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This work is dedicated to Adrien Douady. 

« Que s'est-il passé dans ta tête ? 
Tu as pris la poudre d'escampette 
Sans explication est-ce bête 
Sans raison tu m'as planté là 
Ah ah ah ah ! » 

(Boby Lapointe, La question ne se pose pas) 





COARSE EXPANDING CONFORMAL DYNAMICS 

Peter Haïssinsky, Kevin M. Pilgrim 

Abstract. — Motivated by the dynamics of rational maps, we introduce a class of 
topological dynamical systems satisfying certain topological regularity, expansion, 
irreducibility, and finiteness conditions. We call such maps "topologically coarse ex­
panding conformal" (top. CXC) dynamical systems. Given such a system / : X —•> X 
and a finite cover of X by connected open sets, we construct a negatively curved 
infinite graph on which / acts naturally by local isometries. The induced topological 
dynamical system on the boundary at infinity is naturally conjugate to the dynamics 
of / . This implies that X inherits metrics in which the dynamics of / satisfies the 
Principle of the Conformal Elevator: arbitrarily small balls may be blown up with 
bounded distortion to nearly round sets of definite size. This property is preserved 
under conjugation by a quasisymmetric map, and top. CXC dynamical systems on 
a metric space satisfying this property we call "metrically CXC". The ensuing results 
deepen the analogy between rational maps and Kleinian groups by extending it to 
analogies between metric CXC systems and hyperbolic groups. We give many examples 
and several applications. In particular, we provide a new interpretation of the cha­
racterization of rational functions among topological maps and of generalized Lattes 
examples among uniformly quasiregular maps. Via techniques in the spirit of those 
used to construct quasiconformal measures for hyperbolic groups, we also establish 
existence, uniqueness, naturality, and metric regularity properties for the measure of 
maximal entropy of such systems. 
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Résumé (Dynamique dilatante grossièrement conforme). — Motivé par la dynamique 
des fractions rationnelles, on introduit une classe de systèmes dynamiques topolo­
giques qui vérifient des propriétés de régularité topologique, d'expansivité, d'irréduc­
tibilité et de finitude. Nous les nommons « topologiquement dilatantes et grossièrement 
conformes » (top. CXC). Étant donnée une telle transformation / : X —> X et un re­
couvrement de X par des ouverts connexes, on construit un graphe infini hyperbolique 
au sens de M. Gromov sur lequel / opère naturellement comme une isométrie locale. 
La dynamique induite sur son bord à l'infini est canoniquement conjuguée à celle 
de / . Ceci implique que X hérite de métriques pour lesquelles / vérifie le Principe de 
l'Ascenseur Conforme : des boules arbitrairement petites peuvent être agrandies à une 
taille macroscopique avec distorsion bornée. Cette propriété est conservée par conju­
gaison par un homéomorphisme quasisymétrique, et nous appelons les transformations 
top. CXC définies sur un espace métrique qui la vérifient « métriquement dilatantes 
et grossièrement conformes » (CXC). Les résultats suivants approfondissent l'analogie 
entre groupes kleinéens et fractions rationnelles en l'étendant en des analogies entre 
dynamiques métriquement CXC et groupes hyperboliques. Nous donnons de nombreux 
exemples et plusieurs applications. En particulier, nous fournissons une nouvelle in­
terprétation de la caractéristation de fractions rationnelles parmi les transformations 
topologiques et des exemples de Lattes généralisés parmi les transformations unifor­
mément quasirégulières. En utilisant des techniques qui permettent de construire des 
mesures quasiconformes pour les groupes hyperboliques, on établit aussi l'existence, 
l'unicité et des propriétés de régularité métrique de la mesure d'entropie maximale de 
ces applications. 
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CHAPTER 1 

INTRODUCTION 

The classical conformal dynamical systems include iterated rational maps and Klei-
nian groups acting on the Riemann sphere. The development of these two theories was 
propelled forward in the early 1980's by Sullivan's introduction of quasiconformal me­
thods and of a "dictionary" between the two subjects [Sul85]. Via complex analysis, 
many basic dynamical objects can be similarly defined and results similarly proven. 
There is a general deformation theory which specializes to both subjects and which 
yields deep finiteness results [MS98]. Since then, the dictionary has grown to encom­
pass a guiding heuristic whereby constructions, methods, and results in one subject 
suggest similar ones in the other. For example, in both subjects there are common 
themes in the combinatorial classification theories [McM95, Pil03], the fine geome­
tric structure of the associated fractal objects [McM98a, McMOO, SUOO, SU02], 
and the analysis of certain geometrically infinite systems [McM96]. A Kleinian 
group uniformizes a hyperbolic three-manifold, and there is now a candidate three-
dimensional object associated to a rational map [LM97, KL05]. Of course, essential 
and important differences between the two theories remain. 

Other examples of conformal dynamical systems include iteration of smooth maps 
of the interval to itself and discrete groups of Möbius transformations acting pro­
perly discontinuously on higher-dimensional spheres. However, a theorem of Liouville 
[Ric93] asserts that any conformal map in dimensions ^ 3 is the restriction of a Mö­
bius transformation. Thus, there is no nonlinear classical theory of iterated conformal 
maps in higher dimensions. 

Two different generalizations of conformal dynamical systems have been studied. 
One of these retains the Euclidean metric structure of the underlying space and keeps 
some regularity of the iterates or group elements, but replaces their conformality 
with uniform quasiregularity. Roughly, this means that they are differentiate almost 
everywhere, and they distort the roundness of balls in the tangent space by a uniformly 
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bounded amount. In dimension two, Sullivan showed that the Measurable Riemann 
Mapping Theorem and an averaging process imply that each such example is obtained 
from a rational map or a Kleinian group by a quasiconformal deformation [Sul81]. 
In higher dimensions, Tukia gave an example to show that this fails [Tuk81]. The 
systematic study of uniformly quasiconformal groups of homeomorphisms on Rn was 
begun by Gehring and Martin [GM87]. They singled out a special class of such 
groups, the convergence groups, which are characterized by topological properties. 
The subsequent theory of such quasiconformal groups turns out to be quite rich. 
The study of iteration of uniformly quasiregular maps on manifolds is somewhat 
more recent; see e.g., [IM96]. At present, examples of chaotic sets of such maps are 
either spheres or Cantor sets, and it is not yet clear how rich this subject will be in 
comparison with that of classical rational maps. 

A second route to generalizing classical conformal dynamical systems is to replace 
the underlying Euclidean space with some other metric space, and to replace the 
condition of conformality with respect to a Riemannian metric with one which makes 
sense for metrics given as distance functions. Technically, there are many distinct 
such reformulations-some local, some global, some infinitesimal (quasimobius, qua-
sisymmetric, quasiconformal). An important source of examples with ties to many 
other areas of mathematics is the following. A convex cocompact Kleinian group ac­
ting on its limit set in the Riemann sphere generalizes to a negatively curved group 
(in the sense of Gromov) acting on its boundary at infinity. This boundary car­
ries a natural topology and a natural quasisymmetry class of so-called visual metrics 
[GdlH90, BSOO]. With respect to such a metric, the elements of the group act by 
uniformly quasimobius maps. Negatively curved groups acting on their boundaries 
thus provide a wealth of examples of generalized "conformal" dynamical systems. 

Tukia [Tuk94] generalized Gehring and Martin's notion of a convergence group 
from spheres to compact Hausdorff spaces, and Bowditch [Bow98] then characterized 
negatively curved groups acting on their boundaries by purely topological conditions: 

Theorem 1.0.1 (Characterization of boundary actions). — Let T be a group acting on 
a perfect metrizable compactum M by homeomorphisms. If the action on the space of 
triples is properly discontinuous and cocompact, then T is hyperbolic, and there is a 
T-equivariant homeomorphism of M onto dT. 

Following Bowditch [Bow99] and abusing terminology, we refer to such actions as 
uniform convergence groups. In addition to providing a topological characterization, 
the above theorem may be viewed as a uniformization-type result. Since the metric 
on the boundary is well-defined up to quasisymmetry, it follows that associated to 
any uniform convergence group action of T on M, there is a preferred class of metrics 
on M in which the dynamics is conformal in a suitable sense: the action is uniformly 
quasimobius. 
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Sullivan referred to convex cocompact Kleinian groups and their map analogs, 
hyperbolic rational maps, as expanding conformal dynamical systems. Their cha­
racteristic feature is the following principle which we may refer to as the conformal 
elevator. 

Arbitrarily small balls can be blown up via the dynamics to nearly round 
sets of definite size with uniformly bounded distortion, and vice-versa. 

This property is also enjoyed by negatively curved groups acting on their boundaries, 
and is the basis for many rigidity arguments in dynamics and geometry. Recalling 
the dictionary, we have then the following table: 

Group actions Iterated maps 
Kleinian group rational map 
convex cocompact Kleinian group hyperbolic rational map 
uniform convergence group ? 

The principal goal of this work is to fill in the missing entry in the above table. 
To do this, we introduce topological and metric coarse expanding conformal (CXC) dy­
namical systems. We emphasize that topologically CXC systems may be locally non-
injective, i.e., branched, on their chaotic sets. Metric CXC systems are topologically 
CXC by definition. Hyperbolic rational maps on their Julia sets and uniformly qua-
siregular maps on manifolds with good expanding properties are metric CXC. Thus, 
our notion includes both the classical and generalized Riemannian examples of ex­
panding conformal dynamical systems mentioned above. As an analog of Bowditch's 
characterization, viewed as a uniformization result, we have the following result: 

Theorem 1.0.2 (Characterization of metric CXC actions). — Suppose f : X —» X is a 
continuous map of a compact metrizable space to itself If f is topologically CXC, then 
there exists a metric d on X, unique up to quasisymmetry, such that with respect to 
this metric, f is essentially metric CXC. 

(See Corollary 3.5.3.) In many cases (e.g., when X is locally connected) we may drop 
the qualifier "essentially" from the conclusion of the above theorem. In general, we 
cannot. It is unclear to us whether this is a shortcoming of our methods, or reflects 
some key difference between group actions and iterated maps; see § 3.5. The naturality 
of the metric d implies that quasisymmetry invariants of (X, d) then become topolo­
gical invariants of the dynamical system. Hence, tools from the theory of analysis on 
metric spaces may be employed. In particular, the conformal dimension (see §3.5) 
becomes a numerical topological invariant, distinct from the entropy. The existence 
of the metric d may be viewed as a generalization of the well-known fact that given 
a positively expansive map of a compact set to itself, there exists a canonical Holder 
class of metrics in which the dynamics is uniformly expanding. 
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4 CHAPTER 1. INTRODUCTION 

Our class of metric CXC systems / : (X, d) —•> (X, d) includes a large number of 
previously studied types of dynamical systems. A rational map is CXC on its Julia 
set with respect to the standard spherical metric if and only if it is a so-called semi-
hyperbolic map (Theorem 4.2.3). A metric CXC map on the standard two-sphere 
is quasisymmetrically conjugate to a semi-hyperbolic rational map with Julia set the 
sphere (Theorem 4.2.7). Using elementary Lie theory, we construct by hand the metric 
d in the case when X is a manifold and / is an expanding map, and show that in this 
metric / becomes locally a homothety (§4.5). Theorems 4.4.4 and 4.4.3 imply that 
uniformly quasiregular maps on Riemannian manifolds of dimension greater or equal 
to 3 which are metric CXC are precisely the generalized Lattes examples of Mayer 
[May97]. 

Just as negatively curved groups provide a wealth of examples of non-classical 
"conformal" group actions, so our class of metric CXC maps provides a wealth of 
examples of non-classical "conformal" iterated maps as dynamical systems. The case 
of the two-sphere is of particular interest. Postcritically finite branched coverings of 
the two-sphere to itself arising from rational maps were characterized combinatorially 
by Thurston [DH93]. Among such branched coverings, those which are expanding 
with respect to a suitable orbifold metric give examples of topologically CXC systems 
on the two-sphere. Hence by our results, they are uniformized by a metric such that 
the dynamics becomes conformal. This metric, which is a distance function on the 
sphere, need not be quasisymmetrically equivalent to the standard one. A special 
class of such examples are produced from the finite subdivision rules on the sphere 
considered by Cannon, Floyd and Parry [CFP01, CFKP03]; cf. [Mey02]. These 
provide another source of examples of dynamics on the sphere which are conformal 
with respect to non-standard metrics. Conjecturally, given a negatively curved group 
with two-sphere boundary, the visual metric is always quasisymmetrically equivalent 
to the standard one, hence (by Sullivan's averaging argument and the Measurable 
Riemann mapping theorem) the action is isomorphic to that of a cocompact Kleinian 
group acting on the two-sphere. This is Bonk and Kleiner's reformulation of Cannon's 
Conjecture [BK02a]. 

In Theorem 4.2.11 below, we characterize in several ways when a topologically CXC 
map on the two-sphere, in its natural metric, is quasisymmetrically conjugate to a 
rational map. This result was our original motivation. The natural metrics associated 
to a topologically CXC map / : S2 —> S2 are always linearly locally connected (Co­
rollary 2.6.9). If / is not quasisymmetrically conjugate to a rational map, e.g., if / is 
postcritically finite and has a Thurston obstruction, then Bonk and Kleiner's charac­
terization of the quasisymmetry class of the standard two-sphere [BK02a] allows us 
to conclude indirectly that these natural metrics are never Ahlfors 2-regular. Recent 
results of Bonk and Meyer [BM06, Bon06] and the authors [HP08b] suggest that in 
general, Thurston obstructions manifest themselves directly as metric obstructions to 
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Ahlfors 2-regularity in a specific and natural way. Differences with the group theory 
emerge: we give an example of a metric CXC map on a Q-regular two-sphere of Ahlfors 
regular conformal dimension Q > 2 which is nonetheless not Q-Loewner. In contrast, 
for hyperbolic groups, Bonk and Kleiner [BK05, Thm. 1.3] have shown that if the 
Ahlfors regular conformal dimension is attained, then the metric is Loewner. 

As mentioned above, the dictionary is rather loose in places. Prom the point of view 
of combinatorics and fmiteness principles, a postcritically finite subhyperbolic rational 
map / is a reasonable analog of a cocompact Kleinian group G. By Mostow rigidity, G 
is determined up to Möbius conjugacy by the homotopy type of the associated quotient 
three-manifold. This is turn is determined by the isomorphism type of G. Since G 
as a group is finitely presented, a finite amount of combinatorial data determines the 
geometry of Kleinian group G. For the analogous rational maps, Thurston [DH93] 
showed that they are determined up to Möbius conjugacy by their homotopy type, 
suitably defined. Recently, Nekrashevych [Nek05] introduced tools from the theory 
of automaton groups that show that these homotopy types are again determined by a 
finite amount of group-theoretical data. In a forthcoming work [HP08a], we introduce 
a special class of metric CXC systems that enjoy similar fmiteness principles. From 
the point of view of analytic properties, however, our results suggest that another 
candidate for the analog of a convex cocompact Kleinian group is a so-called semi-
hyperbolic rational map, which is somewhat more general (§4.2) and which allows 
non-recurrent branch points with infinite orbits in the chaotic set. 

Our construction of a natural metric associated to a topologically CXC system / 
proceeds via identifying the chaotic set X of the system as the boundary at infinity of 
a locally finite, negatively curved graph T with a preferred basepoint. By metrizing 
T suitably and using the Floyd completion to obtain the metric on the boundary, 
the dynamics becomes quite regular. The map / behaves somewhat like a homo-
thety: there exists a constant A > 1 such that if / is injective on a ball B, then on 
the smaller ball \B it multiplies distances by A. In particular, / is Lipschitz, and 
(Theorems 3.2.1 and 3.5.8) X becomes a BPI-space in the sense of David and Semmes 
[DaSa97]. By imitating the Patterson-Sullivan construction of conformal measures 
[Pat87] as generalized by Coornaert [Coo93], we construct a natural measure /if on 
the boundary with a perhaps remarkable coincidence of properties. The measure fif 
is quasiconformal with constant Jacobian, is the unique measure of maximal entropy 
logdeg(/) , describes the distribution both of backwards orbits and of periodic points, 
and satisfies Manning's formula relating Hausdorff dimension, entropy, and Lyapunov 
exponents (§§3.4 and 3.5). Thus, all variation in the distortion of / is ironed out to 
produce a metric in which the map is in some sense a piecewise homothety, much like 
a piecewise linear map of the interval to itself with constant absolute value of slope. In 
this regard, our results may be viewed as an analog of the Milnor-Thurston theorem 
asserting that a unimodal map with positive topological entropy is semiconjugate to 
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6 CHAPTER 1. INTRODUCTION 

a tent map whose slope is the exponential of the entropy [MT88]. Our estimates 
generalize those of Misiurewicz-Przytycki [MP77] and Gromov [Gro03]. 

By way of contrast, Zdunik [Zdu90] shows that among rational maps, only the 
usual family of exceptions (critically finite maps with parabolic orbifold) has the 
property that the measure of maximal entropy is equivalent to the Hausdorff measure 
in the dimension of the Julia set. Our construction, however, yields a metric with this 
coincidence for any rational map which is suitably expanding. 

It turns out (Theorem 4.2.3) that / is semi-hyperbolic if and only if T is quasi-
isometric to the convex hull of the Julia set of / in hyperbolic three-space. Lyubich 
and Minsky [LM97] give a similar three-dimensional characterization of this family 
of maps using hyperbolic three-manifold laminations. Analogously, convex cocompact 
Kleinian groups are characterized by the property that their Cayley graphs are quasi-
isometric to the convex hull of their limit sets in H3. 

In summary, we suggest the following enlargement of the above dictionary: 

Group actions Iterated maps 

Kleinian group rational map 

convex cocompact Kleinian group (semi) hyperbolic rational map 

uniform convergence group topologically CXC map 

uniform quasimobius convergence group metric CXC map 

Cayley graph T graph T 

visual metric visual metric 

quasiconformal measure fi canonical measure jif 
Cannon Conjecture on groups 
with sphere boundary 

Thurston's Theorem 
characterizing rational maps 

Cannon's, Bonk-Kleiner's 
Characterization Theorems of 
cocompact Kleinian groups 

Characterization Theorem for 
CXC maps on the standard S2 

Our basic method is the following. Since we are dealing with noninvertible map­
pings whose chaotic sets are possibly disconnected, we imagine the repellor X embed­
ded in a larger, nice space Xo and we suppose that / : X\ —» Xo where X\ C Xo- We 
require some regularity on / : it should be a finite branched covering. Our analysis 
proceeds as follows: 

We suppose that the repellor X is covered by a finite collection UQ of 
open, connected subsets. We pull back this covering by iterates of f to 
obtain a sequence UQ,UI,U2, . of coverings of X. We then examine 
the combinatorics and geometry of this sequence. 
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CHAPTER 1. INTRODUCTION 7 

The collection of coverings {UN} may be viewed as a discretization of Pansu's quasi­
conformal structures [Pan89a]. This motivates our use of the adjective "coarse" to 
describe our metric dynamical systems. 

Contents. — In Chapter 2, we begin with the topological foundations needed to 
define topologically CXC mappings. We give the definitions of topologically and metric 
CXC mappings, prove metric and dynamical regularity properties ofthe repellor, and 
prove that topological conjugacies between metric CXC systems are quasisymmetric. 

In Chapter 3, we construct the graph Y associated to topologically CXC maps 
(and to more general maps as well) and discuss its geometry and the relation of its 
boundary with the repellor. We construct the natural measure and study its relation 
to equidistribution, entropy, and Hausdorff dimension. The chapter closes with those 
properties enjoyed specifically by metric CXC mappings. 

Chapter 4 is devoted to a discussion of examples. It contains a proof of the to­
pological characterization of semi-hyperbolic rational maps among CXC mappings on 
the two-sphere (Theorem 4.2.11). We also discuss maps with recurrent branching 
and we very briefly point out some formal similarities between our constructions and 
analogous constructions in p-adic dynamics. 

We conclude with an appendix in which we briefly recall those facts concerning 
hyperbolic groups and convergence groups which served as motivation for this 
work. 

Notation. — The cardinality of a set A is denoted by #A and its closure by A. Given 
a metric space, if B denotes a ball of radius r and center x, the notation XB is used 
for the ball of center x and radius Ar. The diameter of a set A is the supremum 
of the distance between two points of A and is denoted by diamA The Euclidean 
n-sphere, regarded as a metric space, is denoted by Sn; we use the notation Sn for 
the underlying topological space. Generally, we will write, for two positive functions, 
a < b or a > b if there is a universal constant u > 0 such that a ^ ub. The notation 
a x b will mean a < b and a > b. As usual, we use the symbols V and 3 for the 
quantifiers "for every" and "there exists" when convenient. We denote by N the set of 
natural numbers { 0 , 1 , 2 , . . . } , and by R+ the non-negative real numbers. 
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CHAPTER 2 

COARSE EXPANDING CONFORMAL DYNAMICS 

The following setup is quite common in the dynamics of noninvertible maps. One 
is given a nice, many-to-one map 

/ : Xi —» Xo 

where Xo and Xi are nice spaces and Xi C Xo- One studies the typically complicated 
set X of nonescaping points, i.e., points x £ Xi for which fn(x) G Xi for all n > 0. 
We are particularly interested in maps for which the restriction of / to X need not 
be locally injective. For those readers unused to noninvertible dynamics, we suggest 
assuming that Xo = Xi = X upon a first reading. 

A basic method for analyzing such systems is to consider the behavior of small 
open connected sets of Xo under backward, instead of forward, iteration. For this 
reason, it is important to have some control on restrictions of iterates of the form 
fk:U^U, where U is a small open connected subset of Xo, and U is a connected 
component of f~k{U). Hence it is reasonable to assume that Xo,Xi are at least 
locally connected. The nonescaping set X itself, however, may be disconnected and 
non-locally connected. To rule out topological pathology in taking preimages, we 
impose some tameness restrictions on / by assuming that / : Xi —• Xo is a so-called 
branched covering between suitable topological spaces. When Xo is a metric space it 
is tempting to ask for control over inverses images of metric balls instead of connected 
open sets. However, this can be awkward since balls in Xo might not be connected. 

We focus on those topological dynamical systems with good expanding properties. 
However, a map / : X —> X which is not locally injective is never positively ex­
pansive, and neither is the induced map on the natural extension. Thus, notions of 
expansiveness in this category need to be defined with some care. 

2.1. Finite branched coverings 

There are have been many different definitions of ramified coverings and bran­
ched coverings, most of which coincide in the context of manifolds (cf. e.g., [Fox57, 
Edm76, DiSi03]. We define here the notion of finite branched coverings which suits 



10 CHAPTER 2. COARSE EXPANDING CONFORMAL DYNAMICS 

our purpose: it generalizes the topological properties of rational maps of the Rie­
mann sphere, and behaves well for their dynamical study (e.g., pull-backs of Radon 
measures are well-defined). 

Suppose X , Y are locally compact Hausdorff spaces, and let / : X —* Y be a 
finite-to-one continuous map. The degree of f is 

deg(/) = sup{#r1(y):2/ey}. 
For x G X , the local degree of / at x is 

deg(/ ;x) = inf s u p W 1 ^ } ) D U : z € f ( U ) } 

where U ranges over all neighborhoods of x. 

Definition 2.1.1 (Finite branched covering). — The map f is a finite branched cove­
ring (abbreviated FBC) provided deg(f) < oo and 

(i) 
x€f-1(y) 

deg(/ ;x) = degf 

holds for each y G 7 ; 
(ii) for every x$ G X , there are compact neighborhoods U and V of XQ and / (#o ) 

respectively such that 

x€U,f(x)=y 

deg( / ;z) - deg(/;x0) 

for all y E V. 

We note the following two consequences of (ii): the restriction / : / 1(V) f l U —> V 
is proper and onto and f~1({f(xo)}) H U = {x0}. 

The composition of FBC 's is an FBC, and the degrees of FBC 's multiply under 
compositions. In particular, local degrees of FBC 's multiply under compositions. 

Given an FBC / : X —> Y, a point y G Y is a principal value if #f_1(y) = deg(f). 
Condition (ii) implies that if xn —» XQ, then deg(/;xn) < deg(/;x0). It follows that 
the branch set Bf = {x G X : deg(f;x) > 1} is closed. The set of branch values is 
defined as Vj — f(Bj). Thus Y — Vj is the set of principal values. 

Lemma 2.1.2. — Let X , Y be Hausdorff locally compact topological spaces. An FBC 
f : X —> Y of degree d is open, closed, onto and proper: the inverse image of a 
compact subset is compact and the image of an open set is open. Furthermore, Bf 
and Vf are nowhere dense. 

Since the spaces involved are not assumed to be metrizable, we are led to use filters 
instead of sequences in the proof [Bou61]. Recall that a filter base (or filter basis) 
of a set S is a collection B of subsets of S with the following properties: (1) the 
intersection of any two sets of B contains a set of B; (2) the subset B is non-empty 
and the empty set is not in B. 

Proof. — The map is onto by definition. 
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2.1. FINITE BRANCHED COVERINGS 11 

Claim. — For any x G X, let U(x) and V(x) be the neighborhoods of x and f(x) 

given by (ii). If J- denotes the set of neighborhoods of f(x) contained in V(x), then 

/_1(^r ) Pi U(x) is a filter base converging to x. 

Proof of Claim. — Fix x and y = f(x). Let T be the set of neighborhoods of y 

contained in V(x). Since x is accumulated by f~l(F) f l U(x), it follows that if 

f~l(T) f l U(x) is not convergent to x, then there is another accumulation point x' 

of f l U(x) in U(x), since U(x) is compact. By continuity of / , this implies 

that f(x') = y, so that x' = x since DU(x) = {x}. Thus, the family of sets 

/_1(^7) D U(x) is a filter base converging to x. 

This ends the proof of the claim. • 

For any y G F, the set W(i/) = r\f(X)=YV(x) is a compact neighborhood of y since 

2/ has finitely many preimages. Let (N(x))xef-i^yy) be compact neighborhoods of 

x G f~l{{y}) which are pairwise disjoint. It follows from the claim that there is a 

compact neighborhood V(y) C W(y) of y such that f~1{V(y)) HU(x) C N(x) for all 

x G Therefore, (ii) holds for each pair (N(x),V(y)). 

Let 1] C I be an open set, and let us consider x G ft and y = / (# ) • We choose 

a compact neighborhood N'(x) C iV(x) f l ft. It follows from the claim that a neigh­

borhood Vf(y) C V%) exists such that /^(V'iy)) n N(x) C N'(x). So, for any 

2/' e Vf(y), by (ii) 

s ' e / - 1 ^ ' } ^ ^ * ) 

deg(/;x,) = d e g ( / ; x ) ^ l . 

Hence, y' = f(x') for some x' G 7V'(x) (1ft. Thus ^ (2 / ) C / ( f i ) . This establishes that 

/ is open. 

Let us fix y G Y and let us consider y' G V(y). Then 

d 

/ 0 * 0 = 2 / 

deg(/; x ) 
/ 0 * 0 = 2 / x'ef-HWVnNÇx) 

deg(f;x') 

x>ef-H{y'})n(uf(x)=yN(x)) 

deg(f;x'). 

This implies that / _ 1 ( { y / } ) C Uf^=yN(x). Using the relative compactness and 

the continuity of / , it follows that the filter base f~l(T) is finer than the set of 

neighborhoods of f~l{{y}), where T is any filter base converging to y. 

Let K C Y be a compact set and set L = f~x(K). Let ^ be a filter base in L. 

Since / ( L ) is compact, there is some accumulation point y in K of f(F). We claim 

that at least one preimage of y is accumulated by T. If it was not the case, then, for 

any x G f~l({2/}), there would be some Fx £ J7 with x £ Fx. We could therefore 

find a compact neighborhood Nf(x) of x such that N'(x) D Fx = 0 . The claim 
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12 CHAPTER 2. COARSE EXPANDING CONFORMAL DYNAMICS 

implies the existence of some neighborhood V'(y) C V(y) such that / 1(V'(y)) C 

(Vf(x)=yN'(x)). 
Since the fibers are finite, Df^=yFx contains a set Fy G T and f~1(V/(y)) P\Fy = 

0. Hence V'(y) fl f(Fy) = 0 , which contradicts that y was an accumulation point 

of f(T). Therefore / is proper. 

Let us prove that / is closed. Let Z C X be a closed set, and let T be any filter 

base in f(Z) tending to some y eY. Fix a compact neighborhood V of y such that 

f~1(V) is compact, and consider T' — {F fl V, F e f } to be the trace of T in V: 

this remains a filter base in f(Z) converging to y. 

Note that, according to what we proved above, /_1(^r/) is a filter base finer than 

the set of neighborhoods of f'1 ({y}). But the trace Tx = {FnZ, F G P] of f'1^') 

in Z remains a filter base as well (since it is nonempty), and Z fl f~l(V) is compact: 

this implies that T\ accumulates a point x G Z fl f~1(y), so y e / ( Z ) . Hence / is 

closed. 

The set V/ cannot have interior since / has bounded multiplicity. Indeed, if Vf 

had interior, we could construct a decreasing sequence of open sets W(yn) C V(yn) fl 
V(yn-i) C Vf, so we would have p(yn+i) ^ p(Vn) + 1 ^ n + 1, where p : y —> N \ {0} 

denotes the map that counts the number of preimages of points in Y. 

Therefore, Bf cannot have interior either since / is an open mapping. • 

Many arguments are done using pull-backs of sets and restricting to connected com­
ponents. It is therefore necessary to work with FBC's defined on sets X and Y enjoying 
more properties. The lemma below summarizes results proved in [Edm76, §2]. 

Lemma 2.1.3. — Suppose X andY are locally connected, connected, Hausdorff spaces 

and f : X —> y is a finite-to-one, closed, open, surjective, continuous finite branched 

covering map. 

(1) If V C y is open and connected, and U C X is a connected component of 

f~x(y), then f\u'-U^Vis also a finite branched covering. 

(2) If y eY, and / - 1 ( {2 / } ) = { # i , # 2 > • • • > then there exist arbitrarily small 

connected open neighborhoods V of y such that 

f-1(v) = U 1 u U 2 u - . - u u k 

is a disjoint union of connected open neighborhoods Ui of xi such that f\u. : 

U{ —> V is an FBC of degree deg(/; xì), i — 1, 2 , . . . , k. 

(3) If f(x) — y, {Vn} is sequence of nested open connected sets with rinVn = {y}, 

and ifVn is the component of f~l(Vn) containing x, then nnVn = {x}. 
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2.2. TOPOLOGICAL CXC SYSTEMS 13 

X0 

S i 

FIGURE 2.1. While Xo and Xi have finitely many components, the repellor 

X may have uncountably many components. 

2.2. Topological CXC systems 

In this section, we state the topological axioms underlying the definition of a CXC 
system. 

Let Xo,Xi be Hausdorff, locally compact, locally connected topological spaces, 

each with finitely many connected components. We further assume that Xi is an 

open subset of Xo and that Xi is compact in Xo. Note that this latter condition 

implies that if Xo = Xi , then Xo is compact. 

Let / : Xi —• Xo be a finite branched covering map of degree d ^ 2, and for n ^ 0 

put 

Xn-fi — / ( X n ) . 

Lemma 2.1.3 (1) implies that / : X n + i —> X n is again an FBC of degree d. Since / is 

proper, X n + i is compact in X n , hence in Xo-

The nonescaping set, or repellor, of / : Xi —> Xo is 

X = {x £ Xi I fn(x) £ Xi Vn > 0} 

n 

] X n . 

See Figure 2.1. 

We make the technical assumption that the restriction f\x '• X —• X is also an 

FBC of degree equal to d. This implies that # X > 2. Also, X is totally invariant: 

f~1(X) = X = f(X). The definition of the nonescaping set and the compactness 

of Xi implies that given any open set Y containing X, Xn C Y for all n sufficiently 

large. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2009 



14 CHAPTER 2. COARSE EXPANDING CONFORMAL DYNAMICS 

The following is the essential ingredient in this work. Let Uo be a finite cover of X 

by open, connected subsets of X\ whose intersection with X is nonempty. A preimage 

of a connected set A is defined as a connected component of f~1(A). Inductively, set, 

for n ^ 0, 

Un+i = / l(Un) — {U : 3U G Un with U a preimage of U}. 

That is, the elements of Un are the connected components of f~n(U), where U ranges 

over UQ. 

We denote by U = Un^oUn the collection of all such open sets thus obtained. 

We say / : ( X i , X ) —> (Xo,X) is topologically coarse expanding conformal with 

repellor X provided there exists a finite covering Uo as above, such that the following 

axioms hold. 

1. Expansion Axiom (abbreviated [Expans ] ) . — The mesh of the coverings Un tends 

to zero as n —> oo. That is, for any finite open cover y of X by open sets ofXo, there 

exists N such that for all n ^ N and all U €Un, there exists Y G y with U C Y. 

2. Irreducibility Axiom (abbreviated [ Irred ] ) . -— The map f : X\ —> Xo is locally even­

tually onto near X: for any x G X and any neighborhood W of x in Xo, there is some 

n with fn(W) D X 

3. Degree Axiom (abbreviated [ D e g ] ) . — The set of degrees of maps of the form fk\^ : 

U —> U, where U £lAn, U G Un+k, and n and k are arbitrary, has a finite maximum, 

denoted p. 

Axiom [Expans] is equivalent to saying that, when Xo is a metric space, the dia­

meters of the elements of tin tend to zero as n —> oo. Axiom [ I r red] implies that 

/ : X —• X is topologically exact; we give a useful, alternative characterization below. 

These axioms are reminiscent of the following properties of a group G acting on a 

compact HausdorfT space X; see Appendix B and [Bow99]. Axiom [ I r red] is analo­

gous to G acting minimally on X. Axiom [Expans] is analogous to G acting properly 

discontinuously on triples, i.e., that G is a convergence group. Axiom [Deg ] is analo­

gous to G acting cocompactly on triples; we will see later that this condition implies 

good regularity properties of metrics and measures associated to CXC systems. 

Together, a topologically CXC system we view as the analog, for iterated maps, of 

a uniform convergence group. 

The elements of Uo will be referred to as level zero good open sets. While as subsets 

of Xo they are assumed connected, their intersections with the repellor X need not 

be. Also, the elements of U, while connected, might nonetheless be quite complicated 

topologically-in particular they need not be contractible. 

If Xo = Xi = X, then the elements of U are connected subsets of X. 
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2.3. EXAMPLES OF TOPOLOGICAL CXC MAPS 15 

2.3. Examples of topological CXC maps 

2.3.1. Rational maps. — Let C denote the Riemann sphere, and let / : C —> C be 
a rational function of degree d ^ 2 for which the critical points either converge under 
iteration to attracting cycles, or land on a repelling periodic cycle (such a function is 
called subhyperbolic). For such maps, every point on the sphere belongs either to the 
Fatou set and converges to an attracting cycle, or belongs to the Julia set J(f). One 
may find a small closed neighborhood Vb of the attracting periodic cycles such that 
f(V0) C mt(V0). Set X0 = C - V0 and Xi = / - 1 ( ^ o ) . Then / : Xi X0 is an FBC 
of degree d, the repellor X = J(f), and f\x ' X —> X is an FBC of degree d. 

Let UQ be a finite cover of J(f) by open spherical balls contained in Xi, chosen so 
small that each ball contains at most one forward iterated image of a critical point. 
The absence of periodic critical points in J(f) easily implies that the local degrees of 
iterates of / are uniformly bounded at such points, and so [Deg ] holds. Since J(f) can 
be characterized as the locus of points on which the iterates fail to be locally a normal 
family, Montel's theorem implies that [ I r red] holds. Finally, / is uniformly expanding 
near X with respect to a suitable orbifold metric, and [Expans] holds; see [SLOO, 
Thm. 1.1(b)]. 

Lattes maps are a special class of subhyperbolic rational maps defined as follows. 
Fix a lattice A C C. The quotient T = C/A is a complex torus, and the quotient 
of this torus by the involution z H-» — z is the Riemann sphere, C. Let 7 r : C —> C 
be the composition of the two projections. A rational map / : C —> C is called a 
Lattes map if the degree of / is at least two and there is an affine map L : C —> C 
such that / o 7 r = TT O L; see [Mil06b]. Away from the finite set of critical points, 
Lattes maps are uniformly expanding on the whole Riemann sphere with respect to 
the length structure induced by pushing forward the Euclidean metric on the complex 
plane. The Julia set of such a map is the whole sphere. 

2.3.2. Smooth expanding partial self-covers. — Let Xo be a connected com­
plete Riemannian manifold, Xi C Xo an open submanifold with finitely many com­
ponents which is compactly contained in Xo- Let / : Xi —> Xo be a C1 covering 
map which is expanding, i.e., there are constants c > 0, A > 1 such that whenever 
fn(x) is defined, (v)ll > cAn||t;||. If X denotes the set of nonescaping points, 
then / : Xi —> Xo is topologically CXC with repellor X-we may take Uo to be a finite 
collection of small balls centered at points of X. 

One may argue as follows. Since X is compact, there is a uniform lower bound r on 
the injectivity radius of Xi at points x G X. Thus, for each x G X, the ball B(x, r) is 
homeomorphic to an open Euclidean ball; in particular, it is contractible. Let Uo be a 
finite open cover of X by such balls. Since / : Xi —> Xo is a covering map, all iterated 
preimages U of elements U G Uo map homeomorphically onto their images, so [Deg ] 
holds with p = 1. Since / is expanding, the diameters of the elements of Un tend 
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16 CHAPTER 2. COARSE EXPANDING CONFORMAL DYNAMICS 

to zero exponentially in n, so Axiom [Expans] holds. The restriction f\x : X —> X 

is clearly an FBC. To verify [Irred], we use an alternative characterization given as 

Proposition 2.4.1 (2) below. Suppose x e X and x0 G Xo- Since X U {x0} is compact, 

there exists L > 0 such that for all n, there exists a path 7n of length at most L 

joining fn(x) and xo- Let 7n denote the lift of 7n based at x. The other endpoint xn 

of 7n lies in f~n(x0). By expansion, the length of 7n tends to zero. Hence Xyi • X 
and so x belongs to the set A(xo) of accumulation points of Un^o/~n(^o)-

Following Nekrashevych [Nek05], we will refer to the topologically CXC system 

/ : X\ —> Xo a smooth expanding partial self-covering. A common special case is when 

Xi ,Xo are connected and the homomorphism ¿* : 7 T i ( X i ) —> 7i"i(Xo) induced by the 

inclusion map ¿ : Xi Xo induces a surjection on the fundamental groups. In this 

case, the preimages of Xo under f~n are all connected, and the repellor X itself is 

connected. 

One can generalize the above example so as to allow branching, by e.g., working 

in the category of orbifolds; see [Nek05]. 

2.4. Elementary properties 

Conjugacy. — Suppose / : Xi —> Xo and g : %x —> 2)0 are FBC's with repellors X, 

Y as in the definition of topologically CXC. A homeomorphism h : Xo —• ?)o ŝ called 

a conjugacy if it makes the diagram 

(X1X) JL (N1,Y) 

f 9 

(X0X) JL (N0,Y) 

commute. (Strictly speaking, we should require only that h is defined near X\ however, 

we will not need this more general point of view here.) 

It is clear that the property of being topologically CXC is closed under conjugation: 

if Uo is a set of good open sets at level zero for / , then Vo = {V = h(U) \ U G Uo} is 

a set of good open sets at level zero for g. 

Suppose Xi ,Xo are Hausdorff, locally compact, locally connected topological 

spaces, each with finitely many connected components, Xi C Xo is open, and 

Xi C Xo-

The proofs of the following assertions are straightforward consequences of the de­

finitions. 

Proposition 2.4.1. — Suppose f : Xi —» Xo is an FBC of degree d > 2 with nonescaping 

set X and let Uo be a finite open cover of X. 

(1) The condition that f\x • X —> X is an FBC of degree d implies that the set 

Vf f l X is nowhere dense in X. 
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(2) Axiom [Expans] implies 

(a) U is a basis for the subspace topology on X. In particular, if U fl X is 

connected for all U G U, then X is locally connected. 

(b) For distinct x,y G X, there is an N such that for all n > N, and all 

UeUn, {x,y}£U. 

(c) There exists N0 such that for all U[, U'2 G UNO, U[ n 0 3U G 

% tritfi £/{ U U'2 C 17. 

(d) Periodic points are dense in X. 

(3) Axiom [ I r red] 
(a) /io/ds if and only if for each x$ G Xo, the set A(xo) of limit points of 

Un^o/_n(^o) equals the nonescaping set X. 

(b) implies that either X = Xo — X\, or X is nowhere dense in Xo. 

(c) together with f\x : X —> X is an FBC of degree d, implies that X is 

perfect, i.e., contains no isolated points. 

(4) The class of topologically CXC systems is closed under taking Cartesian pro­

ducts. 

In the remainder of this section, we assume / : Xi —> Xo is topologically CXC with 

repellor X and level zero good open sets Uo-

To set up the next statement, given U £lAn mapping to U eUo under /n, denote 

by d(U) = deg(/n|c/) if n > 1 and d(U) - 1 if n = 0. 

Proposition 2.4.2 (Repellors are fractal). — For every x G X, every neighborhood W 

of x, every no G N, and every U G Uno, there exists a preimage U C f~k(U) with 

U C W anddeg(fk : U —> U) ^ wherep is the maximal degree obtained in [ D e g ] . 

Proof. — Let y be an open cover of X with the property that (i) W G y and (ii) 

there exists a neighborhood W C W of x such that for all Y ^ W in y, Y fl W = 0 . 
Axiom [Expans] then implies that there exists n\ G N such that for all n ^ ni, any 

element of Uni+no containing x is contained in W. Axiom [ I r red] implies that there 

exists n2 such that fn(W) — X D U for all n ^ 712. Hence for /c = max{ni, n2}, there 

is a preimage U oi U under f~k contained in W. The assertion regarding degrees 

follows immediately from the multiplicativity of degrees under compositions. • 

Post-branch set. — The post-branch set is defined by 

Pf X 
n>0 

Vfn. 

Proposition 2.4.3 

(1) A point x G X belongs to X — Pf if there exists U G U such that all preimages 

of U under iterates of f map by degree one onto U. 
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18 CHAPTER 2. COARSE EXPANDING CONFORMAL DYNAMICS 

(2) The post-branch set is a possibly empty, closed, forward-invariant, nowhere 
dense subset of X. 

Without further fmiteness hypotheses on the local topology of Xo, we do not know 
if the converse of (1) holds, i.e., if every point in the complement of the post-branch 
set has a neighborhood over which all preimages under all iterates map by degree one, 
as is the case for e.g., rational maps. 

Proof 
(1) If such a U exists, then U fl Vfn = 0 for all n and so x 0 Pf. 
(2) All but the last assertion are clear. To show Pf is nowhere dense, let x G X 

and let W be any neighborhood of x in Xo- Let U C W be the element of U given 
by Proposition 2.4.2 applied with a U chosen so that d(U) — p. Then all further 
preimages of U map by degree one and so U fl Vfn = 0 for all n. Hence U DP/ = 0 . 
Finally, since U fl X ^ 0 we conclude that W fl (X — Pf) / 0 and so Pf is nowhere 
dense in X. • 

2.5. Metric CXC systems 

In this section, we state the definition of metric CXC systems; we will henceforth 

drop the adjective, metric. 

Roundness. — Let Z be a metric space and let A be a bounded, proper subset 
of Z with nonempty interior. Given a G int(A), let 

L{A, a) = sup{|a - 6| : b G A} 

and 

l(A, a) = sup{r : r ^ L(A, a) and B(a, r) C A} 

denote, respectively, the outradius and inradius of A about a. While the outradius 
is intrinsic, the inradius depends on how A sits in Z. The condition r ^ L(A,a) is 
necessary to guarantee that the outradius is at least the inradius. The roundness of A 
about a is defined as 

Round(A,a) = L(A,a)/l(A,a) G [l ,oo). 

One says A is K-almost-round if Round(A, a) ^ K for some a G A, and this implies 
that for some s > 0, 

B(a,s) cAc B(a,Ks). 
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Metric CXC systems. — A key feature of many conformal dynamical systems is 

the fact that small balls can be blown up using the dynamics to sets of definite size 

which are uniformly K-almost-round and such that ratios of diameters are distorted 

by controlled amounts. Below, we formulate abstract versions of these properties 

which make sense in arbitrary metric spaces. 

Suppose we are given a topological CXC system / : Xi —» Xo with level zero good 

neighborhoods Uo, and that Xo is now endowed with a metric compatible with its 

topology. The resulting metric dynamical system equipped with the covering Uo is 

called coarse expanding conformal, abbreviated CXC, provided there exist 

> continuous, increasing embeddings p± : [l ,oo) —» [l ,oo), the forward and ba­

ckward roundness distortion functions, and 

> increasing homeomorphisms 6± : [0,1] —> [0,1], the forward and backward 

relative diameter distortion functions 

satisfying the following axioms: 

4. Roundness distortion Axiom (abbreviated [ R o u n d ] ) . — For all n, k G N and for all 

UeUn, UeUn+k, yeU, yeU 

if 

f°\u) = u, fok(y) = y 
then the backward roundness bound 

Round(£/,£) < P-(Round(U,y)) (2.1) 

and the forward roundness bound 

Round(£/,y) < p+(Round({7,?/)). (2.2) 

hold. 

In other words: for a given element of U, iterates of / both forward and backward 

distorts its roundness by an amount independent of the iterate. 

5. Diameter distortion Axiom (abbreviated [ D i a m ] ) . — For all no,ni,k G N and for 

all 

UeUno, U'eUni, UeUno+k, U'eUni+k, u'cU, U' c U 

if 
fk(U) = U, f\U') = U' 

then 
diam Uf 

diamC/ 

6- ^diam£//N 

k diam U . 

and 
diam U' 

diamC/ 
:6+ 

diam Ur 

diamfj 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2009 
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In other words: given two nested elements of U, iterates of / both forward and 

backward distort their relative sizes by an amount independent of the iterate. 

As a consequence, one has then also the backward upper and lower relative diameter 

bounds: 

6-1+ diam U' 

diamC/ 

diam Ù' 

diam U 
6. 

diam U' 

diam U 
(2.3) 

and the forward upper and lower relative diameter bounds: 

ÔZ1 
diam U' 

diamC/ 

diam U' 

diamf/ 
8+ 

diam U' ^ 

diam U j 
(2.4) 

Axiom [Expans] implies that the maximum diameters of the elements of Un tend 

to zero uniformly in n. Since Uo is assumed finite, each covering Un is finite, so for 

each n there is a minimum diameter of an element of Un. Since X is perfect and, by 

assumption, each U G U contains a point of X , each U contains many points of X and 

so has positive diameter. Hence there exist decreasing positive sequences cn,dn —> 0 

such that the diameter bounds hold: 

0 < cn ^ inf diam U ^ sup diam U ^ dn. 
u ueun 

(2.5) 

2.6. Metric regularity of CXC systems 

Suppose now Xo,Xi are metric spaces. Let / : X\ —> Xo be an FBC as in the 

previous section with repellor X and level zero good neighborhoods Uo- Throughout 

this subsection, we assume that the topological axiom [Expans] and the metric axioms 

[ R o u n d ] and [ D i a m ] are satisfied. We assume neither [ I r red] nor [ D e g ] . 
In this section, we derive metric regularity properties of the elements of the cove­

rings Un and the repellor X. 

A word regarding notation and the strategy of the proofs. — In this and 

the following section, U will always denote an element of U = UnUn. Generally, (•) 

denotes an inverse image of (•) under some iterate of / . Often, but not always, U' 

denotes an element of U which is contained in U. Many of the statements of the 

propositions below make reference to an element U of U. The typical proof consists 

of renaming U as [/, mapping U forward via some iterate to an element U of definite 

size, making estimates, and then transporting these estimates to U via the distortion 

functions. Our estimates, and the implicit constants will always be independent from 

the iterates of the map, unless otherwise stated. 

We first resolve a technicality. 

Proposition 2.6.1. — Let Do denote the minimum diameter of a connected component 

of Xo- Then for any ball B(a,r) in Xo where r ^ Do/2, we have diam B(a, r) ^ r. 
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Proof. — Fix e > 0, and let C denote the component of Xo containing a. Pick]?, q G C 

with \p — q\ > D — e. Then at least one of \a — p|, \a — q\ is at least (D — e)/2, say 

\a — p\. Since C is connected, the function y i — • \a — y\ has an image which contains 

[0, (D-e)/2\. Thus for any s ^ (D-e)/2, there exists y G C with |a — y\ = s. Letting 

e —• 0 proves that B(a,r) has diameter at least r. • 

When dealing with balls below, we shall always assume that r < Do/2. 

Lebesgue number. — Let U be a finite covering of a compact metric space X by 

open sets. The Lebesgue number S of the covering is the supremum over all radii r 

such that, for any point x G l , there is some element U ElA which contains B(x,r). 

Since the covering is finite, 5 is positive. 

Proposition 2.6.2 (Uniform roundness). — There exists K > 1 such that 

(1) For all x G X and n G N, there exists U G Un such that U is K-almost round 

with respect to x, i.e., (3r > 0) 

B(x,r) C U C B(x,Kr). 

(2) For all n G N and for all U G Un, there exists x G X such that Round(i7, x) < 

K. 

Proof 

(1) Denote the set we are looking for by U instead of U. Let 5 be the Lebesgue 

number of the covering Uo and A = supUeUo diamt/. Then given any x G X, there 

Bxists U G Uo such that 

B(x,6) C U C £ ( x , A ) Round(£/, x) < Ki 
A 

: S ' 

Now let x G X and n G N be arbitrary. Set x = fn(x) and let U GUo be the element 

constructed as in the previous paragraph. Let U G Un be the component of f~n(U) 

containing x. By the backward roundness bound (2.1), 

Round(C/,x) < p-(Ki). 

(2) Denote the given element of Un by £/ instead of U. For each U G Wo, choose 

XJJ eU arbitrarily. Let 

if2 = max Round(C7, X[ / ) . 
ueuo v 

Given U eUn arbitrary, let U = fn(U), and let x\j G / n (x{ / ) D [/. By the backward 

roundness bound, 

Round(C/,X[/) < p-(K2). 

Thus the conclusions of the lemma are satisfied with 

K = m8x{p-(K1)ip-(K2)}. 
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In the lemma below, let K denote the constant in Proposition 2.6.2 and cn the 

constants giving the lower bound on the diameters of the elements of Un, cf. (2.5). 

Proposition 2.6.3 (Lebesguenumbers). — For allnGN, allxeX, and allO<r<f^, 

there exists U £Un and s > r such that 

B(x,r) C B(x,s) C U C B(x,Ks). 

In particular, the Lebesgue number of the covering Un is at least Sn = ^ . 

Proof — Given n and x, by Proposition 2.6.2 there is s > 0 and U £Un with 

B(x,s) C U C B(x,Ks). 

Thus cn < diam U < 2Ks so that | ^ < s, whence r < s. 

The next statement says that two elements of covers which intersect over X have 

roughly the same diameter as soon as their levels are close. 

Proposition 2.6.4 (Local comparability). — There exists a constant C > 1 such that 

for all x e X, alln£ N, all U G Un, and all U' G Un+i we have: ifUnU'nX^0 

then 
1 
C < 

diam U' 

diamf/ 
C. 

That is, two elements of U at consecutive levels which intersect at a point of X are 

nearly the same size. 

Proof. — By [Expans] there exists no G N such that 2(dno + d n 0 + i ) is less than 
the Lebesgue number of the covering Uo. Thus there exist r > 0 and n0 such that 
whenever U G Uno and U' G UnQ+i contain a common point x G X , there exists 
V G Uo depending on the pair J7, U' such that 

UUU' C B(x,r) C V. 

By renaming as usual, let U G UnQ+n, U' G Wno+n+i denote respectively the sets U, U' 

as in the statement of the lemma, and suppose x G U f)Uf C\ X. Set U = fon{U), 

U' = fon(U'), x = fon(x) and let 

S-- sup max 
ueuno,u'euno+i 

diam [7 diam U' 

diami/ ' diamV 

Note that S depends only on the integer n0. If V denotes the preimage of V under 

f~n containing U UU', then the backwards relative diameter bounds (2.3) imply 

c - i /m diam U /m 
S+(S) ^ < á - (5 ) 

diam V 
and 

r_1/m diam U /m 
(S) < < ¿ - ( 5 ) . 

diam V 
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Dividing yields, 

S^jS) diamt/'  
S-(S) diamí/ 

S-(S) 
' SI1 (S) 

Since 5 and no are independent of n, the conclusion follows with 

C = max 
К1 (S) 

M S ) 

v * 1 sup{diam[/l£/GU^°Wn} 

inf{diam£/| UeU^°Un} 

The following lemma shows that CXC systems are truly expanding in a natural 

metric sense, and that the 5- function depends essentially only on the relative levels 

of the sets involved. 

Proposition 2.6.5 (Contraction implies exponential contraction) 

Constants C > 0 and 9 G (0,1) exist such that, for any n, k ^ 0, any U' G Un+k 

and any U eUn, ifU'DU then 

diam U' 

diam U 
C'9k. 

In particular, in the upper diameter bounds (2.5), one may assume dn — C'do9n. 

Proof — The diameters of the elements of Uo are bounded from below by the constant 

C o - Since the diameters of the elements of Un tend uniformly to zero (by [Expans ] ) , 
and the backwards relative diameter distortion function 5- is a homeomorphism, there 

exists NQ G N with the following property: 

( W G UNo)(3U G Uo) such that U' C U and Ö-
diam U' 

diam U 

^ 1 

^ 2" 

Now let k G NJ)e arbitrary and let U' G Uk+No. Let U' =_fk{Uf), let U D U' be as 

above, and let U be the component of f~N° (U) containing U'. Then by the backwards 

relative diameter bounds (2.3), 

diam Ü' - diam [7. 
2 

Thus, for any k G N, for any U' G UjsiQ+k, there exists /7 G ¿4 such that Uf C U and 
diam£/' ^ (1/2) diamf/. 

Let us set <9 = 2~1/Ar° and C" = 2CiV°~1 where C is given by Proposition 2.6.4. 

Let n, /c > 0, and let us fix U' G Un+k and U e Un such that [/ D [/' fl X ^ 0 . 

There are integers a ̂  0, 6 G { 0 , . . . , NQ — 1} such that k = a • NQ + b. 
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Define inductively Uj G UjNQ+b, j = 0,..., a, such that Ua = C/^+i C C/j and 
diamf/j+i ^ (1/2) diam/7j. It follows that 

diam U' 
V2 

a 

J diam UQ C ^ Q ) diamf/ 

by Proposition 2.6.4. But 

2~ a _ ßk2b/N0 20k 

so the proposition follows. 

The lemma below shows that in 3Co, a possibly disconnected ball B(x,r) with x G l 
can be both enlarged and shrunk to obtain a pair of elements U, U' of U whose levels 

are equal up to an additive constant and whose diameters in Xo are equal to the 

diameter of U up to a multiplicative constant. 

Proposition 2.6.6 (Balls are like connected sets). — There exist constants L > 1 and 

no G N such that for all x G X and r < So, there exist levels m and n and sets 

U EUn, U' G Um such that \m — n\ < no and 

B(x,r/L) C U' C B{x,r) C U C B(x,Lr). 

Proof — We will first find U and L so that B(x, r) C U C B(x, Lr), where L = 4KC, 

K is the roundness constant from Proposition 2.6.2, and C is the constant from 

Proposition 2.6.4. 

Let ÔQ denote the Lebesgue number of Uo- Given x and r < 6o, the number 

n — sup{z : E3£7, 3i with B(x,r) C U G Z/4 and Round(£7, x) < i f } 

exists. (The set is nonempty by Proposition 2.6.3 and finite by [Expans ] . ) Suppose 

U eUn and B(x,r) C U. We must bound diamt/ from above. 

By Proposition 2.6.2, there exists V G Wn+i for which Round (V, x) < K. Thus, 

B(x,s) C V C B(x,Ks) for some s. Since n is maximal, s < r, and so diamV < 

2Ks < 2Kr. By Proposition 2.6.4, diamt/ < C diam F < C2ifs < 2XCV and so 

U C # ( x , 4KCr) as required. Thus, we have found U. 

The same argument applied to B(x,r/L) produces U' such that B(x,r/L) C U' C 

B(x,r). 

Assume Uf G Um and U G Wn. If m = n + fc where fc ̂  0, Proposition 2.6.5 implies 

^ — log(2L2C")/log#. If n = m + /c where k ^ 0, then another application of the 

proposition (with the roles of U and U' reversed) yields k < — log(2C"/log0). The 

factors of two arise since the diameter of a ball of radius r is bounded below by r, 

not 2r (Proposition 2.6.1). • 

Recall that a metric space is uniformly perfect if there is a positive constant À < 1 

such that B \ (XB) is non-empty for every ball B of radius at most the diameter of 

the space. 
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Proposition 2.6J. — We have diam(t/ fl X) x diamf/ for all U G U'. i s o conse­

quence, the repellor X is uniformly perfect. 

Proof. — Recall that X is perfect, i.e., contains no isolated points. 
We first claim that there exists some constant c G (0,1) such that 

V77 G U, c • diam U < diam(£/ n X). (2.6) 

There exists no large enough such that for each U G Wo, we can choose points 

a,b G J7 fl X and neighborhoods U'a,U'h G Wno of a and 6, respectively, which are 

disjoint and contained in U. We now assume such a choice has been fixed. Given 

U G W/c, let U = fk{U) and let a,b,U'a,U'h be as in the previous paragraph. Choose 

arbitrarily a G U fl f~k(a) and let C/~ G Wno+jt be the unique component of f~k(U'a) 

containing a. Similarly, define b and U~. Then C/~ and U~ are disjoint and are contained 

in U. Each contains an element of X, since X is totally invariant. Thus, diam(C7HX) 

is at least as large as the radius r of the largest ball centered at a and contained in U'h. 

By the definition of roundness 

r > - diam U'ä • Round(C/~, a) 1. 

The backward relative diameter bounds (2.3) imply 

diamL^ > diam £7 • Ö+1 
diam/7^ 

diam [/ 

The backward roundness distortion bound (2.1) implies 

Round([/^,a) < p_(Round({7a, a)). 

Since Wo is finite, r/ diam C/ is therefore bounded from below by a positive constant c 

independent of k. 

We now prove the proposition. Let B = B{x,r) be any ball centered at a point 
x G X. By Proposition 2.6.6 there exists U G U with U C B and B(x,r/L) C U C 
B(x,r). By (2.6) there exists £ i , # 2 € X with |#i — a l̂ > c-diam/7 > cr/L. At least 
one must lie outside of i?(x, cr/2L), so X is A-uniformly perfect where À = • 

Definition 2.6.8 (Linear local connectivity). — Let À ^ 1. i metric space Z is X-

linearly locally connected if the following two conditions hold: 

(1) if B(a,r) is a ball in Z and x,y G B(a,r), then there exists a continuum 

E C B(a, Xr) containing x and y; 

(2) if B(a,r) is a ball in Z and x,y G Z — B(a,r), then there exists a continuum 

E C Z — B(a, r/X) containing x and y. 
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Propositions 2.6.6 and 2.6.7 imply immediately that (i) if U f l X is connected for 

all U G U, then condition (1) above holds, and (ii) if X \ (U f l X) is connected for all 

U G U, then condition (2) holds. We obtain immediately 

Corollary 2.6.9. — If, for all U G XJ, the sets U f l X and X \ (U D X) are connected, 

then X is linearly locally connected. 

Unlike the preceding results in this section, the following lemma uses [ D e g ] . Recall 

that a metric space is doubling if there is a positive integer Cd such that any set of finite 

diameter can be covered by Cd sets of at most half its diameter (cf. [ H e i O l , § 10.13]). 

Proposition 2.6.10 (CXC implies doubling). — / / [Deg ] is satisfied, then X is a dou­

bling metric space. 

Proof. — It follows from Proposition 2.6.5 that an integer ko exists such that, for any 

n ^ 0, any U G Un, and any U' G Wn+fc0, we have diamt/' ^ (1/4L) diamL7" as soon 

asU'DUnX ¿0. 

From the fmiteness of Uo , it follows that any U G Uo can be covered by N sets of 

level ko. 

Let E C X, and x G E. If its diameter is larger than the Lebesgue number of Uo, 

then it can be covered by a uniform number of sets of half its diameter. Otherwise, 

one can find a level n and a set U G Un such that 

E C £ ( x , d i a m £ ) C U C £ ( x , L d i a m £ ) 

by Proposition 2.6.6. 

Let us cover fN(U) by N sets U[,..., U'N of level /c0. Axiom [Deg] implies that U, 

so E as well, is covered by at most pN sets U'A of level n + ko- Thus, 

~. 1 2L 
diam U A ^ —- diam U ^ — diam 

J 4L 4L 

and so we may take Cd ^ pN. 

From Assouad's theorem (see [ H e i O l , Thm. 12.1]) we obtain 

Corollary2.6.11. — / / [ D e g ] is satisfied, then X is quasisymmetrically embeddable in 

some Euclidean space M.n. In particular, X has finite topological dimension. 

The definition of a quasisymmetric map is given below in § 2.8. 

2.7. Dynamical regularity 

Suppose again that Xo, Xi are metric spaces. Let / : Xi —> Xo be an FBC as in the 

previous section with repellor X and level zero good neighborhoods Uo - Throughout 

this subsection, we again assume that the topological axiom [Expans] and the metric 

axioms [Round ] and [ D i a m ] are satisfied. We assume neither [ I r red ] nor [ D e g ] . 
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Recall that a subset A of a metric space Z is c-porous when every ball of radius 
r < diam Z contains a ball of radius cr which does not meet A. A subset is porous if 
it is c-porous for some c > 0. 

Proposition 2.7.1. — / / [Deg ] is satisfied, then the post-branch set Pf = Un>ofn(Bf) 
is porous, and the sets Bfn OX, n = 1,2,3,... are porous with porosity constants 

independent of n. 

Proof. — Axiom [Deg ] implies there exists no and Uno G Uno so that the degree 

deg(/n°|[/no) is maximal. Then all iterated preimages Uno of Uno map by degree one 

onto Uno. So Uno and any iterated preimage Uno lie in the complement of the post-

branch set. By the first assertion of Proposition 2.4.2, for every element U of Uo, 

there is a k(U) G N and a preimage U' of Uno under f~k(<u) which is contained in U. 

Let 

Co min 
ueUo 

diam U' 

diam U 

Let B(x, r) be a small ball in £Q centered at a point x G Pf. By Proposition 2.6.6, 

there exists some n and U G Un such that B(x,r/L) C U C B(x,r). Let U = 

fn{Û) G U0. Then by the previous paragraph, U D U' where U' C X - Pf. If Û' is 

any preimage of t/7 under fn which is contained in [7, then the forward invariance of 

Pf implies Uf <Z X — Pf. By the backward lower relative diameter bounds (2.3), 

diamt/' > ^+1(CQ) diamf/ > 5+1(co)r/L = cir . 

Since good open sets are uniformly if-almost round (Proposition 2.6.2), U' D 
B(y,C\r/K) for some y E X and so P/ is c-porous where c = c\jK. 

We merely sketch the second assertion. Suppose B(x, r) is a small ball centered at 

a point x G Bfk H i . Then for some n, r x diam[7 where [/ G Z//n+fc. Let [/ = fk(U). 

Since /fc(x) G Pf and P/ is porous, there is some U' C U with diamt/7 x diamf/ and 

Uf C X — Pf. If U' is any preimage of U' under fk which is contained in then 

U' C X — Bfk C\X, and the backwards relative diameter distortion bounds again imply 

diamt/7 x diam U x r. Since E77 is if-almost round this implies that X — Bfk D X is 

uniformly porous as a subset of X. • 

The next lemma shows that the roundness distortion control of iterates of / , which 

was assumed to hold only for the sets in U, in fact extends to any ball of small enough 

radius. 

Proposition 2.7.2 (CXC is uniformly weakly quasiregular). — There is a constant H < 

oo and a sequence of radii {rn}^=1 decreasing to 0 such that, for any iterate n, for 

any x G X, and any r G (0, rn), 

Round(fn(B(x,r))Jn(x)) ^ H. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2009 



28 CHAPTER 2. COARSE EXPANDING CONFORMAL DYNAMICS 

Proof. — Let rn = let n G N be arbitrary, and fix r < rn and x G X . By 

Proposition 2.6.6, there exist U G Um and U' G Um+nQ such that 

B(x,r/L) C U' C B(x,r) C U C B(x,Lr). 

Thus diam [7 < 2Lr < cn and so m > n since the sequence (cfc) is decreasing. Set as 

usual U = fn{U), U' = fn(U'), and x = fn(x). Now, 

Round(t//,x),Round([/,x) < L 

and 
1 

2L2 

diam Ù' 

diamC/ 
1. 

By the forward roundness (2.2) and relative diameter (2.4) bounds, 

Round(£/', x) , Round(£7, x) P+(L) 

and 
6+ 1 

2L 2 

diam [/' 

diamf/ 
1. 

Moreover, 

U' Cfn(B(x,r))cU. 

It follows easily that Round(/n(5(x, r)), x) is bounded by a constant independent 

of x, n, and r. • 

2.8. Conjugacies between CXC systems 

Given an increasing homeomorphism 77 : R + —» R + , a homeomorphism </? : X —> y 

between metric spaces is said to be r]-quasisymmetric if, for any distinct triples xi, # 2 

and £ 3 in X , 

ЫхЛ - (р(х2)\ 
Ыхг)-1р(х3)\ 

n > 1 - S 2 p 

> i - x3P 

holds. A homeomorphism /1 between metric spaces is weakly quasisymmetric if it 
distorts the roundness of balls by a uniform factor, i.e., 

Round(ft(B(x ,r)),/i(rc)) ^ # 

for all x G X and r ^ diamX. An 77-quasisymmetric map is r/(l)-weakly quasisym­
metric. 

We start with a result which will enable us to promote weak quasisymmetry to the 
usual strong quasisymmetry. 

Theorem 2.8.1. — LetX, Y be two uniformly perfect, doubling, compact metric spaces. 
Let h : X —>• Y be a homeomorphism. If both h and h~l are weakly quasisymmetric, 
then h and h~x are both quantitatively quasisymmetric. 
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In the above theorem, the term "quantitative" means that the function rj occurring 
in the definition can be taken to depend only on the constants in the definition of 
weak quasisymmetry and on the metric regularity constants. 

In the proof, we adapt the argument of [HeiOl, Thm. 10.19]. 

Proof. — The assumptions imply respectively 

(a) there is a constant A > 1 such that, for any ball B in X or Y with non-empty 
complement, B \ (l/X)B ^ 0 ; 

(b) there are constants C, /3 > 0 such that any set of diameter d in X or Y can be 
covered by at most Ce~@ sets of diameter at most ed; 

(c) there is a constant H such that 

if a, 6, x G l and \a — x\ ^ —#|, then \h{a) — h(x)\ ^H\h(b) — h{x)\ 
if c,d,ye Y and \c-y\ ^ \d-y\, then Ih'^c) - h~l{y)\< H\h~l\d) - hr1^. 

Choose te G (0,1) small enough so that t€X < 1/3. Let a, 6, x G X and set 

t : 
la — x\ 
\b — x 

and t' 
h(a) — h(x) 
h(b) - h(x) 

Let us assume that t < t€. Property (a) implies there are points 6o , . . . , 6S such 
that bj G B(x,t{\b — x\) \ B(x, (t{/\)\b — x\), where s is the least integer such that 
tse<t. 

It follows that if i < j then 

\bj-bj\ 
\b-x\ 

\h - x\ 
\b-x\ ' 

\x-bj\ 
\b-x\ 

so that 

\bj-bj\ 
\b-x\ 

(tl/X) - t{ > (t«/A)(l - \t() 0 

and these points are all pairwise disjoint. 
Furthermore, from the definition of s, we have 

log(iA) 
log(lAe) 

S 

Let 0 ^ z < j < s — 1; then \a — bj | ^ 2\x — bj | and 

\bi ~bj\> (*rVA)(l - A*e)|6 -x\> 2\x -bj\. 

Hence \a — bj \ ^ \bi — bj\ and it follows from property (c) that 

\h(a) - h(bj)\ ^ H\h(bi) - h(bj)\. 
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Similarly, \x — bj\ ^ \b{ — bj\ implies that 

\h(x)-h(bj)\ < H\h{bi)-h{bj)\. 

Therefore 
\h(a) - h(x)\ ^ 2H\h{bi) - h(bj)\. 

It follows that the balls B(h(bj), (l/5H)\h(a) — h(x)\) are pairwise disjoint. Indeed, 
if y e B(h(bj), (l/5H)\h(a) - h(x)\), then 

\y - h(bi)\ > \h(bi) - h(bj)\ - \ y - h(bj)\ > (3/5H)\h(a) - h(x)\ 

so that y $L B(h(bi),(l/5H)\h(a) — h(x)\). Furthermore they are contained in 
B(h(x),2H\h(x) — h(b)\), so the doubling property (b) implies 

s s C 'IS 
-0 

from which we deduce that t' is bounded by a function of t which decreases to 0 with t. 
Therefore, there is a homeomorphism rj : [0,1] —• [0,7/(1)] such that ry(l) > 1 and 

if \a — x\ ^ \b — x\ then 

\h(a)-h(x)\ n 
\a — x\N 
\b-x\ 

\h(b)-h(x)\. 

Similarly, if \c — y\ < \d — y\ then 

\h-Hc) h-4v)\ n \c~y 
M-2/1 

Ih-W-h-'iy)]. 

Let us assume now that t ^ l / r ? 1 ( 1 ). It follows that 

\h(b) - h(x)\ ^ r)(l/t)\h(a) - h(x)\ ^ \h(a) - h(x)\, 

whence 

\b-x\ n 
Hb) - h(x)\ 
\h(a)-h(x)\ 

\a — x\. 

It follows that 
t' i lh-\l/t). 

This establishes that / is quasisymmetric, and / 1 as well. 

The main result of this section is 

Theorem 2.8.2 (Invariance of CXC) 
Suppose f : (X\,X) —> (Xo,X) and g : (%)1,Y) —» (2)0,y) are two topological CXC 

systems which are conjugate via a homeomorphism h : Xo —• 2)Q? where X$ and 2)0 
are metric spaces. 

(1) If f is metrically CXC and h is quasisymmetric, then g is metrically CXC, 
quantitatively. 

(2) If f,g are both metrically CXC, then h\x • X —> Y is quasisymmetric, quanti­
tatively. 
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In the proof below, we use subscripts to indicate the dependence of the metric 
regularity constants on the system, e.g., 5±j,5±ig, etc. 

Proof 
(1) Suppose first that h is 77-quasisymmetric. Then 

Roundness quasi-invariant (abbreviated [ Q S - R o u n d ] ) . — The map h sends K-almost-
round sets with respect to x to rj(K)-almost-round sets with respect to h(x). 

Relative distance distortion (abbreviated [ Q S - D i a m ] ) . — For all A,BcX with Ac B, 

1 
9 / diam B \ 
Z " V diam A / 

diam h(A) 
diam h(B) ( 2 diam A \ 

diam B ) ' 

(See [HeiOl, Prop. 10.8].) 
The topological axioms [Expans ] , [ I r red] and [Deg ] are invariant under topological 

conjugacies. Axiom [Round ] follows immediately from property [QS-Round ] above. 
Thus, it suffices to check Axiom [ D i a m ] . Let us use small letters to denote sets and 
drop "diam" for ease of readability. Let rj(t) = l / ( r / _ 1 ) ( l / t ) , and notice that h~1 is 
77-quasisy mmet r ic. 

We have 
v' 
V 

n 
2 u' 

и 
[ Q S - D i a m ] 

й' 
й S-,f 

2 u' 
и 

del 6-

v' 
v 

n 2S-J 
и' 

v 
77 increasing 

и' 
и 

n 2 u' 
v [ Q S - D i a m ] 

Thus, 
v' 
V 

V 26-j V 
u 
2— 

V ) ) ) • 
Now define 

6-,g(t) = r,(26-,f(rj(2t))). 

This is a composition of homeomorphisms, hence a homeomorphism, and so it satisfies 
the requirements. Finding 5+^ is accomplished similarly: 

v' 
V i 

2 u' 
и 

V 2*+,/ 
и' 

\ 11 

n 2*+,/ 
n 2 u' 

11 ' 
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(2) Now suppose g is metrically CXC. By Propositions 2.6.10 and 2.6.7, X and Y are 

doubling and uniformly perfect. Therefore, it suffices to show h and h~l are weakly 

quasisymmetric (cf. Theorem 2.8.1). Since the setting is symmetric with respect to / 

and g, it is enough to prove that h is weakly quasisymmetric. To show this, it suffices 

to show (since h and its inverse are uniformly continuous) that if B — B{x,r) is a 

sufficiently small ball, then its image h{B) is almost round with respect to y — h{x), 

with roundness constant independent of B. Our proof below follows the usual method 

(see [Sul82]): given a small ball B, we use the dynamics and the distortion axioms to 

blow it up to a ball of definite size and bounded roundness. By compactness, moving 

over to Y via h distorts roundness by a bounded amount. We then pull back by the 

dynamics and apply the distortion axioms again. 

Our argument is slightly tricky, since we must trap balls, which are possibly discon­

nected, inside connected sets in order to apply the pullback step and make sense of the 

"lift" of a ball. We will accomplish this as follows. Let U = {Un}n=o>v = {K}£°=0 

be the sequences of good open sets for / and respectively. We are aiming for the 

following diagram: 

U'GBcU 
h 

*V'c h(U') C h(B) c h(U) c V 

fn\ 9n (2.7) 

U'cfn{B)cU 
h_ 

Vfch(U')ch(fn(B)) gn(h(B))ch(U)cV 

Below, we indicate by subscripts the dependence on the map of the metric regularity 

constants K, C , L, cn, dn, etc. defined in the previous two sections. 

The diameters of elements of Vo are bounded from below. Since X\ is relatively 

compact, : X\ —> %)1 is uniformly continuous. Hence there exists So > 0 such 

that 

diami? < SQ => diam(/i(£')) < eo = Lebesgue # of VQ. (2.8) 

Finding U,U'. — Axiom [Expans] implies that there exists No such that <ijv0,/ < ^o-

Let B = B(x,r) where r < CN0J/(2Lf). By Proposition 2.6.6, there exists no,/ and 

m G N, U G Um, and U' G Um+no . such that 

B(x,r/Lf) C U' C B C U C B(x,Lfr). 

Thus diamf/ ^ 2Lfr ^ c^n f and so m = Â 0 + n where n > 0. 

Finding [/', U. — Let as usual U = fn(U), U1 = fn{Uf), x = fn{x). Then U G UNo 

and U' G UNo+nor 

Finding V. — Let y = h{x). Since U G UN0 and djv0)/ < So, the bound (2.8) implies 

diam(/i(C/)) < eo and so there exists V G Vo with h(U) C V. 

Finding V. — The forward roundness bound (2.2) implies that 

Round(L/'/,x) < p+)/(L/) . 
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2.8. CONJUGACIES BETWEEN CXC SYSTEMS 33 

Hence 
U' D B(x,s'), where s' 

cN0+n0J 

2 p + , / ( L / ) ' 
Since X is compact, h(B(x,s')) D B(y,t') where 

t' = inf{|ft(x) - h(à)\ :xeXi\a-x\ = s'}. 

Axiom [Expans] implies that there exists ko such that dk0,g < t'/2. Proposition 2.6.2 
implies that there exists V G Vk0 such that Round(y', y) < Kg. Then 

V C h(U') C h(fn(B)) C h{U) C V 

where 

Round(y/, y), Round(V, y) ^ min 
do,g 

V 
K9 

: R 

and 
diami/'  
diamV^ 

ck0,g 

do,g 
D. 

Finding V,Vf. — Let V, V' denote the preimages of V and V7, respectively, contai­
ning y = h(x). We have now achieved the situation summarized in (2 .7 ) . 

Conclusion. — The backwards roundness bound (2 .1) and backwards relative diame­
ter bounds (2.3) imply 

Round(V, y), Round(V", y) < R = p-t9(R) 

and 
diamV^ 

di&mV 
> D ••S+T9(D). 

Hence Round(fe(B), h(x)) < 2R2/D and the proof is complete. 
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CHAPTER 3 

GEOMETRIZATION 

In this chapter, we assume we are given the data of an FBC / : Xi —• £o with repel-

lor X as in the beginning of § 2.2 and a finite cover U which together satisfy [Expans ] . 

Given a suitably small parameter e > 0, we will associate to this data a metric d£ 

on the repellor X such that in this metric, / acts very much like a piecewise linear 

map of an interval with constant absolute value of slope: it sends balls of radius r 

onto balls of radius e£r. In so doing, we promote our topological dynamical system 

to a non-classically conformai one. We will also show that the quasisymmetry class 

of this metric is natural, in that it does not depend on the choice of the open cover 

U, so long as [Expans] is satisfied. This means our topological dynamical system has 

a canonically associated conformai gauge. 

The metric d£ arises as a visual metric on the boundary at infinity dT of a certain 

Gromov hyperbolic space V associated to the data. The map / induces a 1-Lipschitz 

map F : V —> Y and so extends to a map F : V —> V of the compactification. We show 

that on the boundary <9r, the map F is conjugate via a natural homeomorphism 

4>f to our original dynamical system / : X —• X. This approach follows not only 

Thurston's philosophy that Topology implies a natural Geometry, but also Gromov's 

point of view that coarse notions capture enough information to determine Geometry. 

We then exploit the existence of the extension F : F —> T. Assuming in addition 

[Irred], we construct, using the Patterson-Sullivan method of Poincaré series, a na­

tural measure / / / which is invariant, quasiconformal, ergodic, and mixing, and which 

governs the distribution of preimages of points and of periodic points. 

When the original map / : Xi —> Xo is metrically CXC with respect to a metric d, 

we show that the conjugacy (f)f constructed above is quasisymmetric, and we prove 

that the measure / / / is the unique measure of maximal entropy logdeg(/), and is 

Ahlfors regular of exponent ^ logdeg(/) . 
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This chapter is organized as follows. In the first section, we review the basic geo­

metric theory of unbounded metric spaces, emphasizing hyperbolicity and compacti-

fications. Section 2 is devoted to the construction of the space T, and we establish its 

first properties. In Section 3, the hyperbolicity of T is proved, and its naturality is 

established. In Section 4 we study measure-theoretic properties and Hausdorff dimen­

sion. In Section 5 we assume that the original system is topologically or metrically 

CXC, and we refine the results of the preceding sections. 

3.1. Compactifications of quasi-starlike spaces 

A metric space (X, d) is said to be proper if, for all x G l , the function y i—> d(x, y) 

is proper, meaning that closed balls of finite radius are compact. A geodesic curve is 

a continuous function 7 : / —> X such that d(j(t), 7(£')) = \t — t'\ tor all t,tf e I and 

where / is an interval. We will often not distinguish between the function 7 and its 

image in X. The space X is said to be geodesic if any pair of points can be joined by 

a geodesic. 

Rectifiable curves and integration. — We refer to [Vai71, Chap. 1] and [HeiOl, 
Chap. 7] for what follows. Let I — [a, b] C R be an interval, a ^ b. A rectifiable curve 

7 : I —• X is a continuous map of bounded variation i.e., 

sup 
a=so<Si • • • < s n = 6 0^j<n 

dfo(si+i),'y(sj)) < 00, (3.1) 

where the supremum is taken over all subdivisions of [a, b] with so = a and sn — b. The 

supremum in (3.1) is the length £(7) of 7. When 7 is rectifiable, it can be parametrized 

by arclength, i.e., there is an increasing and continuous function s : [a,b] —+ [0,^(7)] 
and a curve 7 S : [0,^(7)] —• X such that 7 = 7 S o s and, for all 0 ^ c ^ d ^ ^(T)> 
^(7s|[c,d]) — |d — c|. We then say that 7 S is the parametrization of 7 by arclength. 

Note that geodesic curves are already parametrized by arclength by definition. 

Let 7 be a rectifiable curve, and p a non-negative Borel function defined on 7. We 

set 

'1 I p(x) ds(x) • 
1 

0 
P(ls{t))dt 

where 7S is the parametrization by arclength. 

Quasi-starlike spaces. — Fix a base point o G X. A ray based at o is a geodesic 

curve 7 : R+ —• X such that 7(0) = o. Let 7Z be the set of geodesic curves starting 

at 0, and let TZoc be the set of rays based at o. The space (X, o) is K-quasi-starlike 

(about o) if, for any x G l , there is a ray 7 G lloo such that d(x, 7) < K. 

In this section, we assume that (X, d) is a geodesic, proper, If-quasi-starlike space 

about a point o. For convenience, we write d(x, y) — \x — y\ and \x\ = \x — o\. 
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3.1. COMPACTIFICATIONS OF QUASI-STARLIKE SPACES 37 

Hyperbolic spaces. — The Gromov product of two points x, y G X is defined by 

(x\y) = (l/2)(\x\ + \y\ — \x — The metric space X is Gromov hyperbolic if there is 

some constant 5 ^ 0 such that 

(x\z) ^ min{(a;|y), (y\z)} - S 

for any points x,y,z G X. (By [CDP90, Prop. 1.2], this definition agrees with the 

more common one in which the above inequality is required to hold for all x, y, z and 

o instead of just at a single basepoint o.) Let us note that in such a space, (x\y) equals 

d(o, [x,y]) up to a universal additive constant, where [x,y] is any geodesic segment 

joining x to y. We refer to [CDP90] and to [GdlH90] for more information on 

Gromov hyperbolic spaces. 

Compactification. — Here, we do not assume X to be hyperbolic. We propose to 

compactify X using the method of W. Floyd [Flo80]. Let e > 0, and, for x G X , 

define p£(x) = exp(—e\x\). 

If 7 is rectifiable, we set 

4 (7) = Pey 

For x,y G X , define 

de{x,y) = \X- y\e = inf pe = mf 4 (7) 
7 J 1 7 

where the infimum is taken over all rectifiable curves which join x to y. Thus, \x—y\e ^ 

\x - î/l. 

The space ( X , | • |e) is not complete since if 7 G IZQQ and if t' > t then 

l 7 ( * ) - 7 ( * ' ) | e 
t' 

t 
e-es ds <e -st /E . 

Therefore {7(^)}n is a non-convergent c?£-Cauchy sequence. 

Definition. — Let X£ be the completion of (X,de), and set dX£ — d£X = X£ \ X. 

Thus, X£ is also a length space. 

Visual metrics. — If X is Gromov hyperbolic, then, for e small enough, dX£ 

coincides with the Gromov boundary of X and d£ is a so-called visual distance 

(cf. [CDP90, Chap. 11] and [BHK01, Chap. 4]). That is, we may extend the defini­

tion of the Gromov product to the boundary dX£ and then, \x — y\£ x e~£^y^ holds 

if 0 < e ^ eo(S) for some constant eo(S) > 0 which depends only on 5. When dealing 

with a hyperbolic space X , we will write indifferently 

<9£X, <9ooX, dX 

to denote its boundary. In any case and unless specified, metrics on the boundary will 

always be visual metrics d£ as above for some fixed parameter e > 0 small enough. 
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38 CHAPTER 3. GEOMETRIZATION 

Topology on 1Z. — If 7 G 7Z then 7 is geodesic for d£. Indeed, let 7 be a curve 

starting from o that is parametrized by arclength. It follows that |7(t)| ^ t for all 

t G [0, ¿(7) ] with equality for all t if 7 G K. Therefore, 

4 (7) = 

l(y) 

/0 
e - ^ d t 

^(7) 

Jo 
e"££ dt 

1 (1-e -el(y) (3.2) 

We have equality when 7 is geodesic for do. 

For 7 G 7£, the limit in X£ of 7(£) at ¿(7) exists since any sequence (,y(tn)) with 

£n —• ¿(7) is a d£-Cauchy sequence. Let us define 

7 T ( 7 ) = lim 7ft). 
t-*(7) 

The Hausdorff distance between two closed nonempty subsets A, B of a compact 
metric space (Z, d) is given by 

dn(A, B) = max sup inf d(a, 6), sup inf d(a,b) 
<aeA b^B beB a^A 

The Hausdorff distance turns the set of nonempty closed subsets of a compact metric 
space into a compact metric space. 

The closure of each element 7 G 7Z is compact in X£, so the Hausdorff distance 

with respect to the metric d£ between the closures of rays defines a metric, and hence 

a topology, on the set of rays 1Z. 

Lemma 3.1.1. — The set 1Z is compact and the map TT : 1Z —-> X£ is continuous and 

surjective. Furthermore, IZOQ is closed in 1Z and • ^ 0 0 —* dX£ is also surjective. 

Proof. — Let {7n}n be a sequence in 7Z. Suppose first that lim inf ^(7n) — L < 00, 
where £ denotes the do-length of a geodesic in X. Regard each 7n as a function from 

an interval into X. Since X is proper and 7n(0) = o, the basepoint, for all n, the 

Arzela-Ascoli theorem implies that after passing to a subsequence we may assume 

{7n}n converges uniformly on [0, L] to a continuous map 7 : [0, L] —> X. Since 

\a — b\ = d0(7n(a),7n(fr)) —> do(7(a),7(6)) for all a,b G [0,L], the curve 7 is a do-

geodesic and so 7 G 11. It follows easily that 7n —• 7 in the Hausdorff topology on 7Z 

with respect to the metric d£. 

Suppose now that liminf f(7n) = 00. Again, the Arzela-Ascoli theorem and a 

diagonalization argument shows that we may assume after passing to a subsequence 

that 7n —• 7 uniformly on compact subsets of [0,00), where 7 : [0, 00) —> X is a 

do-geodesic, i.e., an element of IZoo (by this, we mean that on any compact subset 

of [0,oo), 7n is defined on this subset for all n sufficiently large, and for such n the 

convergence is uniform on this subset). We now prove 7n —> 7 in the Hausdorff 

topology with respect to the metric d£. It suffices to show that 7n —• 7 uniformly 

ASTÉRISQUE 325 



3.1. COMPACTIFICATIONS OF QUASI-STARLIKE SPACES 39 

when regarded as maps from [0, oo) to (X£,d£). Observe that for any L G [0, oo], any 
geodesic ray a : [0, L] —> X, and any to < L, the length of the tail satisfies 

4 (a I [to,i,]) 

L 

J t0 
e~S£ds < -e~£t°. 

€ 
(3-3) 

Fix now 7] > 0 and choose to so large that ±e~£t° < rj/3. Next, using uniform 
convergence, choose no so large that sup0^t^to \ jn(t) — l{t)\e < n/3 for all n ^ no-
Then for all t > t0 and all n > n0 large enough so that 7n(£) is defined, by the triangle 
inequality and (3.3) we have 

\ln(t) - 7(t)\e < \7n(t) - 7n(*0)|e + |7n(*o) " 7(to)\e + frfo) ~ l(t)\£ < V-

We have thus established that 71 is compact and that IZoo is closed in the Hausdorff 
topology with respect to d£. 

The continuity of the map TT follows from entirely analogous arguments. It remains 
only to show that TT : IZoo —» dX£ is surjective. If x G dX£, then there is a sequence 
{%n}n in X£ which converges to x. Let 7n be geodesic segments joining o to xn, so 
that 7r(7n) = xn. By compactness of 1Z, there exists 7 G 1Z such that after passing to 
a subsequence, 7n —> 7. Clearly 7 G T^oo- Since TT is continuous, 7r (7) = x. • 

Lemma 3.1.2. — The following hold 

X£ = B£(o, dX£ = {x, \x\£ = {1/e)} and B(o, R) = B£{o, {l/e){l - e~eR)). 

Proof. — Let x G X and 7 G 1Z be a geodesic curve joining o to x. According to (3.2), 
7 is also geodesic for d£. Therefore 

= | ( 1 - c - ^ l ) < | . 

This implies that B(o,R) = Be(o, (l/e)(l - e~£jR)) and X£ C B(o, 1/e). 

Let x G <9X£. There is a sequence {xn}n of X such that xn converges to x. Since 
X is a proper space, it follows that \xn\ —•> 00. Furthermore, 

|xn|e ( l / e ) ( l -е-£1ж"1) 

so that |x|e = 1/e. This establishes the lemma. 

Shadows. — Let x G X, R > 0. The shadow I5(x, R) of B(x, R) is the set of points 
y in X£ for which there is a do-geodesic curve joining o to y which intersects B(x, R). 

See Figure 3.1. 

Let Uoc(x, R) — 15 (x, R) fl dX£ be its trace on dX£. When R = 1 we employ the 

notation 15(x) for 15 (x,l). 

Lemma 3.1.3. — For any x, R, there is a constant CR > 0 such that 

diam£W£,#) ^CRe~£W. 
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Uoo(x,R) 

chX-
U(x,R) 

- ^ V 
// X 

/ 

o 

Fit a m o.l. The shadow i'H.r. I\) cast by the ball of radius /? about ./•. 

Proof. Lot 1/ \ ( M AM. There is a y,etidesio segment 'o. //; ami a p< tint p i: B{,v, f\) 7 

to, / / ] . Therefore. 

¡1/ ~ ,fb |// - 4- j.r -• />(,. 

Sine j.r1 - R % 'ft\ - /?. it follows tliat ,./* p >; R<-li>< ' ,r;. Lot ;/>. //; denote 

the subsequent of l lit1 seiruieii? utt //: joining /> to //. We have 

|p-y|e I All'-U\) 

g 

p 
e6-et dt b ... f • 

(|x|-R) '77 e-e|x| 

This e>! ahlislios t ho isi iuiate. 

Remark. Shadows are almost round subsets of i he boundary. More precisely: if 

A is (In uuov hyper!><>iio and A"-( jiiasi-st arlike. t hen, for a fixed R which is chosen 

lar»;e enough, there is a eoustaiit ( ' -- ( '{5. /? , 1\) such that, for auv .r £ A'. there is a 

boundary point a - ()X such that 

r>[n.{\.C)i r I '.'.7 O v (,r. ii \ . l i U f . f c ' r ) , 

A proof of this tact can he found in [Coo93. Pro)), 7.1]. Kurt heriuoro. the* family 

{iut (of r. R i) : ./• A*.// 7̂  (I} delhies a basis of neighborhoods in A' for points at 

infinity. 

Distance to the boundary. - If x y A" . we let A. yr) - disy \j\i)XE). 

Lemma 3.1.4. I J X is K-qnnsi-shirlifa . fh< // for all .r f: X. 

( " ' 1 
6e(e) < CK,e 

§§ 
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Proof. — Let x G X. We start with a first coarse estimate: 

Se(x) 
POO 

l\x\ 
e-£t dt 1/ee-e |x| 

If there is a ray 7 G such that x G 7, then 

<Se(s) 

0̂0 

\x\ 

e~£t dt 
e-e\x\ 

e 

Pe(x) 

e 

In general, since X is if-quasi-starlike, there is a ray 7 G T^oo and a point p G 

B(x,K)Dj. Therefore, \x\ - K < |p| ^ |x| + K and | x - p | e ^ CKe~£^\x -p\. Then 

Se{x) \x-p\£+S£(p) CKe-e|x| 
e - e ( | x | - Ä - ) 

e 
CKe-e|x| 

Quasi-isometries versus quasisymmetries. — A quasi-isometry f : X —> y 

between two metric spaces is a map for which there are constants A ^ 1 and c > 0 

such that 

(1) for any x,xf G X, 

1 I /1 
— \x — x I — c 
A 

I / O * ) - / ( * ' ) ! A|x — x'\ + c 

(bi-Lipschitz in the large); 

(2) for any y G Y, there is some x e X such that — y\ < c (nearly surjective). 

We note that if / : X —> y is a quasi-isometry, then there exists a quasi-isometry 

# : y —> X such that \g o / ( # ) — x| < C for some constant C < 00. 

It is well-known that if $ : X —> y is a quasi-isometry between two hyperbolic 

spaces, then it extends as a quasisymmetric homeomorphism (f : dX —» <9y, if we 

endow the boundaries with visual metrics; see [Pau96, Prop. 4.5] in the general 

setting of hyperbolic metric spaces. For the converse, we have 

Theorem 3.1.5 (M. Bonk & O. Schramm). — Let X, Y be two quasi-starlike hyperbolic 

spaces. For any quasisymmetric homeomorphism (f : dX —> dY, there is a quasi-

isometric map $ : X —-> Y which extends (p. 

For a proof, see [Pau96] or [BSOO, Thm. 7.4 and Thm. 8.2]. 

3.2. Spaces associated to finite branched coverings 

Suppose / : Xi —> Xo is a finite branched covering with repellor X , and all the 

conditions on £ 0 , / > and X stated at the beginning of § 2.2 are satisfied. We assume 

furthermore that we are given a finite open covering U = UQ of X by connected subsets 

of XQ. 
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Under these assumptions, we prove 

Theorem 3.2.1. — The pair (/,£</) defines a proper, geodesic, unbounded, quasi-

starlike, metric space T together with a continuous map F : T —• T with the 

following property. For any e > 0, let (Te,d£) denote the metric space giving the 

compactification ofY as constructed in §3.1. Then 

(1) There exists a continuous map 

<f>f.X^d€T 

such that 4>f o f = F o cf)f. 

(2) The map F extends as a Lipschitz map F : T£ —> T£ sending the boundary to 

the boundary. 

(3) Balls are sent to balls: F(B(£,re~e)) = B(F(£),r) holds for any £ G F \ {o} 

and any r G (0, |F(f) |e). 

(4) If {fM) satisfies [Expans ] , then there is some So > 0 such that, for any e G 

(0 ,£o); the map <j>f : X —> d£T is a homeomorphism. 

In the above theorem, T£ and d£T are defined as in the previous section, and J3(£, r) 

denotes the ball of radius r about £ in re. 

Note the similarity of this statement with the case of hyperbolic groups; 

cf. Appendix B. 

In the next section, we investigate more closely the geometry of T£. 

Definition of T. — Prom the data consisting of the map / : X\ —> XQ and the cover 

U, we will define an infinite graph T equipped with a distinguished basepoint. Our 

construction is quite similar to that employed by Elek [Ele97, § 3] and by Bourdon 

and Pajot [BP03, §2.1]. However, in our setting, V is defined using topological 

instead of metric data, and it will be used later on to construct metrics associated 

with topological dynamical systems. 

The set V(T) of vertices is the union of the elements of U = Un^o^n, together with 

a base vertex o = X. It will be convenient to reindex the levels as follows. For n G N 

set 

S(n): 
Un-i if n ^ 1, 

{ o j if n = 0. 

For n G N and a vertex W G S(n), we set \W\ = n. Thus, V(T) = Un^0S{n). 

Two vertices W\,W2 are joined by an edge if 

\Wi\ - IW2IKI and W1nW2nX yí0. 

See Figures 3.2 and 3.3. 

This definition forbids loops from a vertex to itself and multiple edges between 

vertices, so T is indeed a graph as claimed. The graph T is turned into a geodesic 

metric space in the usual way by decreeing that each closed edge is isometric to the 

Euclidean unit interval [0,1]. Since each 5(n) is finite, the valence at each vertex is 
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lia 

/ 

U1 r 

f 

u0 

F I G U R E 3.2. Definit ion of the graph F. 

in Xi in T 

F I G U R E 3.3. T h e vert ices of a parameterized edge-path in T, at right, corres­

pond to a sequence of elements of U in which consecut ive elements intersects 

in points of the repellor, X. 

bounded (though not necessarily uniformly so) and so T is proper. Since as subsets 
of Xo, any vertex W G S(n) intersects a set W G S(n — 1), any vertex W can be 
joined to the basepoint o by a geodesic ray in T. Hence T is connected. It is also 
1/2-quasi-starlike, since any point of an edge joining vertices at the same level lies 
within distance at most 1/2 from a geodesic ray emanating from o. By construction, 
S(n) is the sphere of radius n about the origin o. 

Action of the finite branched covering. — If n ^ 2 and W G S(n) = W n _ i , 
then as subsets of XQ , we have f(W) G S(n — 1) = Un-2, so / induces a map 
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F : Un^25(n) Un^25(n - 1). Define F(W) = o for all W G 5(1) U 5(0); thus F is 

defined on the vertex set V(r). To extend F over edges, observe that if n ^ 1 and 

if (as subsets of XQ) the sets W,WF are distinct inverse images of W, then W,WF, 

being distinct components of the inverse image, cannot intersect. Thus, if W±,W2 are 

joined by an edge, the definition of edges given above then implies that either 

(1) F(Wi) ^ F(W2) and F(W1),F(W2) are joined by an edge, or 

(2) \W2\ ^ 1 and F(Wi) = F(W2). 

Letting E be the union of edges joining pairs of elements of 5(1), properties (1) and (2) 

above imply that F extends naturally to a continuous map F : T —> T which collapses 

B(o, 1) U5(0) UE —> { o } , and which otherwise sends all edges homeomorphically onto 

their images. 

Properties of F 

> F is 1-Lipschitz. 

> F decreases levels by one: |F(£)I = l£l ~~ 1 f°r all |£| ^ 1. 

> F sends rays to rays: F : (7£,7£oo) —> (7J,7£oo) 

> F has the path lifting property for paths which avoid the base point o: any 

path 7 in T \ {o} can be lifted by F~l. 

Once a basepoint has been chosen, the only ambiguity in defining the lift 

arises from vertices corresponding to a component on which / is non-injective. 

In the sequel of the paper, we will use this property without mentioning it 

explicitly. 

Lifts preserve lengths: if 7' is a lift of a curve 7, then £(7) = ¿(7'). 

> F maps shadows onto shadows: for any |£| > 2, = IS(F(£)). 

To see this, note that since F maps rays to rays, it follows that C 

c3(F(£)). For the converse, let Q G IS(F(£)) and let us consider a geodesic curve 

7 joining F(£) to £• The function £ 1—• |7(t)| is strictly monotone. Since F has 

the lifting property, there is a strictly monotonic geodesic curve 7' starting 

from £ such that F^') = 7. This curve can be extended geodesically to the 

base point o. It follows that C F(IS(£)), which proves the claim. 

Let e be an edge in T at distance at least 1 from the origin o. Then, since F\e is 

injective, 

*e(F(e)) = 
/F(e) 

e(l*l ds(X) 
f e- 'IfMI ds(x) 
e 

/" e - e ( l * l - D ds(X) 
e 

ee4(e). 

Let now £, C G T \ B(o, 1) and let 7 be a geodesic segment joining these points. Since 

two edges can be mapped to a common one, and since 7 may contain the origin, 

de (F (0 ,F (0 ) 
'F(7) 

e-«lnr<*>l d t e - e ( l T ( « ) l - i ) d t ^ e e d e ( ^ 0 -
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Therefore F is uniformly continuous and so extends to an e£-Lipschitz map F : 

I W I V 

Proposition 3.2.2. — For any £ G T£, and r < |F(£) |£, F(Be(€, re~£)) = Be(F(£), r). 

Hence F is an open mapping. 

Proof. — We already know that F(B£(^re~£)) C B£(F(£),r). Let us consider £' G 
Be(F(£),r) and 7' a d£-geodesic curve joining F(£) to Since r < |F(£)|e, it follows 

that 7' avoids o. We let 7 be a lift of 7' which joins £ to a point £ € IV It follows 

that 

l£ - CI, < 4(7) = 
7Ppe(F(0)«fa(0=e-e 

Ppe(F(0)«fa(0=e-e 
Ype(E)ds(E) 

so |£ - CU < ^ | F ( £ ) - CU < e~£r and C e ££(£ ,e"V) . 

The following proposition says that if Fn is injective on a ball, then it is a similarity 

on the ball of one-fourth the size. 

Proposition 3.2.3. — Suppose B = £ ( £ , r ) C T£ and Fn\B : B -> £(F(£) , en£r) is a 

homeomorphism. Then for all Ci, C2 £ B(^r/4), 

|F"(d)-F"(C2)|e = e- |Cl-C2|e. 

Proof. — We first claim that the above equality holds when Ci = £ and C — C2 is an 
arbitrary point in B. The upper bound is clear. To show the lower bound, notice 
that F~n : £(Fn(£), re£n) £ (£ , r ) is well denned, and let 7 C £(Fn(£), re£n) be a 
curve joining Fn(£) to Fn(Q. It follows that F~n{^) is a curve joining £ to £ inside 
5 , so the proof of Proposition 3.2.2 shows that 

4 (F-n(7) ) = e-£"4(7)-

Since FU\B is a homeomorphism, the claim follows. 
The proposition follows immediately by applying the claim to the ball centered 

at £i of radius | d — C2V which by hypothesis is contained in B and hence maps 
homeomorphically onto its image under FN. • 

Comparison of X and dT. — For any x e X and n G N, let Wn G S(n) contain 

x. The sequence {Wn}n defines a ray jx in TZQQ such that 7ar(n) = Wn. There is a 

natural map (j)f : X ^ d£T defined by (/>f(x) = ^(7^). In other words: the sequence 

{Wnjn is a Cauchy sequence in IV and we let </>/(#) be its limit. This map is well 

defined: if {VF^}n is another sequence contained in a ray 7 .̂, then d(Wn,W^) < 1 

since x G Wn D W'n f l X , so ̂ (7^) = 7r(7^). Furthermore, F o (fif = c/)f o f on X. 

Proposition 3.2.4. — The map </>f : X —• <9£r zs continuous and onto. 
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Proof. — To prove surjectivity, suppose £ G dTe. By Lemma 3 .1 .1 , there exists a ray 

7 G ftoo such that 7r(7) = £. For fc G N let Wk = 7(fc), so that Wfe G S(fc). Then 

Wk G T£ and £ = lim . But each Wk is also a subset of £o whose intersection with 

the repellor X contains some point Wk> Since X is compact, there exists a limit point 

x of {wk}k. 

We claim <j>f(x) = £. By definition 0/ (x) = lim Vn, where Vn is an arbitrary element 

of S(n) which as a subset of X contains x and where the limit is in Te. Then for each 

n G N, since Vn is open and Wk —> there exists fc(ra) G N such that flV™DX ^ 0 
for all h > fe(n). By the definition of shadows, C l5(Vn). By Lemma 3 .1 .3 , 

|Wfc(n) ~~ Vn\e —* 0 as & - • °°- Hence £ = limVFfc = limWfc(n) = l imVn = <t>f(x) as 

required. 

To prove continuity, suppose xk —> x E X. For all n G N choose Wn G .S(n) 

containing x, so that £ = 4>f(x) = lim Wn G Uoo(Wn)- Then for all n G N there exists 

k(n) such that xk G Wn for all k > fe(n). By the definition of </>/, </>f(xk) G Uoo(Wn). 

By Lemma 3 .1 .3 , \(f)f{xk) — £\£ ^ Ce~£n —• 0 as n —• oo and so (f>f(xk) —• £ — 4>f(x). 

• 
We now turn to the proof of Theorem 3 .2 .1 . We first prove the existence of a 

preliminary metric in which the diameters of the sets (j)f(U), U £ UN, tend to zero 

exponentially fast in n. 

Theorem 3.2.5. — Suppose [Expans] holds. Then there exists a metric on the repellor 

X and constants C > 1,6 < 1 such that for all 0, 

sup diamtf < C0n. 
ueun 

The proof is standard and mimics the proof of a preferred Holder structure given 

a uniform structure; see [Bou61, Chap. II]. 

Proof. — Let 7Vo be given by Proposition 2.4.1 (2) (c) and put g = fN°, Vo = 

U ^ o " 1 ^ , = f-N°X0, 2)0 = £o, and Vn = g~nVo. Then g is a finite bran­

ched covering, the repellor of g is X (by total invariance), and the mesh of Vn tends 

to zero. The conclusion of the above proposition (applied U[ — U'^ = V) and the 

definition of g implies 

W G Vn, 3V G Vn_i with V C V. (3.4) 

Then (3.4) and conclusion (2) (b) of Proposition 2.4.1 imply immediately that for any 

distinct x,y G X , the quantity 

[x\y] — max{n : VI ^ i ^ n, 3V* G Vi with {x , y} C Vj} 

is finite. For x = y set [x,y] = oo. The statement (3 .4) , Proposition 2.4.1 (2) (c) and 

the definition of g imply for any triple x,y,z G X , 

[x\z] > min{[x|y],[î/|z]} - 1. 
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Fix e > 0 small, and define 

Qe{x,y) = exp(-e[x\y]). 

Then Q€(X, y) = 0 if and only if x = y, and indeed ge satisfies all properties of a metric 

save the triangle inequality. Instead, we have 

Qe(x,z) ^ eemdix{Qe(x,y),Qe(y,z)}. 

There is a standard way to extract a metric bi-Lipschitz equivalent to g£\ see §4.5 

for an outline. If e < \\og2 then [GdlH90, Prop. 7.3.10] implies that there is a 

metric de on X satisfying 

(1 - 2>/2)Qe(xi y) ^ de{x, y) ^ Q€(X, y). 

Letting diame denote the diameter with respect to d€, it is clear from the definitions 

that V G Vn implies diame V ^ exp(-ne). It is then easy to check that taking 

8 = exp(—e/No) and 

C = max{diame U:Ue U^Ui} 

will do. 

We may now prove Theorem 3.2.1. 

Proof of Theorem 3.2.1. — The graph T, the map (f>f and F satisfy the three first 

points of the theorem by construction and according to Propositions 3.2.4 and 3.2.2. 

We assume from now on that [Expans] holds. It follows from Theorem 3.2.5 that 

there is a metric dx and constants C > 0 and 8 G (0,1) such that, for any W G 5(n), 
diamW ^ C8n, where the diameter is with respect to the metric dx- Let x,y G X. 

Let 7 : (—oo, oo) - > T b e a curve joining 4>f(x) to (j)f{y) such that for all n G Z , 7(71) 
is a vertex of V corresponding to an open set Wn, and such that 7|[n,n+i] traverses a 

closed edge of V exactly once. Then 

4(7) 
nez 

4(7 |[n,n+l]) 
nei 

E-£|7(n)| 

nez 

e-e\Wn\ 

nez 

e-e\Wn\ 

diam Wn 
diam Wn. 

If e > 0 is small enough, then e~£\Wn\ ^ 0\w».\ ^ (1/C) diamWn. Furthermore, 

there are points zn such that zn G Wn fl Wn+i. For all k G N, we let jk be the 

subcurve of 7 joining W-k to Wk- Then 

4(7fc) > (1/C) 
|n|<k 

diam Wn 

( 1 / C ) 

\n\^k 

dx{Zn,Zn+l) 

(l/C)dx(z-k,zk). 

Since 7^ is a subset of 7, {z-k, zk} tends to {x , y } ; this implies ^ (1/C)dx(x, y), 

where C is independent of 7. Therefore, d£{(j)f(x),(j)f(y)) ^ (1/C)dx(x,y). • 
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3.3. Geometry of T 

Let / : X\ —» Xo and U satisfy the conditions listed at the beginning of § 3.2. The 
main result of this section is 

Theorem 3.3.1. — If (f,U) satisfies [Expans ] , then T is Gromov hyperbolic. If (f,V) 

also satisfies [Expans ] , then T(f,U) is quasi-isometric to V ) . If g — fn : Xn-\ —> 

Xo, then T(g,U) is quasi-isometric to T(f,U). 

Hence, as long as [Expans] is satisfied, the quasi-isometry class of T is an invariant 

of the conjugacy class of / : X\ —> XQ. 
The proof of Theorem 3.3.1 will follow from both Propositions 3.3.9 and 3.3.11. 

The naturality results given above are analogous to those enjoyed by Cayley graphs 

of finitely generated groups. 

3.3.1. Metric estimates. — We start by gathering information on the geometry 

of balls, and how they interact with the coverings. 

Our main estimates are the following, which assert that the elements </>f(W) enjoy 

geometric properties with respect to the metric d£ similar to those enjoyed by the 

sets U with respect to a metric for a CXC map; compare Propositions 2.6.2 (Uniform 

roundness) and 2.6.6 (Balls are like connected sets). 

Notation. — For an element W G 5 (n ) , regarded as a subset of X±, we denote by 

(Pf(W) the set tf>f(WnX). 

Proposition 3.3.2. — Fix (/, X\, Xo, X,U), and let us consider the graph T. We as­

sume that (j)f : X —» d£T is a homeomorphism for all e > 0 small enough. 

(1) There is some constant C > 1 such that, for all W G V \ {o}, there is a point 

f G </>f(W) so that 

Befo ( 1 / C ) e - ^ I ) C MW) C UaoiW) C B£&Ce-^l). 

(2) There is a radius r\ > 0 such that, for any n ^ 1 and for any £ G d£T, there 

is some W G S{n) so that B^ne'871) C <f>f{W). 

(3) A maximal radius ro > 0 exists such that, for any r G (0, r*o) and any £ G d£T, 

there exist W and W' in U such that \W - W'\ = O( l ) , 

^ ( r ) c B e K , r ) c ^ ( n 
and 

max{Round(0/(W),O,Round(0/(W/)5O} = O( l ) . 

Since the set Xo is not assumed to be endowed with a metric, we shall use uniform 

structures [Bou61, Chap. II]. 

Since Xi has compact closure in Xo, there is a unique uniform structure on X\ 

compatible with its topology. We consider the uniform structure on X\ induced by 
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¤f 

Y 

Florin: 3.4. For simplicity, the figure is drawn as if A' — X i . The points 

ii, r G A* are shown at left. At right, the edge-path in F has closure in V 

joining Of (a) to <~>f(r) and has length < r. The conclusion of the lemma says 

that the image in c) F under oy of the open sets in U comprising the vertices 

of"; is contained in the ball of radius r about Of [it). 

the one on X\. Let us recall that an ( iitouracp ii is a neighborhood of the diagona 

of X, x X) . If r G XV then ill.r) - { / / G X\ | (././/) G il}. 

Proposition J.J.J, Girai an entourage 11. then is sono constant i -= r[ii) > ( 

su eli Unit, irficnerer I " G ,S'( 1 ). a G i H A a/ir/ Of?/) C U. ih (ti. foe any n ^ 1. ani 

V G S(n) such ih ut / " UC) = U. and ani) [mining* ìi G U fi f~~u'^ì]{{a}}. Un hai 

lì (Of(ù). i( " ) is eoniaimd in Of(U). 

Let us first prove some lemmata. 

Lemma 33,4, Let ~. : E — F òe « ci/ree sa/c// ih at - ( Z ) C T \ { o } a/a/ //'///W 

con luci s tiro points a and r from iìiv ho mi da ri/. L< 1 i G (0, 1. f ì. If F-t** 1 < r f/aoi 

U,,.:vV(-}(//)) c 

See Figure .1.4, 

Proof. - - For any fixed » and any : t (-;,(/?))• 

|: - -G \z — *(»)L + b(») — a\£. 

Since e Of ("( / / ) ) . there is a geodesic ray [-.(//). ;) confainetf in some ray in 7v x . so 

that 

|z-Y(n)|€ <list , ( - , {н).с),Г) \'{l>) - '1. < M -L . -v¡ ) 

and ,u. ( ) — i/G 

and O / ( - y ( / 0 ) c 

< M: | | - -v . , a ) so that j : - a\, G; F -h) < r. Therefore : G Br-{u.(5[-)) 

BJjTJTi7]] for all // G Z . Hence 

и„.-о,-(-(/м) B€(u,r). 

Definition, (iivni // G (i. F and / (0. i 'j >. v t let F(//./M he t he sei of all vellico 
of F contained in c u r v o off/.-lengi h less than r joining // to a not her boundary point. 

It follows froin t he lemma above that o f {C ) C B [a or) for any I G \'[u. r). 

Lemma 3.3.5. LA I S? in an t atoning-e ofX\. Tin re is a nuli it* r > 0 •/•/»/! 7/ dtpani* 

onig oil Sì sudi Hurt, to- nini " G 0 F. ire ilare IF "_" il[Of 1 ( ' irht in rcr IF G \'(//. /*'. 

Siu'tr. VÉ MAI HrUATr* jl' I". r>!~ FliAXOE 'JDti>) 
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Proof. — The uniform continuity of (j)J1 provides us with a radius r (independent 

from u) such that, for any u G d£Y, we have (f)J1(B£(u,r)) C tl^J1 (u)). It 

follows from Lemma 3.3.4 that if W G V(u,r), then <j>f{W) C B£(u,r) so that 

W Cil^iu)). • 

We are now ready for the proofs of the Propositions. 

Proof of Proposition 3.3.3. — Let ft be an entourage of Xi, U G 5(1), u G U D X , 

satisfy Q(u) C [/. Let us choose another entourage such that QQ C 0 . 

Choose n ^ 1, U e S(n) and ti G / " ( n _ 1 ) ( { ^ } ) H & such that fn-x{U) = t/. 
Consider the constant r > 0 given by Lemma 3.3.5 applied to QQ. 

Let v G c/)J1(B£((j)f(u),re~£(n~1"))) and 7 be a curve joining 0/(,u) to </>/(£) of 

d£-length less than re_£(n_1). Set 

K = Unez7H C Xo-

Then i f is a continuum by definition which joins u to v. Therefore, fn l(K) joins 

u to Z71"1^) = v, and Fn~l(4>f(K)) C B£((f)f(u),r). By Lemma 3.3.5, /n_H7(fc)) 
is in fioW^1^)) for any & G Z, so that / n - 1 ( ^ ) C f/. It follows that K CU since 

y n - i . jj _^ JJ -g pr0per an(j is connected. • 

Proof of Proposition 3.3.2. — Let £1 be an entourage such that, for any x G l , there 

is some U G 5(1) such that fi(x) C U. 

(1) Let n be the level of W and pick some x' G (X D / n _ 1 ( ^ ) ) -
Let x G f~{n~l){{x'}) O W; it follows from Proposition 3.3.3 that </>f(W) 

will contain the ball B£(£, re~£n) where r = r(Q) and £ — </>f(x). 

Furthermore, Lemma 3.1.3 implies that diam£(^/(W) x diam£ 15 (W) x 
e-£|i^| jt f0iiows that there is some constant C > 1 such that, for all W G V, 

there is a point £ G 0 / (W) so that 

Be{i,{l/C)e-^) C ^ ( W ) C Uoo(W0 C Be&Ce-'W). 

(2) Similarly, Proposition 3.3.3 implies that, for any n ^ 1, there is some W G S(n) 

such that <t>f(W) will contain the ball B£(£,r\e~£n) where r\ = r(fi) is given 

by the proposition. 

(3) Fix r G (0,5) and £ G dT, where 5 is the Lebesgue number of 5(1) in d£Y. 

It follows from (1) above that, for any n and any W G 5(n), diam£ (/>f(W) x 

e"£n. 

Moreover, from (2), there is some W such that Round((/>/(VF), £) = 0(1) 

and Be(£, r\e~£n) C </>f(W). Let m ̂  n be so that the diameter of any element 

of S(m) is at most r. It follows from the diameter control above that m may 

be chosen so that \m — n\ = O( l ) . Point (2) provides us with an element 

W G 5(ra) so that Round(0/(W/)5O = O( l ) and <j)f(W) C B£(^r). • 
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As a consequence of Proposition 3.3.2 and its proof, we obtain the following. For 

n G N, let Vn = {<pf(U) : U eUn}. Thus for each n, the collection Vn is a covering 

of d£T by open sets which, in general, need not be connected. 

Proposition 3.3.6. — The map F : d€T —> d£T and the sequence of coverings {Vn}n 

together satisfy [Expans ] , [Round ] and [ D i a m ] . 

Remark. — If in addition [Deg ] is satisfied, it would be tempting to assert that F : 

d£T —> d£T is also metrically CXC. However, even though T£ is locally connected (since 

shadows define connected neighborhoods of points at infinity), the boundary d£T need 

not be (locally) connected. Our definition of metrically CXC is not purely intrinsic 

to the dynamics on the repellor X since we require that the covering U$ consists of 

connected sets which are contained in an a priori larger space X\. Unfortunately, in 

general we do not know how to modify the definition of T so that F :T£ -+T£ becomes 

a finite branched covering map on an open connected neighborhood of d£T. If this were 

possible, it seems likely that one could then establish a variant of Proposition 3.3.6 in 

which the conclusion asserted that the model dynamics was indeed metrically CXC. 

Proof. — Axiom [Expans] follows from Lemma 3.1.3. The forward and backward 

relative diameter distortion bounds follow immediately from Proposition 3.3.2. Since 

F maps round balls in the metric d£ to round balls, the forward roundness distortion 

function p+ may be taken to be the identity. We claim that we may take the backward 

roundness distortion function to be linear. 

First, suppose Fn : (V,£) - » (V,£) where V = (j>f{W) and W G S(k). Sup­

pose B(^r) CV C B(£,Kr). Then Kr x e~ek. Proposition 3.3.3 shows.that 

B(£, ce~£nr) C V for some uniform constant c > 0. By Proposition 3.3.2, diam£(V) x 
e-(n+fc)£> Hence 

Round(V,0 
e-(n+k)e 

e-ner K x Round(V,f)-

Proposition 3.3.7. — Suppose [Expans] holds. Let Y denote the set of points y in X 
such that there exists an element V ofXJ containing y such that all iterated preimages 

U' of U' map by degree one onto Uf. 

If [Deg ] fails, and ifYHX is dense in X, then d£T fails to be doubling. 

Remarks 

(1) We have always f~1(Y) C Y. If [ I r red] holds and Y is nonempty then Y is 

dense in X , so the above proposition implies that d£T fails to be doubling. 

(2) It is reasonable to surmise that Y = X — Pf - this is the case e.g., for rational 

maps. However, we have neither a proof nor counterexamples. 

Proof. — Suppose [Deg ] fails. It follows easily that then there exists some U G UQ 

such that for all p G N, there exists n G N and a preimage U G Un of U such that 

fn:U-+U has degree at least p. The assumption and [Expans] imply that there 
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exists Uf C £ / , U' G UN, independent of p and of U such that U contains at least p 

disjoint preimages U' oiU. 

The sets 4>f{U) and (j)f(Uf) are uniformly almost round, diam£(0/(C/)) x exp(—en) 

and diam£ (</>/([/)) x exp(—£(n+iV)), by Proposition 3.3.2. So at least p balls of radius 

C • exp(—e(n + iV)) are needed to cover a ball of radius Cexp(—en), where C", C are 

independent of n. Therefore 9£T fails to be doubling. • 

We close this section with the following consequence of Proposition 3.3.2 which will 

be useful in our characterization rational maps; cf. Definition 2.6.8 and Corollary 2.6.9. 

Corollary 3.3.8. — If for each W G US(ra), the sets </>(W fl X) and X \ </>(W n X) are 

connected, then dT is linearly locally connected. 

Proof. — Let us fix B£(£, r). Proposition 3.3.2 (3) implies the existence of vertices 

W, W such that | |W| — IW'H ^ C\ for some universal constant C\ and such that 

WcBfK,r)c^(n 
Therefore, diame (j){W) x diame B£(£, r) x diame 4>{Wf). 

If (X' € B£(£,r), then they are connected by (f)(W) which is connected by as­

sumption. Similarly, if £, £' ^ B£(£, r) then they are joined within X \ <j>(W). • 

3.3.2. Hyperbolicity. — We are now ready to prove the first part of Theo­

rem 3.3.1. 

Proposition 3.3.9. — If 4>f ' X —> d£T is a homeomorphism, then V is hyperbolic. 

The proof is an adaptation of [BP03, Prop. 2.1] and its main step is given by the 
following lemma. 

Lemma 3.3.10. — For any W, W G V, 

dmm£Uf (W) U fa(W)) x e-eWw">. 

Proof. — We assume that \W'\ ^ \W\. We let n G N U {oo} be the smallest integer 

such that 

dist£(cl>f(W),cl)f(Wf))^r1e-£n 

where r\ is the constant given by Proposition 3.3.2. Let (£,£') G </>f(W) x </>f(W) 

satisfy dist£(0f(W),4>f(Wf)) = |£ - £'|e. Let m = min{ |W| ,n} - 1; there is some 

C G S(m) such that fle(£,ne-cm) C 0 /(C), so that W, W G U(C) and 

diame{<l>f{W)U(l>f{W')) ^ max{dist£((/)/(^),(/>/(W,)),diam£ </>f(W)}. 

The maximum of diste(0/(W), <t>f(W')) and of diam£ </>f(W) is at least of order e"£m. 

Hence 

diam£(0 / (W )U ( / ) / (W / ) )>e-£ lc l . 
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Since (W\W) ^ |C|, it follows that 

diam^/CWO U 4>f{W')) > e-£^w'^. 

For the other inequality, we let {Wj}0^j^\W-w\ be a geodesic chain which joins 

W to W. For convenience, set m = \Wl ml = \W'\ and D = \W - W'\. Then 

àmme((t)f{W)U(t)f{W')) 
0<j<D 

diam€(¤f(Wj)) 

0<j<k 
diam€(¤f(Wj)) 

k+l^j^D 

dmm^fiWj)) 

O^j^k 

e-e(m-j) 

0 ^ D - ( f c + l ) 

-e(m'-j) 

e-e(m-k-l) _|_ g—e(m' —D+fc) 

Choosing k = (1/2)(D + m — m7), one gets 

diam£(^/(W) U 0/(^0) < e-(1/2)(-'+—1» < e-e(w\W) 

The lemma is established. 

Proof of Proposition 3.3.9. — It follows from Lemma 3.3.10 that if W\, W2, W3 are 

three vertices, then 

e-€(w1|w3) 
dmm^fiW^uMWs)) 

dmm^fiW^ U </>f(W2)) + dmm£((j>f{W2) U 0/(W3)) 

e-^l"He-s(W2\W3)y 

max{e-^l"H e-s(W2\W3)y 

so that there is a constant c such that 

(W1\W3) > min{(Wi|W2), № | ^ 3 ) } - c . 

This proves the hyperbolicity of X. 

The hyperbolicity of T implies that the homeomorphism and quasisymmetry type 
of dT does not depend on the chosen parameter e > 0 provided that it is small enough. 
It also implies that, for such a parameter e. 

|€-C|e = e-€(€|C) 

for points on the boundary. 
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We turn now to the second part of Theorem 3.3.1 - the uniqueness of the quasi-

isometry type of T = T(f,U). 

Proposition 3.3.11. — Assume that f : (%i,X) —* (Xo, X) is a finite branched covering 

of degree d. Let Sj(l), j — 1,2, be finite coverings. We denote by Tj, Fj, Ej and 

(f)j : X —> dTj the graph, dynamics, weight and projection map associated to Sj(l). If 

both coverings satisfy [Expans] and if (f>i are <fi2 are both homeomorphisms, then T\ is 

quasi-isometric to T2. 

By Theorem 3.1.5, it is enough to show that dTj, j = 1, 2 are quasisymmetrically 

equivalent. We will actually prove the stronger statement that the boundaries are 

snowflake equivalent i.e., for any x, y and z in X, 

' \x — z\l 

Áx~y\i 

e-2 '\x-z\2\£l 

where | • \j denotes the metric on the repellor X obtained by pulling back the metric 

d£j on d£jT via the homeomorphism Without further combinatorial fmiteness or 

uniformity properties, it seems difficult to work directly with the graphs Tj to show 

that they are quasi-isometric. 

We start with some lemmata relating the combinatorics and geometry of the two 

graphs Tj, j = 1,2 constructed from different choices of coverings. To avoid cumber­

some duplication, and to keep the statements symmetric, we denote by j ^ j * the 

involution of {1 ,2} interchanging 1 and 2. We also suppress mention of the depen­

dence of the metrics on the choices of Sj. 

Axiom [Expans] and Proposition 2.4.1 ( 2 ) (a) imply the following result. 

Lemma 3.3.12. — For j = 1,2, integers Uj exist such that 

(1) for any Uj G Sj(nj), there is Uj* G Sj*(l) which contains Uj. 
(2) for any Uj* G Sj*(l), there is Uj G Sj(nj) contained in Uj*. 

Proof. — The fmiteness of S i ( l ) L)S2(1) implies that there is some entourage ft of X\ 

such that any U G S i ( l ) U 62(1) contains Q(x) for some x E l , and, for any x G X, 

Q(x) is contained in some element of S i ( l ) and of 52(1). 

We treat the case j — 1. Since [Expans] holds, there is some n\ so that any 

W G Si{n\) is contained in Vt{x) for any x G W fl X. 

(1) If U\ G S\(n\), then consider x G U\ so that U\ C il(x). There is some 

U2e 52(1) such that Q(x) C U2. Therefore UxcU2. 

(2) If U2 G S2{1), let x G U2 such that il(x) C U2. Let U\ G Si(ni) contain x. 

Thus, 

Ux C Q(x) C U2. 
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Lemma 3.3.13. — A constant K ^ 1 exists such that, for j = 1,2, for any x G X and 

any n ^ nj, there are some U G Sj(n), W G Sj* (n + nj* — 1) and W G Sj* (n — nj + 1) 

such that 

(1) x G Wf G U G W. 

(2) Round,(<t>j(U), (j)j{x)) ^ K, Round,, (0,-. (VF'), 0j*(a;)) < K 

and Round., (0j* (VF), 0j*(x)) < i f . 

It follows that 

diam., (t>j*(W) x diam., <f)j*{U) x diam., 0j*(PF). 

Proof. — We let j = 1. Proceeding as usual, let us rename x = x. 

Let x G X. Using the fact that £ 1 ( 7 1 1 ) is finite, there is some U G S\(ni) such that 

R o u n d e l ( U ) , 0 i{ f n ~ n i (x) ) ) ^ K[ for some constant if( ^ 1. 

Let U be the component of / - ( n - n i ) ( [7) which contains x . Then U G 5 i ( n ) and 

Propositions 3.3.3 and 3.3.2 (1) imply Round1 (</>i(U), 4>i{x)) ^ K\ for some constant 

K1 > 1. 

By Lemma 3.3.12, there is some W G S2(1) which contains £/. It follows from 

compactness that there exists a constant K'2 independent of x such that 

Round,(cj>2(W),<f>2(fn~ni(m < K'2; 

see the proof of Proposition 2.6.2 (1). 

Let W be the component of /_(n~ni)(VF) which contains x. Then VF G 5i(n — 

ni + 1) and Proposition 3.3.3 implies Round2(<fe(VF), 0 2 ( ^ ) ) ^ K2 for some constant 

K2 > 1. 

By Lemma 3.3.12, the point fn~l(x) belongs to some W G £ 2 ( ^ 2 ) contained in 

fn~l(U). Since S2(n2) is finite, one can assume that 

Round , (<h(W' ) ,<hUn~\m < ^3 

for some constant K'z ^ 1. 

Let W' be the component of / - ( n _ 1 ) ( W ) which contains x. Then W' G S\(n + 

ri2 — 1) and Proposition 3.3.3 implies Round, (02 ( W ) , 02(#)) ^ K3 for some constant 

K3>1 

Let K = max{Ki, K2, K3}. The lemma follows from Proposition 3.3.2 once we 

have noticed that \W — W'\ = ri\ - f 722- • 

We now give the proof of Proposition 3.3.11. 

Proof of Proposition 3.3.11. — Let Uj, j — 1,2 denote the corresponding collections 

of open sets defined by two different coverings at level zero. For j = 1,2 let | • |j denote 

the metric on the repellor X of / : £1 —> £0 obtained by pulling back the metric 

on <9£T via the homeomorphism </>j. Roundness and diameters in these metrics will 
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be denoted with subscripts. We will show that the identity map is quasisymmetric: 

we want to find a homeomorphism ri : R + —> R + such that, given any x.y.z G X, 

\x - z\2 

\x-y\2 
5 V 

'\x - z\i\ 

> - 2 / | i 

Let Q, be an entourage such that, for any x G X any j — 1,2, there is some 

Uj G Sj(l), such that Q(x) C Uj. 

By the uniform continuity of 0i, 02 and their inverses, it is enough to consider 

x,y,z G X such that y, z G il(x). 

The strategy is the following. Let us assume that z is closer to x than y. Then, 

we may find neighborhoods Uy,Ux G U of x and y respectively such that the "ring" 

Uy \ Ux separates the set {#, z) from y. The 3-point condition will follow from a 

straightforward argument using what is known about the sizes of the neighborhoods 

in each of the two metrics. 

By Proposition 3.3.2, there exists a neighborhood Uy G Ui of x not containing 

y such that \x — y\i x diam^L^), and Roundi(£/y,x) ^ if, where i f is a uniform 

constant. 

Again by Proposition 3.3.2, there exists a neighborhood Uz G Ui of x containing 

z such that \x — z\i x diami(Uz) and Round^E/^, z) ^ if. 

Therefore, Lemma 3.3.13 implies the existence of W'y G S2(\Uy\\ + n2 — 1) which 

contains x but is contained in Uy such that Round2(W^,x) ^ i f and diam2(W^) x 

diam2(t/y). 

Similarly, a vertex Wz G S2(\Uz\i -f ri\ + 1) which contains Uz exists such that 

Romu^Vi/^, x) ^ i f and dian^VFz) x dian^f/z). 

Since Round2(W^,x) ^ if, it follows that 

\x-y\2 

diam2(VFz) 

diam2(WJ) 
e-e2(\Wz\2-\Wl\2) 

But since x G Wz O , 

| w y 2 -\w'y\2 = (\ux\! - lUyU) + (n2 - m) 

one obtains 
x -z | 2 

\x-y\2 

'diami(C/2) 

diami(C/^) 

£2/ei \x - z\i 

\x - y\i 

£2/£l 

and so the identity map is a quasisymmetry. 

This concludes the proof of the second conclusion of Theorem 3.3.1. 

The last conclusion of Theorem 3.3.1 is easily proved along the following lines. 

There is a canonical inclusion 1 from the vertices of T(fn,U) to those of T(f,U) which 

sends a vertex of T(fn,U), say V G Unk with |V| = /c, to the vertex in T(f,U) 

called again V G Unk with now |V| = nfc. The image of ¿ is clearly n-cobounded, an 
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isometry on horizontal paths, and multiplies the lengths of vertical paths by a factor 

of n. Hence i is n-Lipschitz. Using these facts one proves easily that t is in fact a 

quasi-isometry, and the proof of Theorem 3.3.1 is complete. • 

3.4. Measure theory 

In this section, we assume that / : X\ —> Xo is a degree d FBC with repellor X 

as in § 3.2. As in the previous section, we assume that we are given a covering U of 

X by connected open subsets of X\ which satisfies [Expans ] . Let T = T{f,U) be the 

Gromov hyperbolic graph associated to / and U as in the previous section. Fix e > 0 

small enough so that 0/ : X —» d£T is a homeomorphism. 

We now assume that [ I r red] holds as well. 

The main result of this section is the following theorem. 

Theorem 3.4.1. — Assume that [Expans] and [ I r red] hold. Then there is a unique 

invariant quasiconformal measure [if; its dimension is {\/e)\ogd. This measure is 

also mixing and ergodic, and it describes the distribution of preimages of points and 

of periodic points. Furthermore, the metric entropy and topological entropy satisfy the 

following bounds 

0 <C log d logdF dfjLf < h^{F) < htop(F) < v ^ logd 

and 
K{F) 

e 
\ dim/// ^ dimd£T 

„ v logd 

s e 
where 

v = lim — log |5(n)|. 
n 

Precise statements and definitions are given in the next few subsections. 

In the top chain of inequalities, the first one is a consequence of Rohlin's inequality, 

which always applies in our setting. The second follows from the Variational Principle, 

the third from generalities since F is Lipschitz, and the last since F is a degree d FBC. 
When / is topologically CXC, then we will prove that both chains of inequalities 

in Theorem 3.4.1 are equalities, that /i/ is the unique measure of maximal entropy 

logd, and that (d£T,d£, fif) is an Ahlfors regular metric measure space of dimension 

( l /£)logd, see Theorem 3.5.6. 

In the remainder of this section, we dispense completely with the topological spaces 

X, Xo, X\ and deal exclusively with F : T£ —• T£. 

3.4.1. Quasiconformal measures. — Recall that / induces a continuous surjec-

tive Lipschitz map F : T£ —* T£ which maps vertices to vertices and edges (outside 

Be(o,2)) homeomorphically onto edges. 
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Multiplicity function for F. — Let df(x) denote the local degree of / at a point 
x G X. 

> Ii^d£T, let dF(0=df(4>j1 (0)-
> If W G V, \W\ > 2, let dF{W) = deg(f\w). 
> For each (open) edge e = (W,W) with | W | , | W ' | ^ 1, choose a point xe G 

wnw'nx. 
If e C fe \ B{o, 2 ) , set, for all £ G e, 

dF(€) 
» E ( № n / - i ( » f ( e ) ) ) 

d/(y) • 

Remarks 
(1) The definition depends on the choices of points x e , but this is irrelevant for our 

purposes. 
(2) The function dp may vanish on certain edges. For example, let X — X\ — Xo = 

R/Z, let f(x) = 2x modulo 1 , and let U0 = {U, V} where U = X - { 1 / 4 + Z} and 
v = X- { 3 / 4 + Z}. Note that 0 + Z c [ / n F b u t that UnVis not connected. The set 
S(l) consists of the two vertices U, V joined by a single edge e. Choose xe — 0 + Z. 
The four elements of 5 ( 2 ) are the two preimages of U given by the intervals (mod Z) 
( - 3 / 8 , 1 / 8 ) and ( 1 / 8 , 5 / 8 ) and the two preimages of V are ( - 1 / 8 , 3 / 8 ) and ( 3 / 8 , 7 / 8 ) . 
According to the definition, the edge joining ( 1 / 8 , 5 / 8 ) and ( — 1 / 8 , 3 / 8 ) is given weight 
zero by dp since the intersection of these two intervals contains neither 0 nor 1 /2 , the 
preimages of the origin. 

(3) If di?(£) > 2 at a point £ in the interior of an edge e (such as when the chosen 

point xe G d£T is a branch point of F on the boundary), then F is never a branched 

covering with degree function dp, since dp is constant on interiors of edges, and an 

honest FBC is unramified on a dense open set. Conversely, if dp = 1 on 9 T e , then F 

is an FBC in a neighborhood of d£T. 

The following properties hold. 

Lemma 3.4.2. — The multiplicity function behaves as a local degree function. More 

precisely, 

(i) for anyÇere\B(o,l), 

F(ç) 

dF(Q=d; 

(ii) for any £ G V£ \ B(o, 2 ) , there is a neighborhood N such that, for any C € N, 

dF(€) 

C'eF-H{F(Q})nN 

dF(C). 
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Proof 

(i) The statement is clear for vertices and points from the boundary. Let e = 

(W, W) be an edge, and let us denote by Wi,... the components of 

f-x{W), and by W[, ...,W'k, the components of / " _ 

If f(y) = xe, then there exists a unique edge ë = (WyìWyr) such thaj; 

yeWyHW' Therefore 

F(ë)=e 

dF(e) 

F(ë)=eye(wynwi)nf-1(xe) 

dfiy) 

f(y)=Xe 

df{y) =d. 

(ii) The statement is clear on T\B(o, 2 ) . Let £ G 8T. There is some vertex WQ such 

that (/>f(Wo) 3 £, and dp (Wo) = dp(£). Let W\ C W0 small enough so that 

U o o ^ ^ i ) ) C ^ / (F(Wb)) . Thus, for any U G i n t ( U ( F ( W i ) ) ) , U C F(W0), 

so that 

F ( £ / ) = t / , t / C W G 

dF(C/) = d / (Wb) = d F ( 0 -

Note that if we set di?n(0 = di?(£) • • • dp(Fn *(£)), then the lemma remains true 

for dpn as well. 

Action of F on measures. — If ip is a continuous test function defined on Te \ 

Be(o, 1 ) , then its pullback under F, given by the formula F*ip(£) = </?oF(£), defines a 

continuous function on T£ \ B(o, 2 ) . By duality, one may define for Borel probability 

measures v with support in T£ \ B(o, 2 ) its pushforward by (F*v, (p) = (z/, F*(p). Thus 

in particular, (F*v)(E) = u(F~1(E)) for all Borel sets E. 

The point of the construction of the multiplicity function dp is the following. If cp 

is a continuous test function on T£ \ £?£(o, 1 ) , its pushforward under F 

F*f(€) 

p(ç)=€ 
dF(CMC) 

is again a continuous function on T \ B(o, 1 ) . By duality, we define the pullback of a 

Borel measure v by the formula (F*v,(p) = (v,F*(p) (cf. [DiSi03, § 2 ] ) . 

Quasiconformal measures. — If /x, v are measures we write v <C /x if is absolu­

tely continuous with respect to /i. Let /i be a regular Borel probability measure on 

d£T. Inspired by the group setting [Coo93], we say /i is a quasiconformal measure of 

dimension a if, for all n ^ 1, (FnY ¡1 <C JJL and the Radon-Nikodym derivative satisfies 

d(Fn)*/i 

d/i 
(en£)a fi-a.e.. 

The quantity en£ stands for the derivative of Fn (cf. Proposition 3 . 2 . 2 ) . 
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Let /1 be a quasiconformal measure on d£T. Fix n G N. Suppose E C d€Y is a Borel 

subset of positive measure, FU\E is injective, and the local degree of FN is constant 

on E, i.e., for all £ G E, c?Fn(0 — ^E - Then, it follows from the regularity of the 

measure that 

< ( F " ) > , X F ) = (M, (Fn)*XE) 
Fn(ç=€) 

^ F ( C ) X F ( C ) = dEfi(Fn(E)), (3.5) 

and the quasiconformality of the measure implies ((Fn)*/i, xs) x ena£[i(E). Hence 

µ(Fn(E)) 
enae 

~d~E~ 
µ(E) (3.6) 

Axiom [Irred] implies that the support of a quasiconformal measure is the whole set 

d£Y. Therefore, there is some m > 0 such that, for all x G 5(1), fi((f)f (W(x))) ^ m. 

We let d(W) be the degree of fn~l\w for W G 5(n). Since // is a quasiconformal 

measure, it follows that 

0 < m < MMP'HW))) = KFn~l4>f{W)) 
ena£ 

d(W) KMW)). 

This proves 

Lemma 3.4.3 (Lemma of the shadow). — For any W G V, 

u((f)f(W))^d(W)e-a£W . 

We use this lemma for the classification of quasiconformal measures. 

Theorem 3.4.4. — Let fi be a quasiconformal measure of dimension a. The following 

are equivalent. 

(i) ¡1 is atomic. 

(ii) a = 0. 

(hi) d£T is a point. 

If a > 0 then ot =• \ log d, and any two such quasiconformal measures are equivalent. 

Proof. — Consider first the constant function ip — 1 on d£T. Then F*(p = dip so that 

((Fny^)({x})=dFn(x)n{Fn(x)}.=d = enae 

Thus, 

a — - log d. 
e 

It follows that a — 0 if and only if d = 1, so that d£T is a point since / satisfies 

[Expans ] . Hence (ii) implies (iii). 

If \i is atomic, then there is some £ G d£T such that > 0. By definition, for 

all n > 0 and any x G <9£T, 

((Fny^)({x})=dFn(x)n{Fn(x)}. 
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Since n is quasiconformal, then by Equation (3.6) 

dFn(0»{FN(0} ena€µ[€} dnµ[€} 

But di?™(0 ^ dn so /x{Fn(£)} > Since the total mass of ¡1 is finite, the orbit 

of £ has to be finite. Let £ = Fe(^) be periodic and let k be its period. Then > 0 

and 

( d F k ( o r m 
((Fkn)*µ)({ç}) dnkµ{ç} 

from which we deduce that dFk(() = dk. This means that the local degree at every 

point in its orbit is maximal, so that its grand orbit is finite. Since / satisfies [ I r red ] , 

the grand orbit of any point is dense in X (Proposition 2.4.1 (3) (a)) and so d£Y is a 

point, d = 1 and a — 0. So (i) implies (ii) and (hi). 

The last implication (iii) implies (i) is obvious. 

The Lemma of the Shadow (Lemma 3.4.3) and the assumption that quasiconformal 

measures are regular imply that two measures of the same dimension are equivalent. 

• 

We will now construct a quasiconformal measure using the Patterson-Sullivan pro­

cedure [Coo93]. It turns out that this measure will be invariant. 

Poincaré series. — Let 

P(s) = \S(1) 

n>1 

m - 1 -US |S(1)|es-d 

It follows that P(s) < oc if and only if s > logd. Let, for s > logd, 

µs 1 

n>1€ES(n) 
e~nsd(0^ • 

For every n ^ 1, Fn : S(n + 1) S(l) has degree dn. Recall that for £ e S(n), we 

denoted by d(£) = dFn-i(£). So 

| S (n+ l ) |=d** |S ( l ) l 
£es (n+ i ; 

(d(0 - 1) 

and £fesr„+l i d(0 = dn\S(l)\. Therefore 

us(T€) 1 

Fis) n>1 

e-ns 

«€S(n) 
d(0-

1 

n>1 
> - n a d n - 1 | 5 ( l ) | = 1 . 

Hence {//s}s>iogd is a family of probability measures on T£. Let jif be any weak 

limit of this family as s decreases to log d. Since the Poincaré series diverges at log d, 

it follows that the support of /x/ is contained in dT. 
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If ip is a continuous function with support close to dT, then 

F*µs,f :^Ee_ns E d(t№<p№ 
EES(n) 

Pis) ^ 
d(€)M df(c)f(ç) 

í 6S (n ) F(C)=Ç 

ï è y E ^ E *«MO 
Ces(n+i) 

e s < / ^ ) + 0 ( l / P ( S ) ) 

where we have used that = d(F(£))dp(£). 

It follows that, as s decreases to logd, 

F*µs,f (dßf,ip) 

and so F*{if — djif. In other words, / / / is a quasiconformal measure of dimension 

( l /e) logd. 

Let us look at f*uf : 

(F.nf,<p) = ( / x / ,FV) = ( 1 A 0 < F > / , F V > = ( l / r f ) ( W , F . ( F V ) ) -

But 

F*(F*f)(€) 
E dF(Ç)(F*<p)(0 

U (C)=« 

df(€) 

Therefore, i^/x/ — fif, so // / is an invariant measure. 

Ergodicity. — Let (Z, i/) be a probability space, and T : Z —> Z a transformation 

preserving the measure î , i.e., i/(T-1(^4)) = i'(A) for every measurable subset A 

of Z . The measure v is ergodic if any invariant measurable set A has zero or full 

measure. The measure v is mixing if for any two measurable subsets A, J5, one has 

i/(T~n(v4) (15) as n —> oo; mixing implies ergodicity. 

A fundamental theorem of ergodic theory is the following Birkhoff ergodic theorem 

(see e.g., [KH95, Thm. 4.1.2 and Cor. 4.1.9]). 

Theorem 3.4.5 (Birkhoff ergodic theorem). — IfT:Z—>Zisa v-preserving ergodic 

transformation, then, for any function (p G LX(Z, v) and for v-almost every z G Z, 

1 

n 

n-1 

E 
k=0 

p(Tk(z)) / (pdv. 
Jz 

Let us prove that fif is ergodic. Let E be an invariant subset of d£T with positive 

measure. Let v — / / / ( E 1 ) . It follows that v is also an invariant quasiconformal 

measure. The Lemma of the shadow (Lemma 3.4.3) implies that fif{W) x i/(W) for 

all W eV. This implies that /if and v are equivalent. Hence /J>f(E) = 1. 
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Since Hf is an ergodic invariant measure, it follows that /is converges to /if in the 

weak-* topology when s decreases to \ogd. 

Remark. — On 9er, the local degree function dp is multiplicative: dpn(£) = 

117=0 drU*(0)- From the Birkhoff ergodic theorem (Theorem 3.4.5) and the 

ergodicity of F with respect to /x/, it follows that for ///-almost any £ G d£T, 

lim — log 6 ^ ( 0 = 
n—>oo n 

log dp d/jLf . 

Thus, either the critical set has measure 0 and the Jacobian of F with respect to /if 

is constant and equal to d almost everywhere, or almost every point visits the branch 

set so frequently that the local degrees increase exponentially fast. Unfortunately, 

given the assumptions under which we are currently working, we have neither a proof 

that this latter possibility cannot occur, nor an example showing that it can occur. 

3.4.2. Entropy. — We refer to [KH95, Chap. 3, §3.1, Chap. 4, §3], [Mafi88] 
and [PU, Chap. 1], for background on entropy. 

Topological entropy. — Let T : Z —> Z be a continuous map of a compact metric 

space (Z, d) to itself. The dynamical distance and the corresponding dynamical balls 

at level n are defined as 

dn(€,C) max {d(T^'(0,Tj(C))} and S(Ç,n,r) { C e Z | d n ( £ , C K r } . 

Let cn(r) be the minimal number of dynamical balls 5(-,n, r) at level n needed to 

cover Z and sn(r) the maximal number of disjoint dynamical balls S'(-,n,r). The 

topological entropy of T may be defined as 

htoP(T) lim lim sup — log cn (r) 
r ^ Jl >0Q lit 

lim lim inf — log sn ( r ) . 
i—>0 n—+oc Tí 

We now estimate htop(F), where F denotes the restriction of F : T£ —• T£ to the 

boundary deY. 

Since F is e£-Lipschitz, we have dn(£5C) ^ en£d£(£>X) and hence «S(£,n,r) D 
B£(^,re~£n). For any n ^ 1, {£3oo(£)}£eS(n) is a covering of dT by at most \S(n)\ 

sets. For any £ G 5 (n ) , diam 15«, (f) ^ Ce~£^. So, « o o ( 0 C £(£',£, C e " ^ " ^ ) , for 

any p G N and for any f G U«>(0- Hence cp{Ce-£^n-^) < |S(n)|. 

Recall that by definition t> = lim ^ log |iS(n)|; the limit exists since \S(n + 1)| ^ 

d|5(n)|. Let 7] > 0 be small. For any p ^ 1, there is some n G N such that n x 

e-e(n-p)^ meanmg that n is equal to p + (1/s) log 1 /77 up to a universal additive 

constant. The discussion above implies that d£T C U^G5(n)S'(£,p, Ce~£(n~p>)). Since 

for any 7/ > 0 and any n large enough, log |5(ra)| ^ rcfv+r/) holds, we have logcn(ri) ^ 

n(v + r/) and 

htop(F) ^ lim lim sup 
77—•() p—>oo 

p + ( l /e ) log I/77 

p 
(v+n') 

from which htop(F) ^ i; follows. Since |5(n)| ^ dn, one has v ^ logd. 
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Measure- theore t ic entropy. — We recall first the definition of measure-theoretic 
entropy, more commonly referred to as metric entropy. Suppose (Z, v) is a probability 
space, and T : Z —> Z preserves v. If V is a partition of Z into a countable collection 
of measurable sets, define its entropy with respect to v by 

HV(V) : 
Aev 

u(A)]og(l/u(A)). 

If A and B are two measurable partitions, we define A V B as the partition given 
by {Ad B, A G v4, J5 G / 3 } . Furthermore, we say that A is /mer than B if, for any 
A e A , there is some B e B such that i c R 

For n G N set 
Vn = PV T~\V) • • • V T"n(^) , 

Then 

K(T,V)= lim -tf„0Pn) 
n—>oo n 

exists. The supremum of hv{T,V) over all partitions with finite entropy defines the 
metric entropy hv(T). If (Pn) is an increasing sequence of measurable partitions 
tending towards the partition into points, then limn^00 hu(T,Vn) = hv{T). 

A partition V with finite entropy is called a generator if it separates points i.e., for 
any distinct z, z' G Z , there exist some n ^ 0, and disjoint sets A, Af G Vn such that 
z e A and G A'; equivalently, there exist some n ^ 0, disjoint pieces A,AfeV such 
that T n 0 ) G A and T71^) G A!. For a generating partition V, the entropy K{T,V) 
achieves the maximum of hy{T,V') over all measurable partitions with finite entropy, 
so that K(T,V) = K(T) holds. 

The variational principle (see [Wal82, Thm. 8.6]) asserts that, when T is conti­
nuous, then 

htop(T)= sup h^T) (3.7) 

where a varies over all invariant ergodic Borei measures. 

J a c o b i a n . — Let T : Z —* Z be a continuous, countable-to-one map, and v an 
invariant regular Borel probability measure on Z . A special set A is a measurable 
subset of Z such that T\A is injective. A weak Jacobian is a measurable function 
Jv : Z —> R+ such that there is some set Y such that v(Y) = 0 and, for any special 
set A disjoint from Y, the equation 

< T { A ) : I Jy du 
'A 

(3.8) 

holds. The function Jv is a (strong) Jacobian if one can choose Y = 0. 
Let us note that if Jv is a weak Jacobian and Y is the forbidden set as above, then 

the set Z' = Z\Un^0T~n(Y) has full measure, is forward invariant (T(Z ' ) C Z') and 
now, Jv is a strong Jacobian for T\z>\ see [PU, Lemma 1.9.3, Proposition 1.9.5] for 
details. 
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Weak Jacobians always exist for finite branched coverings between compact spaces, 

and they are well-defined mod 0 sets. Let us sketch their construction in this case. 

We start with a deep result of Rohlin for countable-to-one maps [Roh49], which 

turns out to be much easier in our setting. 

Proposition 3.4.6. — Let f : X\ —> XQ be an FBC of degree d ^ 2, with repellor X, 

which satisfies [Expans ] . There exists a finite measurable partition V of X into special 

sets. 

Proof. — Let d£ be the visual metric given by Theorem 3.2.1 transported to X via 

the conjugacy 0/ . In what follows, balls will be with respect to this metric. 

Let V = {di < d2 < - - - < djsf} denote the set of integers which appear as local 

degrees of / at points in X. For p G P, let Xp = {x G X, deg(/; x) = p}. Then X is 

partitioned into finitely many sets Xp, p G V. The semicontinuity properties of the 

local degree function imply that each set Xp is measurable, so it suffices to show that 

for each p G V, the restriction f\xp : Xp —> f(Xp) admits a partition into special sets. 

We will exploit the fact that / maps balls onto balls as follows. Let x G X, 

and suppose f~1(x) — {x\,... ,x{\ with deg(/ ,Xj) = kj. By Lemma 2.1.3, for each 

x G X, there is an open connected neighborhood U of x in X\ such that 

is a disjoint union of open connected sets Uj, j = 1,...,/, such that deg(/ : Uj —• 

U) = kj. Let rx > 0 be so small that B(x,rx) C U. Then Proposition 3.2.2 shows 

that f~1(B£(x,rx)) is the disjoint union of the balls B£(xj,rxe~£), j — 1,...,L 

Furthermore, for any y G BJx, rx), and any fixed 7 = 1,...,/, 

y , G / - 1 ( { 2 / } ) n B £ ( ^ , r x e - ^ ) 

deg(/;2/;) = d e g ( / ; ^ ) . 

It follows that B£(xj,rxe~£) fi Xp is a special set, since if Xj and y' belong to this 

intersection, there can be at most one term in the sum. 

We next partition the image f(Xp) into a countable collection Qi, Q2, Q 3 , . . . of 

measurable pieces as follows. For each x G Xp, let B(x,rx) be the ball constructed in 

the previous paragraph. By the 5r-covering theorem [HeiOl, Chap. 1], there exists a 

set { x i I i G / } of points in f(Xp) for which the union of the balls B(xi,rXi),i G / , 

covers f(Xp), and for which the balls B(x{,rXi/5) are pairwise disjoint. Since the 

metric space (X,d£) is separable, the index set / can be taken to be countable. We 

are now ready to construct the elements of our partition inductively. Pick arbitrarily 

an element i G / . Set x\ — Xi, set r\ — rXl, and let Q\ — B(x\,ri) be the first element 

of our partition. Suppose inductively that Qi, •. •, Qn have already been defined. If 

f{Xp) C Q\ U • • • U Qn, we stop; in this case our partition is finite. Otherwise, there 

is some Xi,i G / , with X{ £ Q\ U • • • U Qn; call this element xn+i. Let rn+i = rXn+1 

and let Qn+i = B(xn+i, rn+i) \ (Qi U • • • U Qn) be the next piece in our partition. 

In this paragraph, we show that for each piece of the partition constructed in 

the previous paragraph, its inverse image is a disjoint union of special sets. Fix 
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such a piece Q = Qn, and let B(x,r) = B(xn,rn) be the corresponding ball. Then 

f l i p = { x i , . . . ,xi} as above, where / ^ d/p depends on x. Define Qj = 

f~x{Q) H B(xj,re-£) H Xp for 1 < j ^ / and for j = Z + 1,... d/p, set Qj = 0. Then 

each set Qj, j = 1,... ,d/p, is a special set, and the union of the Q / s is the entire 

inverse image of Q under f\xp-

Finally, for i = 1,... ,d/p, let Pi = UnQnji, where Qn^ is as constructed in the 

previous paragraph with Q = Qn. Since a countable union of special sets with disjoint 

images is again special, each set Pi, i = 1,..., d/p, is special, and the proof is complete. 

We go back to the construction of a weak Jacobian. Since we assume that T is an 

FBC, we may consider a finite measurable partition AoiZ into special sets according to 

Prop. 3.4.6. Fix A G A. Since T\A is injective, the formula vA{B) = v{T{B)) applied 

to any measurable subset B c A defines a measure is A on A . By the invariance of v, 

it follows that is absolutely continuous with respect to VA- The Radon-Nikodym 

theorem implies the existence of a measurable non-negative function HA defined on A 

such that dv = YtAdvA-

Let YA = {JIA = 0} , and define JV on A by 

Jv 0 on YA, 

l/hA on A\YA. 

It follows that V{YA) — 0 and that for any special set B C A disjoint from YA, 

v(T(B)) / dvA 

]B 
Ju(hA dvA) 

s 
j Judv. 

B 
Let us define Y = U ^ Y A ; it follows that v(Y) = 0 and for any special set B disjoint 

from y , 

v{T{B)) 
A 

Kv(T(BnA)) 
A IBHA 

Jv dv = / Jvdv. 
]B 

Rohlin formula. — If v is ergodic, and if it admits a countable generator of finite 

entropy, then the so-called following Rohlin formula holds [PU, Thm. 1.9.7]: 

h AT) log Jv dv (3.9) 

where Jv is the Jacobian. 

In general, for non-invertible transformations, the existence of a countable genera­

tor of finite entropy can be difficult to establish. In our setting, we are able to obtain 

one inequality: 

Theorem 3.4.7 (Rohlin's inequality). — Let f : X\ —> Ab be an FBC of degree d > 2 

with repellor X which satisfies [Expans ] . Then, for any ergodic invariant probability 
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measure v on X, Rohlin s inequality always holds: 
hv(f) log Ju du. 

Remark. — The proof will show that if Rohlin's formula holds, then hl/(f) — hu(f, V) 
for any finite partition by special sets. 

Let Jy be the Jacobian of u. We let Y C X be of z/-measure 0 such that u(f(E)) = 
fE Jv du for all special sets E with E fi Y = 0. Let us restrict / to X' = X \ 
U n ^ o / - n ( Y ) so that Ju becomes a strong Jacobian for / : (X ' , u) —• (X', u). 

We start with a proposition essentially due to Rohlin, cf. [Par64, Thm. 1]. 

Proposition 3.4.8. — Under the assumptions of Theorem 3.4-7, let V be a finite and 
measurable partition of X' such that, for any P eV, f\p is injective. There exists a 
measurable map tp : (X ' , B(X'), u) —• (VN,T,fi), where B(X') is the Borel a-algebra 
of X' and T is the a-algebra generated by the cylinders of Z, which satisfies the 
following properties: 

> the map ip semiconjugates f to the shift map a on Z — ip(X'); 
D> the space Z is isomorphic to X,/(A) where A = V n ^ o / - n ( ^ ) ; 

> the probability measure fi is invariant under a; 
> the following holds: hv(f,V) = h^(a,ip(P)). 

Proof. — For any x G Xf, we set ip(x) = (Pn) where fn(x) G Pn. That is, ip sends 
the point x to its itinerary with respect to V under forward iteration. It follows that 
x G r\n^>of~n(Pn), so that Z is naturally identified with X'/(A). Clearly, the map 
if) is measurable, Z is invariant under cr, T/J semiconjugates / to a, and \i — ip*u is 
invariant under a. Let us note that Vn is mapped into the partition of Z by its 
cylinders of length (n + 1). Therefore, i/>(Vn) = {^{V))n = V 0 ^ ^ n C r - f c ( ^ ( P ) ) . 

For the entropy, one obtains 

h(f,V)- lim — 
n Pevn 

u(P)\ogu(P) 

• lim —-
n v(p)€v(Pn) 

M W ) log µ(v(P)) 

- lim —-
n 

Qe№(?))„ 
fi(Q) log /i(Q) 

HCJMV)). 
Proof of Theorem 3.4-7. — Let I be a finite measurable partition of X' obtained 
by Proposition 3.4.6. We refine this partition into a finite partition V so that if 
P G V and P H W ^ 0 for some W G 5(1), then P C W. Proposition 3.4.8 
implies the existence of (Z, cr, ¡1) and a measurable map if; : X' —> (7^)N. Define also 

4 = v̂ oT-*(n 
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Let us assume that /1 admits an atom a G (V)N. By invariance of /x, it follows 

that the point a is periodic under a of some period k ^ 1. Let E = il)~l({a)), 

and E = Uo^k-if~j(E)' lt follows that f~x{E) = E and that v(E) > 0 

so that the ergodicity of v implies that v(E) — 1, and that / shifts cyclically 

f~i(E), j ^ 1. But, by construction of f\E is injective, since it corres­

ponds to elements of the partition A. Thus, Jv = 1 almost everywhere so 

that Jlog Jvdv = 0. Moreover, since f\E is injective, there is some integer N 

such that, for all n ^ 1, E is covered by N sets from S(n). This implies with 

Axiom [Expans] that htov(f\E) = 0. Thus by the Variational Principle (3.7), 

M / ) = 0 = J log J„dv. 

We may now assume that fi is non-atomic. By construction, the partition ip(P) is 

a finite generator. So Rohlin's formula holds for a [Par64, Thm. 2]: 

hIA(a) = hIA(xl>(P),a) log Jy, dfi. 

Since {X', B(X'), v) is a Lebesgue space [Roh49], there are conditional measures 

VA for almost every A G A (in the sense that the union of atoms where conditional 

measures exist is measurable and of full ^-measure) and a measure vA on X'/A such 

that, for any Borel set E, 

v(E] 
IX' IA 

vA(AnE) du A • 

We note that (X'/A, vA) is isomorphic to (Z, fi) by construction. Let us prove 

that Ja ^ EUJA) o i>~1, where 

E ( J „ | . A ) ( A ) 
7 A 

Jvdv A (3.10) 

by definition and where we consider ij) defined on X'/A. 
Let E C I/J(P), for some P G ip(V), so that cr|£; is injective, and fi(a(E)) — 

fE JM dfi. Assume that i\)~x(E) is contained in the set of atoms for which the condi­

tional measures are well-defined (which has full measure). We note that f\^-i(E) is 

injective as well, since A is finer than X. By construction, 

a(E) ^aoxpo^iE) = iio f o^~1(E). 

Since fU~l(E)) c V-1 o W f f 1 ^ ) ) ) , it follows that 

fi(a(E)) v(f(^(E))) 

v-1(E) 
Jv dv 

JX/A 

dvA / X^~1{E)JiydvA 
IA 

E 
E(J„\A)c tp 1 dfjL. 
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According to Proposition 3.4.8 and Rohlin's formula, one obtains using (3.10) 

hv(f,P) hu(6,v(P)) logE(J^I^) dvA. 

But, Jensen's formula implies that, for almost every A e A, 

\ogE(Ju\A) log Jv du A 

so that 

\ogE{J„\A)dvA log Ju dv. 

Therefore, 

hv(f)>hv(f,P) \ogE(Jv\A) dvA log Jv dv. 

We now estimate ftM/(F) where F : d£T —• d£T and fif is the quasiconformal 

measure constructed in the previous section. 

For v = jif, one has JM/(F) = d/dp, cf. (3.5), so that 

huf(F) 
Jd£T 

log JnAF) dfjLf = logd 
Jd£T 

\ogdp dßf . 

The variational principle (3.7) applied to F then implies 

logd -
aeI 

log dF dßf < hßf(F) ^ ftt0p (F) ^ и ^ logd. 

As a corollary, we obtain the positivity of the topological entropy. 

Corollary 3.4.9. — If d ^ 2, then the metric entropy of jif is positive. 

Proof. — If this was not the case, it would follow that J logdpdfif = logd. But 
1 ^ dp ^ d, so that dp = d /л/-а.е.. But, being of maximal degree, the set {d = dp} 
is closed, and since the measure \±$ is supported by all the set <9Г, this implies that 
dp — d everywhere, and by the definition of an FBC, d = 1. • 

Furthermore, 

Proposition 3.4.10. — / / the branch set Bp has measure zero, then /if has maximal 
entropy log d. 

3.4.3. Equidistribution. — In this subsection, we prove that iterated preimages 
of points and periodic points are equidistributed according to / / / . 

Let us note that since F*F*cp = dip, the operator v i—> (l/d)F*v has norm equal 
to 1. 
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Theorem 3.4.11 (Equidistribution of preimages). — For any probability measure v 

whose support is disjoint from o G Te; the sequence (l/dn)(Fn)*z/ converges to /if in 

the weak-* topology. In particular, for any £ G T£ \ {o} and n ^ 1, the sequence of 

measures 

/4 = (i/rfn: 
F«(C )=Ç dF»(C)<Jc = (l/«T)(F~r^ 

converges to fif in the weak-* topology. 

We may then deduce the following. 

Theorem 3.4.12 (Equidistribution of periodic points). — The sequence of measures 

supported on dT£ 

An 
l_ 

dP Fn(€)=€ 
dFn (£)oç 

converges to /if in the weak-* topology 

Remark. — Since the number of cycles of period n is not known, the measures jln 
need not be probability measures. 

We start with a lemma (compare with the theory of primitive almost periodic 

operators, e.g., [EL89, Thm. 3.9]). 

Lemma 3.4.13. — For any continuous function ip : V \ B(o, 1) —> R7 the sequence of 

functions (l/dn)(Fn)*ip is uniformly convergent towards the constant function 

fdµf . 

Proof. — Let us define A(cp) = (l/d)F*ip. Let us consider two points £ and C close 

enough so that there exists a curve 7 joining them and avoiding o. It follows that 

the points of F~~n({^}) and F~n({C}) are joined together by subcurves of F~n{^) of 

length bounded by ££(l) • e~£n. 

If (f is a continuous function on T \ B(o, 1) with modulus continuity UJ^, it follows 

that 

| A > ( 0 - ^ M C ) | £ 
1 

dn 
F n « ' ) = É 

d F « ( f ; K ( 4 ( 7 ) e - e n ) K(4(7)e-en) 

This shows that the sequence {An(p}n is uniformly equicontinuous and that any limit 

is locally constant. Thus, if T \ B(o, 1) is connected, then any limit is constant. 

Furthermore, since F*fif — dfif, it follows that, for any n, 

An(pdnf (pdßf 

so that any constant limit has to be J (pdfif. 

ASTÉRISQUE 325 



3.4. MEASURE THEORY 71 

If T \ B(o, 1) is not connected, one can argue as follows. Adding a constant if 

necessary, we can assume that <p > 0. Then {An(p}n is a sequence of non-negative 

functions, and 

MvOlloo IMloo, 

so that the norms of {An(p}n form a decreasing convergent sequence. Let (p^ be any 

limit. One knows that it is locally constant; let us assume that it is not constant. We 

let k be any iterate large enough so that, for any maximal open set E such that <poo 

is constant, Fk(E n dT) = dT. Then, for any £ G dT, 

(**Woo(OI 
Fk(0=Z 

dFk 
<Poo(C) < ll^oolloo 

since ip^ is not locally constant, but non-negative. This contradicts the fact that 

ll̂ oolloo : inf Halloo. 
n 

Thus (̂ oo is constant. 

Corollary 3.4.14. — The measure /if is mixing. 

Proof. — For any continuous function and almost every £ G d£T, the sequence 

(l/dn)(Fn)*</?(£) tends to the value /if (cp) by the above lemma. The operator A has 

norm one, so for all £, | ( l /dn)(Fn)*<p(£) | ^ IMloo- Hence 

1/dn(Fn)*f-µf(f) 
: 4 | M | L 

and the dominated convergence theorem implies that F™ip —> /if((f) in L2(deT,/if). 

It follows from [DiSi03, Prop. 2.2.2] that / / / is mixing. • 

Proof of Theorem S.J^.ll. — Let v be a measure supported off the origin in T. For 
any continuous function ip, one has 

< ( 1 / 0 ( F T ^ > = ( i / , ( i / 0 ( O ^ ) = Anfdv 

It follows from dominated convergence that this sequence tends to 

(pd/if j d^ (pd/if = (/if,(p) 

so that ( l /dn) (Fn)V tends to 

We precede the proof of Theorem 3.4.12 by a couple of intermediate results concer­

ning periodic points, beginning with an index-type result. 

Proposition 3.4.15. — Let U be a Hausdorff connected, locally connected and locally 

compact open set, U' a relatively compact connected subset of U, and g : Uf —> U a 
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finite branched covering of degree d ^ 1 which satisfies [Expans] with respect to the 

coverinq Uo = W\. Then 

d = 
g(x)=x 

dg(x). 

Proof. — If, for every n, g~n(U) is connected, then [Expans] implies that r\f~n(U) 

is a single point x , which is fixed: thus d = dg(x). 

Otherwise, let ko be the maximal integer such that g~n(U) is connected. Then 

p-(fco+i)([/) is a finite union of connected open sets [/f,..., where mo > 1. Each 

restriction gj : Uj —> g~k°{U) is a finite branched covering of degree dj < d, and 

d=T,dj. 
For each g^ one may repeat this procedure until it stops. The proposition follows 

easily. • 

For an open set U G U corresponding to a point £ G T, denote by fj% = 

d~n Yl,Fn{u)=u dFn(U)S^j — -tfr(Fn)*5£ the measure appearing in the statement of 

Theorem 3.4.11. Recall that the measure \xn describing the distribution of periodic 

points is given by ftn = d~n E F - ( £ ) = £ dF*{£)h-

Lemma 3.4.16. — Let U be a vertex, and let us consider open subsets W\ and W2 of 

T£ \ {o} which intersect d£T such that W\ C W2 and such that W2 fl d£T C (j)f{U). 

For n large enough, 

µUn(W1) 
jjLn(W2) andijLn(W1)^f^(W2). 

Proof. — See Figure 3.4.3. 

Suppose U G S(n + \U\) and, as a vertex point in T£, belongs to W\. Then 

<f>f(U) C W2 if n is large enough, since d£(U\<pf{U)) = (l/e)e_lc/l —» 0. Hence 

Û C (j)]1(W2 H d£T) C U. So, if moreover fn(Û) = U then fn\D : U -> U satisfies 

the hypotheses of Proposition 3.4.15 and so 

dfn(U) dfn(x). 

fn(x)=x,xeu 

For the periodic points x appearing in the sum, <j)f(x) G W2. 

Therefore, 

µUn(w1) 1 

f™(u)=u,uew1 

dfn(U) 

1 

fn(u)=u,ueW! xeu,fn(x)=x 

dfn(x). 
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- unx 

-4>j1(w2nder) 

unx 
X 

4>f 

6eT 

U 
W1 

w2 Te 

Figure 3.4.3 

Since for each such U appearing in the sum, (i) <pf(U) C W2, and (ii) for fixed n, the 
ITs and their images under <j>f are pairwise disjoint, we have 

µUn(W1) 1 
: dn 

xGW2Jn(x)=x 

dfn(x)=µn(w2) 

Similarly, if fn(x) = x and x G Wi, then there is a unique U G / n ( t / ) such that 
x G f/. Therefore, for n large enough, 4>f{U) has compact closure in and [/ G W 2̂-
Thus 

µn(W1) 1 
dn 

/^([/)=^[/Gv^2 f™(x)=x,(f>fxeî 

dfn(x) 

1 
dn 

f'(U)=U,UEw1 
d / « ( I / ) = ^ n № ) . 

Proof of Theorem 3.4-12. — Note that the number of cycles is unknown. Neverthe­
less, it follows from Lemma 3.4.16 that {/in}n is relatively compact in the weak 
topology. Let ft be an accumulation point. We will prove that ¡1 — /if using their 

Borel regularity. 
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Let U be a vertex, and let us consider a compact subset K of $r, open subsets 
WUW2 and W3 of f \ {o} such that 

K cW^dT cW1cW2cW2cW3 

and such that W3 (1 dT C (ßf(U). 

Let (pi and (p2 be two continuous functions such that 

XK<f1>Xw1<Xw2<f2<Xw3 

Let us fix 77 > 0; if n is large enough then 

ШфЛ - Ûn(iPi)\ < r? 
ШфЛ - Ûn(iPi)\ < r? 

for 7 = 1 ,2 . 

Therefore, by the preceding Lemma 3 .4 .16 and the regularity of the measures, 

µ(K) £(<pi) An( î) + 77 ^ ßn(Wi) + 77 

µUn(W2)+n Mn(^2) +ry ^ /i/(<£2) +277 

AX/(C/) + 277. 

Since this is true for any compact subset of t/, the regularity of the measures imply 

ß(U) < H{U). 

Similarly, 

µf(K) 
M / ( V i ) M n ( V i ) + ' 7 ^ A i n ( W r i ) + '7 

An(W2)+n Mn(<P2) + »7 ^ A(V2) + 2J? 

uf(¤f(U))+2n 

from which we deduce jl((j)f(U)) ^ / ¿ / ( 0 / ( [ / ) ) , so that /1 = 

3.4.4. Hausdorff dimension. — Let Z be a metric space. Given J > 0, a S-cover 

of Z is a covering of Z by sets of diameter at most 5. For 5 ^ 0, set 

H'8{Z) inf 

2 
(diamL^)5 

where the lnnmum is over all o-covermgs 01 Z by sets Ui. As 0 decreases, rt̂  increases 

and so the s-dimensional Hausdorff measure of Z 

W S ( Z ) - lim HUZ) e [0 ,oo] 

exists. The Hausdorff dimension of Z is given by 

d imH (Z) = in f {s : HS(Z) = 0} = sup{s : H\Z) = 00}. 

Using balls instead of arbitrary sets in the definition leaves the dimension unchanged. 

See for instance [Mat95, §5 .1]. 
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We now compute the Hausdorff dimension of the boundary d£T. Fix s > 0. By 
Lemma 3.1.3, for any vertex £ G *S(n), diam£L500(^) ^ Ce~£n. Therefore <9er is 
covered by at most \S(n)\ sets of diameter Sn — Ce~£n and so 

Hssn(6eT) \S{n)\e —ens 

Suppose now that s > | . Recall that by definition, v = lim ^ log |S(n)\. There exists 
r] > 0 with ?J + ?7 — es < 0. It follows that for all n sufficiently large, 

П'гп(деГ) ; |5(n)|6 —ens en(v+n-es) CO. 

Hence 
We(0er)<oo forali s 

v 
e 

and therefore dim#(<9£r) < | . 

We now investigate lower bounds by appealing to the following result, which is 
similar to R. Mane ' s dimension formula [Man88]: 

Theorem 3.4.17'. — If Ц is an ergodic invariant measure with positive entropy, then 

lim inf 
log li(Be(t,r)) 

logr 
••K{F)/e, 

for ¡1-almost every £. 

Proof. — Since F is ee-Lipschitz, it follows that B£(^r) C n,ren£). Since ¡1 is 

invariant and ergodic, it follows from a formula of Brin and Katok [BK83] that an 

equivalent definition of metric entropy is 

hu(F) • lim lim sup 
1 *0 n—•oo 

- - l o g / i ( S ( £ , n , r ) ) , 
n 

for /j-а.е. £. 
Choose a generic point £ for \x and let r) > 0; we will write B£(r) = r). There 

are some ro > 0 and UQ G N such that, if r ^ r*o and n ^ no then 

-1 log A*S(n, r ) -MF) 

We choose rn = где en and we obtain 

log//(Be(rw)) . 
logrn 

log / i (5 (n , r0) ) % 
n(e - log(r0)/n) ; 

h^F)-2V  
s - log(r0)/n ' 

so 

lim inf 
log/x(ff£(rn)) 

logrn 
K{F)-2rì ^ 

e 

Given r > 0, fix n so that ££(rn+i) С -Be(r) С B£(rn) and 

log/z(gg(r)) . 

logr 

log/x(Bg(rw)) 

( l o g ^ ) +logrn 
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Thus, 

lim inf 
l o g / x ( S e ( r ) ) 

logr 
K{F)/e. 

It follows that for the measure / / / we have constructed and for any 77 > 0 and r 
small enough, 

M /№(r)) r ( l / £ ) h M / ( F ) - r 7 > 

This implies that the local upper pointwise dimension of fif satisfies dim/// 

(l/e)h^f{F). Therefore 

KÀF) 
e 

dim/i/ ^ dimd£r v 
£ 

- log d. 

Proof of Theorem 3.4-1- — By ergodicity and uniqueness of the class of quasiconfor­

mal measures of given dimension, it follows that // / is unique (cf. Theorem 3.4.4). 

Theorem 3.4.11 and Theorem 3.4.12 prove the equidistribution of preimages and 

periodic points according to / / / . The mixing property has also been proved (Co­

rollary 3.4.14). The claimed entropy and dimension estimates were proven in §3.4.2 

and § 3.4.4, respectively. • 

3.5. Properties for CXC maps following hyperbolicity 

In this section we assume that / : 3L\ —> £0 is a finite branched covering with 

repellor X satisfying the conditions at the beginning of section § 2.2, and is topologi­

cal^ CXC with respect to some open cover U$. Thus, the topological axioms [Expans ] , 
[ I r red ] and [Deg ] hold. 

3.5.1. Canonical gauge. — Let Y — T(f,Uo) be the associated Gromov hyperbolic 

graph as in Section 3.2. Recall that by Theorem 3.2.1, for e > 0 small enough, 

there is a homeomorphism (f)f : X —» d£T conjugating / on X to the Lipschitz map 

F : d£T —> d£Y. 

Theorem 3.5.1. — If f is topological CXC, then T is hyperbolic for any covering U with 

sufficiently small mesh, and F : dT —> dT satisfies [Round ] and [ D i a m ] with respect 

to the covering VQ = {4>f(Uo fl X)}ueu0- Iff ?>s furthermore metric CXC with respect 

to a metric d on XQ, then the map (f)f is a quasisymmetry between the metric spaces 

(X,d) andd£T. 

So, if / is topologically CXC, and if d£ denotes the metric given by Theorem 3.2.1, 

then the dynamics on X , when equipped with the pulled-back metric <^(de), is essen­

tially metrically CXC. The qualifier "essential" is necessary: without further assump­

tions, we do not know that the dynamics of / on the repellor itself is even topologically 

CXC with respect to the covering {U P\ X : U G Wo}. In particular, we do not know 

that F : d£T —• d£T is metrically CXC, and so we are unable to apply Theorem 2.8.2 

to prove the last conclusion. 
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Proof — Since / is topologically CXC, a metric exists so that the mesh of S(n) has 

exponential decay (cf. Theorem 3.2.5) and 0 / : X —» d£T is a homeomorphism as soon 

as e is small enough. Therefore Theorem 3.3.1 implies that Y is hyperbolic and that 

its quasi-isometry class is well-defined. 

We let V = (f)f(XJ). Axioms [ I r red ] , [Expans] and [Deg ] hold through the conjuga­

tion. Axioms [ D i a m ] and [Round ] follow from Proposition 3.3.6. 

Let us assume from now on that / is CXC. Our strategy is as follows. We will first 

establish that 0 / is weakly quasisymmetric by the blowing up/down argument given 

in the proof of Theorem 2.8.2. The proof concludes by arguments similar to those 

given in the proof of Proposition 3.3.11. 

Let ô be the Lebesgue number of Wo = S(l). Let x G l and let r € (0,S/L) where 

L is given by Proposition 2.6.6. 

By Proposition 2.6.6 we may find vertices W', W such that 

B(x,r/L) C W C B(x,r) C W C B(x,Lr). 

Since diam W x diam W, we have \W — W'\ = \W\ — \ W'\\ ^ N for some constant 

N. Let n = mm{\W\, \W'\} - 1. It follows that fn{W) c fn(B(x,r)) C fn(W) and 

that the roundness of fn(W), fn(B(x, r)) and fn(W) at fn(x) is bounded by p+(L). 

By the uniform continuity of the conjugacy (j)f and its inverse, and the fact that 

all these sets have a definite size, there exists a constant K such that the roundness 

of 4>f{fn{W')), <j>f{fn{B{x,r))) and 4>f(fn(W)) at <pf(fn(x)) is bounded by K. 

Therefore, radii r and r' exist such that 

B(Fn4>f(x),r'een C 4>f(fn{W')) C B(Fn<pf(x),Kr'e£n) 

and 

B(Fnïf(x),resn C Mfn(W)) C B(Fn4>f(x),Kreen). 
Proposition 3.3.3 implies that there is some finite constant H such that 

Round(0 / ( i?(£, r)), (j>f{x)) 
diame <f)f(W) 

diam£ (/)f(Wf) 
: e-e{\W-W'\) £ H. 

Therefore <pf is weakly quasisymmetric 

Using the uniform continuity of 0 / and its inverse again, it is enough to conside: 

x,y,z e X such that \x — y\x, \x — z\x ^ S/L. We argue as for Proposition 3.3.11. 

Hence, we may find W'y and Wz in T such that 

(1) V i diamW^ x \x - y\x and Round(W^,x) ̂  K, 

(2) z e Wz, dmmWz x \x - z\ and Round(Wz,x) ̂  X , 

for some universal K. 

It follows that 

\MX)-My)\e 
\(j)f(x)-(t)f{z)\£ 

diam£ W'y 

diam£ Wz 
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If \x — y\x and \x — z\x are equivalent, then Proposition 2.6.4 implies the bounds. 

If \x — y\x is small compared to \x — z\x, then W C Wz. Therefore 

\x - y\x 

\x - z\x 

diamWJ 

diam Wz 
s#1 ' c\wu-\wz\+i\ 

. dl 

where we recall that cn denotes the smaller diameter of sets in S(n). 

This implies that 

<ft/0) -<t>f(y)U 

</>f(x)-<l>f(z)\e 
is bounded by a function of 

\x - y\x 

\x - z\x 
which goes to zero as the ratio tends to zero. 

If \x — y\x is large compared to \x — z\x, then W'y D Wz. Therefore 

\x - z\x 

\x-y\x 

diamW^ 

diam Wy 
i 8^ 

d\wz\-\w^\+i 

ci 

We may conclude as above. 

This proves that 0 / is quasisymmetric. 

Remark. — Theorem 2.8.2 can be recovered with Theorem 3.3.1 and Theorem 3.5.1. 

As an application, we obtain the following result. 

Definition 3.5.2. — Let f : Xi —• XQ have repellor X and be topologically CXC with 

respect to some open covering Uo. The associated conformal gauge Q is the set of all 

metrics on X which are quasisymmetrically equivalent to a metric of the form 0 j ( d £ ) , 

where d£ is the metric on d£T and (f)f : X —> d£T is as above. 

Theorem 3.5.3 (Canonical gauge). — (1) Let f : X\ —>• Xo have repellor X and be 

topologically CXC with respect to some open covering Uo. Then the conformal 

gauge Q is nonempty and depends only on its topological conjugacy class. 

(2) IfUnX is connected for every U G Uo, then the conformal gauges of f : X\ —» 

Xo and f\x • X —» X agree. 

(3) / / the system is in addition metrically CXC with respect to some metric d on 

Xo, the conformal gauge Q of f agrees with the conformal gauge of the metric 

space (X,d\x)-

Proof. — (1) follows from the uniqueness result Theorem 3.3.11 and (3) from the 

preceding Theorem 3.5.1. The graph constructed using / and UQ is naturally identified 

with that constructed using f\x and Vo = {U D X : U G Uo} and the induced 

conjugacies respect this identification. Therefore the metrics on X obtained by pulling 

back the metrics on the boundaries of the two graphs coincide and (2) follows. • 
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Remark. — The preceding theorem implies that the gauge depends only on the dy­
namics near the repellor. One may surmise that it should really depend only on the 
dynamics on the repellor itself. Conclusion (2) implies that this is true once X is 
locally connected. In the non-connected case, however, a proof remains elusive. 

To illustrate the subtleties, fix d ^ 2, let X = { 1 , 2 , . . . , d}N be equipped with the 
metric \x — y\ = 2~^x^ where (x\y) = min^{xi ^ yi}, and suppose h : X —» X is 
a topological conjugacy, i.e., an automorphism of the one-sided shift on d symbols. 
If the gauge of / depends only on the dynamics on X , then every such h should be 
quasisymmetric. This is indeed the case, and a proof may be given along the following 
lines. 

(1) Start with a round closed disk D C C. For each i = 1,..., d, choose a similarity 
gi : C —> C such that gi(D) fl Qj(D) = 0 whenever i ^ j . This defines a 
conformal iterated function system (IFS). There is a unique nonempty compact 
set K C D for which K — uf=1gi(K). Using a blowing up/down argument, 
one shows that the attractor of this IFS is quasisymmetrically equivalent to X. 

(2) Using quasiconformal surgery, one builds a uniformly quasiregular map G : 
C —> C such that G\g^D) = g~x for each i, and such that G = zd + 0(zd~1) as 
z —> oo. By Sullivan's Theorem 4.4.1, G is quasiconformally conjugate to a de­
gree d polynomial p(z), and i f is quasiconformally (hence quasisymmetrically) 
equivalent to the Julia set J of p. 

(3) By results of Blanchard, Devaney, and Keen [BDK91], every automorphism of 
the shift on d symbols is realized as a monodromy in the shift locus of degree d 
polynomials. (The proof depends on the existence of a nice set of generators.) 

(4) As a polynomial varies in the shift locus, its Julia sets varies holomorphically 
[MS98]. Hence the induced monodromy is quasiconformal, hence quasisym­
metric. In conclusion, we see that every automorphism is realized by a quasi-
symmetric map. 

There seems to be a combinatorial obstacle to promoting topological conjugacies to 
quasisymmetric conjugacies for noninvertible expanding conformal dynamical systems 
with disconnected repellors. Even for hyperbolic rational maps / , g with disconnected 
Julia sets J ( / ) , J(g), it is not known if every topological conjugacy h : J{f) —> J(g) 
is quasisymmetric. 

This is known in the following special cases. First, if h extends to a conjugacy on 
a neighborhood of J(f),J(g) then Theorem 2.8.2 applies and h is quasisymmetric. 
However, even for maps with connected Julia set, such an extension need not exist. 
Second, if / and g are merely combinatorially equivalent in the sense of McMullen 
[McM98b] on a neighborhood of their Julia sets, then there is a quasiconformal 
conjugacy between / and g near their Julia sets. In both cases, conditions on the 
dynamics near, not just on, the Julia sets are assumed. 
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In contrast, we have the following result in the setting of hyperbolic groups; see Ap­

pendix B for definitions in what follows. Suppose G\, G2 are two hyperbolic groups, 

and suppose h : dG\ —» dG2 conjugates the action of G\ to the action of G2. By 

definition, this implies that there is some isomorphism $ : G\ —* G2 for which 

h(g(x)) — $(g)(h(x)) for all x G dG\ and all g G G\. One has necessarily that 

h arises as the boundary values of To see this, note that it is enough to verify that 

h — d$> on the dense set of fixed points of hyperbolic elements. Suppose g\ G G\ is 

hyperbolic with attracting fixed point uj\ and g2 = $(gi) has attracting fixed point 

UJ2. Since h is a continuous conjugacy we have h(u)\) = UJ2. But Ui = limn g™ and this 

forces d$(uji) — UJ2 — h{uj\). Thus, every topological conjugacy on the boundary is 

induced from a combinatorial equivalence, i.e., from an isomorphism of the groups. 

This suggests that perhaps there is yet another essential difference between the 

setting of noninvertible CXC maps and of hyperbolic groups. 

Corollary 3.5.4. — If f : X —• X is a topological CXC map, where X\ = Xo — X, 

then F : dT —> dT is metrically CXC. Therefore X admits a metric, unique up to 

quasisymmetry, for which the dynamics is metrically CXC. 

Proof. — The assumptions imply that X is locally connected, and that {S(n)}n is 

a basis of the topology by connected open sets. Proposition 3.3.2 implies the CXC 

property. • 

Corollary 3.5.5. — If f : (X\,X) —• (XQ,X) is a topological CXC map with f a non 

ramified covering, then there is some R > 0, such that, if we set 2)o — \ B£(o, R) 

and^)1 = F-WQ), then F : ($)udr) -> (?)0,r) is CXC 

Proof. — Since / is a cover, there is some level no such that, for any n ^ no, any 

U G 5 ( n ) , the restriction of / to U is injective. This implies that the local degree 

function for F is 1 at any point close enough to dT. 
Furthermore, if no is large enough, then will be a disjoint union of d 

shadows based at F_1 ({U}). 
Therefore, if we set 2)0 = Te~\Be(o, e~£n°) and 2 ^ = F_1(2)0), then F : 2)x -* 2)0 

is a degree d covering. 

For any £ G dT, let V(£) be the connected component of the interior of U(W) for 

some W G S(no) containing c/)J 1(£). Note that the interior of is not empty since 

it contains <f>f(W). Since T is locally connected, V(£) is open, and we may extract a 

finite subcover V. Proposition 3.3.2 implies that F is CXC. • 

3.5.2. Existence and uniqueness of the measure of maximal entropy 
Let (X, d) be a metric space and Q > 0. A Radon measure ¡1 is Ahlfors-regular 

of dimension Q if, for any r ^ diamX and any ball B(r), the measure of a ball 

of radius r satisfies /x(J5(r)) x r®. In this case, the measure JJL is equivalent to the 

Hausdorff measure of dimension Q on X. We may then also speak of an Ahlfors 
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regular metric space, keeping the measure implicit. The measure is doubling if there 
is some constant C > 1 such that /if(2B) ^ C/if{B). Ahlfors regularity implies 
doubling, but not conversely. 

Theorem 3.5.6. — Let f : X\ —> Xo be a topological CXC map of degree d having 
repellor X. Let d£, 4>f, and /if be the metric, conjugacy, and measure on d£T given 
by Theorems 3.2.1 and 3.4-1, respectively. Then /if is the unique measure of maximal 
entropy log d. It is Ahlfors regular of dimension ^ log d. If f is furthermore metric 
CXC with respect to a metric d on XQ, then on the metric space (X,d), the measure 
(j)*f(/if) 25 doubling. 

Proof. — Ahlfors regularity follows from [Deg] and the Lemma of the shadow. Let 
us fix a ball B£(£,r) C dT. First, Proposition 3.3.2 implies that we may find two 
vertices W1,W2 such that <f>f(Wi) C B£(£,r) C </>f(W2) and 

R+E-€|w1|=e--e|w2| 

From the Lemma of the shadow (Lemma 3.4.3) and [Deg] follows 

ra x e-ea\Wi\ < ^ r)) < e~e«№\ x r« . 

The fact that the entropy is logd follows from Theorem 3.4.1 and [Deg]: since the 
degree is bounded along any pull-back, it follows that, for any £ G dT, 

lim — log dprifC) = 0. 
n 

Hence BirkhofFs ergodic theorem (Theorem 3.4.5) implies that 

\ogdp d/if = 0 

so that dp(0 = 1 for /i/-a.e. every £. 

If / is metrically CXC, then the conjugacy 0/ is quasisymmetric, by Theorem 3.5.1, 

and quasisymmetric maps preserve the property of being doubling [HeiOl, Chap. 15]; 

this proves the last assertion. 

The proof of the uniqueness of /if occupies the rest of this section. • 

Proposition 3.5.7. — The critical set C(F) and the set of critical values V(F) = 

F(C(F)) are porous i.e., there is some constant c, such that, any ball B£(r) C dT, 

r ^ diam£ dT, contains a ball of radius at least c • r disjoint from C(F), or V(F). 

Proof of Proposition 3.5.7. — Let us first prove that C(F) is porous. We will use the 

fact that the critical set is nowhere dense. If not, there would be a sequence of balls 

{B(^nirn)}n such that any ball of radius rn/n contains critical points. 

Since T is doubling, the sequences of pointed metric spaces 

(B(€n,rn) Çn,(l/rn)de) and (B(F(^„),e£rn),e„,(l/r„)4) 
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is compact in the Hausdorff-Gromov topology [Gro81]. Hence, one can extract 

convergent subsequences. Since the restrictions of F are uniformly Lipschitz, of boun­

ded multiplicity and onto (cf. Lemma 3.2.2), it is the case of any limit so the lemma 

above implies that any limit has a nowhere dense critical set which yields a contra­

diction. Therefore, the critical set is porous. 

To see that the set of critical values is also porous, we pick a ball B and write 

F -1 (B) = BiUB2---UBfe, with k ^ d (cf. Lemma 3.2.2). We first consider a ball 

B[ C B\ disjoint from C(F) of definite size. Therefore F(B[) has definite size in B. 

Let us pull it back in B2 and define B'2 inside this new ball with definite size. By 

induction, since k is bounded by d, one constructs in this way a ball B' C B of size 

comparable to that of B which is disjoint from the set of critical values. • 

Topological entropy revisited. — We have proved that dT is Ahlfors regular of 

dimension a = ( l /e) logd. We adapt the estimate of M. Gromov on the topological 

entropy to our setting [Gro03] to obtain an upper bound for the relative entropy. 

Let n ^ 1 and endow (dT)n with the metric | ( £ j ) — (Cj)\e — maxjl^ — Cj\e}- Let 

TTJ : (dT)n —> dT be the canonical projection to the jth factor and let us define 

In : dT - (8T)n by / n ( 0 = ( £ , F ( 0 , • • • iF"-1®). Set Tn = In(dT), and let H be 

the Hausdorff measure of dimension a. We let Hr(Y) = inf {J2(diamUj)a}, where 

the infimum is taken over all the coverings of a given set Y by sets (Uj) of diameter 

at most r. 

Given a subset Y C dT et 77 ^ 0 , we let In(Y)rj be the 77-neighborhood of IniX) 

in Tn, and we define 

lov(F|y,77) lim sup - log H{In(Y)rj) 

lodn(F|y) lim inf lim inf - log inf H(B(In(Ç),r) H Tn) 

We set lov(F) - \ov{F\dT) and lodn(F) = lodn(F|<9r). 

The main observation is that, for any £ G dT, B(In(£),r) D Tn = In(S(£, n, r)). 

Let us fix Y C dT and a maximal family ( S j ) i < j ^ S n ( y , r ) or> disjoint dynamical balls 

S'(-,n, r) centered in Y. We fix 77 > r. It follows that 

H(In(Y)r,) 

l < j < S n ( y , r ) 

H(In(Sj)) > sn(Y,r)- MH(B(In(Ç),r) irn). 

Therefore, we obtain the formula 

htop(F\Y) lov(F|y ,77 ) - lodn(F|F) . 

In our setting, for any point £ G dT, we have H(B(In(£),r)) ^ H(7TnB(In(£),r)) 

since the projection decreases distances. Bu t nnB(In(^),r) D £?(Fn-1(£) , r ) so 

that H(B(In(£),r)) ^ i J ( B ( F n _ 1 ( £ ) , r ) ) > ra since 5 T is Ahlfors regular. Thus 

lodn(F) - 0 . 
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On the other hand, Proposition 3 .2.2 implies that r)) C J3(Jn(f), e ^ - ^ r ) . 

Let J > 0. Let us cover Yv by sets { f / j j j e j of diameter at most r so that 

^2(diamUj)a ^ Hr{Y71) + It follows that we may pick points £j G Uj so that 

JnQOr? is covered by the balls J3(Jn(£j), e£(n-1) diamt/j). Hence 

r f M ) ( / „ ( Y ) , ) 2Qe£Q("-1)(i/r(yr)) + 5) 2 a d ( n - l ) ( i r ( 1 g + ( 5 ) 

Letting (5, r —> 0, it follows that, for any set Y C dT and any n > 1 , 

#(/»(n>); I dnH(Yrj). 

This shows that lov(F|F,77) ^ logd and the estimate on the relative entropy becomes 

htoP(F\Y) logd. 

Uniqueness of the measure of maximal entropy. — It follows from the ergo­

dicity of fif and Theorem 3.4.1 that / / / i s the unique invariant measure of constant 

Jacobian. To prove that / / / i s the unique measure of maximal entropy, it is enough 

to prove that if v is an ergodic invariant measure with non-constant Jacobian, then 

K{F) <\ogd. 

We will adapt the argument of M. Lyubich [Lyu83] following the ideas of 

J.Y. Briend and J. Duval [BD01]. Let us first recall that if Y has positive z/-measure, 

then K{F) ^ hTOP{F\Y) (cf. [Lyu83, Lem. 7.1]). 

If the measure v charges the set of critical values V(F), then, since this set is porous 

in an Ahlfors regular set (Proposition 3 .5 .7) , its box dimension is strictly smaller than 

a so that hU(F) < e£dimV(F) < logd. So v does not have maximal entropy. 

We assume from now on that the measure does not charge the set of critical values 

V(F). For any point £ ^ V(F), there is some radius > 0 such that F~1(B(C^rc)) 

is the union of d balls of radius r^e~£. We may assume that the measure of the 

boundary is null. Let us extract a locally finite subcovering of dT \ V(F). This 

yields a measurable partition V = {Pj} of dT such that, for any piece P, there are d 

preimages Qi(P),..., Qd{P) such that diamQj(P) = e~£ diamP and F\Q. : Qj —> P 

is a homeomorphism. We label these preimages so that v{Qj) ^ z/((5J+i), and we 

define Uj = Upe-pQj(P). It follows that v(U\) > 1/d since v has non constant 

Jacobian. 

Furthermore, Y^v{Uj) = 1> so ^-a-e- point has an.itinerary defined by its visits to 

the sets UJ: for v almost every point £, for every iterate n, there is some index j(n) 

such that fn(x) G Uj{n). We let U? - {£ G Uj | B(^l/n) C Uj}. We fix N large 

enough so that v{U^) > 1/d, and we write O = U± . 

Let us define by rn(£) the number of iterates 0 ^ k < n— 1 such that G O. It 

follows from Birkhoff's ergodic theorem that rn(£)/n tends to v{0) for almost every £. 
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Let us fix a G (1/d, v(0)). By Egoroff's theorem, there is some m ^ 1 such that the 

set 

Y {£ e er I r „ ( 0 a n , V n ^ m} 

has positive z/-measure. We will show that lov(/|F, (1/2N)) < logd: this will then 

imply by the remark above that hu(f) < lov(/|Y, (1/2N)) < logd. 

Given J = ( j i , . . . , jn) e { 1 , . . . , d}n, we let C/j = n Ujt and r„(J) = T„ n Uj. 

Let Dn be the set of itineraries such that the number of occurrences of l's is at least 

an. M. Lyubich has shown that the cardinality of En is bounded by dpn where p < 1 

(cf. [Lyu83, Lem. 7.2]). 

By definition, In(y)(i/2N) C Uj€Enrn(J), so that 

#( /„00(1/2*)) 
j€Mn 

H(rn(J)nin(Y)(1/2N)). 

Let us cover Y(I/2JV) by finitely many balls J3 (£ , r^). It follows that ^ r*o > 0 for 

these particular balls and for some ro > 0. Thus, if U C V(i/2N) nas diameter at most 

ro/2, then we may define d inverse branches Fj so that diamFj(J7) = e~£ diam£/. 

Let r G (0,T*O/2), and let us cover 7rn(/n(Y')(1/2jv) n r N ( J ) ) by sets Ej of diameter 

at most r such that 

(d i am^)a ffr(7rn(Jn(y)(1/2jV)nrn(J)))+77. 

By construction, Fn 1|7ri(rTl(j)) is injective. It follows that, for any £ = 1,..., n — 1, 

diamf-£(Ej) n 7rn_ (̂rn(J)) = e - ^ d i a m ^ 

so that we may pick points £j G F(i/2iv)n/~^n~1^(JEj) such that rn(J)n/n(y)(i/2jv) C 
Uj2?(In(£j),rj) with rj = diam Ej. Therefore, 

Hr(Tn(J)fMn(Y){1/2N)) 2a(Hr(7rn(Tn(J) O In(Y){1/2N))) + V) 1 

so that i3"(/n(y)(1/2iv)) df>n and 

M / ) lov(/|F, (1/27V)) < p l o g d < logd. 

This establishes the uniqueness of /2/ as a measure of maximal entropy. 

3.5.3. BPI-spaces. — Following David and Semmes [DaSa97], a bounded space 

(X, d, //) is called BPI ("Big pieces of itself") if X is Ahlfors regular of dimension OJ, 
and if the following homogeneity condition holds. There are constants 6 < 1 and C > 1 

such that, given any balls B(x\, r\) and B(x2,r2) with r\,r2 ^ diamX, there exists a 

closed set A C B(xi,r\) with /i(-A) ^ 0rf and an embedding ft : .A —» B(x2lr2) such 

that ft is a (C,r2/ri)-quasisimilarity, i.e., 

cr1 1 % ) - / * ( & ) ! 
( r2 / r i ) | a - 6| 

C 

for all a, b € A 
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Theorem 3.5.8. — Under the hypotheses of Theorem 3.5.1, the metric space d£Y 

is BPI. 

Proof. — We start with a preliminary step. 

Suppose 0/ : X —> d£T is the conjugacy given by Theorem 3.2.1 and d£ is the metric 

on d£T. Let d£,x = 4>*f{d£). For convenience of notation, we will show (X, d£,x) is BPI. 

Recall that since / is topologically CXC, there is a uniform (in n) upper bound p 

on the degree d(U) by which an element of U G Un maps under fn. Choose W G Uno 

arbitrarily so that the multiplicity d(W) is maximal, so that any further preimages 

W of W map onto W by degree one i.e., are homeomorphisms. It follows from 

Proposition 3.3.2 that its image under 0/ contains some ball I?£(£,4r), such that, for 

any iterate n, any £ G F_n(£), Fn : B£(£,4re~£n) —> B£(£,4r) is a homeomorphism. 

Therefore, Proposition 3.2.3 shows that Fn : B£(^re-£n) Be(£,r) is a (l ,e£n)-
quasisimilarity. 

By Proposition 2.4.2, for each Uo G Uo, there exists k G N and some W G Uno+k 

such that 

>WcU0, 
> W is a preimage of W under fk, and 

> deg(/* :W-+W) = 1. 

Since Uo is finite, the W"'s considered above have a level bounded by some no + fco. 

Furthermore, for any n and any U G Un, one has fn(U) G Uo, so one may find a 

preimage WJJ of W so that WJJ C £7, and | Wt/| = n + 0(1) . Thus, one can find a ball 

B{g ,re~<n+k^) C Wtf so that fn+k : £(£' ,re-£(n+fc)) B( f , r ) is a (l,e-c<n+fc))-

quasisimilarity. Let us note that re-£(n+fc) x diam£ [7. 

Now suppose we are given d£?x-balls 5^ = B(£i,ri) C X , i = 1,2. By Proposi­

tion 3.3.2, there exist U[, U{ G U with 

U'i^X^Bi^Ui^X 

such that rti = \U[\ — ̂  log ^- -f O( l ) . For each i = 1,2, let be a preimage of 

W so that C U[, and |Wi| = ni + ki as in the previous paragraph. Moreover, 

we consider balls B(^/i,re~£^rli+ki^) C W{ as above. It follows from Ahlfors-regularity 

that ju/(B(£-,re-e<n*+fc*))) x Let ft, be the restriction of /ni+/Ci to the ball 

B(^, re~£^ni+ki^), for i — 1,2; the map h = h^1 o h\ is a quasisimilarity between big 

pieces of B\ and B2- • 
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CHAPTER 4 

EXPANDING NON-INVERTIBLE DYNAMICS 

In this chapter, we give different classes of expanding, non-invertible, topological 
dynamical systems to which we may apply the theory developed in earlier chapters. 
We first compare our notion of CXC with classical conformal dynamical systems on 
compact Riemannian manifolds: coverings on the circle (§4.1), rational maps on 
the Riemann sphere (§4.2) and uniformly quasiregular mappings in higher dimension 
(§ 4.4). We also provide other examples of CXC maps for which the conformal structure 
is not given a priori. These classes come from finite subdivision rules (§ 4.3) and from 
expanding maps on manifolds (§4.5). In §4.6, we provide two examples of maps 
which satisfy [Expans] and [ I r red ] , but not [ D e g ] . We conclude the chapter in §4.7 
by comparing and contrasting our constructions with formally similar ones arising in 
p-adic dynamics. 

4.1. No exotic CXC systems on S1 

Metric CXC systems on the Euclidean circle S1 include the covering maps z t—> zd, 
\d\ ^ 2, and essentially nothing else. 

Theorem 4.1.1 (CXC on S1 implies quasisymmetric homeomorphism conjugate to zd) 
Suppose f : X —> X is a metric CXC dynamical system where X is homeomorphic 

to S1. Then there exists a quasisymmetric homeomorphism h : X —> S1 conjugating 
f to the map z f—> zdeg f. 

Proof. — An open connected subset of S1 is an interval. Since / is open, it sends 
small open intervals onto small open intervals. Moreover, if these intervals are small 
enough, / must be injective on such intervals, else there is a turning point in the graph 
and openness fails. Hence / is a local homeomorphism. A local homeomorphism on a 
compact space is a covering map, see [AH94, Thm. 2.1.1]. In particular / is strictly 
monotone. 
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Such a map admits a monotone factor map TT onto g(z) = zd where d = deg / 
[KH95, Prop. 2.4.9]. If n is not a homeomorphism, then there is an interval I C 
n~1(x) for some x G S1. Axiom [ I r red] implies fN(I) = S1 for some A7". Then 

gN(x) = gN(ir(I)) = ir(fN(I)) = «(S1) = S1 

which is impossible. Thus 7 r is a homeomorphism and / is topologically conjugate 
to g. Since g is CXC with respect to the Euclidean metric, n is quasisymmetric, 
by Theorem 2.8.2. • 

4.2. Semi-hyperbolic rational maps 

We endow the Riemann sphere C with the spherical metric, and we will talk of 
disks D(x,r) rather than balls B(x,r) in this context. 

If g is a rational map, the Fatou set F(g) of g is the set of points z G C having a 
neighborhood N(z) such that the set of restrictions of iterates {(fn)\N(z)}n forms a 
normal family. The Julia set J(g) of g is the complement of F(g). We shall say that g 
is chaotic when J(g) = C. 

The class of semi-hyperbolic rational maps has been introduced by L. Carleson, 
P. Jones and J.-C. Yoccoz in [CJY94]. In their paper, they provide several different 
characterizations, some of which we now recall. 

Theorem 4.2.1 (Definition of semi-hyperbolic rational maps). — Let g be a rational 
map. The following conditions are equivalent and define the class of semi-hyperbolic 
rational maps. 

(1) A radius r > 0 and a maximal degree p < oc exist, such that, for any z G J(g), 
for any iterate n ^ 1 and any connected component Wn of g~n(D(x,r)), the 
degree of gn\wn is at most p. 

(2) A radius r > 0, a maximal degree p < oc, and constants c > 0 and 0 < 1 
exist such that, for any x G J{g), any iterate n ^ I, and any component Wn 
of g~n(D(x,r)), the degree of the restriction of gn to Wn is at mostp, and the 
diameter of Wn is at most c6n. 

(3) The map g has neither recurrent critical point in the Julia set nor parabolic 
cycles. 

(4) A maximal degree po exists such that, for any r > 0 and any x G J(g), if we let 
n be the least iterate such gn(D(x,r) PiJ(g)) = J(g) then gn\D(x,2r) has degree 
at most po. 

We refer to [CJY94, Theorem 2.1] for the proofs of the equivalence above. 

Corollary 4.2.2 (Topological CXC rational maps are semi-hyperbolic) 
A rational map is topological CXC if and only if it is semi-hyperbolic. 
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Proof. — Assume that / is a topological CXC rational map. Then it satisfies conclu­
sion (1) of Theorem 4.2.1 with radius the Lebesgue number of the cover U. 

Conversely, the classification of stable domains [Mil06a, Chap. 16] implies that 
the complement of the Julia set J(f) consists of points which converge to attracting 
cycles under iteration. Thus if Xo is the complement of a suitable neighborhood of 
attracting cycles and their preimages, then X\ — f~1(Xo) has closure in Xo and the 
branch points of / : XQ —-> X\ lie in J ( / ) . 

Axiom [Irred] holds for any rational map in a neighborhood of its Julia set [Mil06a, 
Thm. 4.10]. 

If / is semi-hyperbolic, Theorem 4.2.1 asserts that there exist an r > 0, p < oo, 
c > 0, and 6 < 1 such that, for any x G any iterate n > 1, and any component 
Wn of f~n(D(x,3r)), the degree of the restriction of fn to Wn is at most p, and 
the diameter of Wn is at most c8n. We let Uo be a finite subcovering of J(f) of 
{D(x,r), x G < / ( / )} , and Un be the set of components of f~n(U) when U ranges over 
Uo. Therefore, [Deg] and [Expans] hold, so that / is a topological CXC map. • 

Condition (4) of Theorem 4.2.1 says that, just as for convex cocompact groups, any 
point in the Julia set of a semi-hyperbolic rational map is conical. That is, one may 
use the dynamics to go from small scales to large scales and vice versa with bounded 
distortion (cf. Lemma 4.2.6 below). Indeed, Lyubich and Minsky [LM97] call semi-
hyperbolic maps convex cocompact and show that such maps are characterized by 
the following property: the quotient (by the induced invertible dynamics of / ) of 
the convex hull of the "Julia set" (the hull taken in their affine hyperbolic three-
dimensional lamination associated to / ) is compact. 

The aim of this section is first to prove that these maps are metrically CXC (Theo­
rem 4.2.4) and also to strengthen their relationship to convex cocompact Kleinian 
groups within the dictionary by establishing new characterizations of this class. Theo­
rems 4.2.4, 4.2.7, and 4.2.8 below imply the following. 

Theorem 4.2.3 (Characterizations of semi-hyperbolic rational maps) 
Let g be a rational map. The following propositions are equivalent. 

(1) g is semi-hyperbolic. 
(2) g is metric CXC on its Julia set, with respect to the spherical metric. 
(3) There is a covering U of J(g) such that the associated graph T is quasi-isometric 

to the convex hull of J(g) in H3 by a quasi-isometry which extends to (/)g : 
J(g) - dT. 

The map (f)g in the statement above is the one defined by Theorem 3.2.1. The 
symbol M3 denotes hyperbolic three-space; see §4.2.2. 

The last subsections deal with the topological characterization of semi-hyperbolic 
maps in the spirit of Cannon's conjecture for hyperbolic groups, which claims that a 
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hyperbolic group G with a topological 2-sphere as boundary admits a faithful cocom­
pact Kleinian action. 

4.2.1. Characterization of CXC mappings on the standard 2-sphere 

Theorem 4.2.4 (Semi-hyperbolic rational maps are CXC). — Let f be a semi-hyperbolic 
rational map with Julia set J ( / ) . Then there are closed neighborhoods Xo,X\ of J(f) 
such that, in the spherical metric, f : X\ —> %o is metrically CXC with repellor J(f) 
with respect to a finite collection Uo of open spherical disks. 

By the Riemann mapping theorem, a simply-connected domain V C C which is 
neither the whole sphere, nor the whole sphere with one point removed, is conformally 
isomorphic to the unit disk and so carries a unique hyperbolic metric py of curvature 
— 1. We call such a domain a simply-connected hyperbolic domain. 

Notation. — Let <7 = |dz| /( l + |z|2) denote the spherical Riemannian metric on C. For 
a simply-connected hyperbolic domain V in C, let py denote the hyperbolic metric 
on V and Vc its complement in C. Given a metric g, we denote by B(a, r;g) the ball 
of radius r about a and by diam(^4; g) the diameter of a set A. 

Univalent functions. — See [Ahl73, Chap. 5]. Let D denote the unit disk centered 
at the origin in C, and let 

S = { / : (B>, 0) -> (C, 0)} : / is 1 - 1 and analytic} 

denote the class of so-called Schlicht functions. In the topology of local uniform 
convergence, S is compact. This implies that restrictions to smaller balls are uniformly 
bi-Lipschitz, a fact known rather loosely as the Koebe distortion principle. More 
precisely: for all 0 < r < 1, there is a constant C(r) > 1 such that for all \z\, \w\ ^ r 
and all f G <S, 

1 

W) 
! / ( * ) - / M l 

\z — w\ 
C(r). (4.1) 

The Koebe principle also implies that for any simply-connected hyperbolic domain 
V C C . 

pv(w) 
\dw\ 

distfto, Ve) 
(4.2) 

I № ) I I / I M I 

Finally, we will need the Schwarz-Pick lemma: if / : V —> V is a proper, holomorphic 
map between hyperbolic domains, then with respect to the metrics Py and py, for all 
tangent vectors v, 

1 with equality if and only if / is an isometry. (4.3) 

While essentially classical, the specific versions given above may be found in [McM94, 
Chap. 2]. 
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Lemma 4.2.5 (Comparing metrics). — There exists a universal constant C such that 
the following holds. Let W C C be a simply-connected hyperbolic domain of spherical 
diameter < 7 r / 4 , let x G W, and set D — B(x, 2; pw)- Then, restricted to the domain 
D, the metrics pw and a/ diam(JD;cr) are C-bi-Lipschitz equivalent. 

Proof. — By applying a rigid spherical rotation we may assume W is contained in D. 
For such domains, by compactness, a and the Euclidean metric \dw\ are bi-Lipschitz 
equivalent. By (4.2) we have 

Pw : 
1 

dist(w, Wc) 
r\dw\ 

where dist(w, Wc) denotes the Euclidean distance from w to the complement Wc of 
W in C . Suppose cj) : (D, 0) —> (W, x) is a holomorphic isomorphism. By the Koebe 
principle (4.1) and the fact that D is a hyperbolic ball of radius 2, hence precompact, 

diam(Z); cr) diam(Z>; \dw\) |0'(O)|. (4.4) 

Let w € D. The Schwarz-Pick lemma (4.3) implies dist(w,Wc) < const • \<f>'(0)\, 
and the Koebe principle (4.1) implies dist(w, Wc) ^ const • |</>'(0)|, so that 

dist(w, Wc) №0)\-

Dividing (4.4) by (4.5) yields 

(4.5) 

diam(D; cr) 
distfiü, Wc) 1 

and so 
pw(w) 

o~(w)/diam(D; a) 
diam(D; cr) 
dist(w, Wc) 

1. 

While the Koebe distortion principle applies to univalent maps, there are variants 
for proper, noninjective maps as well. See Figure 4.1. 

Lemma 4.2.6 (Distortion of p-valent maps). — For p G N and r,r > 0, there exist real-
valued functions Cn{p,r) and C^1(p,r), tending to zero as r,r tend to zero, with the 
following property. Suppose W, W C C are hyperbolic simply-connected domains, 
f : W —• W is a proper, holomorphic map such that ^f~x(w) ^ p for all w G W, 
and f(w) = w. 

(1) Let B = B(w,r; pw) C W and let B be the component of f~1(B) containing 
w. Then 

(a) B(w,ripff) C B C B(w,Ch(p,r);pw). 
(b) / / B is replaced by an open connected set, then 

diam(i?; pw) diam( jB ;p^) : Ch(p, di&mB). 

(2) Given r > 0. 

B{w,Chl(p, r)]pw) f(B(w,r]pw)) B(w,f;pw). 
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f f 

FIGURE 4.1. At left: the hyperbolic diameter of the component of 

f 1(B(w,r)) containing w cannot be too large. At right: the image of the 

hyperbol ic ball of radius r cannot be too skinny. 

Basically, the above lemma says that for connected sets of a fixed size, preimages 

cannot be too large or too skinny, and images cannot be too large or too skinny. 

Proof. (1) (a) is the content of [CJY94, Lem. 2.2] and implies the lower contain­

ment in (2) and the upper bound in (1) (b); see also [SLOO]. The lower bound in (1) (b) 

and the upper containment in (2) follow from the Schwarz-Pick lemma (4.3). • 

Proof of Theorem 4-£>4- ~~~ Suppose / : C —»• C is semi-hyperbolic. Let r,p be the 

constants as in Theorem 4.2.1. Let XQ be the complement of a forward-invariant 

neighborhood of the attractors as in the proof of Corollary 4.2.2 and Xi its preimage, 

so that / : X\ —» Xo is an FBC satisfying the conditions at the start of § 2.2. To define 

the level zero good open sets UQ we proceed as follows. 

Definition o f UQ. — For x € « / ( / ) , let W(x) be the spherical ball whose radius is 

r/2. By Lemma 4.2.6 there exists ro so small that Ck{p-,ro) < 1/2 and let U(x) — 

B(x, ro; Pw{x))- Let Uo be a finite open cover of J(f) by pointed sets of the form 

(U(x),x). Then we have a finite set of triples (W(x), U(x),x). By taking preimages, 

we obtain for each n £ N a covering Un of J(f) by Jordan domains U such that 

each has a preferred basepoint x and is compactly contained in a larger domain W. 
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Moreover, 

fk:(W,U,x)^ (W,U,x) 

whenever U G UN, U G /̂n+fc, and fk(x) = x. Note that by construction and 
Lemma 4.2.6, for all n and all U G U = UNUN with basepoint x, 

jB(x,r0;pw) : U B(x,l/2;pw). 

In particular, 

2r0 : diam ({7; pw) 1. (4.6) 

Diameter distortion. — Suppose fk : (U, Uf) —> (/7, £/'), and let W and W be the 

larger sets given with U and U. We have by Lemma 4.2.5 

diam(U ; cr) 

diam(J7 ; <J) 
diam(C//; cr/ diam(£/; cr)) diam(f//; p ^ ) ( 4 . 7 ) 

and similarly 

diam(f7'; cr) 

diam(C7; cr) 
diam(£/';p^). (4.8) 

By Lemma 4.2.6 (1) (b), we have 

diam(C//; pw) diam(i7';p^) : Ch(p,d\&m(U'',pw))- (4.9) 

Together, (4.7), (4.8), and (4.9) imply 

diam(£/'; a) 

diam(C7; cr) 
const 

diam(C//; cr) 

diam(£/; a) 

and 
diam(t/'; cr) 

diam(C7; cr) 
const • Ch p, const 

d iam^V)^ 
diam([7; cr) , 

as required. 

Roundness distortion. — We first estimate the distortion of roundness with res­
pect to hyperbolic metrics, and then relate the hyperbolic to the spherical metric. 

Suppose U G U = UNUN, a G U, and Round(£/, a) = K in the hyperbolic metric of 
W. By the definition of roundness, there exists s > 0 such that with respect to the 
hyperbolic metric on W, 

B(a,s) C U C B(a,Ks) 

and no smaller i f will do. Thus 

^ diam(C7) Äs diam([/). (4 .10 ) 

Combining (4.6) and (4.10) we obtain 

r0 ^ K s 4, 1, (4.11) 

z.e., that K x 1/s where the implicit constant is independent of U G U. 
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Now suppose fk : (U,a) —> (U,a). 

Backward roundness distortion. — By Lemma 4.2.6 ( 1 ) (a), with respect to the 
hyperbolic metric on W, 

B(â,s) C U « B{a,Ch(p,Ks)) B(a,Ch(p,l)) 

and so 

Round(C7, a) Ch(p, i ) 
S 

const • K 

since K x l/s. Hence we obtain a linear backwards roundness distortion function. 

Forward roundness distortion. — Suppose now Round(C/, a) = K. Then with 
respect to the hyperbolic metric on W, there exists s > 0 such that 

B(ä,s) CU С B(à,Ks) S ( 5 , l ) 

so that K x l/s. Hence by Lemma 4.2.6 ( 2 ) , with respect to the hyperbolic metric 

on W, 

B(a9C^{p9a)) UcB(a,l). 

Therefore 

Round (17, a) l/C¿\p,r0 
l/C¿\p,r0/K) 

since s > vç\IK bv ( 4 .11 ) . 

It remains only to transfer the roundness estimates from the hyperbolic to th< 

spherical metric. Suppose U G U has basepoint x, a G J7, and Round(17, a) = K witl 

respect to the hyperbolic metric on ^ . By construction, 

U = B(x,r0;pw) C B(x, 1;pw) 

and we have already shown 

B(a, Ks;pw) C S ( a , 1 ;p w ) . 

Therefore, the set U, its largest inscribed ball B(a, s) about a, and its smallest circum­

scribing ball B(a,Ks) about a are all contained in the hyperbolic ball D = JB (X, 2 ) . 

On the set D, Lemma 4.2.5 implies that the hyperbolic metric pw is bi-Lipschitz 

equivalent to the metric a/ diam(R9;cr). Since roundness is invariant under constant 

scalings of the metric, the factor 1/diam(D;<j) is irrelevant. It follows easily that the 

roundness computed with respect to the hyperbolic metric on W is comparable to 

that computed with respect to the spherical metric a. 

This completes the proof of Theorem 4.2.4. • 

We now provide a converse statement. 

Theorem 4.2.7 (CXC on the Euclidean §2 implies uniformly quasiregular) 

Suppose f : § 2 —• S 2 is an orientation-preserving metric CXC map with respect to 

the standard spherical metric. Then f is quasisymmetrically, hence quasiconformally 

conjugate to a chaotic semi-hyperbolic rational map. 

ASTÉRISQUE 325 



4.2. SEMI-HYPERBOLIC RATIONAL MAPS 95 

We view this theorem as an analog of a theorem of Sullivan and Tukia which says 
that a group of uniformly if-quasiconformal homeomorphisms of §n, n ^ 2, which acts 
as a uniform convergence group action is quasiconformally conjugate to a cocompact 
Kleinian group; see § 4.4, Appendix B, and [Sul81, Tuk86]. The proof of the theorem 
uses facts from quasiconformal analysis, see Appendix A. 

Proof. — Any iterate fn is also a finite branched covering from the sphere to itself, 

hence has finitely many critical points. We will first prove that a constant K exists 

such that fn is if-quasiregular for all n ^ 1. Fix n and consider a small disk 2D 

disjoint from the critical set of fn. It follows from Lemma 2.7.2 that there is a constant 

H < oo such that, for all x £ 2D, 

lim sup 
m*x{\fn(x)-fn(y)\ : \x-y\=r} 

mm{\f"(x)- fn(y)\ : \x - y\ = r} 
H. 

By Theorem A.0.1, on the domain D, the iterates fn are uniformly K = K(H)-

quasiconformal. 

This implies that fn is if-quasiregular off the critical set of fn. But finitely 

many points are removable for quasiregularity, hence fn is if-quasiregular. It fol­

lows from Theorem 4.4.1 that / is quasiconformally conjugate to a rational map. 

The semi-hyperbolicity follows from the property of bounded degree along pull-backs 

(cf. Theorem 4.2.1). • 

4.2.2. Convex Hull of Julia sets. — We recall that the Euclidean sphere S2 may 

be regarded as the sphere at infinity of hyperbolic three-space M3 in the Poincaré ball 

model. Given a set E C S2, the convex hull of E is the smallest convex subset of H3 

which contains every hyperbolic geodesic joining pairs of distinct points in E. 

In this paragraph, we prove the following theorem. Below, Y and <j)f are as in § 3.2. 

Theorem 4.2.8. — Let f be a rational map. Then f is semi-hyperbolic if and only if 

there is a finite cover U of J(f) such that the space Y = Y(f,U) is quasi-isometric 

to the convex hull of the Julia set in H3 by a quasi-isometry which extends as <j)f : 

j(f) -> ar. 
We begin with the sufficiency. 

Proposition 4.2.9. — Let f be a rational map, and Y the graph constructed from a 

finite covering U. IfY is hyperbolic and 0/ : J(f) —» d£Y is quasisymmetric for some 

e > 0 then f is semi-hyperbolic. Furthermore, the measure of maximal entropy is 

doubling on J(f). 

We start with a lemma. In the statement, the notation diam refers to the Euclidean 

diameter. 
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Lemma 4.2.10. — Let K be a compact subset of J{f) — { o o } . For any a = (wo, W), 

where W G U and w0 G W fl K, let Aa(z) = w0 + diam(W n J{J))z. Under the 

assumptions of Proposition 1^.2.9, the family of maps { / ' ^ ' o Aa}a is normal on C. 

Furthermore, any limiting map of this family is an open map. 

Any sequence {Wn}n C U of neighborhoods of wo is contained in some fixed 

Euclidean disk about WQ on which the Euclidean and spherical metrics are comparable. 

Changing between comparable metrics does not affect normality, so we use whichever 

is most convenient. 

Below, the notation diam W will denote the diameter with respect to the spherical 

metric in C, otherwise, we will write diam£ for the diameter with respect to the 

metric d£. 

Proof. — Let us consider a sequence {an}n of pointed sets; if the sequence of levels 

is bounded, then the lemma is clearly true. So we might as well assume that an = 

(wn, Wn) with \Wn\ = n. We shall then write Aan = An. 

We note that Fn is e£n-Lipschitz in d£T. But Proposition 3.3.2 (which applies since 

(f)f is assumed to be a homeomorphism) asserts that d i am£0 / (W fl J ( / ) ) x e-6 '^ ' 

for all W G U. Therefore, ifWe S(n), then the Lipschitz constant of 

Fn : dT 
de 

àmm£(ct>f(WnJ(f))) 
(dT,d£) 

depends neither on the chosen element W nor on n. 

Suppose now that 0 / is 77-quasisymmetric. We observe that the family 

4>foAn :A-^J(f)) dr. de 

diams4>f(Wn J(f)), 

is equicontinuous. This follows from [HeiOl, Prop. 10.26]: all these maps are 77-

quasisymmetric, and normalized: for any z, w € W, 

\A-\z)-A-1(w)\ 1 

and 

\<f>f(z) - 4>f(w)\£ 

diame 4>f{WnJ(f)) 
n 2 

\z — w\ 

diam(Wn «/(/)). 
r1(2\A-1(z)-A-\w)\) n(2) 

This implies that, for all R > 0, all the maps ( / " o An)\A-i^j^nD^0tR^ share a 

common modulus of continuity UJR since 

roAn = <t>-f1oFno{4>foAn) 

and 

pn or, 
d€ 

diam£ f(wnj(f)) 
(dT,d6) 

is uniformly Lipschitz. 
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Let us now prove the lemma. If (fn o An)n^o was not a normal family at a point 

Zoo £ C, then Zalcman's lemma [Zal98] would imply the existence of a convergent 

sequence of points {zk}k with as a limit, a sequence {pt}k of positive numbers 

decreasing to 0 and a subsequence {rik}k such that fUk o Anfc o Bk tends to an open 

map g : C —> C where Bk(z) = Zk + Pfc2. 

Let i? = 2|2oo|, and let us choose 1?' > 2d(0, #_1( J ( / ) ) ) . Then, for fc large enough, 

it follows that Bk(D(0,R')) C £>(0,#) and 

diam(/nfc o 4 n J o Bk(D(0, R') fl (Ank o J S * ) - ^ J ( / ) ) ) < ooR{2pkR') 

which tends to 0. This contradicts the fact that # is open since diam(^_1(J(/) Pi 

£>(0,i?'))) > 0 . 

Therefore, (/n o An)n^o is a normal family on C. 

By construction, for all k the domains (/nfc o Ank)~1(Wo fl J ( / ) ) have diameter 

one, contain the origin, and map onto Wo fl J(f) at level zero. Therefore any limiting 

map is nonconstant, hence open. • 

Proof of Proposition 4-2.9. — We will prove that the condition (1) in Theorem 4.2.1 

follows from Lemma 4.2.10. Let r > 0 be such that any disk of radius r centered at 

a point of J(f) is contained in some open set defining the cover U. 

If the condition were not satisfied, we would find a sequence of points Zk G J(f) and 

connected components Wk of f~Uk(D(zk,r)) such that the degree of fUk\wk would 

tend to infinity. We may assume that (zk) tends to some z^. Let Wk G Wk be 

such that fnk(wk) = Zk- It follows from Lemma 4.2.10 that the sequence of maps 

Qk(z) — fnh(wk + diam(W4 fl J(f)z)) is a normal sequence on C with open limits. 

Hence after passing to a subsequence we may assume —> q uniformly on the closed 

unit disk D. Since <7fc(D) D (D(zk, rk)f) J(f)) by construction, we have using Hurwitz' 

theorem that for all sufficiently large k, 

deg(fn*\Wk) # { C 1 ( ^ o o ) n D } # { ç - 1 ( ^ o o ) n D } 

where # counts with multiplicity. So the degree has to be eventually bounded, contra­

dicting our assumption. Therefore, / is semi-hyperbolic. 

The statement on the measure follows from the following argument. Since / is semi-

hyperbolic, / is also CXC (Theorem 4.2.4), so Theorem 3.5.6 implies that pf is the 

unique measure of maximal entropy and that pf is also Ahlfors-regular of dimension 

(1/e) logd. 

In particular pf is doubling: there is a constant C > 0 such that, for any ball 

B(x,r), with r < diam£<9r, pj(B(x,2r)) < Cpf(B(x,r)). Since this condition is 

preserved under the application of quasisymmetric mappings, the same is true for 

(j)*fPf (cf. [HeiOl, Cor. 4.15]). Furthermore, metric entropy is invariant under Borelian 

isomorphisms [KH95, Prop. 4.3.16], and in particular under homeomorphisms. So, 
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we recover the fact that / admits a unique measure of maximal entropy: the pull-back 

under cj)f of / i / , and this measure is doubling. • 

We may now prove Theorem 4.2.8: 

Proof of Theorem 4-2.8. — Suppose T is quasi-isometric to the convex hull of J(f) 

via a map which extends as 0/. First, since quasi-isometries between proper geodesic 

spaces preserve hyperbolicity, it follows at once that T is hyperbolic. Alternatively, 

the comment following the statement of Proposition 4.2.9 shows that one may apply 

Theorem 3.3.1 to conclude the hyperbolicity of T. Second, since quasi-isometries 

extend as quasisymmetric maps, 0/ is quasisymmetric. 

Therefore, Proposition 4.2.9 applies and shows that / is semi-hyperbolic. 

Conversely, if / is semi-hyperbolic, then Theorem 3.5.1 shows that 0/ is quasi-

symmetric and that T is hyperbolic. Since both T and the convex hull of J(f) are 

quasi-starlike Gromov spaces, the quasisymmetry 0/ extends as a quasi-isometry bet­

ween T and the convex hull of J(f) (Theorem 3.1.5). • 

4.2.3. Topological characterizations of chaotic semi-hyperbolic rational 
maps. — In this subsection, we prove the following theorem. Below, the notation 

§2 denotes the Riemann sphere C equipped with the spherical metric. 

Theorem 4.2.11 (Characterization of chaotic semi-hyperbolic rational maps) 

Let f : S2 —> S2 be an orientation-preserving finite branched covering map defined 

on a topological 2-sphere which satisfies [Expans] with respect to some covering U, 

and suppose e is small enough so that Theorem 3.2.1 applies. Then the following are 

equivalent: 

(1) f is topologically conjugate to a semi-hyperbolic rational function R : S2 —•> §2 
with J(R)=S2. 

(2) d£T is quasisymmetrically equivalent to S2. 

(3) r is quasi-isometric to hyperbolic three-space H3. 

(4) The conformal gauge of deT contains a 2-Ahlfors regular metric. 

(5) The map f is topological CXC and the sequence {Un}n of coverings of S2 is 

conformal in the sense of Cannon. 

Recall that the conformal gauge of a metric space (X, d) is the set of metrics d 

on X such that the identity map (X,d) —> (X,d) is quasisymmetric (see [HeiOl, 

Chap. 15]). 

The equivalence with (5) will be proved after developing some needed background. 

This corresponds to a theorem of Cannon and Swenson for hyperbolic groups whose 

boundary is homeomorphic to the two-sphere [CS98]. 

Proof. — Suppose U — Uo satisfies [Expans ] . Then there exists some N such that 

for all n ^ iV, elements of Un contain at most one branch value of / . Let V be a 
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finite covering of the sphere by Jordan domains V which is finer than UN and such 

that dV avoids the countable set of forward orbits of critical points. The elements 

of V = UnVn are then homeomorphic to Jordan domains, since they are coverings of 

disks ramified over at most one point and their boundaries are unramified covers of 

the Jordan curve boundaries of elements of V. Since the quasi-isometry class of V does 

not depend on the cover (Theorem 3.3.1), we may assume at the outset that U = V 

and hence that elements U of U and their complements in the sphere are connected. 

(1) (2). — Suppose hi : S2 —• S2 conjugates / to a semi-hyperbolic rational 

function R and /¿2 : S2 —> d£T conjugates / to the dynamics F on the boundary of 

T. Since R is semi-hyperbolic, / is topologically CXC (Corollary 4.2.2) and so F is 

topologically CXC as well. By Corollary 3.5.4, F is metric CXC. The rigidity theorem, 

Theorem 2.8.2, implies that /12 o h~[l : S2 —> d£T is quasisymmetric. 

(2) => (1). — Suppose h : d£T —• §2 is a quasisymmetric map. By Propositions 3.3.6 

and 2.7.2, F is uniformly weakly quasiregular (in the sense that it satisfies the conclu­

sion of Proposition 2.7.2). Since this condition is preserved under quasisymmetric 

conjugacies, so is G = hFh~l. By Theorem A.0.1, the iterates of the map G are 

uniformly quasiregular. Sullivan's Theorem 4.4.1 implies that G is quasiconformally 

conjugate to a rational map R. Since h is a quasisymmetry, Theorems 4.2.8 and 3.1.5 

together imply that R has to semi-hyperbolic. 

(3) O (2). — This follows from Theorem 3.1.5: boundary values of quasi-isometries 

are quasisymmetries and, conversely, quasisymmetric maps of boundaries extend to 

quasi-isometries. 

(4) <=> (2). — The fact that (2) implies (4) follows from the fact that S2 is naturally 

a 2-Ahlfors regular metric space. 

For the converse, since all elements of U are Jordan domains, Proposition 2.6.6 

shows that d£T is linearly locally connected. Since linear local connectivity is a qua­

sisymmetry invariant [HeiOl], there exists a metric in the gauge of d£T which is both 

linearly locally connected and, by hypothesis, Ahlfors 2-regular. By M. Bonk and 

B. Kleiner's characterization of the standard two-sphere [BK02a], this implies that 

d£T quasisymmetrically equivalent to the standard Euclidean two-sphere. • 

These statements mimic similar theorems for Gromov hyperbolic groups in the 

context of Cannon's conjecture. Statement (2) is concerned with Sullivan/Tukia's 

straightening theorem of quasiconformal groups [Sul81, Tuk86]; statement (3) is 

due to J. Cannon and D. Cooper [CC92] in the context of groups; statement (5) 

is due to M. Bonk and B. Kleiner, and can be deduced either from [BK02b], or 

from [BK02a] and [BK05]. 

In [BK05], M. Bonk and B. Kleiner also prove that a Gromov hyperbolic group 

admits a cocompact Kleinian action on C if the Ahlfors-regular conformal dimension 

of the gauge of its boundary is attained. The Ahlfors-regular conformal dimension of 
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(X, d) is the infimum of the Hausdorff dimensions over all Ahlfors-regular metrics in 
its gauge. In our setting of non-invertible dynamical systems, however, the analogous 
statement does not hold: 

Proposition 4.2.12. — There is a metric d on the 2-sphere S2 and a metric CXC map 
f : (§2,d) —• (§2,d) such that the Ahlfors-regular conformal dimension is attained by 
d, but f is not topologically conjugate to a rational map. 

Proof. — Let us consider F : C —> C be defined by F(x + iy) = 2x -f 3iy. Let us 
consider the metric d(x -f- iy, x' + iy') = \x — x'\ -h \y — y'\a where a = log 2/ log 3. One 
may check that (C, d) is Ahlfors regular of dimension 1 -f- 1/a and that this dimension 
is also its Ahlfors-regular conformal dimension since the (1 + l/a)-modulus of the 
family of horizontal curves is clearly positive (cf. [HeiOl, Thm. 15.10]). 

Since F(Z[z]) C Z[i] and F(—z) = —z, this map descends to a map / : C —• C, onto 
which one can push down the metric d to a metric d. It follows that this metric satisfies 
the same properties as d. Furthermore, since d(F(z),F(z')) = 2d(z,z') clearly holds 
for any z,z' 6 C, it follows that / is CXC with the metric d. 

But since the conformal dimension of (C, d) is strictly larger than 2, Theorem 4.2.11 
shows that / is not equivalent to a rational map. • 

Remark. The preceding proposition implies that the metric space (S2, d) need not be 
a so-called Loewner space even if the Ahlfors-regular conformal dimension is attained 
(see [HeiOl]). Also, if dT admits an Ahlfors regular Loewner metric in its gauge, then 
Theorem 4.2.11 above together with a result of Bonk and Kleiner [BK02a] imply / 
is conjugate to a rational map. 

4.2.4. Cannon's combinatorial Riemann mapping theorem. — Before we 
prove the equivalence with (5), we first review the notions that are needed to unders­
tand the statement and the proof. The basic idea is to estimate the classical modulus 
mod (A) of an annulus using combinatorial data coming from a sequence of finer and 
finer coverings (see Appendix A for the definition of classical moduli). 

Combinatorial moduli. Let S be a covering of a topological surface X. Denote 
by M(S) the set of maps p : S —• R+ such that 0 < J2ses P(s)2 < 00 wnicn we call 
admissible metrics. Let K C X: the p-length of K is by definition 

lp(K) 
ses, snK^0 

P(s) 

and its p-area is 
Ap(K) 

ses, snK^0 
p{s)2 . 

If r is a family of curves in X and if p G M. (S), we define 

LP{T,S) inf 4 , ( 7 ) , 
7 G T 
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and its combinatorial modulus by 

mod(r,5) : inf 
peM(S) 

AJX) 
Lp(T,S)2 inf modfr, o, S). 

peM(S) 

Let A be an annulus in X. Let Tt be the set of curves in A which join the boundary 
components of A, and Ts those which separate the boundary components of A. Define 

modsup(A , 5 ) 
1 

mod(rt,5) 
and modinf (A , 5 ) = mod(rs,<S). 

The classical moduli of Ts,Tt are mutually reciprocal. In the combinatorial setting, 
this is no longer quite true. However J. Cannon, W. Floyd and W. Parry have proved 
that always modinf(A,<S) ^ modsup(A,5) [CFP94]. 

A covering S has N-bounded overlap if, for all x G l , 

ses 
Xs(x) N 

where \s denotes the characteristic function of 5. Two coverings are said to be N-
equivalent, or to have N-bounded overlap, if each piece of one intersects at most N 
pieces of the other, and vice-versa. 

Sequence of coverings. — In order to state J.W. Cannon's combinatorial Riemann 
mapping theorem, we introduce a couple of new notions. 

Definition. — A shingle is a connected compact subset of X , and a shingling is a 
covering of X by shingles. 

Definition. — A sequence of coverings (Sn) of X is K-conformal (K ^ 1) if 

(1) the mesh of (<Sn) tends to zero; 
(2) for any annulus A in X, there exist an integer no and a positive constant 

m = m(A) > 0 such that, for all n ^ no, 

modsup(A ,5n) ,modinf(A ,5n) G [m/K,Km]; 

(3) for any x G X , any m > 0 and any neighborhood V, there is an annulus A C V 
which separates x from X \ V such that mod*(A, Sn) ^ m for all large n, where 
* G {inf, sup}. 

In the preceding definition, we assume neither that the elements of Sn are connected, 
nor that they are compact. 
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The quantity m(A) will be referred to as the combinatorial modulus of A with 
respect to the sequence (Sn). If Sf = (<S )̂ 18 another sequence of coverings whose 
elements S'n are TV-equivalent with Sni where N is independent of n, then the com­
binatorial moduli computed with respect to S and S' are known to be comparable 
[CS98, Thm. 4.3.1]. Hence S is conformal if and only if <S' is conformal. 

Theorem 4.2.13 (Combinatorial Riemann mapping theorem [Can94]) 
If (Sn) is a conformal sequence of shinglings, on a topological surface X, then X 

admits a complex structure such that the analytic moduli of annuli are comparable 
with their combinatorial moduli. 

There is also a converse: 

Theorem 4.2.14. — A sequence (Sn) of shinglings on the Riemann sphere is conformal 
if all of the following conditions are satisfied: 

(1) the maximum diameter of an element of Sn tends to zero as n —+ oo, 
(2) each covering Sn has overlap bounded by some universal constant N, and 
(3) there exists a constant K > 1 such that for any n and any s G Sn, there 

exist two concentric disks Ds and As such that Ds C s C As, and such that 
diamAs ^ K dia,mDs. 

This is slightly different from [Can94, Thm. 7.1]. There, the smaller disks Ds are 
required to be pairwise disjoint. There is no such assumption here, so we provide a 
proof. We will use the following lemma of J. Stromberg and A. Torchinsky [ST80]. 
Below, disks are spherical, and integrals are over the whole sphere. 

Lemma 4.2.15. — Let B be a family of disks B, each equipped with a weight a# > 0. 
For anyp > 1 and any A G (0,1), there exists a constant C = C(p, A) > 0, independent 
of the family and of the weights, such that 

авХв C 
а>вХ\в ) • 

Proof of Theorem 4-2.14- — It suffices to prove that there is some constant C > 
0 such that, for any annulus A, there is some n(A) such that, if n ^ n(A), then 
modinf(A,<Sn) > (l/C)modA and modsup(A,Sn) < C m o d A 

Fix an annulus A. Since the mesh of Sn tends to 0, we may find some n(A) and 
K > 0 (K independent from A and n) such that, for any n > n(A), any piece s G Sn 
which intersects A and any curve 7 G Tt UTS which intersects 5, the length of 7fl2As 
is at least K diam s. 

Let T denote Ts or Tt and S = Sn for some n ^ n(A). If 7 G T, the family of 
pieces s G S which intersects 7 is denoted by 5(7) . 
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If p : S —> R+ is an admissible metric for T, we define a classical test metric 

P 
sES 

P(s) v 
^ X 2 A S , 

diam s 

where X2As denotes the characteristic function of 2AS. Therefore, if 7 G T, then the 

definitions of p and K imply 

4»(7) > 

sES 
3 ^ - % n 2 A s ) 
diam s 

: K 
«65(7) 

p(s) 

> K L 0 ( I \ < S ) 

and so 
Lp(T)<KLp(T,S) T( .12 ) 

On the other hand, 

Area(C, p) 
JC Kses 

diam s 
v 

2 A S I 

: C 
Jc\ Kses 

Pis) 

diam s s I 

by Lemma 4.2.15. Since S has bounded overlap, 

sES 

Pis) 

diam«X£>,y 

N2 
max • 

' P(*) " 
diam s 

\2 

:N2 
N2 

P(') V 
diam s s / 

Therefore 

Area(C,p) < CWS 

sS s 

P(s) V 
diam 5 / 

^ CN2K27r 
ses 

Pis?. 

Hence 

Area(C,/5) ^ CiV2if27r^lp(C). (4.13) 

Combining (4.12) and (4.13) yields 

mod(T) c mod(r,«S) 
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where c = CN2K2TT/K,2 is independent of the level n of S = SN. Taking T = Ts, we 
obtain 

modinf(A ,5) = mod(rs,<S) -mod(rs) = 
c 

— mod(A). 
c 

Taking T = r̂ , we obtain 

modSUp(74,<S) : 
1 

mod(rt,<S) 
c 

mod(rt) 
^mod(A) 

4.2.5. Proof of rational if and only if Cannon-conformal. — We now conclude 
the proof of Theorem 4.2.11. 

Proof 

(5) (1). — Assume that / is topological CXC with respect to a covering Uo and 

that the sequence {Un}n is conformal. Let Vo be a finite covering of S2 by Jordan 

domains so small that for each V G Vo, the closure of V is contained in an element of 

Uo, and let {Vn}n be the corresponding sequence of coverings obtained by pulling back 

under iterates of / . For n = 0 ,1 ,2 , . . . let Sn be the shingling of S2 whose elements 

are the closures of the elements of Vn. Axiom [Deg ] implies that the coverings Un and 

Sn have bounded overlap. Since the sequence {Un}n is conformal, so is the sequence 

{Sn}n. By the combinatorial Riemann mapping theorem, Theorem 4.2.13, the sphere 

S2 has a complex structure compatible with its combinatorial structure. In other 

words, there is a homeomorphism h : S2 —> S2 such that, for any annulus A and for 

n large enough, 

mod*(A,<Sn) x mod(h(A)) 

where as before * G {inf, sup}. The map G — h o / o h~x : S2 —• S2 is a finite 

branched covering. We will prove that iterates of G are uniformly if-quasiregular 

(see § 4.4 and Appendix A) . This will establish (1) by Sullivan's straightening theorem 

(Theorem 4.4.1), and the fact that G is topological CXC (Corollary 4.2.2). Fix k and 

z G S2 off the (finite) branching set B(Gk) of Gk. Let V be a neighborhood of z 

disjoint from B(Gk). Therefore, Gk\V is injective so, if A c V is an annulus, then, 

for all n large enough 

modGk(A) xmodSUp(/fc(/rV)),S(n)) = mods^/r1^) ,S(n +/c)) x m o d i 

hence Gk\y is if-quasiconformal for some universal K. Therefore, Gk is K-

quasiregular since B(Gk) is finite, hence removable; see Appendix A. 

(2) => (5). — Since we have already proved that (2) (1), assumption (2) implies 

that / is topologically conjugate to a semi-hyperbolic rational map. So, we may 

assume / is topologically CXC by Corollary 4.2.2. In particular, [Deg ] holds. By 

assumption, there exists a quasisymmetric homeomorphism h : d£Y —> S2. Let : 

S2 —• d£T be the conjugacy given by Theorem 3.2.1. Since h is quasisymmetric, 

Proposition 3.3.2 implies that the roundness of h o (j)f(W) is uniformly bounded for 

any H ^ E U . Axiom [Deg ] implies that the sequence of coverings {Un}n has uniformly 
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bounded overlap, and that the pairs Un,Un of coverings also have uniformly bounded 
overlap. Theorem 4.2.14 implies that the sequence of shinglings {Un}n is conformal, 
and we conclude by bounded overlap that the sequence {Un}n is conformal. • 

4.3. Finite subdivision rules 

Finite subdivision rules have been intensively studied since they give natural 
concrete examples with which to study Cannon's problem of determining when a 
sequence of finer and finer combinatorial structures yields a compatible conformal 
structure; see [CFP01, CFKP03, CFP06] and the discussion in the preceding 
section. 

A finite subdivision rule (abbreviated FSR) 1Z consists of a finite 2-dimensional 
CW complex Sn, a subdivision IZ(Sn) of Sn, and a continuous cellular map 4>n : 
1Z(Sn) —> Sn whose restriction to each open cell is a homeomorphism. We assume 
throughout this section that the underlying space of Sn is homeomorphic to the two-
sphere S2 and (j>n is orientation-preserving. In this case, (j>n is a postcritically finite 
branched covering of the sphere with the property that pulling back the tiles effects 
a recursive subdivision of the sphere. That is, for each n G N, there is a subdivision 
1Zn(Sn) of the sphere such that / is a cellular map from the nth to the (n — l)st 
subdivisions. Thus, we may speak of tiles (which are closed 2-cells), faces (which are 
the interiors of tiles), edges, vertices, etc. at level n. It is important to note that 
formally, a finite subdivision rule is not a combinatorial object, since the map (f>n, 
which is part of the data, is assumed given. In other words: as a dynamical system 
on the sphere, the topological conjugacy class of </> is well-defined. 

Let 1Z be a finite subdivision rule on the sphere such that <j>n is orientation-
preserving. The FSR 1Z has mesh going to zero if for every open cover of Sn, there is 
some integer n for which each tile at level n is contained in an element of the cover. 
A tile type is a tile at level zero equipped with the cell structure induced by the first 
subdivision. The FSR 1Z is irreducible if, given any pair of tile types, an iterated sub­
division of the first contains an isomorphic copy of the second. If 1Z has mesh going 
to zero, then it is easy to see that 1Z is irreducible: any two tile types are joined by a 
path of edges of some bounded length. 1Z is of bounded valence if there is a uniform 
upper bound on the valence of any vertex at any level. 

Theorem 4.3.1. — Suppose 1Z is a finite subdivision rule for which Sn is the two-
sphere and the subdivision map (f>n is orientation-preserving. 

If 1Z has mesh going to zero, then there exists an open covering Uo such that 4>n 
satisfies [Expans] and [ I r r ed ] . 

If in addition 1Z has bounded valence, then (f>n satisfies [ D e g ] , and so (pn is topo­
logically CXC. 
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Proof. — To define the covering Uo, we recall a few notions from [CFP06]. Given 

a subcomplex Y of a CW complex X the star of Y in X, denoted star(Y,X), is the 

union of all closed tiles intersecting Y. Let X denote the CW structure on the sphere 

at level zero, and set XN — lZN(X). 

Lemma 4.3.2. — Suppose 1Z has mesh going to zero. Then there exist no, n\ G N with 

the following property. For each closed 2-cell t G XNO, the set Dt = star(£, Xno+7ll) 

is a closed disk which, if it meets the postcritical set P of fin, does so in at most one 

point, and this point lies in the interior Ut of D. 

Proof of Lemma. — Mesh going to zero implies that for some no, each 2-cell t of XNO 
meets P in at most one point. It also implies that for some n\, for any 2-cell s of XQ, 
and any two 0-cells x, y of s, no 2-cell of XNI contains both x and y. Together, these 

two observations imply that for any 2-cell t of XNO, the set Dt = star(£,XNO+NI) is a 

cell complex which contains t in its interior Ut, and which, if it intersects P, does so 

in its interior. Since Dt is the closure of Ut and its boundary is a simple closed curve, 

Dt is a disk. • 

Let Uo be the finite open covering of the two-sphere underlying X given by the 

Jordan domains Ut constructed in the Lemma above, and consider the topological 

dynamical system / = (pn : X —• X together with Uo. Since 1Z is irreducible, 

Proposition 2.4.1 (3) (a) implies that [ I r red] in the definition of topologically CXC 
holds. For any k G N, the restriction of fk to an element U of ¿4 is a branched 

covering onto its image U which is ramified at at most one 0-cell c which maps onto 

some 0-cell v . Let w G U be a 0-cell and put w = fk(w). Then w is joined by an 

edge-path {i.e., a union of 1-cells) to v whose interior avoids v, and the length of this 

edge path (i.e., the number of 1-cells comprising it) is at most some constant q. Since 

fk:U-+Uis ramified only at c, this edge-path lifts to an edge path of length at 

most q joining w to c. It follows that the combinatorial diameter of the zero-skeleton 

of U is uniformly bounded. Since 7Z has mesh going to zero, it follows that [Expans] 
holds. 

Moreover, if in addition 1Z has bounded valence, then the ramification of fk at c is 

uniformly bounded. This implies that U comprises a uniformly bounded number of 

cells and hence that the degree of fk : U —• U is uniformly bounded, so that [Deg ] 
holds. Axiom [ I r red] follows immediately from the irreducibility of 1Z. 

Hence, / : X —• X together with Uo yields a topologically CXC system on the 

sphere. • 

Under the hypotheses of Theorem 4.3.1, if 1Z has mesh going to zero and bounded 

valence, then the covering Sn by closed tiles at level n and the covering Un have 

bounded overlap independent of n. It follows that the sequence {Sn}n is conformal 

if and only if the sequence {Un}n is conformal. Combining this observation with 

Theorem 4.2.11, we conclude that for the subdivision maps an of such subdivision 
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rules, yet another, equivalent characterization of rational maps is the conformality of 
the sequence {Sn}n. Compare [Mey02] and [CFKP03, Thm. 3.1]. 

4.4. Uniformly quasiregular dynamics 

Let M be a compact C°° Riemannian manifold of dimension n ^ 2, and suppose 
/ : M —• M is a nonconstant quasiregular map (Appendix A). This condition im­
plies in particular that / is a finite branched covering. We say that / is uniformly 
quasiregular if all its iterates are if-quasiregular for a fixed K. 

When n = 2, D. Sullivan proved the following theorem [Sul83] in parallel with a 
similar statement for quasiconformal groups on the 2-sphere [Sul81]: 

Theorem 4.4.1 (D. Sullivan). — A uniformly quasiregular map of the standard 
Euclidean two-sphere to itself is quasiconformally conjugate to a rational map. 

The iteration of uniformly quasiregular maps on the standard two-sphere therefore 
reduces to the iteration of rational maps. 

In higher dimension n ^ 3, uniformly quasiregular maps generalize one-dimensional 
holomorphic dynamics, and have been introduced in this setting by T. Iwaniec and 
G. Martin in [IM96]. Uniformly quasiregular maps on space-forms have been classi­
fied in [MMP06]. They can be seen as analogs of quasiconformal groups. 

For such maps, Fatou sets are defined as the set of normality, and Julia sets as the 
set of non-normality. 

In [May97], V. Mayer proposes a generalization of classical Lattes examples 
(§2.3.1) to higher dimensions. They are uniformly quasiregular maps of finite degree 
/ : M —• M, where M is a compact Riemannian manifold, which are defined as 
follows. 

There are a crystallographic group V and an onto T-automorphic quasiregular map 
h : Rn —» M such that h(x) = h(y) if and only if there is some element 7 € T so that 
y = 7(x) , and there are a matrix U G SOn(R) and a constant A > 1 such that, if we 
set A = \U, then ATA"1 C T and such that the following diagram commutes 

W1 -
A Rn 

h h 
j _ M - ' M 

For more precise statements, we refer to V. Mayer's article [May97]. 

Let us recall the following compactness result (cf. [MSV99, Thm. 2.4]). Here, | • | 
denotes the Euclidean metric on Rn, and Bn(R) the Euclidean ball of radius R about 
the origin. 
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Theorem 4.4.2 (Normality of quasiregular mappings). — Suppose that 0 < r < R ^ 

o o , 0 < r' < o o , 1 ^ K < o o , N > 1, and that J7 is a family of K-quasiregular 

mappings f : Bn(R) —• Rn such that every point has at most N preimages, / (0 ) = 0, 

and such that for each f G T there is a continuum A(f) with the properties 

0 G A(f), max{|x|, x G A(f)} = r, max{ | / (x) | , x G A(f)} = r'. 

Then T is a normal family and any limit map is K-quasiregular, and any point in 

the range has at most N preimages. 

This implies that, under the assumptions of Theorem 4.4.2, assuming R = 1, there 

are functions d+ and d- such that d±(t) —> 0 with t and such that, for any / G T, 

and any set U C Bn(l), diam/(C7) ^ d+(diam£/) and, for any compact connected 

subset V of the image of / which contains the origin, diam W ^ d- (diam V) where 

W denotes the component of which contains the origin. 

Theorem 4.4.3. — Lattes maps are CXC. 

Proof. — Axiom [ I r red] clearly holds. 

Fix ro > 0; for any x G Rn, we denote by W(x) the connected component of 

h~1(B(h(x),ro)) which contains x. It follows from the quasiregularity and the fact 

that h is automorphic with respect to a cocompact group of Euclidean motions that 

we may choose ro > 0 such that a constant N < oo exists so that, for all x G Rn, the 

degree of h\w(x) ls bounded by N [Ric93, Lem. 111.4.1]. 

We fix some size r\ > 0 small enough so that, for any x, y G Rn, if x belongs to the 

component V(y) of h~1(B(h(y),ri)) containing y, then B(x, 2didimV(y)) C W(x). 

We define Uo as a finite subcover of {B(x,r\), x G M}. Then Uo satisfies [Deg ] 
and [Expans ] . It remains to prove [Round ] and [ D i a m ] . Since / is semi-conjugate to 

a conformal map, we need only verify (i) h distorts the roundness of (small) sets by a 

controlled amount, and (ii) h distorts ratios of diameters of nested sets by a controlled 

amount. 

We note that since M is compact, one may find uniformly quasiconformal charts 

which map balls of radius 3ri in M onto the unit ball of Rn. Therefore, we may 

assume that h takes its image into Rn in the sequel. 

For each xo G Rn and each connected open set V contained in some V(y) which 

contains XQ, we consider the map 

hXoy:xeBn{0,l) 
1 

diam h(V) 
h(xo 4- x - diamV). 

All these maps define a compact family T of degree at most N according to Theo­

rem 4.4.2 since hXQy(B(0,1)) contains at least one point at distance 1/2 from the 

origin. 
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lîWcVc Rn, then it follows that W C £(x0,diam V) and 

àìamhjW) 

dmmh(V) 
d+ diam W 

diam F 

Similarly, if V C M is small enough, if W C V and if V and W denote connected 

components of h~l(V) and such that W CV, then 

diam VF 

diam y 
d-

diamiy^ 

diam V 

This establishes (ii). 

Let ^ C l n contained in some V(y), and let x0 G Denote by K = Round(V, x0) 

its roundness. Then B(x0,di&mV/(2K)) C V so 

B(h(x0),d+(1/(2K)) diam/i(V)) C h(V). 

This proves that Round (/i(F), x0) ^ l / d + ( l / ( 2AT) ) . 
Let us denote by T(K') the subset of T obtained from pairs (V,xo) such that 

diam/i(V) < ri and Round V) , ft(xo)) ^ if'. This family is also compact, so the 

roundness of V at xo depends only on K'. Hence (i) holds. 

This ends the proof that a Lattes example is CXC. • 

Conversely, one has: 

Theorem 4.4.4. — Let f : M —• M be an orientation preserving metric CXC mapping, 

where M is a compact Riemannian manifold of dimension at least 3. Then f is a 

Lattes map. 

Proof. — It follows from Proposition 2.7.2 and Theorem A.0.1 that / is uniformly 

quasiregular. Furthermore, it follows from compactness properties of quasiregular 

mappings that every point is conical: for any xo G M, a sequence of sizes rn —> 0 

and a sequence of iterates kn exist such that x G B(0,1) i—> fkn(xo + rnx) defines a 

convergent sequence to a non constant map. Therefore, [MM03, Thm. 1.3] implies 

that / is a Lattes map. • 

Let us note that V. Mayer has also generalized the notion of power maps 

in [May97]: these are uniformly quasiregular self-maps of the Euclidean sphere 

/ : SN —> SN, n ^ 3, such that the Fatou set consists of two totally invariant 

attracting basins, the Julia set is a sphere §n-1, and the dynamics on the Julia set 

is of Lattes type. These maps are also clearly CXC, if one restricts the dynamics to 

suitable neighborhoods of the Julia sets. 

For all other known examples of uniformly quasiregular maps, the Julia set is a 

Cantor set, and the Fatou set is the basin of an attracting or of a parabolic fixed point 

[IM96, Mar97, Pel99, HMM04, Mar04, MMP06]. In the former case, when / 

has degree d, then there are d + 1 embedded balls Bo,...,Bd, such that B\,... ,Bd 

have pairwise disjoint closures, all of them contained in Bo, and the restriction to each 
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Bj, j = 1,... ,d, is a homeomorphism onto BQ: the Julia set is contained in these 
balls, and the restriction of / to these balls is clearly CXC. 

4.5. Expanding maps on manifolds 

If X is metric space, and / : X —• X is continuous, we say that / is expanding if, 
for any x G X, there is a neighborhood U such that, for any distinct y,z G U, one 
has - f(z)\ >\y- z\; cf. [Gro81, § 1]. 

A baby example. — Let X = T2 = R2/Z2 be the two-torus and / : X -> X the 
degree twelve covering map induced by v (f>v where $ : R2 —* R2 is the linear map 
given by $(x,y) = (3x,4y). Equip R2 with the norm | • | given by 

(x,y) m a x f l d , \y\x] 

where A = los:3/loe4. Then for all v € E2. 

| * ( « ) | = 3 | t ; | . 

It follows that for all a, b G X sufficiently close, 

| / ( a ) - / ( 6 ) | = 3 | a - 6 | 

and it follows easily that (X, / ) is CXC. 
We now (greatly) generalize this example. 

Theorem 4.5.1 (From expanding to homothety). — Let f : M —> M be an expanding 
map of a compact connected manifold to itself Then there exists a distance function 
on d on M and constants 8 > 0 and p > 1 such that for all x , t / E M, 

d(x,y) < 6 d(f(x)J(y)) p-d(x,y) 

and such that balls of radius ^ 5 are connected and contractible. 

Corollary 4.5.2 (Expanding implies CXC). — The dynamical system ((M,d),f) is 
CXC Hence the metric d is unique, up to quasisymmetry. 

Proof of Corollary. — We remark that / : M —» M is necessarily a covering map of 
degree D = deg / . 

Since / is expanding on a compact manifold, [ I r red] holds. 
Let Uo be a finite open cover of M by open balls of radius 5. If U G U then since 

U is contractible we have 

f-1(U) 
D 

1 

where the union is disjoint and where each f\U{ : Ui —> U is a homeomorphism 
which multiplies distances by exactly the factor p. Thus for each i there is an in­
verse branch gi : U —> Ui which is a homeomorphism and which contracts distances 
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exactly by the factor p-1. By induction, for each n and each U G Uo there are Dn in­
verse branches of fn over U which are homeomorphisms and which contract distances 
by p~n. Verification of the axioms is now straightforward. The last claim follows 
from Theorem 2.8.2. • 

The proof of Theorem 4.5.1 occupies the remainder of this section. 

Sketch of proof. — One way to prove the theorem is to apply the geometric 
constructions of the previous chapter. We prefer however to give a self-contained 
proof using the algebra hidden behind expanding covers of Riemannian manifolds. 

I. By a celebrated result of Gromov [Gro81], / is topologically conjugate to the 
action of an expanding endomorphism on an infra-nilmanifold. Thus we may 
assume M is an infra-nilmanifold modeled on a simply connected nilpotent Lie 
group G and / is such an endomorphism. 

II. Let / denote the lift of / to the universal cover G. We shall show that there 
exists an associated f-homogeneous norm | • | : G —> [0, oo) satisfying the 
following properties for all x € G: 

1. \x\ = 0 x = 1G, 
2. I x " 1 ! = |x | , 
3. 3p > 1 such that = p\x\ 
4. | • | is proper and continuous. 

III. For some 0 < e ^ 1, the function 

x,y\—>\x 1y\e 

is bi-Lipschitz equivalent to a left-invariant metric d = de on G. In the metric 
d, the map / expands distances by the constant factor pe, and thus d descends 
to a distance on M with the desired properties. 

We now begin the proof of Theorem 4.5.1. 

Infra-nilmanifolds. — For background, see [Dek96]. Let G be a real, simply 
connected, finite dimensional, nilpotent Lie group. Then G x Aut(G) acts on G on 
the left via 

b&x = g-$(x). 

An almost-Bieberbach group is a torsion-free subgroup E < G x Aut(G) of the form 
L x F where L < G is discrete and cocompact and F < Aut(G) is finite. Recalling 
that E then acts freely on G, the quotient E\G (which is not a coset space) is called 
an infra-nilmanifold modeled on G. 
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Expanding endomorphisms. — Suppose E is an almo^t-Bieberbach group, M = 
M G , and ( 0 ,$ ) G G x Aut(G) satisfies (g, $)E(g, $ ) _ 1 C J5. Define 

bv 

f:G G 

f(x) (g,o)x; 

Then / descends to a map 

f'-M M 

which is called an endomorphism of the infra-nilmanifold M. It is called expanding if 
all eigenvalues of the differential d$ : g —• 9 lie outside the closed unit disk, where g 
is the Lie algebra of G. 

We remark that 
f(x)-1 f(y) (g,o)x; 'to,*),/ o(x-1y) (4.14) 

Homogeneous norms. — If ^ G G x Aut(G), a function | • | : G —• [0,00) will be 
called a \P-homogeneous norm if it satisfies properties ( l)-(4) in (II) with / replaced 
by ^ in (3). Equation (4.14) implies that if / is given by the action of (# ,$) , then 
I • I is a /-homogeneous norm if and only if it is a ^-homogeneous norm. 

Since G is simply connected, the exponential map exp : g —> G is a diffeomorphism. 
Hence we may identify g and G. In this identification, $ becomes d<I>, which we again 
denote by Thus, we may assume that $ : g —» g is a linear map and search for 
^-homogeneous norms on g. 

The case when <I> is semisimple is treated in detail in [FS82]. In general, we need 
the following development. 

Linear algebra 

Lemma 4.5.3. — Let V be a finite-dimensional real vector space and $ G Aut(V) have 
all eigenvalues strictly outside the closed unit disk. Then there exists a function 

| - | : V ^ [ 0 , o o ) , 

and a real 1-parameter family $t C Aut(V) with $ = $]_ such that for all v G V and 
allteR 

(1) \v\=0^v = 0 
(2) \-v\ = \v\ 
(3) |$t(v)| = e * M 
(4) I • I is proper and continuous. 

Assuming the lemma, we proceed as in [FS82]. Let | • | be the homogeneous norm on 
g given by Lemma 4.5.3 and transfer this via the exponential map to a homogeneous 
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norm on G satisfying conditions ( l)-(4) in the sketch of the proof. Now we are done 
with Lie algebras and work only on G. Condition (4) implies that 

{(x,y)eGxG:\x\ + \y\ = l} 
is compact. Therefore 

Q = sup{|xy| : \x\ + |y| = 1} 

exists. For any x,y G G, let t be so that é = \x\ + \y\. Then 

\xv\ — ele l\xv\ 

= et\$-.t(xy)\ 

e*|*_t(a:)*-t(y)| 

éQ 
№ l + |y|) 

since + = 1 by construction. In summary, the norm | • | satisfies the 
additional property 

(5) \xy\ < 2 Q m a x { | x | , | y | } . 

for some constant Q > 0. 

Quasi-ultrametrics. — The function 

g(x.y) = \x 1y\ 

satisfies the symmetry and nondegeneracy conditions of a distance function by pro­
perties (1) and (2) of the norm | • |. By (5) above, we have that for C = 2Q 

Q{X,Z) ^ Cmax{Q(x,y),Q(y,z)}. 

This turns g into a so-called quasi-ultrametric. 
Given any quasi-ultrametric g, there are constants C", a > 0 such that C' ga defines 

a metric. We outline the construction below and refer to e.g., [GdlH90, §7.3] for 
details. Define 

ge(x,y) = \x 1y\t 

which is now a quasimetric with constant Qe. Moreover, it satisfies the homogeneity 
property 

Qe($(x), <%)) =p€ge{x,y). (4.15) 

Given x, y G G a chain C from x to y is a sequence 

X — XQ , X \ , . . . , xn — y 

of elements of G; its length is given by 

le(C) n 

i=l 

gJxi-i,Xi) 
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The set of chains from x to y is denoted Cxy. Define a new function on pairs of points 
by 

de(x,y) = inî{le(C) : C E Cxy}. 

The function de is symmetric and trivially satisfies the triangle inequality. Since ge 
satisfies Equation (4.15), so does de. Moreover, if Qe < y/2 then for all x,y G G, one 
has (ibid.. Prop. 10) 

(3-2Q^ge(x,y) de(x,y) $ Qe(x,y) 

so that the nondegeneracy condition holds and the functions de, ge are bi-Lipschitz 
equivalent. 

This completes the proof, modulo the proof of Lemma 4.5.3. 

Proof of Lemma 4-5.3. — Assume first that $ lies on a 1-parameter subgroup 
$t = exvtot) 

for some 0 G End(V). Then the real parts of the eigenvalues of <j> have strictly positive 
real parts. 

Claim. — There exists a basis for V such that if || • || is the corresponding Euclidean 
norm, then for all 0 ̂  v G V the function 

* •—• l i b a r l i 

is strictly increasing. 

The claim implies that for nonzero v, there is exactly one t(v) such that 

l l * t ( v ) ( « ) l l = 1-

Define |0| = 0 and for v ^ 0 define 

\v\=e-tW. 

Conclusions (1) and (2) are clearly satisfied. To prove (3), note that the conclusion 
is obvious if v = 0 and if v ^ 0 we have 

1 = | | $ t ( „ ) t ; | | = \\$t{v)-s$s(v)\\ 

hence 
t($s(v)) = et^-s = • \&s(v)\ = es\v\. 

Clearly | • | is continuous. To prove properness, note that the Claim implies that for 
all t < 0, and for all v with = 1, \\$t(v)\\ ^ 1. Thus 

B = {v: \v\^ 1} 

is compact. Therefore, given any r = el we have by (3) that the set 

{v : \v\ ^r} = $t{B) 

is also compact. It follows easily that | • | is proper. 
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Proof of Claim. — To prove the claim, let V = ®iV* be the real Jordan decomposition 
of V given by 0 (not $ ) , and choose a basis of V such that each Jordan block is either 
of the form 

' A* 1 
Xi ... 

. . . 1 
A, 1 

^ Ai 

or 

PiRoi I 
PiRei • • • 

. . . / 

Pi Re, I 
PiRei 

where Xi, pi > 0, / is the 2-by-2 identity matrix, and Re = (c?^ e). If i corres­
ponds to a block of the second kind we set Â  = pi cos 9i; this is positive since this 
is the real part of the corresponding complex eigenvalue. By making a coordinate 
change of the form 

1 
s-1 

J-(m-l) 

for an ra-by-ra block we may assume that the off-diagonal elements are 5 in the first 
case and 51 in the second, where 

0 < 6 < Xi. 

Thus if fa — 01 y. then 

<t>i = XJ + SNi + Ki 

where Ni is the nilpotent matrix with ones just above the diagonal, Ki is skew-
symmetric, and the three terms commute pairwise. 

So setting 

* j = expUit) 

we have 

$ j - exp((Ai/ + SNi)t) • exp(Kit) 

where the second factor is orthogonal. 
Let (•,•)* denote the inner product on Vi corresponding to the above basis on V% 

and extend to V in the obvious way so that the Vi are orthogonal. The claim is proved 
once we show that for each i 

t -^ l l*S ( t>)l l i 

is strictly increasing. 
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We have for all t0 G R and all v ^ 0 

dtlt=to ot(v),ot(v) 
dt lt-'° 

e(\iIi+SNi)tv ^ e(\ih+5Ni)tv 

2 e(Ai/+ÍJVi)*Oi d_ 
dt 

t=to еъшъ»ь 

2 e(\iI+ÖNi)toVt (\iI + 6Ni)t (\iI+6Ni)tov\ 

= 2A< (y,y) + 26(yiNiy) 

where y = e^XiI+5Ni>}tov. The Cauchy-Schwarz inequality shows that | (y, A^y) \ < 
(y, y) and so since 5 < Xi we have that the derivative at to is strictly positive and the 
claim is proved. • 

If 3> does not lie on a 1-parameter subgroup we proceed as follows. It is well-known 
that lies on a 1-parameter subgroup if and only if the Jordan blocks with negative 
real eigenvalues occur in identical pairs. If this is not the case, we first change notation 
so $ = Next, let Mi : Vi —» Vi be given by —id if the ith. Jordan block of $ is 
real with negative eigenvalue and by id otherwise, and set M = : V —• V. Then 

commutes with M and we set 4> = M&'. Then $ lies on a 1-parameter subgroup 
$t — exp((pt) and we set &t = M$t. Since 

| | * { ( t , ) | | = | |M* t ( t , ) | | = l ^ | | * t (u) | | = l 

we have 

| * ' t ( t 0 | = e*\v\ 

for all nonzero v and the proof is complete. 

Remarks. — In many cases, raising to a power in step (III) of the construction of d 
is unnecessary and a representative metric d can either be written down explicitly or 
is a well-studied object. 

For example, suppose # is abelian (i.e., all brackets are trivial) and $ is diagona-
lizable over R. This is a generalization of the baby example and one can write the 
metric d explicitly. The resulting gauges on the universal cover Rn are studied by Ty­
son [TysOl, § 15]. If not equivalent to the Euclidean gauge, these gauges are highly 
anisotropic: there exist a flag Vb C V\ C • • • C Vm = ^n such that any quasisymmetric 
homeomorphism automorphism h satisfies h(Vk) = T4, k = 1,..., m. 

Another well-studied situation arises in the Carnot-Caratheodory case, i.e., when 
^\H — Aid-ft on a subalgebra TL which generates g as a Lie algebra. In this case any 
two points are joined by a smooth curve with tangent in the distribution defined by H. 
The resulting length space is a so-called smooth Carnot-Caratheodory metric space; 
cf. [Pan89b]. The prototypical example is the map (x,y,z) i—> (2x,2y,4z) on the 
Heisenberg manifold M = H/T where H is the three-dimensional Heisenberg group 
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of upper triangular matrices with ones on the diagonal and T is the lattice consisting 
of such matrices with integer entries. 

In both cases, the conformal dimension (i.e., the infimum of the Hausdorff dimen­
sion over all quasisymmetrically equivalent spaces) is given by 

-̂(Ai + A2 + --- + An) 
Ai 

where Ai ^ A2 ^ • • • ^ An are the eigenvalues 01 
The classification of Lie algebras admitting expanding endomorphisms is still in 

progress; see [DL03]. 

4.6. Expanding maps with periodic branch points 

4.6.1. Barycentric subdivision. — Given a Euclidean triangle T, its barycentric 
subdivision is the collection of six smaller triangles formed by the three medians. 
Barycentric subdivision is natural with respect to Euclidean affine maps: if A : R2 —• 
R2 is affine, then the small triangles comprising the barycentric subdivision of T are 
sent by A to those comprising A(T). If T is equilateral, the six smaller triangles are 
congruent. Suppose T has side length one, and let B be an orientation-preserving 
affine map sending T to one of the six smaller triangles in its barycentric subdivision. 
Then 

B = LoSoK 

where K is an linear isometry, L is a translation, and 

S 
1/2 V3 / 6 
0 1/3 

Using the naturality of barycentric subdivision and the fact that the Euclidean ope­
rator norm of S is (y/l - f - l ) /6 « .608 < 1, it follows easily that for any triangle, 
under iterated barycentric subdivision, the diameters of the smaller triangles after n 
subdivisions tend to zero exponentially in n. 

Let T as above be the Euclidean equilateral unit triangle. Equip T with an orien­
tation and label the vertices of T as a, b, c as shown. Let Ti be one of the two smaller 
triangles in the first subdivision meeting at the vertex c, and let (f> : T\ T be 
the restriction of the unique orientation-preserving Euclidean affine map fixing c and 
sending Ti onto T. Regard now the two-sphere S2 as the double T U T of the triangle 
T across its boundary. Equip S2 with the complete length structure inherited from 
the Euclidean metric on T and its mirror image, so that the sphere becomes a CW 
complex X equipped with a path metric. By composing with reflections, there is a 
unique affinely natural extension of <j> to an orientation-preserving degree six branched 
covering map / = (pn : S2 —» S2 sending each of the twelve smaller triangles at level 
one onto T or T; see Figure 4.6.1. 
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C C 

T i 

f 

T 

a b a b 

Figure 4 .6 .1 

The twelve smaller triangles give a CW structure TZ(X) on X subdividing the 

original one, and we obtain a finite subdivision rule (in the sense of § 4.3) with mesh 

going to zero. Notice, however, that this FSR does not have bounded valence, since 

the branch point c of 0^ is a fixed 0-cell. 

Let Uo be the finite open cover of the sphere whose elements are given by the 

construction in Section 4.3. The discussion there implies that together, / : S2 —> S2 

and Uo satisfy [ I r red] and [Expans ] , but not [Deg ] in the definition of topologically 

CXC, and that the diameters of the elements of Un tend to zero exponentially in n. 

Let Tf = r(/,Wo) be the associated graph constructed in §3.2. By Theorem 3.2.1, 

for some e > 0, there is a homeomorphism </>/ : S2 —> d£Tf conjugating / to the 

induced map F on the boundary. Since Pf consists of a finite set of points, Proposi­

tion 3.3.7 applies and hence d£T/ fails to be doubling. 

The map / is not the only dynamical system naturally associated to the barycentric 

subdivision rule. Let HI C C denote the upper half-plane and let p : T —• HI be the 

unique Riemann map sending a »—> 0, 6 i—> 1, C H oo. By Schwarz reflection, this 

defines a conformal isomorphism p : S2 —> C, where now S2 is the sphere endowed 

with the conformal structure of the path metric defined above. Let ip : Ti —> T be 

given by the unique Riemann map fixing c and sending vertices to vertices. As before, 

this determines an FSR S with an associated map fa : S2 —> S2. By the symmetry 

of the construction, the map g : C —> C given by p o cf)s o p_1 is a rational map; it is 

given bv 

9(z) 
4 (z2-z + l)3 

27 z2(z-l)2 ' 

See [CFKP03]. 

The composition h! = (</>TC|TI)-1 ° (0<s|ri) : ? \ —» T I extends by reflection to a 

homeomorphism h[ : (S2,a,b,c) —> (S2,a,b,c). Letting h'0 = id, then 

K o (j)6 • 4>n ° K 
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and h'Q is isotopic to h[ relative to the set {a, 6, c } . That is, as postcritically finite 

branched coverings of 52, (j)n and (f)s are combinatorially equivalent. Letting h\ — 

h[ op-1 gives ho o g = f o hi with /IQ, hi isotopic relative to the set {0 ,1 , oo} . 

By lifting under the dynamics, we obtain for each n G N a homeomorphism hn : 

C —• S2 such that hn o g = f o hn+i with hn ~ /in+i relative to {0 ,1 , oo} . Since / is 

uniformly expanding with respect to the length metric on 52, the sequence of maps 

{hn} converges uniformly to a map h : C —> S2 for which = gh. Since # is locally 

contracting near infinity, the diameters of the preimages of the two half planes 

under g~k which meet the point at infinity remain bounded from below as k —> oo. 

Therefore h is not injective. Indeed, it is easy to see that h collapses the closure of 

each Fatou component to a point. 

Let Vo = {/i_1(i7) : U G Wo} be the open covering of C given by pulling back 

the elements of Wo under h~l and let Tg = T(g,Vo). Then h induces an isometry 

hr : Tg —» Tf. The natural map <j>g : Jg —> <9rp satisfies (j)f oh\Jg = dhr ° 4>g\Jg and 

collapses the closure of every Fatou component to a point. 

4.6.2. Expanding polymodials. — For z = reld let / : C —> C be given by 

/ ( z ) = 1 — are126 where a = (1 + y/E)/2 is the golden ratio. This map is an expanding 

polymodial in the sense of [BCM04] and is studied in their Example 5.2. 

The origin is a critical point which is periodic of period three, hence for each n G N, 

f3n is locally 2n-to-one on neighborhoods of the origin. The point —(3 « —1.7 is a 

repelling fixed point with preimage ¡3. Let / = [—/?,/?], J~ = [—/?,0],/+ = [0,/?]. 

Then each map f\j± : —• / is a homeomorphism onto its image which expands 

Euclidean lengths by the factor a. 

Let To be the metric tree with underlying space / and length metric given by the 

Euclidean length metric GQ. It is easy to see that for all n G N, the set f~l(Tn) 

is a tree Tn+i which is the union of Tn together with a finite collection of smooth 

closed arcs J*. Each such Ji is attached to Tn at a single endpoint which lies in 

/~n+1({0? /(O)^ / ( / ( 0 ) ) } ) , and is a homeomorphism onto its image. Inductively, 

define a length metric GN on Tn by setting 

<rn+i\ji = a 1(f\ji)*(°n)' 

Then / : Tn+i —> Tn multiplies the lengths of curves by the factor a. 

Let 7rn+i : Tn+i —> Tn be the map which collapses each such "new" interval Ji to 

the point on Tn to which it is attached. Clearly, 7rn is distance-decreasing for all n. 

Let 

X = T0^Ti^T2... 

denote the inverse limit. Metrize X as follows. The diameters of the Tn are bounded 

by the partial sums of a convergent geometric series and thus are uniformly bounded. 
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Hence for all x = (xn),y = (yn) G T, 

sup an(xn,yn) 
n 

is bounded and increasing, hence convergent. It follows easily that T inherits a length 
metric a such that the map / of T induced by f\Tn+1 : ^n+i —> Tn multiplies the 
lengths of curves by the factor a. 

It is easy to see that for each k ^ 1, near the origin, X contains an isometrically 
embedded copy of the one-point union of 2k copies of a Euclidean interval of length 
a~k where the common vertex is the origin (0 ,0 ,0 , . . . ) . This implies that X is not 
doubling, since (i) doubling is hereditary under passing to subspaces, and (ii) at least 
2k balls of radius a~k/2 will be needed to cover the ball of radius a~k centered at the 
origin. On the other hand, it is also easy to see that (X, / ) satisfies the other axioms 
for a CXC system. 

4.7. Some comparisons with p-adic dynamics 

The construction of the graph T is reminiscent of certain constructions in p-adic 
dynamics. Below, we give a quick and partial account of p-adic dynamics in order to 
point out some formal similarities and major differences between our setting and the 
p-adic setting. References include [BaHs05, BenOl, RL03a]. 

The main object of p-adic dynamics is to understand the iterates of rational maps 
with p-adic coefficients acting on P1(CP), where Cp is the metric completion of the 
algebraic closure of Qp endowed with the p-adic norm. Cp is an algebraically closed, 
non-Archimedean valued field, and a complete non-locally compact totally disconnec­
ted ultra-metric space. 

Let us note that the first difference with our setting is that Cp is neither locally 
compact nor connected! 

Since the metric on Cp is an ultrametric, two balls are either disjoint, or one is 
contained in the other. In turn this induces a tree structure on the family of balls: the 
vertices are the balls of rational radii, and the edges originating from such a vertex are 
parametrized by the residual field Fp. If B C B' are two balls, then the edge joining 
them is made of the intermediate balls, and if BOB' = 0 , then the edge joining these 
balls is made of the two edges joining these balls to the smallest ball which contains 
both of them. This is the p-adic hyperbolic space H [RL03b]. Ti can be metrized 
to become a complete R-tree i.e., a 0-hyperbolic metric space. The projective space 
P1(CP) is a part of the boundary of H. The tree H is isometric to the Bruhat-Tits 
building for SL(2,CP) and is closely related to the Berkovich line [Ber90]. 

We emphasize that the boundary at infinity of H is larger than P1(CP), since some 
intersections of balls with radii not converging to 0 may be empty, yielding points of 
OH not in P^Cp). 
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It turns out that rational maps send balls to balls, and that rational maps always 
act on the tree H. So in the p-adic setting, the natural hyperbolic space H on which 
any rational map / acts does not depend on the dynamics: it is a universal object 
independent of / . Another difference is that dynamics can be tame on the boundary, 
but never on the tree. That is, in P1(CP) the chaotic locus may be empty, but in H 
it is always nonempty. In contrast, in our setting, the dynamics is always chaotic on 
the boundary dT, while the induced dynamics on the tree T itself is transient. 

Finally, one can define, for rational maps R of degree d on Cp, an invariant measure 
[i such that R*p = dp. While its metric entropy is at most logd, there are examples 
for which the inequality is strict. This happens when the Julia set is contained in 
the hyperbolic space H and the topological degree of the map on the Julia set is also 
strictly smaller than d\ see for instance [FRL04]. 

Of course, there are examples of rational maps over the p-adics for which the 
dynamics on the Julia set is conjugate to a full shift. In such cases, one obtains CXC 
maps. But generally, the p-adic case is rather different from ours, and the similarities 
are merely formal. 
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APPENDIX A 

QUASICONFORMAL ANALYSIS 

In this chapter, we summarize concepts and basic facts about quasiconformal and 
quasiregular mappings. Standard references are the texts by Vaisala [Vai71] for 
quasiconformal maps, and Rickman [Ric93] for quasiregular maps. This chapter 
does not deal with dynamics. 

The following results are summarized from [Ric93, §§1.4 and 11.6]. Let Mn denote 
Euclidean space with the usual metric ds and Lebesgue measure m, and let U C ln be 
a domain. Fix n > 2 and let / : U —• Rn be a continuous, not necessarily invertible, 
nonconstant map. The map / is called quasiregular provided / belongs to the Sobolev 
space Wfo™, and, for some K < oo, satisfies 

\Df(x)\n Jf(x) a.e. (A.l) 

where \Df(x)\ is the Euclidean operator norm of the derivative and Jf(x) is the 
Jacobian derivative. In this case we say also that / is K-quasiregular. If in addition 
/:£/—• f(U) is a homeomorphism, / is said to be K-quasiconformal. A quasiregular 
map is discrete and open. The branch set Bf is the set of points at which / fails to be 
a local homeomorphism. The branch set Bf and its image f(Bf) have measure zero. 
Also, / is differentiate almost everywhere. The condition (A.l) implies that at almost 
every point x in U \ Bf, the derivative sends round balls to ellipsoids of uniformly 
bounded eccentricity. The composition of a if-quasiregular map with a conformal 
map is again if-quasiregular. The inverse of a quasiconformal map is quasiconformal, 
and the composition of quasiregular maps is quasiregular. 

The following theorems give alternative useful characterizations. To set up the 
statements, let 

H(x,f) • lim sup 
r -»0 

m a x { | / " ( x ) - / " ( « ) ! 

min{|/»(a:) -fn{y)\ 

\x-y\= r} 
\x-y\= rj 
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If T is a set of rectifiable paths in U and p ^ 1, the p-modulus of Y is 

modp(r) = sup 
p 

/ ffdm 
u 

where the supremum is over all Borel measurable functions which are admissible in 
the sense that 

1 pds ^ 1 for all 7 G T. 

Any annulus A in the Riemann sphere is conformally isomorphic to an annulus of the 

form {z : 1 < \z\ < R}. The 2-modulus of the path family Ts separating the boundary 

components coincides with the classical modulus defined by mod(A) = ( l / 2 7 r ) ln(.R). 

One characterization is given in terms of infinitesimal pointwise distortion of the 

roundness of balls: 

Theorem A.0.1 ([Ric93, Thm. II.6.2]). — A nonconstant mapping /:£/—» Rn is qua­

siregular if and only if it satisfies 

(1) f is orientation-preserving, discrete, and open; 

(2) H(x, f) is finite at every point, except maybe on a countable set; 

(3) there exists a < oo such that H(x, f)^a for almost every x G U \ Bf. 

Another is geometric and is given geometrically in terms of the distortion of moduli 

of path families. For finite branched coverings, the quantity N(f, A) in the statement 

is at most the degree of / . 

Theorem A.0.2 ([Ric93, Thm. II.6.7]). — A continuous, orientation-preserving, dis­

crete, oven man f : U —> Rn is K-auasireaular if and only if 

modn(r) ^ K • N(f, A) • modn(r) 

for all path families T in A and all Borel sets A c U, where 

N(f,A) : sup #{f-\y)nA}. 
yeRn 

In dimension two, there is yet another characterization: a theorem of Stoïlow 

[Sto56] implies that a quasiregular map / : C —• C is the composition of a ratio­

nal map and a quasiconformal map. Moreover, a homeomorphism h : C —• C is 

quasiconformal if and only if it is quasisymmetric [HeiOl, Thm. 11.14]. 

The definition of a quasiregular map extends readily to maps between oriented, 

C°° Riemannian manifolds. A nonconstant quasiregular map between compact Rie­

mannian manifolds is a finite branched covering [Ric93, Prop. 4.4]. 

The definition of a quasiconformal map extends in the obvious way to the setting 

of homeomorphisms between arbitrary metric spaces. 

ASTÉRISQUE 325 



APPENDIX B 

HYPERBOLIC GROUPS IN A NUTSHELL 

We briefly summarize concepts and results regarding hyperbolic and convergence 
groups. Our treatment is intended to highlight similarities between CXC dynamics 
and group actions. 

We refer to §3.1 for the definitions of a hyperbolic space and of its boundary. 
More generally, references on hyperbolic metric spaces and hyperbolic groups include 
[CDP90, GdlH90, BrHa99]. One may consult [Coo93] for quasiconformal mea­
sures on their boundaries, [GM87, Bow98, Bow99] for convergence group actions. 

B.l . Definition of a hyperbolic group 

A metric space is proper if its closed balls are compact. An action of a group G on 
a proper metric space X is said to be geometric if 

(GA1) each element acts as an isometry; 
(GA2) the action is properly discontinuous; 
(GA3) the action is cocompact. 

Recall that a group G of isometries acts properly discontinuously on X if, for any 
compact sets K and L, the number of group elements g G G such that g(K) fl L ^ 0 
is finite. 

For example, if G is a finitely generated group and S is a finite set of generators for 
which s G S implies s-1 G 5, one may consider the Cayley graph T associated with 
S: the set of vertices are the elements of the group, and pairs (g, g') G G x G define 
an edge if g~xg' G S. Endowing T with the length metric which makes each edge 
isometric to the segment [0,1] defines the word metric associated with S. It turns T 
into a geodesic proper metric space on which G acts geometrically by left-translation. 
A different generating set yields a quasi-isometric graph. 



126 APPENDIX B. HYPERBOLIC GROUPS IN A NUTSHELL 

We recall Svarc-Milnor's lemma which provides a sort of converse statement 
[GdlH90, Prop. 3.19]: 

Lemma B.l.l. — Let X be a geodesic proper metric space, and G a group which acts 

geometrically on X. Then G is finitely generated and X is quasi-isometric to any 

locally finite Cayley graph ofG. 

A group G is hyperbolic if it acts geometrically on a geodesic proper hyperbolic 

metric space X (e.g., a locally finite Cayley graph). Then Svarc-Milnor's lemma 

above implies that G is finitely generated. 

By definition, we will say that a metric space (X, d) is quasi-isometric to a group 

G if it is quasi-isometric to a locally finite Cayley graph of G. 

A hyperbolic group is said to be elementary if it is finite or quasi-isometric to Z. 

We will only consider non-elementary hyperbolic groups. 

B.2. Action on the boundary 

Let G be a hyperbolic group acting geometrically on (X, d). From Svarc-Milnor's 

lemma, the homeomorphism type of the boundary dX depends only on the group, 

and so dG is well-defined up to homeomorphisms. 

Moreover, the Cayley graph of G in its word metric is quasi-star like, and so the 

boundary dG can be equipped with a metric d£ compatible with its topology by means 

of the compactification procedure given in §3.1. Different choices of generating set 

and sufficiently small parameter e yield metrics which differ by quasisymmetries. 

Therefore, the conformal gauge of G, defined as the set of all metrics on dG which 

are quasisymmetric to such a metric dE, depends only on the (quasi-isometry class of 

the) group G. 

The action of G extends to the boundary by homeomorphisms. It defines a conver­

gence group action: let G denote the set of distinct triples of points of dX; then G 

acts properly discontinuously on G. 

This action on G is even cocompact and so defines a so-called uniform convergence 

action. Conversely, Bowditch proved that a group G admits a uniform convergence 

action on a metrizable perfect compact space Z if and only if G is hyperbolic (Theo­

rem 1.0.1). In this case Z is homeomorphic to dG. The action is thus also canonical. 

It follows that the action is minimal on dG (every orbit is dense in dG). 

With respect to a visual metric d£, the action of G is uniformly quasi-Möbius: there 

is an increasing homeomorphism ry : R+ —> M+ such that, for any distinct quadruples 

(a, b, c, d) in dX, and any q EG, 

d£(g(a),g(b)) d£(g(c),g(d)) 

de(g(a)i9(c)) d£(g(b),g(d)) 
V 

d£(a,b) d£(c,d)N 

d£(a,c) d£(b, d)y 

This property is preserved under conjugation by a quasisymmetric map 
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In summary: given any uniform convergence action of a group G on a perfect 
metrizable compact space, there is a canonically associated gauge of metrics in which 
the dynamics is uniformly quasi-Möbius. 

B.3. Quasiconformal measures 

Busemann functions. — Let (X, w) be a pointed hyperbolic geodesic proper space. 

Let a G dX, x,y e X and suppose h : R+ —> X is a ray such that /i(0) = y and 

limt_>oo h(t) = a. Let ßa(x,y; h) = l imsup^^^dx — h(i)\ — \y — h(t)\). For fixed a, 

the Busemann function /3a(-, •) at the point a is the function of two variables x, y G X 

defined by 

Ba(x,y) sup{ßa(x, y\ h), with h as above} . 

Busemann functions, visual metrics and the action of G are related by the following 

property: for any a G dX and any g G G, there is some neighborhood V of a such 

that, for any 6, c G V, 

de(g(b),g(c)) Lg(a)d£(b, c) 

where Lg(a) — e£^a<^w'9 Moreover, G also acts on measures on dX through the 

usual rule: (g*p)(A) = 

The next theorem, proved by M. Coornaert [Coo93], summarizes properties of 

quasiconformal measures on the boundary of X. The symbol G(w) denotes the orbit 

of w under the action of G. 

Theorem B.3.1. — Let G be a non-elementary hyperbolic group acting geometrically 

on a geodesic proper hyperbolic metric space (X, d). For any small enough e > 0, one 

has 0 < dim# (dX, d£) < oo, and 

v = lim sup — log I {GO) nB(w,R)}\ 
R->oo B 

- E - dim// (dX, d£). 

Let p be the Hausdorff measure on dX of dimension a = V/E. Then 

(i) the measure p is Ahlfors-regular of dimension a: for any a G dX, for any 

r G (0,dmmdX), we have p(B£(a,r)) x ra. In particular, 0 < p(dX) < oo; 

(ii) the measure p is a G-quasiconformal measure of dimension a: for any g G G, 

we have p <C g*p <^ p, and p-almost everywhere 

dg*P 
dp 

(iii) the action of G is ergodic for p: for any G-invariant Borel set A of dX, 

p{A) = 0 or p{dX\A) = 0. 
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Moreover, if p' is another G-quasiconformal measure, then its dimension is also a, 

p <C p' <C p and x 1 a.e. and 
dp' 

#(G(w)nB(w,R))~evR. 

The class of measures thus defined on dX is called the Patterson-Sullivan class. It 
does not depend on the choice of the parameter e, but it does depend on the metric d. 

The study of quasiconformal measures yields the following key estimate for the 
measure of shadows. Below, d(-, •) denotes the original metric on X. Recall that the 
shadow U(x,R) consists of those points y G X£ for which there exists a geodesic ray 
in X emanating from the basepoint w and passing through the closed d-ball B(x,R); 
compare § 3.1. 

Lemma B.3.2 (Lemma of the shadow). — Under the assumptions of Theorem B.S.I, 
there exists RQ, such that if R> RQ, then, for any x G X, 

p(l3(x,R)) с—уа(и),х) 

where the implicit constants do not depend on x. 

B.4. Cannon's conjecture 

Let G be a hyperbolic group. J. Cannon's conjecture states that if dG is a to­
pological 2-sphere, then it acts geometrically on hyperbolic three-space H3, i.e., it is 
virtually a cocompact Kleinian group. There have been essentially two approaches to 
prove this conjecture. 

The first one is combinatorial and due to Cannon et al. [Can94, CS98]: let V be 
a locally finite Cayley graph of G, and let us consider the sequence of covers {UN}N 
by shadows of balls centered at vertices at distance n from the identity. They prove 
the conjecture under the assumption that the sequence is conformal in the sense of 
Cannon (see §4.2.4 for the definition). 

The second approach is analytical and due to Bonk and Kleiner [BK02a, BK02b, 
BK05]. They prove the conjecture under the assumption that the gauge of the group 
contains a 2-Ahlfors regular metric or a Q-regular Q-Loewner metric. 
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