T) i—• (YA\EV^)- Let us denote again by T the triangulation of DTig(Vp) 

associated to our chosen refinement T by Prop. 2.4.1. Recall that we defined in § 2.3.6 

a refined deformation functor 

Xy T : C — • Set 

of (Vp,̂ 7) equipped with a natural transformation Xy ? —• Xyp. By assumption on 

Vp and Prop. 2.3.6 and 2.4.1, Xy jr is actually a subfunctor Xyp. 

Definition 7.6.2. — Define two subfunctors Xy^ and Xyj of Xy as follows. If A G C, 

say that (VA,7T) G Xy^{A) (resp. Xyj(A)) if, and only if: 

(i) Vj- ~ VA(m - 1), 

(ii) For w G 5 not dividing p, VA is constant when restricted to IEW , that is 

V * —IEW V<8)L A. 

(iii) (VA\Ev,n) £ XVp^(A) (resp. VA\Ev is crystalline). 

We call Xyj the fine deformation functor of V, and the refined deformation 

functor of V associated to T. 

Recall that the parameter of a triangulation define for each A a morphism 

6 = (St) : XVPTAA) — Hom(Q;,i4')m. 

Here Horn means continuous group homomorphisms. In particular, the derivative at 

1 of such a morphism is an element of A171, which gives us a morphism 

8K : X Vp,F 
Gm. 

Denote by Ô : Q* -> (L*)m the parameter of ^ (see 2.4.1). 

Proposition 7.6.3. — (i) Xyj and Xy^ are prorepresentable by some local complete 

noetherian rings. 

(ii) The parameter of a triangulation induces a canonical morphism 

S : Xy jr —> Horn Q * G m 
m ô' 

(iii) There is a canonical infective morphism Xyj(L[e]) — • Hj(E,ad(F)), whose 

image is the subspace of deformations VofVto L[e] such that V1- ~ V(m — 1). 
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Proof. — In order to prove (i), we have to check that each of the conditions (i), (ii) 

and (iii) in Definition 7.6.2 are deformation conditions in the sense of Mazur [84, §19, 

23]. 

For condition (i), note that as V is absolutely irreducible, a deformation VA is 

uniquely determined up to isomorphism by its trace (Serre-Carayol's theorem [33, 

Thm. 1]). It is then trivial to check conditions (1), (2) and (3) of §23 of loc. cit. for 

that deformation condition. For condition (ii), (1) is obvious, (3) follows from Prop. 

7.8.5 (24\ and (2) follows easily from (1) and (3) (see the proof of Prop. 2.3.9). 

For condition (iii) in the refined case, it is Prop. 2.3.9. In the fine case, it follows from 

Ramakrishna criterion (see [84, §25, Prop. 1]) and from the fact that the category 

of crystalline representations is closed under passage to subobjects, quotients, and 

finite direct sums, by a result of Fontaine. That concludes the proof of part (i) of the 

proposition. 

We already explained assertion (ii) before the statement, and assertion (iii) is now 

immediate. • 

Let us set for short 

E 1 
F : £ ,ADTTO) :=X V,F \L\e\Y 

Recall that we defined in § 2.4.3 a notion of non critical refinement. 

Proposition 7.6.4. — If J7 is a non critical refinement ofVp, then Xyj is a subfunctor 

of Xy,?. If moreover Homep(Vp,Vp(—l)) = 0, then 

(i) Xyj is exactly the subfunctor of Xy^ defined by the equation ok = 0, 

(ii) This inclusion induces the following exact sequence on tangent spaces: 

0 — > X v,f Ms}) — H i 
F [E,ad(V)) d*(L[e]) L m 

Proof. — The first assertion follows from Prop. 2.5.8. Point (i) is Theorem 2.5.1, and 

(ii) is then obvious. • 

We believe in the following conjectures. 

Conjecture 7.6.5. — (CI) Xyj is a closed point. 

(C2) If T is non critical, then dn is an isomorphism. In particular, Xytjr is (formally) 

smooth of dimension m. 

By Prop. 7.6.3 (iii), Conjecture (CI) is actually equivalent to the conjecture 

BK2(p) introduced in §5.2.3 (see also 5.2.4). Let us record this fact in the following 

corollary. 

(24) if (r, AT) is the Weil-Deligne representation of VA\EWI note tnat condition (ii) is equivalent to 
ask that N is constant on each isotypic component of the semisimple representation r\iEw • 
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Corollary 7.6.6. — Conjecture (CI) is equivalent to the conjecture BK2(p) (see 

5.2.3). In particular, the Bloch-Kato conjecture implies (CI). 

As a consequence, (CI) is a very "safe" conjecture. In what follows, we will try to 

provide evidence for (C2) and we will relate it to eigenvarieties. In particular, this will 

shed some light on the expected structure of those eigenvarieties in some cases. 

Remark 7.6.7. — Assuming that Homcp(Vp, Vp{—1)) = 0, Prop. 7.6.4 (ii) shows that 

(C2) implies (CI). As p is conjecturally pure, this assumption conjecturally always 

hold, hence (C2) is conjecturally stronger that (CI). As we shall see, the input of 

eigenvarieties will show that they are actually equivalent. 

7.6.2. An automorphic special case. — We keep the assumptions on § 7.6.1. As 

we want to give examples providing evidence for (C2), we will focus from now on to 

some special cases (but still rather general, see Rem. 7.6.9) coming from the theory 

of automorphic forms for which everything we shall need is known. Let us fix a prime 

q ^ p that splits in E, as well as another split prime q' £ {q,p} if m = 0 mod 4 and 

such that q' = q else. 

Lemma 7.6.8. — There exists a unique unitary group in m variables G attached to 

E/Q such that 

(i) G(R) is compact, 

(ii) if I £ q'}, G(Qi) is quasisplit, 

(iii) if I — q or q', G(Qi) is the group of invertible elements of a central division 

algebra over Qi. 

Proof. — This follows from Hasse's principle (see e.g. [40, (2.2)]). There is no global 

obstruction when m is odd ([40, Lemme 2.1]), and a Z/2Z-obstruction when m is 

even. In that case, the local invariant in Z /2Z of a division algebra is always non zero 

(see (2.3) of loc. cit.), and the one at the real place is (—l)m/2 by [40, Lemme 2.2], 

hence the lemma. • 

Let 7r be an automorphic representation of G such that: 

(7rl) 7r is only ramified at primes that split in 

(7r2) TTP is unramified and its Langlands conjugacy class has m distinct eigenvalues, 

(7r3) nq is supercuspidal. 

As G(M) is compact, it is easy to construct automorphic representations TT satisfying 

(7rl), (TTS) and such that np is unramified (see e.g. [38, Lemma 2]). Then, most of 

the classical points of the minimal eigenvariety of G containing n satisfy furthermore 

(7r2), by property (v) of that eigenvariety. 
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Let us fix some choices of ¿00 and ip as in §7.2.1. By [61, Thm. 3.1.3], such a 7r 

admits a strong base change 7TE to GLm(A#) (it is cuspidal as nq is supercuspidal). 

Moreover, this 7Tje; satisfies the assumptions of Harris-Taylor's theorem [62], hence by 

loc. cit. we can attach to this ir and those embeddings a Galois representation p with 

the following properties: 

(pi) p has all the properties of § 7.6.1. 

(p2) p\Ew is unramified for each nonsplit place w of E, and compatible with 

fl\E|-|^M-1^2 at all split w (up to Frobenius semi-simplification). 

(p3) p\EV is crystalline and the characteristic polynomial of its crystalline Frobenius 

is the same as the one of LPL~^ L(7rp). 

Remark 7.6.9. — If we believe in Langlands' extension of the Taniyama-Shimura-Weil 

and Artin conjectures, as well as the yoga of parameters (see Appendix A) , any p as 

in § 7.6.1 which is unramified at nonsplit places, irreducible at q, and indecomposable 

at q', should occur this way. 

Under assumptions (p3) and (7r2), LPL^ induces a bijection H 1—• T between the 

refinements of TTP in the sense of § 6.4.4 and the refinements of Vp in the sense of §2.4. 

As 7TP is tempered by Harris-Taylor's theorem, all its refinements are accessible by 

Example 6.4.9. In particular, to any choice of any refinement T of Vp as in §7.6.1 

corresponds an accessible refinement of 7TP and vice-versa. For some technical reasons, 

let us also assume that: 

{PA) F is non critical and regular (see Def. 2.5.5). 

By the same argument as above, this will also be satisfied for many 7r's. All these 

assumptions being done, let us consider the minimal eigenvariety X associated to 

(7r, J7) (see Example 7.5.1). Let z 6 X be the L-point parameterizing 7r equipped with 

its refinement J-\ and set 

T := Oz. 

7.6.3. R = T at the regular non critical crystalline points of minimal eigen

varieties. — Assume that p and 7r are as in §7.6.1 and §7.6.2. Let Rp^ be the 

universal deformation ring of the refined deformation functor Xy^ given by Prop. 

7.6.3 (i). 

Proposition 7.6.10. — There is a canonical commutative diagram 

(84) Rp,F T 

ÔK* k# 

L[[*l,...,*m]] Ok(z) 
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Moreover T is equidimensional of dimension m and K% is a finite injective map. 

By K$ : —• T = Oz we mean the structural ring homomorphism on completed 
local rings induced from K : X —> W. 

Proof. — We claim first the existence of a natural map Rp,p —• T. Let A = Oz. As 
p is absolutely irreducible, T is the trace of a unique continuous representation 

PA: G E,S GI m (A), 

hence for each cofinite length proper ideal I of A we have a canonical element PA <8> 
A/I e XV(A/I) (note that A/I = T/JT). We have to show that this element falls in 
Xv,p(A/I), i.e. to check conditions (i) to (iii) in Def. 7.6.2. Condition (i) follows at 
once from the fact that T1- = T(m — 1) and that p is absolutely irreducible. Condition 
(ii) follows from Cor. 7.5.10, which applies by [118]. Finally, condition (iii) follows 
from Theorem 4.4.1 if we can check the assumptions of §4.4.1 at the point z. They 
hold as (X, T, K, {Fi}) is a refined family by Prop. 7.5.13, and as the assumptions 
(REG) and (NCR) of §4.4.1 follow form (p4). This concludes the claim. 

The existence of a commutative diagram as in the statement is moreover given by 
the identification of the parameter S ® A/I in the statement of Theorem 4.4.1. More 
precisely, that theorem provides a diagram 

(85) Rp,F T 

Ô n 

Os 

where ô G Hom(Q*, Gm) is the parameter of J7, and where we define the map on the 
right as the composite of the two other ones. The identification of the parameter S in 
that Theorem shows that the composition of rj with the natural map Ok(z) —• Oj 
obtained by différenciation at 1 is the structural map Ok(z) —> T, and that the image 
of 77 is generated by the F^s over (DK(zy 

The assertion on T and K$ follow from property (iv) of the eigenvariety X , thus 
it only remains to check that the upper map is a surjection. By properties (ii) of 
eigenvarieties (see Def. 7.2.5), T is generated by HUT as an (9^-algebra, i.e. by the 
T(Frob^)'s for the primes / = ww G So- But each T(Frob^) obviously lifts in RPijr 
as the trace of Frob w in the universal refined deformation, and we are done by the 
commutative diagram (85). • 

Corollary 7.6.11. — Assume that p is associated to an as in § 7.6.2. 

(i) Conjecture (CI) is equivalent to conjecture (C2). In particular, if the Bloch-Kato 
conjecture holds then (C2) holds. 
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(ii) Conjecture (CI) implies that all the maps of the diagram of Prop. 7.6.10 are 
isomorphisms. 

Proof. — By Harris-Taylor's theorem (especially property (P5) of 6.8.1), p is pure 
and HomGp(V^, Vp(—1)) = 0, hence Prop. 7.6.4 applies. In particular, (C2) implies 
(CI) by Remark 7.6.7. 

Assume that (CI) holds. We claim that is an isomorphism. It then implies (C2) 
as well as assertion (ii) of the corollary, since the top arrow (resp. the right arrow) in 
Prop. 7.6.10 is surjective (resp. injective), so it is enough to prove the claim. 

By Prop. 7.6.10, die is injective. As it induces an isomorphism on the residue 
fields L and as RP,T is a complete local noetherian ring, it is enough to show that 
induces an isomorphism on tangent spaces. Under conjecture (CI), the exact sequence 
of Prop. 7.6.4 (ii) shows that the tangent space of RP,T has dimension < ra, and it is 
enough to know that it has dimension exactly ra in order to conclude. But by Prop. 
7.6.10 RP,T has Krull dimension > ra, as its quotient T has dimension ra. 

Recall that the Krull dimension of a local noetherian ring is always at most the 
dimension of its tangent space ([83, Thm 13.4], with equality if and only if the ring 
is regular). As a consequence, the Krull dimension of Rp,? and the dimension of its 
tangent space both coincide with ra (and RP,T is regular of dimension ra), and we are 
done. • 

In particular, the map Rp,p — • T that we defined should always be an isomor
phism, as it is so under (CI). Moreover, we also get that a far reaching infinitesimal 
version of the principle a non critical slope form is classical should hold for eigenva
rieties. 

In the following conjecture, we keep the preceding assumptions. In particular, recall 
that T is non critical. 

Conjecture 7.6.12. — (R=T) The map RP,T — • T is an isomorphism. 
(CRIT) The map K$ is an isomorphism, i.e. the weight map K is étale at z. 

Example 7.6.13. — Assume furthermore that ra = 1, or that ra = 2 and p = (pf)\GE 
for some classical modular eigenform / of level N which is (essentially) square inte
grable at all the primes dividing N. Then (CI) holds by Prop. 5.2.6, hence so do (C2), 
(R=T) and (CRIT). 

Of course, the natural trend in the area since the work of Wiles and Taylor-Wiles is 
that we should first try to prove conjectures (R=T) and (CRIT) using the cohomology 
of Shimura varieties and the theory of automorphic forms. Note that (R=T) and 
(CRIT) together imply (C2) by Prop. 7.6.10. Then (CI) would follow by Cor. 7.6.11. 

Corollary 7.6.14. — Conjectures (R=T) and (CRIT) imply (Cl) and (C2). 
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The deepest part there is certainly to show (R=T), but we will not say more here 
about that conjecture (see Kisin's paper [74] toward a proof of (CI) in the case m = 2, 
as well as the discussion in §5.2.3). In the remark below, we discuss instead what is 
known about conjecture (CRIT). 

Remark 7.6.15. — (i) Assuming that T is furthermore numerically non critical (see 
Remark 2.4.6 (ii)), then by Prop. 7.4.6 (iii) - that is essentially the small slope 
forms are classical result of Prop. 7.3.5 - the refined automorphic representa
tion (7r, 1Z) does not have any infinitesimal deformation in the space of p-adic 
automorphic forms. 

This falls short of implying that K is etale because of a subtlety: for these 
general G we do not have a good control of X in terms of the spaces of p-
adic automorphic forms, for instance like the pairing we have for GL2/Q given 
by the g-expansion (see e.g. [9, Prop. 1 (c)]). However, if we knew that the 
multiplicity one theorem holds for the automorphic representations of G which 
are unramified at the nonsplit primes (which is expected), then (CRIT) would 
follow easily (25) from Prop. 7.4.6 (iii). In particular, by results of Rogaswki we 
know (CRIT) in the numerically non critical case when m < 3. 

(ii) Even admitting this multiplicity one result for G, it would be very interesting 
to have a proof of conjecture (CRIT) in general. As explained in Rem. 2.4.6 
(ii), in the classical case of the eigencurve and the group GL2/Q, the full case 
of (CRIT) is known and is quite deep: it follows from Coleman's theorem [42], 
including the so called boundary case where "v(ap) = k — 1". 

(iii) Let us mention that we certainly believe that conjectures (R=T) and (CRIT) 
also hold without the assumption that T is regular (but of course still non 
critical). However, it seems to be an interesting problem to understand the case 
where the eigenvalues of the crystalline Probenius of Vp are not assumed to be 
two-by-two distinct any more. Indeed, there seems to be no trivial fashion to 
make refinements of TTP and Vp correspond without this assumption. 

(iv) If we do not assume that T is noncritical (but, say, all the other hypotheses), 
the situation is actually very interesting but quite different. For example, there 
can be no map from Rp^ to T (compare with [39, Prop. 5.5 (ii)]). We postpone 
its study to a subsequent work. 

(25) Basically because when an A-module M is free of rank one over A, then each commutative 
A-subalgebra of End (̂M) is equal to A (hence etale over A)... 
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7.7. An application to irreducibility 

A simple application of the results of this section, together with the generic irre

ducibility Theorem 4.5.1, is the existence of many n-dimensional Galois representa

tions of GE that are irreducible, even after restriction to a decomposition group at a 

place v above p. As an example, let us prove the following result: 

Theorem 7.7.1. — Assume Rep(m) (actually for that matter we may release condi

tions (P2) and (PS)). Then for any integer C, there exists an automorphic represen

tation 7r for U(m) such that the Galois representation pn 

— is unramified at each place not dividing p, 

— is crystalline and irreducible at each of the two places dividing p, 

— and has Hodge-Tate weights ki, i = 1,... ,ra, such that \ki — kj\ > C for every 

= 3. 

Proof. — Let 7r be the trivial representation of U(m). It is unramified at all the finite 

primes hence we may consider the minimal eigenvariety containing 7r as in § 7.5.1. By 

definition it is the eigenvariety (X/Qp, v, Z) for the set Z of p-refined automorphic 

representations (Vv,^)? such that 7r is unramified at all finite places and 1Z is an 

accessible refinement of TTP. For that reason, we may wish to call it the unramified, 

or tame level i, eigenvariety for U(m). Note that X is not empty since it contains 

the point xo corresponding to the trivial representation TT of U(m) with its unique 

refinement at p (see Ex. 6.4.9 (ii)). 

By an argument similar than the one given in the proof of Prop. 7.5.13, there exists 

a point xi G Z arbitrary close to xo that corresponds to an automorphic representation 

7Ti (together with a refinement IZi) such that: 

(i) (TTI)oo is regular, 
(ii) the eigenvalues A i , . . . , Am of the Langlands conjugacy class of (ni)p are distinct, 

and no quotient of two of them is equal to » , 

(iii) if / , J C { 1 , . . . , m} are such that | / | = | J|, then 
iEI 

Ai = jEJ \j=ïl = J. 

Condition (ii) ensures that {it\)p is a full irreducible unramified principal series, hence 

that all its refinements are accessible (cf. Prop. 6.4.8). 

We now use the refined family T of Galois representations on X constructed in this 

section. The representation pXl corresponding to 7Ti has distinct Probenius eigenvalues 

at v and distinct Hodge-Tate weights by (i). In particular, we may write pXl as a sum 

Pi0- • -0pr of non-isomorphic irreducible representations. As explained in § 4.4.3, there 

is a partition { 1 , . . . , m} = W\ ] \ ... ]J Wr, such that \Wi\ = di for i = 1,..., r, defined 

by setting Wi equal to the set of j ' s such that Kj(x\) is a weight of pj. Moreover, as 

explained there, to a refinement T (that is, an ordering of the crystalline Probenius 

eigenvalues) of pXl is attached a second partition { 1 , . . . , m} = R\(F) U • • • U Rr(^) 
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with \Ri(!F)\ = di, and all partitions of this type are attached to some refinement 

T. It is a simple combinatorial task, tackled in the next lemma, to see that there is 

always one (and in general, many) partition (Ri) of this type which is "orthogonal" 

to the partition (WA, in the sense that 

V P c { l , . . . , r } , 0 < | P | < r , 

iev 

Wi = 

iev 
Ri-

We choose such a partition, and a refinement T of pXl defining that partition. 

To T corresponds a refinement 7̂ 2 of (7Ti)p, necessarily accessible. We thus may 

define a point X2 of Z C X corresponding to (TTI,^). Note that T is regular by 

property (iii) above of x\. By Thm 4.5.1, and the properties of 7̂ 2 > the family of Galois 

representation T restricted to Dv is generically (absolutely) irreducible near x^. Hence 

for any integer C, there is a point x$ £ Z c , such that (pX3)\DV is crystalline absolutely 

irreducible. So is (Ab3)|£>_, since it is the dual of the preceding representation. 

It is clear that the automorphic representation TT^ corresponding to x% satisfies all 

assertions of the theorem. • 

Remark 7.7.2. — The trivial representation of U(m) has a unique refinement, and it 

turns out that this refinement does not allow us to conclude using Theorem 4.5.1 

that the deformation it defines of the trivial representation is generically irreducible 

restricted to Dv (and likely it is not for m > 3). Indeed, as explained in §4.4.3, since 

the trivial representation is ordinary in the sense of loc. cit, this unique refinement is 

characterized by a permutation a of { 1 , . . . , m } . Actually for the trivial representation 

we have <r(l) = m , . . . , a(m) = 1 and we see that, for m > 3, a is not transitive, or in 

the language of loc. cit. the refinement is not anti-ordinary (it is not ordinary either). 

That is why we had to process in two steps in the proof above. 

We now prove the combinatorial lemma needed in the above proof. 

Lemma 7.7.3. — For every partition { 1 , . . . , m} = W\ JJ . . . £J Wr, with \Wi\ = di for 

all i, there exists a partition { 1 , . . . , m} = R\ ] j[ . . . ]J Rr, with \Ri\ = di for all i such 

that 

V P c { l , . . . , r } , 0 < \V\ < r , 

iev 

Wi = 

iev 

Ri> 

Proof — Pick up an element U in each W{. Choose a transitive permutation a of 

{ l , . . . , r } . Put ta(i) in Ri. Complete the construction of Ri as you like. Then for 

all V C { l , . . . , d } , Wi^-p Wi contains U for i £ V and no other t^ while Wi^pRi 

contains the U for i £ o~(V) and no other tj. Hence if those two unions are equal, 

a(V) = V. • 

Remark 7.7.4. — The proof above may be adapted to prove the existence of partitions 

(Ri) satisfying further properties. For example, we shall need in a remark of chapter 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2009 



228 CHAPTER 7. EIGENVARIETIES OF DEFINITE UNITARY GROUPS 

8 to deal with a case where d\ = dr = 1, Wr = {&}, W\ = {k + 1 } , with 1 < k < 

k + 1 < TO; in this case we want a partition (J?*), satisfying the above properties and 

moreover Ri = { 1 } and Rr = {TO}. It is certainly clear for the reader how the above 

proof has to be adapted to prove the existence of such R{. 

7.8. Appendix: p-adic families of Galois representations of Gal(Q//Q/) with 
l =p 

7.8.1. Some preliminary lemmas on nilpotent matrices. — Let k be a field 
and n G Md(k) a nilpotent matrix. By Jordan's normal form theorem, there exists a 
unique unordered partition of { 1 , . . . , d} 

t(n):=(t1>t2 > • • • ) , UeN, 
i 

U = d, 

such that n is conjugate in MAk) to the direct sum of Jordan's blocks (26) 

Jtl ®Jt2®'-Jta, 

where s is the smallest integer such that = 0. If k —> k' is a field embedding, 

then t(n <S>k kf) = t(n). 

Recall that the dominance ordering on the set of decreasing sequences t = (t\ > 

t2 > • • •) of integers is the partial ordering 

t^t' V i > l , *i H h t. < *ì H h *i-

We refer to [82, §1] for its basic properties. 

Proposition 7.8.1 (Gerstenhaber). — Letn,n' G Md(k) be two nilpotent matrices. Then 

the following assertions are equivalent: 

(i) n is in the Zariski-closure of the conjugacy class of n' in Md(k), 

(ii) For all i>l, rankn1 < rankn/Z, 

(iii) t(n) -< t(n'). 

Proof. — The equivalence between (i) and (ii) is [56, Thm. 1.7]. Assertion (ii) is 

equivalent to ask that for each i, dim(ker(nz)) > dim(ker(n/l)), which is another way 

to say that t*(n) y t*(n'). Here, t* is the conjugate partition of t, and the result 

follows as t^ t' & t* y t'* by [82, §1 .11] . • 

(26) por USj fae Jordan block G Md(A) for any commutative ring A is the matrix of the endomor-
phism n of Ad defined by n(e\) = 0 and n(ej) = ê -i if i > 1. 
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Definition 7.8.2. — If n,n' are any two nilpotent matrices (27), we write n -< n' (resp. 

n ~ n') if t(n) -< t(n') (resp. t(n) = t(n')). If n, n' G Md(fc), n <n* if, and only if, n 

is in the Zariski-closure of the conjugacy class of n' G Md(AJ). 

Corollary 7.8.3. — Let V be a finite dimensional k-vector space and n G End/e(Vr) a 

nilpotent element. IfUcVisa k[n]-submodule and n' is the endomorphism induced 

by n on U 0 V/U, then nf -< n. 

Proof. — It is clear on condition (ii) of Prop. 7.8.1. • 

Let us collect now some useful results about nilpotent matrices with coefficients in 

a ring. Let A be a commutative ring and n G M¿(A) a nilpotent matrix. We will say 

that n admits a Jordan normal form over A if n is GL<¿(A)-conjugate in Md(A) to a 

direct sum of Jordan blocks Jtl 0 • • • Jts for some unordered partition (ti > t2 > • • •) 

of { 1 , . . . , d} as above. Again, we see by reducing modulo any maximal ideal of m 

that if such a Jordan normal form exists, then the associated partition is unique. The 

following proposition is probably well known. 

Proposition 7.8.4. — Let A be a local ring and n G M¿(A) a nilpotent matrix. The 

following properties are equivalent: 

(i) n admits a Jordan normal form over A, 

(ii) for some faithfully flat commutative A-algebra B, the image of n in M¿(B) 

admits a Jordan normal form over B, 

(iii) for each integer i > 1, the submodule nl(Ad) C Ad is free over A and direct 

summand. 

Proof. — It is clear that (i) implies (ii), and also that (i) implies (iii) even if we do 

not assume A to be local. Note that for any element u G EndA(Ad) and any faithfully 

flat A-algebra i?, then 

Im(u) ®A B —> Im(u <8>A B), 

and the latter is projective and direct summand in Bn as a 5-module if, and only if, 

Im (u) C An has those properties as A-module. As a consequence, (ii) implies that 

nl(Ad) are projective and direct summand A-modules, hence free as A is local, hence 

(ii) implies (iii). 

It only remains to show that (iii) implies (i), for which we argue as in the classical 

proof of Jordan's theorem. For i > 0 let Ni := lm(nl) G Ad. We construct by 

descending induction some yl[n]-submodules Fi+i and Qi of Ad for i = d — 1,..., 0, 

such that 

• Fd = 0, 

(27) It is not necessary to ask, in this definition, that they have the same coefficient field (or even 
the same size). 
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• Fi+i and Qi are free and direct summand as yl-modules, 
• U\Q. has a Jordan normal form over A with blocks of size i + 1 (if any), 
• Fi = Fi+x 0 Qi and n*(Fi+1) 0 n^Qi) = N{. 

Assume that Fj and Qj are constructed for j > i, we have to define Qi. Note that 
Fi+i is free and direct summand as ^4-module, and that n\p admits a Jordan normal 
form, so nl{Fi+i) and 

Ki := KernDn*(Fi+i) 

are free and direct summand as an A-module as well. In particular, Ki is a direct 
summand of Kern fi Ni, by Lemma 7.8.7 (i) below. 

As A is local, we may then find a finite free A-module Q\ C Ker n fl iV* which is a 
complement to Ki, it satisfies: 

(86) KieQfi = KevnnNi, Q\ n n\Fi+1) = 0. 

We claim that 

(87) ni(Fi+1)®Q'i = Ni. 

Indeed, n(JV<) = Ni+i = ni+1(Fi+i) implies that JVj = n^Fj+i) + Kern D iVj, which 
proves the claim by (86). Note also that 

(88) Q ^ n F i + 1 = 0 . 

Indeed, the Jordan blocks of Qj for j > i have size > i + 1, thus Kern fl Fi+i C 
nf(i^+i). As n ( Q 0 = 0, we get that Q[ n F m c fl n^(Fi+1) = 0 by (86), and we 
are done. 

We can now conclude the proof. If Q\ = 0, then we set Qi = 0 and we are done. If 
else, we may choose v\,..., vr in Ad such that nl(vi),..., nl(vr) is an A-basis of Q[. 
Set 

Qi := A[n]vi H h A[n]vr. 

Note that nl+1{Qi) = n(Q^) = 0. We check at once by applying n several times that 

— the ns(vj) with 0 < s < i and 1 < j < r are an A-basis of Qi (so in particular, 
n\Q. admits a Jordan normal form Ji+i 0 Ji+i 0 • • • 0 Ji+i (r times)), 

— Qi fl Fi+1 = 0 (note that Q\ n = 0 by (88)). 

and we are done by (87) if we set Fi := Fi+i 0 Qi. • 

The equivalence (i) 4^ (ii) of Prop. 7.8.4 shows that the property of admitting a 
Jordan normal form (say over a local ring (28)) is invariant under faithfully flat base 
change. When we deal with deformation theory, the following other kind of descent is 
useful. 

(28) In the general case, the well-behaved definition for "admitting a Jordan normal form over A" is 
certainly to ask that the nL(AD) be projective and direct summand. 
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Proposition 7.8.5. — Assume that A —• A' is a local homomorphism between artinian 
local rings inducing an isomorphism on the residue fields, and let n G Md(A) be a 
nilpotent matrix. Then n admits a Jordan normal form over A if, and only if, its 
image in Md(Af) admits a Jordan normal form over Af. 

Proof. — Assume that the image of n in Md(Af) has a Jordan normal form (the other 
implication is obvious). For i>l, let Ni := Im(nl) C Ad and N[ = i"TO((ra<8U A')*) C 
Afd. As A c A\ we have 

Ni C A'.Ni = M. 

Recall that A and A' have the same residue field k := A/m, and let n G Md(k) be 
the image of n. We have two natural surjections with the same image 

(89) Ni <8>A k — • Im (nf), N[ ®A' k Im (n*), 

where the second map is an isomorphism as N[ C A,d is a direct summand. Let 
v~i,..., vr a fc-basis of n*(fcd), and vi , . . . , vr G Ni some liftings of the v~j. Set 

Pi-
r 

3 = 1 
AVJ c Ni. 

(If ft1 = 0 then we set Pi = 0). This is a (free) direct summand of Ad by Lemma 7.8.6 
below. Moreover, the Vj generate N[ over A' by (89) and Nakayama's lemma, hence 
PiA! = NiA' = N[. By Lemma 7.8.7 (ii) below, this implies that Pi = iVi? thus Ni is 
free and direct summand, and we are done by Prop. 7.8.4. • 

Lemma 7.8.6. — Let A be a local ring with residue field k. If some elements vi,...,vp 
in Ad have k-independent images in kd, then they are A-independent and 

p 

i=l 
Avi C Ad 

is a direct summand. 

Proof — Let M G MdlP(A) be the matrix defining the Vi in the canonical basis. By 
assumption, some p x p-minor of M G MdiP(k) is nonzero, hence the same p x p-minor 
of M is in A*, and the Vi are ^-independent. We conclude by completing the Vi in a 
basis of kd and by Nakayama's lemma. • 

Lemma 7.8.7. — Let A be a commutative ring, P C N c M an inclusion of A-
modules such that P and M are projective, and P is a direct summand of M. 

(i) P is a direct summand of N. 
(ii) Assume that A — • B is an injective ring homomorphism, then M —• M<S>A B 

is injective. If B . P = B . N in M ®AB, then P = N. 
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Proof. — We can write M = P 0 P' for some A-module Pf C M. It is immediate 

to check that N = P 0 (Pf fi N), which proves (i). To check (ii), we may assume 

that M is a free A-module, and the first assertion is then obvious. Assuming that 

B . P = B . AT, we have to show by (i) that P' fi N = 0. But 

(P ' H N) C B . (P7 fl iV) c B . P' H B . N = B . P' H B . P = 0, 

which concludes the proof. 

When a nilpotent element in MA(A) (or even in a GMA over A) does not necessarily 

admit a Jordan normal form there are still some inequalities between the generic and 

residual partitions that are satisfied. 

Proposition 7.8.8. — Let A be a commutative reduced local ring whose total fraction 

ring is a finite product of fields ̂  K = YlsKs, and let k be its residue field. Let 

R C Md(K) be a standard GMA of type (di,...,dr) (see Example 1.3.4)- Assume 

that the natural surjective map 

R 

i 

Mdi(k) 

is a ring homomorphism (30\ Let n e R be a nilpotent element that we write n = 

(ns) £ (Md(Ks)), and let n G YliMd^k) C Md(k) be its projection under the map 

above. Then n -< ns for each s. 

Proof. — Note that n G Md{k) is nilpotent as the map of the statement is a ring 

homomorphism, hence the statement makes sense. 

By Prop. 7.8.1, we have to show that for each i > 1 and for each 5, 

(90) d i m * > W ) ) > dimfc(n*(fcd)). 

By replacing n by n% we may assume that i = 1. Let us write Ad = (&ri=lVi according 

to the standard basis, V* = 0 x Adi x 0. For each i = 1,..., r, let 

n(viA ) , . . . , n(yitU) 

be a A;-basis of n(kdi), U < di (choose no Vi if t(n)i = 0). Let Wij G V* be any lifting 

of Vi j . To prove (90), it suffices to show that the elements 

n(wij) G Kd, i = 1... r, j = 1 • • • 

are If-independent. It suffices to check that for each i, if pi : Kd —• Kdi denotes the 

canonical if-linear projection on KV^ the elements 

Pi(n{wij)) G Adi, j = 1...U, 

(29) See Prop. 1.3.11 for a discussion of this assumption. 
(30) It is the same to ask that the Cayley-Hamilton algebra (R, T) is residually multiplicity free, as 
explained in Example 1.4.2. 
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are ^-independent. By construction these elements reduce mod m to the elements 

n(vi,i),...,n(vi}ti) £ kdi which are /^-independent, hence we conclude by Lemma 

7.8.6. • 

Proposition 7.8.9. — Let A be as in the statement of Prop. 7.8.8, and let n G Md(A) 

be a nilpotent element. 

(i) for each s, ns y n. 

(ii) if (i) is an equality for each s, then n admits a Jordan normal form over A. 

Proof. — Assertion (i) follows from Prop. 7.8.8 in the special case when R = Md{A). 

Let us check (ii). We have to show that N{ := nl(Ad) is free and direct summand as 

A-module. By assumption, 

(91) Vs, dimKs(Ni (gu Ka) = dimfc(n*(/cd)) = : du 

and we also have a natural surjection 

(92) N{®Ak — • ni(kd). 

By Nakayama's lemma and (92), Ni is generated over A by di elements, and those 

elements are necessarily If-independent by (91), thus Ni is free of rank di over A and 

the map in (92) is an isomorphism. We conclude by Lemma 7.8.6. • 

Lemma 7.8.10. — Let A be a noetherian commutative domain, K its fraction field. 

Let n G Md(K) be a nilpotent matrix. There exists a nonzero f G A such that n G 

Md(Af) and such that for each x G D(f) C Spec(A), if nx denotes the image of 

n G Md(Ax/xAx), then we have n ~ nx. 

Proof — We may assume that n G Md(A). For i = 1... d, let Mt = nl{Ad). As 

Mi ®A K is free and direct summand in Kd, we may assume, by replacing A by some 

Af for a nonzero / G A if necessary, that all the M$ are free and direct summand 

in Ad. But then for each x G Spec(A), rknlx = dim^ Mi ®A K, and we are done by 

Lemma 7.8.1. • 

7.8.2. Preliminaries on general families of pseudocharacters. — Even in 

the "specific" context of the pseudocharacter T on the eigenvarieties X introduced in 

§ 7.5.2, there is no reason to expect that T should be the trace of a representation 

of GE,S on a locally free (9x-rnodule of rank m, or on a torsion free Ox-module of 

generic rank m, and this even locally. However, this holds for general reasons on an 

etale covering of the Zariski-open subspace of X consisting of the x such that px is 

absolutely irreducible by [36, Cor. 7.2.6]. Moreover, recall that in the first part of this 

book, we studied that question in detail locally around any point x such that px is 

multiplicity free. 

We collect here some general facts that might be used to circumvent this problem. 
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Lemma 7.8.11. — Let T : Y — • 0(X) be any continuous m-dimensional pseudochar-
acter of a topological group Y on a reduced rigid space X over Qp. Let Q C X be an 
open affinoid. 

(i) There is a normal affinoid Y, a finite dominant^ map g : Y —• fl, and a 
finite type torsion free (D(Y)-module M(Y) of generic ranks m equipped with a 
continuous representation 

PY : r — • GL 0(Y) [M(Y)) 

whose generic trace is T. 
Moreover, py is generically semisimple and the sum of absolutely irreducible 

representations. For y in a dense Zariski-open subset Y' C Y, M(Y)y is free of 
rank m over Oy, and M(Y)y ® k(y) is semisimple, and isomorphic to pg(y). 

(ii) There is a blow-up g' : y —> Y of a closed subset of Y\Yf such that the 
strict transform My of the coherent sheaf on Y associated to M(Y) is a lo
cally free Oy-module of rank m. That sheaf My is equipped with a continuous 
Oy-representation ofY with trace (g'g)$ oT, and for ally G y, (MylV 0 k(y))ss 
is isomorphic to pg'g(y) • 

Proof. — Let us prove (i). By normalizing fl if necessary, we may assume that fl = X 
is irreducible. By Taylor's theorem [117, Thm. 1.2], there exists a finite extension K' 
of K := Frac(0(X)) such that T : V —• K' is the trace of a direct sum of absolutely 
simple representations of Y —> GLm(if'). If we define 0(Y) as the normalization of X 
in K', the existence of a finite type, continuous, T-stable (9(y)-submodule M(Y) G 
K,rn is [8, Lemme 7.1 (i), (v)]. 

It satisfies the "Moreover, . . . " assertion by definition. By a classical result of Burn-
side and the generic flatness theorem, this latter fact implies that for y in a Zariski-
open subset of Y, M(Y)y = M(Y) <8>o(Y) Oy is free of rank m over Oy and that 
M(Y)y <g) k(y) is a semisimple A;(y)[r]-module. In particular, for those y we have 
M(Y)y <g>e>y k(y) ~ pg{y) as they both have the same trace, which concludes the proof 
of ( i ) . 

Part (ii) follows then from (i) and Lemma 3.4.2 (either reduce Y' in (i) or note 
that the explicit blow-up of Y used in that lemma is the blow-up of the ra-th Fitting 
ideal of M(Y), whose associated closed subset does not meet Y'.) • 

7.8.3. Grothendieck's Z-adic monodromy theorem in families. — From now 
and until the end of this section, F denotes a finite extension of Qi with I ^ p, Wp 
its Weil group, Ip C Wp its inertia group and tp G W a geometric Frobenius. We fix 

(31) Precisely it is surjective, and the image of any irreducible component of Y is an irreducible 
component of fl. 

ASTÉRISQUE 324 



7.8. APPENDIX: p-ADIC FAMILIES OF GALOIS REPRESENTATIONS 235 

also a nonzero continuous group homomorphism tp : IF —• Qp. The following lemma 
is well known. 

Lemma 7.8.12. — Let B be any Q-algebra and p : WF — • B* any group homomor
phism. Assume that there exists some nilpotent element N G B such that p coincides 
with g h-> exp(tp(g)N) on some open subgroup of Ip- Then N is the unique element 
with this property. Moreover, the map 

r : WF — - B\ vn9 » p(<png)exp(-tp(g)N), Vn G Z, g G IF, 

is a group homomorphism, trivial on some open subgroup ofWp-

Definition 7.8.13. — Let p be as above. If N exists, we say that (r, N) is the Weil-
Deligne representation associated to p. By Lemma 7.8.12, it is unique and determines 
p entirely. 

We are interested in the study of p-adic analytic families of representations of 
Gal(F/F), and actually a little more generally of W F - Let us give a version of 
Grothendieck's Z-adic monodromy theorem adapted to this setting. We let A be an 
affinoid algebra over Qp and B an A-algebra of finite type equipped with its canonical 
A-Banach algebra topology. 

Lemma 7.8.14. — Let p : WF — • B* be a continuous morphism, then p admits a 
Weil-Deligne representation. 

Proof — We fix a submultiplicative norm on B and let B° C B be its open unit ball. 
Then {1 +pnB°, n > 1} is a basis on open neighborhoods of 1 G B* whose successive 
quotients are discrete and killed by p. As a consequence, the restriction p' of p to 
the the wild inertia subgroup of IF (which is pro-/) has a finite image, as its Kernel 
contains the open subgroup p'~ (1 +pB°). Let F'/F be a finite extension such that 
P|jF, is tame and pro-p, so that it factors through a continuous morphism 

tP(IF>) — B*. 

The derivative at 0 G tp{lFf) C Qp of the map above gives an canonical element 
N G B. As ipNtp'1 = XN for À a nonzero power of /, N is nilpotent by Lemma 7.8.15, 
and we are done. • 

Lemma 7.8.15. — Let A be a noetherian Q-algebra and B a (non necessarily commu
tative) A-algebra of finite type as an A-module. If x G B is B*-conjugate to Xx for 
some integer X>2, then x is nilpotent. 

Proof. — Replacing x by its image in the regular representation B <—> End^(I?), we 
may assume that B = End^(M) for some finite type A-module M. When A is a field, 
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the result is easy linear algebra. A little more generally, if Supp(M) = {P} is a closed 

point of 

X := Spec(jl), 

then M is of finite length, and using the instable filtration {PnM,n > 1} we are 

reduced to the previous case over the field A/P. 

In the general case, we argue by noetherian induction on the closed subset 

Supp(M) G X. Let P be the generic point of an irreducible component of Supp(M), 

and let K be the kernel of the natural map M —» Mp, it is a instable submodule. 

By the previous case x acts nilpotently on Mp, and by notherian induction X\K is 

nilpotent since P £ Supp(if), and we are done. • 

7.8.4. p-adic families of Wp-representations. — Let us now fix a topological 

group G, a continuous homomorphism Wp — • G, a rigid analytic space X over QP 

and a continuous d-dimensional pseudocharacter 

T : G —> O(X). 

As already explained in §7.5.2, we have for any x G X two canonical semisimple 

G-representations 

px and f, gen 
x 

with respective traces T <g> k(x) and T ® K,x. 

As px is continuous and defined over a finite extension of k(x), its restriction to 

W p has an associated Weil-Deligne representation. This holds also for pfen. Indeed, 

let us choose Q an open affinoid neighborhood of x and apply Lemma 7.8.11 (i) to 

this Q. It gives us a continuous representation py : G —> GLo(y ) (M(y ) ) , which 

admits a Weil-Deligne representation (ry,iVy) by Lemma 7.8.14. If we choose an 

0(ft)-morphism 0(Y) K x, we can compose (ry, JVy) with the ring homomorphism 

End(9(y)(M(y)) —> Md(/Cx) to obtain a Weil-Deligne representation for p|en|WF, and 

we are done. 

Definition 7.8.16. — We call respectively (rx,Nx) and (r|en, iV|en) the residual and 

generic Weil-Deligne representation of F attached to T at x. 

Let x G X. As the Qp-algebra Ox is local henselian and k(x) is finite over Qp, 

there is a canonical embedding k(x) —• Ox inducing the identity after composition 

with Ox —> k(x). In particular, we can chose an embedding 

Lx . k(x) • Kx, 

and try to compare the two Weil-Deligne representations (rx <S)Lx ÌCX, Nx ®Lx Kx) and 
(rgen, Ngen). 
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Lemma 7.8.17. — rfen|jF *5 isomorphic to rx\lF (%>Lx Kx. Moreover, T\If is constant 
on the connected component of x in X. 

Proof — The representation rfen|Ji? has a finite image by construction, hence r|en|Ji? 
is actually a semisimple /^-representation and its trace is fc(x)-valued. But this trace 
coincides by definition with LX(TX), which proves the first part of the lemma. 

Let us show the second assertion. Let H C IF be an open subgroup such that 

T(gh) = T(g) € k(x), Vg G IF. 

Then we just showed that the equality T(gh) = T(g) holds in öXi which implies that 
it holds on each irreducible component of X containing rc, and actually on the whole 
connected component X(x) of x in X by applying the same reasoning to all the points 
of X(x). In particular, 

fc0 := QV(T(IK)) C 0(X(x)) 

is a finite dimensional Qp-algebra. But Spec(0(X(x))) is connected and reduced, as 
so is X(x), hence ko is a field, which concludes the proof. • 

Let (r, N) be a Md(k)-valued Weil-Deligne representation, with k an algebraically 
closed field of characteristic 0. Then the representation r\iK is semisimple and com
mutes with N, so each of its isotypic component is preserved by N. If r is any (k-
valued) finite dimensional irreducible representation of Jjr, let us denote by NT the 
induced nilpotent element acting on Horn jx ( t , kd). The following definition is a mild 
extension of Definition 7.8.2, and was already studied in § 6.5 when k = C. 

Definition 7.8.18. — Let (pi, N\) and (p2, N2) be two Weil-Deligne representations as 
above. We will write N1 -</F N2 (resp. N\ ~jF N2) if for each r, iV"i5T -< N2,T (resp. 
NhT - N2,T). 

If both {pi, N1) and (p2j N2) are Md(A:)-valued, NiiT -< N2^T if, and only if, (pi, N1) 
is in the Zariski-closure of the conjugacy class of (p2,N2). 

Of course, N1 -<iF N2 implies that N1 -< N2. 

For x E Xy let us write 

Kx — 

s{x) 

Ks(x) 

where s(x) runs the finite set of irreducible components of Spec(Ox), i.e. the germs 
of irreducible components of I at a;. We can write in the same fashion pfen and 
(r gen 

x ? 
N cren 

x ) as a set of K s(x) •representations p gen 
six) and (r gen 

s(x) , N sen 
s(x) . 
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Proposition 7.8.19. — Let x G X, s(x) a germ of irreducible component at x, and W 

the^32^ irreducible component of x in X containing s(x). 

(i) Let y eW and s(y) a germ of irreducible component of X at y belonging to W. 

Then N gen 
s(x) ~IF N gen 

s(y) ' 
(ii) For each open affinoid Q, C W, there is a Zariski-dense and Zariski-open subset 

tlf C £1 such that iV y ~IF N gen 
s(x) 

for all y G O'. 

(iii) N 
X 

<IF N gen 
s(x)' 

Proof — By normalizing X if necessary, we may assume that X = W is normal and 

irreducible. In particular, Ox is a domain for each x hence we will not have to specify 

the s any more: r|en = rfj£y We may also assume that X is affinoid, and it is enough 

to show (ii) when = X. 

Let Y be a normal affinoid, as well as g : Y — • X , M(Y), py and Y', be given by 

Lemma 7.8.11 (i). By replacing Y by a connected component, we may assume that Y 

is irreducible. Note that for each x G X and y eY with g(y) = x, we have 

P gen 
y ) p ïen 

r 5 Px — Pyi 

so we may assume that Y = X, and that T is the trace of a continuous representation 

p : G —> GL O(X) (M) 

on a finite type, torsion free, and generic rank d (D(X)-module M . 

Let K — ¥T&C(0(X)). For each y G X , the natural map O(X) —> /C^ extends to an 

embedding K —» KY. As the i f [G]-module M ® o ( x ) i f is semisimple by Lemma 7.8.11 

(i), we have p<S)K^y — P|en- By Lemma 7.8.14, p admits a Weil-Deligne representation 

(r, N), so by the uniqueness of the Weil-Deligne representation we have 

(93) (r,N)®K}Cy --
r een 

y ' 
N gen 

y 
), Vy G X , 

which proves (i). 

Let us show (ii). By replacing X by a finite etale covering coming from the base, 

we may assume that the irreducible representations of the finite group r(Ip) are all 

defined over some local field ko C 0(X), hence we can write the following finite 

(32) xhis component is defined as follows. Let Q, be any open affinoid of X containing x. We have a 
natural map 0(Q)X —• Ox from the Zariski-local ring at x to the analytic one, which is known to be 
injective, and both are reduced if G(Q) is, so we get an injective morphism 

Frac(e>(ft)x) ^ Prac(Ox). 

The image of Spec(/Cs(x)) in Spec(G(Q)x) is the generic point of a (unique) irreducible component 
WQ of Q containing x. The component W alluded above is then the unique irreducible component 
of X containing Q. It does not depend on the choice of Q. Indeed, if Q' C Q is another open affinoid 
containing x, then WQ/ is an irreducible component of WQ fl f2', hence is Zariski-dense in W. 
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decomposition of M\Wp 

M = 
T 

T 0fcn Mr, MT := Horn feo[r(/F)] (r,MT). 

Let us choose a nonzero / G O(X) such that each (Mr)f is a free 0(X)/-module, 
and that M <S> k(y) ~ k(y)d is a semisimple k(y)[G]-representation for each y in Xf 
(use Burnside's theorem). In particular, 

(94) M }0(X) k(y) ~ py, VyeXf. 

Applying Lemma 7.8.10 to NT G Endo(x)f((MT) f), we may assume by changing / if 
necessary that 

(95) N 
t,y ~NT®K, Vy e X / , 

hence (ii) holds by (93), (94) and (95) if we take ttf := Xf. 
It only remains to prove assertion (iii). We claim first that me may assume that 

the module M denned in the second paragraph above of the proof is free. Indeed, take 
gf : y —» Y = X and My as in Lemma 7.8.11 (ii). If V an affinoid subdomain of y , 
then Vf\Y' is Zariski-dense in F, so My(V)y is a direct sum of absolutely irreducible 
G-representations for each y in a Zariski-dense subset of V. Thus My(V) ®o(V) 
Prac((9(Vr)) has the same property, which proves the claim by replacing X by y, and 
then by an affinoid subdomain as y —> X is surjective. In particular, the Weil-Deligne 
representation (r, N) is now M^(0(X))-valued. 

As M is free over O(X), we have 

(M O(X) k(x)) G-ss ~ pxi \/X G A, 

so Lemma 7.8.3 (i) implies that it is enough to get (iii) to check that the image Nx 
of N in Endfc(a;)(M 0 k(x)) satisfies 

Nx <IF N®K. 

As this is an assertion on the action of W/r, we may decompose M (again, up to 
enlarging the base field if necessary) as a sum of its isotypic components MT as above, 
and the result follows then from Prop. 7.8.9 (i) applied to the Zariski-local ring A of 
X at x and to N acting on the free A-module Mr 0o(X) A. • 

Remark 7.8.20. — Let x G X. For each s G Spec(Ox), say with residue field k(s), 
there exists a unique (isomorphism class of) semisimple representation 

ps : G —• GLd(k(s)) 

whose trace is the composite T(s) : G —» Ox —» k(s). The argument we gave for 
r|en shows that ps admits a Weil-Deligne representation (rs,Ns). As an exercise, the 
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reader can check using a slight variant of the proof of Prop. 7.8.19 that 

se{s'} NS^IFNS<. 

ASTÉRISQUE 324 



CHAPTER 8 

THE SIGN CONJECTURE 

8.1. Statement of the theorem 

We use the notations of Section 5, especially of § 5.2.1: E is a quadratic imaginary 

field, p a prime that is split in E. 

p:GE—> GLn(L) 

an n-dimensional geometric semisimple representation of GE with coefficients in a 

finite extension L/QP, satisfying 

PL - p(-l). 

We fix also embeddings ¿00 and tp as in §6.8.1. We denote by v and v the two places 

of E above p as in loc. cit. We make the following assumptions on p: 

(1) The dimension n is not divisible by 4. 

(2) There is a cuspidal tempered automorphic representation TT of GLn(A^), satis

fying properties (i), (ii) and (iii) of §6.9.1 and such that for every split place x 

of E the Weil-Deligne representation of Lpt^7rx\ det \lJ2 and the one attached 

to p\Ex are isomorphic up to Frobenius semi-simplification. 

(3) The representation p\Ev is crystalline and the characteristic polynomial of its 

crystalline Frobenius is the same as the one of LPL^ (L(TTV\ det I1/2)) . 

Note that for the sake of generality, and because irreducibility may be hard to 

check in applications, we do not assume that p is irreducible. 

Example 8.1.1. — There are many known examples of such p, in any dimension n. 

Start with a cuspidal representation TT of GLn(A#) satisfying the hypothesis (i), (ii), 

(iii) of §6.9.1. Assume moreover that 7r is square-integrable at some finite place. ^ 

t1) When n = 2, it is well known that this assumption is not necessary. When n = 3, it is actually 
possible to remove it, but we have to assume that p is outside a density zero set of primes depending 
on 7T. Indeed, if TT satisfies (i) and (ii) of 6.9.1, 7r/x descends by Rogawski's base change to the quasi-
split unitary group U(2,1)(Q) attached to E (or even to the form that is compact at infinity), there is 
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Then by the main result of [62], ir is tempered and there is a Galois representation p 

satisfying (1), (2) and (3). In this case, by [118] we also know that p is irreducible. 

It should be possible, in a near future, to remove the square-integrability hypothesis 

using results of [60], but then the irreducibility of p might not be known. 

Recall that we introduced previously assumptions Rep and AC (conjectures 6.8.1 

and 6.9.9). 

Theorem 8.1.2. — Assume AC(TT) and Repfn + 2). Then the sign conjecture holds for 

p: namely, if e{p, 0) = —1, then diuiL Hj(E, p) > 1 

Since hypotheses AC(p) for a character p and Rep(3) are known (see Remarks 6.8.2 

(vi) and 6.9.10 (ii)), we deduce: 

Corollary 8.1.3. — Ifn=l, for a p as above, the sign conjecture holds. 

This result was the main result of [8], where it was proved by similar methods, and 

can also be deduced of earlier results of Rubin (see the introduction of loc. cit). 

For n = 2 we can prove a result avoiding the hypotheses at nonsplit primes. 

Corollary 8.1.4. — Let f be a modular newform of even weight k > 4 and level TQ(N) 

prime to p, and p = Pf as in Example 5.2.2. Assume AC^f^) ^ and Rep(4). Then 

the sign conjecture holds for pf, namely ife(pf,0) = —1, we have dim^ Hj(Q,pf) > 1. 

The reason why k = 2 is (unfortunately) excluded will be apparent in the following 

proof. 

Proof. — By Proposition 5.2.1, there is a quadratic imaginary field E where p and all 

the primes dividing N are split, and such that e(pf,E,Q) — £(p/>0) and Hj(Q,pf) = 

Hj(E, pf,E)- So the corollary follows from Theorem 8.1.2 if we verify hypotheses (1) 

to (3) for p = Pf,E- Assumption (1) is clear. For the automorphic representation 

7r needed in (2) we simply take 7r := 717^ the Langland's base change to E of the 

automorphic representation 717 of G L 2 ( A q ) attached to / which is normalized so as 

to be selfdual: 717 ~ 7rJ and it has a trivial central character. It is clear that 7r satisfies 

(i) and (ii) of 6.9.1 since the L-parameter of 71*00 coincides with 

z 1—> dia,g((z/z) 
i-fc 

2 , (z/z) k-1 
) 

a Galois representation that we may write pfi attached to irn satisfying (2) by [20]. The temperedness 
of 7r together with the compatibility condition in (3) are then the main result of [7]. 
(2) The needed representation 717̂  is actually denned in the proof. Precisely, T^J^E is the base change 
to a quadratic imaginary field E as in Prop. 5.2.1 of the automorphic representation 7r/ of GL2(Aq) 
attached to / , where 717 is normalized so that — i*f. 
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on C* and as k > 4 is even, and also (iii) since n is unramified at non-split places of 

E by construction of E. It is well known that assumption (3) holds since p does not 

divide N. • 

Remark 8.1.5. — (i) When / is ordinary at p, this result, without its automorphic 

assumptions, was proved by Nekovar as a consequence of his parity theorem 

([89], see also [90, Chap. 12]). A similar result was also proved later by Skinner-

Urban in [112], using automorphic forms on the symplectic group GSp4. Since 

the existence of Galois representations attached to such forms is known they do 

not assume any variant of hypothesis Rep (4) but they have stronger hypotheses 

on / , namely that p is an ordinary prime for / , and that N = 1. 

(ii) It may be possible to remove the restriction k > 2 from this result (or, for that 

matter, the restriction on the weight in Thm 8.1.2) by actually deducing the 

k = 2 case from the result above and a deformation argument. We postpone 

this to a subsequent work. 

Remark 8.1.6. — As we explained in section 5, it was not our policy in this book to 

assume the most general versions of Langlands and Arthur's conjectures on the dis

crete spectrum of unitary groups, but rather to formulate a minimal set of expected 

assumptions which we prove to be enough to imply the sign conjecture in a large 

number of cases. Indeed, the version of Theorem 8.1.2 that we state is actually the 

strongest that we can prove under our assumptions (Rep(n-f 2)) and (AC(7r)). A rea

son for that restriction is that is not clear to us which part of those general conjectures 

will be proved first and in which form. This especially applies to the part concern

ing the Langland's parameterization for the local unitary group and the local-global 

compatibility of the base change from U(m) to GLm at those primes (see Appendix 

A), of which our proof would need some properties (e.g. if we do not want to make 

assumption (iii) of § 6.9.1). Let us simply say that at the end, we expect that Arthur's 

general conjectures should imply the full case of the sign conjecture for the p attached 

to a regular algebraic cuspidal automorphic representation of GLn(A£). We hope to 

go back to this extension in the future. 

The following two subsections are devoted to the proof of 8.1.2. 

8.2. The minimal eigenvariety X containing nn 

8.2.1. Definition of 7rn and X. — Prom now till the end of this book, we set 

m := n + 2. 

Assume that e(7r,0) = — 1 and let 7rn be the (endoscopic non-tempered) automor

phic representation of U(m) given by AC(ix) (see chapter 6, §6.9). Recall that the 
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representation irn depends on the choice of a Hecke character p : k?E —> C* as in 
Definition 6.9.5. Recall that p,1- = that p = 1 if m is even, and that p does not 
descend to U(l) when m is odd. 

By § 6.9.1, for each prime I that does not split in E, 717 is either a non monodromic 
principal series or unramified, so that it makes sense to consider the minimal eigen
variety X containing 7rn as in Example 7.5.1. (3) We will use in the sequel the same 
notations as in § 7.5. In particular, recall that S is the finite set of primes consisting 
of p and of the primes I such that 717 is ramified, and L/Qp is a sufficiently large finite 
extension of Qp on which 7rn and X are defined. Assume also that L is large enough 
so that p is a sum of absolutely irreducible representations defined over L. 

In order to associate a point of X to TT71 we have to specify an accessible refine
ment of TTp. They are given by the following lemma. Recall that the place v fixes an 
isomorphism U(m)(Qp) ^ v GLm(Qp). 

Lemma 8.2.1. — (i) The representation is almost tempered (see Def. 6.A.11). 
(ii) Its accessible refinements are the n! (n+1)(n+2) 

2 orderings of the form 

P"w\'\ -1/2 ( p ) ( . . . , l , . . . , p - \ . . . ) , 

where 1 precedes p~x. 
(iii) The ordered set of the other eigenvalues in the dots above is any ordering of the 

eigenvalues of the Langlands conjugacy class L(/irp\.\1^2). Each of those eigen
values has complex norm p-1^2, and in particular is different from l ,p_1. 

Proof. — By Remark 6.9.6, TV™ is the unramified representations such that 

l(TT;) = pv\.\ -1/2 [L(7Tp\. l/2> ' 0 1 0 . ) , 

and the parameter L(7rp) is bounded as 7rp is tempered by assumption. The lemma 
follows now from Prop. 6.4.10. • 

Let us choose any such refinement TZ for the moment, which fixes an associated 
point z = (̂ (TT™ ,7e) 5 k) on the eigenvariety X. 

Remark 8.2.2. — Note that we did not make any assumption on the compatibility 
between p and 7r|.|1//2 at the nonsplit primes. Actually, we can prove a version of it 
under the running assumptions. Indeed, as X is the minimal eigenvariety containing 
7rn, Prop. 7.5.7 and Prop. 7.5.8, p is unramified outside 5, and has a trivial monodromy 
operator at the primes / G Sjv- In the same way, Lemma 7.5.12 shows that the Hodge-
Tate weights of p\Ev correspond to the highest weight k of ir^ as in part (P4) of 
property (Rep(m)) of §6.8.2. In particular, those Hodge-Tate weights are two-by-two 
distinct. 

(3) The results here will apply whether we choose or not the variant with a fixed weight. 
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8.2.2. Normalization of the Galois representation on X. — As explained in 
§ 7.5.2, by assumption Rep(m) we have a continuous pseudocharacter 

T : GE,s — 0(X), 

such that T±(g) = x{9)m~1T{g) for all g G GE,S- Recall that \ is the cyclotomic 
character. It will be convenient to twist it by a constant character as follows. The 
following lemma is immediate (see §6.9.2). 

Lemma 8.2.3. — The Hecke character • |ir has an integral weight 8 := Y ifm is 
even, and 8 := m2z^L ifm is odd. In particular, it is an algebraic Hecke character. 

Enlarging a bit our base field L/QP if necessary, we may assume that • | ^ is 
denned over L via tpt^. By class field theory, there is an associated (4) continuous 
character 

v = »-x\-\ 
m 2 o rec : GE,S —> L*. 

By Cebotarev theorem and Rem. 6.9.6, the evaluation of T at the point z is the trace 
of the representation 

pv 1 0 v 1 0 \v 1. 

This leads us to define T", K\ and F[ as follows: 

• R := T (8) i/, i.e. T'{g) = T(g)u(g) Vg G GE,s, 
• K\ := K{ — 8 for i — 1,..., m, 
• F[ := FiLprl(vv{p)) for i = 1,... ,ra. 

Definition 8.2.4. — Prom now on, we shall use the letters T, K{ and Fi to denote 
respectively T;, K\ and JP/ above. With this choice of normalization we have 

(96) pz = 1 0 X 0 P , r x = T ( - l ) , 

and the new (X, T, {ftf}, ^ ) is obviously still a refined family. 

8.2.3. The faithful G M A at the point z. — Let A := Oz be the rigid local ring 
at the closed point underlying to z, and m its maximal ideal, k — k{z) = A/m ~ L. 
We will focus on the ^4-valued m-dimensional continuous pseudocharacter induced 
b y T , 

T : GEts —+ A, 
that we denote also by T (rather than T <8>o(x) A). Let 

R:= A[GE,s}/KeiT 

(4) This character is the unique continuous character v such that for each finite prime w of E prime 
to p, 

v|W Ew = lpl -1 
oo (rec -l if -l w H m )) 

where the local rec map is the one discussed in § 6.3. 
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be the faithful Cayley-Hamilton algebra associated to T. Recall that 

pz = p 0 1 0 X-

As the Hodge-Tate weights of pz are two-by-two distincts by Rem. 8.2.2, pz is multi
plicity free. For later use, let us write 

P = r j=1Pj 
where the pj are pairwise non isomorphic and absolutely irreducible. As each pj is 
defined over L by assumption on L, T is actually residually multiplicity free in the 
sense of Definition 1.4.1. By Theorem 1.4.4 and Remark 1.4.5 we get the following 
lemma. 

Lemma 8.2.5. — R is a GMA over A and is a finite type, torsion free, A-module. 

We will be interested in the Ext-groups between the irreducible constituents of pz. 
For this purpose we set 

I := {X, 1, p1, ...; pr}, 

which is also the set of simple i?-modules by Lemma 1.2.7. 

Definition 8.2.6. — If i,j e l are two irreducible factors of pz, we set (5) 

ExtT(i, j) := Ext R(g>A* (ij) = ExtR(iJ). 

It is a finite dimensional fc-vector space. (6) 

The following lemma follows from Prop. 1.5.10. 

Lemma 8.2.7. — The natural k-linear injection 

ExtT(iJ) <^> Ext k[GE,s] (i, j) 

falls inside the subspace of continuous extensions of i by j as k[GE,s] -representations. 

Remark 8.2.8. — By definition, the image of the inclusion above is exactly the set 
of extensions of i by j that occur in some subquotients of some i?-module M. As 
R = A[G]/KerT is the only natural Cayley-Hamilton quotient of (A[G],T) that we 
can consider a priori here, E x t ^ , j) should be thought as the space of extensions 
of i by j that we can construct from the datum of the pseudocharacter T, hence the 
notation Extr-

We will study now the local conditions at each primes of the elements in ExtT(*, j ) . 

(5) Note that the last equality in the definition below is Remark 1.5.9. 
(6) This follows for example from Theorem 1.5.5 and Lemma 8.2.5. 
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8.2.4. Properties at I of E x t ^ ^ i ) . — Let us fix I ^ p a prime, w a prime of 

E above /, as well as a decomposition group GEW —• GE,S- We begin by a general 

lemma. 

Lemma 8.2.9. — Let V be the semisimplification of the representation P\GEW • 

(i) Assume that I splits in E. For d G Z , \d *s n°t a subrepresentation ofV, and 

Ext L[GEW] (y,Xd) = Ext L[GEw] (xd,v) = o. 

(ii) Ext L[GEw] ( X , I ) = O. 

Proof. — Assume that I splits in E. We claim first that for all d G Z,ld is not an eigen

value of a Frobenius at w in p j ^ . Indeed, as 71-̂  is tempered, the eigenvalues of any 

geometric Frobenius element (f)w in the complex Weil-Deligne representation attached 

to 71-̂ 1.11/2 have norm V~L This proves already the first part of (i) by assumption (2) 

on p. 

Let W be either V(d), V*(d) or x"1- We need to show that HX{EW,V) = 0. As 

I ^ p, we know from Tate's theorem that 

dimL H\EW, W) = dimL H°(EW, W) + dimL H°(EW, W ( l ) ) , 

so the case W = x 1 is clear and the other ones follow from the claim and assumption 

(2) on p. • 

Proposition 8.2.10. — For each i ^ 1 m l , Extr( l , i ) consists of extensions which are 

split when restricted to IEW • 

Proof. — Let RW C R be the image of ^ [ G ^ ] in R via the natural map A[GE,S] —• 

i2. It is of finite type over A as R is and as A is noetherian. Let K be the total 

fraction field of A , and set RK = R <8>A K- AS R is torsion free over A, R c RK-

Let us choose any datum of idempotents ex, e i , . . . as well as a representation RK —• 

MM(K) adapted to the chosen {e^} as in Theorem 1.4.4, and consider the induced 

representation 

PK : G E,S GLm(K). 

By Lemma 4.3.9 and Prop. 1.3.12, PK is semisimple and the sum of absolutely ir

reducible representations, so pK 0 K ~ pfen. In particular PK\EW nas an associated 

Weil-Deligne representation (r, N) with values in RW. 

The argument will be different according as / splits or not in E. As the proposition 

is obvious if I £ 5, we may assume that / G S. Let us assume first that / does not 

split in E, which implies that / G SN- Note that for a continuous extension U of 1 

by i ^ 1 G X to be trivial when restricted to IEW, it is enough to check that IEW 

acts through a finite quotient on [/, as Q-linear representations of finte groups are 

semisimple. By Theorems 1.5.5 and 1.5.6 (1), it suffices to show that the image of N 
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in R C RK is trivial, because then IEW —* R* factors through a finite quotient. But 

as X is a minimal eigenvariety containing 7rn, Prop. 7.5.7 shows that N = 0 when 

w G SN, and we are done in this case. 

Let us assume now that / = ww splits in E. By Lemma 8.2.9 (i), there is nothing 

to prove when i ^ x> hence we concentrate from now on Ext^Cl, x)- We will need to 

choose a specific GMA structure of R. 

Lemma 8.2.11. — Let A be a local henselian commutative noetherian ring, m its max

imal ideal, S an A-algebra (non necessarily commutative) which is of finite type as 

A-module. Let Irr(S) be the (finite) set of simple S-modules, or what is the same of 

simple S/mS-modules, and let V C Irr(S) a subset with the following property: 

V M € P , Ne Irr(S)\P, Ext S/mS (M,N) = Ext S/mS 'N,M) = 0. 

Then there is a unique central idempotent e G S such that for each M G Irr(S), 

e(M) = M if M eV, e(M) = 0 otherwise. 

Proof. — Note that if M is a simple S module, it is monogenic over S hence of finite 

type over A, thus mM = 0 by Nakayama's lemma. It shows that Irr(S/mS) —• Irr(S) 

is bijective. Moreover, mS C rad(S). 

Assume first that A = k is a field, hence S is any finite dimensional fc-algebra. Let 

M be any finite type ^-module, M has finite length. Define Mp (resp. Mv) as the 

largest submodule of M all of whose simple subquotients lie in V (resp. in Irr(5)\'P). 

Obviously, Mp D Mv = 0. We claim that M = Mv 0 Mv. Ab absurdum, as M is of 

finite length, we can find a submodule Mp 0 Mv C M' C M such that 

Q := M'/(MV 0 Mv) G Irr(S). 

By the Ext-assumption and an immediate induction, note that Exts(j4, B) = 

Exts(I?,A) = 0 whenever A and B are finite length S-modules such that each 

irreducible subquotient of A (resp. of B) lies in V (resp in lrr(S)\P). Assume 

for example that Q £ V. The remark above shows that there is an 5-submodule 

Mp C M0 C M' such that M' = Mp 0 M0. But M0 has all its subquotients in 

Irr(5)\'P, a contradict on. The case Q G V is similar, which proves the claim. 

We check at once that the decomposition M = Mp 0 M ^ is stable by Ends(M). In 

particular, we can write S = S-p(&Sv and we get that both S-p and Sv are two-sided 

ideals of S. We check now at once that the element e G S-p given by the decomposition 

above o f l = e + (e — l ) G 5 i s a central idempotent with all the required properties, 

thus proving the assertion in the case where A is a field. 
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In general, we choose e G S/mS as above. As A is henselian and 5 finite over A, 
there is an idempotent / G 5 lifting e. By reducing mod m the direct sum decompo
sition 

S = fSf © (1 - f)Sf 0 / 5 ( 1 - / ) © ( ! - / ) 5 (1 - / ) , 

and as e is central, we get that / 5 (1 - / ) (8u A/m = (1 - / ) 5 / <8u A/m = 0, hence 
/ 5 ( 1 — / ) = (1 — f)Sf = 0 in 5 by Nakayama's lemma. In other words, / is central, 
and we are done. • 

We show now that up to #*-conjugation, Rw is bloc diagonal of type (2, n) in R. 

Lemma 8.2.12. — There is a datum of idempotents {ei,i G X} for the generalized 
matrix algebra R such that e := ex + e\ is in the center of Rw. 

Proof. — We have rad(#) fl Rw C ra,d(Rw) by Lemma 1.2.7, so the set Xw of simple 
Rw/mRw-modules is the set of irreducible subquotients of the W\GEW with W G X. 
Let us consider the subset 

7> = { X , 1 } C Xw. 

By the second assertion of Lemma 8.2.9 (i), we can apply Lemma 8.2.11 to 5 = Rw 
and the set V above, which gives us a central idempotent e G Rw. 

By the first assertion of Lemma 8.2.9 (i), T(e) = T(e) = 2, so if we consider now 
the restriction Te of T to eite, it is a Cayley-Hamilton pseudocharacter of dimension 
2 (see Lemma 1.2.5) which is residually multiplicity free with residual representations 
1 and x- By Lemma 1.4.3, we can then write 

e = ex + e\ 

where ex, e\ G eRe lift the residual idempotents 1 = ex + ei (see the proof of Lemma 
1.4.3). We conclude the proof by lifting then successively the remaining residual prim
itive idempotents in (1 — e)R(l — e) and arguing as in the first part of the proof of 
Lemma 1.4.3, or better by applying that lemma to (1 — e)R(l — e). • 

We can now conclude the proof of Prop. 8.2.10. Let us choose a datum of idem
potents ex ,e i , . . . as in Lemma 8.2.12 as well as a representation RK —> MM(K) 
adapted to those {e^} as above. Note that a continuous GEW -extension of 1 by x ls 
trivial if and only if its monodromy operator is trivial. By Theorems 1.5.5 and 1.5.6 
(1), it suffices to show that the image eN of N in eRwe = eRw C CRKC is trivial. 
Write N = (Na) G Md(K), K = f]a Ks. By the minimality of X , assumption (2), and 
by Prop. 7.5.8, we have for each germ s of irreducible component of X at x, 

Nz* Ns -< NZi 

hence Nz ~ Ns (recall that Nz is the monodromy operator of pz). We have to show 
that eN = 0. Let us write by abuse (1 — e)Nz for the image of Nz in rij=i,...,r End(pJ). 
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We have Nz ~ (1 — e)Nz as 1 and % are unramified. But (1 — e)Nz -< (1 — e)Ns by 

Prop. 7.8.8 applied to (1 — e)R(l — e) and n = (1 — e)N, so we get 

(97) Vs, (1 - e)Ns ~ AT, - (1 - e)Nz 

and eiV = 0 by the first of the ~'s above. • 

Let us record now a fact that we will use in section 9. We assume here, and only 

here, that p is irreducible. Let Itot C A b e the total reducibility locus of T (see § 1.5.1 

and Definition 1.5.2). Let J D /tot be a proper ideal of cofinite length of A. Recall 

that T ® A/J can be written uniquely as the sum of of three residually irreducible 

pseudocharacters 

T <g) A/J = TX + T1+TP 

of respective dimension 1, 1 and n, lifting the decomposition of T 0 k. Moreover, let 

RP : GE,s — GLm(A/J) 

be the unique (up to conjugation) continuous representation with trace Tp (see Def. 

§1.5.3, Prop. 1.5.10). 

Lemma 8.2.13. — Assume that p is irreducible. The monodromy operator of RP\E 

admits a Jordan normal form over A/J. 

Proof — We keep the notations of the proof above. As we showed, this monodromy 

operator is 0 if w is not split, hence we may assume that it is. As p is irreducible, 

(1 — e)R(l — e) ~ Mn(A), and by Lemma 1.5.4 (ii), it suffices to show that (1 — e)N G 
(1 — e)R(l — e) admits a Jordan normal form over A. By (97), 

Vs, (1 - e)Ns - (1 - e)Nz 

and (1 — e)Nz is the monodromy operator of p\EW as P is irreducible, so the lemma 

follows from Prop. 7.8.9 (ii). • 

8.2.5. Properties at v and v of ExtT(l,«). — Let us assume from now on that 

the accessible refinement 1Z of 7r„ has been chosed of the form 

(1 . . . . .P -1 ) . 

There are n! such refinements by Lemma 8.2.1, and the dots above are the eigenvalues 

of L(7TP|.|1/2) chosen in some random order (they are all different from 1 and p~l). 

We fix for * = v,v some decomposition group map Gal(2£*/I2*) — • GE,S-

Proposition 8.2.14. — For alliai, ExtT(l,*) consists of extensions which are crys

talline at v and v. 
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Proof. — Fix i G { x , pi, • • . , Pr}- Note that a continuous L[GE,S]-extension U of 1 

by i is crystalline at * = v or v if and only if 

(98) D 
crys 

V \E+ \<p=l = 0. 

Indeed, there is an exact sequence 0 —> Dcrys(i\EJ —• A:rys(^|£7.) Ajris^i^J by 

left exactness of the functor Dcrys. As i\Em is crystalline and does not have 1 as crys

talline Frobenius eigenvalue (for i C p, this is assumption (3) on p and Lemma 8.2.1), 

we obtain that 

dim/, D 
crys (V \E* ) = dimr i + dimr £ crys G E* 

y =1 
, 

hence the claim above. 

For U G Extr(l ,«) we shall deduce (98) from the properties of p-adic analytic 

continuation of crystalline periods in weakly refined families that we obtained in 

section 4, especially Theorem 4.3.6. Recall from Prop. 7.5.13 that 

(99) {X,T, {Ki}, {F^Zreg) 

is a refined family for the restriction map Gal(^v/^v) —> GE,s (beware that we 

use the normalization of T, and Fi, set in Definition 8.2.4). In particular, 

(X,T,{K,i},Fi,ZTeg) defines a weakly refined family (see Def. 4.2.7). At our point z, 

note that 

F1(z)p Ki(z) = 1 

as the first eigenvalue of our refinement 1Z is 1 by assumption. Assuming for the 

moment that its assumptions are satisfied at the point z, Theorem 4.3.6 shows that 

for any U G Extr(l ,z), formula (98) holds for * = v (apply the theorem to any 

partition V containing { 1 } and {%} and to the maximal ideal / = m of A). Following 

§ 4.3, there are three assumptions to check: 

JACC) z is an accumulation point of Zreg. This is the first part of Lemma 7.5.3. 

(MF) T is residually multiplicity free at z. This holds for instance as pz = 1 © \ © p 

has distinct Hodge-Tate weights (see §8.2.3). 

'REG) The crystalline Frobenius eigenvalue 1 has multiplicity one in Dcrys(pz). This 

follows from Lemma 8.2.1 and has been used several times already. 

This concludes the proof that Extr(l,0 consists of extensions which are crystalline 

at v. The same arguments apply to v as follows. As T±(l) = T, the refined family 

(99) induces formally a weakly refined family 

(X,T, {n'i},F,Zteg), 

for the restriction Gal(Ey/Ey) —> GE,s, where F = Fml and K\ = — 1 - k'm-i+1 

for each i = 1,... ,m. As p~x is the last eigenvalue of our refinement 71, note that 
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pKm^Fm(z) = p 1, or which is the same that 

P"I(Z)F(Z) = 1. 

The argument above applies then verbatim and shows that ExtT(l,i) consists of 
extensions which are crystalline at v, which concludes the proof. • 

Recall the definition of Hj from §5.1.2. 

Corollary8.2.15. — For each i eX with i ^ 1, E x t r ( M ) C Hj(E,i). 

Proof. — It follows from Prop. 8.2.14 and Prop. 8.2.10. • 

8.2.6. Symmetry properties of T. — We choose now a particular GMA datum 
on R using the symmetry of the pseudocharacter T (see § 1.8). 

Let r : 0(X)[GE,s] -* 0(X)[GE,s] be the 0(X)-linear map such that 

T(g) := eg xc 1x{g)-

We have r2 = 1 and r(gg') = r(g,)r(g), hence r is an 0(X)-linear anti-involution of 
0(X)[GEs\. By §8.2.2, it satisfies 

T or = T. 

As a consequence, r induces an A-linear anti-involution on the A-algebra R and we can 
apply to it the results of § 1.8 (see Remark 1.8.1). The involution r induces naturally 
an involution on X that we still denote by (7) r, namely 

Vi G X, r(i) = i 1 0 X -

For example, we have r ( l ) = x- By Lemma § 1.8.3, we can find a data of idempotents 
{e^, i E X} for the GMA R such that 

(100) Vi e X, r(ei) = eT(i\. 

We choose now a GMA datum for R of the form {ei,ipi,i G X} with the e$ as above. 
It will be also convenient to fix an adapted representation 

R <-+ Mm(K) 

associated to this datum in the sense of Theorem 1.4.4 (ii), so that R identifies with 
the standard GMA of type (1,1, di,..., dr) associated to {Aij,i,j G X} where the 
Aij C K are fractional ideals. In particular, each Aij is finite type over A. 

Lemma 8.2.16. — For all i,j G X, A i,j A hi = A. t(i),r(j) A T(j),r(i)' 

Proof. — We have to show that TfaRejRei) = T(eT^)ReT^Rer^), which is immé
diat from the fact T o r = T, and that r(e*) = eT(+). • 

(7) This involution is denoted by a in § 1.8. 
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Let i ^ j 6 l Recall that we defined in § 1.8.5 a map 

i,j : Ext Hz)[GE,s. (i; j) Ext Hz)[GE,s] (rt t) ,r(t)) . 

The following lemma is a consequence of Prop. 1.8.6 and Lemma 1.8.5. 

Lemma 8.2.17. — The map ±ij induces an isomorphism 

ExtT(iJ) -- Extr(ry), r ( 0 ) . 

In particular, using Prop. 8.2.14 and 8.2.10, the lemma above has the following 
corollary. 

Corollary 8.2.18. — For all i ^ x *n Extr(^X) consists of extensions which are 
crystalline at v and v, and split when restricted to IEw for each w prime to p. 

8.3. Proof of Theorem 8.1.2 

8.3.1. — Let us prove Theorem 8.1.2. By Corollary 8.2.15, it suffices to show that 
for some irreducible subquotient pj of p, 

ExtT(l,Pj) ^ 0. 

For that we relate those Ext-groups to some reducibility ideal of T and we show 
that the associated reducibility locus is included is some explicit closed subscheme of 
Spec(A). We first draw a key consequence of the vanishing of H}(E, x) and of the work 
above. Recall that we fixed in § 8.2.6 a specific trace embedding R «-> Mm(if) identi
fying R with the standard GMA of type (1,1, d i , . . . , dr) associated to {Aij,i,j G X} 
where the Aij c K are fractional ideals of K (hence of finite type over A). 

Lemma8.3.1 {Vanishing of HlfE.x))- — We have 

ExtT(l,y) = 0 and A x,1 = 
j 

A X,pj A pj,1. 

Proof. — By Prop. 5.2.2, H}(E, x) vanishes, hence so does ExtT(l, x) by Cor. 8.2.15. 
Set 

A X,1 = 
3 

A X,pj A pj,1. 

By Theorem 1.5.5 applied to J = m, we get that HomA(AXii/A' x,k) = 0. But AXii 
has finite type over A, hence we conclude by Nakayama's lemma. • 

Let V be the following partition of J: V = ( { X } , { l } , X \ { X , 1}) , and I-p C A its 
reducibility locus (see Def. 1.5.2). 

Lemma 8.3.2 (Reduction to the nonvanishing of I-p). — 
(0 iv = A 1,x A x,i + 3 

A 1, pj A 1, pj + '3 
A 

X,Pj A pj,x-
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(ii) 1 V = <3 
A 1,pj 

A pj,1. 
(iii) J/ExtT(l ,p?) = 0 for all j , then Iv = 0. 

Proof — Assertion (i) is Prop. 1.5.1. As r ( l ) = y, Lemma 8.2.16 shows that 

j 
*I,PÌ4»Ì,I 

j 
AX,PJAPJ,X' 

But by Lemma 8.3.1, Ax>i = 3 A v p . A p . i , hence 

Ax,iAi,x = 
3 

Ax,pjAPj,iAiìX c 
3 

AX,PJAPJ,X' 

as APjiiAiiX c APjjX. This proves assertion (ii). 

Arguing as in the proof of Lemma 8.3.1, ExtT(l,Pj) = 0 implies that 

Apj,1. = 

i=1,pj 

APj,iA{ i. 

Assume that this holds for each j . By applying this identity or Lemma 8.3.1 s := 1+|X| 

times, we get that for each j , AiiPjAPjii is a finite sum of terms of the form 

(101) Ai,pjApj,i\AiiM • - - A{aji, 

with all the ik E I , ii / pj, is ^ 1, and ik+i ^ ik. As 5 > |J|, for each such term 

there exist k < kf such that ik = ik,, which implies that 

A ik,ik+1 *fc + l»*fc + 2 ... /4 «fc'-i.'fc' C-4 ik,ik+1 A 
*fc + l»*fc C m, 

A pi 1*1 A ik,i1 ... A 
»fc-l»*fe 

A ik',ik+1 ... A 
is,1 C i4 pj,1, 

hence that 

A 1, pj A 1, pj A *1,»2 .... A is, 1 r m 4 i,Pi A 
PI A' 

This proves that /p C m/p, hence that /7? = 0 by Nakayama's lemma. • 

By Lemma 8.3.2 (iii), there only remains to show part (ii) of the following lemma. 

Recall that {K>i(z)}i=imm,m is the strictly increasing (see Def. 7.5.11) sequence of Hodge-

Tate weights of pz at v. Let a € { l , . . . , r a } b e the unique integer such that 

« O W = 0. 

Lemma 8.3.3 (Non triviality of I-p). — (i) (na — K\) — («a(^) — Ki(z)) £ Iv-

(ii) o ^ l and I-p 7̂  0. 

Proof. — As already said in the proof of Prop. 8.2.14, (X, T, « i , Fi, Zreg) is a weakly 

refined family for G\Ev —• and the assumption (ASS), (MF) and (REG) of §4.3 

are satisfied. Part (i) is then Theorem 4.3.4 as 

D crys ifiz) y=1 = D crys (1) y=1 

has dimension 1 by Lemma 8.2.1 and assumption (3). 
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Let us show assertion (ii). By property (iv) of the eigenvariety X, the natural map 
®K{Z) —> A is injective, so it suffices to check that 

(ka - k1) - (ka (z) - k1 (z)) = 0, 

i e . that a ^ 1. If a = 1, /ca(z) = 0 is the smallest Hodge-Tate weight of pz at v. But 
this is absurd as —1 is a Hodge-Tate weight of pz at v, namely the one of %• • 

8.3.2. Some remarks about the proof. — The above proof of Theorem 8.1.2 can 
actually be simplified in several different ways. We chose to look at the full minimal 
eigenvariety X containing z and its associated Galois pseudocharacter T because this 
is the relevant point and space for which the analysis developped here can be pushed 
further (and for which the Extj- have a maximal dimension) as we will explain in the 
next section. All the strenght of the results proved here (especially the ones in § 8.2.1) 
will be used in section 9, and we found it convenient to directly include them here so 
as not to repeat half of the story there. 

In the style of [8], we could have replaced X by the normalization of the germ of 
any irreducible curve C C X containg z such that Z fl C is infinite and that na — K\ is 
not constant on C. The ring A would have been a DVR which would have simplified 
some of the pseudocharacter theoretic arguments. Note that in the argument above, 
we do not really choose a stable "lattice" as in [8] but we rather work with the full ring 
theoretic image R of the family of Galois representations. This is actually convenient 
and it illustrates the techniques developped in the previous sections of this book. Had 
we worked on the germ of a smooth curve as explained above, we could have used the 
choice of a good lattice as in [8, Prop. 7.1] (as written, it requires p to be irreducible). 

Moreover, a nice way to understand the combinatorics in (iii) of Lemma 8.3.2 is 
to compare it with the connected graph theorem [6, Thm. 1]. (8) In our case, there 
would be no edge 1 —• % by Lemma 8.3.1, hence at least an edge 1 —> pj for some 
j . Note that we do not claim that the pseudocharacter T used in the proof above is 
generically irreducible, but Lemma 8.3.3 rather says that it is not "too reducible", and 
this is actually enough to conclude. Actually, had we assumed that the eigenvalues of 
the Langland's conjugacy class of TTP are "regular", we could have chosed a refinement 
1Z (hence a z) leading to a generically irreducible T (even on the curve C) , as follows 
from Rem. 7.7.4. 

(8) Here is the statement: let A be a henselian DVR, r : G —• GL (̂A) a generically absolutely 
irreductible representation, and assume that the semi-simplified residual representation fss is multi
plicity free. Then the oriented graph whose vertices are the irreducible constituents of fss, and with 
an edge from i to j if there is a nontrivial extension of i by j in the subquotients A-modules of Ad, 
is connected as an oriented graph. 
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As is clear from the proof, the cornerstone of the argument is the fact that 

ExtT(l,x) c t f } ( £ , X ) , 

(that is Lemma 8.3.1) which requires to control the deformation at all the finite places, 

from which we deduced that ExtT(l, x) = 0 using the finiteness of Q*E (in terms of the 

graph alluded above, it is the step: "there is no arrow 1 —> x")- This last fact fails for 

a general CM field E, and actually the whole argument breaks down in this generality 

because of that. We will discuss that issue in greater detail in Remark 9.5.1. 
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CHAPTER 9 

THE GEOMETRY OF THE EIGENVARIETY 
AT SOME ARTHUR POINTS AND 
HIGHER RANK SELMER GROUPS 

9.1. Statement of the theorem 

We keep the notations of §8.1. In particular 

p : G&\(E/E) —+ GLn(L) 

is a modular Galois representation attached to a cuspidal automorphic representation 

^l-l1/2 of GLn(A#) that satisfies conditions (1), (2) and (3) there. We now make the 

following new assumptions on p: 

(4) Alp is absolutely irreducible for i = 1,..., n. 

(5) The crystalline representation p\Ev admits a regular non critical refinement (see 

§2.4.3 and Def. 2.5.5). 

(6) The hypotheses BKl(p) and BK2(p) hold (see §5.2.3). 

Remark 9.1.1. — (i) The irreducibility assumption (4) is known if n < 3. However, 

when n > 4 it is not always satisfied, especially in the interesting case where 

7r is a base change from Q and n is even. As we shall see, the reason of this 

assumption here is the presence of hypothesis (MF') in Thm. 4.4.4. As explained 

there, we expect that this hypothesis is actually unnecessary, but to remove it 

would require more work in § 4.4.4. 

(ii) Recall that the regularity assumption in (5) combined with (3) means that the 

Langlands conjugacy class C £ GLn(C) of the unramified representation ^pl-l1/2 

has distinct eigenvalues, and that those eigenvalues can be ordered as 

(V?i,...,<^n) 

in such a way that for each j = 1,... ,n, (pi- — <Pj is a simple eigenvalue of 

AJ(C). If n < 3, it is equivalent to only ask that the ipi are distinct, and if n = 2 

(resp. n = 1) this is conjectured to always be the case (resp. it is obviously true). 
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The non critical part of the assumption of (5) means that the refinement of 
p\EV associated by property (3) to the ordering above is non critical in the sense 
of § 2.4.3. Again, this is automatically satisfied if n = 1, and in most cases when 
n = 2 (see Remark 2.4.6). 

(iii) As we saw in Propositions 5.2.5 and 5.2.6, the hypothesis (6) is known to hold 
if n = 1 and also in the n = 2 case for p of the form pf^E for / a modular forms 
of even weight with a small explicit set of exceptions. 

Of course, we shall also assume that e(p, 0) = —1, and that Rep(m) and AC(7r) 
hold. As in § 6.9, we denote by 7rn the non-tempered automorphic representation of 
U(m) attached to p by assumption AC(7r), for some choice of a Hecke character p as 
in Def. 6.9.5 that we fix once and for all. Recall that we defined in § 8.2.1 the minimal 
eigenvariety X of U(m) containing TT71. We consider here the variant where we fix one 
of the m weights (any one), so that X is equidimensional of dimension m — 1 = n 4-1. 
Any choice of an accessible refinement 1Z of 7r™ defines a point z G X. By Lemma 
8.2.1 and assumption (5), we may choose a refinement of the form 

AM-1 -1/2 (p)(l,y>l,¥>2>...,^n,P -1 ), 

where the (fi are chosen as in Remark 9.1.1 to satisfy the regularity and non criticality 
assumption of (5). We fix once and for all such a refinement 11, hence a point 

z e x , 

which is the Arthur's point that we refer to in the title, z is defined over L. 
In all this section, we will generally follow the notations of §8.2.1. In particular, 

recall that we defined in Def. 8.2.6 an L-subspace ExtT(l , p) C Extc^ s ( l , p) which is 
the space of extensions of 1 by p that we can construct from the Galois pseudocharacter 
T carried by X (see Remark 8.2.8). By Prop. 8.2.14 and 8.2.18, we know that 

ExtT(l,p) c # } ( £ , p ) . 

Theorem 9.1.2. — Assume that p satisfies (1) to (6), that e(p,0) = —1, and that 
AC(TT) and Rep(m) hold. Let t be the dimension of the tangent space of X at z and 
h the dimension ofExtril^p), then 

t < h n + 
h+ 1 

2 . 

Note that both dimensions above are taken over the residue field k = k(z) ~ L. 
Recall that t := dimfc(m/m2) where m is the maximal ideal of Ox,z- As OxiZ is 
equidimensional of dimension n + 1, we have 

n + 1 < h n + 
h + 1 

2 
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so in particular we find again that h ^ 0 (i.e Theorem 8.1.2 for p) and get the following 
corollary. 

Corollary 9.1.3. — (Same assumption.) If X is not smooth at z, then 

dimL H}(E,p) > dimLExtT(l,p) > 2. 

When n = dim(p) = 1, i.e. when 

p : GoliE/E) —• L* 

is any continuous character such that pL = p(—1), class field theory and Remark 9.1.1 
imply that conditions (1) to (6) are satisfied once we assume that the two Hodge-Tate 
weights of p\Ev are different from 0 or —1 (because of condition (ii) on n in §6.9.1). 
Moreover, by Remarks 6.8.2 (vi) and 6.9.10 (ii), assumptions Rep(3) and AC(7r) are 
also known. 

Corollary 9.1.4. — If n = 1, Theorem 9.1.2 and its corollary above hold under the 
single assumption that 0 and —1 are not Hodge-Tate weights of the character p\Ev-

Remark 9.1.5. — As we already said, various versions of the main conjectures are 
known for Hecke characters from the work of Rubin [103]. These "main-conjectures" 
also imply that dim^ Hj(E,p) > 1 when expected. However, as far as we know, they 
do not allow one to show that dim^ Hj(E, p) > 2 when the L-function or rather 
its p-adic analogues vanish at a higher order (this phenomenon is sometimes called 
the possible non semisimplicity of the Iwasawa module). As a consequence, even the 
simplest case covered by the corollary above is of interest. 

In all this book, we have concentrated on the Galois side part of the study, letting 
aside the various p-adic L-functions that should enter in the picture. We hope that 
once this is done, the Galois deformations studied here will shed some light on the 
< part of the conjectures alluded above. Prom a more conjectural point of view, this 
remark actually applies to any p satisfying conditions (1) and (2). 

9.2. Outline of the proof 

The proof of Theorem 9.1.2 is a refinement of the proof of the sign conjecture 
consisting in a careful analysis of the Galois pseudocharacter 

T : GE,s —• Ox,z 

at the point z. As in § 8.2.3, we let A = Ox,z>> the maximal ideal of A, k = A/m ^ L 
its residue field, and 

R := A[G]/KerT 
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the faithful Cayley-Hamilton GMA associated to T at z. Recall that it is of finite 

type and torsion free over A (which is a reduced henselian noetherian ring). As p is 

irreducible, we have now 

J = { X , P , 1 } -

As in §8.2.6, we fix a data of idempotents (ey,ep,ei) for R such that r(e*) = ea(*\. 

Note that a fixes p, and exchanges 1 and Last but not least, K = As Ks is the 

total fraction ring of A, and we fix a representation 

PK-R—+ MM(K) 

associated to this data of idempotents, as in Theorem 1.4.4 (ii). Recall that this 

gives us a set of finite type A-modules Aij C K, i,j G X, such that Aij = A 

for each i, Ai^Aj^ C Ai^ for each i,j, k, and AijAjj C m if i ^ j . Moreover, 

R = PK(R) C MM(K) is the standard GMA of type (l,n, 1) associated to these data 

(see Example 1.3.4), that is 

(102) R = pK(R) = 

A An A i 

A%x Mn(A) AnpA 

A\tY A!ì_n A 

C Mm(K). 

Our aim will be to elucidate as much as possible the structure of the A-modules 

Aij. 

One the one hand, those Aitj are related to the Ext^Q, i) by Theorem 1.5.5. In 

turns, by results already proved in §8.2.1, those Ext^O', i) are related to all the 6 

possible Selmer groups occuring here, namely H}(E, *) where 

* = x,x \P,P*,PX \p*x 1-

Up to the underlying symmetries, and by BKi(p) when * = p*, we will actually know 

all of them except the one of p, which is precisely the one we are interested in. 

On the other hand, the Aij are also related to the reducibility loci of T by Prop. 

1.5.1. A remarkable fact is that we are able to compute here all the reducibility ideals 

of T. Precisely, we will show that all the proper reducibility loci actually coincide 

schematically with the closed point z. In other words, T is as irreducible as possible. 

The proof of this key fact will actually use all the machinery that we developed in 

sections 1 to 4 of the book. This will provide then the missing link between the tangent 

space of X at z and the Aij, and then with the ExtT(l,p). 

9.3. Computation of the reducibility loci of T 

Let us analyse the proper reducibility loci of T (see §1.5.1). Recall that each of 

them is attached to a non trivial partition V of X = { x , l ,p}, and there are 4 such 
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partitions. An especially interesting one is the the total reducibility ideal 7tot? which 

is attached to the finest partition {p}}-

Lemma 9.3.1. — (i) All these four reducibility ideals coincide with Itot. 

(ii) /tot = AitPAPtl. 

(iii) ItotK = K. 

Proof. — By Prop. 1.5.1, each proper reducibility ideal is a sum of terms of the 

form AijAjj with i ^ j , and contains A*5PAP)* for * = 1 or By Lemma 8.2.16, 

AiJAjj = A<r(j)i&(i)A<7(i),<rti) so 

(103) A\nAPy\ — AXÌPAPÌX. 

By Lemma 8.3.1, we also have 

(104) AxA — AX,PAPA-

But AIÌXAXÌP c Ai)P, so 

AhxAxA c AhPApAi 

which proves assertions (i) and (ii). 

By Lemma 8.3.3 (i), the total reducibility ideal Itot contains the element 

/ := Ka - Kl - (*a(z) - Kx(z)) G OK{Z)Ì 

where a is some integer between 2 and m (note that the reducibility ideal I-p considered 

there is Jtot as p is irreducible). In particular, / is a nonzero element of the domain 

(DK(zy Recall that K = Prac(>l) = Y\s Ks. By property (iv) of the eigenvariety X , the 

composition of the natural maps 

OK(Z) A Frac(^) Ks 

is injective for each s, so K = Kf C itot^', which proves (iii). • 

Lemma 9.3.2. — The representation pk induces an isomorphism R 0 ^ K ----

Mm(K), and pK <8> Ks is absolutely irreducible for each s. 

Proof. — This is actually a general consequence of Prop. 1.3.12 and of the fact that 

IK = K for all irreducibility ideals 7, but we argue directly. By Lemma 9.3.1 (ii) 

and (iii), AijPK = APiiK = K, and the same equality holds with 1 replaced by \ by 

formula (103). As Aia D AiiPApa we get also that AiaK = K, as well as AX^K = K 

by the same reasoning. This proves the first part of the lemma, of which the second 

part is an obvious consequence. • 
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Note that for the moment, we did not use assumptions (5) to (6), and only the 

irreducibility assumption of p in (4). We will now use (4) and (5) by beginning a 

deeper study of Itot. We show first that the total reducibility locus 

V(Itot) C Spec(C?2) 

lies in the schematic fiber of the weight morphism K : X —* >V over K(Z). 

Proposition 9.3.3. — For each integer j G { 1 , . . . , m}, Kj — Kj(z) C Itot-

To prove this proposition, we need to recall some aspects of the theory of refined 

deformations that we developped in § 4.4.1. By definition of the chosen refinement 1Z, 

the refinement Tz of pz = 1 0 p 0 \ is 

Tz = tpt -l 
oo 

(l,<P!,...,<pn,p -1 ) = (Fi(z)p k1(z) ,...,i<m(2j£ km(z) )• 

This makes sense as by assumption (5) and Lemma 8.2.1, the m Frobenius eigenval

ues Fj(z)pKj(z\ j = 1,... ,m, are distinct. Of course, this refinement induces also a 

refinement Tz^ of each p*: Tz± = (1), FZyX = (p-1) and Tz,p = tP^(^Pi,..., <pn)-

Recall that in this situation, we defined in § 4.4.3 a permutation 

<r G &m 

that encaptures how the indices i of the weights Ki(z) and the Frobenius eigenvalues 

Fi(z)pKi^ are related to the decomposition pz = 1 0 p 0 if 

— R* is the set of integers i such that DCrys(p*)v?=jPî ^pKl(Z) ^ 0? 

— and if W* is the set of integers i such that Ki(z) is a Hodge-Tate weight of p*, 

then cr is the unique permutation of { 1 , . . . , m } that sends R* onto W*, and that is 

increasing on each R*. 

Lemma 9.3.4. — (i) a is a transitive permutation. 

(ii) Tz is a critical regular refinement of pz. However, for each *, Tz^ is a non-

critical regular refinement of p* and R* is a subinterval of {1,... ,d}. 

Proof. — Let us show assertion (ii) first. As (l,p_1) is a critical refinement of l0x>Fz 

is a critical refinement of pz. For the regularity property, let us fix j > 1 an integer. By 

Lemma 8.2.1, the eigenvalues A of the crystalline Frobenius on Dcrys(AJpz) such that 

koo^p — >/P_J+1 are exac^ly the products of j —1 elements of ^ ^ ( { ^ I , . . . , <Pn})-

We conclude then by assumption (5). The non criticality of Tz^ is obvious for * = 1, x 

and is assumption (5) for * = p. Moreover, the assertion on J?* is clear, namely: 

(105) Ri = {l}, Rp = {2,3,...,m-1}, Rx = {m}. 

We show now (i). Let a e { 1 , . . . , m } be the unique integer such that K0(Z) = 0. As 

already said, a > 2 (see Lemma 8.3.3 (ii)), and we have 

(106) W! = {a}, Wp = {l,2,...,a-2,a+l,...,m}, Wx = {a - 1} . 
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(If a = 2, this means that Wp = { 2 , 3 , . . . ,ra}.) By definition of the permutation cr, 

we see now that 

o (i) = 

a, if i = 1, 

i — 1, if i = 2 , . . . , a — 1 and a ^ 2, 

¿4-1, if i = a,... ,ra — 1, 

a — 1, if z = m. 

which is a cycle, and we are done. • 

Proof. — (of Prop. 9.3.3) As one of the is constant by assumption on X , the 

proposition is an immediat consequence of Lemma 9.3.4 and Corollary 4.4.5, once we 

know that assumptions (REG), (NCR), (INT) and (MF') of §4.4.1 and §4.4.4 are 

satisfied. But the first three ones are by Lemma 9.3.4 (ii), and (MF') follows from 

assumption (4) and from the fact that 1 and x are one dimensional. • 

Corollary 9.3.5. — /tot is & cofinite lenght ideal of A. 

Proof. — It follows from Prop. 9.3.3 and from the fact that the natural map OK(Z) —> 

Oz = A is finite by property (iv) of the eigenvariety X. • 

Recall from Def. 1.5.3 that for each * E J, there is a (unique up to isomorphism) 

continuous representation 

P*:GE,s — GLd,(A/Jtot) 

lifting p*. 

Proposition 9.3.6. — (i) For each * G { l , x , p } , p* is crystalline at v and v. 

(ii) Moreover, the characteristic polynomial of the crystalline Frobenius on the free 

A/Itot-module DCTys(p^Ev) is 

ieR* 

(T-FiPK^) e (A/Itot)[T]. 

Proof. — Note that HOHIG^ (p*, p*(—1)) = 0 for each *. Indeed, it is clear for * = 

1,X, and it holds for * = p as tpi ^ pipj for each i,j £ { 1 , . . . , n} by Lemma 8.2.1. 

The first part of the proposition for the place v follows then from Corollary 4.4.5 

(ii) (we already checked that (INT), (REG), (NCR) and (MF') hold in the proof of 

Prop. 9.3.5). But p^- ~ pr(*) for each *, as they share the same trace and each p* is 

residually irreducible, so the proposition also holds for the place v, which proves (i). 

By Theorem 4.4.4, we know that the crystalline representation p* is trianguline 

over A with parameters the Si with i G i?* such that 

ô i|Z* = X - ko(i) (z) , Si{p) = Fip ki(z) - ko(i) (z) 5 (A/Itot)*. 
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By Berger 's Theorem 2.2.9, the characteristic polynomial of the statement can be 
written as the product over the i G R* of the characteristic polynomials of <p on 
-^crys(^A//tot(^))' nence the statement. • 

We now come to the main proposition of this subsection. We will use here assump
tion BK2(p) of hypothesis (6). 

Proposition 9.3.7. — /tot is the maximal ideal of A. 

Proof. — Note that the residue field k := k(z) of A lifts canonically to a subfield of 
A by the henselian property. Let us fix a 

i\) : A/Itot —> k[e], 

a fc-linear ring homomorphism. We claim that for each *, 

P*,V := P* ®A/itot,ip k[é\ 

is a trivial deformation of p*, which means that we have an isomorphism 

p*^ ~ p* ®fc k[e]. 

Let us assume this claim and show how to conclude. By properties (ii) and (iv) of 
eigenvarieties (see Def. 7.2.5), A is generated by H as an OK(Z)-algebra. As 

H = Ap <8> Hur 

and by assumption (2), we see that A is generated over OK(Z) by the F^s and by the 
T(Prob^)'s for the primes I — ww G So. Assuming that each p*^ is constant, we get 
that for any such w* 

ijj(T(Frobw)) eke k[e] 

is constant. Moreover, Prop. 9.3.6 (ii) implies that for each i, 

ip(Fi) eke k[e] 

is also constant (use that the Fi(z)pKi^ are two-by-two distinct by Lemma 9.3.4). 
Last but not least, by Prop. 9.3.3 the image of 

OK{Z) —• A/hot — ^ k[e] 

also falls into k. As A is generated over OK(Z) by the Fi and the T(Problt;), we get 
that 

^(A/Jtot) = k. 
As this holds for all ^ , A/Itot = k and we are done. 

Let us prove the claim now. By Prop. 9.3.6, we know that p*^ is crystalline at v 
and v. Moreover, p*?^ is obviously unramified outside S. By Lemma 8.2.13 (applied 
to J = Ker tp) we know that for each prime w of E not dividing p, the monodromy 
operator of p*^\EW admits a Jordan normal form over A/Itoti hence is constant, when 
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* = p. This trivially also holds when * = 1 or as any continuous GEW -extension of 
1 by 1 is unramified for such a w. 

If * = 1 or x> the finiteness of the class number of E, and more precisely Prop. 
5.2.3 (i), implies then that p*^ is constant. If * = p, we have p ^ = p*?^ (see the 
first paragraph of the proof of Prop. 9.3.6), hence hypothesis BK2(p) in assumption 
(6) shows again that p*^ is constant, which completes the proof. • 

Remark 9.3.8. — We could also study the proper reducibility loci of the restriction of 
T to GEV- For example when p\Ev is irreducible (e.g. when n = 1), the same proofs as 
above show that they all coincide and that they lie in the schematic fiber of K above 
K(Z). However, they do not necessarily coincide with the maximal ideal of A. 

9.4. The structure of R and the proof of the theorem 

For i ^ j G J, let us consider the integers 

hij := dimLExtT(iJ). 

We first recapitulate all that we know about those hij. 

Lemma 9.4.1. — (i) hiiP = hpa = h, 
(ii) hi,x = 0 and hx,i < 1, 

(iii) hPii = hXiP < n. 

Proof. — The first equalities in (i) and (ii) follow from Lemma 8.2.17, which proves 
(i). Assertion (iii) is then a consequence of Prop. 8.2.10 and of Prop. 5.2.7 (which 
assumes hypothese BKi(p) and whose assumptions are satisfied by Lemma 8.2.1). 

We already proved that h\^x = 0 in Lemma 8.3.1, so it only remains to show that 
hX)i < 1. That will follow from Prop. 5.2.3 (ii) if we can show that 

ExtrfolJ c ff^JK-l)) 

falls into an eigenspace of the endomorphism U h-» C/-L(—1) of the latter space. But 
this follows from Lemma 9.3.2 and Prop. 1.8.10 as r fixes p G X. We will actually 
show later that Extr(x» 1) fa^s inside the part of sign +1. • 

As \X\ = 3, recall that from Theorem 1.5.5 that for i, j and k two-by-two distinct 
in X, we have an isomorphism 

(107) RomL(Aij/AiikAkj,L) ExtT(j,i). 

Lemma 9.4.2. — The integer h is the minimal number of generators of Ap^. 
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Proof. — By (107) above and Nakayama's lemma, we have to show that 

A 
p,X A X,1 C mA p,1. 

But AXii = Ax^pAPyi by Lemma 8.3.1 (that is by ftisX = 0 and (107)), and we conclude 

as APiXAx,p c m . • 

Lemma 9.4.3. — (Ï) There are elements fi f„ G Ai n such that Ai „ = 

n 
,1=1 

\fi + A\yXAXn. 

(ii) There is a g G A\x such that A\ x = Ag + A\ PAP x. 

(iii) AinApA = 
/2=1 

/ » 4 M + gAXiPAPil. 

(iv) For some X G K*, we have AX}P = \APti. 

(v) m = A1nAPA. 

Proof. — Assertions (i) and (ii) follow from Lemma 9.4.1 (ii) and (iii), formula (107) 

and Nakayama's lemma. By expanding A\,pAp,\ with the formulas of (i) and (ii), we 

get part (iii) as the missing term satisfies 

A\,pAPyXAXyPAp^\ c xtiAi^pAp^i, 

hence may be deleted by Nakayama's lemma. 

Assertion (iv) holds as Aij and AT^^T^ are ^-isomorphic submodules of K by 

Lemma 1.8.5 (ii). Part (v) is Prop. 9.3.7 combined with Lemma 9.3.1 (ii). • 

Proof — (of Theorem 9.1.2) By computing the minimal number of generators of m 

with formulae (v) and (iii) of Lemma 9.4.3, as well as Lemma 9.4.2, we get 

t < nh + 8, 

where s is the minimal number of generators of AY 0AD\. But the ^-module AYnAPA 

is isomorphic to Ap \AP i C K by (iv) of loc. cit, so s < h(h+l) 
2 

.Indeed, if ei, e2 , . . . , eh 

are generators of the A-module Ap i, then the h(h+1) 
2 elements: 

e2 , i = 1 , . . . , /i, and e^ej, 1 < i < j < ft, 

are generators of the A-module APyiAPyi c K, and we are done. • 

Let us give a simple corollary of this analysis when Hj(E,p) has dimension 1 

(hence ft = 1), which is somehow the generic situation. Recall that a local noetherian 

ring (A,m, k) is regular if its Krull dimension equals the dimension dim^ m/m2 of its 

tangent space ([83, §14]). 

Corollary 9.4.4. — Assume that ft = 1. Then A is regular of dimension n + 1, all 

the inequalities of Lemma 9.4-1 are equalities, and up to a block-diagonal change of 

coordinates in KnJt2, we have 
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R = 

A An A 

mn Mn(A) An 

Ag + m2 mn A 

C Mn+2(K), 

for some g G m\m2. 

Proof — The proof of Lemma 9.4.3 actually shows that 

t < ftp,i ft + hXii s. 

If ft = 1, the term on the right is less that raft + ft(ft + l ) /2 = ra + 1. As t > n + 1, all 
these inequalities are equalities, thus ftX)i = 1 and ftp>i = hXyP = n. Moreover, Lemma 
9.4.2 shows that APJI is free of rank 1 over A, as well as Ax>p by an argument similar to 
Lemma 9.4.3 (iv). In particular, up to a block-diagonal change of coordinates we may 
then assume that API\ = AX,P = A, and the corollary follows at once from Lemma 
9.4.3. • 

9.5. Remarks, questions, and complements 

9.5.1. The case of a C M field E and the sign of Galois representations. — 
Throughout this paper, we have made the assumption that E is a quadratic imaginary 
field. Actually, most of the work we have done can be extended to the case of a CM 
field E (say quadratic over its totally real subfield E+, with E+ of degree d over Q), 
but the method (both for the sign conjecture and for this chapter) ultimately fails if 
E is not quadratic over Q. Let us explain why. 

We would work with a unitary group U(m) defined over E+, which is compact at 
every archimedian places and quasi-split at every finite places. Such a group exists 
if m is odd or if dm ^ 2 (mod 4). Starting with a couple (7r,p) of an automorphic 
cuspidal representation 7r of GLn(A#) a Galois representation p of GE satisfying the 
obvious analogs of the assumptions of §8.1, there shoud exist a representation 7rn 
of U(m) under the hypothesis that e(p,0) = (—l)d. The results of chapter 7 would 
extend easily to this case. But in chapter 8 and 9, it is used in a crucial way that 
ExtT"(l,x) = 0. This result is deduced form the fact that Hj(E,x) = 0> which in 
turn was deduced in chapter 5 from the equality Hj(E,x) — ®E ®% (Example 
5.1.2) and the fact that E is quadratic imaginary. In the general CM case, we see that 
instead dimHj(E,x) = d — 1, from which we cannot conclude that Ext^( l ,x) = 0. 
Thus we are not able to make the proof of the sign conjecture (chapter 8) work in this 
case and construct a non zero element of Hj(E,p). This is consistent with the fact 
that we haven't made any hypothesis implying L(p, 0) = 0 (since e(p, 0) may be 1). 
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The discussion above is more or less the content of Remark 9.1 of [8]. In the context 
of this book, we can offer a much finer analysis of the situation in the case of a CM 
field E. We denote by c the non-trival element in G&\(E/E+) and by a a lifting of c 
in GE+ satisfying a2 = 1. The notations XJa and U1- (for a representation U of GE) 
are then defined as in §5.2.1. 

The operation U Ĉ ~L(1) defines a linear involution r on Hj(E,Qp(l)). Prom 
Prop 1.8.10, we see that there is a sign e = ± 1 , such that the subspace Ext^( l ,x) of 
Hj(E, Qp(l)) is in the eigenspace of eigenvalue e of r. To be more precise about e we 
need actually the following result of independent interest: 

Theorem 9.5.1. — Assume only the hypothesis (P0) o/Rep(ra) (extended to the case 
of a CM field E). Letn be an automorphic representation of\J(m)(AE+) as mRep(ra) 
such that the attached Galois representation pn is absolutely irreducible. Then if Q G 
GLm(Qp) is such that p^{g) — QpTr(g)Q~1x(9)rn~1 for a^ 9 € @E, then we have 
*Q = Q. 

The existence of a Q as in the statement follows from remark (i) after Rep(ra), 
and it follows from the absolute irreducibility of p^ that tQ = eQ with e = ±1 (see 
Lemma 1.8.4). If m is odd, then it is clear that e = 1. We postpone the proof that 
this result also holds for an even m to a subsequent work^1^. 

Going back to our specific situation, we can deduce 

Corollary 9.5.2. — Ext^(l, x) is a subspace of the - f l - eigenspace ofr in Hj(E, Qp(l)). 

Proof. — By Lemma 9.3.2, the generic representation pK is absolutely irreducible, 
hence we are in the situation of Example 1.8.7. We have in particular a collection of 
signs es indexed by the irreducible components of K. By an argument already given 
in §4.3.3, and the accumulation of classical points at z G X , Theorem 9.5.1 shows 
that each of those signs is +1. The corollary follows then from Prop 1.8.10 (i). • 

But it turns out, perhaps surprisingly, that the information given by the above 
corollary is empty: 

Lemma 9.5.3. — The involution r is the identity of Hj(E, Qp(l)). 

Proof. — We recall the Kummer isomorphism 

kum : E*/{E*)pn -+ Hl(E,Z/pnZ(l)), 

that sends x G E* to the class of the cocycle kum(x) of GE defined by 

kum(a;)(s) = s(u)/u, 

(1)See "The sign of the Galois representations attached to automorphic forms for unitary groups", 
preprint. 
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where u G E* is an element such that upn = x. The conjugation by a defines an 
involution of H1(E,Z/pnZ(l)) by sending an extension U to Ua. In terms of cocycle, 
this involution sends a cocycle j to ja, with ja(s) = j(asa~1). Hence 

kum(x)a(s) = (aso = cr(s(cr(u))/cr(u)) = a(u)/s(a(u)) = kum(c(a;)) 1 

(use that a2 = 1 and that a acts as the reciprocal on roots of unity). 
Another natural involution on H1(E,Z/pnZ(l)) is U i-» U*(l), and it is easy 

to see that this involution sends kum(#) on kum(a;~1). Finally, the involution r on 
H1(E,Z/pnZ(l)) defined by U »-> t /x( l ) is the composition of the two preceding 
involutions, and thus sends kum(:r) on kum(c(#)). Taking the limit over n, tensorizing 
by Qp, and restricting to Hj, we see that under the Kummer isomorphism 

kum : 0*E ®z Qp H}(E, Qp(l)), 

the involution r corresponds to the conjugation c. Hence the lemma is reduced to 
the assertion that c acts by the identity on a finite index subgroup of OE. But this 
arithmetical statement is a well known consequence of Dirichlet's unit theorem, that 
says that OE and Og+ have the same rank. • 

9.5.2. When is TA the trace of a representation over A?— Let us go back to 
the assumptions of § 9.1 and to Theorem 9.1.2. We keep the notations of § 9.2. If h = 1, 
then TA is the trace of a representation GE,s —> GLm(A) by Cor. 9.4.4. Another 
way to argue would be to say that A is regular, hence a UFD, and use Prop 1.6.1. 
Conversely: 

Lemma 9.5.4. — If TA is the trace of a representation ofGE,s over A, then we have 
either h = 1 orh = t>n + l. 

Proof. — Since TA is the trace of a representation we may assume that R C Mm(A), 
i.e. that the A-modules Aij are actually ideals of A (use Prop.1.6.4, Lemma 1.3.7 
and Prop. 1.3.8). From Lemma 9.4.3(v) we see that either Ap^ = A and AiiP = m or 
AijP = A and APii = m, and we conclude by Lemma 9.4.2. • 

In the conclusion of the above lemma, the case h = t seems very unlikely. However, 
it is not possible to exclude it by a simple GMA analysis, since the data AXi\ = 
m2, Ap,i = AXiP = m, Ai?x = AiiP = APiX = A define a GMA satisfying all the 
assertions of Lemma 9.4.1 (which is even equipped with an obvious anti-involution). 

Another related intriguing question is to know whether Exty(x, 1) ^ 0. By Cor. 
9.4.4, this is the case if h = 1, and the example above shows that it is not formal from 
what we have proved. 
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(2) Actually, for those questions as well as many others, it would be very useful to have at hand a 
database like the one of William Stein for classical modular forms, as well as a program computing 
slopes as Buzzard's one. 
(3) Of course, if we could have handled the case k = 2 it would have sufficed to take an elliptic curve 
over Q with sign —1 and rank > 2, and there are plenty of them. 

9.5.3. Other remarks and questions. — Prom a philosophical point of view, a 
very intriguing open question is the following one. 

Question. — Should we expect that ExtT(l,p) = Hj(E,p)? 

On the one hand, although Ext^Cl, p) is a canonical subspace of Hj(E,p), it is at
tached to the unitary group U(n + 2), so its arithmetic content is somehow included in 
the one of the cohomology of the related unitary Shimura varieties. There is no reason 
a priori that all the cohomology classes in Hj(E,p) be related to the cohomology of 
this "small" class of algebraic varieties (rather than, say, to all the algebraic varieties 
over E, as we might expect from the Fontaine-Mazur conjecture). 

On the other hand, the trend of ideas initiated by Mazur-Wiles' proof of Iwasawa's 
main conjecture and by Wiles' R = T philosophy rather suggests that we may have 
equality in our context too. This is also corroborated by our results in § 7.6. 

Note that by Corollary 9.1.3, we can detect directly on the geometry of the eigenva
riety X at x if Exty(l ,p) has rank > 2. It would be very interesting to find examples 
where it is indeed the case! As we saw, the space X is built from some rather explicit 
spaces of p-adic automorphic forms on the definite unitary group U(m), thus we hope 
that some numerical experiments could be made. (2) The first step is actually to find a 
p for which the Bloch-Kato conjecture predicts that dimL Hj(E, p) > 1. When n < 2, 
this amounts to find some modular form of even weight k > 4, whose sign is —1, and 
whose archimedian L-function vanishes at order > 2 at k/2. The authors do not know 
any such example at the moment (3). 

As explained in Remark 9.1.5, we hope that we can go further in the future and 
make the L-function of p (or say a p-adic version) enter into the picture, altough it is 
not clear how at the moment. 
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In this appendix, W we offer a brief and somewhat personal exposition of parts 
of Langlands' and Arthur's conjectural program. This exposition will allow us to 
check that the assumptions Rep(m) and AC(7r) about automorphic forms on unitary 
groups that we have made in chapter 6 are predicted by that program. We do this 
for two reasons: first, this should make our assumptions more believable, and second, 
more importantly, putting those assumptions in the general picture of Langlands' and 
Arthur's program is very helpful to understand our method and how it may or may 
not be generalized. For a more complete overview of the conjectures, we refer the 
reader to [3], [22] and [100]. 

Let F be a number field and G a connected reductive group ̂  over F. An au
tomorphic representation n of G is an irreducible constituent of the right regular 
representation of G(AF) on the Hilbert space (3) 

L'(G(F)\G(AF),u;,C), 

for some admissible character UJ of G(Ap) which is trivial on G(F). In general, this 
representation will have a discrete and a continuous part, which makes the previous 
definition rather unprecise. Recall that TT is discrete if it occurs discretely in (that is, 
as a sub-representation of) the space above, such TT are well defined. For example, it 
is known that the L2 above are completely discrete if (and only if) G is anisotropic 
modulo its center (this was the case of our definite unitary groups of § 6.2). In general, 
Langlands' theory of Eisenstein series reduces the study of all the automorphic ir 
to the discrete ones, and we will focus on these in this appendix. For n a unitary 
admissible irreducible representation of G(Ap) which is not a discrete automorphic 
representation, we set m(7r) = 0. 

(1) We thank Florian Herzig for his remarks concerning this appendix. 
(2) The conjectures we shall describe so far have been mainly tested for classical groups-it is possible 
that some minor changes will be needed in the exceptional cases. 
(3) Precisely, let Z be the center of G and ZQQ be the connected component of its real points. The 
aforementionned space is the space of measurable complex functions / on G(F)\G(Ap) such that 
the associated map g i—• f{g)oj~1{g) is Zoo-invariant and square-integrable on G(F)Z00\Gr(A/r) 
for a (finite) G(Ap)-invariant measure on this latter space (which exists by a result of Borel and 
Harish-Chandra). 
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The aim of Arthur's program (an extension of Langlands' program) is to compute 
m(7r) for all 7r. This is done by a very rich set of conjectures that are not completely 
rigid, and that proceed in two steps: describing a natural partition of the set of all 
discrete automorphic representations into "packets" and understanding m(7r) for n 
within a given packet. 

We denote by Nunit(G, F) (or NUNIT when there is no ambiguity) the set of all iso
morphism classes of irreducible unitary representations of G(AF) and by liaise (G, F) 
the subset of discrete automorphic representations. Two interesting subsets of 
liaise (G, F) are Ncusp(G, F ) , the set of cuspidal automorphic representations, and 
ntemp(G, F ) , the set of tempered discrete automorphic representations. 

Example A.0.1. — (G = GLm) The Ramanujan conjecture asserts that 

cusp GI m j F) = Ii temp (GLm, F) 

(this is known to be false for other reductive groups). ^ Moreover, a theorem of 
Moeglin-Waldspurger [87] shows that the full discrete spectrum of G is built from 
the cuspidal spectrum of the GL^ with d dividing m, which might be suprising. For 
example, if m is a prime, a discrete TT is either cuspidal or one dimensional. In this con
text, each packet of discrete representations is actually a singleton, and each discrete 
representation occurs with multiplicity one (Shalika's weak multiplicity one theorem). 
All these facts are actually predicted by Arthur's philosophy, which not only predicts 
the m(7r) but also gives a general hint about how the discrete spectrum of a general 
G is constructed from the tempered one, and even from the cuspidal one of the GLm. 

A . l . Failure of strong multiplicity one and global A-packets 

For two unitary irreducible representations 7r and ir' of G(A^) , say 7r ~ 7r' if 7rv ~ 7r'v 
for almost all primes v. 

When G is GLm, or an inner form of GLm, it is known (5) that if 7r and n' are 
discrete automorphic then TT ~ 7r' implies that n = nf as a subrepresentation of 
L2(G(F)\G(AJp),o;,C) (strong multiplicity one) but this statement is known to be 
false for some other groups, including some groups very close to GLm like SLm, and 
our unitary groups. 

(4) Actually there are trivial counterexamples, like the one dimensional representations of G = D* 
for a division algebra D, but there are deeper ones with G split, or like the representation 7rn we are 
especially interested in. 
(5) It is due to Miyake and Jacquet-Langlands for m = 2, to Jacquet, Piatietskii-Shapiro and Sha-
lika for GLm, to Badulescu for inner forms of GLm which split at all archimedean places, and tc 
Badulescu-Renard in the remaining cases. 
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Following Arthur we should be able to define naturally certain disjoint subsets 

of Nunit called global A-packets. Every global A-packet II should be a subset of an 

equivalence class for ~ , and each nonempty II should contain a discrete representation. 

Moreover, the restriction to liaise of an equivalence class of ~ should coincide with 

the set of discrete elements of a union of A-packets, and even of a single A-packet in 

many cases. (6) However, an A-packet will contain many non discrete representations 

in general. The motive for such an enlargement is to allow the global A-packets to be 

products of local A-packets, as we soon shall see. For GLm and its inner forms, thus, 

every A-packet is a singleton. A global A-packet N is said tempered, if every TT £ Ii 

(discrete or not) is tempered. 

To describe the set of A-packets we need to introduce the conjectural Langlands 

group Lp. 

A.2. The Langlands groups 

For K a topological group, we define Repm(K) (resp. Irrm(K) C Repm(K)) as 

the set of equivalence classes of complex m-dimensional continuous (resp. moreover 

irreducible) representations of K whose range contains only semi-simple elements. 

According to Langlands, there should exist for tannakian reasons a group Lp (called 

by others the Langlands group), extension of the global Weil group Wp by a com

pact group, with a natural bijection (the global correspondence) between lTTm(Lp) 

and Ncusp(GLm, F). The collection of L-groups {Lp} with F varying should satisfy 

conditions similar to the collection of global Weil groups { W F } (see [116]). 

For v a place of F, we define explicitly a local Langlands group Lpv as the Weil 

group Wpv if v is archimedean, and as Wpv x SU2OR) otherwise. In this latter case 

the local Langlands group is closely related to the Weil-Deligne group, in the sense 

that there is a simple bijection between Repm(L/rt;) and the set of Frobenius semi-

simple Weil-Deligne representations (r, N) of Fv that we recalled in §6.3. Langlands 

conjectured the existence of a natural bijection (the local correspondence) between 

Repm(Lpv) and the set of equivalence classes of irreducible admissible representa

tions of GLm(Fv). He proved that conjecture when v is archimedean, and the non-

archimedean case is now also a theorem of Harris and Taylor [62], relying on works 

of many people. 

(6) The obstruction to this uniqueness property should be explained by the existence of everywhere 
locally equivalent A-parameters for G which are not globally equivalent (see below). Such parameters 
should not exist for an inner form of GLm, but also for unitary groups (see Exp.Prop. A. 11.9). We 
thank Toby Gee for pointing out an inconsistency in the first version of this paragraph. 
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It is part of the conjectures that there should exist a distinguished class of em-
beddings Lpv <—> Lp, and the global correspondence should coincide with the local 
correspondence after restriction to the local Langlands' groups. 

A.3. Parameterization of global A-packets 

We now go back to a general reductive group G. We refer to [25] for the definition 
of the L-group LG of G. Let us simply recall that LG is a semi-direct product of Wp 
by the dual group G(C) of G(C), that the product is direct if G is split, and that the 
L-group of two inner forms are canonically isomorphic. 

Following Arthur, a global A-parameter (for G) is a continuous homomorphism 

ip : Lp x SL2(C) — • LG 

such that 

( ° ) ^|SL2(C) is holomorphic and falls into G(C), 
(i) for all w G Lp, the image of I/J(W) in the quotient Wp of LG is the same as the 

image of w by the map Lp —> Wp, 
(ii) ip(w) is semi-simple (7) for all w G Lp, 

(iii) the image ip(Lp) is bounded in LG modulo the center Z(G(C)) of G(C), 
(iv) ip is relevant, that is tp(Lp x SL^C)) is not allowed to lie in a parabolic sub

group (8) of LG unless the corresponding parabolic subgroup of G is defined over 
F. 

Note that condition (iv) is automatic if G is quasi-split since every parabolic subgroup 
of a quasi-split group is defined over the base field. 

Remark A.3.1. — In the definition of the L-group, the Weil group Wp acts on G(C) 
through a finite quotient Gel(E/F), where E is a finite Galois extension of F on which 
G splits. For the sake of defining global A-parameters (the same remark will apply 
for local A-parameters and L-parameters, see below), it would not change anything 
if the L-group LG was replaced by the reduced L-group of G, namely the semi-direct 
product of Gdl(E/F) by G(C) (being understood that in condition (i) above, each 
occurrence of Wp has to be replaced by Gal(F/F)) . In particular, an A-parameter 
for a split group G is simply a morphism Lp x SL/2(C) —> G(C) satisfying conditions 
(o), (ii) and (iii) above—remember that (iv) is automatic. 

(7) Recall that an element g of LG is semisimple if its image in each representation ^G —> ĜLfn, 
has a semisimple GLm(C) component. 
(8) Recall that it is a subgroup P C LG which surjects onto Wp and which is the normalizer in LG 
of a parabolic subgroup of G, see [25, §3.3]. 
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Two parameters are said equivalent if they are conjugate by an element of G(C), 
up to a 1-cocycle of Lp in Z(G(C)) which is locally trivial at every place (see [100] 
§2.1). In the cases we will deal with, namely GLm and unitary groups, it turns out 
that every such cocycle is trivial ([100] §2.2). Thus in those cases the equivalence 
relation for parameters is just the conjugacy by an element of G(C). 

Definition A.3.2. — A global A-parameter ip is said to be discrete if C(ip)° C 
Z(G(C)) , where C(ip) = {g e G(C),gip(w) = ip(w)g Vw e Lp x SL2(C)} is the 
centralizer in G(C) of the image of ip, and C(ip)° is its identity component. 

— A global A-parameter ip is said to be tempered (9) if its restriction to SL»2(C) is 
trivial. 

Example A.3.3. — Assume again G = GLm. We see at once that a global A-parameter 
ip is discrete if, and only if, the corresponding representation LpX SL2(C) —» GLm(C) 
is irreducible. In particular, there exists a divisor d of m and an irreducible tempered 
parameter ip' : Lp —• GLm (C) such that ip' = ip <g> [d], where [d] denotes the unique 
d-dimensional holomorphic representation of SL2(C). Moreover, using the fact that 
Lp (as Wp) should be an extension of an abelian group (namely R) by a compact 
group, we see easily that Irr m(Lp) should be in bijection with the set of global discrete 
tempered A-parameters of GLm. Note that this formalism matches perfectly with Ex. 
A.0.1. 

The first main conjecture of Arthur is the existence of a natural correspondence 
which associates to every global discrete A-parameter of G (up to equivalence) an 
A-packet of G, or the empty set. 

Two A-parameters ip and ip' should be sent to the same (non-empty) A-packet 
if and only if they are equivalent. The correspondence above should send tempered 
A-parameters to tempered A-packets, in which case it should coincide with the for
mer theory of Langlands. Note that this requirement, in the case G = GLm, is the 
generalized Ramanujan conjecture. 

Note that some global A-parameters, even satisfying the relevance condition, 
may very well be sent to the empty set. We shall give an example below (see 
Remark A.12.4). However, this should not happen when G is quasi-split, or for a 
tempered A-parameter. 

To understand the "naturality" of the correspondence between discrete global A-
parameters and global A-packets, we need to introduce the local counterpart of global 
A-packets and global A-parameters. It should be stressed here that contrary to Lang
lands' theory of local L-packets which should apply to all the admissible irreducible 

(9) There is a common abuse of language here, as strictly we should say essentially tempered, that 
is, tempered up to a twist. 
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representations, the introduction of Arthurs' A-packets is mainly motivated by global 
considerations and basically applies to local components of global automorphic rep
resentations. 

A.4. Local A-packets and local A-parameters 

Following Arthur, a local A-parameter is a continuous morphism 

iPv : LFv x SL2(C) —> LG 

such that the analogues of conditions (o) to (iii) of global parameters are satisfied 
(of course, F has to be replaced by FV everywhere there, and LG is now the L-group 
of G/FV). Note that there is no relevance condition (iv) in the definition. As in the 
global case, a local A-parameter is said to be tempered if it is trivial on SL2(C). 
The restriction ipv of a global A-parameter ip to Lpv x SL2(C) is obviously a local 
A-parameter, and ipv is tempered if ip is. 

Following Arthur, to every local A-parameter should correspond a finite set, pos
sibly empty, of irreducible unitary representations of G(FV). This map will not be 
injective in general. Moreover, in contrast with global A-packets, local A-packets are 
not, in general, disjoint, and their reunion will not be the set of all unitary irreducible 
representations of G(FV) (but rather a subset which is pretty close to the set of local 
constituents of global automorphic representations). 

According to Arthur, a global A-packet II defined by an A-parameter ip should be 
the set of restricted tensor products 

II = {TT = <ĝ 7rv, nv e IIV}, 

for a set of local representations nv belonging for each v to the local A-packet HV cor
responding to ipv, and such that almost all nv are unramified (and G(OFV) spherical). 

A tempered A-parameter should define a tempered A-packet, that is, an A-packet 
all of whose members are tempered. 

Ultimately, local A-packets should be constructed using our understanding of the 
trace formula and its stabilization. One key property that an A-packet should satisfy 
is that a suitable non-trivial linear combination of the character-distributions of its 
members should be a stable distribution (that is essentially, a distribution that is 
invariant by conjugation by elements of G(FV), not only of G(FV)). 

To say more on the correspondence between A-parameters and A-packets, we need 
to review the earlier notions of L-parameters and L-packets, due to Langlands. 
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A.5. Local L-parameters and local L-packets 

Following Langlands, there should be a partition of the set of equivalence classes 
of all admissible irreducible representations of G(FV) into (local) L-packets. We stress 
that the local L-packets behave much more nicely than the local A-packets, since the 
former are disjoint and since their reunion does not miss any admissible irreducible 
representation. 

The set of L-packets should be in bijection with the set of G(C)-conjugacy classes 
of relevant L-parameters. Recall that an L-parameter is a continuous morphism 

<t>v : LFV — • LG 

that satisfies conditions (i) and (ii) (but not (iii)) of § A.3, it is said to be relevant if 
it satisfies moreover (iv) loc. cit. Moreover, an L-parameter is said to be discrete if its 
connected centralizer is central, as in Def. A.3.2. 

A local A-parameter ipv defines a local L-parameter (that may not be relevant) by 
the formula 

(108) </>4>v (W) = ФУ w, 
M 1 / 2 O 

O M ~ 1 / 2 , 
. 

Here |.| : Lj?v —• R* is the composition of Lpv —• Wf£ —^rec-1 Fy w^n tne norm 

of F*. The local A-packet corresponding to tpv should contain the local L-packet 

corresponding to <p^v (if relevant) and could be larger in general, but not when tpv is 

tempered. 

The problem with L-packets that motivated the introduction of A-packets is that 

it is not always possible to construct a non-trivial linear combination of the characters 

of its members that is a stable distribution. This problem does not arise for tempered 

L-packets. 

A.6. Functoriality 

If G and G' are two groups as above, any admissible morphism of L-groups (that 

is a holomorphic group homomorphism compatible to the projection to Wp) 

LG LG' 

induces a map from L-parameters or (local and global) A-parameters for G to similar 

parameters for G'. According to the conjectures described above, this should deter

mine a map (rather, a correspondence) from the set of packets (local or global, A or 

L) for G to the set of packets for G'. Such a conjectural correspondence is an instance 

of Langlands' functorialities. 
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The most basic example is the case where G and G1 are inner forms of each other, 
which is sometimes called a Jacquet-Langlands transfer. Then LG = LG' and the 
identity map should define a correspondence between packets of G and G'. Note that 
even in this simplest case, this correspondence may not be a map (even for local 
L-packets) since a parameter relevant for G may not be relevant for Gf. 

Note that in defining functorialities, it is useful to work with the full L-groups, not 
only the reduced ones, since there are more morphisms between full L-groups. 

Example A.6.1. — Let D be a quaternion division algebra over F, G = D* and G' = 
GL2. The A-parameter of the trivial, discrete, representation n of G or G' (global or 
local) is the discrete, non-tempered, parameter 1 ® [2] in the notations of Ex. A.3.3, 
and the corresponding A-packets have a single element 7r. Of course, the Jacquet-
Langlands A-functoriality makes those trival representations correspond. 

If we had tried to understand this simple transfer in the context of L-functoriality, 
we see that we could not have asked that the transfer of n be both discrete and 
compatible at all the finite places with the local Langlands correspondence. Indeed, 
for each finite place v such that Dv is nonsplit, this latter correspondence would match 
the trivial representation of D* with the Steinberg representation of GL,2(FV), which 
is infinite dimensional: that would contradict the strong approximation theorem for 
SL2. 

In other words, as long as we are interested in the discrete spectrum (say), and with 
non tempered representations, the A-functoriality is better behaved than the L-one, 
and it is actually made for that. This phenomenon is not just a fancy problem related 
to the trivial representation, but it appears in all kind of functorialities. We will give 
later in Ex. A. 10 a deeper example due to Rogawski in the case of a base change. 

A.7. Base change of parameters and packets 

In this paragraph, it will be convenient to assume that F is either a global or a 
local field. Recall the notion of L-parameter we gave applies to the local context only, 
whereas the one of A-parameter does in both cases. Let E be a finite extension of F 
and set 

GE '.= G x F E. 

The restriction of an L-parameter (p (resp. an A-parameter ip) of G to LE (resp. to 
LE x SL2(C)) defines an L-parameter <pE (resp. an A-parameter \PE) of GE- The map 
(p —• <PE (resp. ip —* IJ)E) is called the base change map for parameters. (10) In general, 
ipE is tempered if -0 is, but ipE may be not be discrete although ip is. 

(10) This base change may be viewed as a special case of the general functoriality by considering the 
natural map LG —• L(ReSirG#). 
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We shall be mainly interested in the case where GE is GLm, or an inner form of 

GLm, in which case 

LGE = L(GLm)E = GLm(C) x WE. 

Let us make this assumption until the end of § A.7 . 

In any of the three possible cases it is possible to attach to <J>E or ipE a single 

admissible irreducible representation of GLm(£ ' ) (in the local case) or of G L m ( A £ ) , 

as follows. If (j> is a local L-parameter, (pE is a local L-parameter for GE, hence for GLm 

over E (for which it is automatically relevant), and thus defines a single admissible 

irreducible representation of GLm(£l) by the local Langlands correspondence. If ip is 

a local A-parameter, then so is ipE, and the map (p^E defined in formula (108) is an L-

parameter of GLm/E and thus defines again an admissible irreducible representation 

of GLm(E). Finally if F is global and ip a global A-parameter, we associate to ip the 

restricted tensor product on all places w of E of the representation attached to the 

base change ipw of ipv (if v is the place of F below w). 

To summarize, we have defined, assuming Langlands and Arthur's parameteriza

tion, a base change to GLm (the quasisplit inner form of GE) of a global A-packet^ 

II of G, which is a single irreducible admissible representation of G L m ( A # ) , and also 

for local A-packets and local L-packets for G (the result being then an admissible 

irreducible representation of GLm(E)). Note that by definition, the base change for 

global and local A-packets are compatible in the obvious sense. 

A . 8 . Base change of a discrete automorphic representation 

We keep our assumption that LGE = L(GLm)£. If F is a global field and 7r is a 

global discrete automorphic representation of G, it belongs to a unique global A-packet 

II which has a well defined base change as we saw above. We define the base change 

of 7r as the base change TTE of its A-packet. If ip is an A-parameter corresponding to 

II and if ipE is discrete, then TTE should be a discrete automorphic representation of 

Ghm/E. 

If FV is a local field and TTV is an irreducible representation of G(FV), it belongs to 

a single L-packet IIv. If w is a place of E above we may define the base change of 

7rv as the base change TTEW of this local L-packet. Note that we can not use local A-

packets to define local base change unambiguously since a representation may belong 

to several local A-packets that have a different base change (see Ex. A. 10 below). 

The inconvenience of defining local and global base change for representations 

using different types (A and L) of packets is that in general there is no compatibility 

(n) Note that it is clear form the definition that even if an A-packet is defined by two different 

parameters, the base change representation attached to those parameters is the same. 
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between local and global base change for representations: it may well be the case 

that (TTE)W 9̂  KEW for some w\v. However, if 7r is a global discrete automorphic 

representation which is tempered, it belongs to a tempered A-packet II, product of 

tempered local A-packets Iiv that are also L-packets and contain TTV. Hence it is clear 

that the v-component of the global base change of n in this case should be the base 

change of the local components 7rv of 7r. 

A . 9 . Parameters for unitary groups and Arthur's conjectural description 

of the discrete spectrum 

In this paragraph we specialize to certain unitary groups the formalism developped 

above, including parameters (L or A, local or global) and the base change to GLm. 

W e fix a unitary group G := U ( m ) (quasi-split or not) in m variables attached to a 

C M extension E/F of number fields. The reduced L-group of U ( m ) is the semi-direct 

product 

L\J(m) = GLm(C) xi Gel(E/F) 

where Gal(E/F) = Z / 2 Z = (c) acts on GLm(C) by 

(109) cMc-1 := 0 m < M - V ™ \ M e GLm(C) , 

where, 

(110) 0m ' = 

( - l ) m + 1 

... 
- 1 

1 

. 

Note that 

C M ) t <Pm = O - 1 
m = ( - i ) 

m+1 0m, C0m = 0m C. 

Note that XJ(m)E is an inner form of GLm, hence the theory of base change to 

GLm/E explained in §A.7, A.8 applies. 

A n A-packet n of G will be a tensor product of local A-packets Uv, where Uv 

will have one element when v splits in E, but more than one in general for the other 

places. In particular, n may be infinite in general. We now review what Arthur's 

theory of parameters implies for the structure of the discrete spectrum of G (and for 

these packets), following Rogawski's analysis [100, §2.2]. If 

tp : Lp x SL2(C) - * LU(m) 

is a discrete A-parameter, Rogawski shows that ipE • LE x SL,2(C) —> GLm(C) is a 

direct sum of r pairwise nonisomorphic irreducible representations pj (see the proof 
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of Lemma 2.2.1 loc. cit.) that satisfy (12) pj- ~ pj. He defines ip to be stable if ipE is 

irreducible, and says that an A-packet n of U ( m ) is stable if its A-parameter is. As 

explained in Ex. A.3.3, ip is stable if and only if ipE is discrete, in which case there 

is a discrete automorphic representation TTE of GLm/E which is the base change of ip 

as explained in §A.8. That representation TTE is cuspidal if and only if ip is tempered. 

In general, for any (unordered) partition 

m = mi + h rar, 

Rogawski defines an admissible map '13) 

£ : L ( U ( m i ) x . . . x U(mr ) ) LU(m) . 

He shows then that any discrete A-parameter ip of G can be written uniquely as 

£ O ( ^ X • • • X <0R) 

where the ipj are distinct stable parameters of the quasisplit group XJ(m,i) and for a 

unique unordered partition m = m\ + • • • + mr as above ([100, Lemma 2.2.2]). We 

say that ip is endoscopic if it is not stable, i.e. if r > 1. 

If G is quasisplit, this reduces conjecturally the study of the discrete spectrum of 

G to the stable parameters (compare with Ex. A.3 .3) , and the general case is then a 

matter of relevance. (14) This structure of the discrete spectrum of G, as well as other 

predictions of Arthur, have been verified by Rogawski when m < 3 [99]. 

We will refine slighty this study in § A. 11 by giving some sufficient conditions on an 

A-parameter ip' of GLm/E to descend to U ( m ) , i.e. ensuring that ip' = ipE for some 

discrete A-parameter ip of U(ra). As an exercise, (15^ the reader can already check 

that the parameter 1 (g) [m] descends to a stable nontempered parameter of U ( m ) . Its 

associated A-packet has a single element, namely the trivial representation. 

Remark A.9.1. — Let TT be a discrete automorphic representation of G. If TT is nontem

pered, the presence of a nontrivial representation of the SL2(C) in the A-parameter of 

(the A-packet containing) n imposes strong restrictions on the irv. For example, if v is 

(12) If p : LE x SLi2(C) —• GLm(C) is a representation, we define another representation p1- : 
LE x SL2(C) —• GLm(C) by setting p±(g,u) := tp{dgd~1 , u)-1 where d G Lp is any element not 
belonging to LE' see § A. 11. 
(13) rpnjs map |g a Speciai case 0f the so-called endoscopic functoriality as U(rai) x • • • x U(mr) is 
not a Levi subgroup of U(m) when r > 1 (see [100, §1.2]). When some mi does not have the same 
parity as m, £ is actually not defined at the level of the reduced L-groups, as a character ¡1 as in 
§ 6.9.2 occurs in its definition, and p is not of finite order. It is an important fact that £ is also not 
canonical at all in this case, as it depends on this choice of p. The uniqueness assertion in Rogawski's 
description also assumes that such a p, has been fixed once and for all. 
(14) The situation is actually not as simple as it may seem in the nontempered case, as a relevant 
parameter may exceptionally lead to an empty packet. Moreover, the multiplicity formula is more 
complicated in the nonsplit case. 
(15) Note that </>m is antisymmetric if and only if [m] is symplectic. 
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archimedean and G(FV) is compact, then TTV cannot be regular in the sense of §6.8.2. 

In particular, the regularity assumption there should imply that TT is tempered, hence 

that its local and global base change are compatible (see § A . 8 ) . 

By contrast, there are very few conditions ensuring that n belongs to a stable 

A-packet. A standard sufficient condition (as in the works of Kottwitz, Clozel and 

Harris-Taylor) is that TTV is square-integrable at a split place v (this follows easily 

from Arthur's formalism), but this condition rules out a lot of very interesting stable 

packets. 

A . 10. A n instructive example, following Rogawski 

We give now a very instructive example of a nontempered A-packet for the group 

U(3) which illustrates most of the subtleties that appeared till now. It was found by 

Rogawski ([99],[101]), and it is probably the simplest of such examples. We stress 

that it should not be thought as exotic, but rather as an important intuition for 

the general situation. Moreover, it is exactly the kind of packet that we use in the 

arithmetic applications of chapters 8 and 9. 

We keep here the notations of § A . 9 and take M = 3. We are interested in the 

nontempered A-parameter associated to the partition 3 = 2 + 1. These parameters 

have actually a nonconjectural meaning as they factor through Wp> To fix ideas we 

fix 7] an automorphic character of such that R]1- = RJ and that RJ does not descend 

to U ( l ) (see §6.9.2) . By class field theory, we may view it as a continuous character 

of WE- We may actually use this RJ to define £ and we are interested in the parameter 

£ o (1 x 1 (g) [2]). More explicitly, let us simply say (16) that there is a unique parameter 

IP whose base change 

TL>E'-WEX SL2(C) —> GL3(C) 

fixes the vector e2 of the canonical basis (EI,e2,ES) of C3, and which acts as 

(WX g)\-* RJ(W)G 

on Cei 0 C e 3 = C2. 

We are going to describe completely the A-packet n associated to ip following 

Rogawski. As predicted, it is a product of local A-packets nv , so we are reduced to 

describe each of the Iiv. When v splits in E, Uv is a singleton and coincides with 

its associated (non-tempered) L-packet defined in § A . 5 , so we concentrate on the 

nonsplit case. 

Consider first the local quasi-split unitary group Us(Qi) attached to the quadratic 

extension Ev of Q/. Rogawski has defined a non-tempered representation 7rn(77v), 

(16) This suffices for the discussion here. We will say more about those parameters and their extension 
to Lp in a more general context in § A.12. 
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where rjv : E* — • C* is the restriction of r¡ at v. Recall that 7]v = 77^ but note that rjv 

does not come by base change from U(1)(Q¿) (see the proof of Lemma 6.9.2 ( i ) ) . The 

representation 7rn(r]v) is actually a twist of the one we constructed in §6.9.4 as the 

unique subrepresentation 7rzn of a principal series of U(3)(Q¿) . This principal series has 

in this case two components. The other one is called 7r2(77v). According to Rogawski 

it is square integrable. 

The representation 7rn(r]v) forms an L-packet on its own. This L-packet is not 

tempered, and irn(r]v) is not stable. The L-packet containing ir2(r¡v) is 

{7r2(Vv),ns(Vv)}, 

where 7rs(r]v) is a supercuspidal representation that Rogawski constructs using global 

considerations involving the trace formula. Since this L-packet is tempered, it is also 

an A-packet. There is one A-packet containing 7rn(rjv), namely Tiv, and we have^17^ 

11«, = {«•"(»?«), 7r'(TJ„)}. 

In particular, 7Ts(rjv) belongs to two A-packets, and actually those representations are 

the only ones (up to a twist) that belong to several A-packets. 

The base change of the A-packet {TT71 (rjv), TTS(r]v)}, and of the L-packet {^n{j]v)}, 

is the irreducible admissible representation of GL$(EV) whose L-parameter is 

Vv 
1/2 

a r k 
-1/2 © 1 . 

The base change of the L and A-packet {TT2 (rjv), ns (rjv)} coincides with this latter 

parameter on the Weil group, but is nontrivial on the SU2(R)-factor (mixing ^l-l1/2 

and 77v|.|-1/2). Hence the two A-packets containing ns have different base changes. 

Assume till the end of this subsection that G(FV) is compact for each archimedean 

v, which is our main case of interest in this book. For v archimedean, UV is empty if 

r]v has weight ± 1 / 2 (see §6.9.2) , a singleton otherwise: namely the one we denned in 

§ 6.9.5 (up to a twist). This ends the description of n . 

As a consequence of all of that, we first see that n is infinite, unless some 

archimedean rjv has weight ± 1 / 2 , in which case n = 0 . Moreover, Rogawski com

putes then m(7r) for each n e n , hence n fl ndisc(G, F). He shows that m(ir) is 

always 0 or 1. (18) Precisely, he assigns a sign e(7rv) — ± 1 to each TTV G UV as follows: 

ci^v) = 1 except when v is archimedean, or when v is a finite nonsplit place and 

7rv = TTS. The final result [101] is that m(7r) = 1 if, and only if, 

V 

£(<KV) =£(77 ,1 /2 ) , 

(17) Note that 7Tn(r}v) is a non monodromic principal series , but not tts(t)v). 
(18) Hence weak multiplicity one holds for the packet II, actually Rogawski shows that it holds for 
the full discrete spectrum of G. 
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where e(rj, 1/2) is the sign of the global functional equation of 77. In particular, one 
halfof II is actually automorphic. 

The formula above is a special case of Arthur's multiplicity formula. We will discuss 

in more details this multiplicity formula in a more general case in § A. 13. 

A . l l . Descent from GLm to U ( m ) 

In this paragraph we explain the algebraic formalism relating the parameters (L or 
A, local or global) of a unitary group G = U ( m ) as in § A.9 and their base change to 
GLm. This formalism also applies to Galois representations instead of parameters. Our 
main aims are to characterize the image of the base change and to discuss uniqueness 
properties. Many special cases of the criteria that we give below are presumably well 
known to experts in Langlands' theory (see e.g. [99] for m = 3 or [15, §4.3, §6.2] 
in the real case). In the Galois theoretic case, some aspects of this study have been 
carried out in [41]. 

We will use systematically the notation U ( m ) for G, which frees the letter G (and 
G') for other notational purposes. 

We consider a group G and a subgroup H of index 2. In this paragraph, we call 
parameter any morphism ip : G — • LU(m) such that H is the kernel of the compo
sition of ip and the projection LU(m) —» Gsl(E/F). We denote by c the nontrivial 
element of Gal(E/F) = Z / 2 Z . 

We denote by d a fixed element of G — H. If p : H —• GLn(C) is a morphism, 
define p±(h) = tp(d~1hd)~1. The representation p1- does not depend on d up to 
isomorphism. 

In the applications, E/F may either be an extension of global or of local fields, 
and G and H may be respectively Lp and Lp, their Arthur's variant Lp x SL2(C) 
and Lp x SL2(C), the Weil groups Wp and WE, or the absolute Galois groups Gp 
and GE- Note that in general, G is not a semi-direct product of Z / 2 Z by H. 

If ip is a parameter, we may write 

iP(d) = Ac. 

where A G G L m ( C ) , since the image of d in Z / 2 Z is non trivial, hence equals c. For 

the same reason, we may write ip(d~1) = Be. We thus have 

1 = iP(d)-lxP(d) = Bc(Ac) = B ^ m * A - V m 

so B = (pmAcpn and 

(112) V > ( 0 = Фт*Аф£с. 

Prom this we deduce, calling p the restriction of ip to H: 

(113) V Ä e f f , pidhd-1) = Ctp(h)-1C~1, 
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where C = Aém. Indeed, 

^(dhd-1) = A c ^ h ^ j A ^ c by (112) 

= A ^ ^ h Y ^ ^ ^ A - 1 1 ^ ^ by (109) 

= ^ ( i ) - 1 ^ ) - 1 using (111). 

Note that in particular, we have 

P - P • 

We also have p(d2) = i/j(d2) = ip{d)2 = A ^ A V M 1 hence 

(114) p(d2) = ( - î r ^ C ' C - 1 . 

Lemma A.l LI. — A morphism p : i f — • GLm(C) is the restriction to H of a pa

rameter of G if and only if there exists a matrix C G GLm(C) that satisfies conditions 

(113) and (114). 

Proof. — We have already seen that those conditions were necessary. To prove they 

are sufficient, assume they are satisfied for some C G GLm(C) and define a map 

i\) : G —> LU(m) by setting for all h G H, ip(h) := p(h) and ip(hd) := ip(h)Ac where 

A := C(j)^ = (—l)m+1C(/>m. We only have to check that ip is a group homomorphism. 

Let g,g' e G. If g e H then it is clear by definition that i>(gg') = ip(g)ip(gf)- So 

suppose g = hd. We distinguish two cases: if g' = hf G H, then we have 

y (g) y(g') = tp(hd)4>(h') 

= p{h)Ac^(h') 

= pi^Acpih'^A^Ac 

= p^A^Jpitiy^^A-^Ac using (109) 

= p{h)Ctp{h')-1C-xAc 

= p(h)p(dh'd~1)Ac using (113) 

= pihdh'dT^Ac 

= Y(hdh') = Y (gg'). 

Similarly, if 5 ' = h'd, we have 

y (g) y(g') = il>{hd)il>{tid) = ^(hd)ip{h')Ac 

= p(hdhfd~1)(Ac)2 like in the first six lines of the above computation 

= p(hdtid-1d2) = i>(ggf). • 

Remark A.11.2. — (i) The lemma above gives a criterion for a representation p : 

H —• GLm(C) to be the restriction of a parameter of G. Note that the criterion 
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depends on a choice of an element d in G — H. In each particular context, a 

clever choice of d may simplify the computations, 

(ii) As an exercise, let us consider the special case where G is a semi-direct product 

of Z / 2 Z by H. This case^19) occurs for example when E/F is a C M extension 

of number fields, G = Gp and H = GE- Then we may and do choose a d such 

that d2 = 1. 

Let p : H —> GLm(C) such that pL ~ p. Thus there is a C such that (113) is 

satisfied. By applying this relation twice, and using d2 = 1, we see that CtC~1 
centralizes Im p. Assume that p is irreducible. Then the latter means tC = AC, 

from which A2 = 1, and we see that C is either antisymmetric, or symmetric. If 

m is odd, C has to be symmetric, but if m is even, it is clear that both situations 

may happen. On the other hand, (114) reads 1 = p(d2) = ( - l ) m + 1 C t C _ 1 which 

simply says that C is symmetric if m is odd, and antisymmetric if m is even. 

To summarize, an irreducible p such that p1- ~ p comes from a parameter of 

G always if m is odd, and 'half the time" if m is even. 

Proposition A.11.3. — Let p : H —• GLm(C) be a semisimple representation such that 

p ~ p-L. We assume that 

(i) either p is a sum of pairwise distinct irreducible representations, 

(ii) or p(H) is abelian. 

Then a parameter ip : G —> LU(m) extending p is unique up to conjugation by an 

element o / G L m ( C ) (if it exists). 

Proof — As p is semisimple, we may and do assume, up to changing p by a conjugate, 
that the algebra generated by p(H) is stable by transposition. 

Let ip (resp. ip') be a parameter of G whose restriction to H is p, and let C (resp. 

C') be as above the matrix such that ip(d) = Ccp^c (resp. ip'(d) = C'cp^c). The 

matrix C (resp. C') satisfies (113) and (114). Hence: 

(a) C~1C' is in the centralizer of p(H). 

(b) C'C-1 = CnC'-x = ( - l ) m + 1 p ( d 2 ) . 

We want to find a matrix B e GLm(C) in the centralizer of p(H) such that 

BClB = C'. 

Indeed, it is clear that for such a 2?, ip' = BipB~1. 

Assume first that we are in case ( i) . In this case, we may write p = pi 0 • • • 0 pr, 

with p i , . . . , pr irreducible of dimension d i , . . . , dr, and choose a basis in which p(h) = 

(19) A similar study is done in this context in the first pages of [41] . 
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diag ( p i ( / i ) , . . . , pr{h)) for every h G H. Since the pi are distinct, and since C satisfies 

(113), it may be writ ten as 

C = Coo-

where Co is in the s tandard Levi L C GLm(C) of type ( d i , . . . , d r ) and a is the 

permutat ion of { 1 , . . . , r } satisfying pTo(i)~ p^ (hence <j2 = 1) seen as a permutat ion 

matr ix (in GLm(C)) by blocks of type ( d i , . . . , dr). By (a), we may write 

C' = CD 

where D is in the centralizer of p(H), tha t is of the Levi L, hence it is of the form 

D = diag ( a i , . . . , a i , a<i,..., a 2 , . . . , a r , . . . , ar) where each a* is repeated di t imes. 

Now we see tha t 

Ce-1 C ' C ' " 1 by (b) 

(CoaD^C^aD-1 using tha t ta — a 1 = a and tha t tD = D 

(CoatfC^vXvDvD-1) using tha t DCQ = CQD 

CtC^iaDaD-1). 

Hence 

aDa = D, 

and di = aa(i) for all i. We thus may choose complex numbers 6^ * = 1 , . . . , r such 

tha t 616̂ (4) = ai for all i, and set B = diag (&i , . . . , 6 1 , 6 2 , . . . , 6 2 , . . . , 6 r , . . . , 6r) where 

each bi is repeated di times. Then aB at B = D, B is in the centralizer of p(H) and 

J5C*B = BCoolB = COOOB<J1B = CD = C\ 

and we are done in case (i). 

Assume now tha t we are in case (ii). Then p is a sum of distinct characters 

X i , . . . , Xr? each of them with multiplicity m i , . . . , mr . So we have m = m H hmr . 

We may assume tha t p acts by x i on the first m i vectors of the basis, then by xi 

on the next m2 vectors, and so on. Hence p(H) is made of diagonal matrices of the 

form diag ( a i , . . . , 01 , a^,..., «2? • • • > a r , . . . , ar) where each ai is repeated m^ times. In 

particular, (—l)m+1p(d2) = diag ( d i , . . . , d i , d 2 , . . . , d 2 , . . . , d r , . . . , dr) is of tha t form 

by (b), and the centralizer of p(H) is the s tandard Levi L of type ( m i , . . . , m r ) . 

Since C (resp. C) satisfies (113), it may be writ ten as 

C = Coo (resp. C = C'0a) 

where Co = diag (Ci , • • •, Cr) (resp. C'0 = diag ( C { , . . . , C'r)) is in the Levi L and 

a is the permutat ion of { l , . . . , r } satisfying Xa{%) — Xi (hence a2 = 1) seen as a 

permutat ion matrix (in GLm(C)) by blocks of type ( m i , . . . , m r ) . 

Fix an i e { 1 , . . . , r } . By (b) we see tha t 

CiColï) e f e : , ; 1 di. 
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If a(i) = i, then di G C* satisfies d? = 1, which implies tha t d and C[ are either both 

symmetric or bo th antisymmetric, and in any case tha t there exists a Bi £ GLmi (C) 

such tha t BiCiBi = C[. In the other case we have a(i) = j ^ i, and we assume tha t 

i < j to fix ideas. Then = rrij and C / C " 1 = C'^C'~X. From tha t equality, it 

follows tha t if we set Bi = C-C^1 and Bj = Idm., then 

diag ( £ i , £7)diag(Ci , C7) rMiag fB i .B j ) d iag(C; ,Cj ) 

where r is the restriction of cr to the set {i, j } (and is the only non-trivial permutat ion 

of t ha t set) seen as a matr ix by blocks in GL2mi(C). 

Finally B := diag ( i ? i , . . . , Br) G GLm(C) is in the centralizer of p{H) and clearly 

satisfies BClB = C' and we are done. • 

Example A.11.4. — Here is an example where the case (ii) of the proposition above 

may be used. Assume tha t E/F is a quadrat ic extension of local fields and tha t U(m) 

is the quasisplit unitary group in m variables at tached to E/F. Let T be a maximal 

torus of U ( m ) ( F ) and x *• T(F) — • C* an admissible character of T(F). By the 

duality for tori this character x defines an L-parameter 

0(X) :WF—>LTC LXJ(m) 

In this book, the only representations of U ( m ) ( F ) tha t we consider for F nonar-

chimedean (actually F — Qi) are in L-packets of this type. Precisely, they will be 

either unramified, which means tha t x is trivial on the maximal compact subgroup of 

T ( F ) , or non monodromic principal series , in which case x is as m Def. 6.6.5. 

The norm map Nm : T(E) —• T(F) (see § 6.9.4) defines a base change 

XE : = X ° N m : T ( £ ) —+ C* 

and (J>(X)E is then the L-parameter of GLm/E at tached in the same way to XE- Case 

(ii) of Proposition A. 11.3 shows tha t 0(x) is actually (up to conjugation) the unique 

L-parameter of U(m) whose base change is (/)(x)E' Conversely, we may s tar t from a 

principal series L-parameter <J>E : WE — • GLm(C), or which is equivalent from a 

character XE • T(E) — • C*, and ask whether it descends to an L-parameter of U(m) 

of the form 0(x) for some x as above. This requires strong conditions on XE- In the 

two cases (unramified or non monodromic principal series ) we are interested in, this 

analysis is precisely the work done in § 6.9.4: Lemma 6.9.7 shows tha t conditions (iiia) 

or (iiib) of §6.9.1 on the (unique) representation TTI of GLm(L7) whose L-parameter is 

(j)E are sufficient. 

This quite general uniqueness result is completed by the following more restrictive, 

bu t still very useful, existence result. We suppose given a subgroup G' of G which is 

not a subgroup of H. Hence H1 := G' C\H has index two in G'. We choose the element 

d in G' - Hf. 
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Proposition A.11.5. — Let p : H —> GLm (C) be a semisimple representation such that 
p1- ~ p. Let pf be its restriction to H'. We assume that p' is a sum of distinct irre
ducible representations p\ such that p\ ~ p'^~. Then p extends to a unique parameter 
^ of G whenever p' extends to a parameter tp' of G'. 

Moreover, if this holds, then the centralizer in GLm(C) of the image of ^ is finite. 

Proof — Let C' be the matr ix attached to the parameter -0' of G'. Arguing as in the 
proof of the above proposition (case (i)) applied to / / , we may assume tha t p'(Hr) 
lies in the s tandard Levi L of type ( d i , . . . , dr) (here d* = d im^)> tha t the centralizer 
of p'(H') = p(Hf) is the centralizer (and the center) Z(L) of L, and tha t C' is in L 
(note tha t p\ ~ p'^~ if and only if i = j , so tha t a = Id). 

Now let C be a matr ix tha t satisfies (113) for p. Then C~1C' centralizes p{H'), 
hence it lies in the centralizer Z(L) of L, and commutes with C'. From tha t we deduce 
tha t 

c'c-1 = cnc'-x 
and condition (114) holds for C since by hypothesis it holds for G . Hence the exis
tence of a parameter tp whose restriction to H is p follows from Lemma A. 11.1. The 
uniqueness follows immediately from Proposition A. 11.3 (case (i)). 

Finally, the centralizer C(V>) C GLm(C) of ip(G) is a subgroup of the analo
gous centralizer C(V?/) of ip{G') = I/J'(G'). This is the subgroup of the centralizer 
of ipf(Hf) = p'{H') tha t is fixed by the map g »-> Ctg~1C~1. Since the centralizer of 
p'(H') is Z(L), and since C G L, this map is g »-> g'1 and C{^') ~ (Z/2Z)r . Hence 
C(V>) is finite. • 

Remark A. 11.6. — If tp is a discrete ^ -paramete r for LU(m), then Rogawski ([100 
Lemma 2.2.1, 2.2.2]) has shown tha t its restriction p to LE X SL2(C) is a sum o: 
irreducible, pairwise non isomorphic representations pi satisfying pf = pi. The above 
proposition, in the case G = G', provides a converse to this result. 

Expected Corollary A.ll. 7. — Let E/F be a CM extension of number fields, and 

p:LE—+ GLm(C) 

a tempered A-parameter for GLm/E that satisfies p1- ~ p. Assume that there is an 
infinite place of F such that, for the corresponding inclusion Wc LE (well defined 
up to conjugation in LE), the restriction of p to Wc extends to a discrete L-parameter 
of Wu (see Remark A. 11.8 below). Then p extends to a discrete tempered A-parameter 
Lp —> LU(m) of the quasisplit unitary group U(m) . 

Indeed, this is the proposition for G = L p , H = LE-, G' = W R , H' = Wc- The 
hypothesis of the proposition on the restriction p' of p to H' follows immediately from 
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Remark A . 1 1 . 8 below. The obtained parameter is discrete as its restriction to W R is 
discrete. 

Via the philosophy of parameters , this result shows tha t a sufficient condition for a 
cuspidal automorphic representation 7r of GLM(ÂE) t ha t satisfies n1- ~ n to come by 
base change from the quasi-split unitary group in m variables at tached to E/F is tha t 
there is a place v at infinity such tha t nv comes by base change from a representation 
of the compact unitary group. Note tha t this is exactly the assumption at infinity on 
the representations n studied by Clozel [40] and Harris-Taylor [62]. 

Remark A.l 1.8. — Recall tha t following Langlands, the discrete L-parameters (j) : 
W R — > L U ( m ) are exactly the ones whose restriction 0c to C* is conjugate to 

z~((z/z)a\... ,(z/z)a"), 

where the a* are in m+1 Z and strictly decreasing (see e.g. [15, Prop . 4 . 3 . 2 ] ) . For 
each such sequence (a^) there is a unique such parameter. (20) As they are discrete, 
they are relevant for each inner form of U(m)R, and in particular for the compact one. 

Expected Proposition A.l 1.9. — For unitary groups U(ra) , two everywhere locally 
equivalent discrete A-parameters are actually equivalent. 

Ineed, let -01 and ^2 be two such discrete A-parameters, and set G = G' — Lp x 
SL2(C), H = H' = L E x SL2(C), and pj — i/jj\H. By Rogawski's classification, the 
pj are semisimple and satisfy the assumption of Prop. A. 1 1 . 5 . By assumption, the 
Pj are also everywhere locally equivalent. By the expected "Cebotarev's theorem for 
Langlands' groups", the reunion of the conjugates of LEW is dense in L ^ , hence a 
trace consideration implies tha t the pj are actually equivalent. By Prop. A. 1 1 . 5 , the 
same thing holds then for the ipj. 

The following corollary is an immediate consequence of the expected proposition 
above and of the simplest case of Arthur ' s mutliplicity formula. 

Expected Corollary A.l 1.10. — If H is a stable A-packet for U(m) ; then for each n G 
II we should have m(7r) = 1 . 

Indeed, there is a unique A-parameter of U(m) giving rise to II by Expected 
Prop. A . 1 1 . 9 . As II is stable, Arthur ' s group is trivial by [100, § 2 . 2 ] , hence Arthur ' s 
multiplicity formula ([3, ( 8 . 5 ) ] ) reduces to m^fn) = mln) = 1 . 

(20) rpj^g existence and uniqueness follows for example easily from Lemma A. 1 1 . 1 , and Prop. A. 1 1 . 5 , 
A. 1 1 . 3 : choose d to be the usual element j G WR such that j2 = — 1 , C = 1 and note that p{j2) = 
p(—1) = (—l)m+1. These parameters <f> satisfy <j>(j) = <f>^c. They are relevant because, if they lie in 
a parabolic subgroup P of LU(ra), then P = (Po, <f>(j)) for some parabolic PQ of GLm(C) normalised 
by ^(7), and we see that tPc\ = PQ, hence P = LU(m). 

A S T É R I S Q U E 3 2 4 



A.12. PARAMETER AND PACKET OF THE REPRESENTATION 7rn 291 

A . 1 2 . P a r a m e t e r a n d packet of the representation nn 

In this paragraph and the next one, we take for granted all the formalism of Lang

lands and Arthur as described above and in [3]. All the lemmas, propositions and 

theorems we state are thus conditional on this formalism. Our aim is to study the 

A-packet of the representation 7rn that we introduced in § 6.9. 

We use from now on the notations of § 6 . 9 . In particular m = n + 2 , n is not 

a multiple of 4 , U(m) is definite and quasisplit at all finite places, and we fix an 

embedding E —> C. Moreover, p = /r1 is a Hecke character of AE/E* as in Notation 

6 . 9 . 5 . Remember tha t p is trivial if m (or n) is even, and tha t p(z) = (z/z)1/2 for 

z G C* C A*E if n is odd. We will see /i as a character of WE, hence of LE, when 

needed. 

To the representation n of tha t subsection should correspond a tempered, irre

ducible, A-parameter 

p : Le GLn(C). 

The hypothesis (i) on 7r there translates to (21) 

P1- - P-

We now define an A-parameter for GLm(E) denoted by I/JE ' LE X SL2(C) — • 

GLm(C), by the formula 

I/>E(W x 9) 
p(w)p(w) 

0 

0 

gp(w) 
w G LE, ge SL2(C). 

We fix an embedding L ^ = Wu LQ, giving an embedding Wc = C* <—> LQ. 

We fix furthermore an element j G W R \ W C such tha t j2 = —1 G W c = C*. Such 

an element j maps to the non trivial element c in LQ/LE = W r / W C = Gal(£?/Q). 

By hypothesis (ii) of § 6 . 9 . 1 , we may and do assume (possibly up to changing p by a 

conjugate) tha t for z G Wr = C*. 

tl>E{z)= diag({z/z)a\...,(z/z)a~) 

where the are in \1L — Z, strictly decreasing, and different from ± 1 / 2 . 

Expected Lemma A.l2.1. — The A-parameter ipE extends (uniquely up to isomor

phism, that is up to conjugation) to a discrete (relevant) A-parameter : LQ X 

(21) Strictly speaking, this uses the expected "Cebotarev theorem" for LE, or (which is related) the 
weak mutliplicity one theorem for the discrete spectrum of GLm/2£. 
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SL2(C) —• LU(m) of the group U(m) . We may choose 

m • 
In 

0 

0 

0 

0 

- 1 

0 

1 

0 
<f>m<>' 

Indeed, the restriction of ibn to Wc x SLo(C) is 

ipE(z,g) = diag((z/2)aiA*oo (*), • • , (z/z)anV>oo (*),0Moo (*))• 

We thus see tha t for 

С : 
In 

0 

0 

0 

0 

- 1 

0 

1 

0 

we have for all z, g: 

ipE(z,g) ФЕ jzj ,g cty >>0 - 1 C " 1 . 

In other words, relation (112) holds for that C. We compute 

ll>E y,1 diag - 1 ra+1 - 1 m + l -1 m - 1 l m 

using tha t the are half-integers and tha t /J>OO(—1) = (—l)m. On the other hand, 
CtC~1 = diag ( l , . . . , 1, — 1 , —1) so relation (114) holds for the restriction of ipE to 
Wc x SL2(C). This means by Lemma A. 11.1, tha t the restriction of ipE to Wc x SL2(C) 
extends to a parameter ^oo of Wk x SL2(C) tha t sends j to C(j)^c (see (113)). By 
Proposition A.11.5, extends to a unique, discrete, parameter I/J of LQ X SL2(C), 
and we may even choose I/J such tha t ^C?) = C^^c by the last paragraph of the proof 
of t ha t proposition. 

It remains to explain why tp is relevant. This means, since U(m) has no proper 
parabolic defined over Q, tha t the only parabolic subgroup P of LU(m) containing 
Im(-0) is LU(m) itself. Let P be such a subgroup. By definition, P = (P0,i/>(j)) f°r 
some parabolic Po of GLm(C) normalized by We see then tha t C*PoC_1 = -fb-
But Po contains ln xSL2(C) = ,0(SL2(C)), hence C G Po- As a consequence, Po = *Po, 
which implies tha t P0 = GLm(C), and we are done. 

Remark A. 12.2. — Here is another way of viewing the parameter ip in terms of Ro-
gawski's classification recalled in § A.9. First, using Cor. A . l l . 7 , we see tha t p/i extends 
to a discrete stable tempered parameter tp0 of the quasisplit U(n) . Then, using again 
a to define an admissible morphism 

Z : L(V(n) x U(2)) — LV(m), 
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we have actually ip = £o(t/>0 x ( 1 0 [2])) (see Ex.A.3.3). In particular, i\) is nontempered 

and endoscopic of type (n, 2). When n = 1, it is exactly the A-parameter tha t we 

studied in detail in § A. 10. 

Let us denote by ^ 

n n 
V 

IIv 

the A-packet corresponding to $. Our aim is now to check tha t the representation 7rn 

denned in §6.9 belongs to II. By definition, this amounts to checking tha t for each 

place v the representation defined there lies in Hv. Recall t ha t for some reasons 

we have called IIs°° the archimedean component of 7rn (see §6.9.5). 

Expected Lemma A.l2.3. — The global representation irn belongs to the global A-

packet defined by ip. Moreover, IIs°°= { t t ^ } and for each prime I, it™ is in the local 

L-packet 11^ C IIj (see %A.5). 

Indeed, for each place v of Q the L-parameter (j)v := <j)^v associated to ipv satisfies 

for all w G LK 

(j)v(w) dia,g(pv(w)jj,v(w),\w\1/2pv(w) \ w \ - ^ 2 p J w ) \ ( w ) 

by definition. For any place v of Q, the L-parameter (f)v defines an L-packet 1 1 ^ of 

representations of U(m)(Qv), which is a subset of the A-packet Iiv. 

Assume first tha t v = I is a prime. When I splits in E, Remark 6.9.6 shows tha t 

IIei IIni CIIl 

When / does not split, we defined in Lemma 6.9.7 a smooth character \ °f the maximal 

torus T(Qi) of U(m)(Q/) . There were two cases. If x satisfies conditions (a) and (b) 

of Def. 6.6.5, then 7rzn is the non monodromic principal series S(x)- As suggested by 

Rodier's work [98], the L-parameter of S(x) is conjecturally the L-parameter <j)(x) 

defined in Remark A. 11.4. But by the same remark and by construction, the base 

change (J){X)EI is isomorphic to (</>i)En hence 

<t>(x) - <t>i 

by Prop. A. 11.3 and we are done. In the other case x ls unramified and is by defini

tion a constituent of the full induced representation defined by x having a nonzero vec

tor invariant by a maximal hyperspecial (resp. very special in the sense of Labesse [76, 

§3.6]) compact open subgroup of U(ra)(Q/) if I is inert (resp. ramified) in E. Thus 7rzn 

(22> The notation II = Y[v U v means that II is the subset of Y\v Hv whose elements (7rv)v have the 
property that nv is U(ra)(Zf)-spherical for almost all primes I. 
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conjecturally belongs again to the L-packet denned by <p(x) (this is a s tandard expec

tat ion when I is inert, and it is indicated by Labesse's work [76, §3.6] in general), and 

we conclude as above tha t 0 (x) — <\>i> 

The end of this paragraph is now essentially devoted to the subtler case where 

v — oo is archimedean. Note tha t the L-parameter fy^ is not relevant for the compact 

group U(m ) (R) . Indeed, it is not even tempered, as its restriction to W c contains the 

non unitary characters /ioo| l^1/2, whereas the relevant L-parameters of U(ra)(R) all 

are (they are even discrete, and described in Remark A. 11.8). 

As a consequence, 

n¿TO = 0 , 

but the A-packet may be larger. However, note tha t is a singleton if nonempty, 

since every representation of a compact real reductive group is stable (cf. [2]). We shall 

review below the description (23) of given in section 5 of [3], following [2]. 

For this, we see U(ra)(R) as the unitary group for the s tandard diagonal posi

tive definite hermitian form, and we consider its diagonal maximal torus T(R) = 

U(l)(R)m. We denote by 

L(R) = C/(l)(R)n x C/(2)(R) c U(m)(R) 

the subgroup of matrices which are diagonal by blocks of size ( 1 , . . . , 1,2), so tha t 

T C L and L(C) is a Levi subgroup of U(m)(C) = GLm(C). In G(C) ~ GLm(C), 

T(C) is the diagonal torus and L(C) the s tandard Levi of type ( 1 , . . . , 1,2). We thus 

have 

Z(L(C)) c T(C) c L(C) C G(C) . 

It turns out tha t those inclusions extend naturally to inclusions 

LZ(L) L T ^ L L ^ L G 

While the first inclusion is obvious, the others two need a construction, which is 

recalled in [3]. From this construction, we shall only need the following description of 

the restriction of the embedding £ l T to Wc = C* (see [3, page 31]): 

& , t ( z ) diag ( l , . . . , l > ( z / f ) 1 / 2 , ( « / f ) - 1 / 2 : 

Similarly £G,L(Z) £ T(C) is a diagonal matr ix tha t we do not need to compute ex

plicitly because it will cancel out in the following computations. 

Now let us consider the unique L-parameter 0 r for the group T such tha t for 

ze Wc = C*, 

<t>r{z) 
ÍG.LUr 'd iagUz z)aißoo(z),.... 

(z/z)antAoo(z), /ioo(*), Moo W ) . 

(23) Thig amounts to defining, according to some rule described in [2] and [3, §5], a representation of 
U(m)(E). Although it is easy, of course, to specify such a representation (by giving its infinitesimal 
character or its highest weight), the description of that rule is rather nontrivial in general. 
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It is clear tha t 4>T maps Wj& to Z(L) C T. To such an L-parameter is at tached in 
[3, page 30 second §, page 31 first §1 an A-parameter for the group L, called 

i/>L : WR x SL2(C) —>LL. 

By definition, $L is </>r on WR and sends 
1 

0 

1 

1, 
G SL«2(C) to a principal unipotent 

element in L. Thus it is clear tha t (up to conjugation by an element oi L((Ljj the 
A-parameter £G,L coincides with our A-parameter ^oo on Wc and SL2(C). Thus 
V>oo — I^L by Lemma A. 11.3. 

Arthur 's conjecture provides a description (cf. [3, page 33]) of the A-packet at tached 
t o ^ G L 0 ^ L = ^oo- He defines for tha t some L-packets parameterized by the set 

--W(L,T)\W(G,T)/W&(G,T) 

and for each element of this set a specific representation in the associated L-packet. 
Here £ = {1}, and the unique L-parameter he defines is <f>i := ° £L ,T ° <t>r as L 
is anisotropic [3, page30-311. On Wc, we thus have 

Фх{г) ÌG,L{z)ÌL,T{z)(t>r{z) 

diag((2/z)aiM00(z) (z/z)a"ßoo(z),(z/z) 1/2. . f„\ / = \ - 1 / 2 . . / \\ 
p o o y 5 v*/ ^) poov^yy-

Note tha t Ф1 is relevant since the ai, 1/2,—1/2 are distinct half-integers. Actually, 
Ф1 is exactly by definition the L-parameter of 71^, and its associated L-packet is a 
singleton. According to Arthur, we thus have H ^ = HФ1 = {ir^}-

Remark A.12.4. — (i) In Lemma A.12.1, and especially in the proof tha t ip is rele
vant, the fact tha t the are distinct from ± 1 / 2 is actually not needed. However, 
as the proof above shows, this latter assumption is necessary to ensure tha t 
(hence n ) is not empty. In particular, if one of the a* is equal to ± 1 / 2 , we get 
an example of a parameter which is relevant and whose associated A-packet 
is empty. 

(ii) As an exercise, the reader can check tha t the A-parameter ip is not relevant for 
an inner form of U(m) tha t is not quasi-split at every finite place. 

(iii) We have H°° = {71^} and H^ = {nf} when / splits in E. When I does not split, 
H^(and even ) will have more tha t one element in general, but it does not 

seem possible at the moment to describe the full packet Hi for a general m as 
Rogawski has done for m = 3 (see § A. 10). 

Remark A.12.5. — In § 6.9, our point of view for defining the representation 7rn was 
to s tar t from a cuspidal automorphic representation 7r of GLn(A£) such tha t ir1- ~ n 

and tha t satifies §6.9.1 (ii). We defined then by hand all the local components of 

the representation 7rn of U(ra)(AQ). An interest of this presentation is tha t it avoids 
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assuming tha t 717/ comes by base change from an automorphic representation TTQ of the 

quasisplit uni tary group U(n) , and more generally any appeal to a uni tary group in n 

variables. As noticed in Remark A. 12.2, such a 7TO should however always exist. More 

precisely, arguing as in Rem.A.11.4, conditions (iiia) and (iiib) of §6.9.1 imply tha t 

we should be able to find such a 7TO which is either unramified or a non monodromic 

principal series at all nonsplit finite places. Conversely, if 7TO is such a representation 

which satisfies also (ii) of §6.9.1 and which has a cuspidal base change 7R to GLn/E 

(this is known to hold for example when 7TO is supercuspidal at two split places ([61, 

Thm.2.1.1,3.1.3]), then TT satisfies our conditions. This gives a way to produce such 

examples (maybe using some inner forms of U(n) as well). 

A . 13 . A r t h u r ' s mul t ip l i c i ty formula for TT71 

We have checked tha t 7rn £ II and we ask now whether 7rn G IIdisc(U(m), Q) . For 

tha t we will actually compute ra(7rn) using Arthur 's multiplicity formula. 

Following [3, page 52], let us consider the subgroup C G(C) = GLm(C). In our 

situation, (24) this group is actually Z(G(C)) • where is the centraliser in G(C) 

of the image of ib. We set also sw, = ib(l, diag(—1, —1)) G S*h (see [3, page 261) and 

S*= S*/S&Z(G(C)). 

Expected Lemma A.l3.1.— We have 

S^p = {diag ( a , . . . , a , e a , e a ) , a G C*,e = ± 1 } ~ C* x { ± 1 } . 

The character —> {±1} sending diag ( a , . . . , a, ea, ea) to e factors through and 

induces an isomorphism e :S* { ± 1 } . Moreover, is generated by the image of 

Stf). 

Indeed, as p is irreducible, the centralizer of I/J(LE X SL«2(C)) in GLm(C) is 

{diag ( a , . . . , a , 6 , 6 ) } = C* x C*. 

Among those elements, those who commute with are the ones of order two modulo 

Z(GLm(C)) , hence = {d i ag (a , . . . , a , e a , e a ) } and = 7r0(S^/Z(G)) = { ± 1 } . 

Finally, the element clearly generates S^. 

We now introduce following Arthur ([3, page 541) the representation 

r:S^xLqx SL2(C) — • GL(Afm(C)) 

defined by r(s,w1g) = Ad(sip(w,g)). As the kernel of —> S* is the center of 

GLm(C), the action of S* actually factors through S^. We note TE the restriction of 

r to x LE x SL2(C). 

<24) Precisely, using the triviality of Ker 1(LQ, Z(G(C))) for G = U(m), as remarked in [100, §2.2]. 
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Recall tha t the representation YE on Cm is the direct sum of two representations of 

LE x SLi2(C): the representation p p ® 1 on the n-dimensional space V\ (generated by 

the first n vectors of the s tandard basis of Cm) and the representation p <g) [2] on the 

2-dimensional space V2 (generated by the last two vectors), where [2] is the s tandard 

representation of SLo(C). Hence Mm(C) may be writ ten as 

(Vx ® v{) e (v2 ® v2*) e (Vi ® v2*) 0 (v2 ® vf), 

all four spaces in the decomposition being stable by the adjoint action of LE X SL2(C). 

Moreover, the adjoint action of SY (that is, of S^) preserves also this decomposition 

and is trivial on V\ ® V{ 0 V2 ® V2*, and given by the non-trivial character e on 

v1®v2*®v2®v1*. 

Expected Lemma A.l3.2. — The spaces V\ ® V{, V2 ® V2 and V\ ® V̂ * © F2 ® Vi* are 

stable by r. The last one is isomorphic foe® Ind ^ p ® [2]. 

Indeed, the adjoint action of r(j) on Mm(C) is given by M h —ClMC~x. In 

particular, it stabilizes V\ ® V{ and V2 ® V2 which thus are stable by r , and it 

interchanges V\ ® V2 and V2 ® Vi*, from which the lemma follows easily. 

Arthur defines then in [3, (8.4)] a character 

e^p : S^p — • { i l } -

Expected Proposition A.13.3. — The character is the trivial character if e(7r, 1/2) = 

1 and the non-trivial character e if £(71-, 1/2) = — 1 . In other words, e^s^) = £(71-, 1/2). 

Indeed, according to Arthur 's recipe, to compute we have to decompose the 

semisimple representation r into its irreducible components = Xk ® pk ® Vk as 

a representation of x LQ X SL2(C). By definition, = ]JTK speciaiAfc where 

special means tha t — which in our context is equivalent to pk — p%, and tha t 

e(pfc,l/2) = - l . 

As we already saw, we may ignore the r^ 's arising as components of either V\ ® V{ 

or V2 ® V2 since the corresponding A& are trivial. By Lemma A. 13.2, the remaining 

Tfc's are the constituents of e ® Ind^p ® [2]. Note tha t I n d ^ p is selfdual as pL ~ p. 

Let us decompose Ind^p as a sum of its r irreducible constituents, tha t we may note 

P i , . . . , pr up to renumbering. Since p is irreducible, we have r = 1 or 2. 

If r = 1, TI = TJ* so Ti is special if and only if e(pi, 1/2) = - 1 , but e(pi , 1/2) = 

e ( I n d ^ p , 1/2) = e(p, 1/2) = e(-K, 1/2) and the proposition follows. 

The second case r = 2 occurs exactly when p is self-conjugate, hence when p is 

selfdual since p ~ / r1 . In this case p extends to a representation pi of LQ, and we have 

Ind^p = pi 0 p2 = Pi © PI^E/Q and pi 9̂  p2. We have 

e(7r,l/2) £ ( I n d £ > , l / 2 ) £ ( p ! , l / 2 ) £ ( p 2 , l / 2 ) . 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2009 



2 9 8 A P P E N D I X : ARTHUR'S C O N J E C T U R E S 

If pi and p2 are selfdual, we see tha t there is exactly one (resp. 0 or 2) pi tha t is 

special if e (7r , 1/2) = — 1 (resp +1) and the proposition follows. If p | ~ p2) then the 

functional equations of the L-functions of pi and p2 show tha t £(pi , s)e(p2,1 — s) = 1, 

so e (7r , 1/2) = + 1 and there are no special r^, which concludes this case as well. 

The last ingredient in the multiplicity formula is a conjectural canonical pairing 

([3, page 54]) 

x.II —> R, denoted ( s , 7 r ) . 

However, this ingredient is certainly the most difficult one in Arthur ' s exposition of 

its multiplicity formula. 

Let us recall some features of this pairing in a general context, for a reductive group 

G/F, and a global ^-packet II with A-parameter Together with the global pairing 

should be defined for each place v of F a local pairing 

x Uv -> R. 

However, this local pairing should not be canonical, but rather depends on the choice 

of a basis representation in the local A-packet Uv. Still there should be a way, after a 

global choice v (see below), to choose the local pairing such tha t the product formula 

holds 

(115) ,S, 7T 

v 
S,IIv u,v 

In the formula above, n = <8>'v7rv is in n, the pairings on the right hand side should 

be the chosen local pairings depending on the global choice i/, s in the left hand side 

should be any element of Ŝ , and s in the right hand side denotes the image of s by the 

injective natura l morphism <-» S^v. Moreover, almost all the terms in the product 

should be 1. 

When G is a quasi-split group G*, the global choice v may be a nondegenerate 

character of the unipotent radical of a Borel subgroup of G* defined with the help of 

a non trivial admissible character F\Ap —> C*. Then for each v, the A-packet Hv 

should contain one and only one representation n%v~gen that is vv-generic in the sense 

explained (25) in [22, 4.4]. This representation should actually belong to the L-packet 

Ultpv. When tha t representation is chosen as the base point to define the local pairing 

(which are then denoted ( , )v>1/) the product formula (115) should hold. 

From now on, we work with our group G = U ( m ) / Q defined in chapter 6. Assuming 

the choice of v is made as above for its quasi-split form G*, we may use the local pairing 

( , )v>1/ already chosen for G* for every finite place v, since G* ~GV. Moreover, since 

there is only one infinite place oo, there is a unique choice of the local pairing at 

infinity which makes the formula (115) t rue. We still denote it as ( , )oo,i/-

(25) Be careful that this representation is i/v-generic in the usual sense only for a tempered Iiv. 
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The pairings above have much nicer features when restricted to the subgroup of 

S ,̂ generated by the canonical element s^. So we are very lucky in our case, because 

tha t subgroup is the full S ,̂ (Lemma A. 13.1). In particular, the following assertions 

should hold^26). Below v is a place, nv any representation of the local A-packet Hv. 

(a) There should be a sign e(nv, vv) = ±1 such tha t 

Ttv)VÌ/ — CyKVìVv) 

for every a G Z (or for tha t matter , for a = 0,1). 

(b) The sign e(7rv, vv) should depend on 7rv only through the L-parameter of 7rv, and 

tha t sign is + 1 if this L-parameter is <f>^v and if Gv is quasi-split. This should 

be understood in the strong sense tha t if two 7rv's, even for two different inner 

forms of Gv, have the same L-parameter, then they have the same sign. 

(c) The sign e(7rv,iyv), hence the pairing ( s^ , • )VfU is independent of v. (Hence we 

may and will drop v from the notation.) Moreover, any local pairing ( , )(, such 

tha t ( s j , -KV)'V is 1 for a = 0,1 and a given representation 7rv of L-parameter <t>^v 

is actually equal to tha t pairing on the subgroup generated by s^: 

{sipi ')v ~= sayo")v 

Hence the sign e(7rv,uv) is simply denoted e(irv), and sometimes even e(</>) where 

<j> is the L-parameter of TTV. 

Indeed, (a) follows from [3, Conjecture 6.1(iii)], the first assertion of (b) is clear 

if v = oo by the description of the pairing given [3, page 33], and seems implicitly 

assumed in the general case. Anyway, we will only use it for representations in the 

canonical L-packet of Uv for which it follows from [3, Conjecture 6.1(iv)]. The 

second assertion in (b) is clear since 7r^~gen belongs to tha t L-packet and has sign 

+ 1 by definition. The last assertion on (b) is not explicitly writ ten down in [3] but is 

quite natural (it holds for example for the inner forms of U(3) by Rogawski's work). 

The point (c) follows from (b) together with [3, Conjecture 6.1 (iii)] since the 7r£v_gen 

belong to the same L-packet, independently of v. 

Expected Lemma A.l3.4. — The map —> R, (s,7rn) zs the non-trivial charac

ter e. 

Indeed, according to the remarks above 

Sol,, 7Г 
V 

6-y F )v. 

and ev(7r™) = 1 for every finite place v since 7r" G n ^ , so we are reduce to showing 
tha t e((7rn)00) = e(Tr^) = - 1 . 

(26) At least in all cases we will use them. We are not completely sure of their generality. 
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Let <j)s be the L-parameter of and remember from the proof of Lemma A. 12.3 
tha t this is not the same as (j)^ = 0 ^ . Note tha t all those L-parameters of G(R) = 
U(ra)(R), as well as the A-parameter ^oo, may be seen as parameters of G*(R) since 
those groups have the same L-group LG. By (b) above we may work with the group 
G*(R), and the aim is to show tha t e(</>s) = — 1 . 

Arthur , following Adams and Johnson, describes an algorithm to compute the L-
parameter </>'s of the representations belonging to H ^ (we already used it for the 
group G(R) in the proof of Lemma A.12.3) and to compute the local pairing. This 
algorithm, as well as the resulting pairing, depend on a choice of a conjugacy class of 
a Levi subgroup L* of G* whose associated L-group is the LL defined in the proof of 
Lemma A.12.3. Here we choose L* to be quasi-split. We denote by ( the pairing 
described by Arthur using L*. 

The elements TTW in IL/, are parameterized by the elements w of the set 

--W(L*,T)\W(G*,T)/WR(G*,T) 

where T is a compact torus of G* contained in L*. Contrary to the case of the 
corresponding set E for the compact group G(R) used in the proof of Lemma A. 12.3, 
this set E* is not a singleton, corresponding to the fact tha t the A-packet H ^ for 
G* (R) is not a singleton. By construction, the L-parameter <\>w of the representation 
TTW and the values (S,TTW)L* for s G depend only on w through the Levi subgroup 
Lw := wL^w-1. This Levi subgroup is an inner form of L* defined over R, but is not 
in general conjugate to L* in G*(R). 

The parameter 6\ for w = 1 is, using the fact tha t L* is quasi-split, 

01 = 0Vo 

after [3, last sentence of the first paragraph page 32]. This ensures from (c) above 
tha t the pairing defined by Arthur using L* is the canonical pairing: 

(s^j = s^j ')v 

Let w be an element of E* such tha t L := Lw is the compact inner form of L*. 
Then we have (f)w = (j)s. The needed computat ion to check tha t was actually done 
during the proof of Lemma A. 12.3 since the only ingredient used there was tha t L 
was a compact Levi subgroup. 

We thus are reduced to compute 

e(7rs) = W J T O O O 

for w as above. 
For this we have to be a little bit more explicit. We can take for T, compatibly 

with the choice already done, the diagonal torus in an orthogonal basis e i , . . . , em (in 
the complex hermitian vector space (V, q) used to define G*(R)), such tha t q(em-i) = 
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q{em) = 1 but q{ei) = —1 (this is always possible since m > 3 and G* is quasi-split.). 
We may define L as the Levi subgroup of matrices stabilizing the plane generated by 
em_i and em, and the lines generated by e i , . . . , e m _ 2 : it is a compact group. And we 
may take for L* the Levi subgroup of matrices stabilizing the plane generated by e\ 
and em, and the lines generated by e 2 , . . . , em_i : it is a quasi-split group. Now it is 
clear tha t if 

weW(G\T) W ( G * ( C ) , r ( C ) ) ~ 6 m 

is the transposition (1, m—1), then wL^w'1 = L. But tha t w is the reflexion w@ (cf. [3, 
page 33]) about the simple root /3 of G*(C) such tha t /?(diag(a?i , . . . , xm)) = xi/x^-i. 
Since this root is non compact, we have by [3, (5.6) & (5.7)]: e(7rs) = (s^,7rw) = 
Pv(sip) — —1 using tha t 8$ — diag ( l , . . . , 1, —1, —1). 

Expected Theorem A.13.5. — The multiplicity m(7rn) of the representation irn in the 
discrete spectrum o /U( ra ) is 1 if e(7r, 1/2) = — 1 and 0 otherwise. 

Indeed, by Expected Prop. A. 11.9, tp is the only A-parameter defining the A-packet 
II of 7 r n , so we have m(7rn) = m^(nn) according to Arthur 's definitions. By [3, (8.5)1, 

m1/,(7rn) 
1 

SY ses^ 
e ^ ( s ) ( 5 , 7 r n ) 

1 
2 

1 — e^(s^)) 

using Exp. Lemma A. 13.4. The theorem then follows from Exp. Prop. A. 13.3. 
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A , a commutative ring, 12-301 
A , a local henselian ring, 31-301 
A , a local artinian ring, finite over Qp, 63-91 
AC(7r) , the assumption (a proof of which has 

been announced by Harris) that the rep
resentation 7rn attached to n is automor
phic, 179 

AÌJ, a structural module of a GMA R or S, 
seen as an A-submodule of a commuta
tive A-algebra B, 21 

AÌJ, a structural module of a GMA R or S, 
seen as an abstract A-module, 21 

A'ij, the submodule Ylk&j Ai,kAk,j of 
A-i,j i 38 

B, a commutative A-algebra, 20 
BKl(p) and BK2(p), hypotheses on p that are 

consequences of the Bloch-Kato conjec
tures, 144 

_L; U1- is the contragredient of the conjugate 
(that is, the twist by the outer automor
phism of Ge induced by the conjugation 
of E) of a representation U of Ge, 141 

_L, similar notion for an automorphic repre
sentation, 173 

d, the dimension of T, 31 
di, the dimension of pi, 31 
E, a number field, 137-301 
E, a quadratic imaginary field, 141-301 
£, the data of idempotents of the GMA R or 

S, 20 
ei, idempotent of a GMA R or S, part of the 

data of idempotents £, 20 
T, a refinement of a crystalline representa

tion, 81 
Ge, the absolute Galois group of E, 137-301 
GP, the absolute Galois group of Qp, 59 
H = AP <g> HUT, a Hecke algebra, 186 
Hj(E,p), the Selmer group of p, 137 
I-p, the reducibility ideal attached to the par

tition V, 35 
K, when A is reduced, its total fraction ring, 

33 
k} the residue field of A, 31 

KerT, the kernel of the pseudocharacter T, 
14 

k(x), a finite Qp-algebra, the residue field of 
X at ж, 93 

L, the residue field of the artinian local ring 
A, a finite extension of Qp, 63-91 

L(n) = ( r (7r ) , N(n)), the representation of 
the Weil-Deligne group attached to n by 
the local Langlands correspondence, 155 

m, the maximal ideal of the local ring A, 31 
Mi, an Я-module, 39 
ЛЛ, a coherent torsion-free sheaf of 0 x _ 

modules with a continuous action of GP, 
93 

ЛЛХ, the Ож-module of germs of sections of  
M at x, 93 

Л1х, a finite dimensional representation of GP 
(or of G) over fc(rc), the stalk of Л4 at ж, 
93 

non monodromic principal series , a class 
of representations of a local quasi-split 
group, 165 

Ox, the rigid analytic local ring of X at x, 95 
Ox, от О, the structural sheaf of the rigid 

analytic space X, 93 
V, a partition of { 1 , . . . , r}, 35 
p, a fixed prime, 137 
QP(i), 63 
11, a refinement of 7 r £ , 244, 250, 258 
r, the number of factors of T, i.e. the number 

of p^s, 31 
Rep(m), an assumption about Galois repre

sentations attached to automorphic rep
resentations for U(m), 170 

R, an A-algebra, 12 
S, a Cayley-Hamilton quotient of (R,T), 15 
T : R —> A, a pseudocharacter, 12 
T, the reduction of T mod m, 31 
U(m), the m-variables unitary group at

tached to E that is compact at infinity 
and quasi-split elsewhere, when m ^ 2 
(mod 4), 152 

v, a place of E above p, 137 
X, a reduced rigid analytic space over Qp, 93 
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X, the minimal eigenvariety containing 7rn, 
244 

Z, a Zariski dense subset of X, 93 
z G Z C X, the point of X corresponding to 

(n^ll), 244 
T, the topological group ZJ, 63 
S = №);=!,...,d : Q; —• (A*)d, the param

eter of a trianguline representation over 
A or of a triangular (<p, r)-module over 
KA, 72 

ip, ¿00, embeddings of Q into QP and C, 169 
ti j , a morphism Kom(Ai j /A[ •, A/ J) —> 

bxtfí/Jfíte'^)' 38 
X, the cyclotomic character, seen as a charac

ter of GP or of T, 63 
K or Ki, a Hodge-Tate-Sen weight in O(X) or 

an associated character Z* —• 
104 

jx, a Hecke character of E, 176 
7r, an automorphic cuspidal representation of 

GLN(AE), 173 
7rn, an automorphic representation of U(m), 

179 
^(•jr,7i) : W —> Qp, the system of Hecke eigen

values attached to an automorphic rep
resentation 7r with refinement 7£, 187 

p, a continuous geometric representation of 
GE, 137-301 

p, a morphism ft —> Md(B), of trace T (of
ten with B = K, or B = A), 23, 33 

pi, a representation of .ft over a quotient of A, 
lifting p^ 37 

Pi, a representation of ft over k of dimension 
di, component of T, 31 
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