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HERMITIAN VECTOR BUNDLES AND EXTENSION 
GROUPS ON ARITHMETIC SCHEMES II. 
THE ARITHMETIC ATIYAH EXTENSION 

by 

Jean-Benoît Bost & Klaus Künnemann 

Pour Jean-Michel Bismut 

Abstract. — In a previous paper, we have defined arithmetic extension groups in 
the context of Arakelov geometry. In the present one, we introduce an arithmetic 
analogue of the Atiyah extension that defines an element — the arithmetic Atiyah 
class — in a suitable arithmetic extension group. Namely, if E is a hermitian vector 
bundle on an arithmetic scheme X, its arithmetic Atiyah class atx/zC-̂ ) ues m *ne 
group ExtX(E,E <S> ^x/z)' anc* *s an ODStructi°n to the algebraicity over X of the 
unitary connection on the vector bundle Ec over the complex manifold X(C) that is 
compatible with its holomorphic structure. 

In the first sections of this article, we develop the basic properties of the arithmetic 
Atiyah class which can be used to define characteristic classes in arithmetic Hodge 
cohomology. 

Then we study the vanishing of the first Chern class (L) of a hermitian line 
bundle L in the arithmetic Hodge cohomology group Extx(@x, ^x/i)' This may 
be translated into a concrete problem of diophantine geometry, concerning rational 
points of the universal vector extension of the Picard variety of X. We investigate 
this problem, which was already considered and solved in some cases by Bertrand, by 
using a classical transcendence result of Schneider-Lang, and we derive a finiteness 
result for the kernel of . 

In the final section, we consider a geometric analog of our arithmetic situation, 
namely a smooth, projective variety X which is fibered on a curve C defined over 
some field k of characteristic zero. To any line bundle L over X is attached its relative 
Atiyah class atx/c^ m ̂ (X, ^x/c^' ^e describe precisely when atx/c-̂  vanishes. 
In particular, when the fixed part of the relative Picard variety of X over C is trivial, 
this holds iff some positive power of L descends to a line bundle over C. 
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Key words and phrases. — Arakelov geometry, hermitian vector bundles, extension groups, Atiyah class, 
transcendence and algebraic groups. 

© Astérisque 327, SMF 2009 



362 J.-B. BOST & K. KÛNNEMANN 

Résumé (Fibres vectoriels hermitiens et groupes d'extensions sur les schémas arithmétiques II. 
La classe d'Atiyah arithmétique) 

Dans un précédent article, nous avons défini des groupes d'extensions arithméti­
ques dans le contexte de la géométrie d'Arakelov. Dans le présent travail, nous intro­
duisons un analogue arithmétique de l'extension d'Atiyah; sa classe dans un groupe 
d'extensions arithmétiques convenable définit la classe d'Atiyah arithmétique. Plus 
précisément, pour tout fibre vectoriel hermitien E sur un schéma arithmétique X, sa 

^ _ -—~i 
classe d'Atiyah arithmétique at̂ /zC-̂ ) appartient au groupe Extx(E, E ® QX/z) e* 
constitue une obstruction à l'algébricité sur X de l'unique connection unitaire sur la 
fibre vectoriel Ec sur la variété complexe X(C) qui soit compatible avec sa structure 
holomorphe. 

Dans les premières sections de cet article, nous présentons la construction et les 
propriétés de base de la classe d'Atiyah, qui permettent notamment de définir des 
classes caractéristiques en cohomologie de Hodge arithmétique. 

Nous étudions ensuite l'annulation de la première classe de Chern (L) d'un 
fibre en droites hermitien L dans le groupe de cohomologie de Hodge arithmétique 
Extx(OxJ^X/T)' ^a détermination de tels fibres en droites hermitiens se traduit en 
une question de géométrie diophantienne, concernant les points rationnels de l'exten­
sion vectorielle universelle de la variété de Picard de X. Nous étudions ce problème — 
qui a déjà été considéré, et résolu dans certains cas, par Bertrand — au moyen d'un 
classique résultat de transcendance dû à Schneider et Lang, et nous en déduisons un 
théorème de finitude sur le noyau de . 

Dans la dernière section, nous étudions un analogue géométrique de la situation 
arithmétique précédente. A savoir, nous considérons une variété projective lisse X 
fibrée sur une courbe C, au dessus d'un corps de base k de caractéristique nulle et 
nous attachons à tout fibre en droites L sur X sa classe d'Atiyah relative atx/c-^ dans 
^T1(X, f2^c). Nous déterminons quand cette classe dXX/c^ s'annule. Notamment, 
lorsque la variété de Picard relative de X sur C n'a pas de partie fixe, cela se produit 
précisément lorsque une puissance non-nulle de L descend en un fibre en droites sur C. 

0. Introduction 

0.1. — This paper is a sequel to [7], where we have defined and investigated arith­

metic extensions on arithmetic schemes, and the groups they define. 

Recall that if X is a scheme over SpecZ, separated of finite type, whose generic 

fiber XQ is smooth, then an arithmetic extension of vector bundles over X is the data 

(6,s) of a short exact sequence of vector bundles (that is, of locally free coherent 

sheaves of Qx-modules) on the scheme X, 

(0.1) 6:0^G-^E-^F—> 0, 

and of a 5?°°-splitting 

s : Fc —• Ec, 

invariant under complex conjugation, of the extension of g^-complex vector bundles 

on the complex manifold X(C) 

&c : 0 — • Gc —^ Ec Fc — • 0 
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THE ARITHMETIC ATIYAH EXTENSION 363 

that is deduced from S by the base change from Z to C and analytification. 
For any two given vector bundles F and G over X, the isomorphism classes of the 

so-defined arithmetic extensions of F by G constitute a set Extx (F, G) that becomes 
an abelian group when equipped with the addition law defined by a variant of the 
classical construction of the Baer sum of 1-extensions of (sheaves of) modules ̂ \ 

Recall that a hermitian vector bundle E over X is a pair (E, | | . | | ) consisting of 
a vector bundle E over X and of a J?00-hermitian metric, invariant under complex 
conjugation, on the holomorphic vector bundle Ec over X(C). Examples of arithmetic 
extensions in the above sense are provided by admissible extensions 

(0.2) 6:0—> G E F —>0 

of hermitian vector bundles over X, namely from the data of an extension 

(5:0—> G E F —> 0 

of the underlying Qx-modules such that the hermitian metrics ||.||^ and ||.||-p on Gc 
and Fc are induced (by restriction and quotients) by the metric ||.||^ on Ec (by means 
of the morphisms ic and pc). Indeed, to any such admissible extension is naturally 
attached its orthogonal splitting, namely the S*00-splitting 

s-£ : Fc —• Ec 

that maps Fc isomorphically onto the orthogonal complement ic(Gc)1" of the image 
of ic in Ec- This splitting is invariant under complex conjugation, and (<S, s^) is 
an arithmetic extension of F by G. For any two hermitian vector bundles F and G 
over X, this construction establishes a bijection from the set of isomorphism classes 
of admissible extension of the form (0.2) to the set Extx(F, G). 

In [7] we studied basic properties of the so-defined arithmetic extension groups. In 
particular, we introduced the following natural morphisms of abelian groups: 

— the "forgetful" morphism 

v : Ext^(F,G) —• Ext^(F,G), 

which maps the class of an arithmetic extension (<§, s) to the one of the under­
lying extension 8 of Qx-modules; 

t1) Consider indeed two arithmetic extensions of F by G, say Sa •= (£a5sa), OL = 1,2, defined by 

extensions of vector bundles 6a : 0 —* G ̂  ^ F —>0 and *6°°-splittings sa : Fr —* Ea r- We 
may define a vector bundle E := Ker(p1-p2:E1®E2^F)  

Im ((i1,-i2):G^E1®E2) over X. The Baer sum of Si and 62 is th< 

arithmetic extension 6 defined by the usual Baer sum of Si and Si — namely S:Q-+G-+E—>F^ 
0 where the morphisms i : G —• E and p : E —• F are defined by p([(<7i,02)]) : = Pi(fi) = P2(/2) 
and i(g) := [(u(#),())] = [(0^2(9))] — equipped with the ^°°-splitting s : Fc —> Ec defined by 
s(c) := [(si(e),s2(e))]. 
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364 J.-B. BOST & K. KÜNNEMANN 

— the morphism 

b : Hom^(c)(Fc,Gc)Fo° — Extx(F,G), 

denned on the real vector space Hom ôo (Fc, Gc)F°° of g^-morphisms of vec-
X (C) 

tor bundles over X(C) from Fc to Gc, invariant under complex conjugation; it 
sends an element T in this space to the class of the arithmetic extension (6, s) 
where & is the trivial algebraic extension, defined by (0.1) with F := G®F and 
i and p the obvious injection and projection morphisms, and where s is given 
byS(/) = ( T ( / ) , / ) ; 
the morphism 

i : Romgx (F, G) —• H o m ^ (Fc, GC)F°° 

which sends a morphism (p : F —• G of vector bundles over X to the morphism 
of -complex vector bundles </?c : Ec —> Gc deduced from <p by base change 
from Z to C and analytification; 

- the morphism 

* : ExtX(F, G) —4 ^ ^ ( X R , FV ® G ) , 

that takes values in the real vector space 

Zj1(XK,Fv®G) := Z^(X(C),F^®GC)F-

of d-closed forms of type (0,1) on X(C) with coefficients in F^ (g) Gc, invariant 
under complex conjugation. It maps the class of an arithmetic extension (<§, s) 
to its "second fundamental form" S&(&,s) defined by 

XK,Fv®G) :=Z^(X(C),F^®GC)F-

We also established the following basic exact sequence: 

(0.3) Rom9x (F, G) A Horn*-c) (Fc, GC)F~ Extx(F, G) Ext1^ (F, G) -> 0. 

which displays the arithmetic extension group Extx (F,G) as an extension of the 
"classical" extension group Ext^x (F, G) by a group of analytic type. 

The sequel of [7] was devoted to the study of the groups Extx (F, G) when the base 
scheme is an arithmetic curve, that is, the spectrum Spec 9K of the ring of integers of 
some number field K. In this special case, these extension groups appear as natural 
tools in geometry of numbers and reduction theory in their modern guise, namely 
the study of hermitian vector bundles over arithmetic curves and their admissible 
extensions. 

In the present paper, we focus on a natural construction of arithmetic extensions 
attached to hermitian vector bundles over an arithmetic scheme X as above, their 
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THE ARITHMETIC ATIYAH EXTENSION 365 

arithmetic Atiyah extensions. In contrast with the arithmetic extensions over arith­
metic curves investigated in [7], for which the interpretation as admissible extensions 
was crucial, the arithmetic Atiyah extensions are genuine examples of arithmetic ex­
tensions constructed as pairs (6,s) — where s is a i?00-splitting of an extension S of 
vector bundles over X — and not derived from an admissible extension. 

0.2. — Atiyah extensions of vector bundles were initially introduced by Atiyah [2] 
in the context of complex analytic geometry. 

Namely, for any holomorphic vector bundle E over a complex manifold X, Atiyah 
introduces the holomorphic vector bundle Px (E) of jets of order one of sections of 
E, whose fiber PX(E)X at a point x of X is by definition the space of sections of E 
over the first order thickening x\ := Spec &x,x/™x °f x m X. Here, as usual, Ox 
denotes the sheaf of holomorphic functions over X, and the maximal ideal of its 
stalk &x,x at x. 

The vector bundle PX(E) fits into a short exact sequence of holomorphic vector 
bundles 

(0.4) fflxE : 0 —• E 0 fi^ PX(E) E —> 0, 

where the morphisms i and p are defined as follows: for any point x in X, the map 
ix : Ex<g> fi,x x ~^ Px(E)x maps an element v in Ex 0 iix ^ Homc(Tx>, Ex) to the 
section of E over x\ that vanishes at x and admits v as differential, while the map 
px : PX(E)X —* Ex is simply the evaluation at x. 

The Atiyah extension of E is precisely the extension UtxE of E by E 0 £lx so~ 
defined. According to its very definition, its class &txE in the group Ext1gx(E,E 0 
Qx) which classifies extensions of holomorphic vector bundles of E by E 0 Qx is the 
obstruction to the existence of a holomorphic connection 

V : E —> E 0 Çlx 

on the vector bundle E. 
The point of Ativan's article [2] is that the class a>txE also leads to a straight­

forward construction of characteristic classes of E with values in the so-called Hodge 
cohomology groups of X 

(0.5) Hp*(X) :=Hp(X,Üpx). 

For instance, Atiyah defines a first Chern class c^(E) in iJx,1(X) = Hl(X, Qx) as 
the image of &txE by the morphism 

Ext^x (E,E®Çlx) Exil (9x,ôndE®iïx) 

[ (TT£;(8)id0l )o_ X 
Ebrtk(0jr,n]c) ~ Hl{X,Çl\) 
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366 J.-B. BOST & K. KÙNNEMANN 

deduced from the canonical trace morphism 

TrE 6ndE~Ev®E —• QX, 

\<g)v I—• A(v). 

Higher degree characteristic classes are constructed by means of the successive powers 
(a,txE)p in ExtPgx(9x, (6ndE)®p ® Sl^), where p denotes a positive integer. For 
instance, the p-th Segre class, associated to the p-th Newton polynomial X\ + • • • + 
XPkE, may be constructed in the Hodge cohomology group HP(X, QJ^) as 

s«(E) := (^®idF2P)o(a txS)p , 

where 

TR£: (6ndE)®P —•> QX, 

2\ ® • • • ® Т„ i-» ^ ( ^ . . . Г р ) . 
When the manifold X is compact and Kahler (e.g., projective), the Hodge coho­

mology group HP(X, tix) mav De identified with a subspace of the complex de Rham 
cohomology group H^(X, C ) of X, and Atiyah's construction of characteristic classes 
is compatible (up to normalization) to classical topological constructions. 

The definition of the Atiyah class and the construction of the associated character­
istic classes obviously make sense in a purely algebraic context, say over a base field k 
of characteristic zero. If X is a smooth algebraic scheme over k, for any vector bundle 
E over X, its Atiyah class a&x/kE is constructed as above, mutatis mutandis, as an 
element of the k-vector space Ext^x (E, E ® ̂ ^/fc)' anĉ  the associated characteristic 
classes are elements of the Hodge cohomology groups of X defined similarly to (0.5), 
but now using the Zariski topology of X instead of the analytic one, and the sheaf of 
Kahler differentials £}̂ yfc instead of the holomorphic differential forms £lpx. 

These constructions are especially suited to smooth algebraic schemes X that are 
proper over k. In this case, the "Hodge to de Rham" spectral sequence degenerates, 
and the Hodge group HP,P(X) gets identified to a subquotient of the Hodge filtration 
of the algebraic de Rham cohomology group H^(X/k) := H2p(X,Qx^k). Moreover, 
when X is proper over k = C, this algebraic construction is compatible with the 
previous analytic one, as a consequence of the GAGA principle. 

This algebraic version of Atiyah's constructions has been considerably extended 
by Illusie [25]. Instead of a smooth algebraic scheme over a field k, he considers 
a suitable morphism of ringed topoi / : X —> 5, and associates Atiyah classes and 
characteristic classes to perfect complexes of sheaves of 0x-modules; his definitions 
involve the cotangent complex hX/s °^ ̂  over ^ » which in this general setting plays 
the role of the sheaf attached to a smooth scheme X over the field k. Let us also 
mention the presentation of this "algebraic" theory and of some of its developments in 
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THE ARITHMETIC ATIYAH EXTENSION 367 

the monograph of Angeniol and Lejeune-Jalabert [1], and the analytic construction 

of Buchweitz and Flenner [8] , [9] (2>. 

0.3. — Let us briefly describe our construction of arithmetic Atiyah classes. 

Let E := (E, \\.\\E) be a hermitian vector bundle over a scheme X which is separated 

and of finite type over Z, and which for simplicity will be assumed smooth over Z in 

this introduction. The relative version of the exact sequence (0.4) defines the Atiyah 

extension of E over Z: 

(0.6) mX/ZE : 0 — • E <g> Q}XLZ -U PX/Z(E) -^-> E — • 0. 

Besides, according to a classical result of Chern and Nakano ([10, 36]), the holo-

morphic vector bundle E^°l over the complex manifold X(C), seen as g^-vector 

bundle, admits a unique connection that is unitary with respect to the hermi­

tian metric and moreover is compatible with its holomorphic structure in the 

sense that its component V^1 of type (0,1) coincides with the d-operator &EC with 
E 

coefficients in the holomorphic vector bundle EQ°1. The component of type (1,0) 

of defines a 6*°°-splitting of the Atiyah extension of the holomorphic vector 

bundle Ep°l: 

UtX{C)Ec ' 0 —> fîx(c) ® px(c)(Ec) Ec —• 0. 

Namely, for any point x in 9C(C) and any e in Ex, sE(e) is the section of E over x\ 

that takes the value e at x and is killed by V—°. 
E 

Since the above analytic Atiyah extension &tx(c)Ec is precisely the extension 

deduced from *6kbx/zE by the base change from Z to C and analytification, the 

pair (ffitx/zEiSg) defines an arithmetic extension, the arithmetic Atiyah extension 

ffitx/zE of the hermitian vector bundle E. Its class sXx/zE in Extx(E, E (g> ^x/z) 

— the arithmetic Atiyah class of E — is mapped by the forgetful morphism v to the 

"algebraic" Atiyah class atx/zE of E in Ext^x (E, E(S>^x^z) (defined by the extension 

ffitx/2,E) and by the "second fundamental form" morphism \£ to the curvature form 

of the Chern-Nakano connection V^r (up to a sign). 

0.4. — In the first section of this article, we begin by reviewing the constructions 

of the Atiyah extension in the classical C-analytic and algebraic frameworks. For the 

sake of simplicity, we deal with locally free coherent sheaves only, and follow a naive 

approach — we work with relative differentials, and not with their "correct" derived 

version defined by the cotangent complex. This naive approach is sufficient when one 

considers — as we shall in the sequel — relative situations / : X —• S where X is 

(2) These authors work in an analytic context as the original article [2], but extend the construction 
of Atiyah classes to complex of coherent analytic sheaves over possibly singular complex spaces. Like 
Illusie's construction, this requires to deal with the cotangent complex, now in an analytic context. 
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368 J.-B. BOST & K. KÙNNEMANN 

integral, and / is l.c.i. and generically smooth, in which case ^X/s *s Quasi-isomorphic 

to nx/s. 

Then, in Section 2, we construct the arithmetic Atiyah class in the following relative 

situation, which extends the one considered in the previous paragraphs. Consider 

arithmetic schemes X and S, flat over an arithmetic ring (R, E, Foo) (in the sense of 

[17, 3.1.1]; see also [7, 1.1]), and a morphism of .R-schemes 7r : X —» 5, smooth over 

the fraction field K of R. Then, to any hermitian vector bundle E over X, we attach 

a class atx/s# in Extx(E, E (g) QX/s)- Applying a trace morphism to this class, we 

define the first Chern class c^(E) of E in arithmetic Hodge cohomology, that lies in 

the group 

Hl'\X/S) :=Extx(0x,Vx/s). 

The class atx/s^ and its trace c±{E) satisfy compatibility properties with pull-back 

and tensor operations on hermitian vector bundles that extend well-known properties 

of the classical Atiyah and first Chern classes. In particular we construct a functorial 

homomorphism 

c f : P i c ( X ) —>ff1»1(X/S) 

from the group of isomorphism classes of hermitian line bundles over X to the arith­

metic Hodge cohomology group. 

In the last sections of this article, we investigate the kernel of this morphism. It 

trivially vanishes on the image of 

7T* : Pic(S) —• Pic(A"), 

and we may wonder "how large" this image 7r*(Pic(S)) is in kercf. 

This question becomes a concrete problem of Diophantine geometry when the base 

arithmetic ring is a number field K equipped with a non-empty set E of embeddings a : 

K C stable under complex conjugation, and when S is Spec K and X is projective 

over K. Indeed, in this case, the class of a hermitian line bundle L = (L, | | . | | L ) 

over X lies in the kernel of precisely when L admits an algebraic connection 

V : L —» L (8) £lX/K, defined over K, such that the induced holomorphic connection 

Vc : Lc —•> Lc 0 ^XZ;(C) 011 holomorphic line bundle Lc over 

* s ( C ) := IT X„(C) 
EEE 

is unitary with respect to the hermitian metric | | . | |L-

One easily checks that, if L has a torsion class in Pic(X) and if the metric 

has vanishing curvature on X E ( C ) , then their exists such a connection. Moreover the 

converse implication, namely 

I1X,E- if o> hermitian line bundle L = (L, | | . | | L ) over X admits an algebraic connection 

V defined over K such that the connection Vc on Lc over X^(C) is unitary with 
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respect to | | . | | L , then L has a torsion class in Pic(X) and the metric has vanishing 
curvature, 
turns out to be equivalent with the following condition, where 7r denotes the structural 
morphism from X to Spec K: 
I2x,s- the image of it* : Pic(Specif) —> Pic(X) has finite index in the kernel of 

c f :Pic(X) -^H^{X/K). 

The equivalent assertions I l x , s and I2x,s may be translated in terms of If-rational 
points of the universal vector extension of the Picard variety of X. In this formulation, 
their validity has been established by Bertrand [4, 5] when E has a unique element 
(necessarily a real embedding of K) and when this Picard variety admits "real multi­
plication" (3) as a consequence of the analytic subgroup theorem of Wiistholz ([44]). 

Inspired by [4, 5] — which we tried to understand in more geometric terms, avoid­
ing the explicit use of differential forms and their periods, but working with algebraic 
groups and their exponential maps— we establish in Section 3 the validity of I l x , s 
and I2X,E when E is arbitrary without any assumption on the Picard variety of X. 
The proof proceeds by reducing to the case where X is an abelian variety, and E has 
a unique or two conjugate elements. To handle this case, we use a classical transcen­
dence theorem of Schneider-Lang characterizing Lie algebras of algebraic subgroups 
of commutative algebraic groups over number fields. Our argument is presented in 
the first part of Section 3, and may be read independently of the rest of the article. 

The validity of I l x , s and I2x,s demonstrates that the first Chern class c± (L) in 
the group ^^(X/K) encodes quite non-trivial Diophantine informations. In a later 
part of this work, we plan to study characteristic classes of higher degree, with values 
in the arithmetic Hodge cohomology groups 

H**(X/S) :=ExtPx(&x,nPx/s) 

defined as special instances of the higher arithmetic extension groups introduced in 
[7, 0.1], that are deduced from the powers of the arithmetic Atiyah class atx/s-E using 
suitably defined products on the higher arithmetic extension groups. 

Let us also indicate that, starting from the results in Section 3, one may derive 
finiteness results on ker cff/7r*(Pic(5)) for more general smooth projective morphisms 
7r : X —* S of arithmetic schemes over arithmetic rings, by considering the restriction 
of 7r over points of S rational over some number field. We leave this to the interested 
reader. 

(3) Namely, if this Picard variety A has dimension g, the Q-algebra F,nd(A/K) Q is assumed 
to be a totally real field of degree g over Q. Actually, Bertrand establishes a more precise result, 
concerning g independent extensions of A by the additive group Ga; see [5, Theorem 3, pages 13-14]. 
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370 J.-B. BOST & K. KÛNNEMANN 

In the final section of the article, we establish a geometric analogue of condition 

I lx , s - We consider a smooth, projective, geometrically connected curve C over some 

field k of characteristic zero, its function field K := k(C), and a smooth projective va­

riety X over k equipped with a dominant k morphism / : X —• C, with geometrically 

connected fibers. To any line bundle L over X is attached its relative Atiyah class 

atx/cL m Hl(X,Q}XiC). We show that, when the fixed part of the abelian variety 

PicxK/K *s trivial, the class &tx/cL vanishes iff some positive power of L is isomor­

phic to a line bundle of the form / * M , where M is a line bundle over C. The proof 

relies on the Hodge Index Theorem expressed in the Hodge cohomology groups of X. 

Considering the classical analogy between number fields and function fields, it may 

be interesting to observe that, when investigating the kernel of the relative Atiyah 

class of line bundles, a transcendence result — in the guise of a criterion for a subspace 

of the Lie algebra of a commutative algebraic group to define an algebraic subgroup 

— plays a key role in the "number field case", while our main tool in the "function 

field case" is intersection theory in Hodge cohomology. 

In Appendix A, we describe arithmetic extension groups in terms of Cech cocycles. 

Based on this description, in the main part of the paper we calculate explicit Cech 

cocycles which represent the arithmetic Atiyah class and the first Chern class in 

arithmetic Hodge cohomology. Finally Appendix B summarizes basic facts concerning 

universal vector extensions of Picard varieties that are used in Sections 3 and 4. 

It is a pleasure to thank A. Chambert-Loir and D. Bertrand for helpful discussions, 

and S. Kudla, M. Rapoport and J. Schwermer for invitations to the ESI in Vienna 

where part of the work on this paper was done. We are grateful to the TMR net­

work 'Arithmetic geometry' and the DFG-Forschergruppe 'Algebraische Zykel und 

L-Funktionen' for their support and to the universities of Regensburg and Paris-Sud 

(Orsay) for their hospitality. Finally we wish to thank the referee for his careful 

reading and his helpful suggestions for improving the exposition. 

1. Atiyah extensions in algebraic and analytic geometry 

1.1. Definition and basic properties. — We consider simultaneously the alge­

braic and the analytic situation where n : X —> S is a morphism of locally ringed 

spaces which is either 

a) a separated morphism of finite presentation between schemes, or 

b) an analytic morphism between complex analytic spaces. 

We denote in both cases by Qx the structure sheaf of regular resp. holomorphic 

functions on X. Let i" denote the ideal sheaf and 

A(1) —^XxsX 
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the first infinitesimal neighborhood of the diagonal A : X —• X XsX. For i = 1,2, let 
qi : X^ —> X denote the composition of A^) with the i-th projection. We identify 
(ÇlX/S,d) with the ©^-module I/I2 and the universal derivation 

11.1) d : 9 x ^ I/I2 d(A) = ¿(A) - eî(A). 

The ©^-modules qi+Qxw and Q2*&x(1) are canonically isomorphic as sheaves of 
05-modules. We denote this ©^-module by P^/s an<̂  observe that P^/s carries 
two natural 0x-module structures via the left and right projection qi and q<i. The 
canonical extension 

0 — > I/I2 — Oxxsx/I2 —> 0xxsx/ / — » 0 

yields an exact sequence of &x-modules 

(1.2) 0 _ > _ > Px _ 0X o 

for both ©x-module structures. The left and right ©x-module structures yield canon­

ical but different 0x-hnear splittings of (1.2) which map lmodJ to lmod J2. 

1.1.1. — Let F denote a vector bundle (that is, a locally free coherent sheaf) on X. 

We obtain from (1.2) an exact sequence of 0x-niodules 

Mx,s(F) '• 0 * F ® ^x/s Px/s(F) ^ F — 0 

where 

(1.3) Pk/s(F) = <b*ÛF-

Indeed we have 

Pxis(F) = Px/s®F 

where the tensor product is taken using the right ©x-module structure on Px/s> an(* 

then the sequence is viewed as sequence of ©^-modules via the left 0x-module struc­
ture. The canonical splitting of (1.2) for the right ©x-module structure induces a 
canonical ©s-linear splitting of </e£^y5(F). We obtain a canonical direct sum decom­
position 

(1.4) P}c/s(F) = F®(F®n1x/s) 

of 05-modules. We use squared brackets [, ] when we refer to this decomposition. 
A straightforward calculation shows that, in terms of this decomposition, the left 
©x-module structure of P^S(F) is given by 

(1.5) A • [ . />] = [A • / , A • u; - / <g> dA] 
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for local sections A of Ox, / of F, and u> of F 0 ^x/s* ^ follows that there is a 
one-to-one correspondence 

Ox-linear splittings 

s: F^PX/S(F) ofJetx/s(F) 

algebraic resp. holomorphic 

connections V : F —> F 0 ^x/s 

Under this correspondence, a connection V corresponds to the splitting $v of 

Jetx,s(F) given by the formula 

( i . 6 ) sv : F —• Plx/s(F) = F®{F® nx/s) , [ / , - v ( / ) ] . 

For instance, the "trivial" connection V := d on E = Ox is associated to the canonical 

left 0x-lhiear splitting of ( 1 . 2 ) . 

1.1.2. — The extension « ^ t ^ 5 ( F ) is called the extension given by the 1-jets or 

principal parts of first order associated with F. We denote the class of </e£^y5(F) in 

Ext^x (F, F 0 fix/S) by jet^/5(F) and abbreviate jet(F) = je t^/5(F) if X/S is clear 

from the context. We have followed in ( 1 . 1 ) , ( 1 . 3 ) , and (1 .6 ) the conventions fixed in 

[23, 16.7], [25, III. (1 .2 .6 .2)] , and [13, (2 .3 .4 ) ] . 

1.1.3. — We recall from [2, Propositions 6, 7 and 8] that the assignment 

{vector bundles on X} —> {short exact sequences of ©x-modules} 

F — Jetx/S(F) 

defines an additive, exact functor. Furthermore </e£^y5(F) is a short exact sequence 

of vector bundles if 7r is smooth. 

The following Lemma is a slight refinement of [2, Proposition 10]. 

Lemma 1.1.4. — Let E and F denote vector bundles on X. 

i) Let 

B = 
Ker(pE 0 idF - idE 0PF : Px/s(E) ®F®E® Px/s(F) E® F) 

Im({ÌE 0 idi?, — id# 0 ÌF) '• E 0 F 0 - P £ / 5 ( £ ) 0 F 0 F 0 P £ / 5 ( F ) ) 

denote the Baer sum of the extensions </e£^y5(F) 0 F and E ® <^e£^5(F). There 

exists a canonical isomorphism 

( 1 . 7 ) ip:P1x/s{E®F)—*B 

which fits into a commutative diagram 

0 — • F 0 F 0 f t ^ / 5 — • P^/S(E®F) — • F 0 F — • 0 

Il 1* Il 

0 — » F 0 F 0 f t ^ / 5 — • jB —• F 0 F — • 0. 
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Consequently we have 

ietx/s(E 0 F ) = jet^/5(F) 0 F + E 0 jet^/5(F) 

in Extgx (E 0 F, E 0 F 0 (E <S> F. 

n) Let V F and V F denote connections on E and F. We equip the tensor product 

E 0 F wtàA £/&e product connection 

( 1 . 8 ) V ^ F = V F 0 ioV + ic-F 0 V F 

TAe connections V E , V F , andVE®F induce sections SE,SF, andsE®F °f<^etx/s(E), 

^etx/s{F), and ̂ /etx/s(E <S> F) respectively. We have 

° SE®F = (SE 0 ÎCIF, idß ® 5 F ) 

where the notation on the right hand side refers to the description of the Baer sum 

given above. 

Proof — i) Let IM = Im(zF 0 idF, —idF 0 ÎF)- Recall that 

px/s(E ® F) = (F 0 F ) 0 (E 0 F 0 fix/5). 

There exists a unique ©s-linear map (1.7) which satisfies 

¥>([eo ®/o ,e i 0 / i 0 a]) ([co, 0] 0 /o + [0, ci 0 a] 0 / i ) 0 (CQ 0 [/o, 0 ] ) mod JM 

([e0,0] 0 /o) 0 (e0 0 [/o, 0] + ex 0 [0, / i 0 a]) mod JM 

for local sections e0, ei of F, /o, /1 of F and a of s(E ® F It is straightforward to check 

that (p is well defined and makes our diagram commutative. It remains to show that 

ip is also Qx-linear. This follows from 

¥>(A-[e0<8>/o,0]) (p([X • e0 0 /o, -e0 0 fo 0 dA]) 

([A • e0,0] 0 /o - [0, e0 0 d\] 0 /0) 0 (A • e0 0 [/o, 0 ] ) mod IM 

= A . ^ ( [ e o 0 / o , O ] ) 

as induces the identity on ftX/S 0 F 0 F. 

ii) For local sections e of F and / of F, we get 

<P° SEKFÍe® f) = ( [ e , - V e ] 0 / ) 0 ( e 0 [ / , - V / ] ) mod / M 

: (SF ® ic-F, idF ® « F ) ( C ® / ) 

which proves ii). 

Corollary 1.1.5. — Let E be a vector bundle on X and denote 

3E'.®x^E®Ey~ End(F) 

the canonical morphism of vector bundles which maps 1 to \&E- The Baer sum of 

e/etx/s(E) ® Ey and E 0^etX/S(Ev) is canonically isomorphic to ̂ etX/S(E 0 F v ) . 
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The pullback^etlX/S(E<g)Ev)ojE of(^et1X/S(E(g)Ev) along 2E — defined as the upper 
extension in the commutative diagram 

(1.9) 

0 -+ JE ® Ev ® îî^/5 - » Q -> Qx -> 0 

II 1 1 jfi 

0 £ <g) £v <g> -> P^/5(F(8)FV) -> £®£?v — 0 

whose righthand square is cartesian (compare [7, App. A.4.2]) — admits a canonical 

splitting. 

Proof. — The first statement follows from Lemma 1.1.4. The map jE induces by 

functoriality a morphism from s(@x) to ^et^j^E ® Ev). Since the righthand 

side in (1.9) is cartesian, we obtain a commutative diagram 

(1.10) 

0 — Qx/S — Px/S{9x) ^ Ox ^ 0 

1 JS<S)idNI 1 (fi II 
x/s 

0 —> £ ® £v <g> f^/5 —• Q —> &x —> 0. 

The canonical splitting Sd c/e^x / s(® x) (that correspond to the connection d on Ox) 

induces via (1.10) the requested canonical splitting <p o sd of o/et^/s (E <8> Ev )ojE. • 

Lemma 1.1.6. — Consider a commutative diagram 

X X 

1 7f 1 7T 

5 ^ 5 

in the category of locally ringed spaces where it and n are morphisms as in situation 

1.1, a) or b). Let E be a vector bundle on X and denote by /* the canonical map 
f*Ql _> o1 J lLx/s ^ lLx/s' 

i) There exists a canonical 9* -linear map 

<t>:rPx/s(E)^Px/§(f*E) 

which makes the diagram 

(1.11) 

о —> ГЕ®0ягп1х/3 
I idf*E®f* 

О - , ГЕ9дяа^в 

— rPk/sW ^ f*E ^ О 
1Ф II 

—> Р\/8{ГЕ) —> /*Я — » 0. 

commutative. Consequently we have 

(id/.* ® / * ) °jet^/s(£) = j e t ^ ( / * £ ) 

тЕх^(ГЕ,ГЕ®дя Üx/§). 
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ii) A connection V E on E induces a splitting SE of ^/etx,s{E). The splitting 

Sf*E := (t>° J*{SE) 

induces a connection / * V F on f*E which is uniquely determined by 

(1.12) ( r V £ ) ( / * S ) = f*(VE S) := (idf*E ® r)(f-l(VB8)) 

for local sections s of E. 

Notice that the case where 7f is as in situation 1.1, b) and n as in situation 1.1, a) 
is allowed. 

Proof — i) Observe that the upper sequence in (1.11) is exact as E is locally free. 
Recall that 

(1.13) f*Px/s(E) = [rlE®r\E®gx nx/s)] <sf-i0x 9X 

and 

(1.14) Р\/§{ГЕ) = ГЕ®ГЕ®0к Sìx/§ 

By the very definitions of f*E and f*(E<S>gx ^ - / s ) ' we nave / 10x-lhiear canonical 
maps 

f~xE —• f*E 

and 

r\E®0x nx/s) -> f*(E®0x nx/s) - f*E®0. f*nx/s 1 f'-^f f*E®gx nx/è 

The direct sum of these maps induces a g 1©s-linear morphism 

[rlE e r \ E ®Qx nx/s)} —. f*E e f*E ®Gx nx/§ 

It is straightforward to check that this morphism is /_10x-linear for the module 

structure given by formula (1.5). Via (1.13) and (1.14), we obtain the desired mor­

phism (j) which fits by construction in the diagram (1.11). 

ii) is a straightforward consequence of the construction of <j) in the proof of i ) . • 

1.2. Cotangent complex and Atiyah class. — In situation 1.1, a) resp. b), the 

cotangent complex ^X/s ls constructed in [25, II. 1.2] resp. [9, 2.38] as an object 

in the derived category D(9X— mod) of 0x-modules. Consider tiX/S as a complex 

concentrated in degree zero. The cotangent complex h'X/S comes with a natural 

morphism 

(1.15) ^x/s > tlx/s 
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in D(Qx~ mod) which is a quasi-isomorphism if X is smooth over S. Given a vector 

bundle E over X , the Atiyah class of E is defined in [25, IV.2.3] resp. [9, §3] as an 

element 

*tx/s(E) e E x t ^ x ( F , F ® L L x / 5 ) = HomD(^_mod)(£,£®L Lx/5[1]). 

If X A 5 is a morphism of schemes, the Atiyah class of Illusie maps under the 

morphism induced by (1.15) to the class (compare [25, Cor. IV.2.3.7.4]) 

jet^/5(JS) G Ext1^ (£, E ® Qx/S). 

Furthermore, according to [25, Prop. ILI.2.4.2], (1.15) induces an isomorphism 

(Lie) Ho{LX/s) * ^x/s-

If X S is a smooth morphism of complex analytic spaces, the Atiyah class of 

Buchweitz and Flenner maps under the morphism induced by (1.15) to the opposite 

class of jetJr/5(E) ([9, 3.27]). 

If the canonical morphism (1.15) is a quasi-isomorphism, we call ^et^^^E) the 

Atiyah extension associated with E and denote it by &tX/s(E). 

The associated extension class &tx/s{E) equals the opposite of the Atiyah classes 

A t ( F ) in [9] and b(F) in [2, Section 4]. It coincides with the Atiyah class defined 

in [1]. Compare also [9, 2.4 and Rem. 3.17] for a discussion of signs related to the 

Atiyah class. 

The following Lemma implies in particular that (1.15) is a quasi-isomorphism in 

the situations considered in the next sections. 

Lemma 1.2.1. — Let n : X —* S be a locally complete intersection (l.c.i.) morphism 

of schemes such that X is integral and n is generically smooth, in the sense that the 

smooth locus of n is dense in X. Then the morphism (1.15) is a quasi-isomorphism. 

Proof. — It is sufficient to show our claim locally on X as the formation of (1.15) is 

compatible with restrictions to open subsets. Hence we may assume that n admits a 

factorization 

x - U q - ^ s 

where j is a regular immersion defined by some regular ideal sheaf J and q is smooth. 

We obtain an exact sequence 

(1.17) jet^/5(JS) G Ext1^ (£, E ® Qx/S).Ho{LX/s) 

This is well known up to the injectivity of </> which holds as <j> is a morphism of locally 

free sheaves which is injective over the smooth locus of ir. The complex 

x -Uq-^s 
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concentrated in degrees minus one and zero is a cotangent complex for / by [25, 
Cor. 111.3.2.7]. Therefore it follows from the exactness of (1.17) on the left and the 
isomorphism (1.16) that (1.15) is in fact a quasi-isomorphism. • 

1.3. -connections compatible with the holomorphic structure. — Let 
E denote a holomorphic vector bundle on a complex manifold X. Recall that a 

-connection 
V : A°(X,E)—+A1(X,E) 

on E is called compatible with the holomorphic structure if its (0, l)-part coincides with 
the Dolbeault operator, i.e. V0,1 = Consider the Atiyah extension associated with 
E 

Htx(E) : 0 —• E <g> tlx Px/C{E) E —• 0. 

In the same way as before, we obtain a one-to-one correspondence 

V < > Syi.o 

between -connections on the vector bundle E which are compatible with the holo­
morphic structure and *6°°-splittings 

(1.18) SVL>0 : E — PX/C{E),/—[/, - V 1 ^ / ) ] 

of the extension ffitx(E). 
It is straightforward to check that this correspondence satisfies compatibility prop­

erties with tensor operations and pull back similar to the ones established in Lemma 
1.1.4, Corollary 1.1.5, and Lemma 1.1.6 above. 

The one-to-one correspondence described above extends in a straightforward way 
to the relative situation where X/S is a holomorphic family of complex manifolds. 
We leave the details of this construction to the interested reader. 

Assume that E carries a hermitian metric h. A "6°°-connection V on E = (E,h) 
is called unitary if and only if it satisfies 

dh(s, t) = h(\/s, t) + h(s, \/t) for all s,teA°(X,E). 

Recall that a hermitian holomorphic vector bundle E = (E,h) carries a unique unitary 
connection V^- which is compatible with the holomorphic structure ([10], [36]; see 
also [20, Ch. 0.5] or [43, Sect. II.2]; this connection is sometimes called the Chern 
connection of (E,h)). Moreover the assignement E i-> is compatible with direct 
sums, tensor products, duals and pull-backs. 

Lemma 1.3.1. — Let E = (E,h) be a hermitian holomorphic vector bundle on X. 
Let V = denote the unitary ff00-connection on E which is compatible with the 
complex structure. The curvature form 

V 2 e i M ( I , Snd(E)) 
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and the second fundamental form 

aeA°^(X, 6nd(E)®Ü1x) 

associated with HtxiE) and its "S00 -splitting sy1-0 as i>n [7, A.5.2] satisfy 

(1.19) a = -V2 

where we read the canonical isomorphism 

A1'1 (X, ênd(E)) ^ A0'1 (X, 6nd(E) ® Q}x), / ® (a A ß) i-> ( / ® a) A /3. 

(compare [7, 1.1.5]j as an identification. 

Proof. — Recall from [7, A.5.2] that a is determined by 

dpx/c(E)®Ev (sVi.o) = (i£?®idi4o,i)(a). 

It is sufficient to verify (1.19) locally on X. Hence we may assume that E admits 

a holomorphic frame. We describe V and V2 with respect to this frame by the 

connection matrix 0 and the curvature matrix ©. Following the conventions in [43, 
Ch. I l l ] , we have 

©¿fe = dOik + Oij Л Ojk. 

The connection matrix 0 has type (1,0) and the curvature matrix O has type (1,1) 
by loc. cit. Hence the equality above becomes 

(1.20) 6 = 36. 

Let V denote the connection on E whose connection matrix is zero. The associated 
splitting Syi)0 of ffitx(E) is holomorphic. Hence (1.6) and (1.20) give 

dp* (E)®EV (SV1*0) = dpi (E)®Ev (SV1-0 ~ «V1'0) = ' = - e = -v2 . 

2. The arithmetic Atiyah class of a vector bundle with connection 

In this section we fix an arithmetic ring R = (R, E, F^) in the sense of [17, 3.1.1]. 
We denote K the fraction field of R, and we let S : = Specii. 

2.1. Definition and basic properties. — Let X be an integral arithmetic scheme 
over R (in the sense of [17], or [7, 1.1]) with a flat, l.c.i. structural morphism 7r : 
X —> S. Recall that the generic fiber XK of X is smooth (by the very definition of 
an arithmetic scheme in loc. cit.), and observe that n satisfies the assumptions in 
Lemma 1.2.1. 
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Let E be a vector bundle on X. We consider the commutative square 

( x E ( c ) , e £ ) M (x,0x) 
I 7ГС J 7Г 

(xE(c),e£) M (x,0x) 

Lemma 1.1.6 implies that the formation of the Atiyah extension of E is compatible 

with base change with respect to this diagram. More precisely, we have a canonical 

analytification isomorphism 

Ptl /zrnhol ~ t r>l /i7ihol\ 
x/s\^)c > ^xE(c)/ss(c)vAc ; 

where we put F£°l — j*F for every Ox-module F. 

2.1.1. — We have seen in 1.3 that there is a one-to-one correspondence between 

5?°°-connections 

V : A°(Xz(C),Ec) -^AHXsiC^Ec) 

which are compatible with the holomorphic structure and commute with the action 

of Fqo, and sections 

sv- Ec -> Px/S(E)c 

such that (ffltx/sE,sv) is an arithmetic extension. This correspondence allows us 

to associate its arithmetic Atiyah extension (Utx/sE, s^) and its arithmetic Atiyah 

class 

rtx/s{E, V ) € E x 4 ( £ , E ® fi^/5) 

to any vector bundle E o n I equipped with an F^-invariant 5?°°-connection V on 

Ec that is compatible with the holomorphic structure. 

If E is a hermitian vector bundle over X, we obtain the arithmetic Atiyah extension 

(ffitx/sEi5v¥) of E and its arithmetic Atiyah class 

**x/s(E) •= a t X / S ( £ , V ¥ ) E E x i ( £ , £ ® ^ / 5 ) , 

where V^- denotes the unitary connection on E^°l over X^ ( C ) that is compatible with 

the complex structure. As a direct consequence of this definition and Lemma 1.3.1, 

we get a formula for the "second fundamental form" (compare the introduction and 

[7, 2.3.1]) 

9(rtx/s(E)) € A^iXu, 6nd(E)®nx/s). 

Namely 

(2.1) 9(rtx/s(E)) = -%, 

under the canonical identification 

A1'1(Xn, 6nd(E)) = A°'1(XRt 6nd(E)®nx/s), 

where := denotes the curvature of E. 
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In particular, when F is a hermitian line bundle over X , 

(2.2) 
1 

2ttÎ 
* ( £ t x / s ( £ ) ) = 

1 

2ÏH 
%=:ci(JE?) 

is the first Chern form of E. 

We collect basic properties of the arithmetic Atiyah class. 

Proposition 2.1.2. — i) Let (F, VJS) and V F ) be vector bundles on X equipped with 

FoQ-invariant ë*00-connections compatible with the holomorphic structure. We equip 

the tensor product E 0 F with the product connection. Then the equality 

^x/s(E 0 F, VE®F) = atx/sCE, VE) <8> F + E 0 atx/5(F, V F ) 

/io/ds m Extx(F 0 F, F 0 F 0 

ii) Le£ F and F 6e hermitian vector bundles on X, and F 0 F their tensor product 

equipped with the product hermitian metric. Then the equality 

atx/5(F 0 F) = a t*/s(F) 0 F + F 0 at*/s(F) 

ho/ds in Ext^(F (8) F, E 0 F 0 

iii) Le£ E be a hermitian vector bundle on X, and FV the dual hermitian vector 

bundle. Then the equality 

(2.3) atx/5(F) = -a tx /5(FV) 

holds in 

(2.4) Ext^(F, E 0 (0x, (Fv)^ Extx(9x,Ev 0 F 0 ft^/s) 

~ E x 4 ( 0 x , (Fv)v 0 Fv 0 0^/5) - Extx(Fv, Fv 0 f2^/5), 

where the first and last isomorphisms in (2.4) are the canonical isomorphisms in 

[7, 2.4.6], and the second one is deduced from the isomorphism Fv 0 E ~ E 0 Fv 

exchanging the two factors and the canonical biduality isomorphism E ~ (Fv)v . 

iv) Let f : X —> y be a morphism of integral arithmetic schemes which are gener-

ically smooth l.c.i. over S. Let (F, V # ) be a vector bundle on Y with F^-invariant 

-connection which is compatible with the holomorphic structure. The canonical 

maP f* : f*^y/s ~^ ^x/s induces a homomorphism 

Extx(rE,f*E®rn1Y/s) + Extx{rE,fE®n1x/s) 

by pushout along id/*£ 0 /* . We still denote the image of /*aty/s(F, V ^ ) under 

this map by /*aty/s(F, V E ) and equip /*F£o1 with the connection / * V ^ described in 

(1.12). Then we have the equality 

/ * S y / 5 ( F , VE) = *tx/s(f*E,f*VE)-
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in Ext x(f*E, f*E <g> Slx/S). 
v) Let f : X —> Y be a morphism of integral arithmetic schemes which are 

generically smooth l.c.i. over S. Let E denote a hermitian vector bundle on Y, 
and f*E its pull-back on X. Then the inverse image /*aty/(s(F) may be defined in 

Extx(f*E, f*E ® &X/S) as in iv) and satisfies 

R^Y/s(E) = ztx/s(f*E). 

Proof — Assertion i) follows from Lemma 1.1.4 and its variant for J?00-connections 
compatible with the holomorphic structure, and assertion ii) is a direct consequence 
of i) and of the fact that the Chern connection of a tensor product of hermitian vector 
bundles coincides with the tensor product of their Chern connections. To establish 
iii), observe that Corollary 1.1.5 and the compatibility of the canonical splitting given 
there with holomorphic and hermitian structures leads to the equality 

(Ev ® &tx/s(E)) o jE = -(&tx/s(EV) <8> E) o jE 

in Ext^(0x, 6nd(E) <g> ftx/S) where . o jE denotes the pushout along Equality 
(2.3) then follows from the very definitions of the isomorphisms in (2.4) in [7, Prop. 
2.4.6]. Assertions iv) and v) follow from 1.1.6. • 

Let E be a hermitian line bundle on X. We give a cocycle description of at(E) 
based on the description of arithmetic extension groups by Cech cocycles given in 
Appendix A. 

Proposition 2.1.3. — Let E = (E,h) be a hermitian vector bundle of rank n on X. 
Choose an affine, open cover ÎI = (Ui)iei of X such that E admits a frame 

fi: QUin ---> E|Ui 

over each U%. For i e I, we define 

hi := h(fiiC,fi,C) = {Hfi,C(ei), fi,C(ek))) 1 a , , < „ ^ 4 ( r ( ( / i , s ( C ) , C M , 

where e\ := (öai)i<a<n, and 

dlog hi := fi o h{ 1 o (dhi) o f. 1 e A°(Ui,R,End(E)®nx/s). 

For i,j G / , we define 

fij — fj 0 fi G M»tn(0x(Uij)) 

dlog fij := fj o (dfij) o ff 1 € T (Uij, End (E) <8> nx/s). 

Then the isomorphism 

P%EtE®Q}x/s Extx(E,E®tlx/s) - H0(%C(adEnd(E)m]c/s)) 
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constructed in Lemma A.0.1 maps a,tx/s{E) to the class of 

((-dlog fij)ijei, (-dlog hi)ieI). 

Proof — Let V denote the unitary connection on Ec which is compatible with the 

holomorphic structure. We compute a cocycle {Ut{E),s^) which represents the 

image of the arithmetic extension {Ut{E),s^) under P^E^E®^^- We follow the 

construction of PfyE^QQ^/g given in Appendix A. Consider the diagram 

0 —• Snd(E) <g> ft^/5 —• W —> 9x —> 0 

II i 1 3E 

0 —• E®Q}X/S®EW —> P^/S(E)®EV —• E®Ey —• 0. 

where the lower exact sequence is the extension Ut(E) ® Ey and the upper exact 

sequence is the pullback (ffit(E) <g> Ew) ojE of the lower exact sequence by jE. There 

is a unique connection V , : E\i/i —• E\ut ® ̂ ^/5 such that Vi(fi) = 0. It satisfies 

Vj(fi) = Vj(fj-fij) = fj-<Vij, 

where the frames fi and fj are seen as "line vectors" with entries sections of E. The 

connection Vi determines an 0^-linear splitting of W:(E) over Ui as in (1.6). We 

write jE(lx) = fi® fi \ where denotes the dual frame of Ev — which we may see 

as a "column vector" with entries sections of Ev — and get 

OLij = (sVj ® idtfv - sVi ® id£v) ojE(lx) 

= ( -v^ + v , ) / ^ / / 

= ( - / * - ( 4 f o ) ) ® / « v 

= -dlogfij. 

We observe that we have 

v1'°(fi) = fi'K1'@hi) 

by [43, III.2, eq. (2.1)]. Hence 

ft = (s^i'O ®idEv - svi<8>idEv)ojE(lx) 

= - / i o / i ^ o W o / : 1 

= -dlog hi. 

Our claim follows. • 

The properties of the arithmetic Atiyah class in Proposition 2.1.2 may be recovered 

by straightforward cocycle computations using Proposition 2.1.3. 

ASTÉRISQUE 327 



THE ARITHMETIC ATIYAH EXTENSION 383 

2.1.4. — Let us indicate that there is a straightforward generalization of the construc­
tion of the arithmetic extension class aix/s(E, V ) in Extx(E, E<g>Q,x/S) given above 
when S is a flat arithmetic scheme over Specie, X an integral arithmetic scheme 
equipped with a l.c.i. morphism n : X 5, smooth over K, and V is a relative 
^-connection for XE(C)/5E(C). 

If the relative connection V is induced by an absolute connection V x via the 
canonical map 

(2.5) ^X/SpecÄ ~~> 

the relative and the absolute Atiyah class are related as follows. The commutative 
sauare 

X ^ X 

J TT I 

S —> Specß 

induces by Lemma 1.1.6 a commutative diagram 

(2.6) 

О — > E®nx/SpecR — 

i 
О • E®Q,x/c 1 

E®nx/SpecR 
E®Q,x/c  —y E — • О 

—y E —y О. 

which identifies <&tx/s(E) with the pushout of ^tx^SpecR(E) along the canonical 
map (2.5). We have sy = </>c ° svx- Hence the pushout of the arithmetic extension 
t/e*x/SpecH^»sv) along the canonical map (2.5) is by its very definition in [7, 2.4.1] 
the arithmetic extension (Utx/s(E),s^). 

2.2. The first Chern class in arithmetic Hodge cohomology 

2.2.1. — For a hermitian vector bundle E on an arithmetic scheme X , flat and l.c.i. 
over S — Spec R, we put 

c f ( £ ) := c*(X/S,E) := tvE o (&tx/s(E) ® Ev) ojE € Ext (Qx^xis) 

where tvE : E ® EV^9X and : 9x-*End(E) ~ E ® Ey denote the canonical 

morphisms. We call Ci(E) the /irs£ Chern class of E in arithmetic Hodge cohomology. 

When E is a hermitian line bundle, tr^ and jE are the "obvious" isomorphisms, 

and Ci (E) is nothing else than a,tx/s(E) in 

ïïxt\(E,E®Q}x/s) ~ E x 4 ( 9x, Ev ® £ ®E,E®Q}~ Ext* ( 0x , Vx/s)• 

Using the the description of the arithmetic Atiyah class in terms of Cech cocycles 

in Proposition 2.1.3, and the expression of the differential of the determinant in terms 
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of the trace, we obtain, after a straightforward computation: 

(2.7) c f (E) = c f (detJE). 

Proposition 2.1.3 also leads immediately to the following description of the first 

Chern class in arithmetic Hodge cohomology for hermitian line bundles: 

Lemma 2.2.2. — Let L be a hermitian line bundle on an arithmetic scheme X. Choose 

an affine, open cover 2/ = (Ui)iei of X such that L admits a trivialization U G T(Ui, L) 

over Ui. Put 

[(-dlog/y^/^-flloglHII2)^/]. 

Then 

P%nX/S{^(L)) = [ ( -d log /y^ /^- f l log lHII2)^ / ] . 

2.2.3. — Let Pic(X) denote the group of isometry classes of hermitian line bundles 

on X. It follows immediately from Proposition 2.1.2 that the map 

c f : Pic(X) —+ Extx{9XiÇix/s) 

is a group homomorphism which satisfies 

c?(X/S,.)or = ro#(Y/S,.) 

for every morphism / : X —> Y of integral, flat, l.c.i, arithmetic 5-schemes. 

2.2.4. — We consider the diagrams 

(2.8) 
mxy log-i|2 

i -dlog 

Г ( Х , Ïï>x/S) —> 

A°'°(XR) A P k ( X ) 

1-9 I &? 

A°(XR,nx/s) E*,x(9x,nx/S) 

-+ Pic(X) 

^ Extlx(9x,Qx/s). 

and 

(2.9) 

Pic (X) A1'1(XR) 

&AX(0X,SIX/S) A°'\XR,nx/s). 

Here AP,P(XR) is by definition the space of real (p,p)-forms a on the complex manifold 

X^(C) which satisfy FOQ(a) = (—l)pa (compare [17, 3.2.1]). The monomorphism i 

is defined by 

A^(XR) ^ A°^(XR,iix/s), a I—• (27ri)pa 
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(compare [7, 1.1.5]). Furthermore we have used the following morphisms: 

log |.|2 : 9{Xy —• A0fi(XR), f —* log l/l2, 

dlog:0(X)* —> T(X,QX/S), f^f-'df, 

T(X,(lx/s) — > ^ ( X R . n J f / g ) , a ^ a c , 

Ö: A°'°(XK) — A ° ( X K , ^ / S ) , / . — a/, 

a : ^ ° ' ° ( X R ) — » P i c ( X ) , [(^,11.11/)] with | | l ^ | | ^ = e x p / , 

b: A°(Xu,nx/s) —• Extx(Qx,a,x/a),Ti—> о - ÎÏX/S У íix/s e Ox 

« ^ f t ^ O , , : = ( £ ) ] 
(compare the introduction and [7, 2.2]), 

Pic(X) — f P i c ( X ) , [ ( L , | | . | | ) ] ^ [ L ] , 

i / :Exti(0x,nJc/s) — » Ext10x(0x,fix/s)- [(<§,*)] ~ [ < S ] , 

c f : Pic(X) — E x t 1 e x ( 0 x , ^ / s ) , [L] I—• [trL o atx/s(L) o iL], 

Cl :P ic (X) — > ^ ( X R ) , [L = (L , | | . | | ) ]^ - (27rt ) -1V^> 

* : E x 4 ( 0 x , ^ / s ) — i40,1(XR>n]c/s) defined in [7, 2.3.1]. 

The horizontal lines in (2.8) are exact by [18, (2.5.2)] and [7, 2.2.1]. Observe the 

analogy between (2.8) and [18, (2.5.2)]. 

Proposition 2.2.5. — The diagrams (2.8) and (2.9) are commutative. 

Proof. — For / in 9(X)*, we have 

(2.10) dlog l/l2 = 
d(ff) 

ff 

df 

f 

df 

f 
dlog/ 

which shows the commutativity of the left square in (2.8). The unitary connection V / 

on (9x, II II/) that is compatible with the holomorphic structure is given according to 

[43, III.2 formula (2.1)] by the formula 

V1f'0(l) = dfeA0(XR,Ü1x/s). 

Taking into account the correspondence between connections and splittings in 1.3 

above (and notably the sign in (1.18)), it follows that the middle square commutes. 

The commutativity of the right square holds by definition. The square (2.9) is com­

mutative by formula (2.2). • 
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3. Hermitian line bundles with vanishing arithmetic Atiyah class 

This section is devoted to the proof of assertions I l x , s and I2X^ in the Introduc­

tion (see 0.4 supra). 

In the first part of the section, we establish the special case of I l x , s where X is 

an abelian variety and E has a unique or two conjugate elements. As mentioned in 

the Introduction, the validity of I1x,E in this case has been established by Bertrand 

([4, 5]) under suitable hypotheses of "real multiplication". 

In the second part of the section, we use some classical properties of Picard varieties 

to extend I1X,E to arbitrary smooth projective varieties X over number fields. Finally 

we establish I2x,s, which describes the kernel of the first class Chern in arithmetic 

Hodge cohomology c f "up to a finite group". 

3.1. Transcendence and line bundles with connections on abelian varieties. 
— The next paragraphs are devoted to the proof of the following theorem: 

Theorem 3.1.1. — Let A be an abelian variety over a number field K, and (L, V ) a 

line bundle over A equipped with a connection (defined over K). 

If there exists afield embedding a : K « - * C and a hermitian metric ||.|| on the com­

plex line bundle La on Aa(C) such that the connection Va is unitary with respect to 

||.||, then L has a torsion class in Pic(^4), and the metric \\.\\ has vanishing curvature. 

Actually this implies that the connection V is the unique one on L such that (L, V ) 

has a torsion class in the group of isomorphism classes of line bundles with connections 

over A (see 3.2 infra). 

Let us indicate that this result admits an alternative formulation in terms of uni­

versal vector extensions of abelian varieties and their maximal compact subgroups, in 

the spirit of Bertrand's articles [4, 5]: 

Theorem 3.1.2. — Let B be an abelian variety over a number field K, B# the universal 

vector extension of B, and P a point in B#(K). 

If there exists a field embedding a : K c—> C such that the point Pa belongs to the 

maximal compact subgroup of Bf(C), then P is a torsion point in B#(K). 

Actually, for any given K and cr, the implications in the statement of Theorems 

3.1.1 and 3.1.2 are equivalent when the abelian varieties A and B are dual to each 

other. This follows from the description of the universal vector extension B# and of 

the maximal compact subgroup of Bf(C) recalled in Appendix B (see notably B.6 

applied to k = K and X = A, in which case EX/k = •> an(l B.7 applied to X = Aa, 

in which case EX/C(C) = Bf(C)). 

The formulation in Theorem 3.1.1 turns out to be more convenient for the proof, 

which will proceed along the following lines. 
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Firstly, the data (L, V ) in Theorem 3.1.1 may be "translated" in terms of algebraic 

groups: the total space of the Gm-torsor associated to L defines a commutative alge­

braic group Lx , and the connection V an hyperplane in its Lie algebra LieLx. Then 

an application of the theorem of Schneider-Lang to this situation will show that, if 

there exists a family (71 , . . . , 7^) of points in the lattice of periods Ta^ of Aa which 

constitutes a C-basis of Lie Aa such that the monodromy of the complex line bundle 

with connection (La, VCT) along each 7̂  lies in Q*, then L is torsion. ^ 

This criterion easily leads to a derivation of Theorem 3.1.1 when the image of 

the embedding a lies in R. Indeed a simple "reality" argument then shows that the 

monodromy of (La, Va) along the "real periods" of A^ lies in { 1 , - 1 } . 

When the image of a does not lie in M, we may assume that K is Galois over Q, 

and consider the involution r of K such that a o r = a. It will turn out that we may 

apply the above criterion to the line bundle with connection on A AT defined as 

the external tensor product of (L, V ) and (Lr, V r ) to establish that L ^ L r , hence L, 

is torsion. 

3.1.3. Line bundles with connections on abelian varieties. — Let A be an abelian 

variety over a field k of characteristic zero, and L a line bundle over A. We may 

choose a rigidification of L, namely a trivialization <\> : k ~ Le of its fiber at the zero 

element e of A(k), or equivalently the vector £ := 0(1) in Le \ { 0 } . 

In the sequel, we shall assume that the following equivalent (5) conditions are sat­

isfied: 

(i) the line bundle L is algebraically equivalent to the trivial line bundle; 

(ii) the Atiyah class a t^ /^L(= jet^y^L) of L vanishes; 

(iii) the line bundle L may be equipped with an algebraic connection V . 

(4) Added in proof. After the acceptation of this article, we realized that related results had been 
obtained by Simpson, [40], Section 3. Namely Theorem 1 of loc. cit establishes the validity of the 
previous criterion under the stronger assumption that the monodromy of (La,Va) along any 7 in 
T belongs to Q . Simpson's proof relies on transcendence results of Waldschmidt [42] concerning 
exponentials of abelian integrals, which themselves are deduced from the Theorem of Schneider-Lang. 
The derivation of the previous criterion in 3.1.5 infra may be seen as a refined geometric variant of 
the arguments of Waldschmidt and Simpson. 
(5) Indeed (ii) and (iii) are equivalent by the very definition of at^/^L, (ii) is equivalent to the 
rational vanishing of the first Chern class of L (hence (i) implies (ii)), and if the first Chern class of 
L vanishes rationally, one gets (i) from [28, II.2 Cor. 1 to Th. 2], as Pic^fc = Piĉ f̂c by [35, Cor. 
6.8]. 
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Observe that the connection V is necessarily flat (6) and that the set of connections 

on A is a torsor under the fc-vector space T(A, &\/k) — (Lie^4)v of regular 1-forms 

on A, which acts additively on this set. 

Beside, the Gm-torsor Lx defined by deleting the zero section from the total 

space (7) V(LV) of L admits a unique structure of commutative algebraic group over 

fc such that the diagram 

(3.1) 0 — • Gm,fc -±> Lx A —• 0, 

— where <\> denotes the composite morphism Gm,& c± Lx ^ Lx and TT the restriction 

of the "structural morphism" from V(LV) to A — becomes a short exact sequence of 

commutative algebraic groups. Its zero element is the fc-point e G Lx(k) defined by 

L (See for instance [39], VII.3.16.) 

Prom (3.1), we derive a short exact sequence of fc-vector spaces: 

(3.2) 0 _ > LieGm,fc ^ LieLx Lie A —• 0. 

Recall that a connection over a vector bundle on a smooth algebraic variety may 

be described a la Ehresmann as an equivariant splitting of the differential of the 

structural morphism of its frame bundle (see for instance [30], Chapter II, or [41], 
Chapter 8; the constructions of loc. cit. in a differentiable setting can be immediately 

transposed in the algebraic framework of smooth algebraic varieties). In the present 

situation, a connection V on L may thus be seen as a Gm^-equivariant splitting of 

the surjective morphism of vector bundles over Lx defined by the differential of n: 

Dir : TLx —• TT*Ta. 

In particular, its value at the unit element e of Lx defines a fc-linear splitting 

E : Lie A — • LieLx 

of (3.2). 

Conversely, from any fc-linear right inverse E of Lie7r, we deduce a Gm-equivariant 

splitting of Dn by constructing its Lx-equivariant extension to Lx. 

Through these constructions, connections on L and fc-linear splittings of (3.2) cor­

respond bijectively. Indeed, by means of the identification 

LieGm?fc —> fc 

A. X e 
eX 

A, 

(6) To establish this, we may reduce to the case k = C and use transcendental arguments. We 
may also assume that k is algebraically closed, and observe that the curvature V2 of an algebraic 
connection on L depends only on the isomorphism class of L and defines a morphism of algebraic 
groups over k from the dual abelian variety Av to the additive group r(A,Q^^k)(~ A2(Lie A)v). 
Since A is proper and connected, any such morphism is zero. 
(7) Namely, the spectrum of the quasi- coherent f$U-algebra 0nGN^V<S)n-
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the set of fc-linear splittings of (3.2) becomes naturally a torsor under (LieA)v, and 

the above constructions are compatible with the (additive) actions of (Lie A)v on the 

set of these splittings and on the set of connections on L. 

This correspondence may also be described as follows. A linear splitting E as 

above may also be seen as a morphism £ : Ae,\ —> Lxx from the first infinitesimal 

neighbourhood Ae,\ of e in A to the first infinitesimal neighbourhood Lxx of e in Lx 

which is a right inverse of the map 7r€ji : Lxx —> Ae^\ deduced from TT. In other words, 

£ is a section of L over Aeji such that £(e) = I. The connection V associated to E is 

the unique one such that W ( e ) = 0. 

3.1.4. The complex case. — If G is a commutative algebraic group over C, its ex­

ponential map will be denoted expG. It is the unique morphism of C-analytic Lie 

groups 

expG : Lie G —• G(C) 

whose differential at 0 G Lie G is ldueG- Its kernel 

TG ' = ker expG 

is a discrete additive subgroup of Lie G. When G is connected, expG is a universal 

covering of G(C), and To may be identified with the fundamental group 7Ti(G(C), 0G), 

or with the homology group # i ( G ( C ) , Z ) . 

Let us go back to the situation considered in paragraph 3.1.3, in the case where 

the base field fc is C, and fix the algebraic connection V o n I . 

Then the diagram 

LieLx Lie .A 

i exPl/X I expA 

LX(C) A(C). 

is commutative. Consequently the morphism of groups 

expLX oE : FA —> LX(C) 

takes its value in ker n ~ C*. It coincides with the monodromy representation 

p:TA = H1(A(C),Z)^>C* 

of the line bundle with flat connection (L, V ) — or more properly of the corresponding 

objects in the analytic category — over A(C). Indeed, the horizontal Gm,c-equivariant 

foliation on LX(C) defined by V is translation invariant, and its leaves are precisely 

the translates in Lx (C) of the image of expLX oE. 
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3.1.5. An application of the Theorem of Schneider-Lang. — To establish Theorem 

3.1.1, we shall use the following classical transcendence result on commutative alge­

braic groups: 

Theorem 3.1.6. — Let K be a number field and a : K <—• C a field embedding, and let 

G be a commutative algebraic group over K, and V a K-vector subspace of Lie G. 

If there exists a basis (71,...,7V) of the complex vector space Va such that, for 

every i G { 1 , . . . , v } , exp^ (7$) belongs to G(Q), then V is the Lie algebra of some 

algebraic subgroup H of G. 

We have denoted Q the algebraic closure of Q in C . By means of the embedding a, 

it may be seen as an algebraic closure of K, and the group G(Q) of Q-rational points 

of G becomes a subgroup of the group G A ( C ) of its complex points. 

Observe also that the subgroup H whose existence is asserted in Theorem 3.1.6 

may clearly be chosen connected, and then H is clearly unique, defined over K, and 

the group HA(C) of its complex points coincides with expG^(V^). 

Theorem 3.1.6 has been established by Lang ([31], IV.4, Theorem 2), who elabo­

rated on some earlier work of Schneider on abelian functions and the transcendence 

of their values [38]. We refer the reader to [42] (where it appears as Theoreme 5.2.1) 

for more details on Theorem 3.1.6 and its classical applications. 

Let us point out that Theorem 3.1.6 is now subsumed by various renowned more 

recent results — namely, the transcendence criterion of Bombieri and the analytic 

subgroup theorem of Wiistholz. The reader may find a recent survey of these and 

related transcendence results on commutative algebraic groups in the monograph [3]. 
We now return to the situation considered in paragraph 3.1.3, where we assume 

that the base field k is a number field K. 

Taking into account the relation in the complex case between the monodromy 

of connections on L and the exponential map of the algebraic group Lx described 

in 3.1.4, we may derive from the theorem of Schneider-Lang (Theorem 3.1.6 above) 

applied to the algebraic group G = Lx: 

Corollary 3.1.7. — Let A be an abelian variety of dimension g over a number field K, 

and (L, V ) a line bundle over L equipped with a flat connection (defined over K). 

Let a : K C be a field embedding, and let pa : TAa —• C* denote the monodromy 

representation attached to the flat complex line bundle (LCT, Va) over AA(C). 

If there exists 7 1 , . . . ,7P in such that (71,... , 7#) is a basis of the C-vector 

space Lie Aa and such that, for every i G { 1 , . . . ,g}, Pa(li) belongs to Q , then L has 

a torsion class in Pic(A). 

Observe that conversely, if n is a positive integer such that L®n ^ 0^, the unique 

connection V^r on L such the n-th tensor power of the line bundle with connection 
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(L, V ^ r ) is isomorphic to (9 a,d) is such that, for any a : K <^-> C, the image of 
the monodromy pa of ( I ^ V ^ ) lies in the n-th roots of unity, hence in Q . By 
elaborating slightly on the proof below, one may show that, with the notation of 
Corollary 3.1.7, the connection V necessarily coincides with the connection V^r so 
defined. We leave this to the interested reader. 

Proof. — We consider the if-linear map E : Lie A —> LieLx associated to the 
connection V as in 3.1.3, and its image V := E(LieA). The vectors 7* := Ea(7i), 
1 < i < 9, constitute a basis of the C-vector space Va. Moreover the image expLx (7^) 
of 7i by the exponential map of Lx is the point of Lx e ~ C* defined by the monodromy 
Pa(li) of 7*- According to our assumption, these images belong to LX(Q). 

The theorem of Schneider-Lang now shows that V is the Lie algebra of a connected 
algebraic subgroup H of Lx , defined over K. Since Lie7T|# : Lieff = V —> Lie A is 
an isomorphism of if-vector spaces, the morphism of algebraic groups ir\H : H —> A 
is etale, and consequently H is an abelian variety over K and 7T|# an isogeny. 

By the very construction of H as a subscheme of Lx, the inverse image n*HL of 
L on H is trivial. If N denotes the degree of 7T|#, it follows that L®N — which is 
isomorphic to the norm, relative to 7T|#, of n*HL — is a trivial line bundle. • 

3.1.8. Reality I. — Let us keep the framework of paragraph 3.1.3, and suppose now 
that the base field k is R. 

The line bundle with connection (L,V) defines a real analytic line bundle with flat 
connection (LR, VR) over the compact real analytic Lie group A ( R ) . Its monodromy 
defines a representation of the fundamental group 7Ti(i4(R), 0^), or equivalently of 
the homology group Hi(A(R)°,Z) of the connected component of 0^, with values in 
R*. 

Actually the inclusion 1 : ^4(R)° ^ A(C) defines an injective map of free abelian 
groups, of respective ranks g and 2p, 

t. : # i ( A ( R ) ° , Z ) —> ffx(A(C),Z), 

and the monodromy représentation p^ coincides with the restriction pc o of the 
monodromy représentation 

p c : # i ( A ( C ) , Z ) ^ C * 

defined by the C-analytic line bundle with flat connection (Lc, V<c) over the compact 
C-analytic Lie group A(C). Moreover any Z-basis of 6*(ffi(A(R)°,Z)) is a C-basis of 
# i ( A ( C ) , C ) - Lie Ac. 

Lemma 3.1.9. — The following conditions are equivalent: 
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(i) There exists a hermitian metric ||.|| on the complex line bundle Lc on A(C) 

such that the connection Vc is unitary with respect to ||.|| (8). 

(ii) The monodromy representation p^ takes its values in { 1 , - 1 } . 

Clearly Condition (i) is equivalent to: 

(i ' ) The monodromy representation pc takes its values in U(l) := {z G C | \z\ = 1}. 

In the sequel, we shall only use the implications (i) ( i ' ) (ii), which are 

straightforward. To show (ii) ( i ' ) , let T+ := l^(H1(A(R)° , Z ) ) , and observe that 

the elements of Tac which are "purely imaginary" in Lie Ac — (Lie ^4)(8>kC constitute 

a subgroup T~ of rank g such that r + n T~ = { 0 } , that T / r + 0 T~ is a 2-torsion 

group, and that the image pc(T~) of T~ by the monodromy representation lies in 

U{\). We leave the details to the reader. 

3.1.10. Reality II. — In this paragraph, we still keep the framework of the paragraph 

3.1.3, and we now assume that the base field k is C. We may apply the considerations 

of the last paragraph to the abelian variety over R deduced from A by Weil restriction 

of scalar from C to R. This leads to the following results, that we formulate without 

explicit reference to Weil restriction. 

Let A-, L_ , V _ be respectively the complex abelian variety, the line bundle over 

A-, and the connection over L_ deduced from A, L, and V by the base change 

Spec C —> Spec C defined by complex conjugation. 

Let us consider the complex abelian variety 

B := A x 

the two projections 

pr : B —> A and pr_ : B —• A _ , 

and (L, V ) the line bundle with connection over B defined as the tensor product of 

pr*(£,V) and p r l ( L _ , V _ ) . 

Let j : Lie A —• Lie A- denote the canonical C-antilinear isomorphism. It maps 

bijectively Ta onto , and we may introduce the diagonal embedding 

A : TA — • rA 0 TA_ ^ TB 

7 1—• (7, j (7))-

Observe that any Z-basis (71,.. . ,j2g) of Ta is a R-basis of Lie A, and consequently 

its image (A(7i) , . . . , A(72^)) by A is a C-basis of Lie£. 

Let p (resp. p_, p) be the monodromy representation of Ta (resp. r^_, Tb) 

defined by the line bundle with connection (L, V ) (resp. ( L _ , V _ ) , (L, V ) ) . 

(8) Or, equivalently, such that Vc is the Chern connection associated to ||.||. 
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It is straightforward that, for any 7 in Ta, the following relations hold: 

р~иШ = ph), 

and 

p(A(7)) = p(7)-P-(j(7)) = |p(7)|2-

These observations establish: 

Lemma 3.1.11. — / / there exists a hermitian metric ||.|| on the complex line bundle 
L on A(C) such that the connection V is unitary with respect to \\.\\, then the image 
A ( r ) of the diagonal embedding A contains a C-basis of Lie B, and is included in the 
kernel of the monodromy representation p of (L, V ) . 

3.1.12. Conclusion of the proof of Theorem 3.1.1. — The following statement is a 
straightforward consequence of Corollary 3.1.7 to the Theorem of Schneider-Lang, 
combined with Lemma 3.1.9 above: 

Corollary 3.1.13. — Let A be an abelian variety over a number field K, and (L, V ) a 
line bundle over A equipped with a flat connection defined over K, and let a : K <—> C 
be a field embedding that is real, namely such that its image cr{K) lies in M. 

If there exists a hermitian metric ||.|| on the complex line bundle La on Aa(C) such 
that the connection Va is unitary with respect to \\.\\, then L has a torsion class in 
Pic(A). 

If we use Lemma 3.1.11 instead of Lemma 3.1.9, we may prove: 

Corollary 3.1.14. — Let A be an abelian variety over a number field K, and (L, V ) a 
line bundle over A equipped with a flat connection defined over K. 

Let a : K <—> C be a field embedding, and let r be a (necessarily involutive) auto­
morphism of the field K such that a or = a. 

If there exists a hermitian metric ||.|| on the complex line bundle La on Aa(C) such 
that the connection Va is unitary with respect to \\.\\, then L has a torsion class in 
Pic(i4). 

Observe that when r = Id^ Corollary 3.1.14 reduces to Corollary 3.1.13 above. 
We have however chosen to present explicitly the statement of Corollary 3.1.13 and 
its proof above, since the basic idea behind the proofs of Corollaries 3.1.13 and 3.1.14 
appears more clearly in the first one, which indeed has been inspired by Bertrand's 
proof in [4] and [5]. 
Proof of Corollary 3.1.14. As usual we denote AT, Lr, and VT respectively the abelian 
variety over K, the line bundle over AT, and the connection over LT deduced from A, 
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L, and V by the base change Specif —» Specif defined by r. We may also introduce 

the abelian variety over i f 

B :=Ax Ar, 

the two projections 

pr : B — • A and prr : B — • Ar, 

and (L, V ) the line bundle with connection over B defined as the tensor product of 

pr*(L,V) and pr ; (Lr ,VT) . 

Lemma 3.1.11 applied to (AA, LA, Va) shows that the hypotheses of Corollary 3.1.7 

are satisfied by the abelian variety B over if, and the line bundle with connection 

(L, V ) over B. Consequently L has a torsion class in Pic(£) , and so L itself— which is 

isomorphic to the restriction of L to A x { e } ~ A — has a torsion class in Pic(^4). • 

Finally consider if, A, (L, V ) , a and ||.|| as in the statement of Theorem 3.1.1. 

Let us first show that L has a torsion class in if. To achieve this, let us choose 

a finite field extension if ' of i f admitting an automorphism r and an embedding a' 

in C that extends a and satisfies a' o r = a' — for instance the subfield if ' of C 

generated by cr(if) and its image by complex conjugation. We may apply Corollary 

3.1.14 to the number field if ' equipped with the complex embedding cr', and to the 

abelian variety AK> and the line bundle with connection (LK' , ) deduced from A 

and (L, V ) by the base change Specif' —> Specif. Therefore LK' has a torsion class 

in P'IC(AK')' Since the base change morphism 

Pic(A) —•Pic(i4Av) 

is injective, this indeed implies that L has a torsion class in Pic(A). 

To complete the proof of Theorem 3.1.1, it is sufficient to observe that the curvature 

of ||.|| — or equivalently, of the -connection Vg>°° = Va + OL^ on LA — vanishes 

for reason of type (9): it is a 2-form on AA(C) of type (2,0), since Va is holomorphic, 

and purely imaginary, since Vg>°° is unitary. 

3.2. Hermitian line bundles with vanishing arithmetic Atiyah class on 

smooth projective varieties over number fields. — Let i f be a number field, 

and E a non-empty set of field embeddings of i f in C, stable under complex conjuga­

tion. 

To these data is naturally attached the arithmetic ring in the sense of Gillet-Soule 

([17], 3.1.1) defined as the triple (if, E,Foo) where Foo denotes the conjugate linear 

involution of Cs defined by F00(aa)aeY: : = (O^)o-GS-

(9) One could also argue that this curvature coincides with the one of the holomorphic connection 
VCT, which vanishes, as recalled above. 
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3.2.1. — Recall that, for any line bundle M over a smooth projective connected 
variety V over C, the following conditions are equivalent, as a consequence of the 
GAGA principle and Hodge theory: 

(al) the Atiyah class aiy/cM of M vanishes in iJ1,1(Vr/C) := Ext^v(9v, ^y/c) í 
(a2) the first Chern class ci(Mho1) of the holomorphic line bundle Mho1 over V(C) 

deduced from M vanishes rationally (that is, in H2(V(C),Q), or equivalently in 

H2(V(C),C)); 

(a3) there exists a ff00-hermitian metric ||.|| with vanishing curvature on Mho1. 

Moreover, when they are satisfied, the metric ||.|| is unique up to a constant factor in 
R+, and the (l,0)-part V1'0 of the í?°°-connection V on Mho1 that is unitary (for | | . | | ) 
and compatible with the holomorphic structure is the unique integrable holomorphic 
connection whose monodromy lies in U(l) := {z G C | \z\ = 1}. Observe also that 

algebraizes, and may be seen as as an "algebraic" connection on the line bundle 
M on the algebraic variety V over C. 

3.2.2. — Let X be a smooth, projective, geometrically connected scheme over if, 
and EX/K the universal vector extension of PicX/K (see Appendix B for basic facts 
on Picard varieties and their universal vector extensions). 

In the sequel, we shall consider X and Specif as arithmetic schemes over the 
arithmetic ring (if, U,Foo). 

In particular, a hermitian line bundle L over X is the data of a line bundle L over 
X and of a -hermitian metric invariant under complex conjugation, on the 
holomorphic line bundle l£o1 over XE(C) = Ha€^Xa(C). 

According to the observations in 3.2.1, for any line bundle L over X, the following 
conditions are equivalent: 

(bl) the Atiyah class a,tX/KL of L in Hljl(X/K) := Ext^x (9X, &X/K) van^shes; 
(b2) there exists a "6°°-hermitian metric ||.|| with vanishing curvature, invariant un­

der complex conjugation, on the holomorphic line bundle V^1 over XE (C) . 

When (bl) and (b2) are realized, the metric ||.|| is unique, up to some multiplicative 
constant, on every component Xa(C) of Xc(C). 

Observe also that these conditions hold precisely when some positive power of the 
line bundle L is algebraically equivalent to zero (10) (see for instance [28, II.2 Cor. 1 
to Th. 2]). 

3.2.3. — Consider now a line bundle L on X satisfying Conditions (bl) and (b2) 
above, and let us choose a í?°° hermitian metric ||.|| on Lc, as in Condition (bl) 
above. 

(10) By definition a line bundle on X is algebraically equivalent to zero if and only if its restriction 
to the geometric fiber X-^ is algebraically equivalent to zero. 
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We shall denote L the hermitian line bundle (L, | | . | | ) over X , and V^- the unitary 

connection on Lc which is compatible with the holomorphic structure. It does not 

depend on the actual choice of ||.||. Indeed, for any G in E, the (1,0)-part of V ^ 

coincides with V£ over Xa(C). 

It is a straightforward consequence of our definitions that the following conditions 

are equivalent: 

(1) the line bundle L admits a connection V : L —> L®QX/K (over K) such that the 

induced holomorphic connection Vc on Lc over X%(C) equals V ^ ° , or equiva-

lently such that for any G in E the induced holomorphic connection Va on La 

over Xa equals V j ^ ; 

(2) the class c^(L) := c± (X/SpecK, L), or in other words the arithmetic Atiyah 

class &tx/K(L), vanishes in ^^(X/K) := Extx(9x, 

Observe also that, when L is algebraically equivalent to zero, the pair (Lc, V ^ ° ) 

— or equivalently the family (La, V £ ) o E Z — determines a point P = P^ in the 

maximal compact subgroup of 

EX/KW := []±EX/K(C)]F°°. 

ax1z 

(details of this construction may be found in the Appendix in B.7 and B.8), and 

Conditions (1) and (2) are also equivalent to: 

(3) the point PjT in the maximal compact subgroup o /£ ,x/ ic(R) is the image of a 
K-rational point of Ex/x. 

We claim that, if a line bundle L over X defines a torsion point in P ic(X) , then 

Conditions (1) and (2) are satisfied. 

Indeed, if n is a positive integer and a : Qx —> L®n is an isomorphism of line bun­

dles over X , we may introduce the connection V^r on L, defined over K, such that the 

connection V^°|n on L®n deduced from V^r by taking its n-th tensor power makes 

a an isomorphism of line bundles with connections from (Qx, d) to (L®n, V^gm) 
For any a in E, the two connections V ^ and V£ on La coincide, since the mon­

odromy of lies in the n-th roots of unity. Consequently Condition (1) is satisfied 

byV:= V ^ . ' 

(n) More generally, for any two line bundles L and M over X, any connection Vm on M and any 
isomorphism a : M —> L®n, there exists a unique connection V l on L such that the connection 
V^on on L®n deduced from VL by taking its n-th tensor power makes a an isomorphism of line 
bundles with connections from (M, VM) to (L®n, VL<g>n). It may be denned by the following identity, 
valid for any local regular section I of L: ni®71-1 <g> VLl = (a <g> IdQi )VM(a_1(^n))-

X/K 
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3.2.4. — It turns out that, conversely, if Conditions (1) and (2) hold, then L has 
a torsion class in Pic(X) and the connection Vuniquely defined by (1), necessarily 
coincides with V^r . This is basically the content of Theorems 3.1.1 and 3.1.2 when X 
is an abelian variety and E has one or two conjugate elements. It holds more generally 
for any X as above: 

Theorem 3.2.5. — Let X be a smooth, projective, geometrically connected variety over 
K, and let TT : X —• Spec i f its structural morphism, that we consider as a morphism 
of arithmetic schemes over the arithmetic ring (if, E, Foe). 

(i) Let L = (L, | | . | | L ) be a hermitian line bundle over X. If L admits an algebraic 
connection V : L —> L^QX^K such that Vc is unitary with respect to | | . | |L> then L has 
a torsion class in Pic(X), the metric has vanishing curvature, and V coincides 
with V £ R . 

(ii) For any hermitian line bundle L on X, if the first Chern class c f (L) in 
If1'1 (A"/If) := Extx(0x? &X/K) vanishes, then there exists a positive integer n such 
that L®n is isometric to the trivial bundle Qx equipped with a metric constant on 
every component Xa (C) of X^ (C) — or equivalently, such that the class of L in 
Pic(X) belongs to the image of n* : Pic(Specif) —• Pic(X) . 

(Hi) Let P G EX/K(K) be a i f -rational point of the universal vector extension 
ExIK that belongs to the maximal compact subgroup of EX/K№)- Then P is a torsion 
point in EX/K(K)-

Proof. — We prove below that the assertions (i)-(iii) are equivalent for any given 
variety X as above. The isomorphism (B.9) will then show that it is sufficient to 
show (iii), hence any of the assertions (i)-(ii i) , for abelian varieties. In order to prove 
(i) , we may choose a in E and replace the set of embeddings E by {cr} (resp. {<r, a}) 
if a is a real (resp. complex) embedding. In this situation, (i) has been proved for 
abelian varieties as Theorem 3.1.1 in Section 3.1 supra. 

For any given hermitian line bundle L, the equivalence of the implications in (i) and 
(ii) is a straightforward consequence of the observations in 3.2.3 and of the implication 

c f (L) = 0 => ci(L) = 0, 

which follows from the commutativity of (2.9). 
To establish the implication (ii) (iii), consider P in EX/K{K) a if-rational point 

of the universal vector extension that belongs to the maximal compact subgroup of 
EX/K№)- Replacing i f by a finite extension, we may assume that P is represented 
by a line bundle L algebraically equivalent to zero with an integrable connection V. 
If P belongs to the maximal compact subgroup of EX/K№), we nave Vc = 
where L carries a hermitian metric with curvature zero. As observed in 3.2.3 above, 
this implies that cf (L) = 0. According to (ii), there exists some integer m > 0 such 
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that L®M is isometric to the trivial bundle 0x with a constant metric. It follows 

that (L, V)®m is isomorphic to the trivial bundle 9x with the trivial connection, and 

consequently that P belongs to the m-torsion of EX/K(K)-

Finally, we show the implication (iii) (ii). Let L = (L, | | . | | L ) be a hermitian 

line bundle over X such that the class c f (L) := &\>X/K(L) vanishes. Then &tx/K(L) 

vanishes too, and there exists a positive integer m such that L®171 is algebraically 

equivalent to zero. By replacing L by L®771, we may therefore assume that L is 

algebraically equivalent to zero. As observed in 3.2.3, the point P^ associated to 

(Z/c, ll-IU) lies in the maximal compact group of EX/K№), and is the image of a ir­
rational point of Ex IK- According to (iii), it is a torsion point. This implies that L 
has a torsion class in Pic(X) , and that coincides with the connection V ^ . This 
establishes that L satisfies the conclusion of ( i ) , and consequently, as observed above, 
of (ii). • 

3.3. Finiteness results on the kernel of c f . — We may use Theorem 3.2.5 to 
investigate the kernel of the first Chern class in arithmetic Hodge cohomology. Indeed 
this Theorem easily leads to a derivation of the assertion I2x,s in the Introduction 
(which conversely contains Part (ii) of Theorem 3.2.5): 

Corollary 3.3.1. — The imaqe of 

7T* :Pic(Specif) —• Pic(X) 

has finite index in the kernel of 

c f : P i c ( X ) — ^ H ^ \ X / K ) . 

Proof — A hermitian metric with curvature zero on the trivial line bundle on X 
is constant on every component XA(C) of X^(C). Therefore, if we introduce the 
canonical map 

w : Pic(X) Pic(X) Picx/K(K), 

then we have: 
Ker(c?) H Ker(w) = Im (TT* : Pic(5)->PicpO). 

Hence the map w induces an injection of 

(3.3) 
Ker(cf : Pic(X)—>Extx(0x,îî5f/K)) 

Im (TT* : Pic(Spec K)—*Pic(X)) 

into PICX/K(K)' Theorem 3.2.5 (iii) implies that the image of (3.3) is contained in 
the torsion subgroup of Picx/x(^0 1̂2̂ - This is a finite group as the Neron-Severi 

(12) Actually this morphism factorizes through the torsion subgroup Pic(X)tor of Pic(X), and one 
may easily show that the so defined injection Ker(cf )/Im (tt*) —> Pic(X)tor is an isomorphism. 
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group 
NSX/K{K) = Picx/K(K)/Pic0x/K (K) 

and Pic^/K (K) are finitely generated abelian groups by [29, Th. 5.1] and the theorem 
of Mordell-Weil. • 

We may also establish a similar finiteness result where the base scheme Spec K is 
replaced by an "arithmetic curve": 

Corollary 3.3.2. — Let &K denote the ring of integers in a number field K, and let 
us work over the arithmetic ring ( $# , E, Foo). Let S denote a non-empty open subset 
of Spec QK, and let X be a smooth projective S-scheme with geometrically connected 
fibers. Then 

(3.4) 
Ker(cf : P i c ( X ) ^ E x t x ( 0 x , ^ / 5 ) ) 

Im (TT*: P i c ( S ' ) ^ P i c ( X ) ) 

is a finite group. 

Proof. — Let XK denote the fiber of X over Specif. We consider XK as an arith­
metic scheme over the arithmetic field K = (if, E, Foo). There is a canonical restric­
tion map 

v : Pic(X) —• P ic (Xx) . 

Any element in Ker v D Ker c f (X/S, . ) is generically trivial and carries a constant 
metric. The sequence 

Pic(S) —* Pic(X) —• Pic(XK) 

is exact as the fibers of XIS are integral. Hence 

Ker (i/) D Ker c f (X/S, . ) Ç Im (TT*: Pic(S)—>Pic(X)). 

Moreover v maps Im (TT* : Pic(S)—>Pic(X)) onto Im (TT* : P i c ( S p e c i f ) — • P i c ( A » ) . 
Consequently it induces an embedding of (3.4) into (3.3). The latter group is finite 
by Theorem 3.2.5. Our claim follows. • 

4. A geometric analogue 

4.1. Line bundles with vanishing relative Atiyah class on fibered projective 
varieties 

4.1.1. Notation. — In this section, we consider a smooth projective geometrically 
connected curve C over a field k of characteristic 0, and a smooth projective variety 
V over k equipped with a dominant fc-morphism n : V —• C, with geometrically 
connected fibers. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2009 



400 J.-B. BOST & K. KÙNNEMANN 

Observe that the morphism n is flat, and smooth over an open dense subscheme of 

C, namely over the complement of the finite set A of closed points P in C such that 

the (scheme theoretic) fiber 7r*(P) is not smooth over k. 

Let K := k(C) denote the function field of C. The generic fiber VK of 7r is a 

smooth projective geometrically connected variety over K. Conversely, according to 

Hironaka's resolution of singularities, any such variety over K may be constructed 

from the data of a k-variety V and of a fc-morphism TT : V —• C as above. 

Recall also that a divisor E in V is called vertical if it belongs to the group of 

divisors generated by components of closed fibers of 7r, or equivalently, if its restriction 

EK to the generic fiber VK of V vanishes. 

In the sequel, we assume that the dimension n of V is at least 2. Moreover we 

choose an ample line bundle 0(1) over V, we denote H its first Chern class in the 

Chow group CH1(X), and for any integral subscheme D of positive dimension in V 

and any line bundle L over V, we let: 

degHtDL := degfc(c1(L).ffdimI,-1.[£>]). 

Actually, we shall use this definition only when D is a vertical divisor in V. Con­

sequently, we could require 0(1) to be ample relatively to n only. Besides, when 

dimD = 1 the choice of 0(1) is immaterial. 

Observe that, if 0(1) is very ample and defines a projective embedding ¿ : V <—> 

P^, then, for any general enough (dimD — l)-tuple (Hi,..., # D I M D - I ) of projective 

hyperplanes in P^, the subscheme 

C := D H r\H{) H • • • H ^ ( T F D I M D - I ) 

in P^ is integral, one-dimensional, and projective over k, and its class [C] in CHi(X) 

coincides with ifdimD_1.[D]. Consequently degHDL is nothing but the degree 

degfc c\(L).[C] of the restriction of L to the "general linear section" C of D. 

Let us recall that, if M is a smooth projective geometrically connected scheme over 

some field ko of characteristic zero, then the Picard functor Pic^/fco ŝ representable 

by a separated group scheme over ko, and that its identity component Pic^/fco is an 

abelian variety over ko. A line bundle L over M is algebraically equivalent to zero (13) 

when the point in PicM/fc0(^o) it defines belongs to Pic^/fco(A;o), or equivalently, if its 

(!3) The reader should beware that, here as in the previous section, we use a "geometric" definition of 
"algebraically equivalent to zero", related as follows to the one occuring in [16], 10.3: for any divisor 
D in M and any algebraic closure ko of ko, the line bundle 0(D) is algebraically equivalent to zero 
in our "geometric" sense iff the divisor D-r on M-r is algebraically equivalent to zero in Fulton's 
sense. Also observe that (the first Chern class of) a line bundle on M algebraically equivalent to zero 
in the above sense is numerically equivalent to zero in the sense of Fulton [16], 19.1. In particular, 
with the notation of the previous paragraphs, for any line bundle L algebraically equivalent to zero 
over V, deg# D L vanishes. 
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class in the Neron-Severi group of M over ko — defined as PicM/fc0(&o)/Pic^/fco(&o) 

— vanishes. 

In particular, we may consider the identity component PicyK/K of the Picard 

variety of the generic fiber VK of 7r; it is an abelian variety over K, and we shall 

denote (B,r) its K/k-tra,ce. By definition, B is an abelian variety over k, and r is a 

morphism of abelian varieties over K: 

r:BK^ Pic"VK/K. 

Since the base field k is assumed to be of characteristic zero, this morphism is actually 

a closed immersion. We refer the reader to Section 4.6 infra for a discussion and 

references concerning the definition of PicyK/K and {B,T). 

4.1.2. — The following theorem may be seen as a geometric counterpart, valid over 

the function field K := k(C), of the characterization of hermitian line bundles with 

vanishing arithmetic Atiyah class in Theorem 3.2.5 ii). 

Theorem 4.1.3. — With the above notation, for any line bundle L over V, the follow­

ing three conditions are equivalent: 

V A 1 The relative Atiyah class aty/c(£) vanishes in 

Ext1^ (L, L ® fil ) ~ H\V, tfy/c). 

V A 2 There exist a positive integer N and a line bundle M over C such that the 

line bundle L®N ® TT*M is algebraically equivalent to zero. 

V A 3 There exists a positive integer N such that the line bundle L^N on VK is 

algebraically equivalent to zero, and the attached K-rational point of the Picard variety 

^ICVK/K is defined by a k-rational point of the KIk-trace ofPicyK/K. Moreover, for 

any component D of a closed fiber of TT, the degree degH D L vanishes. 

Observe that, for any closed point P of C\ A , its fiber D := 7r*(P) is a divisor in V, 

smooth and geometrically connected over k(P), and that, according to the projection 

formula, 

degHn L = degfe(Cl(L).tf"--2.[7r*(P)]) 

= degfe(7r.(c1(i).iî"-2).[P]) 

= [k(P) : A;] .degK(c1(LK).CI(0( l ) / f )dim^-1.[^]) . 

In particular, if some positive power L®N of LK is algebraically equivalent to zero, 

then degHD L vanishes. Consequently, in condition VA3 , we may require the vanish­

ing of degH D L only for components D of the supports of the singular fibers 7r*(P), 

where P varies in A . 

The proof of the equivalence of conditions V A 1 and VA2, which uses the Hodge 

index theorem and basic properties of Hodge cohomology groups, will be presented in 
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Sections 4.4 and 4.5 below. Then in Section 4.6 and 4.7 we shall recall some classical 
facts concerning the Picard variety PicyK/K and its K/k-trace, and establish the 
equivalence of conditions VA2 and VA3. 

4.2. Variants and complements. — Before we enter into the proof of Theorem 
4.1.3, we discuss some variants and related statements. Observe that the variants in 
4.2.1 make Theorem 4.1.3 more similar to its "arithmetic counterpart" in Theorem 
3.2.5 ii), whereas Proposition 4.2.4 would rather make less convincing the analogy 
between the arithmetic framework in Section 3 and the geometric framework of the 
present section. 

4.2.1. — Recall that the following conditions are equivalent — when they hold, the 
Picard variety PiCyK/K will be said to have no fixed part: 

NFP1 The K/k-trace ofPiCyKjK vanishes, or in other terms, for any abelian 
variety A over k, there is no non-zero morphism of abelian varieties over K from AK 
to PicyK/K. 

NFP2 The morphism of k-abelian varieties naturally deduced from n : V —• C 

TT* : Pic°c/k — Pic°v/k 

— which has a finite kernel — is an isogeny. 
NFP3 The infective morphism of k-vector spaces 

Tt* :H\C,Qc)^H\V,Qv) 

is an isomorphism. 
NFP4 The infective morphism of k-vector spaces 

Tt* :H\C,Qc)^ -> H\V,Qv) 

is an isomorphism. 
A few comments on these conditions may be appropriate. 
The finiteness of the kernel of tt* in NFP2 may be derived by considering a smooth 

projective geometrically connected curve C in V such that the morphism tc\c ' 
C —» C is finite. Let i : C V denote the inclusion morphism. The norm with 
respect to it\c> defines a morphism 7r\c* • Pic /̂/fc —• Pic /̂fe of abelian varieties over 

and the morphisms of abelian varieties 7r*, 7T|C"*, n*Cf ' Picc/k —• Pic£y/fc, and 

i* : Picy/fc —• Pic /̂fc satisfy the relations 

7T|£, = l O 7T 

and 
TT|C'* oTT*|C'=[S] 

where [S] denotes the morphism of multiplication by the degree S of ir\c' m ^'lc°c/k' 
This immediately implies that the kernel of 7r* is a subgroup of the -̂torsion in Pic^/fc. 

ASTÉRISQUE 327 



THE ARITHMETIC ATIYAH EXTENSION 403 

The injectivity of 7r* in NFP4 is a consequence of the generic smoothness of the 

dominant morphism 7r (recall that the base field k is assumed to have characteristic 

zero). The injectivity of 7r* in NFP3 and the equivalence of NFP3 and NFP4 
follows from Hodge theory when k = C, and therefore, by a standard base change 

argument, for any base field k of characteristic zero. 

The equivalence of NFP1 and NFP2 follows from the description of the K/k-

trace of PicyK/^ recalled in Proposition 4.6.1 below. Finally, the equivalence of 

NFP2 and NFP3 follows from the identification of iJ^C, QC) (resp. HL(V, 9V)) 

with Lie Pic^/fc (resp. Lie P i c ^ ) . 

As demonstrated by the theorem of Mordell-Weil-Lang-Neron, it is natural to re­

quire a no fixed part condition when searching for statements valid over function fields 

that are as close as possible to their arithmetic counterparts. This is indeed the case 

with Theorem 4.1.3. Namely, when PicyK/K has no fixed part, Conditions VA1-3 
are also equivalent to the following ones, which look more closely like the conditions 

appearing in i) and ii) of the "arithmetic" Theorem 3.2.5: 

VA2' There exists a positive integer N and a line bundle M over C such that the 

line bundle L®N is isomorphic to ir*M. 

VA3' The class of LK in the abelian group P'ICVK/K(K) is torsion. Moreover, for 

any component D of a closed fiber of 7r, the degree degH D L vanishes. 

Indeed, the equivalence of VA3 and VA3' when NFP1 holds is straightforward, 

and the equivalence of VA2 and VA2' easily follows from NFP2. 

4.2.2. — Generalizations of Theorem 4.1.3 concerning a smooth projective variety 

V over k fibered over a projective variety C of dimension > 1 may be deduced from 

its original version with C a curve by means of standard techniques, as in the proof 

of the Mordell-Weil-Lang-Neron theorem (cf [32]). We leave this to the interested 

reader. 

4.2.3. — Finally observe that when the base C is assumed to be affine instead of 

projective, the determination of line bundles with vanishing relative Atiyah class 

becomes a rather straightforward issue. For instance, we have: 

Proposition 4.2.4. — Let C be an affine integral scheme of finite type over a field k of 

characteristic zero, and let K := k(C) denote its function field. Let n : V —• C be a 

smooth projective morphism, L a line bundle over V, and LK the restriction of L to 

the generic fibre VK of IT. The following conditions are equivalent: 

(i) the relative Atiyah class a,tv/c(L) vanishes in 

Ext1^(L, L ® Sfy/c) - Hl(V,îfyc); 

(ii) the Atiyah class a,tyK/K(^K) vanishes in H1 (VK, £lyK/K)>' 
(iii) some positive power of LK is algebraically equivalent to zero over VK> 
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Proof. — The equivalence (ii) follows from the identification 

H\V,rtv/c) ~ fl°(C,tfir,C) 

and from the fact that, since the base field has characteristic zero, by Hodge theory 

the coherent sheaf R^-ir^Qy^ is a locally free sheaf over C, the formation of which is 

actually compatible with any base change. 

The equivalence (ii)̂ => (iii) holds since the base field K has characteristic zero (see 

for instance 4.3.2 below). • 

4.3. Hodge cohomology and first Chern class. — In this section, we review 

some basic properties of the Hodge cohomology of smooth projective varieties over 

fields of characteristic zero. These properties are consequence of the duality theory 

for coherent sheaves on projective varieties, as explained in [21], expose 149. 

4.3.1. Hodge cohomology groups. — Let A; be a field of characteristic zero, and SmPr^ 
the full subcategory of the category of fc-schemes whose objects are smooth projective 

schemes V over fc. 

To any object V in SmPr^ are attached his Hodge cohomology groups: 

H™(V/k) := H*(V,npv/k). 

These are finite dimensional fc-vector spaces, and vanish if max(p,q) > d := dimV. 

Moreover, the cup products 

H™(V/k) x Hp'>*'(V/k) —> Hp+p'>q+q,(V/k) 

(a, a ') i—• a.a', 

— defined as the compositions of the products 

H"(V,nl/k)xH" (V,ílpv/k) ^H^'{v^vlk®üp;,k) 

and of the mappings 

H"(V,nl/k)xH" (V,ílpv/k)->H^'{v^vlk®üp;,k) 

deduced from the exterior product A : Qy/k <8> ̂ yjk —> ̂ v/k — make the direct 

sum H*>*(V/k) := @{p,q)eN2 Hp>q(V/k) a bigraded commutative <14) fc-algebra. 

Moreover, the "top-dimensional" Hodge cohomology group Hd'd(V/k) is equipped 

with a canonical fc-linear form: 

JV/k 
: Hd'd(V/k) —+ fc, 

(14> Namely, for any a (resp. a') in JJ9(V,n*/fc) (resp. in w' {V,Q?v/k)), we have a.af = 
(-l)PP'+w'a'.a. 
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and the attached fc-bilinear map 

<.,.>: H*>*(V/k)xH*>*(V/k) —• k 

(a,ß) .—+ !v/koc.ß 

is a perfect pairing. 

In particular, when V is a geometrically connected fc-scheme, or equivalently when 

the linear map 

k —+ r(V, Qv) = H°>°(V/k) 

A i—• A.ly 

is an isomorphism, then the "residue map" also is: 

'v/k 
: Hd>d(V/k) k. 

Then we denote jiy the unique element in Hd,d(V/k) such that 

'v/k 
[ly = 1. 

These constructions are compatible in an obvious sense with extensions of the base 

field k. Let us also indicate that, when k = C, the trace map 

Jv/c 
: Hd>d(V/C) —• C 

satisfies the following compatibility relation with the Dolbeault isomorphism 

Dolbod : Hd(V,ndv/c) — » H*olh(V,Qdv/c) 

(we follow the notation of [7], A.5.1) and the integration of top degree forms: 

<>V{C) 
: Ad>d{V(C)) —+ C. 

For any a in Ad>d(V(C)), of class [a] in flßolb(V, fì£/c), we have: 

Jv/c 
Dolb"] ([a]) = ed 

1 

(27T2)D V(C) 
a, 

where £d denotes a sign, function of d only, depending on the sign conventions followed 

in duality theory (we refer the reader to [15], Appendice, and [37] for discussions of 

this delicate issue). 
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4.3.2. The first Chern class in Hodge cohomology. — Any line bundle L over some 

V in SmPrfc admits a first Chern class c\(L) in ^^{V/k). It may be defined as the 

class 

atx/fc£ = '^tlx/kL 

in 

(4.1) E x t ^ L , il* ® L) ~ Ext^C^v, ÌÌ* fc) 

(4.2) xH\V,íl},,k). 

of the extension given by the principal parts of first order associated with L 

Jetx/kL : 0 — i ì U ® £ • P J U W — » i — 0 

(see Section 1.2 above). The isomorphism (4.1) is the (inverse of the) one defined by 

applying the functor . ® L to complexes of ÊV-modules, without intervention of signs. 

The isomorphism (4.2) is the one discussed in [7], A.2 and A.4. 

The so-defined first Chern class defines a morphism of abelian groups: 

Pic(V) — i r 1 ^ ™ ) =: ffM№) 
[L] Cl(L). 

Moreover, this morphism factorizes through the Néron-Severi group 

NSv/k(k) = Picv/k(k)/Pic°v/k(k); 

the induced morphism on NSy/k(k) vanishes precisely on its torsion subgroup 

NSy/fc(A;)tor (compare for example [28, II.2 Cor. 1 to Th. 2]), and consequently 

defines an injective morphism of groups 

ci : NSwfc(fc)/NSwfc(fc)tor —+ H^(V/k). 

In other words, for any line bundle L on V, the following two conditions are equivalent: 

(i) the first Chern class c\(L) in Hlil{y/k) vanishes; 

(ii) for some positive integer AT, the line bundle L®N over V is algebraically equiv­

alent to zero. 

Let us also recall that the construction of the first Chern class in Hodge cohomology 

is compatible with pull-back by fc-morphisms. It is also compatible with intersection 

theory. In particular, we have: 

Proposition4.3.3. — For any d-tuple Di,...,D¿ of divisors in some d-dimensional 

variety V in SmPrfc, the following formula holds: 

(4.3) 
Jv/k 

c i ( № ) ) . • • • .c i (0(A,)) = degfcilZ?!]. • • • .[Dd]), 
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where [Di] denotes the class of Di in the Chow group C i f 1 ( F ) , [ jDI] . - - - \Dd] their 
product in CHd(V) = CH0(V) and 

degk : CH0(V) CiJo(Specfc) ~ Z 

the degree map, attached to the structural morphism n : V —> Spec fc of V. 
In particular, if d = 1 and V is geometrically irreducible, then 

Cl(9(D)) = degkD.ßV. 

To establish the equality (4.3), one easily reduces to the case where k is algebraically 
closed and V is connected. Then it follows from [21], expose 149 (Theoreme 1, 
Theoreme 2, and its proof) when moreover the divisors Di,..., Dn and their successive 
intersections Di fl D2, Di fi D2 fl D$,..., Di D D2 fl • • • D Dn are smooth. Together with 
the invariance of both sides of (4.3) by linear equivalence of Di,..., Dn and Bertini 
theorem, this shows that (4.3) holds when D\,... ,Dn are very ample. The general 
case of (4.3) follows by multilinearity. 

4.4. An application of the Hodge Index Theorem. — Our proof of Theorem 
4.1.3 will rely on an application of Hodge Index Theorem to projective varieties fibered 
over curves that we discuss in the present Section. 

4.4.1. The Hodge Index Theorem in Hodge cohomology. — Let V be a smooth, pro­
jective, geometrically connected scheme over k, and let h be the first Chern class 
c i ( 0 ( l ) ) in H^iV/k) of some ample line bundle 0(1) on V. 

We shall use the following straightforward consequence of the Hodge Index The­
orem (as formulated in [29], Appendix 7) and of the compatibility of intersection 
theory and products in Hodge cohomology stated in Proposition 4.3.3: 

Proposition 4.4.2. — When d := dim V > 2, for any class a of H1'1 (V/k) in the image 
of ci : Pic(V) —» iJ1,1(Vr/A:), the following conditions are equivalent: 

(i) a = 0; 
(ii) a2.hd~2 = a.hd-x = 0 in Hd>d(V/k) ~ fc. 

4.4.3. An application to projective varieties fibered over curves. — We keep the no­
tation of the previous paragraph, and assume that d := dimV is at least 2. Moreover, 
we consider a smooth geometrically connected projective curve C over fc, and a dom­
inant fc-morphism n : V —• C. We shall denote K the function field fc(C) of C, 
VK := V XQ Specif the generic fiber of 7r, and 9(1)K the pull-back of 9(1) to VK> 

Let us introduce the following class in Hl,1(V/k): 

F : = IT*iic. 
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Observe that $3 = 0 for dimension reasons, and that consequently F2 = 0. Moreover 

Proposition 4.3.3 and the naturality of c\ show that, for any divisor E o n C, 

c1(0(E)) = degkE.fic 

and 

(4.4) c1(9(n*(E))) = degkE-F. 

Lemma AAA. — 1) For any divisor D on V, JVjkci(Q(D)).hd 1 coincides with the 

intersection number degk([D].[H]d~1), where H denotes the divisor of some non-zero 

rational section of 0(1). In particular, it is an integer. 

2) We have: 

'v/k 
F.h'-^degg^VK. 

In particular, the class F is not zero, and the image of TT* : Hl'l(C/k) —> Hlil{y/k) 

is precisely the k-line k.F. 

Proof. — Assertion 1) is a special case of Proposition 4.3.3. 

To establish 2), let us choose a divisor E with positive degree on C. We have 

(4.5) degk{\K*{E)].[H]d-1) = deSk([E}M[H]d-1)) = degfc E. deg0(1)K VK, 

by basic intersection theory. Besides, according to Proposition 4.3.3 and (4.4), the 

left-hand side of (4.5) is also equal to 

lv/k 
c1(9(^(E))).c1(9(l))d-1 =degkE. 

I V/k 
F.h*-1. 

Together with (4.5), this establishes the announced relation. 

Proposition 4.4.5. — With the above notation, for any class /3 of if1,1 (V/k) in the 

image of C\, the following conditions are equivalent: 

(i) /3 belongs to Q.F; 

(ii) /3 belongs to k.F; 

(iii) 0.p = (3.F = 0 in H2>2(V/k); 

(iv) (32.hd~2 = (3.F.hd-2 = 0 in Hd>d(V/k) ~ k. 

Proof. — The implications (i)=^(ii)=^(iii)=^(iv) are straightforward. To establish the 

converse implications, observe that fv^k 0.hd~x/Jv^k F.hd~x is a well defined rational 

number by Lemma 4.4.4, and consider the class 

a :=/?-
fv/B^-1 

fv/k^-1 
.F 

in /f1'1(Vr/fc). It satisfies a.hd 1 = 0 by its very definition (recall that fv^k maps 

isomorphically Hd>d(V/k) onto k). Moreover (4.4) shows that some positive multiple 
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of a lies in the image of c\. Finally, when condition (iv) holds, then a also satisfies 

a2.hd~2 = 0. Then, according to Proposition 4.4, a vanishes, or equivalently: 

ß = 
fv/B^-1 

v/kr'a 
.F. 

This establishes (i) . 

4.5. The equivalence of VA1 and VA2. — We keep the notation of the previ­

ous paragraph 4.4.3. In other words, the same hypotheses as in Theorem 4.1.3 are 

supposed to hold, except the connectedness of the geometric fibers of TT. 
The following result contains the equivalence of Conditions VA1 and VA2 in 

Theorem 4.1.3: 

Theorem 4.5.1. — For any line bundle L over V, the following conditions are equiva­

lent: 

(i) The relative Atiyah class aty/^L vanishes in H1,1 (V, Qy/C). 

(ii)7 c i (L) belongs to Q.F. 

( i i )" There exists a positive integer N and a line bundle M over C such that 

ci(L®N (g) 7r*M) vanishes. 

Proof. — The equivalence (ii) ' ( i i )" is straightforward. 

To establish the implication (ii) ' => (i) , consider the canonical exact sequence of 

sheaves of Kahler differentials on V, 

0 —> 7T*ttc/k tty/k Sly/C —> 0, 

and the associated exact sequence of cohomology groups 

H\vxiïc/k) » H\V,tfv/k) H^> H\V,&V/C). 

As a special case of Lemma 1.1.6, i ) , we have 

(4.6) &tv/cL = ^ (pXaty/ fcL) . 

Since F belongs to the image of Hx(i), hence to the kernel of Hx(p), this establishes 

the implication (ii) ' ( i ) . 

The implication (i)=>(ii)' will follow from the implication (iii)=>(i) in Proposition 

4.4.5 (applied to /3 := C\(L)) combined with the following: 

Lemma 4.5.2. — For any line bundle L over V, if the relative Atiyah class oXyjcL 

vanishes in i?1(Vr,Q.y^), then c\(L).F and c\(L)2 vanish in H2(V,Qy/k). 

To establish this lemma, observe that the cup product 

(4.7) H^iV/k) ® Hl'\V/k) —+ H2'2(V/k) 
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vanishes on imH1^) <g> imif1(i) . Indeed the map of sheaves of 6V-modules defined 

as the composition 

H\vxiïc/k) » H\V,tfv/k) H^> H\V,&V/C). 

vanishes by functoriality of the exterior product, since Q>c/k = 0. This entails the 

vanishing of the cup product (4.7) on ker Нг(р) (g) keriJ1^) and on кетН1(р) (g) 
im7r*, where 7Г* denotes the pull-back map in Hodge cohomology 7Г* : Н1,г(С/к) —> 
H^(V/k). 

According to (4.6), dXyjcL vanishes precisely when c\(L) = &ty/kL belongs to 
kerH1(p)1 in which case Ci(L)2 and ci(L).F vanish in H2(V, Qy/k) by the observation 
above. This completes the proof of Lemma 4.5.2, hence of Theorem 4.5.1. • 

4.6. The Picard variety of a variety over a function field. — In this para­
graph, we recall some classical facts concerning the relations between the Picard 
varieties of С and V, and the If/fc-trace of the Picard variety of the generic fiber 
VK of V. (For modern presentations of Chow's classical theory of the Zf/fc-trace of 
abelian varieties over K, we refer to [11] and Hindry's Appendix A in [26].) 

Let (B,r) be the K/k-tT&ce of PiCyK/K- By construction, В is an abelian variety 
over k, and r is a morphism of abelian varieties over К 

т:ВК-^ VK°VK/K. 

The pair (B,r) is characterized by the following universal property: for any abelian 
variety B over k and any morphism of abelian varieties over K 

^:BK—+ Pic°yK/K, 

there exists a unique morphism 
ß : В —• В 

such that 

ф = торК 

Actually, since our base field k has characteristic zero, r is an embedding. 
The inclusion VK V induces a morphism of abelian varieties over K 

Ф • ?K°v/k,K — VicvK/K-

According to the universal property above, there exists a unique morphism of abelian 
varieties over k 

a : Picy/fc —> В 

such that 
ф = г о а к • 
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Besides, we may consider the morphism 

TT* : Pic°c/k — Pic°v/k 

defined by functoriality from n : V —» C. 

The following Proposition is established as Proposition 3.3 in [24], where references 

are made to similar earlier results due to Tate, Shioda, and Raynaud. 

Proposition 4.6.1. — The morphism a is surjective, and the morphism 7r* is an 

isogeny from Pic^/fc onto the abelian variety (kera)° defined as the identity compo­

nent of the k-group scheme kera. 

In brief, the following diagram of abelian varieties over k 

0 — ^ - P i c £ / f c - S U B — 0 

is "exact up to some finite group schemes". Together with Poincare's reducibility 

theorem, this implies that the diagram of abelian groups 

(4.8) 0 — Pic°c/k(k) X Pic°v/k(k) B(k) — 0 

is "exact up to some finite groups." 

Corollary 4.6.2. — For any line bundle L over V, the following conditions are equiv­

alent: 

(i) There exists a positive integer N such that the class of L^N in PÌCVK/K(K) 

belongs to r(B(k)). 

(ii) There exist a positive integer N and a line bundle V over V, algebraically 

equivalent to zero, such that, over VK, 

LK - LK-

(iii) There exist a positive integer N, a line bundle L' over V, algebraically equiv­

alent to zero, and a vertical divisor E over V such that, over V, 

L®N ~L'® 9(E). 

Proof — The equivalence of (ii) and (iii) is straightforward. The one of (i) and (ii) 

follows from the "almost exactness" of (4.8) and the fact that any element of the 

group Picy/fc(fc) has a positive multiple that may be represented by an actual line 

bundle (15) over V, algebraically equivalent to zero. • 

(15) Indeed the functor Pic^fc may be introduced via sheafification for the etale topology, hence 
given any a in Pic^fc(fc), we can find a finite (separable) extension k' of k and a line bundle M' on 
V := V <8>k tnat represents the image of a in Pic^fc(fc'). Then \k' : k].a is represented by the 
line bundle M := NyrjV{M') on V defined as the norm of M'. 
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4.7. The equivalence of VA2 and VA3. — In this section, we complete the 

proof of Theorem 4.1.3 by establishing the equivalence of conditions VA2 and VA3. 
The implication VA2=>VA3 follows from the implication (ii)=^(i) in Corollary 

4.6.2 and from the invariance of degH D L under algebraic equivalence of line bundles. 

Conversely let us consider a line bundle L over V that satisfies VA3. 
According to the implication (i)=^(iii) in Corollary 4.6.2, we may find a positive 

integer N, a line bundle L' over V, algebraically equivalent to zero, and a vertical 

divisor E in V such that L®N ~ V <g> 9(E). 

Moreover, for every vertical integral divisor D in we have 

aegHtDL*N = N.degHtDL = 0 

by VA3, and 

deg# ,D L' = 0 

since V is algebraically equivalent to zero. Therefore, 

degff]jD 9(E) = 0. 

Lemma 4.7.1 below shows that, after possibly replacing L and V by some positive 

power, the divisor E is of the form TT*(E') for some divisor EF on C. Consequently, 

L*N ®**Q(-E')~L' 

is algebraically equivalent to zero, and L satisfies VA2. 

Lemma 4.7'.1. — For any vertical divisor E on V, the following conditions are equiv­

alent: 

(i) For every vertical divisor D on V, 

degjî n 9(E) = 0. 

(ii) There exist a divisor E' on C and a positive integer N such that 

N-E = тг*Е'. 

This is well known, at least when n = 2 and k is algebraically closed, in which case 
it is traditionally attributed to Zariski. We refer to [14] for a discussion of related 
results concerning intersection theory on surfaces, and to [24], Lemme 2.1 for a similar 
result. We sketch a proof below for the sake of completeness. 

Proof. — To establish the implication (ii)=>(i), observe that, for any integral vertical 
divisor D on V, the following equality holds in the Chow group CH°(C) 

(4.9) n*(Hn-2.D) = 0. 

(Indeed the class in CH\(V) of Hn~2.D may be represented by a cycle in Zi(D), 
and consequently the left-hand side of (4.9) may be represented by a cycle in Z\(C) 
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supported by n(D). Since the latter is zero-dimensional, any such cycle vanishes.) 

Consequently, by the projection formula, for any divisor E' in C, we have 

«leg* n 0(n*E') = degk(Hn-2.D.v*E') 

= degMHn-2.D).E') 

= 0. 

To establish the implication (i)=>(ii), we may assume that E is supported by the 

fiber 7r*(P) of some closed point P of C. Let D\,..., Dr be the components of |7r*(P)|, 

and let tti,..., nr be the positive integers defined by the equality of divisors in V: 

TT*P = 
r 

i=1 
rii.Di. 

We want to prove that if some divisor supported by TT*(P) , E := Y%=i mi-Di, satisfies 

degtf n, 9(E) = 0, 

for every j e { 1 , . . . , r } , then E is a rational multiple of 7r*(P), that is, there exists 

m in Q such that 

(mi,..., mr) = m(ni,..., nr). 

In other words, we want to establish that the kernel of the symmetric quadratic form 

attached to the matrix (Qij)i<i,j<r defined by 

qy := degfe(tf"-2.A.£g 

is included in the line Q.(ni , . . . , nr). 

To establish this inclusion, observe that the converse implication (ii)=^(i), applied 

to D = Di and E = 7r*P, shows that 

r 

3 = 1 
Qijnj = 0 

for every i 6 { l , . . . , r } . This yields the following expression for the quadratic form 

defined by the q^s: 

r 

j=1 
qijrriimj = — 

\<i<j<r 
q%j rii fij 

f Uli ITlj 

Ui Tlj 

V2 

The required property now follows from the following two observations: 

1) For any two distinct elements i and j in { 1 , . . . , r } , the cycle theoretic intersection 

Di.Dj of the Cartier divisors Di and Dj is the cycle attached to the intersection 

scheme DiODj, which is either empty or purely (n—2)-dimensional, and consequently, 

by the ampleness of H, the degree q^ := degk(Hn~2.[Di fl Dj]) is non-negative, and 

positive if Di fl Dj is not empty. 
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2) The scheme TT*(P) is connected, and consequently there is no partition of 

{ 1 , . . . , r } in two non-empty subsets I and J such that (i,j) G / x J=>²qij = 0. • 

Appendix A 

Arithmetic extensions and Cech cohomology 

Let X be an arithmetic scheme over an arithmetic ring R = (P, D, Foo)> E a quasi-

coherent 0x-module on X, and U = (Ui)iei an affine, open covering of X. We fix a 

well ordering on I and consider the (alternating) Cech complex (£?(?/, E), 5) where 

&(%E) := 

io<--'<ip 

E(Ui0...ip), 

with the usual notation 

i V . t p = uion>--nUip, 

and where the differential S :&(%E) :£) ->&(%E) :£) is given by the formula 

(<fa)t0,...,ip+i := 
n+1 

fc=0 
' i0, ...,ik, ...,ip+1 *Ui0n-'-nuip+1 

Recall from [7, 2.5] that we have a natural morphism of locally ringed spaces 

p : (XS(C), J f£ j — (XE(C), 0$£) —» № Ox), 

and that, if 
£c := p*E 

denotes the i?°°-module over X s ( C ) deduced from E (16\ there is a natural morphism 

of Qx-modules, given by adjunction, 

ad^ • E —• (p*£c)F°°. 

It induces a morphism of Cech complexes 

&(%adE): V(%E) — ^ ( ^ , ( p * £ c ) F ° ° ) . 

Concerning cone constructions, in the sequel we use the sign conventions discussed 

in [7, A . l ] . 

We consider the Cech hypercohomology H°(ïl, C(ads))) of the cone C(ads) of 

ad^ with respect to the covering ÎI, namely the cohomology in degree zero of the 

cone C(£?'(?/, ads)) . This cone is a complex of P-modules which starts as 

0—• %°(%E) 
(ADB) (XS(C), Jf£j — (XE(C), 0$£) (ADG °ô) (XS(C), Jf£j — (XE(C), 0$£) 

(16) Namely, when E is coherent and locally free, the sheaf of ^°°-sections over X^(C) of the 
holomorphic vector bundle ^ o l deduced from E. 
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where ¥f*{%L,E) sits in degree —1. Hence H°(%C(ads)) is the quotient 

(A.1) 
Uct,ß) € &{%E) e&{%E(p*Ec)F°°) I ôa = 0 A adB(a) = -6(ß)\ 

f ( - « J ( 7 ) , a d E ( 7 ) ) | 7 e ^ ( ^ E ) } 

According to the standard properties of the cone construction (in the category of 

i?-modules) and the very definition of Cech cohomology as cohomology of the Cech 

complex, this group fits into a natural exact sequence: 

(A.2) H°(%E)) — H°(%(p,Ec)F°°) —* H°(%C{adE)) 

— H1 {% E)) —> Hl {% (p,Ec)F°° )). 

Lemma A .0.1. — Let E be quasi-coherent 9x -module. There exists a canonical com­

mutative diagram 

T{X,E) - A°(XR,E) 

i I 

H°(%E)) - H°(%(PtEc)F~) 

• Extx(9x,E) - » Exk\9x,E) ^ 0 

1 P<U,E l PU,E 

> H°(%C(adE)) H^fyE)) ^ 0 

with exact horizontal lines where all vertical maps are isomorphisms. 

Proof. — The upper exact sequence is established in [7, 2.2]. 

We have 

È^V^Ecf-)) = H\p-X%{EC)F°°)), 

and the latter group is zero as Cech cohomology of a fine sheaf with respect to an 

open covering vanishes (see for instance [19, II.3.7 and II.5.2.3 (b)]). Consequently 

we obtain the lower exact sequence from (A.2). 

The two left vertical maps are given by the natural isomorphisms induced by the 

restriction maps of the sheaves E and (p*Ec)F°°. 

We now define p%i,e- Let 

6:0 — > E —>F 9x — • 0 

be an extension of 0x-modules. The map n admits a section cpi over each affine 

scheme U%. The difference = <Pj\uij ~ Pilu^ determines an element in T(Uij,E). 

The family (onj)ij defines a 1-cocycle in ^(U^E) whose class in #*(?/, 1£) does not 

depend on the choices of the tpi. One obtains a canonical isomorphism (compare for 

example [2, Prop. 2]) 

P%e : Extlx(9x>E) — H\%E), [S\ [ (oy)y]. 

Finally we define p^,E- Let (<§, s) be an arithmetic extension with 6 as above. 

Choose the <pi as before and define 

ßi = 8\Ui-adE(<Pi)eA0>0(UitR,E). 
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We have ads(o^) = 0i\utj - Pj\uir Hence the pair ( ( c ^ ) ^ , (A)z) determines an 

element P%E(6,S) in ( A . l ) , i.e. in # ° ( % , C ( a d s ) ) . This class does not depend on 

the choices of the <pi. Given different sections (pi which lead to cocycles ((aij)ij, ifiiji) 

as above, we consider 
[(&*)] •Extx(9x,E) [(<*«), (A)] 

and get 
-S 

ads 
(7) = (c* ,£ ) - (a , / ? ) . 

It is straightforward to check that 

p%E : Extx(9x,E) — F ° ( % , C ( a d s ) ) , [ ( & * ) ] • — » [(<*«), ( A ) ] 

is a group homomorphism which fits into the above commutative diagram. The five 

lemma implies that the map p^E is an isomorphism. • 

Corollary A.O.2. — Let F, G be quasi-coherent Qx -modules such that F is a vector 

bundle on X. There exists a canonical isomorphism 

p%FiG : E x ¿ ( F , G ) —> H°(%C(^orn{FiG))) 

which identifies Ext (F,G) with the quotient ( A . l ) for E = &om(F,G). 

Proof — It is proved in [7, 2.4.6] that there is a canonical isomorphism 

(A.3) Extx (F, G) ^ Extx ( Qx, ^om(F , G)) 

which maps the class of an arithmetic extension ((5, s) to the pushout of (<§, s) ® Fv 

along the canonical map j > : 0x - > F 0 F v . Let E = $£om{F,G). We define P<U,F,G 

as the composition of the isomorphisms (A.3) and p^^ in Lemma A.0.1. • 

Appendix B 

The universal vector extension of a Picard variety 

In this Appendix, we recall some basic facts concerning universal vector extensions 

of Picard varieties, which are essentially due to Messing and Mazur ([34], [33]). We 

show in particular that the universal vector extension of the Picard variety Pic^¡k of a 

smooth projective variety X over a field k of characteristic zero classifies line bundles 

with integrable connections (see (B.12) infra; this is certainly well-known but, to our 

knowledge, only the case where X is an abelian variety is treated in the literature). 

We also describe the maximal compact subgroups of the Lie groups defined by real 

and complex points of universal vector extensions. 

B . l . Let 5 be a locally noetherian scheme. In the sequel, we consider a morphism 

/ : X —> S of schemes which satisfies the following assumptions: 
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i) The morphism / is projective, smooth with geometrically connected fibers. 

ii) The Hodge to de Rham spectral sequence 

E™ = RqUnpx/s => Rp+qf*nx/s 

degenerates at E\ and the sheaves Rqf*SlpX/S are locally free, 

iii) The identity component Pic^/s of the Picard scheme Picx/s is an abelian 

scheme. 

We observe that i) implies that Picx/s is represent able by a S-group scheme [21, 

n.232, Thm. 3.1] and that f*0x = &s holds universally [22, 7.8.6]. Furthermore 

i) implies ii) if S is of characteristic zero [12, Th. 5.5] and i) implies iii) if S is 

the spectrum of a field of characteristic zero [6, 8.4]. It is shown in [27, 8.3] that the 

formation of the coherent sheaves Rqf*£lpXjS and Rnf*Q,X/S commutes with arbitrary 

base change if they are locally free for all p, q > 0 and all n > 0. 

B.2. We consider the complex 

^x/s : 0 * @x + ̂ x/s > ^x/s > ' ' 

where &*x sits in degree zero. The group 

Pic#(X/S) := ff^Xfrpf.n* ) 

classifies isomorphism classes of pairs (L, V ) where L is a line bundle on X and V is 

an integrable connection 

V : L —> L <g> Q}x/S 

relative to S [34, (2.5.3)1. We denote by 

^CX/5 :— ^Vfppf^x/S 

the fppf-sheaf on the category of 5-schemes associated to the presheaf 

Th-+Pic#(X xsT/T) 

(see for instance [6, 8.1]). If Xt = X Xs T admits a section over T, we have [34, 
(2.6.4)1 

(B. l ) Pic£/S(T) = Coker(Pic(T) = P ic# (T /T) A Pic#(X xs T / T ) ) . 

B.3. If T/S is a fpqc-morphism, we have 

(B.2) Pic* x s r = Pic# . 

Indeed, this is obvious if T/S is fppf. Hence we may assume without loss of generality 

that X/S admits a section e. This allows us to describe elements in Pic^y5(T) as 

isomorphism classes of triples (L, V , r ) where L is a line bundle on Xt, V is an 

integrable connection relative to T, and 

r : e*L 9t 
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is a rigidification. It follows from fpqc-descent that Pic^/5 is in fact an fpqc-sheaf on 
5, which implies (B.2). 

We will apply (B.2) in the situation where S is the spectrum of an arithmetic ring 
and T is the spectrum of R or C . 

B.4. The exact sequence of complexes 

(B.3) 0 — • T > I % / 5 — • üx/s — • 0*x 0 

induces an exact sequence 
(B.4) 

HHXfppUTz&xjs) — Pic#(X/5) — ^RL№PPF, 9*x) — * ^ 2 № P P F 5 R > I ^ X / 5 ) -

Observe also that the first map in (B.4) is injective: this follows from the long exact 
sequence of H° 's and fl^'s associated with (B.3), from the vanishing of the map 

dlog:T(X,9x)-^T(X,üx/s) 

(implied by Assumption B.l i ) ) , and the fppf-descent isomorphisms T(X, 0*x) ~ 
T(Xfpp{, 9*x) and r(X, frx/s) ~ r(Xfppf, nx/s). 

Using fppf-descent and Assumption B.l ii), one also gets: 

^ 1 № P p f , ^ ) = Pic (x) , 

# 2 № P P F > T > L ^ X / s ) = H2(Xza,r,T>iQx/S), 
and 

^rl№pPf,T>iQ^/5) = keT(H°(Xipp{iQX/,s) —> #2№PPF>T>L^X/s) = H2(Xza,r,)s) 
Sheafification of the exact sequence (B.4) and the injectivity of its first map yields an 
exact sequence of fppf-sheaves of abelian groups over S: 

0 • f*ttX/S > PICX/5 > PICX/5 R2f*T>lttX/S' 

As there are no non-trivial homomorphisms from the abelian scheme PicX/s to the 
coherent sheaf R2f*r>iQ'X/S by [33, Lemma p.9], we have PicX/S C ker(c). Finally 
we obtain an extension of fppf-sheaves of abelian groups over S 

(B.5) 0 — f*nx/s — » Pic*fs — Pic°x/S — 0 

where 

PICX/5 :~ PICX/S XPICX/S 

B.5. The universal vector extension of the abelian scheme Pic^/5 is a group scheme 
Ex/s which fits into an exact sequence of fppf-sheaves 

(B.6) 0 — > EA/S —> Ex/S —> P\c°x/S —• 0 

where E^/g denotes the Hodge bundle of the dual abelian scheme 

A := ( P i c U ) v ^ S, 
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namely 
Ел/5 := KA^A/s-

The universal vector extension may be characterized by its universal property: given 
an abelian fppf-sheaf E' and a vector group scheme M which fit into an extension of 
fppf-sheaves of abelian groups 

(B.7) 0 —> M —> E' —• Picx/5 —> °> 

there exists a unique 05-linear morphism </> : E^/s —• M such that (B.7) is isomorphic 
to the pushout of (B.6) along (j). 

By the universal property there exist unique morphisms a and /3 (of ©^-modules 
and 5-group schemes respectively) such that 

(B.8) 

0 -> EA/S -> Ex/S Pic°x/S -4 0 

I oc iß II 

0 - » / . f ^ / s - Pic#;s -> Pu&/S - 0 

is a pushout diagram. The biduality of abelian schemes 

Pic°x/S ~ ( P k & / s ) W = ,4V := Pic° 

(see for instance [6, 8.1, Theorem 5]) yields a canonical isomorphism 

(B.9) Ex/s —• E a/s-

It is furthermore shown in [33] and [34] that (B.8) with X replaced by A induces a 
canonical isomorphism 

EA/s^Pic*fs. 
Assume that X/S admits a section e. There exists a canonical morphism of S-

schemes, the Albanese morphism of X over 5 relative to the "base point" e, 

ip:X —• A 

that is characterized by the fact that the pullback of a Poincaré bundle for A over S 
(rigidified along 0) is isomorphic to a Poincaré bundle for X (rigidified along e). The 
pullback along cp induces morphisms 

: ^A/S • f*^X/S > 7, > 

and (using description (B. l ) ) 

„,* - Pic#'° » pic#>° 
^ • RICA/5 * RICX/5 » 

[ L , V ] ^ [ ^ L , ^ * V ] 

such that the diagram 

(B.10) 

0 _ > EA/S —> PicJ°s — Pk&/S — » 0 
i *>• I v* II 

o _ > /^i _ pic#.; _ Pic° _ o 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2009 



420 J.-B. BOST & K. KÜNNEMANN 

is commutative. The uniqueness assertion in the universal property implies that the 
maps a and /3 in (B.8) are given under the canonical identifications 

Ex/s^EA/s^Pic*fs 

by pullback along <p. 

B.6. Let S be the spectrum of a field k of characteristic zero. For a projective, 
smooth, geometrically connected S-scheme X, our assumptions i)-iii) are satisfied, as 
explained in B.l. 

Furthermore the morphism a becomes an isomorphism 

(B.l l ) a : EA/k := T(A, ÜA/k) ^ T(X, üx/k) 

of fc-vector spaces. Indeed, to establish that a is an isomorphism, we may replace k 
by a finite field extension, and therefore assume that X(k) is not empty. If (p : X —• A 
denotes the Albanese morphism associated to some base point e in X(k), a is given 
by pull back along (p, and is injective as X generates A as an abelian variety, and 
bijective for dimension reasons (compare for example [6, 8.4 Th. 1 b)]). 

It follows that (3 is an isomorphism of fc-group schemes 

(B.12) f3:Ex/k^Picx?k. 

In other words, Picx^k becomes canonically isomorphic to the universal vector exten­

sion Ex/k of Pic^/fc-
When X(k) is not empty, this isomorphism may be described as above, by means 

of the pull back along the Albanese map (f associated to any base point e in X(k), 
and using (B. l ) we get a canonical isomorphism of abelian groups: 
(B.13) 

Ex/k(k) * (L,A) L line bundle algebraically equivalent to zero on X 
V integrable connection on L 

where ~ denotes the obvious isomorphism relation between pairs (L, V ) . 
In general, when X(k) is possibly empty, we may choose a Galois extension kf/k 

with Galois group T such that X(k') ^ 0 and use the obvious identification 

(B.14) Ex/k{k) = EXk,/k,{k'f 

to reduce to the previous case. 

B.7. If k = C , the extension of commutative complex Lie groups 

(B.15) 0 - > T(X, nx/c) — EX/C(C) —> Pic&/c(C) — 0, 

deduced from (B.6) by considering the complex points, admits the following descrip­
tion in the complex analytic category (compare [34, ex.(1.4)]). 
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The Lie algebra of Pic^/c? hence of the complex Lie group P i c ^ / ^ C ) , mav De be 
identified with ^(X, 9X), that is, by GAGA, with ^ ( ^ ( C ) , 9^1{C)). By considering 
the exact sequence of sheaves over X(C) 

О 27UZ — 0 $ c ) ^ f9^¿* — О 

and using GAGA, one obtains that the exponential map of Pic^/c defines an isomor­
phism of commutative complex Lie groups: 

(B.16) 
H\X(C),0?) 
#! (*(<£) , 2THZ) ~ P i c W ( C ) . 

The group of isomorphism classes of pairs (L, V ) where L is an algebraic line 
bundle over X and V an integrable algebraic connection on L — or equivalently by 
GAGA, of pairs (Lho1, Vho1) where Lho1 is a holomorphic line bundle on the complex 
manifold X(C) and Vho1 an integrable, complex analytic connection on Lho1 — may 
be identified with i ^ ^ C ) , C * ) , by sending [(Lho1, Vho1)] to the class of the rank one 
local system Ker(Vho1). By considering the exponential sequence 

0 —• 2niZ — > C ^ 4 C* — > 0, 

one sees that the group of classes of such pairs (L, V ) with L algebraically equivalent 
to zero may be identified with the subgroup of i J 1 ( X ( C ) , C * ) that is the isomorphic 
image under the exponential map of 

H^XiQX) 
Hl(X(C),2mZ) 

Using the identification (B.13), we finally obtain an isomorphism 

(B.17) H^XiC)^) 
mtxio^iriz) ~ EX/C(C). 

The analytic de Rham isomorphism 

Я 1 ( Х ( С ) , С ) ~ Я 1 ( Х ( С ) , П Х ^ ) 

and the Hodge filtration give rise to a short exact sequence of finite dimensional 
C-vector spaces 

o — R P R ( c ) , i i 3 $ ) — H\X(C),C) — Hl(X(C), 0$c)) —^ ° . 

and then, by quotienting its second and third terms by i f 1 ( X ( C ) , 27rzZ), to a short 
exact sequence of commutative complex Lie groups: 

(B.18) o — > r ( x ( C ) , ß y # ) 
H^XiQX) 

firl(-X'(c)»2?r*z; 

H\X(C),9^lic)) 

Hl(X{Q,2mZ) 
- » 0 , 

It turns out that it coincides with the short exact sequence (B.15) when we take 

the GAGA isomorphism T(X, £lx/c) ^ T(X(C), fijf/c) and the "exponential" isomor­

phisms (B.16) and (B.17) into account. 
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Observe that the maximal compact subgroup of the Lie group Ex/c(Q is precisely 

(B.19) 
Hl{X(C),2iriZ) 

Hl{X(C),2iriZ) 

Hx(X(C),C)) 

Hx(X(C),2itïL) 
~ EX/C(C). 

It is a "real torus", of dimension the first Betti number of X(C). Moreover, as a 

consequence of Hodge theory, the canonical morphism £'x/c(C) —> Pic^/C(C) in 

(B.15) maps this subgroup isomorphically (in the category of real Lie groups) onto 

P i 4 / c ( C ) . 

In this way, we define a canonical splitting 

(B.20) c : P ú & / c ( C ) — B j f / c i C ) . 

of (B.15) in the category of commutative real Lie groups, characterized by the fact 

that its image lies in — or equivalently, is — the maximal compact subgroup of 

Ex/c(C). 

The injection U(l) C* determines an injective morphism JHrl(X(C), U(l)) c-> 

ii"1(X(C),C*), and the maximal compact group (B.19) coincides with the preimage 

of ü¡T1(X(C), Í7(1)) under the exponential map. Consequently this group classifies 

the pairs ( £ , V ) as above, with L algebraically equivalent to zero, such that the 

monodromy of Vho1 lies in U(l). This shows that the real analytic splitting s may also 

be described as follows: for any line bundle L over X that is algebraically equivalent 

to zero, we may equip L^P1 with its unique integrable, holomorphic connection V£ 

with unitary monodromy (cf. 3.2.1 supra); it algebraizes uniquely by GAGA, and the 

assignment 
[L}^[(L,VD] 

defines the group homomorphism (B.20). 

B . 8 . If k = R , the extension 

(B.21) 0 _ > r(X,ft* ) — > % ( R ) — P i 4 / M ( R ) — + 0 

is obtained from the extension (B.15) by taking invariants under complex conjugation. 

We obtain again a canonical splitting 

ç E : P i c ^ / R ( R ) ^ E X / M ( R ) 

since the splitting (B.20) is invariant under complex conjugation. The image of is 

the unique maximal compact subgroup of E X / r ( R ) . 
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