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CALABI-YAU THREEFOLDS OF BORCEA-VOISIN, 
ANALYTIC TORSION, AND BORCHERDS PRODUCTS 

by 

Ken-ichi Yoshikawa 

Dedicated to Professor Jean-Michel Bismut on his sixtieth birthday 

Abstract. — For a class of Borcea-Voisin threefolds, we give an explicit formula for 
the BCOV invariant [3], [14] as a function on the moduli space. For those Calabi-
Yau threefolds, the BCOV invariant is expressed as the Petersson norm of the tensor 
product of a certain Borcherds lift on the Kahler moduli of a Del Pezzo surface and 
the Dedekind 77-function. As a by-product, we construct an automorphic form on 
the orthogonal modular variety associated to the odd unimodular lattice of signature 
(2,m), m < 10, which vanishes exactly on the Heegner divisor of norm (—l)-vectors. 

Résumé (Variétés de Calabi-Yau de dimension trois de type Borcea-Voisin, torsion analytique, 
et produits de Borcherds) 

Pour une classe de variétés de Borcea-Voisin, nous donnons une formule expli
cite de l'invariant de BCOV [3], [14] comme une fonction sur l'espace de modules. 
Pour ces variétés de Calabi-Yau de dimension trois, l'invariant de BCOV s'exprime 
comme la norme du produit tensoriel d'un relèvement de Borcherds à l'espace des 
modules kahlériens d'une surface de Del Pezzo et de la fonction 77 de Dedekind. Nous 
construisons une forme automorphe sur la variété modulaire orthogonale associée au 
réseau unimodulaire impair de signature (2, m), m < 10, qui s'annule exactement sur 
le diviseur de Heegner des vecteurs de norme —1. 

1. Introduction 

In [33], Ray-Singer introduced the notion of analytic torsion for compact Kahler 
manifolds. Their definition was extended to arbitrary holomorphic Hermitian vector 
bundles over a compact Kahler manifold by Quillen [32] and Bismut-Gillet-Soule 
[7]. Let £ —> X be a holomorphic Hermitian vector bundle over a compact Kahler 
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356 K. YOSHIKAWA 

manifold and let Çq(s) be the,spectral zeta function of the Hodge-Kodaira Laplacian 
acting on the space of (0, ç)-forms on X with values in £. Then the real number 

r(X, 0 = exp[-
q>0 

( - l ) * < ( 0 ) ] 

is called the analytic torsion of £. The most fundamental results in the theory of 
analytic torsion such as the first variational formula, the second variational formula 
and the comparison formula for complex immersions were obtained by Bismut-Gillet-
Soule and Bismut-Lebeau as the corresponding results in the theory of Quillen met
rics, i.e., the anomaly formula, the curvature formula and the immersion formula for 
Quillen metrics [7], [8],... 

In [3], Bershadsky-Cecotti-Ooguri-Vafa introduced the following combination of 
analytic torsions for a compact Kahler manifold X 

(0 T(X,Apx)(-1) 

p>0 
which we call the BCOV torsion of X. They studied the BCOV torsion as a function on 
the moduli space of Calabi-Yau threefolds and used it to extend the mirror symmetry 
conjecture to higher-genus Gromov-Witten invariants [2], [3]. 

In [14], the notion of BCOV invariant was introduced for Calabi-Yau threefolds 
by Fang-Lu-Yoshikawa, which they obtained using the BCOV torsion and a certain 
Bott-Chern secondary class. (See Sect. 5.1 for the definition.) The BCOV invariant of 
a Calabi-Yau threefold X is denoted by TBCOVPO- Then rBcovP0 depends only on 
the isomorphism class of X, while the BCOV torsion does depend on the choice of a 
Kahler metric on X. Because of this invariance property, the BCOV invariant TBCOV 

gives rise to a function on the moduli space of Calabi-Yau threefolds and is identified 
with the partition function F\ in [3]. In this paper, we give an explicit formula for 
the BCOV invariant for a class of Calabi-Yau threefolds studied by Borcea [9] and 
Voisin [36]. (See [14] for some other examples including the quintic mirror threefolds 
and the FHSV models.) Let us explain our results. 

Let S be a KS surface and let 0: S —> S be an anti-symplectic holomorphic in
volution. Let T be an elliptic curve and let — 1^: T —> T be the involution defined 
as — I T 0*0 = -x. Let X(S,O,T) be the blow-up of the orbifold (S x T)/0 x ( - I ) T 
along the singular locus. Then X(s,o,T) 1S a smooth Calabi-Yau threefold equipped 
with the following two fibrations. Let ix\: X(s,e,T) —> S/0 be the elliptic fibration 
with constant fiber T induced from the projection (5 x T)/0 x (—1)T ~^ S/0 and 
let 7r2: X(s,o,T) ~* T/(—1T) be the if3-fibration with constant fiber S induced from 
the projection (S x T)/0 x ( - I ) T -* T/(-lT). The triplet (X^s,0,T)^I^2) is called 
the Borcea-Voisin threefold associated with (5,0,T). The moduli space of the triplet 
(X(5 }̂y),7ri,7T2) is determined by the lattice H?_(S, Z), the anti-invariant part of the 
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0-action on i / 2 (S, Z). By [28], H2(S,Z) is isometric to a primitive 2-elementary 
sublattice of the if3-lattice L # 3 . Let A C L ^ 3 be a sublattice of rank r(A). A 
Borcea-Voisin threefold (^(5,^,r)? ̂ i? ^ 2 ) is of type A if iJ 2(S, Z) is isometric to A. 
Since 6 is anti-symplectic, there exist Borcea-Voisin threefolds of type A if and only 
if A C Lk3 is a primitive 2-elementary sublattice of signature (2,r(A) — 2). 

Some Borcea-Voisin threefolds are related to Del Pezzo surfaces. Let V be a Del 
Pezzo surface and set degV = ci(V)2 G Z>o- Let if(V,Z) be the total cohomology 
group of V, which is equipped with the cup-product Then the sublattice 
H2{V,Z) C H(V,Z) is Lorentzian. Let JJ(V,Z)(2) be the lattice (JT(V,Z),2(-, 
By the classification of primitive 2-elementary Lorentzian sublattices of L ^ 3 [29], 
there exist Borcea-Voisin threefolds of type H(V, Z)(2). Let us explain their moduli 
space briefly. 

Let 3CV C H2(V, R) be the Kahler cone of V, let c if 2(F, R) be the component 
of the positive cone of £T2(V,R) with # v C %y and let Eff(V) c H2(V,Z) be the 
set of effective classes on V. The tube domain H2(V, R) 4- z £?y is isomorphic to a 
bounded symmetric domain of type IV and its subdomain H2(V, R) 4- i JCy is called 
the complexified Kahler cone of V. Let S) be the complex upper half-plane. By 
assigning (X(5^jT),7ri,7T2) the periods of (S,#) and T, the coarse moduli space of 
Borcea-Voisin threefolds of type H(V, Z)(2) is isomorphic to the quotient of the tube 
domain (H2(V, R) + i ^6y) x # by the group 0^~(H(V, Z)) x SL2(Z) with some divisor 
removed (cf. Theorem 3.7), where 0+(H{V, Z)) is the group of isometries of H(V, Z) 
preserving H2{V, R) 4- i ffy. Hence TBCOV is regarded as an 0+(H(V, Z)) x 5L 2 (Z)-
invariant function on a certain Zariski open subset of (H2(V, R)+i x The goal 
of this paper is to give an explicit formula for TBCOV as a function on ( i / 2 (V ,R) + 
i *6y) x S f ° r Borcea-Voisin threefolds of type H2(V^ Z)(2). Let us explain the infinite 
product appearing in the formula. 

After Borcherds [12] and Gritsenko-Nikulin [16], we introduce the following infinite 
product $y(z) on the complexified Kahler cone H2(V, R) 4- idCy. 

l_e^)v)'!£ivtf,/*)) 

aeEff(V) 

(l _ e2iri{otyz)v\ d H2(V,Z] 

/36Eff(V), 0/2=d(V)/2 mod H2(V,Z] 

l _ e ^ ) v ) ' ! £ i v t f , / * ) ) 

where c^\m) and c^\m) are the ra-th Fourier coefficients of the modular forms 

fF(r) = » 7 ( r ) -^ (2r )^ (4r ) - 8 ö A +(r ) f c , fPir) = -87 ?(4r) 8r ?(2r)- 1 6öAH- + e(r) f c, 

respectively. Here r/(r) is the Dedekind //-function and 0A+(r), 0A++1^2(r) are the 
theta series of the .Ai-lattice. Let Aa(y,z){2) °e the discriminant group of the lattice 
H(V, Z)(2) and let { e 7 } 7 e A H ( V ) Z ) ( 2 ) be the standard basis of C[j4/f(v,z)(2)]> the group 
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ring of AH(V,z)(2)- I n Sects.4.3, 4.4 and 6.2, we shall prove that $y(2z)2 is the 
Borcherds lift [12] of the C[A#(y)Z)(2)]-valued elliptic modular form 

fd%v(T) eo-f 
7^^H(v,Z)(2) m=272 

mod 4 
C v M 1m,A e 7 + /HI v W e i » ™ 

with respect to the lattice f/"(V, Z)(2). Here 1h(v,z)(2) £ A?f(v,z)(2) is the charac
teristic element and q = exp(27rrr). As a result, V, Z)) converges when (Imz)2 » 0 
and extends to an automorphic form on H2(V, R) + i *6y for 0 + ( f f (V, Z)) of weight 
deg V -I- 4 vanishing exactly on the Heegner divisor of norm (—l)-vectors of H(V, Z). 
If Exc(F) C H2(V, Z) denotes the exceptional classes on V, the following functional 
equations hold by the automorphic property of $y(z) (cf. Sect. 6.3): 

(a) $v(z + Z) = * v ( * ) for all/ G# 2 (F ,Z ) with (Z, C l (V))y ee 0 mod 2. 
(b) <M0(*)) = ± * v W for all g e 0+(H2(V,Z)). 
(c) < M - < ^ + <*) = - ( - ( * , z ) y ) d e g V + 4 < M * + <*) for all 5 G Exc(F). 
(d) fy(-^) = (-l^)***V+**v(Z). 

Since ci(V)/2 is a Weyl vector of H2(V, Z)(2), the Fourier expansion of $y (2z) is of 
Lie type in the sense of [18] by (a), (b). Hence there exists a Borcherds superalgebra 
whose denominator function is $y(2z). This Borcherds superalgebra is obtained as 
an automorphic correction [17] of the Kac-Moody algebra defined by the generalized 
Cartan matrix (2(ci(E),ci(E'))y)EiE'eExc(y). (See Question 4.4.) 

Let \\&v\\ and \\rj\\ be the Petersson norms of &v(z) and ^(r) , respectively. Then 
II^VII 2 'll 7? 2 4!! 2 is a function on (H2(V,R) + i ffy) x ft invariant under the action of 
0+(H(V,Z)) x 5L 2 (Z) . The following (cf. Theorems 5.7 and 6.4) is the main result 
of this paper. 

Theorem 1.1. — If V is a Del Pezzo surface with 1 < degV < 6, then there exists a 
constant CdegV depending only on degV such that the following equation of functions 
on the moduli space of Borcea-Voisin threefolds of type H(V,Z)(2) holds: 

TBCOv = C d e g y| |<M 2 - | |7? 2 4 | | 2 . 

Under the identification of TBCOV with Fi in B-model [2], [3], it follows from 
Theorem 1.1 that the conjecture of Harvey-Moore [19, Sect. 7] holds for Borcea-
Voisin threefolds of type H(V, Z)(2) when 1 < deg V < 6, since 4>y is the denominator 
function of a Borcherds superalgebra. 

After Theorem 1.1, the conjecture of Bershadsky-Cecotti-Ooguri-Vafa [2], [3] 
seems to predict that the elliptic Gromov-Witten invariants of the mirror of Borcea-
Voisin threefolds of type H(V1Z)(2) are expressed as certain linear combinations of 
the Fourier coefficients c^gV(m), c^gV(m). If this is the case, the invariant of KS 
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surfaces with involution constructed in [37] would be the Borcherds lift of an ellip
tic modular form whose Fourier coefficients are elliptic Gromov-Witten invariants of 
some Calabi-Yau threefolds by the structure theorem [38, Th. 0.1]. However, since 
the Borcea-Voisin construction of mirrors [9], [36] does not apply to Borcea-Voisin 
threefolds of type H(V, Z)(2), we do not know the existence of mirrors for those 
Borcea-Voisin threefolds as well as their elliptic Gromov-Witten invariants. 

This paper is organized as follows. In Sect. 2, we recall some definitions and results 
about lattices. In Sect. 3, we recall Borcea-Voisin threefolds and study their moduli 
space. In Sect. 4, we introduce the automorphic form $ m , which will be identified with 
$v m Sect. 6. In Sect. 5, we recall the BCOV invariant of a Calabi-Yau threefold and 
we prove the main theorem. In Sect. 6, we rewrite the automorphic form 4>m as an 
automorphic form on the complexified Kahler cone of a Del Pezzo surface to give an 
identification between $ m and $y. 

Acknowledgements. — The author thanks the referee for helpful comments, which 
inspired Question 5.18. 

2. Lattices and orthogonal modular varieties 

A free Z-module of finite rank endowed with a non-degenerate, integral, symmetric 
bilinear form is called a lattice. We often identify a non-degenerate, integral, sym
metric matrix with the corresponding lattice. The rank of a lattice L is denoted by 
r(L). The signature of L is denoted by sign(L) = (& +(L), b~(L)). A lattice L is 
Lorentzian if sign(L) = ( l , r (L) — 1). For a lattice L with bilinear form (•,•), we 
denote by L(k) the lattice with bilinear form &(•, • ) . The set of roots of L is defined 
by Ajr, := {d G L; (d,d) = —2}. The isometry group of L is denoted by O(L). For 
r G L(8)R, the reflection sr G 0(L®R) is defined by sr(x) = x — 2^r^r for x G L(g>R. 
If 5 G L and S2 = — 1 or S2 = — 2, then s s G 0(L). The subgroup of O(L) generated 
by the reflections {ss}ôeAL is called the Weyl group of L and is denoted by W{L). 
The dual lattice of L is defined by L v := Homz(L, Z) c L <g> Q. We set AL := L v / L . 
A lattice L is unimodular if AL = 0. A lattice L is even if (ar, x) G 2Z for all x G L. A 
lattice is odd if it is not even. A sublattice M C L is primitive if L/M has no torsion 
elements. 

2.1. 2-elementary lattices. — Set Z 2 := Z/2Z. An even lattice L is 2-elementary 
if there is an integer I > 0 with AL = l}2. For a 2-elementary lattice L, we set 
l(L) := dimZ2 AL. 

Let U = (^J) and let Ai, Eg be the negative-definite Cartan matrix of type .Ai, E% 
respectively, which are identified with the corresponding even lattices. Then U and 
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Eg are unimodular, and Ai is 2-elementary. The lattice 

l K 3 := u e u 0 u e e 8 e e 8 

is called the K3 lattice. For a sublattice A C LK3, set A1- := {I G Lx35 (¿5 A) = 0}. 
For a primitive 2-elementary Lorentzian sublattice M C L/r3, let IM be the invo

lution on M 0 M1- denned as IM(X,v) = (x, -y) for (x,y) G M 0 M- 1 . Then IM 

extends uniquely to an involution on L#3 by [28, Cor. 1.5.2]. 
Let L be an even 2-elementary lattice. Since AL is a vector space over Z 2 , the 

mapping 3 7 —> 7 2 G | Z / Z = Z 2 is Z2-linear. Since the discriminant bilinear form 
on is non-degenerate, there is a unique element 1L G AL such that (7, 1L) = 7 2 

mod Z for all 7 G A L . If L = V 0 L", then 1L = \L> 0 1L". 

2.2. Lorentzian lattices. — Let L be a Lorentzian lattice. The set 6L • = {v G 
L <g> R; > 0} is called the positive cone of L, which consists of two connected 
components. Let "6\ be one of the connected components of g^. For A G L <8> R, 
we set /iA := { v G (v, A) = 0}. Define (J?+)° : = 5?+ \ | J ^ A l The Weyl 
group W(L) acts simply transitively on the set of connected components of (S?L)°. 
Each connected component of (£?L)° is called a Weyl chamber of L. Let V be a 
Weyl chamber of L. A hyperplane hd C L <g) R, d G A J is called a M / / of V if 
dim(hd f l V ) = r(L) - 1, where V is the closure of V in L <g> R. We set i7(L, V ) : = 
{d G A L ; rf- V > 0, hd is a wall of V } , which is the minimal set of roots defining °W', 
i.e., 

(2.1) V = { v G (v,d> >0, VdGiT(L, V ) } . 

In (2.1), each inequality (v,d) > 0, d G i7(L, V ) is essential. A vector Q g L 0 Q is 
called a W^Z vector of (L, V ) if (g, d) = 1 for all d G i7(L, V ) . 

2.3. Lattices of signature (2, n). — Let A be a lattice with sign(A) = (2, r(A)—2). 
Define 

Î I A : = { [ t 7 ] € P ( A ® C ) ; <f?,T?) = 0, (77,77) > 0}. 

Then f^A consists of two connected components fi^, each of which is isomorphic to a 
bounded symmetric domain of type IV of dimension r(A) — 2. The group O(A) acts 
on QA projectively. We set 0 + ( A ) := {9 G O(A); g(Sl±) = fi^}. Then 0+(A) acts 
on fi^ properly discontinuously, and the quotient 

MA := fiA/0(A) = fi+/0+ (A) 

is an analytic space. The Baily-Borel-Satake compactification of M\ is denoted by 
M\. Then M\ is an irreducible normal projective variety with dim(j^A \MA) < 1-
For A G A <8> R, set 

Я Л : = {[rj\ e П Л ; < Î ? , A ) = 0 } . 
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Then H A ^ 0 if and only if (A, A) < 0. We define 

0 A : = N HA, 
d€AA 

ftA := 0 A \ 2>A. 

The reduced divisor 2)A is called the discriminant locus of fiA. We define the subsets 
№ cHd(d& A A ) and <D\ C 9A by 

H°d : = {[17] 6 0+; 0 + ( A ) r „ , = {±1, ± S d } } , 2>°л:= Y т. Hod 
dGAA/±l 

Since O(A) preserves 0 A and 2)^* W E define 

0 A : = ® A / 0 ( A ) , tfK := 2fi/0(A) C 0 A . 

Then ®°A fl SingJ^A = 0 by [38, Prop. 1.9 (5)] and Q°A U ®A is a Zariski open subset 
of QA such that ttA \ (Q°A U <D°A) has codimension at least 2 by [37, Prop. 1.9 (2)]. 

When A = U(iV) 0 L, a vector of A 0 C is denoted by (m, n, v), where m, n G C 
and i; G L (g) C. The tube domain L ^ R + i&L is identified with OA via the map 

(2.2) L®R + iïïLBz^> [ ( - ^ 2 / 2 , № *)] G fiA C P(A (8) C), z G L(8>C. 

The component of ft A corresponding to L (8) R + i via (2.2) is written as ilA. 

3. Calabi-Yau threefolds of Borcea-Voisin 

An irreducible, smooth, compact Kahler n-fold X with canonical line bundle Kx 
is Calabi-Yau if 

(1) KX*èQX, (2) H«(X,&x) = 0 (0<q<n). 

A two-dimensional Calabi-Yau manifold is called a K3 surface. In this section, we 
recall a class of Calabi-Yau threefolds studied by Borcea [9] and Voisin [36]. 

3.1. K3 surfaces with involution and their moduli space. — Let 5 be a K3 
surface. Then H2(S, Z) endowed with the cup-product pairing is isometric to the K3 
lattice Lk3- An isometry of lattices a: H2(S, Z) = L#3 is called a marking of 5, and 
the pair (5, a) is called a marked K3 surface. The period of a marked K3 surface 
(5, a) is defined by 

7r(5,a) := [a(T7)]€P(L* 3 ®C), rjeH°(S,Ks)\{0}. 

Let M C L^3 be a sublattice. A K3 surface equipped with a holomorphic involu
tion 9: S —* S is called a 2-elementary K3 surface of type M if 

6* = a 1 o / M o a, Ö*\H4S,KS) = _ 1 -
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By the global Torelli theorem [31], [13] and by [28, Cor. 1.5.2], there exists a 2-
elementary K3 surface of type M if and only if M C L#3 is a primitive 2-elementary 
Lorentzian sublattice. 

Let (S, 0) be a 2-elementary K3 surface of type M and let a be a marking with 
0* = a-1 oIMoa. Let rj G H°(S,KS) \ {0}. Then ir(S,a) G Q°M±. By [37, Th. 1.8] 
and [38, Prop. 11.2], the 0(MJ-)-orbit of 7r(5, a) is independent of the choice of a 
marking a with 0* = a _ 1 o / M o a . The period of (S,0) is defined as the 0(M±)-orbit 

voM{S,0) := OiM1-) • 7r(5,a) G fi^/CKM"1) = MM±. 

By [37, Th. 1.8], the period map induces an isomorphism from the coarse moduli 
space of 2-elementary K3 surfaces of type M to the analytic space 

MM- := ̂ x / 0 ( M x ) = ( Î Î + ± \ 0 M i ) / O + ( M - L ) . 

Theorem 3.1. — Let x G ©M- 1 a n c ^ ^ C C ^M-*- be an irreducible projective curve 
passing through x. Assume that x G C\ SingC and that C intersects S^-L transver-
sally at x. Then there exist a pointed smooth projective curve (B,y), a neighborhood 
U of y, a holomorphic map f: (B,y) —• (C, x), a smooth projective threefold W with 
an involution 0:1/1/-+ W, and a surjective holomorphic map p: V —» B satisfying 
the following properties: 

(1) f(B) = C and the map f\u: (U,y) —• (f(U),x) is an isomorphism. 
(2) The projection p: V —> B is Z2-equivariant with respect to the Z2-action on V 

induced by 0 and with respect to the trivial Z2-action on B. 
(3) For every b G U \ {y}, ( V , 0)\p-i^ is a 2-elementary K3 surface of type M 

such that G 7 M ( ( V , 0 ) | P - I ( 6 ) ) = f(b). 

Proof. — See [37, Th.2.8]. • 

For a 2-elementary K3 surface (£,0), we define Se := {x G 5; 0(x) = x}. 

Proposition 3.2. — Let (S, 0) be a 2-elementary K3 surface of type M and set 

g(M) := (22 - r(M) - Z(M))/2, k(M) := MM) - l(M))/2. 

If M ^ U(2) 0 E 8(2), U 0 Eg(2), £/&en £/iere e:ns£ a smooth irreducible curve C of 
genus g(M) and (—2)-curves Ei,..., Ek^M) such that Se = CII E\ II • • • II Ek^M)-

Proof. — See [29, Th. 4.2.2]. 

3.2. Elliptic curves and elliptic fibrations. — Let # = { r G C; Imr > 0} be 
the complex upper half-plane and let 9JI be the modular curve 

SW:=SL 2 (Z)\f l . 
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For an elliptic curve T, let Q(T) G SDT denote the period of T. Let - 1 T : T -* T be 
the holomorphic involution that assigns x G T the inverse — x G T. Let j(T) G C 
denote the value of the j-invariant of T. If T is isomorphic to the cubic curve of P 2 

denned by the inhomogeneous equation y2 = 4a:3 — g2 x — #3, then 

j(T) = 
g32 

gl-Mol 
The j-invariant induces an identification between 971 with the complex plane C. 

Let S be a compact complex surface, let B be a compact Riemann surface, and 
let / : S —• B be a surjective holomorphic map. We set St := f-1(b) for b G B. Let 

C B be the set of critical values of / . Then / : S —• B is an elliptic fibration 
if is an elliptic curve for every b G B\AS/B- The analytic invariant of an elliptic 
fibration f:S->Bis the meromorphic function on B defined as JS/B{°) := J(Sb) 
for b G B \ AS/B- For an elliptic fibration / : S —• B, we set B° := B \ AS/B, 
S° := Z"1^0) and / ° :=/ | 5 o. 

Let / : 5 —> 5 be an elliptic fibration with a holomorphic section a: B —> 5. By 
[1, Chap.V Prop. 9.1], the elliptic fibration f°: S° —• JB° is canonically isomorphic 
to the Jacobian fibration {R1 f*9s / R1 f*Z)\BO - » #° such that cr(6) is identified with 
the identity element of the Jacobian f f 1 ^ , 9sb)/H

1(Sb,Z). Hence there exists a 
holomorphic involution —ls° on S° such that — ls^ls^ = — lsb f ° r all 6 G B°. When 
—ls° extends to a holomorphic involution on S, we call the elliptic fibration f:S-^B 
with a holomorphic section admissible. 

3.3. Borcea—Voisin threefolds and their moduli space. — Let (5,6) be a 2-
elementary K3 surface. Let T be an elliptic curve. Let T[2] denote the 2-torsion 
points of T, which is the set of fixed points of — IT-

Define a holomorphic involution on S x T by i := 0 x (—1^), which acts trivially 
on fZ"°(5 x T, KSXT)- By identifying the generator of Z2 with the involutions 0, —IT 
and 6, the group Z2 acts holomorphically on 5, T, 5 x T, respectively. The set of 
fixed points of ¿5 (S x T ) 6 = Sd x T[2], is the disjoint union of four copies of the curve 
Se. After Borcea [9] and Voisin [36], we make the following 

Definition 3.3. — For a 2-elementary KS surface (S,8) and an elliptic curve T, let 
X(s,o,T) D e the resolution of S x T/Z2 defined as the blow-up of S x T/Z2 along 
Sing (SxT/Z2) = (SxT)L. Let m : X(s,e,T) -> S/Z 2

 a n d ^2: ^(S,0,T) T /Z 2 be the 
projections induced from the projections pr :: S x T —> 5 and pr2: 5 x T —» T, respec
tively. The triplet {X^s,e,T)i "̂l? 7r2) is called the Borcea-Voisin threefold associated 
with (5,0, T) . Two Borcea-Voisin threefolds (X(s 50 ) T), 7Ti, 7^) and (^(S',0',T')' î? ^2) 
are isomorphic if there exist isomorphisms of complex manifolds 

AS/B 

/ : ^(S,0,T) —• ^(S',0',T')> g:S/Z2^S'/Z2, h:T/Z2->T'/Z2 
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such that TT[ O / = g o m and TT2 o / = h o n2. 

By Borcea [9] and Voisin [36], X(S,e,T) is a Calabi-Yau threefold, which is equipped 
with the elliptic fibration TT\ : X(s,o,T) S/Z2 with constant fiber T and with the 

3-fibration 7T2: -X"(5,0,T) —* T/Z2 with constant fiber S. 
We recall another construction of X(s,o,T)- Let q:SxT—>SxT be the blow-up 

of S x T along the curve E ( W | T ) := x T[2] = (5 x T ) * x ( - 1 t ) . Let fflTpl^) 
be the involution on 5 x T induced from 0 x (—IT)- We consider the Z2-action on 
S xT induced from 0 x ( - I T ) , SO that q: S xT —> 5 x T is Z2-equivariant. Since 
0 x (—IT) acts as —1 on the normal bundle iV S ( s 0 T ) / ( S X T ) > 0 X (—IT) acts trivially 
on the exceptional divisor q~1(^(s1e1T))- Hence 

( S x T ) » x H t ) = , - 1 ( E ( W ) . 

Since 0 x (—IT) acts as the reflection with respect to the hypersurface q 1(E(s,o,T)), 
we have K~ ~ 0~{q-\^SAT))) and K ^ ^ . Hence ̂ T t / Z 2 is 

a Calabi-Yau threefold. The natural projection (5 x T ) / Z 2 —• (5 x T)/Z2 induces 
an isomorphism 

(3-1) X(s,e,T) = (S x T ) / Z 2 = (5 x T) /0 x ( - 1 T ) . 

By (3.1), the projections 7Ti: X(S,O,T) ~* 5 / Z 2 and 7r2: X(s,o,T) —> T/Z2 are induced 
from the projections prx: 5 x T —• S and pr2: S xT —• T. 

Definition 3.4. — Let À c Lk3 be a primitive 2-elementary sublattice with signature 
(2,r(A) — 2). A Borcea-Voisin threefold (X(S,O,T)I 1̂» 2̂) is of fa/pe A if there exists 
an isometry of lattices (5, Z ) := {/ G if 2 (5, Z ) ; (9*/ = - / } ̂  A. 

Notice that when X(s,o,T) is a Borcea-Voisin threefold of type A, (5,0) is a 2-
elementary K3 surface of type A x . 

Lemma 3.5. — Let (5,0) and (S",0') &e 2-elementary K3 surfaces of type A x , and 
let T and V be elliptic curves. Then the Borcea-Voisin threefolds {X^s,e,T)^i^2) 
and (-X"(s',0',T'), 7ri, 71*2) are isomorphic if and only if (5,0) = (5', 0') and T = T''. 

Proo/. — Let / : - X ^ . T ) - » X^'j^T*), 9- S/Z2 -> S ' /Z 2 and ft: T / Z 2 -* T'/Z2 be 
isomorphisms as in Definition 3.3. Let t = {±t} G T/Z2 be a regular value of ir2 and 
set F := h(t) G T ' / Z 2 . Since t ^ we have T T ^ 1 © = (S X {t}US X {-t})/Z2 9* 
5. Similarly, we have (<7r2)~1(t/) = 5'. We obtain the involutions 0: S —• 5 and 
0': 5' —» S" as the non-trivial covering transformations of the projections 7Ti: 5 = 
7r2~1© ~"* /̂̂ 2 and 7r[: S' = (/x2)~1(t') —» S'/Z2l respectively. The isomorphism 
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of fibers /1^-1(4)* TT2

 1(t) —> (7T2)
 1(t') is an isomorphism from S to S' such that 

9 = ( / l i r - 1 ®)" 1 ° ̂  ° / l i r - 1 ®- Thls PrOVeS that (S,O) = W ) -
Let a: € (5 \ S9)/7i2 be a regular value of 7Ti and set := g(x) G S'/7*2- Since 

T = 7rj" and T" = 7rf the map / l ^ - i ^ ) is an isomorphism from T to T". 
Conversely, if (5,0) ^ (S',0') and T ^ T", then it is obvious by construction that 

(X(5^ j T),7ri,7T2) = {X^s1 ,e\T')^\^2)' This proves the lemma. • 

By Lemma 3.5, the following definition makes sense. 

Definition 3.6. — Let (X^s,e,T)^i^2) be a Borcea-Voisin threefold of type A. The 
point S A ( X ( 5 ^ > T ) , 7TI, 7T2) is defined as the pair of the periods of (5,0) and T , i.e., 

s A ( x ( 5 F * F T ) , t f i , t f 2 ) : = (WA-L(s,o),«(t)) g ^ x m. 

Let # —> i? be a proper, surjective holomorphic submersion between smooth 
complex spaces. Let p\: (9J, 1?) —• B be a family of 2-elementary If 3 surfaces of 
type A and let p2: ¿7 —> -B be a family of elliptic curves with a holomorphic section. 
Then £7" is equipped with an involution —157- which induces ~l p -

1 (6) f ° r every 6 G 
5. With respect to the trivial Z2-action on B, P2: £7* —> -B is Z2-equivariant. Let 
7Ti: % —• <̂ f/Z2 and 7r2: % —* S^/Z2 be surjective holomorphic maps such that p = 
p1oiTi = P2 o 7T2- Then the quintet (p: % —> : (<̂C, #) —> £,P2: —» 7Ti, 7^) is 
called & family of Borcea-Voisin threefold of type A if (p _ 1(&), 7Ti |p-i(6), ^ I p - 1 ^ ) ) is a 

Borcea-Voisin threefold of type A for all b G B. 

Theorem 3.7. — The coarse moduli space of Borcea-Voisin threefolds of type A is 
isomorphic to M\ x 9JI via the map w\. 

Proof. — By Lemma 3.5, the set of isomorphism classes of Borcea-Voisin threefold of 
type A is identified with M°A x 9JI via the map w\. Since the period map wA± (resp. 
Q) is holomorphic for every family of 2-elementary KS surfaces of type A1- (resp. 
elliptic curves), £7 A is also holomorphic for every family of Borcea-Voisin threefold of 
type A by Definition 3.6. • 

By Theorem 3.7 and [38, Cor. 8.3], the coarse moduli space of Borcea-Voisin three-
folds of type A is quasi-affine if r(A) < 12. 

3.4. Degenerations of Borcea-Voisin threefolds 

Theorem 3.8. — Let (p,q) G ®A X ^ and ̂  C C be an irreducible projective 
curve passing through p. Assume that p G C \ SingC and that C intersects 0A 

transversally at p. Then there exist an irreducible projective fourfold %, a pointed 
compact Riemann surface (B, b), a neighborhood U ofb,a surjective flat holomorphic 
map 7r: 9C —> B, and a holomorphic map f: (B, b) —• (C, p) satisfying 
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(1) f(B) = C and the map f\u'- (U, b) —» (f(U),p) is an isomorphism; 
(2) for all b G U \ {b}, 7r~1(b) is the Calabi-Yau threefold underlying a Borcea-

Voisin threefold (7r _ 1(6), ni^, 7r2)f>) of type A such that 

WA(TT 1(6),7rij6,7r2,6) = (/(6),q). 

Proof — By Theorem 3.1, there exist a pointed smooth projective curve (B,b), 
a neighborhood U of b, a holomorphic map / : (jB, b) —» (C,p), a smooth projec
tive threefold V with an involution 0: V —» V , and a surjective holomorphic map 
p: V -+ B satisfying Theorem 3.1 (1), (2), (3). 

Let T be an elliptic curve with i?(T) = q G 9Jt. Let E be the union of all 2-

dimensional components of ( V x T ) * x ( _ 1 t > = x T[2]. Let g: V x T -+ V x T 

be the blow-up of V x T along E. Since 0 x (—IT) acts as —1 on the normal bundle 

^E/(VxT) and since <7-1(E) = P ( i V S / ( ( ^ x T ) ) , 0 x (—IT) lifts to an involution j / on 

V x T, which acts trivially on the exceptional divisor g - 1 ( E ) . 

We consider the Z2-action on V x T induced from « / , so that g: V x T - > V x T 
is Z2-equivariant. Set % := ( V x T ) / Z 2 = ( V x T) / j / . Then % is an irreducible 
projective fourfold. Since the projections p: °W —> 5, prx: V x T —» V , and 
5: V x T V x T are Z2-equivariant, the composite p o p ^ og: V x T —• 5 
is Z2-equivariant and induces a surjective holomorphic map 7r: % —» B. Since % is 
irreducible and dimi? = 1, 7r: % —• is a flat holomorphic map. 

For b G U \ {b}, set Wb := p'1^), 0b := 0\Wb and E6 := E fl (Wfe x T) . Then 
(W b ,0 6) is a 2-elementary #3 surface of type A-1 and E6 = W6*

b x T[2] by Theorem 
3.1 (3). Let qt>: Wb x T -+ Wb * T be the blow-up along E&. Since WbXT intersects 
E transversely, we get q~x(Wb x T) = Wb x T and = q\q-i(wbxT)- Thus 

(3.2) (P°pri°9) 1 W = 9 l o ( P r i ) 1qP 1(b) q-\WhxT) = WhxT. 

Since pop^og is Z2-equivariant, <j/ preserves the fibers of poprjog. Set ¿4 := ^l^T^r' 

Since qo Jo <z -1|(VxT)\E = 0 X (—1T)|(WxT)\E by the definition of ̂ , we get 

qoJboq 1\(WbxT)\Eb = 0b x ( -1T) | (W 6 XT)\E 6 -

Since <fa I ( V ^ x T ) ^ " 1 ^ ) 
( W 6 x T ) \ % - 1 ( E b ) ^ ( W f e x T ) \ E5 is an isomorphism, 

b\WbxT)\q-l&b) 
= Qb

 lo(0bX(-lT))oqb (W6xT)\g-i(E6) 
: #6 x ( - I T ) I 

V 1 J\WbxT)\q-i(Xb) 

for all b G J7 \ {b} . Since both of j/fe and 0b x ( - I T ) are defined on Wi, x T, this 
implies that 

(3.3) Jb = 0b* ( - I T ) . 
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By (3.1), (3.2), (3.3), we get 

(3.4) 7T-1(b) = (poPT1oq)-1(b)/Z2 = (WbxT)/Jb = X(Wbt0btT). 

Consider the projections 71-1,5: X^WB^H^T) —* Wb/7i2 and TT2J' ^(wb,0b,T) -* 
T/Z 2 . Then the triplet (7r_1(6), 7Tî , n2^) is a Borcea-Voisin threefold of type 
A. Since wA±(Wb,0h) = f(b) by Theorem 3.1 (3) and since Q{T) = q, we get 
^ A ( 7 T ~ 1 ( ^ ) ) TTI 6,7T2 b) = (/(&)> q) by (3.4). This completes the proof. • 

Theorem 3.9. — Let p G M°A. Letp: 8 —> B be an admissible elliptic fibration over a 
compact Riemann surface with a holomorphic section such that 8 is projective. Then 
there exist an irreducible projective fourfold % and a surjective flat holomorphic map 
7r: % —> B such that 7r - 1(6) ¿5 the Calabi-Yau threefold underlying a Borcea-Voisin 
threefold (7 r - 1 (6) , tti b, tt2 b) of type A such that 

wa(tt 1(b),irhb,7T2jb) = (pia(p 1(b))), beB°. 

Proof. — Set Eb := p~l(b) for b G B°. Let — 1̂  be the holomorphic involution on 
8 preserving the fibers of p such that —\&\Eh = ~^Eb for all b G B°. Let (5,0) be 
a 2-elementary KS surface of type A1- with p = zuA±(Sy6). Then 5 x 8 is equipped 
with the Z2-action induced from the involution 6 x (—l«s). Let <5[2] denote the set 
of fixed points of —\&. The fixed point set of 6 x (—1 )̂ is given by Se x £[2]. Since 
dim 8[2] = 1, we get dim(56> x 8[2]) = 2, where Se x 8[2] may not be pure dimensional. 
Let E be the union of all 2-dimensional components of Se x S[2]. Then E is the disjoint 
union of smooth complex surfaces. Let q: S x 6 —> 5 x (S be the blow-up along E. 
As in the proof of Theorem 3.8, 6 x (—Is) lifts to an involution J on 5 x £, which 
induces a Z2-action on 5 x 8. Then q: S x 8 S x 8 is Z2-equivariant. 

Set % := (5 x (5)/Z 2 , which is an irreducible projective fourfold. Since the pro
jections q: S x S —> 5 x (5, pr2: 5 x 8 —• (§, and p: 8 -+ B are Z2-equivariant, the 
composite map p o pr2 o g: 5 x <§ —> B is Z2-equivariant and induces a holomorphic 
surjection 7r: % —» 

Let 6 G 5°. Let S x ^ be the blow-up of 5 x Eb along 5* x E6[2] = (5 x £ 6 ) D E. 
Since S x Eb intersects E transversally, we get q~1(S x Eb) = 5 x Eb. Thus 

(3.5) (popr 2og) ^6) = g *o (pr 2 ) - 1 o p " » = q~\S xEb) = Sx Eb. 

Since popr2o</ is Z2-equivariant, preserves the fibers of popr2og. Set Jb := J\ -— . 
SxEb 

Since -lg\sb = - L E B , we get 
(3.6) Ib = 6 x ( - 1 £ J 

as before in the proof of Theorem 3.8. By (3.5), (3.6), we get 

(3.7) 
7r- 1(6) = (popr 2og)- 1(ö)/Z2 = {SxEb)/Jb = X{Ste,Eby 
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Consider the projections 7rlib: X(S,o,Eb) —• S/Z2 and ir2,b: X(S,9,Eb) —> Eb/Z2. 
Then (7r-1(6),7rî ,7r2,fc) is a Borcea-Voisin threefold of type A. Since mA±(S, 9) = p, 
we get SA(7r"1(6),7ri,6,7r2,6) = (p,fi(Eb)). • 

Example 3.10. — We consider the pencil of plane cubics 

S : = { ( ( x : y : * 0 , ( t o : * i ) ) G P 2 x P 1; t0y
2z = 4t 0z

3 - 3 t i^ 2 - t 0 * 3 } , 

JE? := P 1 , p := pr2: 5 —> P 1 . Then p: S —> P 1 is an elliptic fibration equipped with a 
section a: P 1 9 t = (t 0 : ti) —• ((0 : 1 : 0),£) G S. When t is a regular value of p, cr(t) 
is the identity element of p - 1 (£) . The involution 

-ls:S3((x:y: z), (t0 : ¿1)) ((x : -y : z), (t0 : ¿1)) G 5 

induces the map — lp-i(t) when £ is a regular value of p. Let ((§, — 1<$) —> (5, —Is) be 
an equivariant resolution of the singularity of S and set p := q op. Then p: 6 —• P 1 

is an admissible elliptic fibration with section. Since js/pi(t) = 27

2

t?_!) ? V i ^ / P 1 ^ ) 
is a local coordinate of P 1 near the set {(£ 0 : t\) G P 1; £q = £3} C A^/pi. 

3.5. Borcea-Voisin threefolds of exceptional type. — Let 1̂  denote the kxk-
identity matrix. For ! ,mGZ,we set 

Il,m: = 1/ 
о 

0 

lm 
h,m(2) = 2 

1/ 
0 

0 
— lm, 

which are identified with the corresponding lattices. Then I i > m is an odd unimodular 
lattice and Ii m ( 2 ) is a 2-elementary lattice. For ra > 0, we define 

Л Т : = U(2)ell,m-l(2) (m > 1), A 0 := I2 fo(2). 

By the classification of primitive 2-elementary Lorentzian sublattices of L ^ 3 [29, 
p. 1434 Table 1], there exists a Borcea-Voisin threefold of type A m if 0 < m < 9. 

Remark 3.11. — Let X be the Calabi-Yau threefold underlying a Borcea-Voisin 
threefold of type A and let n: (X,X) —> (Def(X), [X]) be the Kuranishi family of X. 
We define the Borcea-Voisin locus Def(X)Bv C Def(X) as follows: u G Def(X)Bv 
if there exist a 2-elementary KS surface (SU,8U) of type A1- and an elliptic curve 
Tu such that 7r_1(u) = X(su,eu,Tu)* Comparing dimDef(X) (cf. [9], [36]) and 
Axm(M°A x 9JI), we have Def(X) = Def(X)ev if and only if A is isometric to one of 
A m (0 < m < 9), U(2) 0 U(2), U © U(2) 0 E 8(2). When A is isometric to one of 
these lattices, then the Weil-Petersson metric on Def(X) coincides with the Bergman 
metric on QA

 x ft (cf. Proof of Lemma 5.8). Notice that even if the moduli space 
is covered by a bounded symmetric domain, the Weil-Petersson metric does not 
necessarily coincide with the Bergman metric. For example, the moduli space of 

ASTÉRISQUE 328 



BORCEA-VOISIN THREEFOLDS, ANALYTIC TORSION, BORCHERDS PRODUCTS 369 

quintic mirror threefolds is covered by f), but the curvature of the Weil-Petersson 
metric is positive on some domain of the moduli space. 

Lemma 3.12. — Let (^(s,0,T)>7I'i)7r2) be a Borcea-Voisin threefold of type A. If A is 
isometric to one of Am (0 < m < 9), U(2) © U(2), U © U(2) © E 8(2), then 

(3.8) h1,2(X(s,e,T)) 
MZUA) 

12 
+ 3 = 14. 

Proof. — Set N := dimH°(Se,C) and N' := \ A\mHx{S\C). By [9], [36], we get 

(3.9) h1'1(X(s^T)) = ll-5N -N', hl>2(X,s,e,T)) = n + 5N' - N. 

Assume A = A m (0 < m < 9) or A = U(2) © U(2). Set r := r(A), rL := r ( A x ) and 
lx := /(A- 1) = 1(A). Then r x = 22 - r and ^ = r. By Proposition 3.2, 

(3.10) AT = 1 4 
r x - Z x 

2 N' = 11-
r-L + l± 

2 
By (3.9) and (3.10), we get 

f3.ll) fcM(*(s,*,T)) = 5 r x -39 , hl<2(X(s»T)) = 21-r± 

Since X(X(SAT)) = 2(h1'1(X{Sj,T)) - h^iX^e^)). we get 

(3.12) x(X(s,e,T)) = 12(rx - 10). 

The result follows from (3.11) and (3.12) in this case. 
Assume A = U 0 U(2) 0 E 8(2). Then A1- ^ U(2) 0 E8(2) and a 2-elementary K3 

surface of type A1- is the universal covering of an Enriques surface. Hence N = Nf = 0 
in this case. Since h}>l(X(s,o,T)) = h>1,2(X(s,o,T)) = H and x(^(s,e,T)) = 0 in this 
case, we get the result. • 

4. Odd unimodular lattices and Borcherds products 

In this section, we assume that A is a lattice of signature (2,r(A) — 2). 

4.1. Automorphic forms. — We fix a vector l\ G A® R with (IAJA) > 0. Hence 
Hu = 0. We define 

J'A(7,[*]) : = 
MZUA) 
MZU [z] e n+, 7 G 0+(A). 

Then JA(7, •) is a nowhere vanishing holomorphic function on fij. A holomorphic 
function / G 0(0J) is called an automorphic form on O^ /or 0 + ( A ) o/ weight p if 

/ ( 7 - N ) = x(7)JA(7, [*])"/([*]), 7€0+(A), 
7 € 0 + ( A ) , 
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where \ € Hom(0 +(A), C*) is a character. For an automorphic form / on fij for 
0 + ( A ) of weight p, the Petersson norm ||/| | is the C°° function on Q,\ defined as 

№])||2 :=KMY\f{[z))\\ KA([Z]) := 
(z,z) 

\(ZJA)\2 

Since 0+(A)/[0+(A),0+(A)] is finite when r(A) > 5, | | / | | 2 is 0+(A)-invariant. 
Let a; A be the Kahler form of the Bergman metric on fit: 

LJA '= —ddc log KA 
1 

2ttz 
ddlogKA. 

For a divisor on flj, denotes the Dirac <5-current on fi^ with support D. 

4.2. Borcherds product associated with 2-elementary lattices. — For TGi j , 
set g = e 2 7 r r r . The Dedekind 77-function is defined by 

V(T) : = 24 
00 

n=l 
: i - « n ) . 

The theta series of the positive-definite A\-lattice Af = (2) are defined by 

/i0)(r) 
nez 

qn2 EA+ + l/2(T) '' = 
nez 

q(n+1/2)2 

Define 4 0 , (T), /< 1 ) (r) € and the series (4T)V2T)-160 {cj^Whez+fc/* by 

/ i 0 ) ( r ) = D e z 4 < W := ^ ( r ) - V 2 r ) V 4 r ) - 8 V ( r ) f c , 
/i0)(r) = Ei6*/4+z24 1 ) ( / )«< : = - i 6 , , ( 4 T ) V 2 T ) - 1 6 0 a + + 1 / 2 ( T ) * . 

We define holomorphic functions #J^(T) G(4T)V2T)i G Z/4Z by 

^2-r(A)(r)e7 
£=i mod 4 

4 W 4 -

Let C[^4A] be the group ring of the discriminant group AA and let { e 7 } 7 G A A be its 
standard basis. Recall that the element 1A G AA was defined in Sect. 2.1. If A is 
2-elementary and r(A) < 12, the C[AA]-valued holomorphic function on 

FA(T) := / 1

(

2 °L ( A ) (T ) e 0 + 2 
R(A)-L(A)  

2 

EAA 
^2-r (A ) ( r ) e 7 " / l2 -r (A) ( T ) E I A 

is a modular form for Mp2(Z) of type pA in the sense of [12, Sect. 2] by [38, Th. 7.7]. 
Let N G {1,2} and let L be a 2-elementary Lorentzian lattice. Let V be a Weyl 

chamber of L. We set A := \}(N) 0 L and I A — (1,0,0) in Sect. 4.1. By [12, Th. 13.3], 
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the following infinite product on L ® R + i V converges absolutely when (Im z)2 > 0 
and it extends to an automorphic form on Of for 0 + ( A ) : 

(4.1) 

Aut(Vm) := {g G 0(Ii,m_i(2)); g(Wm) 

XEL, AV>0, A2>-2 

(l _ e2iri(X,zy (l2iri(X,zy 

AG2LV, AV>0, A2>-2 

^ _ e^iN(X,z) 
r(A)-l(A)  2 2 (l2iri(X,zy 

AG(lr,+L), A-W>0, A2>0 

' l _ e27ri(A,z> 
2412)-.(A)(^2/2) 

where £(L,F L, V ) G L (g> Q is the Weyl vector of (L,F L , V ) . See [12, Th. 10.4] for 
an explicit formula for Q(L,FL, V ) . We refer to [38] for more about ^A(-,F\). 

4.3. A Borcherds product associated with A m . — Let m > 1. We fix a basis 
{ft, di, • • • , d m _ i } of Ii , m _i(2) over Z such that 

(ft, ft) = 2, <ft,di) =0, (di,dj) — —2Sij (l<ij <m-l). 

We define 

£m •*= ^(3ft - di d m _i) G l i | m _ i ( 2 ) v = I 1 | m _ i ( l / 2 ) 

and 
i l m := {d G A I l m _ l ( 2 ) ; (em,d> = ! } • 

When m < 9, > 0 and i7 m is finite. See [27, Th. 26.2] for an explicit formula for 
i7m . Let V m be the Weyl chamber of <&ilrn_1(2) containing QM. Set 

A u t ( V m ) := {g G 0(Ii , m _i(2)); g(Wm) = V m } . 

Proposition 4.1. — If 1 < m < 9, then the following hold: 

(1) Qm is a Weyl vector of ( I 1 > m _i (2) , V m ) . 
(2) nm is the set of simple roots of (Ii j m _i(2), V M ) . 
(3) V m = {v G Ii , m _i(2) <g>R; > 0, (v,d) > 0 Vd G 77m}. 

(4) { v € l i , m - i ( 2 ) ® R ; (v,d)>0, Vd G 77m} C 
i(2) C Sd6/7m R>od. 

Proof. — Since ^ ( I 1 , m _ 1 ( 2 ) , F I l m _ l ( 2 ) , V m ) = 2Qm by [12, Th.10.4], we get (1) by 
[38, Th.7.11 (2)]. We get the inclusion 17(Ii,m_i(2), V m ) C i7 m by the definition 
of a Weyl vector of (I i ? m _i(2) , V M ) . We prove the converse inclusion. Let S G 
iT(Ii,m_i(2), V M ) . Since A u t ( V M ) acts transitively on i l m by [27, Cor. 26.7 (ii)], 

nm = Aut(W m ) Sc A u t ( V m ) . i T ( I i m _ i ( 2 ) , V m ) . 

Since Aut(cl4^m) preserves i7(Ii ) 7 n_i(2), ^m), we get iTm C i7(Ii> m_i ( 2 ) , V M ) . This 
proves (2). We get (3) by (2.1) and (2). 
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Since 0(I i , m _i(2)) /W(I i , m _ 1 (2)) is finite by [29, Cor. 4.2.3], the first inclusion of 
(4) follows from [30, Th. 1.4.3 and (1.4.5)]. Since S , ^ m _ 1 ( 2 ) is a self-dual cone and 
since J2denm

 R > o ^ is the dual cone of {v € Ei,m_i(2) ®R; (v,d) > 0, Vd G i 7 m } , the 
second inclusion of (4) is a consequence of the first inclusion of (4). • 

Theorem 4.2. — If 1 < m < 10, then the following hold: 

(1) There exists an automorphic form $m on f^m for 0+(Am) of weight 14 — m 
with zero divisor 0Am such that 

* r a ( z ) 2 = * A m ( z , F A J . 

(2) The following identity holds for z € Ii , m _i(2) ® R + i °Wm with (lm z)2 ~> 0: 

Ф т(г) = eWbn.*} 
*6{0,1} АбП+<*> 

(1 _ e2*i(\z) 4o>-m(A2/2) 

where Ilm ^ {A 6 SEM + Ii,m_i(2); A • V m > 0, A2 > 2(5 - 1)} 

Proof. — Since r ( A m ) = Z(A m ), we deduce from [38, Th. 8.1] that the weight 
of * A m ( * , F A J is 2(14 - m) and that d i v ( * A m ( z , F A J ) = 2 2>Am. We set 
ip = | | # A m ( z , F A m ) | | in [37, Th.3.17]. Since we may choose v(A^) = 1 in [37, 
Th. 3.17], we get the existence of an automorphic form <&m on fi^ for 0 + ( A m ) of 
weight 14 — m with zero divisor 2)A m . Comparing the weights and zeros, we get 
*m = * A m ( - , i r A m ) . This proves (1). 

By [12, Th. 10.4], we get Q(L,FL, W) = 26m when L = Ii , m _i(2) and V = W m . 
Since I i ] m _i (2) = Aj" © Ai ® • • • © Ai and since lzh = h/2, lzdj = di/2, we get 
li l i m_i(2) = (h+di+- • -+d m - i ) /2 = Qm mod Ii , m _i(2) . Since L = Ii , m _i(2) = 2LV, 
N — 2 and r(I 2 , m (2)) = J(I2,m(2)) in (4.1), we get 

*m(z)2 = *Am(z,FAJ 

_ e2Tzi{2gm,z) 

Aen+<°> 
1 _ е2тгг<Л,г> 2c(0) (^-) 

^С10-тгЛ 2 J 
aett+51) 

1 _ е2тгг<Л,г> 2c(1) (A^ 

e27ri(Qm,z) 

^ { 0 , l } A 6 n + ( 5 ) 

1 _ е2тгг<Л,г> ,c^_m(A2/2) 
2 

This proves (2). 

We study the invariance property of $ m . Recall that VF(Ii ) m_i(2)) is the Weyl 
group of Ii ) T n _i(2). By Proposition 4.1 (3) and the definition of 77m, we have 

A u t ( V M ) = {ge 0+(Ii , m _i(2)); g(gm) = gm}. 
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By [27, Th.23.9], A u t ( V m ) (4 < m < 9) is isomorphic to the Weyl group of 
the root system of type A\ x A2l A±, E6, E7l E&, respectively. Since the 
Weyl group W(li,m-i(2)) acts transitively on the set of Weyl chambers of Ii ) T n _i(2), 
0 + ( I i , m _ i (2 ) ) is generated by the reflection groups W(Ii ) T n _i(2)) and A u t ( V m ) . 

PROPOSITION 4.3. — Ifl<m<9, then the following hold: 
(1) For all r eh m-i(2) v with (r, gm) = 0 mod 2, 

*m(* + r) = 9m(z). 

(2) For all we W(Ii , m _i(2)) , 

*m(^W.) = det(w) $m(z). 

(3) For all g e Aut( V m ) , 
$M(G(z)) = * m ( s ) . 

Proof — We get (1) by the infinite product expansion of $ m in Theorem 4.2 (2). 
Since Aut(cJ4//

m) preserves gm and V m , n i ( 0 ) and are Aut( Vm)-invariant. We 
get (3) by the infinite product expansion of 3>m in Theorem 4.2.(2). 

Since 0+(Ii , m _i(2)) C 0 + (U(2) ® Ii , m _i(2)) and since $ m is an automorphic 
form for 0 + (U(2) ® Ii , m _i(2)) , there is a character e e Hom(0+(Ii,m_i(2)), C*) 
such that 9M(G(z)) = e(G)9m(z) for all G e 0 + ( I i , m _i(2)) . Since W(Ii,m-i(2)) is 
generated by the reflections {ss; 5 e Aj 1 m _ 1 ( 2 ) } , it suffices to prove e(ss) = — 1 for all 
S e Aix m_ 1(2)- Since 52 = 1, we get e(ss) e {±1} . If e(s$) = 1, the vanishing order 
of 3>m along the divisor H$ would be an even integer, which contradicts Theorem 4.2 
(1), i.e., div($ m ) = 2 ) i l m _ 1 ( 2 ) . Hence we get e(ss) = - 1 . • 

QUESTION 4.4. — By Proposition 4.3 (1) and the infinite product expansion in Theorem 
4.2, $m(z) has a Fourier expansion with integral Fourier coefficients. By the same 
argument as in [17, Proof of Th. 2.3 (a)] (cf. [21]), we see that $m(z) has a Fourier 
expansion of Lie type in the sense of [18, Def. 2.5.1]. Namely, the Fourier expansion 
of $m(z) with respect to the cusp defined by a primitive isotropic vector of U(2) is of 
the form: 

ti/€W(Ii,m-i(2)) 
det(w) {C2**<w(tfm),*> _ 

re(ii,m-i(2)+Z0m)nWm\{o} 
m(r) e

2wiM<?-+r)»*>}, 

where m(r) e Z for all r G ( I i ,m- i (2 )+Z^ m )nV m \{0} . To get this Fourier expansion, 
we used Propositions 4.1 and 4.3 (1), (2) instead of [17, Prop. 2.2, Eqs(2.2), (2.3)]. 
Since $m(z) has a Fourier expansion of Lie type, there exists by [17, Sect.3 and 
p. 222 Statement 6.8'], [18, Sect. 2.5] a Borcherds superalgebra GM such that GM is an 
automorphic correction of the Kac-Moody algebra defined by the generalized Cartan 
matrix {diS)dtsenrn and such that $m(z) is the denominator function of GM. 
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Since $m(z) has the Aut(Vm)-invariance by Proposition 4.3 (3), it is very likely 
that there is an Aut( Vm)-action on Qm inducing the Aut( Vm)-invariance of $m(z). 

In Theorem 6.4 below, we shall see that $m(z) is regarded as an automorphic form 
on the Kahler moduli of a Del Pezzo surface of degree 10—m. A more interesting ques
tion is the construction of 3>m(z) from the geometry of Del Pezzo surface. Is 3>m(z) 
(or equivalently $v(z) in Sect. 6) related to the Borcherds superalgebra constructed 
in [20] for a Del Pezzo surface of degree 10 — m? 

4.4. Borcherds products associated with the odd unimodular lattices. — 
We identify I i , m - i (8>Rli m l with OjJe]Ii by the isomorphism (2.2). 

Theorem 4.5. — For 1 < m < 10, Фгп(г/2) is an automorphic form on ííjJeii m-i for 

of weight 14 — m with zero divisor Ĵ dGUeii m _ b d
2 =- i H¿-o + ( u e i i , m _ i ) 

Proof. — Set L = I i , r o _i(2). Hence L{\) = h,m-i. By (2.2), Slv{2)(BL = fiAm is 
isomorphic to L<g>R + z6>£, via the map 

(4.2) L: L®TL + i<&L 3 2 —• 
1 

~2 
<Z,Z>L 

1 
2 z £ Ou(2)0L. 

Identify U with U(2) via the identity map of the Abelian groups underlying them. 
The lattice U0L(l/2) is an odd unimodular lattice. The map (2.2) gives the following 
identification between £(1/2) <8)R + i 6z,(i/2) a n d tow@L(i/2): 

(4.3) i!: ¿(1/2) <8>R + i ^ L ( i /2) 3 z-> 
_1 
"2 (2,2) L (! /2) ,1,Z £ 0 U E L ( 1 / 2 ) . 

The identity map of the free Z-modules underlying A m = U(2) 0 L and U 0 1/(1/2) 
induces an isomorphism from £\j(2)eL to QU®L(I/2)' This isomorphism is denoted by 
I> O u ( 2 ) eL 3 [z] -» [z] e fiueL(i/2). By (4.2) and (4.3), we get 

(4.4) U')-1 OIOL(Z) = 2Z. 

By (4.2), (4.3), (4.4), an automorphic form (z) on L( l /2 )®R+i J?L(i/2) f ° r O+(U0 
L(l/2)) is identified with the automorphic form 9 ((i')'1 o I o i(z)) = *(2s) on L ® R + 
i L for 0 + (U(2) 0 L) via the identity map J: QTU(2)®L —> ^ueL(i/2)- I*1 particular, 
$m(z/2) is an automorphic form on fiueI m - 1 for 0 + ( U 0 I i , m - i ) of weight 14 — m. 
Since the zero divisor of $m(z/2) on O j e I l coincides with the zero divisor of 

* m ( * ) on 0 + ( 2 ) E I I M _ I ( 2 ) , we get 

div(* m (z/2)) = 
EAAm 

Hd = 

dGU0li)m_i,d
2 = -l 

Hd. 

This proves the theorem. 
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Remark 4.6. — Let e, e' be primitive isotropic vectors of A m . By [28, Prop. 1.17.1], 
there exists g G 0 ( A m ) with g(t) = e' if and only if ê /e = (t')^/t'. Since ê /e is a 
unimodular Lorentzian lattice of signature (1, m— 1), A m has a unique 0(Am)-orbit of 
primitive isotropic vectors if m ^ 2,10. If m = 2,10, there exist two 0(Am)-orbits of 
primitive isotropic vectors: If we set V := (J}), then A 2 = U0V and Ai 0 = U0V0E 8 . 
Let e (resp. e') be a primitive isotropic vector of U (resp. V). Then ê /e is an odd 
unimodular lattice, while (e')1- /e' is an even unimodular lattice. Hence c and e' do 
not lie on the same 0(Am)-orbit. Since the choice of an 0(Am)-orbit of an isotropic 
vector of A m corresponds to the choice of a zero-dimensional cusp of M\m, MArn has 
a unique zero-dimensional cusp if 3 < m < 9. 

4.5. The Borcherds ^-function and $i 0 . — By [12, Th. 13.3], [38, Th.8.1], 
*u(2)eu(2)eE8(2)(->-Pu(2)eu(2)eE8(2)) i s a meromorphic function on J%u(2)©u(2)eE8(2) 
without zeros and poles and hence is a constant function. By comparing the exponents 
of the infinite product (4.1), this implies that the Fourier coefficients of f^\r) and 
/ d ^ ( r ) satisfy the following relation: 

(4.5) 4 0 ) (2m)+4 1 ) (2m) = 0, m e Z. 

Since 77(2T)-16?7(4T)8 = n ^ i a - ^ K i + g 2 " ) - 1 we get by the definition of f^\r) 

(4.6) 4 0 ) ( 2 m - l ) = 0 , m G Z. 

Let A = U(2) 0 U 0 E 8(2). The weight of ^ A ( - , ^ A ) is 4 by [12, Th. 13.3], [38, 
Th.8.1]. The automorphic form ^ A ( - 5 ^ A ) is the Borcherds ^-function of dimension 
10 (cf. [11]). We set N = 2, L = U0E 8 (2 ) and p = ((0,1), 0^(2)) in (4.1). Then 
g(L,, FLW) = p by [12, Th. 10.4]. Substituting this into (4.1) and using (4.5), (4.6), 
we get the expression in [11]: 

Фл(*,^л) = е2**<"*> 
AeA+U(Ln^) 

(! _e27Ti(A,z)x6(A)40)(A2/2)5 

which is the denominator function of the fake monster algebra [10, Sect. 14 Example 
3]. Here e(A) = 1 when A G 2LV. When A G L \ (2L V), we set e(A) = 1 if A 2/2 £ 2Z 
and e(A) = -1 if A 2/2 G 2Z. Then VA(-,FA) is identified with $i 0 as follows. 

Using the basis {ft, di,.. . , dg} of Ii,9(2) with Gram matrix Ii ) 9(2), we define 

K:= {fcGli, 9(2); (fc, d 9) = (fc, 3ft-
8 

i=l 
di) = 0} 2 E 8(2), 

where the last isometry follows from e.g. [27, Th. 25.4]. We set 

f := (3/1-
9 

i=l 
di)/2 = £9, f := (3ft-

8 

¿=1 
di + d9)/2. 
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Then f2 = ( f ) 2 = 0 and (f, f ) = 1. We define L := Zf + Zf + Zh + £ U i Zd^ w h i c h 

is equipped with the bilinear form induced from 1^9(2). Since 

(4.7) Zh 0 Zdx 0 • • • 0 Zd9 = Z(3h -
8 

i=l 
di) 0 Zdg 0 К = Z(f + f) 0 Z(f - f) 0 К 

and hence L = Zf 0 Zf 0 if, we get L = U 0 E 8(2). Since Ii, 9(2) C L, we have 
the inclusion of lattices Ai 0 = U(2) 0 Ii,9(2) c U(2) 0 L = A, which yields the 
identification QAI 0 = ^ A - Since O(Ai 0 ) = {g G O(A); ^ (Ai 0 ) = A i 0 } C 0(A), an 
automorphic form on ^ o r 0 + (Aio) is identified with an automorphic form on Q,J 
for the cofinite subgroup O + ( A i 0 ) C 0 + ( A ) . 

Theorem 4.7. — Under the identification f2j ~ ^ A and ^ e inclusion of groups 
0 + (Aio) C 0 + ( A ) induced from the inclusion of lattices Aio C A as above, 

ФЮ = * Л ( - , * А ) . 

Proof. — We prove Дл 1 0 = Ал- Since Лю С A and hence Ал 1 0 С Ад, it suffices to 
prove Дл 1 0 D Дд. Let d = (a, 6, m,n, Л) G Дд, where (a, 6) G U(2), (m,n) G U, and 
Л G E 8(2). Since d2 = 4ab + 2mn + Л2 = -2 and A2 = 0 mod 4, we get ran = 1 
mod 2 and hence m = n = 1 mod 2. By (4.7), we get 

raf+nf+A= ra -f- n 
2 : t + n + 

n — m 
2 

( f - f ) + A G L 9 ( 2 ) . 

This proves d G Ai 0 = U(2) 0 Ii,9(2). Since A A l 0 = A A via the inclusion Ai 0 C A, 
both of 3>io and \PA(-, FA) are automorphic forms on f ° r 0 + (Aio) of weight 4 with 
zero divisor ©A- Hence 3>io = Const. \£A(>FA) by the Koecher principle. Comparing 
lim^-HOO $10(2) and limz^+ioo * A ( Z , FA) , we get the result. • 

5. The BCOV invariant of Borcea-Voisin threefolds 

5.1. The BCOV invariant of Calabi-Yau threefolds. — Let X be a compact 
Kahler manifold with Kahler form 7. Let D := V2(d + 3*) be the Dirac operator of 
(X,7) and let DPiQ := D2 be the Laplacian of (^,7) acting on (p, a/)-forms on X. Let 
CPyq(s) be the spectral zeta function of DPtq. After Ray-Singer [33], Bismut-Gillet-
Soule [7], and Bershadsky-Cecotti-Ooguri-Vafa [3], we make the following: 

Definition 5.1. — The BCOV torsion of (X,7) is the real number defined by 

^BCOV(^ ,7 ) := exp[-
P,Q>0 

( - i ) p + V < 9 ( 0 ) ] . 

Assume that X is a Calabi-Yau n-fold. Let Vol(X,7) = (27r) n / x 7 n / n ! be the 
volume of (^,7) and let Ci(X^) denote the г-th Chern form of (TX,7). Let 77 be a 
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nowhere vanishing holomorphic n-form on X, whose L2-norm is defined as | |^| | 2

2 = 
(27 r ) - n ( v

/ z T) n 2 Jv A 77. Define 

S ( X , 7 ) := V o l p f ^ ^ e x p 
Jx 

log 
('V-1)n2nAn 

7 n/n! 
Vol(X, 7 ) 

NI2

L2 
cJX, 7) 

12 

Set 62PO '>= dimH2(X, R). Let { e i , . . . , e b z (x)} be an integral basis of the free 
Z-module H2(X, Z)fr := H2(X, Z)/Torsion. Let K be a Kahler class on X, and let 
Vol£2(H2(X, Z), « ) be the covolume of H2(X, Z) with respect to i.e., 

Vol L 2 ( iJ 2 (X ,Z) ,«) := det (<e., e,-)^,«) Vol(tf 2 (X , R ) / t f 2 (X, Z) f r , {., .)L2 f Ä). 

Definition 5.2. — When X is a Calabi-Yau threefold, define 

TBCOVPO := 
8 (X ,7 ) ^BCOV(X,7 ) 

Vol(X,7) 3 Vol L 2(tf 2 (X ,Z),[ 7 ])' 

We call TBCOVPO T N E BCOV invariant of X. 

The following result is a consequence of the curvature formula for Quillen metrics 
[7, Th.0.11. 

Theorem 5.3. — When X is a Calabi-Yau threefold, TBCOV(X) is independent of the 
choice of a Kahler metric on X. In particular, TBCOV(X) is an invariant of X. 

Proof. — See [14, Th.4.16]. 

5.2. The singularity of the BCOV invariant. — The following result is an 
application of the immersion formula for Quillen metrics [8], [5] (cf. [39]). 

Theorem 5.4. — Let % be an irreducible projective algebraic fourfold and let S be a 
compact Riemann surface. Let TT: % —> S be a surjective, flat holomorphic map. Let 
2> C S be a reduced divisor and set 9C° := % \ 7r _ 1 (2)), S° := S \ <£, n° := -K\%<>. Let 
0 G 2), and let (U, t) be a coordinate neighborhood of S centered at 0 such that U \ {0} 
is isomorphic to the unit punctured disc inC. If TT° : %° —> S° is a smooth morphism 
whose fibers are Calabi-Yau threefolds, then there exists a G R such that 

logr B cov№) = <* log\t\2 + 0(log(- log |* | 2 ) ) (t - 0). 

Proof. — See [14, Th.9.1]. 

For a Borcea-Voisin threefold (X($ 0,T)> n"i> ̂ 2) of type A, set 

^ C O V ^ A - l ^ ^ ) ^ ^ ) ) : = TBCOV(^(S,0,T))-

By Theorem 3.7, T B C O V is a function on M\ x 39?. 
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Proposition 5.5. — Let (p, q) G 2)^ x 9Jt and Zet C C &e an irreducible projective 
curve passing through p. Assume that p G C \ SingC and that C intersects 2 ) A 

transversally at p. Let (V,s) be a coordinate neighborhood of p m C centered at p 
satisfying {M\ \ M°^) f)V = {p} and supzeV \s(z)\ < 1. Then there exist constants 
a G R and If G R>o such that for all z eV \ {p}, 

(5.1) hecov lvCM) + a l o g | ^ ) | 2 | < if log(-log | 5 ( * ) | 2 ) . 

Proo/. — Let tt: % -* £, / : (J3, b) (C,p), and (17, b) C (S, b) be the same as in 
Theorem 3.8. Choosing U sufficiently small, f*s is a coordinate on U centered at 
b. It suffices to prove (5.1) when V = f(U). By Theorem 5.4 applied to the family 
7r: % —• B, there exist constants a G R and K G R>o such that for all b G U \ {b}, 

(5.2) |TÛcovl/(t/)(/W,q) + ^ logk( / (6) ) | 2 < K l o g ( - l o g | 5 ( / ( 6 ) ) | 2 ) , 

because r^coy\f{u)(f(b),q) = rBcov(^(w b,0 b,T)) by Theorem 3.8 (2). By setting 
z = /(6), Estimate (5.1) follows from (5.2). • 

Proposition 5.6. — Let p G M\. Let p: S —> B be an admissible elliptic fibration 
over a compact Riemann surface with a holomorphic section such that 6 is projective. 
For b G j$/B({oo}), let (V, s) be a coordinate neighborhood of b in B centered at b 
satisfying supzeV\s(z)\ < 1 and V C\ j^B({oo}) = {b}. Then there exist constants 
¡3 G R and K G R>o such that for all z eV \ {b}, 

(5.3) hBCOv(P. jW) +0 log|«(«)| a | < K log( - log | S (*) | 2 ) . 

Proof — Let 7r: % —• 5 be the same as in Theorem 3.9. The result follows from 
Theorem 5.4 applied to the family 7r: % —• B. • 

5.3. The BCOV invariant of Borcea—Voisin threefolds of type A m . — Let 
A(r) := r/(r) 2 4 = g l l ^ i C 1 ~ 4 n ) 2 4 be the Jacobi A-function. Then A(r) is a cusp 
form on £ for SX 2(Z) of weight 12. Let | |A(r) | | 2 := ( Imr) 1 2 |A( r ) | 2 be the Petersson 
norm of A(r ) , which is a 5L2(Z)-invariant C°° function on ft. We often regard 
| |A(r) | | 2 as a function on 9JI = SL2(Z)\f). 

Theorem 5.7. — Assume that m = 0 or 4 < m < 9 and set | |$ m | | := 1 wAen m = 0. 
TAen £ftere exists a constant Cm depending only on m such that for every Borcea-
Voisin threefold (X(S,T)I "̂i> 2̂) °f type A m , 

(5.4) 7*BCOV(̂ (S,0,T)) = cm | |$m(a7 Ax(s,0))ll 2 | |A(/2(T))| | 2 . 

Since $ m is the denominator function of a Borcherds superalgebra (cf. Question 
4.4), Theorem 5.7 implies that the conjecture of Harvey-Moore [19, Sect. 7 Conjec
ture] holds for Borcea-Voisin threefolds of type A m , 4 < m < 9. 
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For the proof of Theorem 5.7, we need some intermediate results. Let 

NM: nAm xS)^MArn x WL 

be the natural projection and set 
TBCOV 7T* ^Am 

i Jm TBCOV 
By Theorems 3.7 and 5.3, R^OV is an 0+(AM) x SL2(Z)-invariant C°° function on 
№ x S). Set 

Fm := log 
rBCOV 

ll* m | | 2 l |A| | 2 

Then Fm is a function on M°Arn x 9Jt. Set 

j? n* F 
1 m •— 1±m± TW) 

which is an 0(AM)+ x 5L2(Z)-invariant C°° function on x 

Lemma 5.8. — If 0 < m < 9, then Fm is pluri-harmonic on îî^ x ft. 

Proof. — Let X = X(s,o,T) D e t n e Calabi-Yau threefold underlying a Borcea-Voisin 
threefold of type A m and let TT : (£, X) —> (Def (X), [X]) be the Kuranishi family of X. 
Similarly, let tt' : ( (6 ,6 ) , (5,0)) - » (Def(5,0), [(5,0)}) and tt" : (T, T) (Def(T), [T]) 
be the Kuranishi family of (5,0) and T, respectively. Comparing the dimensions of 
the Kuranishi spaces (cf. Remark 3.11 and (3.11)), we have an isomorphism of germs 
(Def (5,0), [(5,0)]) x (Def(T), [T]) ̂  (Def(X), [X]), which is induced by the map 

(Def(5,0), [(SM) x (Def(T), [T]) 3 (s,t) [X{Ss,es,Tt)}e(Veî(X),[X]). 

We regard Def(X) as a small open subset of x ft- Similarly, we regard Def (5,0) 
and Def(T) as small open subsets of QArn and .fj, respectively. 

Let £' € if°(Def(5,0),7r^e/Def(5,^r), Z" e tf°(Def(T), 7r*# T / D e f ( T ) ) and £ G 
if 0 (Def (X) , 7r*lf£/Def(X)) be nowhere vanishing relative canonical forms, respectively. 
Then £|(s,t) i s a non-zero holomorphic 3-form on X(s3,os,Tt)' Let \\ZWl\2 be the C°° 
function on Def (X) C fi^™ x ft defined as 

l № ( M ) = 
X(sa,ea,Tt) 

fl(a,t) A Cl(«,t) ( M ) GDef(X). 

We define the functions ||£'||2

2 G C°°(Def(5,0)) and \\Z"\\2

L2 G C°°(Def(T)) in th 
same manner. Since the holomorphic 3-form £'|s A £ ; /| t on (Ss x Tt)/0S x (—1)7 
lifts to a holomorphic 3-form on X^sSJes,Tt)^ there is a nowhere vanishing holomorphi 
function iß G 0(Def(X)) such that 

IKIIïa = H 2 r i l ï a r , l l ï a 

Let o;wp be the Weil-Petersson form on fi^m

 x # - Then log H^H2^ is a local potential 
function of cjwp (cf. [14, Sect. 4.2]). Similarly, log ||f'Hj^ is a local potential function 
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of uAm (cf. [38, Eq. (5.4)]). Let oj^ be the Kâhler form of the Poincaré metric on 

i.e., 
LJ* = — ddc log Im r. 

Then log H^'ll?2 is a local potential function of a;*. 
Since WWP, ^ A M , wg) have potentials ||£||£2, H^'llia, ||£"|||2 respectively, we have 

^WPlDef(X) = ~ddC log UfL2 = -ddC log(U'\\l2 U"\\l*) = "Am|Def(S,*) + "*|Def(T), 

which implies the following equation of (1, l)-forms on ft^ x ft: 

(5.5) ĈWP = ^ A M + ^9) • 

Let Ric(a;wp)5 Ric(a;Am), Ric(a;#) be the Ricci-forms of cjwp> ^Am> t*;̂ ? respectively. 
By (5.5), we get 

(5.6) Ric(cJwp) = Ric(a;AM) -I- Ric(a;$) = —mu\m — 2u)f>, 

where we used [22, Th. 4.1] and the explicit formula for the Bergman kernel [23, p. 34] 
to get the second equality. Notice that K\([z])~^A^~2^ is the Bergman kernel of Q,\ 
up to a constant by [23, p. 34]. 

Let ft1,2 and \ denote the Hodge number and the Euler characteristic of a Borcea-
Voisin threefold of type A m (cf. (3.11), (3.12)). By [14, Th.4.14], Lemma 3.12, (5.5), 
(5.6), we get the following equation of C°° (1, l)-forms on f^m

 x # : 

(5.7) ^ c log^Bcov = -
(h1'2 X 

12 
h3 o;\vp—Ric(a;wp) = — (14—m) u>Am — 12a;#. 

Since 3>m is an automorphic form on fi^ for 0 + ( A m ) of weight 14 — m with zero 
divisor 0A m by Theorem 4.2 and since A(r) is an elliptic modular form for 5L 2 (Z) 
without zeros on we get the following equation on x ft 

-d<f log(||<I>m||
2||A||2) = ( 1 4 - m ) W A m + 12««, 

which, together with (5.7), yields the desired equation ddcFrn = 0 on £2 m̂

 x This 
proves the lemma. • 

Lemma 5.9. — Let A c C be the unit disc and set A* := A \ {0} . Let f be a 
real-valued pluri-harmonic function on A* x An. Assume the existence of real-valued 
functions a(z) and C(z) on An such that for all \t\ < \ and z e An, 

|/(t, z) - a(z) log | i | 2 | < C(z) log(- log |t|). 

Then a(z) is a constant function on An and there exists a real-valued pluri-harmonic 
function (p{t,z) on An+1 such that the following equation holds on A* x An: 

f(t,z) = a\og\t\2 + ip(t,z), a = a(0). 

In particular, the following identity of currents on A71*1 holds 

ddcf = aô{o}xAn-
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Proof. — Fix z G An. Since ddcf = 0 on A* x An, we can put P = / ( • , 2;), a = a(z), 
q = 0 in [37, Prop. 3.11]. For each z € ^4n, there exists by [37, Prop. 3.11] a harmonic 
function (p(-,z) on A satisfying the following the equation on A* x {z}: 

f{t,z) = a{z) \og\t\2 + ip(t,z). 

By the same argument as in [6, pp. 54-75, Proof of Prop. 10.2 (ii)], a(z) is a constant 
function on An and (p(t, z) is a pluri-harmonic function on An+1. • 

Lemma 5.10. — Let 0 < m < 9. For every d € AA m , there exists a(d) G R such that 
the following equation of currents on QAm

 x f) holds: 

(5.8) ddcFm = 
d€AAm/{±l} 

ot{d) SHdx?)> 

Proof — Since the result is obvious when m = 0, we assume 1 < m < 9. By [37, 
Prop. 1.9 (2)], there is a Zariski closed subset Zm C il\m of codimension > 2 such 
that n°Arn U ®Am = ^ A m \Zm. Let P C ft£m U <$°Arn be a small polydisc and set 
H := PC) . Choosing P smaller if necessary, we may assume that H is a smooth 
hypersurfaces of P. By the same argument as in [37, Sect. 7 Step 1], there is a system 
of coordinates (/1,..., fm) on P such that /1,. . . , fm extend to meromorphic functions 
on M\m and such that H is denned by the equation /1 = 0. By Proposition 5.5 and 
Lemma 5.8, there exist real-valued functions «(/2, . . . , / m , T ) and C ( / 2 , . . . , / m , r) 
denned on H x Sj such that the following estimate holds on (P\H) x ft: 

\Fm{fl, /2, • • • , /m, T) - a ( / 2 , . . . , fm, T) log l/i|2| < C ( / a , . • •, /m, r) log(- log \hI2). 

By Lemma 5.9 applied to Fm\^p\H^xSj, a is a constant function on H x ft and the 
equation of currents ddcFm\pxS) = ctSnxfi holds on P x 5}. This implies (5.8) on 
fiAm

 u ®Am = ^ A m \ Zm. By [35, p. 53 Th. 1], Eq. (5.8) holds on QArn. • 

Lemma 5.11. — Let m = 0 or 4 < ra < 9. TAen F m ¿5 pluri-harmonic on ^ A m x ij. 
in particular, F m extends to a pluri-harmonic function on MArn x 371. 

Proof — When m = 0, f2Am is a point and AA m = 0. The result follows from (5.8) 
in this case. We assume 4 < m < 9. By Lemma 5.9, it suffices to prove a(d) = 0 
for all d € A A m / { ± l } . Let 7 G 0 + ( A m ) . Since Fm is 0+(Am)-invariant and hence 
YddcFm = ddcFm, we get by (5.8) 

deAAm/{±i} 
a{d)oHdXsî =7" 

dGAA m/{±l} 
a{d) 5HdXf)) = 

dGAA m/{±l} 
a{d) 5HdXf)) = 

Hence a(7(d)) = a(d) for all d G A A m / { ± l } and 7 G 0 + ( A m ) . Since m > 4, 
A A m / { ± l } consists of a unique 0+(Am)-orbit by [38, Prop. 11.8]. There exists a G R 
such that a(d) = a for all d G A A m / { ± l } . Replacing Fm by — Fm if necessary, we 
may assume that a > 0. 
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Let q e be an arbitrary point. Set fm := ^m|QAmx{q}- Equation (5.8) restricted 
to QAjri x {q} yields that 

(5.9) ddcfm = ddc(Fm\nArnX{q}) = a 

dGAA m/{±l} 

SHdx{q}> 

Assume a ^ 0. By (5.9) and the 0+(Am)-invariance of F m | ^ A m x { q } , we may set 
(p = /m, p = q = 0 in [37, Th.3.17]. Then there would exist by [37, Th.3.17] an 
integer v > 1 and an 0+(Am)-invariant meromorphic function IP on ^AM such that 

fm = aiog\^ div(^) = * /2 ) A M . 

Since dim(J^m \ y ^ A m ) < dimMAm - 2 when m > 3, we deduce from the Levi 
extension theorem [1, Th. 1.8.7] that ^ descends to a meromorphic function ^ on 
MXm. Since div(^) = z/®Am by the relation div(ip) = ^®Am> we get a contradiction 
that the divisor of the meromorphic function -0 on the compact complex space MAm 

is non-zero and effective. Hence a(d) = a = 0 for all d E ̂ AM- • 

Lemma 5.12. — Let pr2: MArn x SPt —> 9Jt be the projection. If m = 0 or 4 < m < 9, 
then there exists a harmonic function (j)m on SDt such that Fm — (pr 2)*0m. 

Proof. — Since MAM is a point when m = 0, the result is obvious in this case. We 
assume 4 < m < 9. By Lemma 5.11, Fm extends to a pluri-harmonic function on 
MAm x DJl when 4 < m < 9. Since d i m ^ ^ \ ~ ^ A m ) < d i m ^ m ~ 2 when rn > 3 and 
since MAm is normal, F m extends to a pluri-harmonic function on MAm x 9JI by [15, 
Satz 4]. Since M*Am is compact, F m is constant on every slice M\m x {q}, q 6 SDl, by 
the maximum principle. This proves the lemma. • 

5.4. Proof of Theorem 5.7. — Let 9Jt* be the compactification of the modular 
curve 9JI = 5L 2(Z)\i3 and set oo := 9DT* \ SPT. The j-function induces an isomorphism 
j : 9JT = P 1 with .7(00) = 00 and j(m)= C, such that 1/j is a local coordinate of 
9JI* centered at 00. Since j(r) = q~l + 0(1) and A(r) = q + 0(# 2 ) near r = +¿00, 
the following estimate holds near j = 00: 

(5.10) log||A|| 2 = log|j | 2 + 0(loglog|j|). 

Let (5,6) be a 2-elementary 3 surface of type A m with period p € M°Am. Let 
p: & —> -B be an admissible elliptic surface with a holomorphic section such that 6 is 
projective and such that there exists a singular fiber of type /1, i.e., a nodal rational 
curve with a unique node. Such an elliptic fibration exists by Example 3.10. Set 
Ei := p~x(b) for b e B. Let b G &G/B be such that Eb is a nodal rational curve with 
a unique node. Then 1/j3/3 is a local coordinate of B near b. By (5.3), (5.10) and 
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the definition of F m , there exists 7 G R such that as b —• b, 

(5.11) 
Fm(pJs/B(b)) = iogT^ov(p,js/B(b)) l og | | $ m (p ) | | 2 - l og | |A(ß (^ ) ) | | 2 

= 7 log\Js/B(b)\2 + OQoglog\Js/B(b)\2). 

Since Fm = (pr 2)*0m and since (j)m is a harmonic function on 9JI — P 1 \ {00}, we 
deduce from (5.11) the following estimate near j = 00: 

(5.12) <t>m(j) = 7 log b f + 0(loglog | j | ) . 

Assume that 7 ^ 0 . Since (f>m is a harmonic function on90? = P 1 \ { o o } , dcfrm must 
be a meromorphic 1-form on P 1 with divisor div(<?0m) = —{00} by (5.12). Namely, 
d<f> m is a logarithmic 1-form on P 1 with a unique pole at 00. This contradicts the 
residue theorem. Hence 7 = 0 and <j)m extends to a harmonic function on P 1 . By 
the maximum principle, <j>m is a constant. This proves that Fm = pr^fim is also a 
constant. This completes the proof of Theorem 5.7. • 

The proof contains technical difficulties when 1 < m < 3; when m = 3, 0Am is not 
irreducible by [38, Prop. 11.8] and we can not get Lemma 5.11 by the same argument; 
when m — 1,2, the boundary locus M*Am \ MArn is a divisor of M\m and the Hartogs 
extension theorem does not apply in Lemmas 5.11 and 5.12. 

Conjecture 5.13. — Equation (5.4) holds when 1 < m < 3. 

5.5. Factorization of the BCOV invariant for Borcea—Voisin threefolds. 
— Let (X, 7) be a compact Kahler manifold. Let G be a compact Lie group acting 
holomorphically on X and preserving 7. Recall that Do^ is the Laplacian acting on 
C°° (0,g)-forms on X. Let cr(Doj<?) be the spectrum of Do,^ For A G cr(Do,g), let 
Eo,q(\) be the eigenspace of Dq^ with respect to the eigenvalue A. Since G preserves 
7, Eo^q(A) is a finite-dimensional unitary representation of G. For g G G and s G C, 
set 

Co,* ($)(*) := 
A€a(Do,q)\{0} 

Tr(g\EoAX))\-s. 

Then Co,q(d)(s) converges absolutely when Res > dimX, admits a meromorphic 
continuation to the complex plane C, and is holomorphic at s = 0. The equivariant 
analytic torsion of (X, 7) is the class function on G defined by 

TG{X,j)(g) := exp[ 
q>0 

(-l)*?Co,,(fl)(0)]. 

When 0 = 1, TG(X,7)(1) is denoted by r(X,7). We refer to [4], [25] for more about 
equivariant analytic torsion. 

Let (5,8) be a 2-elementary K3 surface of type M. Identify Z 2 with the subgroup 
of Aut(S) generated by 0. Let 7 be a Z2-invariant Kahler form on S and let 77 be 
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a nonzero holomorphic 2-form on S. Let SD = C% be the decomposition into the 
connected components. In [37], we introduced the number 

TM(S,0) :=vol(5, 7; 
14-r(M)  4 rz2 (S, 7 ) ( Ö ) J J Volid, l\cMCu l\Ci) 

x exp 
1 
8 s6 

log 
7] An 
y2/2! 

Vol(S,7) 

Vol(S,7) Is* 
c i ( 5 e

) 7 | s 0 

By [37], TM\S,0) is an invariant of the pair (5,0), so that tjv/ descends to a function 
on M°M±_, the coarse moduli space of 2-elementary KS surfaces of type M. 

Theorem 5.14. — / / m = 0 or 3 < m < 9, there exists a constant CArn depending only 
on A m such that for every 2-elementary KS surface (S,0) of type A^ , 

rA,(S,0) = CAm \\*m(mAi.(S,6))\\-i. 

Proof. — Since M°Arn is a point when m = 0, the result is obvious in this case. When 
3 < m < 9, the result follows from [38, Th. 9.1] and Theorem 4.2 (1). • 

Let E be an elliptic curve and let 7 be a Kahler form on E. Let £ be a nonzero 
holomorphic 1-form on E. We set 

êlliptic 
(E) := Vol(i£,7) r(i£, 7) exp 12 E 

log 
£A£ 

7 
C1(E,Y) 

Since x (^ ) = JeCI(E,j) = 0, r(£,)eiiiptic is independent of the choice of £. 

Lemma 5.15. — The following identity holds: 

relliptic(̂ ) = | |A(ß(B))||-i. 

Proof. — The result follows from [7, Th. 0.2] and the Kronecker limit formula. 

Theorem 5.16. — Assume ra = 0 or 4 < r a < 9 . The following identity holds for 
every Borcea-Voisin threefold (XrS $ T)> ^2) of type A m : 

TBCOV{X(s,e,T)) = CMC\M TA±(S,0) 4TeiiiPticCF) 1 2 -

Proof. — The result follows from Theorems 5.7 and 5.14 and Lemma 5.15. 

Conjecture 5.17. — If A c L#3 is a primitive 2-elementary sublattice with sign(A) = 
(2,r(A) — 2), then there exist constants a(A), 6(A), C(A) depending only on A such 
that for every Borcea-Voisin threefold (X($ OT)^!,^) of type A, 

TBCOv(X(S»T)) = C(A)TAx(5,ö)a(A>Temptic(r)*<A\ 

If this conjecture holds, then an explicit formula for the BCOV invariant of the 
Borcea-Voisin threefolds of type A will be obtained from [38, Th. 0.1] when r(A) < 11 
or (r(A), 6(A)) = (12,1). 
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Question 5.18. — Let X(S,O,T) be a Borcea-Voisin threefold and let n: X(S,e,T) —* 

(S x T ) / Z 2 be the projection with exceptional divisor E := 7r~1(Sing (S x T ) / Z 2 ) . 
Then E has the structure of a P1-bundle over Sing (S x T ) /Z 2 , whose fiber has 
negative intersection number with E. 

Let 7 be a Kahler metric on (S x T ) / Z 2 in the sense of orbifolds and let j e be a 
family of Kahler metrics on X(S,O,T) converging to 7 as e —> 0 such that 

he]=7r*h}-ec1({E})1 0 < e < 1. 

It is very likely that &BCOV(X(S,O,T), 7e), 8 ( X ( j W r ) , 7 € ) , Vol L 2(J? 2 (X ( 5 I W , Z), [%]) 
admit the following asymptotic expansions as e —• 0: 

logyBcov(^(s,0,T),7e) = cti logc + ft + o ( l ) , 

log $ ( X ( s A T ) , 7 e ) = a 2loge + ß2 + o(l), 

logVolL2{H2{X {S ìe ìT), Z), [7e]) = <*3 log6 + /% + *(!)• 

It is worth asking explicit formulae for /?i, /?2, /?3, which will lead to direct proofs of 
Theorems 5.7 and 5.16 and Conjecture 5.13 (and possibly Conjecture 5.17). 

Question 5.19. — As an application of the arithmetic Lefschetz formula [24], the 
arithmetic counterpart of the invariant TM and hence $ m was studied by Maillot-
Rossler [26]. After [26] and Theorem 5.16, it is worth asking the arithmetic counter
part of the BCOV invariant for general Calabi-Yau threefolds. 

6. Automorphic forms on the Kàhler moduli of a Del Pezzo surface 

6.1. Del Pezzo surfaces. — A compact connected smooth complex surface V 
is a Del Pezzo surface if its anti-canonical line bundle Ky1 is ample. The integer 
degV := ci(V)2 is called the degree of V. Then 1 < degV < 9. Throughout this 
section, V is a Del Pezzo surface. A Del Pezzo surface of degree d ̂  8 is isomorphic 
to the blow-up of P 2 at 9 — d points in general position. A Del Pezzo surface of degree 
8 is isomorphic to the blow-up of P 2 at one point or to P 1 x P 1 . If degV = d, then 
H2(y,7À) equipped with the cup-product is isometric to Ii,9_d or to U. Let <.,.>v 
denote the cup-product pairing on the total integral cohomology lattice of V 

JT(V, Z) := H°(V, Z) © H2(V, Z) 0 H4(V, Z). 

We have an isometry of lattices (H(V, Z), {•, -)v) =* U©Ii, 9-de gv if ̂  ^ P 1 x P 1 and 
(H(V, Z), (-, • ) v ) =• U 0 U if V =" P 1 x P 1 . The Z-module JEf°(V, Z) (resp. H4(F, Z)) 
has natural generators [1] (resp. [V]v) such that ([1], [V] v)y = 1. 

Let 1 < m < 9 and let P i , . . . , Pm-i be m — 1 points of P 2 in general position. Let 
7r: V —> P 2 be the blow-up of P 2 at P i , . . . , P m _i . Then V is a Del Pezzo surface 
of degree 10 - m. Set Ei = 7r~1(Pi). Then Ei,.. .,Em-i are (-l)-curves of V. Set 
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H := 7r*ci(0 p 2(l)) e H2(V,Z) and D{ := ci([J^]), where [Ei] is the line bundle on 
V defined by the divisor Then {H,Di,...,Dm-i} is a basis of H2(V,Z) over Z 
with Gram matrix I i , m _i . By the adjunction formula, we have 

d{V) = c^KZ1) = 3H - (Di H h £>m_i). 

Recall that the basis {fe,di,... , d m _ i } of I i > m _i(2) and the Weyl vector gm e 
I i ? m _ i ( 2 ) v were defined in Sect.4.3. Let i: H2(V,Z) -> I i > m _i(2) be the isomor
phism of Z-modules defined by 

i(H) = h, i (A) = * (1 < i < m- 1). 

The following identities hold: 

(6.1) <i(«),i(tw)>iLIM_1(2) = 2{v,w)v, Vt),ti)6ff 2(y,Z), 

(6.2) i(c1(V)) = 20m. 

Set 

Exc(V) := {ci([C]) € H2(V, Z); C is a (-l)-curve on V} . 

By [27, Th.26.2 (i)], 

(6.3) i(Exc(V)) = nm. 

The set of effective classes on V is the subset of H2(V, Z) defined by 

Eff(!0 := {ci(L) G # 2 (F ,Z ) ; L G ff^V, Q*v), h°(L) > 0}. 

We set Eff(V)>m := {a £ Eff(F); a2 > m} for m e Z. Let # v C jff2(V,R) be the 
set of Kahler classes on V. By Nakai's criterion [1, Chap. IV Cor. 5.4], $Cy is the cone 
of ff2(V,R) given by fKy = {x e # 2 ( F , R ) ; x2 > 0, (rr ,a)v > 0, Vc* € Eff(V)}. 
If Z) is an irreducible projective curve on V with arithmetic genus a(D), we get 
d([D])2 = 2a(D) - 2 + d e g ( ^ 1 | i ) ) > 2a(£>) - 1 > -1 by the adjunction formula 
and the ampleness of Ky1. If ci([D]) 2 = -1 for an irreducible curve D C V, then 
a(2?) = 0 and D must be a (-l)-curve by [27, Th.26.2 (i)]. Hence ci([L>])2 > 0 if 
Ci([D]) ^ Exc(Vr). Since H 2 (V,R) is a Lorentzian vector space, this implies that 

(6.4) Xv = {x £ H2{V,R); x2 > 0, {x ,S)V > 0 , VJeExc(V)}. 

By Proposition 4.1 (3) and (6.3), (6.4), we get 

(6.5) Vt),ti)6ff2(y,Z) 

Lemma6.1. — Let L be a holomorphic line bundle on V with c\(L)2 > —1. Then 
ci(L) • $Cv > 0 if and only if L is effective, i.e., h°(L) > 0. 
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Proof. — Assume that c\(L) • CKy > 0 and c\{L)2 > — 1. By the Riemann-Roch 
theorem, h°(L) - h}(L) + h°(Kv <8 L " 1 ) = 1 + {(ci(T^), c i ( L ) ) v + c i (L) 2 }/2 . Since 
ci(V) € Xy and ci(L) 2 > - 1 , we get h°(L) + h°(Kv <8> L " 1 ) > 1. Since Ky1 is 
ample, we get (c^Ky1), Ci{Kv ®ci^1), Cl(L)= - c ^ K " 1 ) 2 - ( c i ^ 1 ) , C l ( L ) ) y < 0 by 
the condition ci(L) • > 0. It follows from Nakai's criterion [1, Chap. 4 Cor. 5.4] 
that Ky <g> L _ 1 is not effective, i.e., h°(Kv <g> L _ 1 ) = 0. Thus we get ft°(L) > 0. 

If h°(L) > 0 and ci(L) 2 > —1, then L is effective and hence {c\{L),K)y > 0 for 
every Kahler class K G H2(V,H) on V. This proves the converse. • 

Recall that the subset Ilm^ was defined in Theorem 4.2 (2). 

Lemma 6.2. — The following identities hold: 

(1) i - 1 ( I I + ( 0 ) ) = Eff(V)>_ 1. 
(2) i -Hl&W) = {a 6 fT 2(V,Q); 2a € Eff(V)> 0, a = ci(V)/2 mod H2(V,Z)}. 

Proof. — By (6.1), (6.5), the result is a consequence of Lemma 6.1 and the definition 
o fn+ ( 5 ) . • 

6.2. An automorphic form on the Kahler moduli of V. — The complexified 
Kahler cone of V is the tube domain of H2(V, C) defined as H2(V, R) + i tKy Recall 
that '€>H2(V,Z) is t f l e positive cone of the Lorentzian vector space H2(V, Z). Let 'Sy 
be the component of 1§H2(y,z) containing CKy. The complexified Kahler cone of V is 
regarded as an open subset of ̂ i / V z i v * a (2-2): 

H2(V,R) + i3Cv 3v-> [i) + v- 2 
[V]v 

E ^H(V,Z] 

Definition 6.3. — Define a formal infinite product $y(w) on H2(V, R) + i CKy by 

i-1(II+(0)) = Eff(V)>_1 

aGEff(V; 

( \ — e27ri(a,tü)v> «£iv(«a) 

ßeEtt(V), ß/2=Cl(V)/2 mod tf2(V,Z) 
M _ eni(ß,w)v 

E ^H(V,Z] 

This is an analogue of similar infinite products for algebraic K3 surfaces [16]. 

Theorem 6.4. — The following identity holds: 

<Py(w) = $l0-degv(i(w)/2). 

In particular, $ y { w ) converges absolutely for w G H 2 ( V , T \ ) + i !Ky with (Jmw)2 > 0. 

Under the identification f f 2 ( V , R ) -f i &h 2 (v,z) — ̂ h ( v z ) 0* v e n 2̂/ (2-2), # y extends 

to an automorphic form on fi#(v,z) f o r 0~*~(H(V,Z)) o/ weight degV + 4 w#Zi ^ero 

dtvtsor J2seH(v,z),6*=-i H s -
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Proof. — Set m = 10 - deg F. By Theorem 4.2 (2), we get 

*m(i(ti;)/2) = e 2 w i < ^ ^ / 2 > 
sez2 A€n+(5> 

(l _e27ri(A,i(i(;)/2>> c
(<5) (a2ï 

vcio-mVa ; 

_ eT*<ci(V),ui)v 

*€ZA a e l - i ( n + W ) 

^ g27ri(a,K;) v с
(<5) (а2) 

C10-mVa ) 

_ e*i(ci(V)tw)v 
a€Eff(V) 

^ g27ri(a,K;) v c
(0) (a2) 

2a6Eff(V), a=a(V)/2 mod #2(V,Z) 
g27ri(a,K;) v 

(<5) (а2) 
C10-mVa ) 

= Ov(w) 

where the second equality follows from (6.1), (6.2) and the third equality follows from 
Lemma 6.2 and the vanishings c$(£) = 0 for I < -1 and c$(t) = 0 for I < 0. The 
rest of the theorem follows from Theorems 4.2 (1) and 4.5. • 

Remark 6.5. — Let A be the total cohomology lattice of a K3 surface. In [12, Ex
ample 15.2], Borcherds constructed an 0+ (A)-invariant real analytic function on the 
Grassmannian G + (A) with singularities along the subgrassmannians orthogonal to 
vectors of A of norm —2. The automorphic form $y may be regarded as an analogue 
of this Borcherds' function for Del Pezzo surfaces. 

Let (5,0) be a 2-elementary K3 surface of type M with M1- ^ jH"(V,Z)(2). By 
definition, there is an isometry j : # 2 (5, Z ) —> H(V, Z)(2). By (2.2), there is a vector 
e M (S ,0 , j ) e H2(V,R) + i%t with 

K # 2 ' ° ( S , C ) ) = [l] + ©Af(S,0,j)-
1 
2 £M(S,0 , J ) 2 [V]y fc *ùH(v,zy 

Theorem 6.6. — If deg V < 7, there is a constant Cdeg v depending only on deg V 
such that for every 2-elementary K3 surface (5,0) of type M with M x = Ai0-degV, 

TM(S,6) = Cdegy | |^y(a M (5,0, j )) | | * . 

Notice that the left hand side is a function on the moduli space of 2-elementary 
K3 surfaces of type M, while the right hand side is a function on the Kahler moduli 
of the Del Pezzo surface V. 

Proof. — Since i o j : iJ 2(5, Z ) —> Ii , m _i(2) is an isometry of lattices, the point 
(-\BM(S,6, j ) 2 , l , ±i(wM(S,0,)))) e Q,Xm

 i s t h e Period of (5,0). By Theorems 4.2, 
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5.13 and 6.4, we get 

TM(S, 9) = CM Qm '1. 
,2 

> 
(wM(s,e,))) 

r* 
= CM| |^v(S M (5 ,Ö,j ) ) | | - i 

Since the isometry class of M is determined by degV, we get the result. 

6.3. The functional equations of <Py. — Let if 2(V, Z)o be the maximal even 
sublattice of # 2 ( F , Z ) : 

H2(V,Z)0 := {a G H2(V,Z); (a,Cl(V))y = 0 mod 2}. 

Set W(V) := {g G 0+(H2(V, Z)); g{cx{V)) = a{V)}. By [27, Th. 23.9], W(V) is the 
Weyl group of the root system with root lattice ci(V r)-L C H2(V, Z)q. Set 

Yv := H2(V,Z)0xO+(H2(V,Z))„ W(V) := c^V)1- x W{V) C I V 

Then W(V) is the affine Weyl group of the root system with root lattice ci(V)'L. The 
group Ty preserves both of H2(V, R ) + i^Ty and fl"2(V,R) + i and is regarded 
as a subgroup of 0 + ( i f (V, Z)) by the following injective homomorphism y>: IV —> 
0+Cff(V,Z)): For (o,x,6) = a [ l ] + x + MVn v, 

(р\(а,х,Ь) := 
a[l] + (x + aA) + (6 - £a - (A, x)y [V]v (\eH2(v,z)0), 

a[l] + A(x)+6[F] v ( A G O + ( U 2 ( F , Z ) ) ) 

Then (f{Tv) is the stabilizer of the isotropic vector [1] G H°(V, Z) in 0 + ( i f (V, Z ) ) . 
Let Gy be the subgroup of 0+(H(V, Z)) generated by the set 

*>( IV) , }*€Exc(V)> S[l]-[V]v, - 1 . 

Following [11, Sect. 2], one can verify that Gy is a cofinite subgroup of 0+(H(V, Z)) 
when 1 < deg V < 7. We give explicit functional equations of $y for the above system 
of generators of Gy. We set A = H(Vy Z) and IH(V,Z) — [V]v m Sect. 4.1. 

Let W^(V) be the subgroup of 0+(H2(V,Z)) generated by the reflections 
{ss}5eExc(v)- Since 3Cy is a fundamental domain for the 2XT^1 (̂F)-action on *6y and 
since W(V) is the stabilizer of <KV in 0 + (fT 2 (V, Z)), 0+(f f 2 (V ,Z) ) is generated 
by JHJWOO and W(V) Let e: 0 +(# 2 (F , Z ) ) {±1} be the character such that 
e(g) = 1 for g G W(V) and efo) = detfo) for g G fflJ^V). 

By Proposition 4.3 (1), (2), (3), we get the following equations for (p(Ty): 

(a) $y(w + I) = $y(w), VJG# 2 (KZ)o, 

(b) $y(g{w)) = e(g)<Py(w), \/geO+(H2(V,Z)). 

In particular, $y(w) is invariant under the action of the affine Weyl group 
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Let S G Exc(V). Since 

S[l]+S [1] + (w + ô) 
(w + ô)2 

2 
[V]v 

= -(w,w)v [1] + 
w 

(w,w)v 

+ 6 
1 

~ 2 
w 

{w,w)v 

+ S \2[vy 

and since $y vanishes of order 1 on #[!]+«$, the automorphic property of <!>v with 
respect to sm+a (cf. Sect. 4.1) implies that 

(c) Qv w 
{w,w)v 

-6 -(-(w,w)v)
de*v+4$v(w + Ô), Vôe Exc(V). 

Since S[1]_[v]v([i)+w-y£[vn = -^[l}+w + [V}v the automorphic property of 
$v with respect to s{1]_[v]v implies that ®v(~j^w) = e ( - ^ ™ ) d e s y + 4 ^ ( w ) , 
e G { ± 1 } . Since [1] — [V]y G H(V, Z) is a vector of norm —2 and since $y does not 
vanish on the divisor i/niryiv c ^wvyzv w e e = 1, i.e., 

(d) Qv 2w 
(w,w)v 

{w,w)v 

2 

deg V+4 
3V(w). 

Remark 6.7. — When 1 < deg V < 7, the conditions div(^V) = YlseH(v,z),62=-i Hs 
and (a), (b), (c), (d) are sufficient to characterize $y up to a constant, since 
\0+(H(V,Z))/Gv\ <oo. 

6.4. Borcherds ^-function as an analogue of $y for Enriques surfaces. — 
Consider the case N = 1 and L = U(2) 0 E8(2) in (4.1). Then L v = §L, 1L = 0, 
A L = 0. By [12, Th. 10.4], we get Q(L,FL, V ) = 0. Substituting these into (4.1), we 
get another expression of the Borcherds ^-function [12, Example 13.7] 

(6.6) ^ rueL(^,^u e L) = 

Qs(w): 

' I — e^i(X,z)L 

' I — e^i(X,z)L 

4°)(A2/2) 

which is the Fourier expansion of the Borcherds ^-function at the level 1 cusp and is 
the denominator function of the fake monster superalgebra [34]. We see that (6.6) is 
regarded as an analogue of Theorem 6.4 in the case of Enriques surfaces. 

Let S be an Enriques surface [1, Chap. VIII] and let p: S —> S be the universal 
covering. Let 0 G tti(.S') be the generator. Hence 5 = S/0. Assume that S contains 
no rational curves. Let tKs C H2(S, R) be the Kahler cone of S. We define the 
infinite product $s on the complexified Kahler cone H2 (S, R) + i CKs by 

(6.7) Qs(w): = 

aeH2{S,Z)nXs 

' \ _ e2iri(a,w)s 

\ _j_ e2ivi{oL,w)s 

4 ° V ) 
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We set H+(S, Z ) : = {v e H(S, Z ) = H°(S, Z )0 t f 2 (S, Z ) 0 # 4 ( S , Z ) ; 0*v = v} . Then 
H+(S,Z) ^ U 0 # 2 ( S , Z ) ^U0U(2)0E 8 (2) = U0L. The pull-back p* : ^ 2 ( 5, Z ) -> 
H2(S, Z ) induces the following embedding: 

p* : H2(S, R) + t ̂ 5 ^ fT+(S, R ) + * ff*(S,Z) H+(5,Z)' 

where # 2 (S, Z ) = H2(S, Z ) n ff+(5, Z ) and the last isomorphism is given by (2.2). 
By (6.6), $s is an automorphic form on fì+ ~ for 0+(.flr+(5, Z ) ) of weight 4. 

/f (<S",Z) 

There is a formula for the analytic torsion of a Ricci-flat Enriques surface [37, 
Th. 8.3] analogous to Theorem 6.6: For every Ricci-fiat Enriques surface (5,a;), 

VO1(S,U)*T(S,LJ) = Const. | |*5(8(5,0))||-i. 

Question 6.8. — After Theorem 4.7, it is worth asking the limiting situation in Theo
rem 6.4. Let W be the blow-up of P 2 at 9 points. Is 3>i0 regarded as an automorphic 
form on H2(W, R) + i g^? If this is the case, the Fourier expansion of the Borcherds 
^-function at the level 2 cusp would be regarded as an automorphic form on the com
plexified Kahler cone of W by Theorem 4.7. The case when these 9 points are given 
by the intersection of two generic cubics in P 2 will be the most interesting, in which 
case W is a rational elliptic surface. 

Question 6.9. — Let X be a smooth projective surface with h}(Qx) = h2(9x) = 0. 
As before, the tube domain H2(X, R) + i is isomorphic to a bounded symmetric 
domain of type IV of dimension 62 (X). As we have seen, there is a nice automorphic 
form on H2(X, R) + i %\ when X is a Del Pezzo surface or an Enriques surface. Is 
there a canonical way of constructing a nice Borcherds product on H2(X, R) + i J? 
For example, when X is of general type with h}(Qx) = h2(9x) = 0 or when X is 
rational, is there an analogue of the Borcherds ̂ -function for XI 
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