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THE INDEX OF PROJECTIVE FAMILIES OF ELLIPTIC 
OPERATORS: THE DECOMPOSABLE CASE 

by 

Varghese Matha i , R icha rd B . Mel rose & Isadore M . Singer 

Dedicated to Jean-Michel Bismut on the occasion of his 60 t h birthday 

Abstract. — An index theory for projective families of elliptic pseudodifferential oper­
ators is developed under two conditions. First, that the twisting, i.e. Dixmier-Douady, 
class is in H 2(X; Z) U H 1 (X; Z) C H 3(X; Z) and secondly that the 2-class part is triv­
ialized on the total space of the fibration. One of the features of this special case 
is that the corresponding Azumaya bundle can be refined to a bundle of smoothing 
operators. The topological and the analytic index of a projective family of elliptic 
operators associated with the smooth Azumaya bundle both take values in twisted 
KT-theory of the parameterizing space and the main result is the equality of these two 
notions of index. The twisted Chern character of the index class is then computed 
by a variant of Chern-Weil theory. 

Résumé (L'indice des familles projectives d'opérateurs elliptiques: le cas décomposable) 
Une théorie de l'indice pour des familles projectives d'opérateurs pseudodifféren­

tiels elliptiques est développée sous les deux conditions suivantes: la classe de Dixmier-
Douady est dans H 2(X;Z) U H 1(X;Z) C H 3(X;Z), et la partie de degré deux est 
trivialisée sur l'espace total de la fibration. Le fibre d'Azumaya correspondant peut 
alors être raffiné en un fibre d'opérateurs régularisants. Les indices topologiques et 
analytiques d'une famille projective d'opérateurs elliptiques associée au fibre d'Azu-
maya lisse sont à valeurs dans la if-théorie tordue de la base de la famille et le résultat 
principal est l'égalité de ces deux indices. Le caractère de Chern tordu de la famille 
est calculé par une variante de la théorie de Chern-Weil. 
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Introduction 

The basic object leading to twisted K-theory for a space, X, can be taken to be 
a principal PU-bundle 0 —> X, where PU = U(c#)/U(l) is the group of projective 
unitary operators on some separable infinite-dimensional Hilbert space ${. Circle bun­
dles over X are classified up to isomorphism by their Chern classes in H 2 (X;Z) and 
analogously principal PU bundles are classified by H3(X; Z) with the element 8(0) be­
ing the Dixmier-Douady invariant of (P. Just as K°(X), the ordinary K-theory group 
of X, may be identified with the group of homotopy classes of maps X —• (7(&) 
into the Predholm operators on the twisted K-theory group K°(X;<^) may be 
identified with the homotopy classes of sections of the bundle & Xpu ¿7 arising from 
the conjugation action of PU on £7. The action of PU on the compact operators, 
induces the Azumaya bundle, £2. The K-theory, in the sense of C* algebras, of the 
space of continuous sections of this bundle, written K°(X; iS), is naturally identified 
with K°(X; £P). From an analytic viewpoint £2 is more convenient to deal with than 
0 itself. 

In the case of circle bundles isomorphisms are classified up to homotopy by an 
element of H 1 (X;Z), corresponding to the homotopy class of a smooth map X —• 
U(l). Similarly, S G H3(X; Z) determines up to isomorphism with the isomorphism 
class determined up to homotopy by an element of H 2 (X;Z), corresponding to the 
fact that PU is a #(Z ,2) . The result is that K°(X; U) depends as a group on the 
choice of Azumaya bundle with DD invariant 5 up to an action of H 2(X; Z) . 

In [20] we extended the index theorem for a family of elliptic operators, giving the 
equality of the analytic and the topological index maps in K-theory, to the case of 
twisted K-theory where the twisting class is a torsion element of H 3 (X;Z). In this 
paper we prove a similar index equality in the case of twisted K-theory when the 
index class is decomposable 

(1) 6 = aU0, a e t f f X j Z ) , /?GH 2 (X;Z), 

and the fibration (j> : Y —• X is such that </>*0 = 0 in H 2(y; Z) . 
Under the assumption (1), that the class S is decomposed, we show below that there 

is a choice of principal PU bundle with class S such that the classifying map above, 
cp : X — • JFC(Z; 3) factors through U(l) x PU. Twisting by a homotopically non-
trivial map K : X —• PU does not preserve this property, so in this decomposed case 
there is indeed a natural choice of smooth Azumaya bundle, <̂f, up to homotopically 
trivial isomorphism and this induces a choice of twisted K-group determined by the 
decomposition of 5] we denote this well-defined twisted K-group by 

(2) K°(X; a, (3) = K°(X; 8), U = tf. 

The effect on smoothness of the assumption of decomposability on the Dixmier-
Douady class can be appreciated by comparison with the simpler case of degree 2. 
Thus, if ai U a 2 G H 2 (X;Z) is a decomposed class, ai G H^XjZ) for i = 1,2, then 
the associated line bundle is the pull-back of the Poincaré line bundle associated to 
a polarization on the 2-torus under the map u\ x U2, where the Ui G ff00(X;XJ(1)) 
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PROJECTIVE FAMILIES WITH DECOMPOSABLE DD INVARIANT 257 

represent the a*. This is to be contrasted with the general case in with the line bundle 
is the pull-back from a classifying space such as PU, and is only unique up to twisting 
by a smooth map K' : X —> U( l ) . 

The data we use to define a smooth Azumaya bundle is: 

— A smooth function 

(3) « e r ( I ; U ( l ) ) 

the homotopy class of which represents a e H 1 (X , Z) . 
- A Hermitian line bundle (later with unitary connection) 

(4) L 

v 
X 

with Chern class (3 G H 2 ( X ; Z) . 
- A smooth fiber bundle of compact manifolds 

(5) Z Y 

X 

such that = 0 in Z) . 
— An explicit global unitary trivialization 

(6) 7 : № ) - ^ 7 x C . 

These hypotheses are satisfied by taking Y = L, the circle bundle of L, and then there 
is a natural choice of 7 in (6). This corresponds to the 'natural' smooth Azumaya 
bundle associated to the given decomposition of S = a U (3 and we take K°(X; a,f3) 
in (2) to be defined by this Azumaya bundle, discussed as a warm-up exercise in 
Section 1. In Appendix C it is observed that any fibration for which /3 is a multiple 
of a degree 2 characteristic class of <j): Y —> X satisfies the hypothesis in (5). 

In general, the data (3) - (6) are shown below to determine an infinite rank 'smooth 
Azumaya bundle', which we denote 9^(7). This has fibres isomorphic to the algebra 
of smoothing operators on the fibre, Z, of Y with Schwartz kernels consisting of the 
smooth sections of a line bundle 7(7) over Z2. The completion of this algebra of 
'smoothing operators' to a bundle with fibres modelled on the compact operators has 
Dixmier-Douady invariant a U (3. 

In outline the construction of ^(7) proceeds as follows; details may be found in 
Section 3. The trivialization (6) induces a groupoid character Y^ —> U(l) , where 
Y^ is the fiber product of two copies of fibration. Combined with the choice (3) this 
gives a map from Y^ into the torus and hence by pull-back the line bundle J = 1/(7). 
This line bundle is primitive in the sense that under lifting by the three projection 
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258 V. MATHAI, R. B. MELROSE & I. M. SINGER 

maps 

(7) L[3] 
7TS 

TTC 
"IFF m 

(corresponding respectively to the left two, the outer two and the right two factors) 
there is a natural isomorphism 

(8) 7TS J <S> 7TF J = 7ГС J. 
This is enough to give the space of global sections, f?°°(y[2'; J <g) where CIR is 
the fiber-density bundle on the right factor, a fibrewise product isomorphic to the 
smoothing operators on Z. Indeed, if z represents a fiber variable then 

(9) A o B(x, z, z') -
Jz 

A(x,z,z")-B(x,z",z') 

where • denotes the isomorphism (8) which gives the identification 

(10) J(z,z") ® J(z",z') — J(z,z') 
needed to interpret the integral in (9). The naturality of the isomorphism corresponds 
to the associativity of this product. 

Then the smooth Azumaya bundle is defined in terms of its space of global sections 

(ii) K°(y:^S(7))-^K°(r).J(z",z') 

As remarked above, 1/(7), and hence also the Azumaya bundle, depends on the par­
ticular global trivialization (6). Two trivializations, 7*, i = 1,2 as in (6) determine 

(12) 712 : Y — U(l), 712(27)72(2/) = 7i(2/) 

which fixes an element [712] G H 1 (y ;Z) and hence a line bundle K12 over Y with 
Chern class [712] U \(f>*a\. Then 

(13) J ( 7 2 ) ^ ( ^ r 2

1 ^ ^ i 2 ) 0 J(7i) 
with the isomorphism consistent with primitivity. 

Pulling back to Y, 0* $(7) is trivialized as an Azumaya bundle and this trivializa­
tion induces an isomorphism of twisted and untwisted K-theory 

(14) K°(y:^S(7)) -^K°(r) . 

In fact there are stable isomorphisms between the different smooth Azumaya bundles 
and these induce natural and consistent isomorphisms 

(15) K°(X; 8 ( 7 ) ) -^K°(X;a, /?) . 

The proof may be found in Section 4. 
The transition maps for the local presentation of the smooth Azumaya bundle, 

9^(7), determined by the data (3) - (6), are given by multiplication by smooth func­
tions. Thus they also preserve the corresponding spaces of differential, or pseudod-
ifferential, operators on the fibres; the corresponding algebras of twisted fibrewise 
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pseudodifferential operators are therefore well defined. Moreover, since the princi­
pal symbol of a pseudodifferential operator is invariant under conjugation by (non-
vanishing) functions there is a well-defined symbol map from the pseudodifferential 
extension of the Azumaya bundle, with values in the usual symbol space on T*(Y/X) 
(so with no additional twisting). The trivialization of the Azumaya bundle over Y, 
and hence over T*(Y/X)y means that the class of an elliptic element can also be in­
terpreted as an element of K°C(T*{Y/X);p*0*8(7)) where p : T(Y/X) —• Y is the 
bundle projection. This leads to the analytic index map, 

(i6) ind a : K°C(T*(Y/X);p*<f>*n(l)) — K°(X; S ( 7 ) ) . 

The topological index can be defined using the standard argument by embedding 
of the fibration Y into the product fibration 7r : RN x X —• X for large N. Namely, 
the Azumaya bundle is trivialized over Y and this trivialization extends naturally to 
a fibred collar neighborhood Q of Y embedded in RN x X. Thus, the usual Thorn map 
K°(T*(Y/X)) —> K°C(T*(Q/X) is trivially lifted to a map for the twisted K-theory, 
which then extends by excision to a map giving the topological index as the composite 
with Bott periodicity: 

(17) ind t : K°(r*(y/X);/9*<A*iS(7)) —> K°(:r*(fi/X);/>****%)) 

— K S ( r ( K * / X ) ; p V B ( 7 ) ) — K°(X; 8(7)) . 

In the proof of the equality of these two index maps we pass through an inter­
mediate step using an index map given by semiclassical quantization of smoothing 
operators, rather than standard pseudodifferential quantiztion. This has the virtue 
of circumventing the usual problems with multiplicativity of the analytic index even 
though it is somewhat less familiar. A fuller treatment of this semiclassical approach 
can be found in [21] so only the novelties, such as they are, in the twisted case are 
discussed here. The more conventional route, as used in [20], is still available but is 
technically more demanding. In particular it is worth noting that the semiclassical 
index map, as defined below, is well-defined even for a general fibration - without as­
suming that (j)*(3 = 0. Indeed, this is essential in the proof, since the product fibration 
1 ^ x X does not have this property. 

For a fixed fibration the index maps induced by two different trivializations 7 may 
be compared and induce a commutative diagram 

[18) K°C(T*(Y/X)) - K c ° ( T * ( y / X ) ; p * r S ( 7 i ) ) 
ind('Yi) ~ 
- ^ K ° ( X ; g( 7i)) 

[KL2]X 

K°C(T*(Y/X)) • K ° ( T * ( y / X ) ; ^ * g ( 7 2 ) ; 
ind(72)...K°(T*(y/X); 

K°(X;a, /3) 
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This follows from the proof of the index theorem. 
The smoothness of the Azumaya bundle here allows us to give an explicit Chern-

Weil formulation for the index in twisted cohomology. We recall that the twisted 
deRham cohomology H*(X;<5) is obtained by deforming the deRham differential to 
d + M, where 

S = a A 
2m 

Here a = u*(Q) is the closed 1-form on X with integral periods, where 6 is the Cartan-
Maurer 1-form on U(l) and ¡3 is the closed 2-form with integral periods which is the 
curvature of the hermitian connection 7 on L. 

We remark that our results easily extend to the case when the Dixmier-Douady 
class is the sum of decomposable classes, ie when it is in the Z-span of H 2 (X ;Z) U 
H 1(X; Z ) . The Azumya bundle in this case is the tensor product of the decomposable 
Azumaya bundles as defined in this paper. The case of an arbitrary, not necessarily 
decomposable, Dixmier-Douady invariant is postponed to a subsequent paper where 
the twisted index theorem is treated in full. The general case uses pseudodifferential 
operators valued in the Azumaya bundle, rather than the pseudodifferential operator 
extension of the smooth Azumaya bundle as discussed here. Again, the semiclassical 
index map extends without difficulty to this general case. 

In outline the paper proceeds as follows. The special case of the circle bundle is 
discussed in §1 and §2 contains the geometry of the general decomposable case. The 
smooth Azumaya bundle corresponding to a decomposable Dixmier-Douady class is 
constructed in §3 and some examples are also given. In §4, (15) is proved. The analytic 
index maps is defined in §5 using spaces of projective elliptic operators but including 
the case of twisted families of Dirac operators. The topological index is defined in 
§6. The Chern-Weil representative of the twisted Chern Character is studied in §7. 
Semiclassical versions of the index maps are introduced in §8 and §9 contains the 
proof of the equality of these two indices. In §10, the Chern character of the index is 
computed. In Appendix A the formulation of the Dixmier-Douady invariant in terms 
of differential characters is explored and in Appendix B it is computed using Cech 
cohomology (following a similar computation by Brylinski). Appendix C contains a 
discussion of the conditions on a fibration under which a line bundle from the base is 
trivial when lifted to the total space. It also contains the description of a canonical 
projective family of Dirac operators on a Riemann surface. 

1. Trivialization by the circle bundle 

An element ¡3 £ H 2 (X ;Z) for a compact manifold X, represents an isomorphism 
class of line bundles over X. Let L be such a line bundle with Hermitian inner product 
h and unitary connection V L . We proceed to outline the construction of the smooth 
Azumaya bundle in the special case, alluded to above, where Y = L is the circle 
bundle of L. This is carried out separately since this case gives a natural choice of the 
smooth Azumaya bundle, and hence the twisted K-group. The corresponding twisted 
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cohomology is also identified with the cohomology of a subcomplex of the deRham 
complex over L. 

From u G U(l)) construct the principal Z-bundle 

(i.i) z X 

7T 

X 

with total space the possible values of log u over points of X and with J?00 structure 
determined by the smoothness of a local branch of this function. Thus / = ¿11°S u ^ 
i?°°(X;R) is a well defined smooth function and under deck transformations 

(1.2) fix + n) = fix) + n V £ G X, n G Z. 

Let p : Z —• X be the circle bundle of L; pulled back to L, L is canonically trivial. If 
V L is an Hermitian connection on L then pulled back to L it is of the form d + 7 on 
the trivialization of L, with 7 G ^^(L jA 1 ) a principal U(l)-bundle connection form 
in the usual sense. That is, under the action 

(1.3) m : U(l) x L —• L, 

771*7 = idO + 7. This corresponds to the 'fiber shift map' on the fiber product 

(1.4) s:LW =LXXL—+XJ(1) h = «s(/i, /2)̂ 2 in Lx 

in that dlogs = Pi7 — P27 i s ^ n e difference of the pull-back of the connection form 
from the two factors. From the character 5 a bundle, J, can be constructed from 
the trivial bundle over the fiber product Q = L Xx L Xx X corresponding to the 
identification 

(1.5Ì (Zi,Z2,£ + n,z) ~ (hìl2ìxìs(liìl2)
nz). 

Thus, J is associated to Q as a principal Z-bundle over . The primitivity property 
(8) follows from the multiplicativity property of 5, that s(li,h)s(l2ih) = «(¿1^2) for 
any three points in a fixed fiber, which in turn follows from (1.4). The connection 
d + fd log s on the trivial bundle over Q descends to a connection on J which has 
curvature equal to a difference 

(1.6) wj = 1 
2ni 

ÖL A d log s = a A 
1 

2m 
(PÎ7-P27), a = df-

By definition, the space of global sections of the smooth Azumaya bundle is 

(1.7) ÏÏ°°(X; m = %°°{iï2\j), 

where the product on the right hand side is given by composition of Schwartz kernels. 
The 'Dixmier-Douady twisting', given the decomposed form, corresponds to two 

different trivializations of J. Over any open set U C X where u has a smooth loga­
rithm, J is trivial using the section of X this gives. On the other hand, over any open 
set U C X over which L has a smooth section r, the character in (1.5) is decomposed 
as the product ^(Zi,^) = <s r(Zi)s r(/2)_ 1 where sT(l) — s(l,r(p(l)). This allows a line 
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bundle K to be denned over the preimage of U in L by the identification of the trivial 
bundle 

(1.8) (Z~,x + n,z)~ (Z~, x, sT(l)nz). 

Clearly then J may be identified with K № K\ where K' is the dual, over U. In 
terms of a local trivialization in both senses over a small open set U C X, in which 
Lv = U x C, Lu = U x S, Xu = U x Z , a(x,0,0') G ^ ( I / x Z x § x S) satisfies 

(1.9) a(x, n, 0,0') = e i n t f a(x, 0,0, 0>-* n *' • 

This twisted conjugation means that $ is a bundle of algebras, modelled on the 
smoothing operators on the circle with (1.9) giving local algebra trivializations. In this 
case the Azumaya bundle is associated with the principal U(l) x Z bundle LxxX and 
to the projective representation of this structure group through its central extension 
to the Heisenberg group. 

The corresponding construction in the general case is quite similar and is described 
in §3. 

The 3-twisted cohomology on X, with twisting form S = a A /3, is the target for 
the twisted Chern character discussed below. Here 57 is a closed 1-form and /3 is the 
curvature 2-form on X for the Hermitian connection on L. Thus, on L, dj = {2/KI)p¥(3. 
In fact the 5-twisted deRham cohomology on X can be expressed as the cohomology 
of a subcomplex of the ordinary (total) deRham complex on L. 

Proposition 1. — The even and odd degree subspaces of ^ ^ ( L j A * ) fixed by the con­

ditions with respect to the infinitesmal generator of the U(l ) action on L 

(1.10) £d/dov = 0, LQ/QOV = 
p*a 

2?r 
AT), ve ^ ( L . A * ) 

are mapped into each other by the standard deRham differential which has cohomology 
groups canonically isomorphic to the S-twisted deRham cohomology on X . 

Proof — The conditions in (1.10) are preserved by d since it commutes with the Lie 

derivative and given the first condition 

( L . H ) ^d/dedv = £d/dev - d( 
p*a 

2tt 
A v 

p*a 
2?r 

/\ dv. 

If v satisfies (1.10) then v' = v — ^ Ap*a A v satisfies 

(1.12) £d/dev' = 0, td/dev' = 0 => v' = p*v, ^ r ( I ; A * ) . 

Conversely if v G ^ ^ ( X ; A*) then v = p*v + ^ A aAp*v satisfies (1.10). Thus every 
form satisfying (1.10) can be written uniquely 

(1.13) v — exp 
7 Ap*a 

2m 
p*v = p*v -f 

7 Ap*a 

2-KI 
Ap*v. 

Under this isomorphism d is clearly conjugated to d+6A proving the Proposition. 
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2. Geometry of the decomposed class 

For a given line bundle L over X consider a fiber bundle (5) such that L is trivial 
when lifted to the total space. As discussed above, the circle bundle L is an example. 
A more general discussion of this condition can be found in Appendix C. An explicit 
trivialization of the lift, 7, as in (6) is equivalent to a global section which is the 
preimage of 1 : 

(2.1) s' : Y —> è*(L) 

Over each fiber of Y, the image is fixed so this determines a map 

s(z1,z2) = s'(z1)(s'(z2))-
1 

which is well-defined on the fiber product and is a groupoid character: 

(2.2) 
s : yPl —• U(l), 

s(z1,z2)s(z2iz3) = 5(21,23) V ZI E Y with Mzi) = x, I = 1,2,3, V x G l 

Conversely one can start with a unitary character s of and recover L as the 
associated Hermitian line bundle 

(2.3) 
L = F x C / ~ , : 

(zut) c?s (z2,s(z2,zi)t) V t € C, = 4>(z2). 

The connection on L lifts to a connection 

(2.4) je ё'00(У;Л1) j e ё ' 0 0 ( У ; Л 1 ) ; 7Ti7 — 71*27 = dlogs on y ' 2 ' 

on the trivial bundle 0* (L). Conversely any 1-form on Y with this property defines a 
connection on L. 

Now, let Q = YW Xx X be the fiber product of Y^l and X, so as a bundle over X 
it has typical fiber Z2 x Z; it is also a principal Z-bundle over Y ^ . The data above 
determines an action of Z on the trivial bundle Q x <C over Q, namely 

(2.5) Tn : (zi,Z2,x;w) —> (zi, z2ìx + n, stzx, z2)
 nw) V n 6 Z. 

Let J be the associated line bundle over Y^ 

(2.6) J = (Q x C)/ ~ (zi,z2,x;w) ~ T„(zi,Z2,x;w) V n e Z. 

The fiber of J at (zi,z2) G y ' 2 ' such that </>(zi) = <j>{z2) = x is 

(2.7) Jzx.ZO — Xx X C/ —, (£ + n,w) ~ (x,s(zi,Z2)nw). 

Lemma 1. — The connection d + fdlogs on Q x C descends to a connection V J on 
J which has curvature 

(2.8) F V J = 7Ti/i - 7T2/X, /x = df A 7 
2ttì 

G î?°°(y;A 2), y[2] 
7Ti 

7T2 
:Y. 

Moreover dfi = </>*(5), for the uniquely determined 3-form o n X , 5 = a A / 3 £ 

*6°°(X\ A 3 ) , where df = </>*(a) and d^ = 27ri(/)*(/3) represent the characteristic class 
of X and the first Chern class of L respectively. 
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Proof. — Clearly the 1-form fdlogs has the correct transformation law under the 
Z action on YW XX X to give a connection on J. Its curvature is 57 A d ^ i

s where 
57 = ^ d l o g ^ . If 7 is the connection form for the trivialization of L on Y then 

(2.9) d log s = 7T*7 - 7T27 in YW 

from which (2.8), together with the remainder of the Lemma, follows. 

3. Smooth Azumaya bundle 

We proceed to show how to associate to the data (3) - (6) discussed above a 
smooth Azumaya bundle over X. That is, we construct a locally trivial bundle with 
fibres modelled on the smoothing operators on the sections of a line bundle over the 
fibres of Y and having completion with Dixmier-Douady invariant aU /3. Note that 
this Azumaya bundle does depend on the trivialization data in (6); we will therefore 
denote it «/(7). The effect of changing this trivialization is discussed in Lemma 4 
below. 

First consider local trivializations of the data. 

Proposition 2. — A section of </>, over on open setU C X , r : U — • 0 - 1 ( £ 7 ) , induces 

a trivialization of L over U and an isomorphism of J(7) over the open subset V = 

<t>~x{U) x u ^ i U ) o / y M , with 

(3.1) J\v ^T Hom(KT) = KT K'r 

for a line bundle KT over 0 _ 1 (C7) C Y, where K'T denotes the line bundle dual to KT. 
Another choice of section r' : U —> 0 _ 1 ( { 7 ) , determines another line bundle KT> over 
0 _ 1(É7) C Y, satisfying 

(3.2) KT = Kr.®<l>*lL-r.)t 

where LT T> = (r, r'YJ is the fixed local line bundle over U. 

Proof — A local section of (f> induces a local trivialization of the character 5, 

(3.3) s(z1,z2) = XT{ZI)XT

1(Z2), Xr(z) = s(z,T(<t>(z))) on <I>-\U)CY. 

This trivializes L over U, identifying it with T*C with connection d + T*J. 
The line bundle KT over (f)~l(U) associated to the Z bundle 0_1(C7) Xu X\j by 

the identification (z,x + n,w) ~ (z, £, Xr(z)nw) then satisfies (3.1). The line bundle 
Kri is similarly defined over 0 _ 1 ([7) , satisfying (3.1) with r' substituted for r. The 
relation (3.2) follows from (3.1) and its modification with r' substituted for r. • 

Such a section of Y will induce a local trivialization of the smooth Azumaya bundle 
in which it becomes the smoothing operators on the fibres of Y acting on sections of 
KT : 

(3.4) ^ t = * - o o W - 1 ( W ; ^ t ) b 
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Using Proposition 2, we get the local patching, 

(3.5) <JX = %°°№;J\Yx2®nR)TTgJ (g) 

Rather than use this as a definition we adopt an a priori global definition by 
trivializing over Y. 

Definition 1. — For any x G X, the fiber of the smooth Azumaya bundle associated 
to the geometric data in §2 is 

(3.6) <JX = %°°№;J\Yx2®nR) 

where QR is the fiber density bundle on the right factor of Y£. Globally, we have a 
natural identification, 

(3.7) TTgJ (g) TlpJ > TTçJ 

Thus a smooth section of ^ over any open set U C X is just a smooth section of 
J <g> CIR, where fijj = irRQ, over the preimage of UrnY^. 

Of course, we need to show that <̂f is a bundle of algebras over X with local 
trivializations as indicated in (3.4). To see this globally, observe that J has the same 
'primitivity' property as for L in §1 with respect to the groupoid structure. 

Lemma 2. — If 

(3.8) Y[3] TTC 
7TF 

Y[2] 

are the three projections (respectively onto the two left-most, the outer two and the 
two right-most factors - the notation stands for 'second', 'composite' and 'first' for 
operator composition) then there is a natural isomorphism 

(3.9) TTgJ (g) TlpJ > TTçJ 

and moreover J carries a connection V J which respects this primitivity property. 

Proof — The identity (3.9) is evident from the definition of J and Proposition 2. 
The naturality property for (3.9) corresponds to an identity on Y^. Namely if J' is 
the dual of J then the tensor product of the pull-backs under the four projections 
yW — > y[3] 0 f t h e combination n^J'®7r£J^n^J' over Y^ is naturally trivial. That 
this trivialization is equal to the tensor product of the four trivializations from (3.9) 
follows again from the definition of J. 

By Proposition 2, a section r : U —> Y of 0 over the open subset U of X defines 
an isomorphism J\y =T Hom(ii:r) = KT№K'T where V = ^{U) xv (j)~l(U) is the 
open subset of Y^. A choice of connection V r on KT induces a connection V y on 
j \ v which clearly respects the primitivity property. A global connection preserving 
the primitivity property can then be constructed using a partition of unity on X. • 
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As a consequence of Lemma 2 there is a lifting map 

(3.10) J' ® TTc J ® ^nñ) *-°°(yP]/r its J' ® TTc J ® ̂ n ñ ) *-°°(yP]/r; J') 

which embeds into an algebra, namely the smoothing operators on sections of J' on 
the fibres of as a fibration over Y (projecting onto the first factor). 

Proposition 3. — Lifting ^ ° ° ( Y ^ ; J 0 Hr) to Y ^ under the projection off the left­

most factor (the 'first' projection in terms of composition) embeds it as a subalgebra 
of the smoothing operators on sections of J' as a bundle over Y ^ on the fibres of the 
projection onto the right factor such that the lift of the bundle of algebras over X is 
equal to the bundle of algebras over Y. 

This justifies (3.4). As discussed below it also shows that, as an Azumaya bundle, the 
completion of <fl is J3 = $ (7 ) . 

Proof — It only remains to show that composition of two local sections of <fi in the 
algebra of fiber smoothing operators gives another section of the Azumaya bundle. 
However, this follows from (3.4), which in turn is a consequence of Lemma 2 applied 
to the local decomposition of J in (3.1). • 

An infinite rank Azumaya bundle H, over a topological space X, is a bundle of 
star algebras with local isomorphisms with the trivial bundle of compact operators, 

on a fixed separable but infinite-dimensional Hilbert space $í\ The Dixmier-
Douady invariant of $ is an element of H 3(X; Z) . It classifies the bundle up to stable 
isomorphism (i.e. after tensoring with dC) and can be realized in terms of Cech co­
homology or alternatively in terms of classifying spaces as follows. The group of 
*-automorphism of ÚC is PU(<#) = U(.#")/U(l), the projective unitary group of the 
Hilbert space acting by conjugation. Thus the fiber trivializations of $ form a prin­
cipal PU(c^f)-bundle over X. Since PU(<#) = if (Z, 2) is an Eilenberg-Maclane space, 
this bundle, and hence S, is classified up to isomorphism by an homotopy class of 
maps X —> B PU(<#) = K(Z, 3) which represents, and is equivalent to, the Dixmier-
Douady invariant. 

The Chern class of a line bundle L over a space X has a similar representation. 
Taking an Hermitian structure and passing to the associated circle bundle L over X 
one can consider the Hilbert bundle L2(L/X) of Lebesgue square integrable functions 
on the fibres of the circle bundle. Each point I G L defines a unitary operator on 
the fiber through that point, namely multiplication by U(l) = exp(i8¡)x where the 
normalization is such that exp(i0^)(l) = 1. Changing / within the fiber changes U(l) 
to exp(i8f)U(lf) so this defines a map 

(3.11) X —• PV(L2(L/X)) 

into the bundle of projective unitary operators on the fibres of the Hilbert bundle. 
By Kuiper's theorem any Hilbert bundle is trivial (in the uniform topology) and 
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the trivialization is natural up to homotopy. Thus the map (3.11) lifts to a unique 
homotopy class of maps 

(3.12) X—>PU(.#) = K(Z,2) 

and this represents, and is equivalent to, the first Chern class. This follows from 
the evident fact that L is isomorphic to the pull-back of the canonical circle bunde, 
U(.#)/PUC#) over PUC#). 

Now consider the decomposed case under consideration here. Over the given space 
X we have both a map u G ^^(X; U(l)) and a line bundle L. Passing to the classifying 
map (3.11) this gives a unique homotopy class of maps 

(3.13) X — » U(l) x PUC#). 

Proposition 4. — The completion of the smooth Azumaya bundle associated above 

to (3) - (6) to an Azumaya bundle S3 = $ (7 ) , has Dixmier-Douady invariant aU/? G 

H 3 ( X ; Z ) which is represented by the composite of (3.13) with the classifying map 

U(l ) x PU(<#) —> K ( Z , 3) induced by the projectivisation of the basic representation 
of the Heisenberg group Z x U(l) — • PU(<#). 

Proof — The classifying space BGofa, topological group G is defined up to homotopy 
as the quotient * / G of a contractible space on which G acts freely. In particular it 
follows that (always up to homotopy) 

[3.14) B(Gx x G2) ^ BGx x BG2 

and if H C G is a closed subgroup then there is a well defined homotopy class of maps 

(3.15) BH —• BG. 

Recall that the basic representation of the Heisenberg group H arises from the 
actions of U(l) and Z on L2(S) (or ^^(S)) respectively by translation and multipli­
cation by ein6. These commute up to scalars, which is the action of the center of H 
as a central extension 

(3.16) U(l) —> H — » Z x U(l) 

and so embeds 

(3.17) Z x U(l) ^ PUC#) 

as a subgroup of the projective unitary group on L2(S). By (3.14) and (3.15) this 
induces an homotopy class of continuous maps 

(3.18) A : U(l) x PU ~ B(Z x U(l)) —> K(Z, 3). 

So the claim in the Proposition is that under this map the pull-back of the degree 3 
generator of the cohomology of K(Z, 3) is the Dixmier-Douady invariant of {2 and is 
equal to a U ¡3 in H 3(X, Z). 

The first statement follows from the fact that the PU bundle to which is associ­
ated is obtained from the Z x U(l) bundle X Xx L by extending the structure group 
using (3.17). The second statement follows from the fact that under the map (3.18) 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2009 



268 V. MATHAI, R. B. MELROSE & I. M. SINGER 

the generating 3-class <5DD G H 3(K(Z, 3), Z) pulls back to a' U /?' where a' G H^S, Z) 
and /?' G H2(PU, Z) are the generators, that is, 

(3.19) A*¿ = o/utf'. 

Indeed, the degree 3-cohomology of U(l) x PU has a single generator, so (3.19) must 
be correct up to a multiple on the right side. Thus it is enough to check one example, 
to determine that the multiple is equal to one. Take X — § x S 2 with u the identity 
on § and L the standard line bundle over the sphere. We know that the induced map 
(3.12) for the sphere generates the second homotopy group of PU and pulls back to 
the fundamental class on S2. Thus it suffices to note that the PU bundle over § x S2 

with which our smooth Azumaya bundle is associated in this case is just obtained by 
the clutching construction from the trivial bundle over [0,2n] x § 2 using this map. • 

An interesting special case of this construction, close to the lifting to the circle 
bundle described in §1, arises when /3 G H 2 (X;Z) is thought of as the first Chern 
class of a complex vector bundle rather than a line bundle. Then Y can be taken to 
be the associated principal bundle 

U(n) P 

X. 

Since the abelianization of U(n) is canonically isomorphic to U(l), any character 
(i.e. 1-dimensional unitary representation) of U(n) factorizes through U(l), and con­
versely, any character of U(l) lifts to a character of U(n). A U(l)-central extension 
of the group U(n) x Z arises in the form of a generalized Heisenberg group. Namely 
the group product on Hn = U(n) x Z x U(l) can be taken to be 

(9iìrìlìz1)(g2ìn2ÌZ2) = {gi92,ni + n 2, det(#i)n 22iz 2). 

Then 
1 —> U(l) —> Hn —• U(n) x Z —• 1 

is a central extension. 

4. Stable Azumaya isomorphism 

We proceed to show that the twisted K-groups, K°(X; $(7)), defined through the 
possible data (3) - (6) corresponding to a fixed decomposition (1) are all naturally 
isomorphic, as indicated in (15). This is a consequence of the Morita invariance of 
the C* K-groups and the existence of stabilized isomorphisms between the various 
Azumaya bundles. 

For a smooth 1-parameter family of trivializations, as in (6), so depending smoothly 
on t G [0,1], the K-groups K°(X; £2(7(£))) are all naturally isomorphic. Since two such 
trivializations differ by a smooth map Y —> U(l), the K-group can only depend on 
the homotopy class of this map, when the other data is fixed. It is also the case 
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that K-theory of C* algebras admits Morita equivalence. That is, the K-group of U 
is naturally isomorphic to the K-group of S ® ^ . Kuiper's theorem shows that the 
completion of the smoothing operators on any fiber bundle over a space, and acting 
on sections of any vector bundle, V, over the fiber bundle, is naturally isomorphic up 
to homotopy to the trivial Azumaya bundle X. It follows that the 'twisted' K-theory 
of a space, computed with respect to such a bundle is naturally isomorphic to the 
untwisted K-theory. More generally, taking the smooth Azumaya bundle 9̂ (7) and 
tensoring with the bundle of smoothing operators, ^~°°(I/j;V), on any other fiber 
bundle ip : Y' —• X, over the same base, gives an Azumaya bundle with the same 
twisted K-theory, K°(X; 8(7)). This proves: 

Lemma 3. — If tp : Y ' — • X is a fibration of compact manifolds and 9^(7) is the 
Azumaya bundle associated to data (3) - (6) then there is a natural isomorphism of 
twisted K-theory 

(4.1) K ° ( X ; i % ) ) - ^ K 0 ( X ; S ( 7 ' ) ) 

where 7' is the trivialization obtained by pulling back 7 to the product bundle Y X x 
Y ' — > X . 

Applying this result to the initial Azumaya bundle in § 1 and the general case, shows 
that K°(X;a:,/?) and K°(X; 8(7)) are each naturally isomorphic to some (possibly 
different) K°(X; 8(7')) where 7' is a trivialization of the lift of L to L x x Y, obtained 
in the two cases by lifting the trivialization from L or Y to the fibre product. Thus 
it remains to consider two different trivializations over the same fibration. 

Proposition5. — If^i are two trivializations of(j)*L overY as in (6) then there is an 
embedding of algebras, unique up to homotopy, 

(4.2) * % 2 ) W ( 7 i ) ^ * - o o ( T 2 ; . í 0 
for a line bundle over the 2-torus which induces natural isomorphisms 

(4.3) K°(X; J2(72)) -BU K°(X; ®12)) K°(X; S( 7 l )) 
where U12 is the completion of 9^(71) 13 # - ° ° ( T 2 ; K). 

Proof. — This is really an adaptation of the proof of the index theorem via embed­
ding. First, we recall the discussion above, which shows that the primitive line bundle 
7(72) is isomorphic to ./(71) ® {K\2 (3 Kf

12) for a line bundle Ki2 over Y pulled back 
from a line bundle K over T by a smooth map K,I2 : Y —• R 2 . This map embeds Y 
as a subfibration of (f) o m : Y x T 2 —• X. Let N —• Y be the normal bundle to this 
embedding. Given a metric this carries a field of harmonic oscillators on the fibres, 
the ground states of which give the desired embedding. 

Let v(zX) be the L2-orthonormalized ground state on the fiber over z G K Then 

(4.4) r ( r l V ( 7 ) ) 3 a f a , ^ ) ^ f l = vizuCMz!,z2)v(z2,C2) G <J(VW; J ( 7 2 ) ) 
is an embedding. Moreover, this is an embedding of algebras with the algebra struc­
ture on the right given by Schwartz-smoothing operators. Now consider the bundle 
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J(7i) № K № K' over x T 2 x T 2 . Restricted to the image of the embedding of 
y[2] g i v e n by K\2 acting in both fibres, this is isomorphic to 1/(72) since by construc­
tion K pulls back to if 12 over Y. Now, consider an embedding of V, using the collar 
neighborhood theorem, as a neigborhood, Q, C Y x T 2, of the image of YM under 
this embedding. The bundle K, pulled back to Y x T 2 by the projection onto T 2 

can be deformed to a bundle K, which is equal over Q to the pull back under the 
normal retraction of its restriction, jK"12, to the image of Y. Then the embeddign (4.4) 
embeds g ^ y M ; J ( 7 2 ) as a subalgebra of %™{(Yf)W',J(ll)®KMK'), Y' = Y x T 2. 
Moreover, using the full spectral expansion of the harmonic oscillator, the completion 
of the image is Morita equivalent to the whole subalgebra with support in the com­
pact manifold with boundary which is the closure of C Y'. This in turn is Morita 
equivalent to the whole algebra and hence, after another deformation of K back to 
K over T 2 to $12 in (4.3). This gives the first isomorphism in (4.3). The second 
follows from stabilization by the compact operators on K over T 2 as discussed above, 
completing the proof. • 

Proof of (15). — As noted above this is a corollary of Proposition 5 and the pre-
ceeding discussion. Namely this provides a stabilized isomorphism, unique up to 
homotopy, of the Azumaya bundle in §1 with that constructed over L xx Y by lift­
ing the trivialization over L to the fiber product. The same is true by lifting the 
trivialization over Y to the fiber product. Then the Proposition constructs a stable 
isomorphism, again unique up to homotopy, of the two lifts to L Xx x 7 x T 2 . These 
stable isomorphisms project to a unique isomorphism of the twisted K-groups, as in 
(15), consistent under composition. • 

Lemma 4. — The Azumaya bundle 9^(7), lifted to Y, is completion isomorphic to the 
trivial bundle 3C, with the isomorphism fixed up to homotopy, and this induces the 
natural isomorphisms (14). 

Proof — The primitivity condition on J shows that when lifted to the second two 
factors of Y^ it is isomorphic to the bundle over Y^ of which the elements of 
\j/(y[2]/y- j ' ) ? the smoothing operators on the fibers of Y^ as a bundle over Y, are 
(density-valued) sections. As noted above, Kuiper's theorem shows that the comple­
tion of \I>(Yt2' / Y; J') is naturally, up to homotopy, isomorphic to the trivial Azumaya 
bundle from which (14) follows. • 

5. Analytic index 

We now proceed to define the analytic index map (16) using the constructions in 
§2, §3 and §4. The first step is to define the projective bundle of pseudodifferential 
operators. We do this by direct generalization of Definition 1. So, for any Z2-graded 
bundle E =(£?+, E-) over Y set 

(5.1) ¥{Y/X\ ft <g> E) = I£(Y[2], Diag; J ® Hom(E) ® ÇlR) 
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where Hom(E) = E- IEI E+ over and I£ is the space of (classical) conormal 
distributions. As is typical in projective index theory, the Schwartz kernel of the 
projective family of elliptic operators is globally defined, even though one only has 
local families of elliptic operators with a compatibility condition on triple overlaps 
given by a phase factor. More precisely, definition (5.1) means that on any open set 
in Y^ over which J is trivialized as Kom(KT) as in Proposition 2, the kernel is that 
of a family of pseudodifferential operators on the fibres of Y acting from sections 
of E+ to sections of E-. It follows from the standard case that (3.4) also extends 
immediately to show that if r : U —• Y is a section over an open set, then 

(5.2) g>oo(5*(0-1(C/)/C/)(E)=Wl(0Ar(,U),Kr Q E) 

g>oo(5*(0-1(C/)/C/);hom(E)0Ar,), 

where we have used the fact that hom(KT) is canonically trivial. The principal symbol 
map here is invariant under conjugation by functions and hence well-defined indepen­
dent of the trivialization; Ng is the trivial line bundle corresponding to functions of 
homogeneity I on T*(<frx(U)/U) and hom(E) is the bundle (over S*^" 1 ([/)/£/)) of 
homomorphisms from E+ to E„. Thus the usual composition properties of pseudodif­
ferential operators extend without any difficulty as do the symbolic properties. More 
precisely, 

Lemma 5. — The spaces of smooth sections o f^ f £ (Y /X; S 0 E ) form graded modules 
under composition and the principal symbol defined through (5.2) is independent of r 
and gives a multiplicative short exact sequence for any £ : 

(5.3) * M ( 7 / I ; S ^ E ) * ' ( y / X ; S®E) if°(S*(y/X;p* hom(E) ® JV»). 

Proof — The theory of conormal distributional sections of a complex vector bundle 
with respect to a submanifold, implicit already in Hormander's paper [18], shows that 
these have well-defined principal symbols which are homogeneous sections over the 
conormal bundle of the submanifold, in this case the fibre diagonal, of the pull-back 
of the bundle tensored with a density bundle. In this case, as for pseudodifferential 
operators, the density bundles cancel. Moreover the bundle J is canonically trivial 
over the (fiber) diagonal in Y^ by the primitivity property of J. The symbol in 
(5.3) therefore does not involve any twisting - it takes values in the same space as in 
the untwisted case, and is a well-defined homogeneous section of the homomorphism 
bundle of E (hence section of that bundle tensored with the homogeneity bundle Ni) 
on the fibre cotangent bundle - which is canonically the conormal bundle of the fibre 
diagonal, as claimed. • 

With the trivialization K fixed, the symbol of a projective family of elliptic pseu­
dodifferential operators determines an element in K®(T*(Y/X)) We now show that 
the index of such a projective elliptic family is an element in twisted K-theory of 
the base, K°(X, 8). More precisely, let P e ^m(Y/X; U ® E) be a projective family 
of elliptic operators. This means that the symbol is invertible in the usual sense, 
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so from the standard ellipticity construction (using iteration over £ in the sequence 
(5.3)) P has a parametrix Q G # " m ( y / X ; 8®E_) , where E_ = (£_, E+), such that 
S0 = 1 - QP G V-°°(Y/X; ft ® E+) and St = 1 - PQ e tf-°°(y/X; ft®E-). Then 
the index is realized using the idempotent 

E1 = 1 - S 2 

SiP 
Q № + 5 2 ) 

si 
GM 2 (^-° 0 (y/X;fô(8)E) t ) . 

Here, f denotes the unital extension of the algebra. It is standard to verify that Ei is 
an idempotent. 

Then, as in the usual case, the analytic index of P expressed in terms of idempotents 
is 

(5.4) 

inda (P) = [Ex - E0] G Ko(y-°°(Y/X; ft ® E)) where 

EQ = 
1 0 

0 0 
G M 2 ( ^ - ° 0 ( y / X ; f ô ® E ) t ) . 

That inda {P) is a well-defined element in the K-theory follows from invariance of 
K-theory under Morita equivalence of algebras. Thus, the inclusion 

Ìf°( jr , ft) = V-°°{Y/X; ft) ^ V-°°{Y/X; S® E). 

induces a natural isomorphism of K 0 (^"°° (y /X; 8®E)) and K°(X; ft). Therefore we 
have defined the analytic index of any projective family of elliptic pseudodifferential 
operators. 

To see that this fixes the map, 

(5.5) inda : K°(T*(Y/X) ; / 9 >*Ö) — K°(X, U) 

we need, as usual, to check homotopy invariance, invariance under bundle isomor­
phisms and stability. However, this all follows as in the standard case. 

Of particular geometric interest are examples arising from projective families of 
(twisted) Dirac operators. If the fibres of Y are even-dimensional and consistently 
oriented, let C\(Y/X) denote the bundle of Clifford algebras associated to some family 
of fiber metrics and let E be a Z2-graded hermitian Clifford module over Y with 
unitary Clifford connection V E . 

This data determines a family of (twisted) Dirac operators <3e acting fibrewise on 
the sections of E. We can further twist <3e by a connection V r of the line bundle KT 

over 0_1(C7) C Y for contractible open subsets U C X. In this way, we get a projective 
family of (twisted) Dirac operators Sg<g>E € ^(Y/X] E(g> ft) which can be viewed as a 
family of twisted Dirac operators acting on a projective Hilbert bundle P(<^+(E®if r)) 
over X. Here the local bundle 0*(E ® KT) is given by U x L 2 ^ - 1 (£/)/£/; E ® KR) for 
contractible open subsets U C X. 

The above projective Dirac family can be globally defined as follows. Consider the 
delta distributional section 5^J G I9(Y^, J (8) Hom(E) ® £IR), which is supported on 
the fibrewise diagonal in Y ^ . Let L V E denote the unitary Clifford connection acting 
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on the left variables, and V 3 a connection on J which is compatible with the primitive 
property of J. Then 

(l <g> L V E + V J ® 1 ) 4 ' J g J—1 (y M, J <g> Hom(E) ® T*(Y/X) ® 0 « ) , 

and composition with the contraction given by Clifford multiplication gives 

c o ( l ® L V E + V J ® l ) 4 ' J G J*~1(y'2', J (8) Hom(E) ® 

which represents the Schwartz kernels of the projective family of (twisted) Dirac 
operators denoted above by dn^E-

6. The topological index 

In this section we define the topological index map for the setup in the previous 
section, 

(6.1) indt : K°(T(y/X);p*0*8) —• K°(X; ft). 

It is defined in terms of Gysin maps in twisted if-theory, which have been studied in 
the case of torsion twists in [20], which extends routinely to the general case as in 
[10, 8]. In the particular case that we consider here, there are several simplifications 
that we shall highlight. 

We first recall some functorial properties of twisted K-theory. Let F : Z —• X be 
a smooth map between compact manifolds. Then the pullback map, 

F] :K°(X, ft) ~^K°(Z ,F*8) , 

is well defined. 

Lemma 6. — There is a canonical isomorphism, 

ji : K°(X, ft) * K°C(X x r 2 J V ; 8 ) , 

determined by Bott periodicity, where the inclusion j : X —• X x R 2 i V is onto the zero 
section. Here -K\ : X x R2N —> X is the projection onto the first factor. 

Proof. — First notice that K*(X, U) = K.(C°°(X, &)) and K*C(X x R2iV,7rJS) = 
K.(CC°°(X x R2^;7rf 8)). But CC°°(X x R 2 J V;tt;8) = C°°(X, U) ® C c°°(R 2 i V). So the 
lemma follows from Bott periodicity for the if-theory of (smooth) operators algebras. 

For the fiber bundle 0 : Y —• X of compact manifolds, we know that there is an 
embedding i : Y —• X x R^, cf. [5] §3. The fibrewise differential is an embedding 
Di : T(Y/X) —• X x R2N with complex normal bundle Jf. 

Let 8 be the smooth Azumaya algebra over X as defined earlier in §3; there is a 
fixed trivialization of </>* ft. Let ft^ be the lift of (f)* ft to Jf. Let p : T(Y/X) —• Y be 
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the projection map. Then since 4>* U is trivialized, we have the commutative diagram 

(6.2) 

К°с(Т(У/Х),р*ф*П) -^u К°С{Ж,ПХ) 

- A 1 -
K°e(T(Y/X)) -™!U К°С(Ж), 

where Di\ in the lower horizontal arrow is given by £ = (£ + ,£~,G) 1—• tt*£ ® 
(7T*^+,7r*^"",c(i;)). Here £ =(£+,£~,) is pair of vector bundles over T(Y/X), G : 
£ + —> £~~ a bundle map between them which is an isomorphism outside a compact 
subset and (n*^, 7r*<̂ ~, C(V)) is the usual Thorn class of the complex vector bundle 

where ir is the projection map of Jf and ^ denotes the bundle of half spinors on 
Jf. On the the right hand side the the graded pair of vector bundle data is 

(7Г*£+ <g> 7rV+ 0 7Г*£~ ® 7rV~, 7ГЧ+ ® 7ГV" ® TT*£-® 7ГV+) 

with map between them being 

G c(vj 
z(v) G 

v E N 

This is an isomorphism outside a compact subset of J\f and defines a class in K°c (9f) 
which is independent of choices, provided the trivialization of Q* (C) is kept fixed. 
Then the usual Thorn isomorphism theorem asserts that Di\ is an isomorphism. 
The upper horizontal arrow is defined in the same way by tensoring with the same 
Thorn class. 

Now, 9f is diffeomorphic to a tubular neighborhood 'U of the image of Y\ let 
$ : %l —> J\f denote this diffeomorphism. Then the induced map in K-theory gives 
isomorphisms, 

Ф*:К°(^, й^)^к^(U) Ф * : К ° ( ^ , й ^ ) ^ к ^ ( ? / , Ф * ( а д . 

We will next show that the inclusion i<u : îl -u X x R2N of the open set ÎI in 
X x R2N induces a natural extension map 

Ы , : К°С(%Ф*(ПЖ)) —> K°C(X x R2N,^B) 

To see this, we need to show that the restriction i\^\ft is trivialized. Note that 
фот = 7Ti ог<г/, where r : —• У is equal to the composition, Лоф, and Л : Ж —> Y 
the projection map. Since (фот)* ffi = т*ф* Й is trivializable because 0* Й is trivialized, 
it follows that Й is trivialized. 

We have the following commutative diagram. 
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(6.3) K{T{Y/X)) ^ K°c(3f) 1 K°(&) 

P'K, S a a 

K°C(T(Y/X),p*4,*tt) — - K ° ( : r , | ^ K ° ( ^ $ * ( ? V ) ) 

K°(Xxiî2JV,7rïiS) 
= j-1 

k ° ( x , a). 

indt 

The composition of the maps in the diagram above defines the Gysin map in twisted 
K-theory, 

Dû : K°C(T(Y/X)) —• K°C(X x R2N,TT*S). 

Here we have used the fact that since 7r = 7Ti O Z it follows that Di*nl U = p*(/>* U is 
trivialized. Now define the topological index, as the map 

(6.4) indt = j , ° Di, : K(T(Y/X)) — K°(X; 8), 

where we apply the Thorn isomorphism in Lemma 6 to see that the inverse j , 1 exists. 
We also note that ind̂  o p % = indt, consistent with the corresponding analytic 
indices. 

The source is untwisted since S is trivialized by as an Azumaya bundle, when 
pulled back to Y. The identification of twisted and untwisted K-theory in (16) depends 
on the choice of trivialization (6) but then so does the Azumaya bundle and these 
choices do not change the index map indt. 

7. Twisted Chern character 

First we recall an explicit formula for the odd Chern character in the untwisted 
case. For any compact manifold (of positive dimension), Z, the group of invertible, 
smoothing, perturbations of the identity operator 

(7.1) G-°°(Z) = {ae V-°°(Z);3 (Id+a)" 1 = Id+6, b G tf-°°(Z)} 

is classifying for odd K-theory. So there is a canonical identification of the odd K-
theory of a compact manifold X with the (smooth) homotopy classes of (smooth) 
maps 

(7.2) K\X) = [X;G-°°(Z)}. 

k°(x, a). 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2009 



276 V. MATHAI, R. B. MELROSE & I. M. SINGER 

The odd Chern character is then represented in deRham cohomology by the pull-
back of the universal Chern character on G~°°(Z) : 

(7.3) 

Ch = 
oo 

k=0 
CktvdA-'dA)2^1) 

1 

2m f tr (A~ldA) exp! 
Ml-t) 

2m 
[A^dA)2) )dt, A = Id+a. 

Here dA = da, as for finite dimensional Lie groups, is the natural identification of 
TaG-°° with tf-°°(Z) coming from the fact that G _ 0 0 ( Z ) is an open (and dense) set 
in Thus for an odd K-class 

(7.4) 
a:X —*G-°°(Z), Ch([a]) = [a* Ch]GH o d d (X) , 

a* Ch 1 
2m f 

tri (Id+a) 1 da exp 
t(l-t) 

2m 
[(Id H-aJ-Ma)2 dt 

where now the differential can be interpreted in the usual way for functions valued in 
the fixed vector space \ £ _ 0 0 ( Z ) . 

For any fiber bundle (f> : Y —• X, with typical fiber Z, KX(X) is also naturally 
identified with the abelian group of homotopy classes of sections of the bundle of 
groups over X with fiber G~°°(ZX) at x G X. That is, the twisting by the diffeomor-
phism group does not affect this property. The formula (7.4) can be extended to this 
geometric setting by choosing a connection on 0, i.e. a lift of vector fields from X to Y. 
Indeed, such a connection can be identified as a connection on the bundle t?°°(Y/X), 
with fibres ^^(Zx) (and space of sections ^°°(Y))7 as a differential operator 

(7.5) 
V : Tg°°(Y) —>%°°(Y;<I>*T*X), 

V(hg) = (dh)g + hSïg, h G ÏÏ°°(X), g G ÏÏ°°(Y). 

The curvature of such a connection (extended to a superconnection), is a first order 
differential operator on the fibres w = V2/2iri G Diff 1(Y/X; C, <£*A2X) from the 
trivial bundle to the 2-form bundle lifted from the base. The connection on Y in­
duces a connection on ty~°°(Y/X), as a bundle of operators on ^°°(Y/X), acting by 
conjugation and then (7.4) is replaced by 

(7.6) Ch(A) = 

1 
f tr ( (A~XVA) exp ((1 - t)w + tA~xwA + 

t(l-t) 

2-KI 
A^VAfYjdt, 

A:X^G-°°(Y/X), 7T o A = Id. 

Note that any such section is homotopic to a section which is a finite rank perturbation 
of the identity, in which case (7.6) becomes the more familiar formula. The same 
conclusions, and formula hold, if the bundle of groups of smoothing perturbations of 
the identity acting on a vector bundle over Y, G~°°(Y/X\ E), is considered, provided 
the connection (and curvature) are lifted to a connection on E. 
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Note that (7.6) can also be considered as the pull-back of a universal form on the 
total space of the fibration G~°°(Y/X). It then has the property that restricted to a 
fiber, so that the curvature vanishes, one recovers the original form in (7.3). 

The case of immediate interest arises from a circle bundle p : L —• X. As explained 
in §3 we consider the fiber product fibred over L with the fibres taken to be in 
the second factor, with the smoothing operators acting on sections of J. Of course 
these operators are acting on the restriction of this line bundle to each fiber, which 
is a circle, so they can always be identified on each fiber with ordinary smoothing 
operators. On the other hand J has the primitivity property of Lemma 2 which 
allows us to identify the smoothing operators on sections of J on the fibres of 
with IS*00 (Xft3'; np J) as in Proposition 3. An explicit fiber density factor is not needed 
since this is supplied naturally by the Hermitian structure. 

Proposition 6. — Suppose a G J?°°(Lt2]; J) is such that A = Id-fa is everywhere in-

vertible over X . Then the odd Chern character of Id +a , as a form on L computed 

with respect to a unitary connection on L and the primitive connection of Lemma 1 
on J, with combined curvature fi, 

(7.7) Ch»(A) = 

1 

2-KI 
f tr ((A^VA) exp ((1 - t)(l + tA^QA + t(l - t^A'1 VA)2)) dt 

G Jf°°(L;A o d d) 

is closed and satisfies the conditions in (1.10). 

Proof — That the Chern form (7.7) is closed follows from the standard properties. 
To see the other stated properties, we choose a section of L over an open set U C X 
over which u has a smooth logarithm and set / = ^ logu. In terms of the induced 
trivializations 

(7.8) Lv = U x S, LP = U x S x S, 

let the fiber variables be 9\ and 02- The operators are acting in the 02 variable and 
the lifted connection on L as a fibration over L is therefore 

(7.9) V = dx + d0l + 7#02 

where 7 G 5?°°(C/; A) is the local connection form for L. The corresponding connection 
on ^ ^ ( Z ^ / L ; J) in terms of this trivialization and of the connection on J from 
Lemma 1 

(7.10) V j = dx + d6l + jd$2 + J dèi. - 7/. 

The curvature is 

(7.11) Q = V2J/2TTÌ = p(de2 - f) + 
1 

2ni 
oc A 7, 7 = d0\ + 7. 
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In terms of this local trivialization a = a(x, 62, #3) is independent of the first (param­
eter) fiber variable. Inserting (7.11) into (7.7) observe that the two terms in (7.11) 
commute so 

(7.12) ot A7 
Ch.%(A) = e 2™ v, 

ve %°°(U;Aodd) 

satisfies the conditions of (1.10). 

Note that under a deck transformation of X, i.e. integral shift of / by n £ N, 
each term undergoes conjugation by exp(m#) and the Chern form itself is therefore 
unchanged. 

It follows from Proposition 1 that Ch%(A) defines an element in the twisted coho­
mology of X, given explicitly by the form v in (7.12). Although the proof above is 
written out for sections of J over l№ the passage to matrix-valued sections is merely 
notational, so it applies essentially unchanged to elements of 

(7.13) G(X:B®M(N,G) = 

{a e ^°°(L[2];J <g> M(N,C);IdNxN +a(x) is invertible for all x € X}. 

Lemma 7. — The Chern form (7.7) descends to represent the twisted Chern character 

(7.14) G(X; ft ® M(N, C) ) /~ = K 1 (X; 8) —+ H o d d ( X ; S) 

where the equivalence relation on invertible matrix-valued sections of the Azumaya 
bundle is homotopy and stability. 

Proof — The invariance of the twisted cohomology class under stabilization follows 
directly from the definition. Invariance under homotopy follows as usual from the fact 
that the construction is universal and the form is closed, so is closed for a homotopy 
when interpreted as a family over X x [0,1] and this proves the invariance of the 
cohomology class. 

It also follows directly from the definition that the twisted Chern character behaves 
appropriately under the Thorn isomorphism for a complex (or symplectic) vector 
bundle w : W —• X. That is, there is a commutative diagram with horizontal 
isomorphisms 

(7.15) K 1 (X; 8) — ^ K 1 (W; w* U) 

Ch8 ChB 

•i 'i 
H o d d (X ; Ô) ATD R°c

dd(W; w*8) 

As in the case of the bundle of groups G~°°(Y/X) the form (7.7) is again the pull-
back from the total space of the bundle of groups G~°°(X; H) of invertible sections 
of the unital extension of the Azumaya bundle and then restricting this universal 
form to a fiber one again recovers the standard odd Chern character in (7.3). This is 
enough to show that the Chern form here does represent the twisted Chern character 
as widely discussed in the literature, for instance recently by Atiyah and Segal in [4]. 
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Namely they remark that the Chern character as they describe it (in the even case), 
which is determined by universality under pull-back from the twisted PU bundle over 
if(Z, 3), is actually determined by its pull-back to the 3-sphere. The PU bundle 
over S 3 with generating DD class is trivial over points and so can be transferred to 
(0,7r) x § 2 to be trivial outside a compact set and thence to S x S2 where it reduces 
to the twisted bundle again with generating DD class. As shown in [4], the universal 
twisted Chern character over the 3-sphere is determined by multiplicativity and the 
fact that it restricts to the standard Chern character on the fibres over points. The 
odd case follows by suspension so the deRham version of the Chern character above 
does correspond with more topological definitions. • 

We need some extensions of this discussion of the odd twisted Chern character. 
In particular we need to discuss the even case. However, the context needs to be 
broadened to cover operators on the fibres of a trivializing bundle Y as in (3) -
(6). Finally the relative case is needed for the discussion of the Chern character of 
the symbol and the index formula in twisted cohomology. Fortunately these are all 
straightforward generalizations of the untwisted case. 

We start with the extension of the odd twisted Chern character to the more general 
geometric case under discussion here. Thus, instead of being over , the bundle J 
is defined over yPl. Still, when lifted to the fiber product 

(7.16) YM=LXXYW, 

J is reduced to a the exterior tensor product 

(7.17) p*J = J®J' over y M 

where J is a line bundle over Y = L xxY. Namely, there is a character property for 
s : yt 2l —> U(l), which is determined by the trivialization of L over y, when lifted 
to yPl : 
(7.18) s(zLLZ2) = s(z1J)s(z2J) 1: s:Y—>U(1). 

Here s is fixed by the demand that it intertwine the trivializations over L and Y. 
Thus, using s to define J by the same procedure as previously used to define J, (7.17) 
follows. 

From this point the discussion proceeds as before. That is, the Azumaya bundle 
iSy acting on the fibres of Y over X lifts to Y, acting on the same fibres but now 
over Z, into a subalgebra of ̂ f~°°{Y/L; J). Then, as above, the odd Chern character 
for invertible sections of the unital extension of the Azumaya bundle is a differential 
form on L satisfying (1.10) and so defines the twisted odd Chern character in this 
more general geometric setting. 

Next, consider the even twisted Chern character. To do so, recall that for a complex 
vector bundle E embedded as a subbundle of some trivial over a manifold X the 
curvature, and Chern character, can be written in terms of an idempotent e projecting 
onto the range as the 2-form valued homomorphism LJE — e(de)(l—e)(de)e/27rz. There 
is a similar formula if E is embedded in a possibly non-trivial bundle F with connection 
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V F which is projected onto E using e. The same formula applies in the case of a 
subbundle of ^°°(Y/X; E) given by a family of idempotents e. In the untwisted case, 
the K-theory of X can be represented by formal differences of finite rank idempotents 
in the fibres of ^6°°{Y/X\ E), giving finite dimensional bundles. In general, in the 
twisted case, the K-theory is interpreted as the C* K-theory of a non-unital algebra 
(the completion of in the compacts), it is necessary to take pairs of infinite rank 
idempotents in with differences valued in (g) In fact it is enough to take 
single idempotents in CN ® $ with constant unital part eo G M(iV, C) and consider 
the formal difference e © eo to generate the K-theory. For the untwisted case, the 
usual Chern character is given by 

(7.19) t r ( exp ( | j ) - eo ) 

as can be shown by suspension from the odd case if desired. Here all terms in A > 0 

involve a derivative of e and hence are smoothing, as is the normalized term of form 
degree zero, so the trace functional can be applied. 

To carry this discussion of the even Chern character to the twisted case, we can 
proceed precisely as above. Namely, given an idempotent section, e, of ® ffiy ̂  a 

bundle over X with constant unital term eo one can compute the Chern form (7.19) 
after lifting the idempotent to CN <g) ^~°°(Y/L\ J <g> CN) as discussed above. Then, 
for the same reason, the form satisfies (1.10) and defines the even Chern character as 
a twisted deRham form on X. 

The final extension is to the relative case to handle the Chern character of the 
symbol of a pseudodifferential operator. As discussed in [1] for any real vector bundle 
W —• Y (here applied to T*(Y/X)) the compactly supported cohomology of W can 
be obtained directly as from the relative deRham complex of SW, the sphere bundle 
of W, and Y. This involves the same odd Chern class on SW (which is no longer 
closed) and the even Chern class on Y which 'corrects' the failure of the odd form to 
be closed. The extension to the twisted case just combines the two cases discussed 
above; this is briefly considered in §10. 

8. Semiclassical quantization 

To avoid the usual complications which arise in the proof of the index theorem, 
especially concerning the multiplicativity of the analytic index - although they are 
no worse in the present twisted setting than the standard one - we introduce another 
definition of the index map using semiclassical pseudodifferential operators. This 
approach is discussed in more detail in [21] but the underlying notion of a semiclassical 
family of pseudodifferential operators is well established in the literature [15]. The 
method of 'asymptotic morphism' of Connes and Higson is closely related to the notion 
of semiclassical limit. 
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Proposition 7. — Letip : M —• B be a fibre bundle of possibly non- compact manifolds 
then the modules 

*<i8cl(M/B;E) C r°((0,l)e;*'(M/B;E)) 

of semiclassical families of classical, uniformly compactly-supported, pseudodifferential 
operators on the fibres oftjj are well defined for any ^-graded bundle E, have a global 
multiplicative exact symbol sequence 

(8.1) 0 — e t f ^ M / B j E ) Vscl(M/B;E) ^ Sec(T*(M/B);hom(E)) —• 0 

and completeness property 

(8.2) 

J 

e^>scl(M/B;E) = fc°°([0,1); *£(M/B;E)). 

Note that the space of functions on the right in (8.1) consists of the global classical 
symbols on T*(M/B), with compact support in the base M, not the quotient by the 
symbols of order £—1. The space on the right in (8.2) consists of the smooth families 
of pseudodifferential operators with uniformly compact support in the usual sense, 
depending smoothly on the additional parameter e € [0,1) down to e = 0 where 
they vanish with all derivatives. Thus, by iteration, the semiclassical symbol in (8.1) 
captures the complete behaviour of these operators as e j 0. 

To define the semiclassical index maps, one for each parity, we only need the 
smoothing operators of this type, for £ = — oo; indeed this is the key to their utility. 
In this special case the Schwartz kernels of the operators are easily described explicitly. 
Namely they correspond to the subspace of J?°°((0, l ) x M ^ ; Hom(E)®fi/j)) consisting 
of those functions which have support in some set (0,1) x K with K C compact, 

which tend to 0 rapidly with all derivatives as e | 0 in any closed set in 1 disjoint 
from the diagonal and which near each point of the diagonal take the from 

(8.3) €-dK(c,b,z,z' z — z', 
e 

\dz'\ 

where K is a smooth bundle homomorphism which is uniformly Schwartz in the last 
variable and d is the fiber dimension. 

As with usual pseudodifferential operators, there is no obstruction to defining 
\£gCl(y/X; f2®E) either by transferring the kernels directly to sections of J(g)Hom(E) 
over yl2l or by using the local form (3.4). 

Proposition 8. — The space of invertible elements in the unital extension of the semi-
classical twisted smoothing operators defines an odd index map via the diagram 

(8.4) 
e^>scl(M/B;E) = fc°°([0,1); *£(M/B;E)). *£(M/B;E)). 

Kl(T*(Y/X))-
ind8Cl 

- K ^ X ; 8). 

[Id+cr8Ci(A)] [(Id+A)l _J 
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Proof. — The space on the top line in (8.4) consists of the invertible perturbations of 
the identity by semiclassical smoothing operators, with the inverse of the same form. 
Thus it follows that Id -\-asc\(A) is invertible as a smooth family of N x N matrices 
over T*(Y/X), reducing to the identity at infinity. It therefore defines an element of 
odd K-theory giving the map on the left. Conversely, the invertibility of Id-ha for 
a symbol a implies, using the exactness of the symbol sequence, that Id+A, where 
0"sci(̂ 4) = a, is invertible at least for small e. Modifying the semiclassical family to 
remain invertible for e G (0,1) shows that this map is surjective. The map on the 
right, defined by restriction to e = \ (or any other positive value) immediately gives 
an element of the odd twisted K-theory of the base. 

To see that the 'odd semiclassical index', or push-forward map, is defined from this 
diagram it suffices to note that the 'quantized' class on the right only depends on the 
class on the left up to homotopy and stability, which as usual follows directly from 
the properties of the algebra. • 

For this odd index there is a companion even index map. Recall that a compactly 
supported K-class can be defined by a smooth map into N x N matrices which takes 
values in the idempotents and is constant outside a compact set, where the class can 
be identified with the difference of the projection and the limiting constant projection. 

Proposition 9. — If a E S^° (T*(Y/X) ; C n ) is such that + a takes values in the 
idempotents, where I I ^ G M ( N , C ) , then a has a semiclassical quantization 

(8.5) A G 9 ^ ° ( Y / X ; ft®CN), a s c l ( A ) = a, 

such that (IIoo + A ) 2 = IIoo -f A and this leads to a well-defined even semiclassical 
index map 

(8.6) 
indscl 

K°(T*(Y/X))ZZT^ TK?(X; ft) 
ind°a 

analogous to (8.4) and as indicated, equal to the analytic index as defined in §5. 

Proof. — Certainly a quantization of a exists by the surjectivity of the symbol map. 
Moreover the idempotent IIoo + a can be extended to a 'formal' idempotent, meaning 
that, using the symbol calculus, the quantization can be arranged to be idempotent 
up to infinite order error at e = 0. The error terms of order — oo in the semiclassical 
smoothing algebra are simply smoothing operators vanishing to infinite order with e. 
Use of the functional calculus then allows one to perturb the quantization by such 
a term to give a true idempotent for small e > 0. Then stretching the parameter 
arranges this for e G (0,1). The pair of this projection, for any e > 0, and the limiting 
constant projection, IIoo defines a K-class. The existence of the map (8.6) then follows 
in view of the homotopy invariance and stability of this construction. 

To see the equality with the analytic index as previously defined is the major step 
in the proof of the index theorem. This amounts to a construction giving both this 
semiclassical index map and the usual analytic index map at the same time. The 
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two index maps, semiclassical and analytic are based on two different models for the 
compactly supported K-theory of T*(Y/X) - or more generally of a vector bundle 
W. The first reduces to the set of project ion-valued smooth maps W —• M(N,C) 
into matrices which are constant outside a compact set. The second is defined in 
terms of triples, consisting of a pair of vector bundles over the base together with an 
isomorphism between their lifts to S*W. 

These two models can be combined into a larger one, in which the set of objects are 
triples (E, F, a) where E and F are vector bundles over W, the radial compactification 
of W, given directly as smooth project ion-valued matrices into some CN and where 
a intertwines these two smooth families of projections over S*W, the boundary of 
the radial compactification. The equivalence relation (£i,Fi,ai) ~ (#2^2,^2) 1 S 

generated by isomorphisms, meaning smooth intertwinings of Ei, and E2 and of F\ 
and F2 over W which also intertwine the isomorphisms over S*W, the boundary, plus 
stability. This again gives KC(W). 

Standard arguments show that any such class in this general sense is equivalent to 
an 'analytic class' in which the bundles are lifted from the base, or a 'semiclassical 
class' in which the projections are constant outside a compact set and the isomorphism 
between them is the identity - in fact the second projection can be taken to be globally 
constant. Moreover equivalence is preserved under these reductions. 

Using these more general triples a combined analytic-semiclassical quantization 
procedure may be denned by first taking semiclassical quantizations of the projec­
tions E, F to actual semiclassical families P, Q which are projections; the classical 
symbols of these projections can be chosen to be independent of e. This is again the 
standard argument for quantizations of idempotents which is outlined above. Then 
the isomorphism a can be quantized to a pseudodifferential operator A in the ordinary 
sense but this can be chosen to satisfy AP( | ) = A = Q(\)A so \t 'acts between' the 
images of P(§) and Q{\). This is accomplished by choosing some A' with symbol a 
and replacing it by the 'Toeplitz operator' A = Q( | )A 'P ( | ) which necessarily has 
the same symbol. 

Then A is relatively elliptic, in the sense that it has a parametrix B satisfying 
BQ(\) = B = P(\)B and with AB - Q(\) and BA - P ( | ) smoothing operators. 
The analytic-semiclassical index can now be denned using the using the same formula 
as the analytic index above. That it is well-defined involves the standard homotopy 
and stability arguments. 

Finally then this map clearly reduces to the analytic and semiclassical index maps 
on the corresponding subsets of data and hence these two maps must be equal. The 
introduction of the Dixmier-Douady twisting makes essentially no difference to these 
constructions so the equality in (8.6) follows. • 
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Proposition 10. — The appropriate form of Bott periodicity can be proved directly giv­
ing commutative diagrams 

(8.7) Kl(T*(Y/X)) ^ K°(T*(Y x R)/(X x R)) 

KX(X; g) »- K°(X x R; 8) 

indscl inds°cl 

where the horizontal maps are the clutching construction and 

(8.8) K°(T*(Y/X)) ^ K(T*(Y x R)/(X x R)) 

indsci 1° ind*cl 

K°(X- 8) » K^X x R; 8) 

where the inverses of the horizontal isomorphism are the Toeplitz index maps. 

Corollary 1. — To prove the equality of the analytic and topological index maps it 
suffices to prove the equality of the odd semiclassical and odd topological index maps. 

Proof. — Suppose we have proved the equality of odd semiclassical and odd topolog­
ical index maps 

(8.9) K\{T*{Y/X)) 
indici  

indj 
Kl(X; 8). 

Both the topological and the semiclassical index maps give commutative diagrams as 
in Proposition 10, so it follows that the more standard, even, versions of these maps 
are also equal. • 

Lemma 8. — For an iterated fibration of manifolds 

(8.10) Z' M' 
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the semiclassical index gives a commutative diagram 

(8.11) Kt Г*(МЧУ)) 
indscl 

indi,, Kl(T*(M/Y)) 

indscl 
indscl 

where the map on the top right is the semiclassical index map for the fibration of M' 
over M pulled back to T*(M/Y). 

Proof — The commutativity of (8.11) follows from the use of a double semiclassical 
quantization, with different parameters in the two fibres (see the extensive discussion 
in [21]). • 

Lemma 9. — For any complex, or real-symplectic, vector bundle W over a manifold 
X the semiclassical index implements the Thorn isomorphism 

(8.12) Kin 
indscl 

>-
Thorn 

K i n 

Proof — This again follows from the use of semiclassical quantization in the 
'isotropic' of (pseudodifferential) Weyl algebra of operators on a symplectic vector 
space. The resulting symbol map is shown, in [21], to be an isomorphism using the 
argument of Atiyah. Since the Thorn map constructed this way is homotopy invari­
ant it applies to to case of a complex vector bundle where the 'positive' sympectic 
structure on the underlying real bundle is fixed up to homotopy. • 

9. The index theorem 

The odd topological index is defined as the composite map arising from an embed­
ding so we wish to prove the commutativity of the diagram 

(9.1) K\{T*{Y/X)) ^ К\{Т*{П/Х); П) — ^ K¿(T*(MM) x X) ; Й) 

indsci 
îndgci indscl Thom 

K(X; S). 

Here is a collar neighbourhood of Y embedded in MM, so is isomorphic to the 
normal bundle to Y. Thus, it suffices to prove commutativity in three places. The last 
of these is equality of the two maps on the right, that the semiclassical index map 
implements the Thom isomorphism (or in this trivial case, Bott periodicity). The 
second is 'excision' which is immediate from the definition of the semiclassical index. 
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The first commutativity, for the triangle on the left corresponds to multiplicativity of 
the semiclassical index which in this case reduces to (a special case of) Lemma 8. 

This leads to the main theorem. Here we tacitly identify the tangent and cotangent 
bundles via a Riemannian metric. 

Theorem 1 (The index theorem in if-theory). — Let <j) : Y —> X be a fiber bundle of 
compact manifolds, together with the other data in (3) - (6). Let ft be the smooth 
Azumaya bundle over X as defined in $3 and P G \£* (Y/X, ft (g) E) be a projective 

family of elliptic pseudodifferential operators acting on the projective Hilbert bundle 
P(0. (E 0 K T ) ) over X , with symbol p G K C ( T { Y / X ) ) , then 

(9.2) inda(P) = indt(p) G K°(X, ft). 

10. The Chern character of the index 

As discussed above, the index map in K-theory can be considered as acting on the 
untwisted K-theory, with compact supports, of T*(Y/X), via the identification with 
the (trivially) twisted K-theory coming from the original choice of data (3) - (6). The 
Chern character for the symbol class in the standard setting, 

(10.1) K*(T*(Y/X)) —> H^ v e n(T*(y/X)) 

can be represented explicitly in terms of symbol data and connections in a relative 
version of the formula? in §7 following Fedosov [13]. A K-class is represented by 
bundles (E+,E_) over Y and an elliptic symbol a identifying them over S*(Y/X). It 
is convenient to use the relative interpretation of the cohomology from [1]. Thus one 
can take the explicit representative 

(10.2) 

Ch([(E+,E-,a)] = (Ch(a),Ch(£ +) - Ch(£_)), 

Ch(o) ^ 1 
2ni I 

JO 

tr ( a - ^ V o J e ^ ) * where 

wit) = (1 - t)F+ + ta^F-a 4 
1 

2m 
t(l - t ) (a _ 1 Va) 2 and 

Ch(jE±) = trexp(F±/27n), F± = V2

±. 

Here V± are connections on E± over Y and V is the induced connection on 
hom(£' + ,^_) lifted to S*(Y/X). Note that the underlying relative complex is the 
direct sum of the deRham complexes with differential 

(10.3) ^°°(S*(Y/Xy, A*) E %°°(Y; A*), D = 
d 7T* 

0 -d 

In our twisted case, as shown in §7 the line bundle J over Y' 2 ' decomposes as J' 
when lifted to Y' 2 ' which has an additional fiber factor of L . The discussion of the 
Chern character therefore carries over directly to this relative setting. 
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Proposition 11. — For any element o fK° c (T*(Y/X) ) represented by (untwisted) data 
( E + , E - , a ) the twisted Chern character of the image in KC(T*(Y/X); p*(/)* ft) is rep­

resented by the pair of forms after lifting to L and trivializing J as in (7.17) 

(10.4) Chp.rn([(E+,E_,a)}) = (CMa) ,Ch s (E + ) - Ch g (£_)) 

in the subcomplex of the relative deRham complex fixed by (1.10), and p: T * ( Y / X ) — • 

Y is the projection. 

Of course the point of this discussion is that these forms do give the analogue of 
the index formula in (twisted) cohomology. 

Theorem 2. — For the twisted index map (5.5) the twisted Chern character is given 
by the push-forward of the differential form in (10.4) 

(10.5) 
Ch^oind : K^(T*(y/X);p*0*S) ~ K°C(T*(Y/X)) —+ H e v e n (X,5) , 

Ch^oind(p) = (-l) n0*p* {p*Todd(T*(r/X) ® C) A C h p ^ . 8 ( p ) } , 

where Todd(T*(Y/X)®C) denotes the Todd class of the complexified vertical cotangent 
bundle and p = [ ( !£+,£_, a)] as identified in Proposition 11. 

Proof. — By the Index Theorem in K-theory, Theorem 1 of the previous section, 
it suffices to compute the twisted Chern character of the topological index of the 
projective family of elliptic pseudodifferential operators. We begin with by recalling 
the basic properties of the twisted Chern character. As before, we assume that the 
primitive line bundle J defining the smooth Azumaya bundle ft is endowed with a 
fixed connection respecting the primitive property. It gives a homomorphism, 

(10.6) Chn : K°(X, ft) —• H e v e n (JM), 

satisfying the following properties. 

1. The Chern character is functorial under smooth maps in the sense that if 
/: W —• X is a smooth map between compact manifolds, then the follow­
ing diagram commutes: 

(10.7) 

K°(X,tf) —^-f K°(W,f*ÏÏ) 

Chg Ĵ Ch/*̂  

H e v e n ( JM) Reven(WJ*S). 

Here the pullback primitive line bundle /^*J defining the pullback smooth 
Azumaya bundle f*ft is endowed with the pullback of the fixed connection 
respecting the primitive property. 
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2. The Chern character respects the structure of K°(X, ft) as a module over K°(X), 
in the sense that the following diagram commutes: 

(10.8) 

K°pO x K°(X, tt) » K°(X, U) 

|CHXCHG | C H S 

H e v e n (X,Q) xH e v e n(X,<5) > B.evea(X,S) 

where the top horizontal arrow is the action of K°(X) on K°(X, ft) given by 
tensor product and the bottom horizontal arrow is given by the cup product. 

The theorem now follows rather routinely from the index theorem in K-theory, 
Theorem 1. The key step to getting the formula is the analog of the Riemann-Roch 
formula in the context of twisted K-theory, which we now give details. 

Let 7r : E —> X be a spinC vector bundle over X, i : X —• E the zero section 
embedding, and F G K°(X, ft). Then using the properties of the twisted Chern 
character as above, we compute, 

СЬ,.8(*1Л = ChT.a(Í!l®7T*F) 

Ch(i,l)ACK*n(**F). 

The standard Riemann-Roch formula asserts that 

Ch(z,l) = i*Todd(E)~1. 

Therefore we deduce the following Riemann-Roch formula for twisted if-theory, 

(10.9) CK-n{i\F) = Ù { T o d d ^ ) - 1 A Ch ö (F)} 

We need to compute Chg(indtp) where 

p = a] G K°C(T(Y/X)) * K°C(T(Y/X),p*</>* ft). 

We will henceforth identify T(Y/X) 9* T*(Y/X) via a Riemannian metric. Recall 
from §6 that the topological index, indt = J]-1 ° (Di)\ where i : Y X x R2N is an 
embedding that commutes with the projections <\>: Y —> X and -K\ : X x M?N —• X, 
and j : X <—• X x R2N is the zero section embedding. Therefore 

Ch 8(ind tp) = C h a ( j r 1 ° ( ^ ) ! P ) 

By the Riemann-Roch formula for twisted K-theory (10.9), 

Ch<BU<F)=J*Chn(F) 

since 7Tx : X x R2N —> X is a trivial bundle. Since 7Ti»j'.l = (—l) n, it follows that 
for £ € K°(X x R2N,nl ft), one has 

C h 8 Ür 1 0 = (-l)"Ti.C!hxj8(0 

Therefore 

(10.10) C M j , - 1 ° (Di),p) = ( -1 ) "» ! , Ch x. f â((Di).p) 
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By the Riemann-Roch formula for twisted iiT-theory (10.9), 

(10.11) Ciu.g((£K)iP) = PO* { / T o d d W 1 A C V , . g ( p ) } 
where 9f is the complexified normal bundle to the embedding Di : T(Y/X) —• 
X x TR2N, that is, 9f = X x TR2N/Di(T(Y/X)) ® C. Therefore Todd(^)" 1 = 
Todd(T(y/X) (8) C) and (10.11) becomes 

CKid(Di)ip) = (Di). {p*Todd(T(F/X) ® C) A C h p . ^ 8 ( p ) } 

Therefore (10.10) becomes 
(10.12) 

r(F/X) ® C) A CV^s(p (-l)n7ri.(Dt). (p*Todd(T(F/X) ® C) ACh p - ^ 8 (p )} 

(-l)n0*p* (p*Todd(r(F/X) ® C) A C V ^ s ( p ) } 

since <i*p* = niADi)*. Therefore 

(10.13) Ch 8(ind tp) = (-l)n0*p* (p*Todd(T(y/X) ® C) A CV^afo)} 

proving Theorem 2. 

Appendix A 
Differential characters 

We will refine Lemma 1 to an equality of differential characters. For an account of 
differential characters, see [17, 12]. 

We first relate a connection 7 on L to the 1-form 7 on Y. Consider the commutative 
diagram 

(A.l) 
Q (L). ф I 

Р Г 1 \ '\ 
У— 

Ф 
where (f)*(L) = Y x § as observed earlier, and pri : Y x § —> Y denotes projection 
to the first factor. Then the connection 1-form 7 on L with curvature equal to ¡3 is 
related to the 1-form 7 on Y by 0* (7) = 7 + 0 where 0 is the Cartan-Maurer 1-form on 
§. If L : Y - » y x § denotes the inclusion map into the first factor, then t*</>*(7) = 7. 

Now the circle bundle L has a section f : X\M± —• L, where Mi is a codimension 
2 submanifold of X. We define a section r : X\Mi —• y such that <J>OLOT = T. Then 
we have a well defined singular 1-form := f *(7) = r*(*f) on X with the property 
that difi = /3. The differential character associated to </?i is (cf. [11]) 

S(<p1){z) = <pl{z') + ß(c) 

where z, z' € Zi(X, Z) and c e C2(X, Z) is such that dc = z- z\ where n Mi = 0. 
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The smooth map u : X —• R / Z gives rise to a singular function < 0̂ on X as follows. 
If £ G R / Z is a regular value for u, then Mo := u~x(t) is a codimension 1 submanifold 
of X, and the Cartan-Maurer 1-form 6 on R / Z is exact on R / Z \ {£}, say dg, where g 
is a smooth function on R / Z \ { £ } . Then the pullback function tpo = u*(g) is a smooth 
function on X \ Mo, ie it is a singular function on X such that dipo = = a is 
the associated global smooth 1-form on X with integer periods. 

With /i as in Lemma 1, <̂ 2 • = T*(AO — A </?i is a singular 2-form on X, whose 
associated differential character is 

S((p2)(z) = dipo A ipi(z') + a A /3(c) 

where z, 2/ £ Z 2 (X, Z ) and c G C3(X, Z) is such that dc = z — z', where z' fl Mi = 0. 
By the argument given above, it is also the differential character associated to the 
Azumaya bundle ft with connection. 

Lemma 10. — In the notation above, S((p2) = S(y>o) *5(<^i), where • denotes the 
Cheeger-Simons product of differential characters. 

Proof. — First note that by [12], the field strength of S(<po) • S((fi) is a A /3, which 
by Lemma 1 is equal to 5 which is the field strength of S(<p2). That is, 

s(<po)*s(<Pl)(dc) = s(<p2)(dc) 

for every degree 3 integral cochain c. 
By [12], we see that the characteristic class of S((po) • S(<pi) is equal to the cup 

product a U /3, and by Appendix B, also equal to £, which is the characteristic class 
of S((p2). Note that the image in real cohomology of a and f3 is equal to [a] and [¡3] 
respectively. 

According to [11], if z G Z2(X, Z) is transverse to Mi, then 

S(<fo) • 5(^1 )(z) = -d(p0 A y?i(z) 4 
pEzAM1 

W)(P) 

In particular, if z fl Mi = 0, then 

S(<po)*S(<p1)(z) = S(<p2)(z), 

proving the lemma. 

Appendix B 

Cech class of the Azumaya bundle 

Suppose that there is a line bundle K over Y such that J = K№K'. That is, in 
this case, i?°°(-X", ft) = ty~°°(Y/X, K) is the algebra of smoothing operators along 
the fibres of <f> : Y —• X acting on sections of K, and therefore has trivial Dixmier-
Douady invariant. Here ftx = ^f~°°((j)~1(x)^ K\^_1^) for all x G X. 

Conversely, suppose that the Dixmier-Douady invariant of ft is trivial, where 
^"(X, ft) = g ^ y P l , J). Then there is a line bundle K over Y such that J £ 
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K K' . To see this, we use the connection VJ preserving the primitive property of 

J, and Lemma 1 to see that d/x = (f>*dB, for some global 2-form B G Q,2(X). Then 

d(n - </>*(£)) = 0, and ttJ(/x - </>*(B)) - tt̂  (/x - 0*(B)) = F v j . So /x - 0* ( 5 ) is a closed 
2-form on Y and can be chosen to have integral periods, since F v j has integral periods 
(this is clear from the Cech description below). Therefore there is a line bundle K on 
Y with connection, whose curvature is equal to xx — </>*(B) such that J = K M K ' . 

Suppose that 3\ and J2 are two primitive line bundles over Y ^ and let U\ and S2 

be the corresponding Azumaya bundles, that is, $ j ) = ^ ( y ' 2 ' , Jj), j = 1,2. 

Then we conclude by the argument above that U\ = $2 if and only if there is a line 
bundle K over Y such that Jx =" J2 ® (if H A"7). 

The main result that we want to show here is the following. 

Lemma 11. — Suppose <j> : Y — • X , L — • X and u : X —> U(l ) are as in the 

introduction. Then the Dixmier-Douady class of the Azumaya bundle U constructed 
from this data as in is equal to a U /3, where a G H1(X, Z) is the cohomology 

defined by u and /3 G H2(X, Z) is the Chern class of L. 

Proof — As noted above, the Dixmier-Douady invariant of U is the degree 3 coho­
mology class on X associated to the primitive line bundle J over Y^. 

As argued in §2, the line bundle L gives rise to a character 5 : yf2' —• U(l). Suppose 
that TI : Ui —> Y are local sections of Y. Then it is clear from §2 that c^ := s(ri,TJ) 
defines a U(l)-valued Cech 1-cocycle representing the first Chern class of L. 

Using the same local sections of Y, we see that := (r̂  x TJ)*J = L~Ui\ where 
njk : Uj CiUk —» Z denotes the transition functions of X. If Sj is a local nowhere zero 
section of Lj, then 0^ := Sj n%d is a local nowhere zero section of J^. We compute, 

(B.l) 

(B.2) 

(B.3) 

—NU —Ujk 
VijO-jk = Sj 3sk 

— r~Uij *~nij *~njk 
— cjk bk òk 

Therefore the U(l)-valued Cech 2-cocycle associated to J is dijk := c^Jt But it is 

well known (cf. equation (1-18), page 29, [9]) that the right hand side represents the 
cup product of the Cech cocycles [c] and [—n], that is, [d] = [c] U [—n] = —/3 U a = 
a U / ? G H 3 ( X , Z ) , proving the lemma. • 

Appendix C 

The universal case 

Let (j) : Y -» X be a fibre bundle of compact manifolds, I - > I a line bundle over 
X with the property that the pullback 0*(/3) = 0 in H2(y,Z), where /3 G H2(X,Z) is 
the first Chern class of L. 
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Lemma 12. — In the notation above, </>*(/?) = 0 in H2(Y, Z) if and only if there is a 
¡3 G H 2(£Diff(Z),Z) such that f3 = in H 2 (X,Z), where f: X -> £Diff(Z) is 
the classifying map for (j): Y —> X, and Z is the typical fiber of </> : Y —> X. 

This follows in a straightforward way from standard algebraic topology. The 
direction that we will mainly use is trivial to prove, viz. if there is a class ¡3 G 
H 2(£Diff(Z),Z) such that (3 = /*(/3) in H 2 (X,Z), then </>*(/?) = 0 in H 2(Y,Z). 

Therefore we see that given any fibre bundle of compact manifolds <j> : Y —> X 
with typical fiber Z, and (3 G /*(H 2(£Diff(Z),Z)) C H 2 (X,Z) (that is, if ¡3 is a 
characteristic class of the fiber bundle </> : Y —• X) , then 0*(/3) = 0 in H2(Y, Z), 
satisfying the hypotheses of our main index theorem. 

But what are line bundles on BDiff(Z)? Since roughly speaking, BDiff(Z) = 
Metrics(Z)/Diff (Z), where Metrics(Z) denotes the contractible space of all Riemanian 
metrics on Z, the theory of anomalies in gravity constructs line bundles on #Diff(Z) 
via determinant line bundles of index bundles of families of twisted Dirac operators 
obtained by varying the Riemannian metric on Z, cf. [2]. 

In particular, let (j>: Y —> X be a fibre bundle of compact manifolds, with typical 
fiber a compact Riemann surface T,g of genus g > 2. Then T(Y/X) is an oriented rank 
2 bundle over Y. Define ¡3 = 0*(e U e) G H 2(X, Z), where e := e(T(Y/X)) G H 2(y, Z) 
is the Euler class of T(Y/X). By naturality of this construction, f3 = /*(ei), where 
ei G H2(J5Diff(E5),Z) and / : X -> BDiff(Ep) is the classifying map for (j) : Y -> X. 
e\ is known as the universal first Mumford-Morita-Miller class, and f3 is the first 
Mumford-Morita-Miller class of <j> : Y —• X, cf. Chapter 4 in [22]. Therefore by 
Lemma 12, we have the following. 

Lemma 13. — In the notation above, let (j) : Y —> X be a fibre bundle of compact 
manifolds, with typical fiber a compact Riemann surface Ytg of genus g > 2, and let 
/3 G H 2 ( X , Z) be a multiple of the first Mumford-Morita-Miller class of 4> : Y —> X . 

Then</)*(/3) = 0 m H 2 ( Y , Z ) . 

Such choices satisfy the hypotheses of our main index theorem. In fact, if </>: Y —> 
X be as above, and in addition let X be a closed Riemann surface. Then Proposition 
4.11 in [22] asserts that (ei,[X]) = Sign(Y), where Sign(Y) is the signature of the 
4-dimensional manifold Y, which is originally a result of Atiyah. As a consequence, 
Morita is able to produce infinitely many surface bundles Y over X that have non-
trivial first Mumford-Morita-Miller class. 

On the other hand, given any B E H2(X,Z) we know that there is a fibre bundle of 
compact manifolds (j): Y —> X such that </>*(/?) = 0 in H2(Y, Z). In fact we can choose 
Y to be the total space of a principal U(n) bundle over X with first Chern class f3. 
Here we can also replace U(n) by any compact Lie group G such that H1(Gf, Z) is 
nontrivial and torsion-free, such as the torus T n . 

Lemma 14. — Let <f> \ Y X be a fibre bundle of compact manifolds with typical fiber 

Z and (3 G H 2 ( X , Z ) . Let n : P —* X be a principal U(n)-bundle whose first Chern 
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class is /3. Then the fibred product ( f > X 7 r : Y x x P - * X is a fiber bundle with typical 
fiber Z x XJ(n), and has the property that (0 x 7r)*(/3) = 0 in R 2 ( Y x x P,%). 

This follows from the obvious commutativity of the following diagram, 

(C.l) 

Y xx P Y 

pr2[ V 
P — X . 

Hence this data also satisfy the hypotheses of our main index theorem. 
The construction of the universal fibre bundle of Riemann surfaces which we will 

describe next, is well known, cf. [6, 14, 2]. Let E be a compact Riemann surface of 
genus g greater than 1, 3Dt(_i) the space of all hyperbolic metrics on E of curvature 
equal to —1, and Diff+(E) the group of all orientation preserving diffeomorphisms of 
E. Then the quotient 

0« ( _ i ) /D i f l f + (E)=^ 
is a noncompact orbifold, namely the moduli space of Riemann surfaces of genus equal 
to g. The fact that Mg has singularities can be dealt with in several ways, for instance 
by going to a finite smooth cover, and the noncompactness of Mg can be dealt with for 
instance by considering compact submanifolds. We will however not deal with these 
delicate issues in the discussion below. The group Diff+(E) also acts on E x 3Dt(_i) 
via g(z,h) = (g(z),g*h) and the resulting smooth fibre bundle, 
(C.2) 7T : Y = (E x STOr_i))/Diff+(E) —• OTr_n/Diff+(E) = Mq 

is the universal bundle of genus g Riemann surfaces. The classifying map for (C.2) is 
the identity map on Mg so n is maximally nontrivial in a sense made precise below. 

As defined above, let 

e i = ei(Y/Mg) = 7r*(e U e) 6 B.2(Mg; Z) 
be the first Mumford-Morita-Miller class of n : Y —> Mg. 

A theorem of Harer [22, 16] asserts that: 

H 2 ( ^ 5 ; Q ) = Q ( e i ) ; 

И\МД;®) = {0}. 

Our next goal is to define a line bundle £ over Mg such that c\(£) = ke\ for some 
k e Z. This line bundle then automatically has the property that 7r*(£) is trivializable 
since ei is a characteristic class of the fibre bundle n : Y —> Mg. This is exactly the 
data that is needed to define a projective family of Dirac operators. The line bundle 
£ turns out to be a power of the determinant line bundle of the virtual vector bundle 
A known as the Hodge bundle, which is defined using the Gysin map in K-theory. 

A = n,(T(Y/Mg)) € K°(Mg). 

Then det(A) is actually a line bundle over Mg. Next we need the following special 
Grothendieck-Riemann-Roch (GRR) calculation. 
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Lemma 15. — In the notation above, one has the following identity of first Chern 
classes, 

ci(m(T(y/ Mg)) = 
13 
12 

K*(Cl(T(Y/Mg))
2). 

Proof. — By the usual GRR calculation [3], we have 

di(ir\(T(Y/Mg)) *= 7T* {Todd(T(Y/M9) U Ch(T(Y/Mg))). 

Now 

Toddfx) = 1 + 
X X2 

2 + 1 2 + -

and 

Gh(z) = 1 + x 4 
X 2 

2 
where x = C\(T{Y/Mg)). Therefore the degree 4 component is 

[Todd(x)Ch(x)] (4) = 13 r2 
12* • 

That is, the degree 2 component of the GRR formula in our case is 

Cl(lT\(T(Y/Mg)) = 
13 
12* 

(x2) 

Observing that a(T(Y/Mg) = e and 

c^XTiY/Mg)) = ci(A) = ci(det(A)), 

the lemma above shows that ci(det(A)) = jfei. Setting £ = det(A) 0 1 2 , we obtain 

Corollary 2. — In the notation above, £ is a line bundle over Mg and one has the 
following identity: 

C l ( £ ) = 13d. 

We next construct a canonical projective family of Dirac operators on the Riemann 
surface S. We enlarge the parametrizing space by taking the product with the circle 
T. Applying the main construction in the paper, we get a primitive line bundle 
J —> , where we denote the pullback of Y over T x Mg by the same symbol. By 
the construction at the end of §5, we obtain a projective family of Dirac operators 9j 
on the Riemann surface E, parametrized by T x Mg, having analytic index, 

Indexa(gj) G K°(T xMg;aU ei), 

where a G H1 (T; Z) is the generator. 
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