Torsion invariants for families
From probability to geometry (II) - Volume in honor of the 60th birthday of Jean-Michel Bismut, Astérisque, no. 328 (2009), p. 161-206
The full text of recent articles is available to journal subscribers only.
@incollection{AST_2009__328__161_0,
     author = {Goette, Sebastian},
     title = {Torsion invariants for families},
     booktitle = {From probability to geometry (II) - Volume in honor of the 60th birthday of Jean-Michel Bismut},
     editor = {Dai Xianzhe and L\'eandre R\'emi and Xiaonan Ma and Zhang Weiping},
     series = {Ast\'erisque},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {328},
     year = {2009},
     pages = {161-206},
     zbl = {1247.58019},
     mrnumber = {2674876},
     language = {en},
     url = {http://www.numdam.org/item/AST_2009__328__161_0}
}
Goette, Sebastian. Torsion invariants for families, in From probability to geometry (II) - Volume in honor of the 60th birthday of Jean-Michel Bismut, Astérisque, no. 328 (2009), pp. 161-206. http://www.numdam.org/item/AST_2009__328__161_0/

[1] B. Badzioch & W. Dorabiala - "Additivity for the parametrized topological Euler characteristic and Reidemeister torsion", K-Theory 38 (2007), p. 1-22. | Article | MR 2353860 | Zbl 1134.19001

[2] B. Badzioch, W. Dorabiala, J. Klein & B. Williams - "Equivalence of higher torsion invariants", preprint arXiv:0904.4684, 2009. | MR 2739777 | Zbl 1223.57018

[3] B. Badzioch, W. Dorabiala & B. Williams - "Smooth parametrized torsion: a manifold approach", Adv. Math. 221 (2009), p. 660-680. | Article | MR 2508934 | Zbl 1166.19001

[4] J. C. Becker & D. H. Gottlieb - "The transfer map and fiber bundles", Topology 14 (1975), p. 1-12. | Article | MR 377873 | Zbl 0306.55017

[5] N. Berline, E. Getzler & M. Vergne - Heat kernels and Dirac operators, Grund. Math. Wiss., vol. 298, Springer, 1992. | MR 1215720 | Zbl 0744.58001

[6] J.-M. Bismut - "The Atiyah-Singer index theorem for families of Dirac operators: two heat equation proofs", Invent. Math. 83 (1985), p. 91-151. | Article | MR 813584 | Zbl 0592.58047

[7] J.-M. Bismut, "Eta invariants, differential characters and flat vector bundles", Chinese Ann. Math. Ser. B 26 (2005), p. 15-44. | Article | MR 2129894 | Zbl 1083.58020

[8] J.-M. Bismut, "The hypoelliptic Laplacian on the cotangent bundle", J. Amer. Math. Soc. 18 (2005), p. 379-476. | Article | MR 2137981 | Zbl 1065.35098

[9] J.-M. Bismut & J. Cheeger - "η-invariants and their adiabatic limits", J. Amer. Math. Soc. 2 (1989), p. 33-70. | MR 966608 | Zbl 0671.58037

[10] J.-M. Bismut & J. Cheeger, "Families index for manifolds with boundary, superconnections and cones. II. The Chern character", J. Funct. Anal. 90 (1990), p. 306-354. | Article | MR 1052337 | Zbl 0711.53023

[11] J.-M. Bismut & S. Goette - "Holomorphic equivariant analytic torsions", Geom. Funct. Anal. 10 (2000), p. 1289-1422. | Article | MR 1810746 | Zbl 0974.58033

[12] J.-M. Bismut & S. Goette, "Families torsion and Morse functions", Astérisque 275 (2001). | Numdam | MR 1867006 | Zbl 1071.58025

[13] J.-M. Bismut & S. Goette, "Equivariant de Rham torsions", Ann. of Math. 159 (2004), p. 53-216. | Article | MR 2051391 | Zbl 1094.58013

[14] J.-M. Bismut & K. Köhler - "Higher analytic torsion forms for direct images and anomaly formulas", J. Algebraic Geom. 1 (1992), p. 647-684. | MR 1174905 | Zbl 0784.32023

[15] J.-M. Bismut & G. Lebeau - The hypoelliptic laplacian and Ray-singer metrics, Annals of Math. Studies, vol. 167, Princeton Univ. Press, 2008. | MR 2441523 | Zbl 1156.58001

[16] J.-M. Bismut & J. Lott - "Flat vector bundles, direct images and higher real analytic torsion", J. Amer. Math. Soc. 8 (1995), p. 291-363. | Article | MR 1303026 | Zbl 0837.58028

[17] J.-M. Bismut & W. Zhang - "An extension of a theorem by Cheeger and Müller", Astérisque 205 (1992). | Numdam | MR 1185803 | Zbl 0781.58039

[18] J.-M. Bismut & W. Zhang, "Milnor and Ray-Singer metrics on the equivariant determinant of a flat vector bundle", Geom. Funct Anal. 4 (1994), p. 136-212. | Article | MR 1262703 | Zbl 0830.58030

[19] M. Bökstedt - "The rational homotopy type of ΩWh Diff (*)", in Algebraic Topology, Aarhus 1982 (Aarhus, 1982), Lecture Notes in Math., vol. 1051, Springer, 1984, p. 25-37. | MR 764574 | Zbl 0589.57032

[20] A. Borel - "Stable real cohomology of arithmetic groups", Ann. Sci. Ecole Norm. Sup. 7 (1974), p. 235-272. | Article | Numdam | MR 387496 | Zbl 0316.57026

[21] M. Braverman & T. Kappeler - "A refinement of the Ray-Singer torsion", C. R. Math. Acad. Sci. Paris 341 (2005), p. 497-502. | Article | MR 2180817 | Zbl 1086.58015

[22] U. Bunke - "Equivariant torsion and G-CW-complexes", Geom. Funct. Anal. 9 (1999), p. 67-89. | Article | MR 1675891 | Zbl 0929.57013

[23] U. Bunke, "Equivariant higher analytic torsion and equivariant Euler characteristic", Amer. J. Math. 122 (2000), p. 377-401. | Article | MR 1749053 | Zbl 0984.58021

[24] U. Bunke, "On the functoriality of Lott's secondary analytic index", K-Theory 25 (2002), p. 51-58. | Article | MR 1899699 | Zbl 1007.58017

[25] U. Bunke & X. Ma - "Index and secondary index theory for flat bundles with duality", in Aspects of Boundary problems in analysis and geometry, Oper. Theory Adv. Appl., vol. 151, Birkhäuser, 2004, p. 265-341. | Article | MR 2072502 | Zbl 1073.58019

[26] J. Cheeger - "Analytic torsion and the heat equation", Ann. of Math. 109 (1979), p. 259-322. | Article | MR 528965 | Zbl 0412.58026

[27] J. Cheeger & J. Simons - "Differential characters and geometric invariants", in Geometry and Topology (College Park, Md., 1983/84-), Lecture Notes in Math., vol. 1167, Springer, 1985, p. 50-80. | MR 827262 | Zbl 0621.57010

[28] X. Dai - "Adiabatic limits, nonmultiplicativity of signature, and Leray spectral sequence", J. Amer. Math. Soc. 4 (1991), p. 265-321. | Article | MR 1088332 | Zbl 0736.58039

[29] X. Dai & W. Zhang - "Adiabatic limit, Bismut-Freed connection, and the real analytic torsion form", preprint arXiv:0807.3782. | MR 2729359 | Zbl 1215.58017

[30] W. Dwyer, M. Weiss & B. Williams - "A parametrized index theorem for the algebraic K-theory Euler class", Acta Math. 190 (2003), p. 1-104. | Article | MR 1982793 | Zbl 1077.19002

[31] Y. M. Eliashberg & N. M. Mishachev - "Wrinkling of smooth mappings. II. Wrinkling of embeddings and K. Igusa's theorem", Topology 39 (2000), p. 711-732. | Article | MR 1760426 | Zbl 0964.58028

[32] F. T. Farrell & W. C. Hsiang - "On the rational homotopy groups of the diffeomorphism groups of discs, spheres and aspherical manifolds", in Algebraic and Geometric Topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976), Part 1, Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., 1978, p. 325-337. | MR 520509 | Zbl 0393.55018

[33] W. Franz - "über die Torsion einer überdeckung", J. reine angew. Math. 173 (1935), p. 245-254. | JFM 61.1350.01 | MR 1581473 | Zbl 0012.12702

[34] D. Fried - "Lefschetz formulas for flows", in The Lefschetz centennial conference, Part III (Mexico City, 1984), Contemp. Math., vol. 58, Amer. Math. Soc., 1987, p. 19-69. | Article | MR 893856 | Zbl 0619.58034

[35] S. Goette - "Equivariant η-invariants and η-forms", J. reine angew. Math. 526 (2000), p. 181-236. | MR 1778304 | Zbl 0974.58021

[36] S. Goette, "Morse theory and higher torsion invariants I", preprint arXiv:math/0111222, 2001.

[37] S. Goette, "Morse theory and higher torsion invariants II", preprint arXiv:math/0305287, 2003.

[38] S. Goette, "Morse theory and higher torsion invariants III", in preparation.

[39] A. Hatcher & J. B. Wagoner - "Pseudo-isotopies of compact manifolds", Astérisque (1973). | Numdam | MR 353337 | Zbl 1384.57019 | Zbl 0274.57010

[40] J. L. Heitsch & C. Lazarov - "Riemann-Roch-Grothendieck and torsion for foliations", J. Geom. Anal. 12 (2002), p. 437-468. | Article | MR 1901750 | Zbl 1032.58017

[41] K. Igusa - "Parametrized Morse theory and its applications", in Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990), Math. Soc. Japan, 1991, p. 643-651. | MR 1159251 | Zbl 0755.58016

[42] K. Igusa, Higher Franz-Reidemeister torsion, Stud. Adv. Math., vol. 31, 2002. | Article | MR 1945530 | Zbl 1016.19001

[43] K. Igusa, "Higher complex torsion and the framing principle", Mem. Amer. Math. Soc. 177 (2005). | MR 2155700 | Zbl 1083.57030

[44] K. Igusa, "Axioms for higher torsion invariants of smooth bundles", J. Topol. 1 (2008), p. 159-186. | Article | MR 2365656 | Zbl 1196.57024

[45] K. Igusa & J. Klein - "The Borel regulator map on pictures. II. An example from Morse theory", K-Theory 7 (1993), p. 225-267. | Article | MR 1244002 | Zbl 0793.19002

[46] K. Igusa & J. Klein, "Higher Franz-Reidemeister torsion, I. The algebra of filtered chain complexes", preprint, 1995.

[47] F. W. Kamber & P. Tondeur - "Characteristic invariants of foliated bundles", Manuscripta Math. 11 (1974), p. 51-89. | Article | MR 334237 | Zbl 0267.57012

[48] J. Klein - "The cell complex construction and higher R-torsion for bundles with framed Morse function", Ph.D. Thesis, Brandeis University, 1989. | MR 2637458

[49] K. Köhler - "Equivariant Reidemeister torsion on symmetric spaces", Math. Ann. 307 (1997), p. 57-69. | Article | MR 1427675 | Zbl 0869.58053

[50] J. Lott - "Equivariant analytic torsion for compact Lie group actions", J. Funct. Anal. 125 (1994), p. 438-451. | Article | MR 1297676 | Zbl 0824.58044

[51] J. Lott, "Diffeomorphisms and noncommutative analytic torsion", Mem. Amer. Math. Soc. 141 (1999). | MR 1618772 | Zbl 0942.58002

[52] J. Lott, "Secondary analytic indices", in Regulators in analysis, geometry and number theory, Progr. Math., vol. 171, Birkhäuser, 2000, p. 231-293. | Article | MR 1724894 | Zbl 1071.58019

[53] X. Ma - "Formes de torsion analytique et familles de submersions. I", Bull. Soc. Math. France 127 (1999), p. 541-621. | Article | Numdam | MR 1765553 | Zbl 0956.58017

[54] X. Ma, "Formes de torsion analytique et familles de submersions. II", Asian J. Math. 4 (2000), p. 633-667. | Article | MR 1796698 | Zbl 0971.58019

[55] X. Ma, "Functoriality of real analytic torsion forms", Israel J. Math. 131 (2002), p. 1-50. | Article | MR 1942300 | Zbl 1042.58019

[56] X. Ma & W. Zhang - "Eta-invariants, torsion forms and flat vector bundles", Math. Ann. 340 (2008), p. 569-624. | Article | MR 2357997 | Zbl 1133.58015

[57] E. Y. Miller - "The homology of the mapping class group", J. Differential Geom. 24 (1986), p. 1-14. | Article | MR 857372 | Zbl 0618.57005

[58] S. Morita - "Characteristic classes of surface bundles", Invent Math. 90 (1987), p. 551-577. | Article | MR 914849 | Zbl 0608.57020

[59] W. Müller - "Analytic torsion and R-torsion of Riemannian manifolds", Adv. in Math. 28 (1978), p. 233-305. | Article | MR 498252 | Zbl 0395.57011

[60] D. Mumford - "Towards an enumerative geometry of the moduli space of curves", in Arithmetic and geometry, Vol. II, Progr. Math., vol. 36, Birkhäuser, 1983, p. 271-328. | Article | MR 717614 | Zbl 0554.14008

[61] D. B. Ray & I. M. Singer - "R-torsion and the Laplacian on Riemannian manifolds", Advances in Math. 7 (1971), p. 145-210. | Article | MR 295381 | Zbl 0239.58014

[62] K. Reidemeister - "Homotopieringe und Linsenräume", Abh. math. Semin. Hamb. Univ. 11 (1935), p. 102-109. | Article | JFM 61.1352.01 | MR 3069647 | Zbl 0011.32404

[63] C. Soulé - Lectures on Arakelov geometry, Cambridge Studies in Advanced Math., vol. 33, Cambridge Univ. Press, 1992. | MR 1208731 | Zbl 0812.14015

[64] J. B. Wagoner - "Diffeomorphisms, K 2 , and analytic torsion", in Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif, 1976), Part 1, Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., 1978, p. 23-33. | MR 520491 | Zbl 0408.57015

[65] F. Waldhausen - "Algebraic K-theory of spaces", in Algebraic and geometric topology (New Brunswick, N.J., 1983), Lecture Notes in Math., vol. 1126, Springer, 1985, p. 318-419. | Article | MR 802796 | Zbl 0579.18006

[66] M. Weiss & B. Williams - "Assembly", in Novikov conjectures, index theorems and rigidity, Vol. 2 (Oberwolfach, 1993), London Math. Soc. Lecture Note Ser., vol. 227, Cambridge Univ. Press, 1995, p. 332-352. | Article | MR 1388318 | Zbl 0955.55004

[67] W. Zhang - "Sub-signature operators, η-invariants and a Riemann-Roch theorem for flat vector bundles", Chinese Ann. Math. Ser. B 25 (2004), p. 7-36. | Article | MR 2033948 | Zbl 1044.58028