Mirzakharni's recursion formula is equivalent to the Witten-Kontsevich theorem
From probability to geometry (II) - Volume in honor of the 60th birthday of Jean-Michel Bismut, Astérisque, no. 328 (2009), p. 223-235
The full text of recent articles is available to journal subscribers only.
@incollection{AST_2009__328__223_0,
     author = {Liu, Kefeng and Xu, Hao},
     title = {Mirzakharni's recursion formula is equivalent to the Witten-Kontsevich theorem},
     booktitle = {From probability to geometry (II) - Volume in honor of the 60th birthday of Jean-Michel Bismut},
     editor = {Dai Xianzhe and L\'eandre R\'emi and Xiaonan Ma and Zhang Weiping},
     series = {Ast\'erisque},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {328},
     year = {2009},
     pages = {223-235},
     zbl = {1194.14040},
     mrnumber = {2674878},
     language = {en},
     url = {http://www.numdam.org/item/AST_2009__328__223_0}
}
Liu, Kefeng; Xu, Hao. Mirzakharni's recursion formula is equivalent to the Witten-Kontsevich theorem, in From probability to geometry (II) - Volume in honor of the 60th birthday of Jean-Michel Bismut, Astérisque, no. 328 (2009), pp. 223-235. http://www.numdam.org/item/AST_2009__328__223_0/

[1] "A Maple program to compute higher Weil-Petersson volumes" - 2007, http://www.cms.zju.edu.cn/news.asp?id=1214&ColumnName=pdfbook&Version=english.

[2] E. Arbarello & M. Cornalba - "Combinatorial and algebro-geometric cohomology classes on the moduli spaces of curves", J. Algebraic Geom. 5 (1996), p. 705-749. | MR 1486986 | Zbl 0886.14007

[3] L. Chen, Y. Li & K. Liu - "Localization, Hurwitz numbers and the Witten conjecture", Asian J. Math. 12 (2008), p. 511-518. | Article | MR 2481688 | Zbl 1208.14053

[4] R. Dijkgraaf, H. Verlinde & E. Verlinde - "Topological strings in d<1", Nuclear Phys. B 352 (1991), p. 59-86. | Article | MR 1103047

[5] N. Do & P. Norbury - "Weil-Petersson volumes and cone surfaces", Geom. Dedicata 141 (2009), p. 93-107. | Article | MR 2520065 | Zbl 1177.32008

[6] B. Eynard - "Recursion between Mumford volumes of moduli spaces", preprint arXiv:0706.4403. | Article | MR 2855174 | Zbl 1245.14013

[7] B. Eynard & N. Orantin - "Weil-Petersson volume of moduli spaces, Mirzakhani's recursion and matrix models", preprint arXiv:0705.3600.

[8] C. Faber - "Algorithms for computing intersection numbers on moduli spaces of curves, with an application to the class of the locus of Jacobians", in New trends in algebraic geometry (Warwick, 1996), London Math. Soc. Lecture Note Ser., vol. 264, Cambridge Univ. Press, 1999, p. 93-109. | Article | MR 1714822 | Zbl 0952.14042

[9] C. Itzykson & J.-B. Zuber - "Combinatorics of the modular group. II. The Kontsevich integrals", Internat. J. Modem Phys. A 7 (1992), p. 5661-5705. | Article | MR 1180858 | Zbl 0972.14500

[10] A. Kabanov & T. Kimura - "Intersection numbers and rank one cohomological field theories in genus one", Comm. Math. Phys. 194 (1998), p. 651-674. | Article | MR 1631493 | Zbl 0974.14018

[11] R. Kaufmann, Y. I. Manin & D. Zagier - "Higher Weil-Petersson volumes of moduli spaces of stable n -pointed curves", Comm. Math. Phys. 181 (1996), p. 763-787. | Article | MR 1414310 | Zbl 0890.14011

[12] M. E. Kazarian & S. K. Lando - "An algebro-geometric proof of Witten's conjecture", J. Amer. Math. Soc. 20 (2007), p. 1079-1089. | Article | MR 2328716 | Zbl 1155.14004

[13] Y.-S. Kim & K. Liu - "Virasoro constraints and Hurwitz numbers through asymptotic analysis", Pacific J. Math. 241 (2009), p. 275-284. | Article | MR 2507578 | Zbl 1222.14120

[14] M. Kontsevich - "Intersection theory on the moduli space of curves and the matrix Airy function", Comm. Math. Phys. 147 (1992), p. 1-23. | Article | MR 1171758 | Zbl 0756.35081

[15] J. Lamperti - "On the coefficients of reciprocal power series", Amer. Math. Monthly 65 (1958), p. 90-94. | Article | MR 97657 | Zbl 0081.29503

[16] K. Liu & H. Xu - "New properties of the intersection numbers on moduli spaces of curves", Math. Res. Lett. 14 (2007), p. 1041-1054. | Article | MR 2357474 | Zbl 1184.14043

[17] K. Liu & H. Xu, "Recursion formulae of higher Weil-Petersson volumes", Int. Math. Res. Not. 2009 (2009), p. 835-859. | MR 2482127 | Zbl 1186.14059

[18] Y. I. Manin & P. Zograf - "Invertible cohomological field theories and Weil-Petersson volumes", Ann. Inst. Fourier (Grenoble) 50 (2000), p. 519-535. | Article | MR 1775360 | Zbl 1001.14008

[19] M. Mirzakhani - "Simple geodesics and Weil-Petersson volumes of moduli spaces of bordered Riemann surfaces", Invent Math. 167 (2007), p. 179-222. | Article | MR 2264808 | Zbl 1125.30039

[20] M. Mirzakhani, "Weil-Petersson volumes and intersection theory on the moduli space of curves", J. Amer. Math. Soc. 20 (2007), p. 1-23. | Article | MR 2257394 | Zbl 1120.32008

[21] M. Mulase & B. Safnuk - "Mirzakhani's recursion relations, Virasoro constraints and the KdV hierarchy", Indian J. Math. 50 (2008), p. 189-218. | MR 2379144 | Zbl 1144.14030

[22] A. Okounkov & R. Pandharipande - "Gromov-Witten theory, Hurwitz numbers, and matrix models", in Algebraic geometry-Seattle 2005. Part 1, Proc. Sympos. Pure Math., vol. 80, Amer. Math. Soc., 2009, p. 325-414. | MR 2483941 | Zbl 1205.14072

[23] B. Safnuk - "Integration on moduli spaces of stable curves through localization", Differential Geom. Appl. 27 (2009), p. 179-187. | Article | MR 2503971 | Zbl 1162.53063

[24] E. Witten - "Two-dimensional gravity and intersection theory on moduli space", in Surveys in differential geometry (Cambridge, MA, 1990), Lehigh Univ., 1991, p. 243-310. | MR 1144529 | Zbl 0757.53049

[25] S. Wolpert - "On the homology of the moduli space of stable curves", Ann. of Math. 118 (1983), p. 491-523. | Article | MR 727702 | Zbl 0575.14024

[26] P. Zograf - "An algorithm for computing Weil-Petersson volumes of moduli spaces of curves", preprint Institut Mittag-Leffler, 2006/07.