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S E M I - C L A S S I C A L L I M I T OF T H E L O W E S T E I G E N V A L U E 

OF A S C H R Ö D I N G E R O P E R A T O R O N A W I E N E R S P A C E : 

I. U N B O U N D E D O N E P A R T I C L E H A M I L T O N I A N S 

by 

Shigeki Aida 

Dedicated to Jean-Michel Bismut on the occasion of his 60th birthday 

Abstract. — We study a semi-classical limit of the lowest eigenvalue of a Schrôdinger 
operator on a Wiener space. The Schrôdinger operator is a perturbation of the 
second quantization operator of an unbounded self-adjoint operator by a C3-potential 
function. This result is an extension of [1]. 
Résumé (Limite semi-classique de la plus petite valeur propre d'un opérateur de Schrôdinger sur 
l'espace de Wiener: cas d'un Hamiltonien non borné à une particule.) 

Nous étudions le comportement semi-classique de la plus petite valeur propre 
d'un opérateur de Schrôdinger sur l'espace de Wiener. L'opérateur de Schrôdinger 
est obtenu par perturbation de l'opérateur de seconde quantification associé à un 
opérateur non-borné autoadjoint donné par un potentiel C 3. Ce résultat est une 
extension de [1]. 

1. Introduction 

In [1], we studied the semi-classical limit of the lowest eigenvalue of Schrodinger 
operators which are perturbations of the number operator. In that case, one parti­
cle Hamiltonian (the coefficient operator of the second order differential operator) is 
identity operator. However, we need to study the case where the coefficient operator 
is unbounded to study P(</>)-type Hamiltonians. For example, the typical coefficient 
operator is Vra 2 — A, where m > 0 and A is the Laplace-Bertlami operator on R. 
In this paper, we study the asymptotics of the lowest eigenvalue of a Schrodinger 
operator in the case where the coefficient operator is unbounded linear operator and 
the potential function is C 3 . In P(0)-type model cases, the potential functions are 
defined by using a renormalization and they are not continuous. In [2], we studied 
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2 S. AIDA 

Schrodinger operators on path spaces over Riemannian manifolds. In that case, the 

differential operators are variable coefficient ones and the coefficient operators are not 

bounded linear because they contain stochastic integrals. Moreover, the dependence 

on the path of the coefficients are discontinuous in the natural topology. The discon­

tinuity comes from the discontinuity of solutions of stochastic differential equations as 

a functional of Brownian motion. Thus, we need to consider two kind of discontinuity 

for potential functions and coefficient operators in that case. But, the difficulties are 

different from that of the P((/>)-type potentials. We will study semi-classical limit of 

the lowest eigenvalue of a P(0)2-Hamiltonian on a finite interval in [3]. 

2. Preliminaries 

Let (W, H, fi) be an abstract Wiener space. That is, 

(i) i f is a separable Hilbert space and W is a separable Banach space. Moreover 

H is continuously and densely embedded into W, 

(ii) ¡1 is the unique Gaussian measure on W such that for any <p G W*, 

'w 
eV-1Q(w) du(w) = e-1/2||Q||2H 

Here we use the natural inclusion and the identification by the Riesz theorem 

W* c H* ~ H. 

In this paper, we assume that W is a Hilbert space. This is equivalent to that 

there exists a positive self-adjoint trace class operator S such that I f is a completion 

of H with respect to the Hilbert norm || V^/illtf. That is, \\h\\w = \\VSII\\H for all 

h G H. We denote the sets of bounded linear operators, Hilbert-Schmidt operators, 

trace class operators on H by L(H),Li(H),L,2(H). Also we denote their operator 

norms, trace norms, Hilbert-Schmidt norms by || ||, || ||i, || H2, respectively. For A > 0, 

we define the new measure fi\ on W by /JL\(E) = ¡1 (yf\E^ (E C W). Now we define 

our Schrodinger operators. 

Definition 2.1. — Let A be a strictly positive self-adjoint operator on H. That is, 

we assume that inf a (A) > 0, where cr(A) denotes the spectral set of A. We de­

note CA = inia(A2). We denote by $CA(W) the space of all smooth cylindrical 

functions f(w) = F(<p1(w),...,(pn(w)) (F e C b °° (E n ) ,^ € W* H n e N D(An)). For 

such a f, we define Df(w) = £^=1 diF(w)ifi G H. Here we use the identifica­

tion (fi G W* C H* ^ H and diF(w) denotes the partial derivative with respect 

to the i-th variable. Moreover we define DAf(w) = Y^i=i^iF(w)A(fi. We define 

a Dirichlet form on L2(W,dfix) by 6\,A(f,f) = fw I I ^ A / ( ^ ) | | ^ ^ A ( ^ ) . -LXIA de­

notes the generator. Let V be a real-valued measurable function on W such that 

V G r\\>oL1(W, fix)- Under the assumption that for all A > 0, &\,A,v(fi/) = 
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SEMI-CLASSICAL LIMIT 3 

<$\,A(f,f) + Jw X2V(w)f(w)2d/j,x(w) (/ G $CA(W)) is a lower bounded symmet­

ric form, we denote the generator of the smallest closed extension by —L\}A,V- Also 

letE0(\,A,V) = mfa(-Lx,Atv)' 

Remark 2.2. — (1) — L\}A can be viewed as the second quantization of A2 on H. Let 

H = H^2(R) be the Hilbert space with the norm \\h\\2H = JR\(m2 - A)^4h(x)\2dx, 

where ra > 0. Consider A = (m2 — A)1/4 on H. In this case, — L\,A is the time 0 

field free Hamiltonian in P(0)2-model. However note that —LI,A is usually identified 

with the second quantization of \/m2 — A on H* = H~1^2(R). See also Example 3.3. 

(2) In [1, 5], the Schrodinger operator with semi-classical parameter A is defined in 

a different way. Let V\(w) = XV ( ^ ) - The semi-classical limit of — LiTA + V\ on 

L2(W, dji) is studied in the above papers. However note that this operator is unitarily 

equivalent to —L\,A,V/X on L2(W,ii\). We adopt the similar definition to — L\^A,V in 

the case of Schrodinger operators on path spaces over Riemannian manifolds because 

the scaling w/y/X can not defined on the curved spaces but the measure corresponding 

to fi\ can be defined on curves spaces too. See Remark 5.3 in [1] and [2]. 

Let us introduce the following assumptions on potential functions of Schrodinger 

operators. 

Assumption 2.3. — The following assumptions (Al) , (A2) are standard in semi-

classical analysis. (A4) assures that the symmetric form &\,A,V is bounded from 

below by Corollary 2.8 (2). Note that (A5) implies that A is an unbounded operator. 

(A l ) V is a C2-function on H. Let U(h) = \\\Ah\\2H + V(h) (h £ D(J4)). Then 

min/LGD(A) U(h) = 0 and the zero point set is a finite set TV = { h i , . . . , hn}. 

(A2) ^D2U(hi) = \A2 4- ̂  is a strictly positive self-adjoint operator on H, where 

Ki = ±D2V(hi)€L(H,H). 

(A3) V can be extended to a C3-function on W such that for any R > 0 and 0 < k < 3 

sup{\\DkV(w)\\L{Wx...xW)R) | \\w\\w <R}< C(R) < oo. 

(A4) V can be extended to a continuous function on W and there exists p > 1 such 

that 

lim sup A 1 log 
A—>oo 'w 

e cA v JdfjL\(w) < oo, 

(A5) There exists 70 > 1 such that A~10 e L2(H). 

For r > 0 and z G W, k e H, we denote Br(z) = {w G W \ \\w - z\\w < r} and 

BrtH(k) = {h G H \ \\h-k\\H<r}. 

Lemma 2.4. — (1) Suppose that (A4) holds or ini{V(h) I h e H} > -00. Then we 

have lim 
||h|| H->oo 

-f\\h\\2H + V(h) = +00. 
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4 S. AIDA 

(2) Assume (Al ) ; the same assumptions in (1) and for any L > 0, sup{|y(/i)| | \\h\\H 
L} < oo. Then for any e > 0, 

n(e) := inf {tf(fe) I /i G {U?=1Be(fti)}c} > 0. 

Proo/. — (1) If inf{V(h) I ft. G i f } > —oo, the statement is trivial. We assume (A4). 
Let C be a positive number such that limsupA^oc A-1 log Jw e cA dfix < C. Take 
R > 0. Then for sufficiently large A, we have 

\ log / exp ( - ^ ( i ? A V(w) V (-R))) d»x(w) 

- 1 l o g O C 0 +exp ( ~ î r № ) v {~R)))dfxx{w))) 

< i l o g ( e ^ + e - ^ ) < C + ^ . 

By the Large deviation estimate, we have 

sup (-h\h\\2H - ^ ((-R) V V(h) A i*)) < a 
h \ 2 CA / 

Since P is an arbitrary number, we get 

~ \ \ h \ \ 2 H - p V ( h ) < ^ V ( h ) < ^ for all heH. 

Suppose that there exists {hn} such that ||/in,|[// —• oo and 
supn (^f||fon||jy + V(hn)) =: I < +oo. Then limn_̂ oo V(hn) = - o o . Hence 

y llfcn\\H + pV(hn) = ^ 1 1 ^ + F + (P - ^ ^ ' + (P " X ) y " > 

This is a contradiction. So we are done. 

(2) By the result in (1), we need to prove that for sufficiently large positive number L, 

wf{U(h) | h G BLtH(0) n W=Mhi))c} > 0. 

Suppose that there exists {pi} C Bl,H(0) fl (Uf=1B£(hi))c such that lim/_oo I7(y>j) = 

0. By the assumption, there exists a subsequence {<pP(i)} which converges to a certain 

element tp^ G H weakly. Since I P ^ H ^ =U(q l ( i )V(^ / ( i ) ) , supf ||A<pj(i)||tf < oo 

holds. Hence again by choosing a subsequence {<pP(i)}> 4̂<£p(i) also converges to some 

(̂ oo weakly. By the Banach-Saks theorem, we see that (p^ G D(^4) and A(p oo — 4>oo> 

On the other hand, since the embedding H C W is compact, lim^oo ||^p(») — y>oo|| w = 

0 which implies lim^oo V{(pp^) = Vfooo). Since ||j4y>oo||jf < liminf^oo P<£>p(i)||#, 

we obtain U((f oo) < liminf^oo U((pp^)) = 0. This implies cpoo G N and (pp^ G 

B£(hj) for some large i and 1 < j < n. This is a contradiction. • 
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SEMI-CLASSICAL LIMIT 5 

Lemma 2.5. — Let A be a strictly positive self-adjoint operator and K be a trace class 

self-adjoint operator on H. Assume that A2 + K is also a strictly positive operator. 

Then y/A2 + K -Ae Li(fT) and 

y/A2 + K-A \\K\\i 
min {mîa{VA2 + K),mîa(A)} ' 

Proof. — We prove this in three steps: (i) A = I + T and T is a trace class operator, 

(ii) A is a bounded linear operator, (iii) General cases. 

(i) We denote Si = VA2 + K and S 0 = A. Note that Si - S 0 = VA2 + K - A is 

a trace class operator. We denote the all eigenvalues and corresponding complete 

orthonormal system of Si — So by {an} and { e n } . Then 

\(Ken,en)\ | ( (S i 2 -S 0

2 ) e n , e n ) | 

I ((Si(Si - So) + (Si - S 0)Si - (Si - So)2) e n , e n ) 

: \an ((Si + So) ^ n j ^ n ) I 

> |o„|inf<r(Si + 5 0 ) . 

This implies that 

\\>/Ä* + K - A\h = 

OO 

n = l 

I«NI < 
llalli 

in£(T(y/A2 + K + A) 

(ii) Let { г ¿ m } be all eigenvectors of K which is a c.o.n.s. of H. Set P m h = 

YJlL^h.u^ui and Am = y/PmA
2Prn + P£. Then A2^ —• A2, Am -> A converge 

strongly. On the other hand, A^ + K = Pm(A
2 + K)Pm + P±(IH + P^KP^P^. 

Hence for sufficiently large m, we have 

min {inf a ( V ^ m + if),inf <T(Am)) > min (wi<r(y/A2 + K), 1/2, inf a (A)) . 

Since Am — IH is a trace class operator, by (i), 

l l ^ C + ^ - ^ l l i < 
llalli 

min (inf a(A2 + K),mîa(A), 1/2) 

By taking the limit m —> oo, we see that y/A2 + K — A £ L\(H). Therefore again by 

the same argument as in (i), we can prove (ii). 

(iii) Let Xn{%) be a function such that Xn{x) = 1 for x < n and Xn(%) = 0 for 

x > n. Then Xn{A) is a projection operator which commutes with A. Let An = 

AXn(A) + (1 - Xn{A)) and Kn = Xn(A)KXn(A). Then 

y/A2 + Kn- A = jA2Xn(A) + Xn(A)KXn(A) - Axn(A) 

= y/A2

n + Kn-An e L(lm(xn(A))) 
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6 S. AIDA 

By (ii), we have 

(2.1) Wy/At + Kn-AW! < WKnk 
inf a (y/A*Xn(A) + Xn{A)KXn{A) + AXn(A)) 

\\Kn\U 

min (inf <T(VA2 + K),inia(A)) ' 

For I > n > m, 

'yAl + K n - An) - (y/Al + Km- Am) -- J A2 + Kn — J A* + Km 

^A2 + K n - J A 2 + Km. 

This and (ii) implies that \J A\ + Kn — An converges in the trace norm. It is not 
difficult to check that the strong limit is equal to y/A2 + K — A. Therefore, (2.1) 
implies the conclusion. • 

Proposition 2.6. — Let A be a strictly positive self-adjoint operator. For a trace class 
self-adjoint operator K on H and h € D(A2), we set 

VKth(w) = \\\Ah\\2H - \{A2h,w) + (K(w -h ) ,w-h) . 

We assume that A2 + 4K is a strictly positive self-adjoint operator and AKA can be 
extended to a trace class operator. Then &\,A,vK,h *s a symmetric form bounded from 
below and E0(X, A, VK,h) — Xe(A,K) holds, where 

(2.2) e(A, K ) = -tr (y/A* + ± A K A - A2) . 

Moreover it is the lowest eigenvalue of —L\,a,vk h and the corresponding normalized 
positive eigenfunction is 

SI\av„Aw) = detQV+ 7V)1/4 

x exp { - ^ ( ( A - ^ A 4 + AAKAy^A'1 - IH) (w - ft), {w - ft))} 

xexpQ(ft,^)-^||ft||^) 

where TK = A"1 (VA4 + 4AKA - A2)A~l. 

Proof. — If A is bounded linear operator, the proof is a straightforward calcu­

lation. Suppose that A is unbounded. Let An and Kn be the operators which 

are defined in the proof of (iii) in Lemma 2.5. Then AKnA = AnKnAn. Thus 

(A-^A4 + AAKnAy^A'1 - IH) e Li(iJ)nfeD(Afe). Therefore for sufficiently large 

7i, £l\ A Vk h ^ L2{ii\) and the simple calculation shows that 

-L\ìAyKnìh®>\,A,vKri,h = Ae(A,î n)0A5A,yKn)h-

ASTÉRISQUE 327 
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SEMI-CLASSICAL LIMIT 7 

Letting n —> oo, we have 

-L\,A,vK)hft\,A,vK>h = Xe(A,K)Çl\,A,vKth> 

To prove that Àe(A, ) = inf cr (—L\tA,vKih), we note that for any / G ï?CA (WO, it 
holds that 

Sx,A,VK,h ( / , / ) = / | |£»A№,KVKJllffFIA,A,^W2dMAH 

+ Ae(^Jftr)||/|||2(^). • 

We use the following estimate to prove a lower bound in Lemma 3.4. We refer the 
reader to [7, 12, 14] for this estimate. 

Theorem 2.7(NGS estimate). — Let <S(/,/) be a closed form on L2(X,m), where 
(X, SF, m) is a probability space. Assume that there exists a > 0 such that for any 
f e D(£), 

/ f(x)2 log (/(*)7||/|||2(x,m)) dm(x) < aS(f, / ) . 

Then for any bounded measurable function V, it holds that 

(2.3) 6(f,f) + ^V(x)f(x)2dm(x) > -Uog[ j^-aV^dm{x) ) ||/||£a(Jfim). 

The following follows from the above estimate and Gross's logarithmic Sobolev 
inequality [7]: For any / G $Cf(W), 

J f{w)2 log ( / H 2 / | | / | | | 2 ( M X ) ) ^ A W < \jw\\Df{w)\\2Hdnx{w). 

Originally NGS(=Nelson, Glimm, Segal) estimate (2.3) was proved by the hyper-
contractivity of the corresponding semigroup. See [14]. Corollary 2.8 (2) is proved 
by Lemma 4.5 in [2] which follows from Gross's log-Sobolev inequalities and finite 
dimensional approximations. 

Corollary 2.8. — (1) -ft holds that 

Eo(\ ,A,V)>- -J-log t e X P ( " ^ F ) d / i A H ) ' d(ux)w) 

(2) Suppose that there exists a Hilbert-Schmidt operator T such that A = I + T. Then 

(2.4) E0(X,A,V) 

A, 
> - 2 l o g ^exp ( - 2 A V H - A : (Tw,w) :ßx -^\\Tw\\2H) dnx(w)} 

+ ^logdet(2)(/„ + T ) - ^ t r ( R 2 ) . 
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8 S. AIDA 

In (2.4), : (Tw, w) : M A is denned by the limit limn_>oo {(PnTPnw, w) - \txPnTPn}, 

where Pn is a projection on to a finite dimensional subspace of H such that Pn | J# • 

det (2) denotes the Carleman-Predholm determinant. 

3. Results 

Theorem 3.1 (Bounded case). — We assume that A is a bounded linear operator and 

satisfies the assumptions (Al), (A2), (A3), (A4). Then we have 

(3.1) lim 
A—Kx> 

Eo(\,A,V) 
A 

: min e(A, Ki). 
l<i<n 

In the unbounded case, we can prove the following. The assumption is too strong 

to cover the P((/>)-type Hamiltonian. We will relax the assumptions and discuss such 

a case in a separate paper. 

Theorem 3.2 (Unbounded case). — Assume (A5). Letj > l + 7o and S = A ~ 2 1 . Then 

AKiA is a trace class operator and (2.2) is well-defined. Furthermore, we assume that 

(Al), (A2), (A3), (A4) hold. Then the asymptotics (3.1) holds. 

Example 3.3. — Let I = [— | , | ] (I > 0) be an interval of R. Let —A be the Laplacian 

with periodic boundary condition on X = L 2 (I —* R,dsc). Let m > 0. For a G R, let 

H<* = D((m 2 - A)"/ 2 ) and ||ft||H- = \\{m2 - A)<*/2h\\x. 

(1) Let H = H 1 / 2 . Then for any e > 0, we can take W = H~ £ . Let 0 < e < 1/2. 

Then using the inclusion and the identification H 1 / 2 c H e = (if~ e)*, we can see 

that fx satisfies that J w H -e (w,h) 2

H £ dn(w) = \\(m2 - A)~ 1 / 4 h\\x for h G H. Let 

U : X —> FLXI2 be the natural isometry operator and define A = U(m 2 — A ) 1 / 4 ? / - 1 . 

This is a standard example in P(0)2-model on finite interval. Let P(u) = Ĵ fc=o akV>k 

be a polynomial with real coefficients with â M > 0. For h G H, V(h) = JIP{h{x))dx 

is well-defined by the Sobolev embedding theorem. However H ~ £ is the space of 

distribution and P(w(x)) is not defined for w G H~ £ . Actually, it should be defined 

by fj : P(w(x)) : M A dx where : P(w(x)) : denotes the Wick product. However this 

is not a smooth function on W = H ~ £ and cannot be covered by Theorem 3.2. This 

will be studied in [3]. 

(2) Let H = H 2 . Then ¡1 can be defined on W = H 1 . For 0 < 5 < 1/2, let 

A = U(m 2 — A)i^i~ s^U~ 1, where U is the natural isometry from X to H. Let Q(u) = 

^ r a 1 - 2 ( V + P(u), where P{u) is the polynomial defined in (1). Let {ci , . . . , c n } be 

the minimum points of Q and asssume that Q"(ci) > 0 (1 < i < n). Again let 

V(h) = fT P{h(x))dx for h G H. Then we see that V(h) - 1 min Q can be extended to 

a smooth function V(w) on W. Then the zero point set of U(h) = \\\Ah\\2

H + V(h) 

is the set of the constant functions {c i , . . . , c n } . For this V and A, all assumptions in 

Theorem 3.2 hold with 70 = 1 + j ^ s a n ( ^ 7 = 1 + 7o-

ASTÉRISQUE 327 



SEMI-CLASSICAL LIMIT 9 

We prove these theorems after preparations. Here we just prove AKiA G L\{H) 

under (A5). Since V G C2(W), there exists a bounded linear operator K\ on W such 

that D2V(hi)(u, v) = (KiU,v^^ for any u,v € W. By the definition of the norm of 

W, there exists K{ G L(H) such that K{ = A^KiA^. Thus for any u, v G H c W\ 

D2V(hi)(u,v) = (KÌU,V) = (A-"'AR'KiA-r'u,A-r'v)H = ( A ' " 1 К ^ Щ У ) Д 

This shows ̂  = A- iR iA- i and Aft^A = A1'1 KiA1'1. Because 7 - 1 > 70, A1"7 
is a Hilbert-Schmidt operator and this implies AKiA is a trace class operator on H. 

In our main theorems, we may assume that CA = 1. Because, if Theorems hold 
in the case where CA = 1, then it implies that Eo (A,(̂ => ^)= e (^=> ̂ ) • This 
shows the general cases. 

The proof of upper bound is standard. Let x be a smooth function on R satisfying 
0 < < 1, x(x) = 1 for x G [-1,1] and x(x) = 0 for |x| > 2. For 2/3 < S < 1, set 

&\,A,vK.,hi (w) = Zxn\,AyK.,h. (w)x (X5\\w - hiWlv). 

Here Z\ is a normalization constant which makes the L2-norm to be equal to 1. 
It holds that lim^oo Z\ = 1. Since hi is a minimizer of U, for any k G D(A), 
I (Ahi,^*)fl- 4- DV(hi)(k) = 0. The fact DV(hi) G ff* implies that fc< G D(A2) and 
DV(hi) = —^A2hi. Using this and by the Taylor expansion, we have 

(3.2) V(w) = V M + DVihiKw-hd + iKiiw-hi^w-hi) 

+IDV3(w + 0(w - hi))((w - hi)®3) 

- l\\Ahi\\% - I (A2hi,w) + (Ki(w - hi),w- hi) + Rhi(w) 

= VKiM{w) + Rhi{w) 

Here we denote the remainder term by Rh^w). If X(A*||M> — ftjlliy) ^ 0, then 
|-R/ii(w)| < CA-35/2. This and the tail estimate of the Gaussian measure shows 
that 

G\,a,v (Üx,A,vKtiht,nx,A,vKttht) = E0(\,A,Ki) + O(\2-3>s). 

This proves the upper bound. 
To prove the lower bound estimates, it suffices to prove the following Lemma 3.4. 

Let ii be a sufficiently large positive number. Set Xi,r{W) = X (R\\w ~ hi\\w) — 
i < n) and Xo,r(w) = V1 ~ YZ=iXiMw)2' 

Lemma 3.4. — Let us assume that the conditions of either Theorem 3.1 or Theo­
rem 3.2 hold. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2009 



10 S. AIDA 

(l)There exists a constant C > 0 such that for all i, x%,R € D(DA) and 
\\DAXi,R(w)WH — [i\-a.e. w. Moreover it holds that 

(3.3) 6x,A,v(f,f) 
n 

i=0 
G\,A,v(fXi,RifXi,R) ~ 

n 

2=0 
w \ \DAXiA^)\ \ l f^)2d^)' 

(2) For 1 < i < n, 

6x,A,v(fXitR,fXitR) > A(l + p(A))e(AXi)||/x^||i2(/iA), 

where LIRRIA->oo dM = 0. 
(3) There exists a constant C > 0 such that 

G\,A,v(fxo,R, /XO,H) > CX2\\fxo,RÌ\h(nx)' 

The essential part of this lemma is in (3). In the case where A = I + 
Hilbert-Schmidt operator, we can apply the same method as in [1] without any 
modification by using Corollary 2.8 (2) to prove (3). In general cases, we need to 
approximate A by such kind of operators. 

Lemma 3.5. — Assume that A is a bounded linear operator and (Al), (A3), (A4) 
hold. Also we assume that cA=1. Let R be a sufficiently large positive number such 
that 

\ni{±\\h\\2H + V{h) I \\h\\w > R} > 1 

and e be a small positive number. Set D£ir = Br(0) fl (U"=1i?3e(/ii))c. Then there 
exists a self-adjoint operator Ts € L\(H) and a positive number 5(e) such that 
(1) it holds that for any h e D(A), \\Ah\\% > \\(IH + Ts)h\\2H, 
(2) 

inf | i \\(IH + T£)h\\2H + V(h) I h e D£tR n f f ) > 6(e). 

Proof. — It holds that for a large positive number L, 

inf { \ \\hfH + v(h) I h e D£:R n BLtH(0)c} > 1. 

Hence we prove the lemma on D£<r fl BL,JJ(0). For a natural number k, we define 

Ak = £Ï2* élibAA), where Ik>i = {x € R | é < x < Щ Then 

0<\\Ah\\2H-\\AkhfH< 3_ 
2k 

\\Ah\\2H < 2k 
\\A\\2\\h\\2H 

By Lemma 2.4 (2), for sufficiently large fco, 

inf 1 
.4 L̂ FCÔ LLH + V(h) I h € De,R n BL,H(0) >\K(e), ^\\A\\2L2<\e2\\JS\\-2. 
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Note that there exists a family of finite dimensional projection operators on H such 

that PN t IH and Ak0PN = PnAk0 for all n > 1. Hence, it holds that for any h e H 
and n 

\\AkohfH = \\Ak0PnhfH + \\Ak0P^hfH > \\Ak0PnhfH + \\P̂ h\\2H. 

Let h G BLtH(0). Then \V(h) - V(Pnh)\ < \\DV(Pnh + 9P^h)\\w. \\P£h\\w (0 < 0 < 
1). Noting 

\\Pnh + 9P£h\\w < L\\VS\\, 

\\P£h\\w = \\>RP£h\\H<\\>fSP£h\\h\\H, 

lim \\\fSP^h = 0, 
n—»00 

by (A2), 

lim sup{|V(A) - V(Pnh)\ I h e BL,H(0)} = 0. 
n—»00 

Now we take a natural number no such that 

sup{WO-f(Pn0fc)| I h eBLtH(0)}< \ min («(e),l, e 2 ^ - 2 ) . 

Let h € D£ R n Sz, R(0). Then three cases are possible for Pnoh such that (i) Pnoh G 

d£/3,r n bl>h(o), (ii) Pnoft € br(o)c, (iii) P„0/i e u?=1Be(hi). 
In the case of (i), 

\\\AkoPnoh\?H + V(h) = \\\AkoPnohfH + V(Pnoh) + (V(h) - V(Pnoh)) > 

If (ii) happens, then 

\\\AkoPnoh\\2H + V(h) = \\\AkoPnohfH + V(Pnoh) + (V(h) - V(Pnoh)) > 3/4. 

In the case where Pnoh S B£(hi) for some i, 

WPnoHw = ||A - Pn0h\\w = \\h - hi\\w - \\hi - Pnoh\\w > 2e. 

Thus \\P^h\\H > HV^IR^lP^hllw > 2e\\y/S\\-1. Therefore, we have for h € D£>R n 
BL,H(0) satisfying (iii), 

l\\AkoPnoh\\% + -\\Pii0h\\% + V{h) 

= \\\Pn0h\\2H + \\\APnoh\\2H + V{Pnoh) - \ (\\APnoh\\2H ~ \\Ak0Pn0h\\2H) 

+ (V(h)-V(Pnoh)) 

> £2||v^||-2 - ¿ | | A | | 2 L 2 - ^ l l v ^ i r 2 > i ^ l l v ^ i r 2 . 

Consequently, 

inf {\\\AkoPnoh\\2H + \\\Pn0H2H + V(h) I h e D£,R) > S(e). 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2009 



12 S. AIDA 

This implies that the operator T£ — (Ak0 — IH)Pn0 satisfies the desired properties. • 

In Theorem 3.2, we assume 7 > 1 + 7o- But 7 > 70 is sufficient for \i,R £ 

Lemma 3.6. — (1) Assume that A is bounded. Then \\w\\w £ D(Z?A) and 
\\DA\\W\\W\\„ < \\AVS\\. 
(2) Assume (A5) and let S = A~21', where 7 > 70. Then \\w\\w € D(DA) and 
\\DA\\w\\w\\H < W A ^ l 

Proof. - (1) We have D\\w\\w = j ^ . So DA\\w\\w = || j^.|| and ||£>A|KLKLLH < 

l l ^ l l -
(2) This is proved in the same way as in (1). • 

Lemma 3.7. — Assume (Al), (A3), (A4), (A5) and CA — 1. Let 7 > 70 and S = 
A~21. Then the same results as in Lemma 3.5 hold . 

Proof. — For a > 0 let i/;a(x) be the positive function such that ^tt(^) = 1 for x < a 
and ipa (x) = a/x for x > a. Then for h G H 

Ua(A)h\\2w = \\MA)A-^hfH < \\A-rh\\l = \\h\\2w, 

Ha(A)h-h\\2w < \\(MA)-l)A^h\\2H<^\\h\\2H. 

Therefore, 

\\tl>a(A)h - hi\\w = \\ipa(A)h - h + h - hi\\w 

> \\h-hiWw--WhWH 

Thus, if \\h - hi\\w > Se and \\h\\H < ^f-e, hold, then \\i/ja(A)h - hi\\w > ^f. 
Let A ^ = Ai/ja(A). Let L be a positive number such that for h with > L, 
z lH I# + — hK(€)- Now let a be a positive number satisfying that 

C(L) 
0? 

L < min к £ ) Л 2 1 1 ^ ц - 2 ; 
3a^ 

2 
e > L. 

Here C(L) is the number which appeared in (A3). Then for such an a, for h with 
\\h\\H < L, by the above estimates, we have 

\V(h)-V(i>a(A)h)\ < 
C(V 

at L < Т Л И . 

^\\AMA)h\\2H + V(MA)h) > n(e). 

Consequently, we have, for sufficiently large a, 

inf {^\\AMA)h\\2H V(h) I h G D£ìR H h } > ±k{e). 

Therefore, it suffices for us to do the same calculation as in the bounded case replacing 
A by A^a\ But of course, the norm of W is still defined by S = A~2 .̂ Note that 
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(A^)k0 is defined first and next Pno is defined by (A(a))fco. Case (iii) requires some 
additional care. That is, we use the following estimate: 

\\\{A )̂koPnoh\\2H + \\\Pih\\H + V(h) 

= \\Kh\\2H + \\\AMPn0h\\2H + V(Pnoh) - \ (\\A P̂noh\\2H ~ UA^hoPr^hWl) 

+ (V(h)-V(Pnoh)) 

> e2\\y/S\\-2 + -\\AiPa(A)Pnoh\\2H + V(i>a(A)Pnoh) + (V(Pnoh) - V(i>a(A)Pnoh)) 

-A - \ lA^\ \2L2- \e2\ \VS\ \ -2 

> \e2\\^S\\-2-

Therefore, it suffices to put T£ = ((̂ (A))FEO - IH) PNO-

Proof of Lemma 3.4. — (1) The first assertion is proved in Lemma 3.6. (3.3) can be 
proved by a simple calculation 

(2) In the Taylor expansion (3.2) when x%,r{w) 0, we have lify^w)! < C\\w — 
M b < CR~1/2\\w - M?v- This implies 

6x,A,v(fXi,R,fXi,R) > Ae(A, Ki - C R - ^ S ^ f x i A l ^ y 

Here S is the trace class operator which defines the norm of W. Using the fact that 

lim e(A,Ki - CR~1/2S) = e(A,Ki) 

which follows from Lemma 2.5, we complete the proof of (2). 
(3) Let p be a continuous function on W such that (i) 0 < p(w) < 1, (ii) p is 0 
near the neighborhood U(N) of the zero point set AT, (iii) p is 1 in V(N)C, where 
V(N) is a neighborhood of N such that U(N) C V(N). Moreover assume that 

| Xo,r{w) 0} C {w I p(w) = 1}. Let r be a small positive number. Then 

ß\,A,V(/X0,fl, /X0,fl) = S\,A,V-rp(fX0,R, /Xo,fi) + / r\2pf2xliRdfix 

= S\iA,(V-rp)p{fX0,R, fX0,R) + / r\2f2x2o,Rdßx. 

L2-norm of the second term on the right-hand side is rA2||/xo,ii||2- To estimate 

the first term, we use again IMS localization formula. We write go = fxo,R- Let 

M">) = X ( ^ # ) and tp̂ w) = y/1 - ^oW2. Then 

ß\,A,(V-rp)p(90i 9o) — 
¿=0,1 

G\,A,(V-rp)p(90<Pi>90<Pi) -
¿=0,1 

/ \\DA<Pi\\H9odiJ,\. 
Jw 
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14 S. AIDA 

We use Corollary 2.8 (2) to estimate the term containing #o<£o- Let (fo(w) = 

X ) • We can find a positive number e' and R' such that {w G W | p(w)(fo(w) ^ 

0} C D£',r'. Let Te/ be a trace class operator which satisfies the property in 

Lemma 3.5 for D£>^. Then 

G\,A,(V-rp)p(90iP0i 90<Po) > &\,IH+T£LI{V-rP)p$0 (#0<A)5 #0<A)) 

- - log / (A ) | |^0 | IÌ2(MA 

+ Q logdet (2)<Jtf + T£f) - ^tr (T2 IIPO ô|IÌa(MA), 

where 

J(A) = / exp ( -2A ( (y (w; ) - rpH) /oH^oW 

- A : (Te,w,w) :x -̂ \\T£>w\\%^dfj,\(w) 

Let M M = \\\(IH + TeOfcHlr +p(h - rp(h))p(h)<pQ{h). Then 

M * ) = 4ll(fe + re0fc||?r(i-pWoW) 

+ { p ( h + Te,)h\\2H + (V(h) - rp(h))} p№o{h). 

By the property of T£t, by taking r to be sufficiently small, we have 

U II (/ir + Te,)h\\2H + (V(h) - rp(h))} p(h)vo(h) > 0 for all h G H. 

Therefore by the Large deviation estimate, for such an r, lim^ j log /(A) < 0. This 
shows that for any c > 0 it holds that for large A 

<S\,A,(v-rp)p(9o<Po, 9o<Po) > -cA2||#0<A)|IÌ2(/XA). 

Next, we give a lower bound estimate for the another term. Let <pi(w) = 

\ A - X ( « ^ y « Then {w | go(w)^w) ± O} C {w | fain) = 1}. By using 

Corollary 2.8 (1), 

&\,A,(v-rp)P{9Wi,9Wi) > ~^log ( J exp(-2A(Vr - rp)p(pi)dp\) h w i f v ^ y 

If R is sufficiently large and r is small, then 

inf [±\\h\\2H + (V(h)-rp(h))p(h)tp1(h) I ̂ (/i) ^ 0,fc G #} >0 . 

Thus, by the Large deviation results, for any c > 0 it holds that for large A 

G\tA,(v-rp)p(9o<Pi,9o<Pi) > -c^hoViWh^). 

These prove (3). 

ASTÉRISQUE 327 



SEMI-CLASSICAL LIMIT 15 

Remark 3.8. — Let V be a bounded measurable function on W. Assume that A4 + 
4AKA is strictly positive and AKA is a trace class operator. Let 

cA,K = inf a (V'A4 + 4AKA) . 

Then it holds that for any / € $CA(W), 

G\,A,Vkth+v(f> Я 
>E0(\,A,VK)\\f\\2L2(ßx) 

XCA,K 

2 
log 

Jw 
exp| 2A 

CA,K 
V(w] nx,AyKJw)2dpiX(w)) \\f\\hitlxy 

By this estimate, we can prove local estimates near N in Lemma 3.4 (2) using the 
Laplace method. This proof could be extended to the case of Schrodinger operators 
with more general potential functions. 
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