@incollection{AST_2009__326__1_0, author = {Druel, St\'ephane}, title = {Existence de mod\`eles minimaux pour les vari\'et\'es de type g\'en\'eral [d'apr\`es {Birkar,} {Cascini,} {Hacon} et {McKernan]}}, booktitle = {S\'eminaire Bourbaki Volume 2007/2008 Expos\'es 982-996}, series = {Ast\'erisque}, note = {talk:982}, pages = {1--38}, publisher = {Soci\'et\'e math\'ematique de France}, number = {326}, year = {2009}, mrnumber = {2605317}, zbl = {1190.14014}, language = {fr}, url = {http://archive.numdam.org/item/AST_2009__326__1_0/} }
TY - CHAP AU - Druel, Stéphane TI - Existence de modèles minimaux pour les variétés de type général [d'après Birkar, Cascini, Hacon et McKernan] BT - Séminaire Bourbaki Volume 2007/2008 Exposés 982-996 AU - Collectif T3 - Astérisque N1 - talk:982 PY - 2009 SP - 1 EP - 38 IS - 326 PB - Société mathématique de France UR - http://archive.numdam.org/item/AST_2009__326__1_0/ LA - fr ID - AST_2009__326__1_0 ER -
%0 Book Section %A Druel, Stéphane %T Existence de modèles minimaux pour les variétés de type général [d'après Birkar, Cascini, Hacon et McKernan] %B Séminaire Bourbaki Volume 2007/2008 Exposés 982-996 %A Collectif %S Astérisque %Z talk:982 %D 2009 %P 1-38 %N 326 %I Société mathématique de France %U http://archive.numdam.org/item/AST_2009__326__1_0/ %G fr %F AST_2009__326__1_0
Druel, Stéphane. Existence de modèles minimaux pour les variétés de type général [d'après Birkar, Cascini, Hacon et McKernan], in Séminaire Bourbaki Volume 2007/2008 Exposés 982-996, Astérisque, no. 326 (2009), Talk no. 982, 38 p. http://archive.numdam.org/item/AST_2009__326__1_0/
[1] Termination of (many) 4-dimensional log flips, Invent Math. 168 (2007), p. 433-448. | DOI | MR | Zbl
, & -[2] Quasi-log varieties, Tr. Mat. Inst. Steklova 240 (2003), p. 220-239. | MR | Zbl
-[3] On existence of log minimal models, prépublication arXiv:0706.1792, 2007. | MR | Zbl
-[4] Existence of minimal models for varieties of log general type, prépublication arXiv:math/0610203, 2006. | MR | Zbl
, , & -[5] Divisorial Zariski decompositions on compact complex manifolds, Ann. Sci. École Norm. Sup. 37 (2004), p. 45-76. | DOI | EuDML | Numdam | MR | Zbl
-[6] Flips for 3-folds and 4-folds, Oxford Lecture Series in Mathematics and its Applications, vol. 35, Oxford Univ. Press, 2007. | MR | Zbl
(éd.) -[7] Classes de cohomologie positives dans les variétés kählériennes compactes (d'après Boucksom, Demailly, Nakayama, Păun, Peternell et al.), Séminaire Bourbaki, vol. 2004/2005, exposé n° 943, Astérisque 307 (2006), p. 199-228. | EuDML | Numdam | MR | Zbl
-[8] Rationalité des singularités canoniques, Invent. Math. 64 (1981), p. 1-6. | DOI | EuDML | MR | Zbl
-[9] Termination of 4-fold canonical flips, Publ. Res. Inst. Math. Sci. 40 (2004), p. 231-237. | DOI | MR | Zbl
-[10] Notes on the log minimal model program, prépublication arXiv:0705.2076, 2007. | MR
-,[11] A canonical bundle formula, J. Differential Geom. 56 (2000), p. 167-188. | DOI | MR | Zbl
& -[12] On the existence of flips, prépublication arXiv:math/0507597, 2005. | MR
& -[13] Termination of log flips for algebraic 3-folds, Internat. J. Math. 3 (1992), p. 653-659. | DOI | MR | Zbl
-[14] On the cone of divisors of Calabi-Yau fiber spaces, Internat. J. Math. 8 (1997), p. 665-687. | DOI | MR | Zbl
-,[15] Introduction to the minimal model problem, in Algebraic geometry, Sendai, 1985, Adv. Stud. Pure Math., vol. 10, North-Holland, 1987, p. 283-360. | DOI | MR | Zbl
, & -[16] Toward a numerical theory of ampleness, Ann. of Math. 84 (1966), p. 293-344. | DOI | MR | Zbl
-[17] Flips and abundance for algebraic threefolds, Astérisque 211 (1992), p. 1-258. | Numdam | Zbl
-[18] Singularities of pairs, in Algebraic geometry-Santa Cruz 1995, Proc. Sympos. Pure Math., vol. 62, Amer. Math. Soc., 1997, p. 221-287. | DOI | MR | Zbl
-,[19] Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, vol. 134, Cambridge Univ. Press, 1998. | MR | Zbl
& -[20] Threefolds whose canonical bundles are not numerically effective, Ann. of Math. 116 (1982), p. 133-176. | DOI | MR | Zbl
-[21] Flip theorem and the existence of minimal models for 3-folds, J. Amer. Math. Soc. 1 (1988), p. 117-253. | MR | Zbl
-,[22] Zariski-decomposition and abundance, MSJ Memoirs, vol. 14, Mathematical Society of Japan, 2004. | MR | Zbl
-[23] Minimal models of canonical 3-folds, in Algebraic varieties and analytic varieties (Tokyo, 1981), Adv. Stud. Pure Math., vol. 1, North-Holland, 1983, p. 131-180. | DOI | MR | Zbl
-[24] Young person's guide to canonical singularities, in Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), Proc. Sympos. Pure Math., vol. 46, Amer. Math. Soc, 1987, p. 345-414. | DOI | MR | Zbl
-,[25] A nonvanishing theorem, Izv. Akad. Nauk SSSR Ser. Mat. 49 (1985), p. 635-651. | MR | Zbl
-[26] Three-dimensional log perestroikas, Izv. Ross. Akad. Nauk Ser. Mat. 56 (1992), p. 105-203. | MR
-,[27] 3-fold log models, J. Math. Sci. 81 (1996), p. 2667-2699, | DOI | MR | Zbl
-,3-fold log models, Algebraic geometry, 4. | Zbl
-,[28] Prelimiting flips, Tr. Mat. Inst. Steklova 240 (2003), p. 82-219. | MR | Zbl
-,[29] Invariance of plurigenera, Invent. Math. 134 (1998), p. 661-673. | DOI | MR | Zbl
-[30] Extension of twisted pluricanonical sections with plurisubharmonic weight and invariance of semipositively twisted plurigenera for manifolds not necessarily of general type, in Complex geometry (Göttingen, 2000), Springer, 2002, p. 223-277. | DOI | MR | Zbl
-,[31] A general non-vanishing theorem and an analytic proof of the finite generation of the canonical ring, prépublication arXiv:math/0610740, 2006. | MR
-,[32] Divisorial log terminal singularities, J. Math. Sci. Univ. Tokyo 1 (1994), p. 631-639. | MR | Zbl
-