CM stability and the generalized Futaki invariant II
From probability to geometry (II) - Volume in honor of the 60th birthday of Jean-Michel Bismut, Astérisque, no. 328 (2009), p. 339-354
The full text of recent articles is available to journal subscribers only.
@incollection{AST_2009__328__339_0,
     author = {Paul, Sean Timothy and Tian, Gang},
     title = {$CM$ stability and the generalized Futaki invariant II},
     booktitle = {From probability to geometry (II) - Volume in honor of the 60th birthday of Jean-Michel Bismut},
     editor = {Dai Xianzhe and L\'eandre R\'emi and Xiaonan Ma and Zhang Weiping},
     series = {Ast\'erisque},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {328},
     year = {2009},
     pages = {339-354},
     zbl = {1204.53061},
     mrnumber = {2674882},
     language = {en},
     url = {http://www.numdam.org/item/AST_2009__328__339_0}
}
Paul, Sean Timothy; Tian, Gang. $CM$ stability and the generalized Futaki invariant II, in From probability to geometry (II) - Volume in honor of the 60th birthday of Jean-Michel Bismut, Astérisque, no. 328 (2009), pp. 339-354. http://www.numdam.org/item/AST_2009__328__339_0/

[1] S. Bando & T. Mabuchi - "Uniqueness of Einstein Kähler metrics modulo connected group actions", in Algebraic geometry, Sendai, 1985, Adv. Stud. Pure Math., vol. 10, North-Holland, 1987, p. 11-40. | Article | MR 946233 | Zbl 0641.53065

[2] D. Catlin - "The Bergman kernel and a theorem of Tian", in Analysis and geometry in several complex variables (Katata, 1997), Trends Math., Birkhäuser, 1999, p. 1-23. | MR 1699887 | Zbl 0941.32002

[3] X. Chen & G. Tian - "Geometry of Kähler metrics and foliations by holomorphic discs", preprint arXiv:math.DG/0507148, 2005. | Numdam | MR 2434691 | Zbl 1182.32009

[4] W. Y. Ding & G. Tian - "Kähler-Einstein metrics and the generalized Futaki invariant", Invent. Math. 110 (1992), p. 315-335. | Article | MR 1185586 | Zbl 0779.53044

[5] S. K. Donaldson - "Scalar curvature and stability of toric varieties", J. Differential Geom. 62 (2002), p. 289-349. | Article | MR 1988506 | Zbl 1074.53059

[6] A. Futaki - "An obstruction to the existence of Einstein Kähler metrics", Invent. Math. 73 (1983), p. 437-443. | Article | MR 718940 | Zbl 0506.53030

[7] D. Hoffman & J. Spruck - "Sobolev and isoperimetric inequalities for Riemannian submanifolds", Comm. Pure Appl. Math. 27 (1974), p. 715-727. | Article | MR 365424 | Zbl 0295.53025

[8] F. F. Knudsen & D. Mumford - "The projectivity of the moduli space of stable curves. I. Preliminaries on "det" and "Div"", Math. Scand. 39 (1976), p. 19-55. | Article | MR 437541 | Zbl 0343.14008

[9] Z. Lu - "K energy and K stability on hypersurfaces", Comm. Anal. Geom. 12 (2004), p. 601-630. | Article | MR 2128605 | Zbl 1076.53089

[10] T. Mabuchi - "K-energy maps integrating Futaki invariants", Tohoku Math. J. 38 (1986), p. 575-593. | Article | MR 867064 | Zbl 0619.53040

[11] J. H. Michael & L. M. Simon - "Sobolev and mean-value inequalities on generalized submanifolds of R n ", Comm. Pure Appl. Math. 26 (1973), p. 361-379. | Article | MR 344978 | Zbl 0256.53006

[12] D. Mumford - "Stability of projective varieties", Enseignement Math. 23 (1977), p. 39-110. | MR 450272 | Zbl 0363.14003

[13] S. T. Paul & G. Tian - "Analysis of geometric stability", Int. Math. Res. Not. 2004 (2004), p. 2555-2591. | Article | MR 2078110 | Zbl 1076.32018

[14] S. T. Paul & G. Tian, "CM Stability and the generalised Futaki invariant I", preprint arXiv:math.AG/0605278, 2006.

[15] W.-D. Ruan - "Canonical coordinates and Bergmann [Bergman] metrics", Comm. Anal. Geom. 6 (1998), p. 589-631. | Article | MR 1638878 | Zbl 0917.53026

[16] G. Tian - "On a set of polarized Kähler metrics on algebraic manifolds", J. Differential Geom. 32 (1990), p. 99-130. | Article | MR 1064867 | Zbl 0706.53036

[17] G. Tian, "Kähler-Einstein metrics with positive scalar curvature", Invent. Math. 130 (1997), p. 1-37. | Article | MR 1471884 | Zbl 0892.53027

[18] S. T. Yau - "On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampere equation. I", Comm. Pure Appl. Math. 31 (1978), p. 339-411. | Article | MR 480350 | Zbl 0369.53059

[19] S. Zelditch - "Szego kernels and a theorem of Tian", Int. Math. Res. Not. 1998 (1998), p. 317-331. | Article | MR 1616718 | Zbl 0922.58082