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TWO-DIMENSIONAL MARKOVIAN 
HOLONOMY FIELDS 

Thierry Levy 

Abstract. — This text defines and studies a class of stochastic processes indexed by 
curves drawn on a compact surface and taking their values in a compact Lie group. 
We call these processes two-dimensional Markovian holonomy fields. The prototype of 
these processes, and the only one to have been constructed before the present work, is 
the canonical process under the Yang-Mills measure, first defined by Ambar Sengupta 
and later by the author. The Yang-Mills measure sits in the class of Markovian 
holonomy fields very much like the Brownian motion in the class of Levy processes. 
We prove that every regular Markovian holonomy field determines a Levy process of 
a certain class on the Lie group in which it takes its values, and we construct, for 
each Levy process in this class, a Markovian holonomy field to which it is associated. 
When the Lie group is in fact a finite group, we give an alternative construction of this 
Markovian holonomy field as the monodromy of a random ramified principal bundle. 
Heuristically, this agrees with the physical origin of the Yang-Mills measure as the 
holonomy of a random connection on a principal bundle. 

Résumé (Champs d'holonomie markoviens bidimensionnels). — Ce travail est consacré 
à la définition et à l'étude d'une classe de processus stochastiques indexés par des 
chemins tracés sur une surface, qui prennent leurs valeurs dans un groupe de Lie 
compact et qui satisfont une propriété d'indépendance conditionnelle analogue à la 
propriété de Markov. Nous appelons ces processus des champs d'holonomie markoviens 
bidimensionnels. L'exemple fondamental de cette sorte de processus est le processus 
canonique sous la mesure de Yang-Mills, qui a été construite d'abord par Ambar 
Sengupta puis plus tard par l'auteur. C'est aussi le seul champ d'holonomie markovien 
qui ait été construit avant ce travail. Le processus canonique sous la mesure de Yang-
Mills est assez exactement aux champs d'holonomie markoviens ce que le mouvement 
brownien est aux processus de Lévy. Deux de nos principaux résultats affirment qu'à 
tout champ d'holonomie markovien suffisamment régulier est associé un processus de 
Lévy d'une certaine classe sur le groupe de Lie dans lequel il prend ses valeurs et 
réciproquement que pour tout processus de Lévy dans cette classe il existe un champ 
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d'holonomie markovien auquel il est associé. Dans le cas particulier où le groupe de 
Lie considéré est un groupe fini, nous parvenons à réaliser ce champ d'holonomie 
markovien comme la monodromie d'un fibre principal ramifié aléatoire. Ceci nous 
rapproche de l'interprétation originelle de la mesure de Yang-Mills, issue de la théorie 
quantique des champs, comme mesure de probabilités sur l'espace des connexions sur 
un fibre principal. 
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INTRODUCTION 

The elementary theory of Markov processes establishes a correspondence between 
several types of objects among which transition semigroups and stochastic processes. 
These stochastic processes can take their values in fairly general spaces, but they 
are usually indexed by a subset of the real numbers, for the Markov property relies 
on the distinction between past and future. In the present work, we investigate a 
correspondence between certain transition semigroups and another kind of stochastic 
processes, where the notions of past and future are replaced by the notions of inside 
and outside. The processes that we consider are indexed by curves, or rather loops, 
drawn on a surface, and they take their values in a compact Lie group. We call them 
(2-dimensional) Markovian holonomy fields. They are Markovian in the following 
sense: if some piece of a surface is bounded by a finite collection of loops, then the 
values of the process on loops located inside this piece and outside this piece are 
independent given the value of the process on the finite collection of loops which 
bound this piece. 

0.1. A 1-dimensional analogue 

Let us start by discussing the 1-dimensional analogues of Markovian holonomy 
fields, which are just Markov processes looked at from a slightly unusual point of 
view. Let us choose a transition semigroup P = (Pt)t>o on some state space %. For 
each t > 0, Pt(x, dy) is a transition kernel on % x %. Under suitable assumptions, we 
can associate to P a homogeneous Markov process with values in which we denote 
by X. This Markov process is not really a single stochastic process, it is rather a 
collection of processes, essentially one for each initial condition at a specific time. In 
fact, if we consider X restricted to segments, we can say that to each segment [a, 6] C R 
and each initial condition x E % we associate a process (Xt)te[a,b] with values in % 
such that Xa = x almost surely. Within the structure implied by the fact that [a, b] 
is a subset of R, what we really use is the topological structure of this interval, its 
orientation and our ability to measure the distance between any two of its points. 
Of course, in the present 1-dimensional setting, this structure suffices to characterise 
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2 INTRODUCTION 

the interval up to translation, and the last sentence may seem pointless. Its content 

should however become clearer in the 2-dimensional setting. 

Let us push the abstraction a little further and try to define, for all compact 

1-dimensional manifold M, a process (Xt)teM with values in 9C. As we have just 

observed, we need an orientation of M and a way to measure distances. If M is not 

connected, let us agree that the restrictions of our process to the various connected 

components of M will be independent. So, let M be a connected oriented compact 

Riemannian 1-dimensional manifold. There are not so many options: M is either 

homeomorphic to a segment or to a circle, it has a certain positive total length, and 

this information characterises it completely up to orientation-preserving isometry. 

If M is a segment of length L, it is isometric to [0, L] and there is no difficulty in 

defining the process (Xt)teM given an initial condition. Before turning to the case of 

the circle, let us interpret the Markov property of X in terms of these 1-dimensional 

manifolds. 

Let Mi and M2 be two manifolds as above, isometric to segments. Let Mi • M2 

denote the manifold obtained by identifying the final point of Mi with the initial point 

of M2. It is still homeomorphic to a segment. Choose an initial condition x G %. We 

are able to construct two stochastic processes indexed by Mi -M2. On one hand, we can 

take Mi -M2 as a segment on its own and simply consider the process (Xt)teM1'M2 with 

initial condition x. On the other hand, we can also proceed as follows. For all segment 

M and all x G %, let £{x, M ) denote the distribution of the process (Xt)teM with 

initial condition x. Let us also denote by £(x,M, dy) the disintegration of £(x,M) 

with respect to the value of X at the final point of M. Then the probability measure 

£(x, Mi, dy) <g> £(y, M2) is the distribution of a process indexed by the disjoint 

union of Mi and M2 which takes the same value at the final point of Mi and the initial 

point of M2. It can thus be identified with the distribution of a process indexed by 

Mi • M2. It is exactly the content of the Markov property of X that the two measures 

that we have considered are equal: 

(1) 
1% 

^ £(x, Mi, dy) ® £(y, M 2 ) = £(x, Mi • M 2 ) . 

This example illustrates in the simplest possible way the fact that the Markov property 

can be nicely formulated in terms of surgery of manifolds, in this case in terms of 

concatenation of intervals. Manifolds of dimension 1 undergo another kind of surgery, 

when the two endpoints of a single interval are glued together (see Figure 1). If we 

try to mimic (1), we are tempted to define the distribution of a process indexed by 

the circle S1 of length L, seen as the interval [0, L] of which the endpoints have been 
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0.1. A 1-DIMENSIONAL ANALOGUE 3 

identified, by 

(2) 
W<%%£¨¨ 

x 
£(x,[0,L],dx), 

an expression which unfortunately is meaningless. Still, this formula is consistent 

with the fact that a circle has no boundary, so that there is no initial condition to 

specify. What we are attempting to define here is a bridge, that is to say a probability 

measure on closed trajectories in 9C, from the transition semigroup (Pt)t>o-

Mi M 2 

Mi • M 2 

[0,L] 

S1 

FIGURE 1. The surgery of 1-dimensional manifolds. 

Without aiming at the greatest possible generality, let us describe a situation in 

which this is possible. We will assume that % is a smooth finite-dimensional manifold, 

for example a vector space or a Lie group, which carries a Borel probability measure ¡1 

which is stationary for the semigroup P. We will also assume that for alH > 0 and 

all x G 9C) the measure Pt(x, dy) has a continuous density with respect to /x, which 

we denote by y i—• Qt(x,y). In this situation, it is possible to define bridges of the 

Markov process X between any two points of 9C. Hence, for each segment [0, L ] Y it is 

possible to define the finite measure £(x, [0, L],y) which is the conditional distribution 

of (Xt)te[o,L] given X0 = x and XL = y, multiplied by the real number QL(X, y)- With 

this definition, £(x, [0,L],y) is not a probability measure in general but the relation 

£(x, [0,L],dy) = £(x, [0,L],y)fj,(dy) holds. We can then define a measure on the set 

of trajectories in % indexed by a circle of length L by setting 

(3) (x,[0,L],dx 

W< 
£(x,[0,Llx)fi(dx). 

The identification of a trajectory indexed by the circle S1 with a process indexed 

by [0, L] requires the choice of a base point on S 1 but the stationarity of ¡i implies 

that the resulting definition of £(S1) is independent of this choice. 

The measure £(S1) defined by (3) is not a probability measure in general and, 

in order to construct a stochastic process indexed by S1, one should consider the 

associated normalised measure. Finite measures, as opposed to probability measures, 

will play an important role throughout this work. 

Let us summarise this discussion of the 1-dimensional case. Starting with a Marko-

vian transition semigroup on % with good properties, we have been able to associate 
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4 INTRODUCTION 

to each compact oriented 1-dimensional Riemannian manifold, endowed with an ini

tial condition for each connected component homeomorphic to a segment, a stochastic 

process with values in % indexed by the points of this manifold. This collection of 

processes exhibits a Markovian behaviour with respect to the operations of cutting or 

concatenation of 1-manifolds. 

u.z. A nrsx aennixion 

A 2-dimensional Markovian holonomy field is a 2-dimensional analogue of the ob

ject that we have just described. It is a collection of stochastic processes, one for 

each compact surface endowed with boundary conditions and some way of measuring 

areas. For each such surface, the process is indexed by a set of loops drawn on this 

surface and the boundary conditions specify the value of the process on the loops 

which bound the surface. Moreover, this collection of processes satisfies Markovian 

properties with respect to the operations of cutting surfaces along curves or gluing 

them along boundary components. 

In contrast with the 1-dimensional case, the index sets of our processes now carry a 

partially defined internal composition law, namely the concatenation of loops. We are 

interested in stochastic processes which satisfy a property of additivity with respect 

to the concatenation of loops. This requires that they take their values in a group 

and since this group will usually not be assumed to be Abelian, and denoted multi-

plicatively, we will rather call this a property of multiplicativity. Let us give a precise 

definition. If M is a 2-dimensional manifold and m is a point of M, let L m ( M ) be a set 

of loops on M based at ra. We will discuss later which loops exactly we wish to con

sider (see Section 0.4). To each loop I G L m ( M ) we can associate the inverse loop Z - 1 , 

which is simply I traced backwards. Also, to each pair of loops Zi, Z2 G L m ( M ) we can 

associate their concatenation which we denote by ¿1/2- Let G be a group, which plays 

the role of the space % above. A stochastic process (#z)zeLm(M) with values in G is 

said to be multiplicative if 

(4) V / G L m ( M ) , Hi-i = H-1 a.s., 

(5) V/1,/2 e L m ( M ) , Hhh = HhHh a.s. 

We will explain later, in Section 0.5, why we choose to reverse the order on the right-

hand side of this equality. For the time being, suffice it to say that the processes 

which constitute a Markovian holonomy field will be multiplicative in the sense just 

defined. 

Let us now describe further the transitions of a Markovian holonomy field. Just 

as an interval has two extremities, a surface has a boundary which is homeomorphic 

to a disjoint union of circles. The only difference is that the number of connected 
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0.2. A FIRST DEFINITION 5 

components of the boundary of a connected surface can be any natural number. An
other specificity of the 2-dimensional case, as opposed to the 1-dimensional one, is 
that even when a surface is oriented, its boundary components are indistinguishable 
from a topological point of view: any permutation of the boundary components can 
be realised by an orientation-preserving homeomorphism. So, in order to see our sur
face as realizing a cobordism, that is, a topological transition, between two sets of 
circles (see Figure 2), we need to arbitrarily declare that some of these components 
are incoming and the others are outgoing. If the surface is oriented, then we ori
ent incoming boundary components negatively and outcoming boundary components 
positively. This matters because, according to (4), the boundary conditions on the 
incoming components are associated with oriented loops: to each oriented incom
ing boundary component we associate an element of G, and to the same boundary 
component with the opposite orientation is associated the inverse element of G. 

FIGURE 2. A surface seen as a topological transition between two collec
tions of circles 

The comparison with the 1-dimensional case reveals that we need to endow our 
surfaces with a structure analogous to the metric structure of intervals and circles, 
and the role of which is to incorporate a notion of time into the picture. It turns out, 
in the present context, that the correct analogue of the ability to measure distances is 
the ability to measure areas. On a surface, this requires much less than a Riemannian 
metric, just a Borel measure which is smooth enough to be the Riemannian volume 
of a Riemannian metric. 

We can now give a loose definition of a Markovian holonomy field. The actual 
definition unfortunately requires a great deal too many prerequisites to be given in 
this introduction but the curious reader is welcome look it up on page 108. 

Definition 0.2.1 (Markovian holonomy fields - first approach). — Let G be a group. A 2-
dimensional G-valued Markovian holonomy field is a collection of G-valued stochastic 
processes, one for each compact surface endowed with a measure of area and a choice of 
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6 INTRODUCTION 

boundary conditions along its incoming boundary components. For each such surface, 
the G-valued stochastic process is indexed by the set of loops on the surface and it 
is multiplicative. Moreover, as a whole, the collection of stochastic processes behaves 
with respect to the surgery of surfaces in a way which is governed by the Markov 
property. 

0.3. Transition kernels 

The transition kernels of a Markovian holonomy field describe the distribution 
of the process on the outgoing circles of a surface given its values on the incoming 
ones. There is a much greater variety of situations than in the 1-dimensional case, but 
fortunately for us, this variety has been very well understood for about a century and is 
easy to describe. Up to homeomorphism, a connected compact surface is characterised 
by the fact that it is orientable or not, by the number of connected components of its 
boundary, and by a single other topological invariant called its genus which can be 
any non-negative integer if the surface is orientable and any positive integer if it is not. 
Moreover, according to a theorem of Moser, the only invariant of a smooth measure 
of area under diffeomorphisms is its total area. It turns out that, when one deals with 
orientable and non-orientable surfaces at the same time, the genus is not the most 
convenient way to label the possible topological types of surfaces. We prefer to work 
with a slightly modified notion of genus, which is simply the genus if the surface is 
not orientable, and twice the classical genus if it is orientable. The main advantage 
of this genus is that it is additive with respect to the operation of connected sum. 

For all integers p and q such that 0 < q < p, let us denote by M(Gp~q) the space of 
probability measures on Gp~q. Then the transition kernels of a Markovian holonomy 
field consist of a collection of mappings 

(6) P± 9 , t(*i, , xq, dx à x q + u . . . , dxp) : Gq — jK(G*-«), 

where the sign indicates the orientability of the surface, g is its genus, t its total area 
and p the number of its boundary components, of which q are incoming and p — q 
outgoing. 

If q = 0, then the transition kernel is a measure on G p , if q = p it is a function 
on Gp and if p = 0, it is a real number. In order to avoid the problems that we 
have encountered with the circle in the 1-dimensional case, we will make fairly strong 
assumptions. Firstly, we will assume that G is a compact Lie group. Such a group car
ries a unique probability measure invariant by translations, the Haar measure, which 
we denote by dx. We will also assume that the transition kernels of the Markovian 
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0.3. TRANSITION KERNELS 7 

holonomy field that we consider can be put under the form 

(7) Pp,g,t(Xli ' ' ' > XQi dxq+li . . . , dXp) 

~ ^P,9,t(Xl i'''iXq » Xq+li ' • ' » Xp)d%q+i ' • • ÛXp 

for some functions Z^gt which we will call the partition functions of the holonomy 

field. The exponents that we have introduced take care of the issue of orientation. 

They restore the symmetry between the boundary components of a surface, so that 

the partition functions are invariant by permutation of their arguments. 

The possibility of gluing together boundary components of one or two surfaces leads 

to infinitely many relations analogous to (1) between the transition kernels and to just 

as many relations between the partition functions. For instance, consider a cylinder 

of area s with one incoming circle and one outgoing circle. A cylinder has genus 0 and 

the corresponding transition kernel is -P̂ to.sO^ dv)- By gluing the incoming circle of 

this cylinder along an outgoing circle of an arbitrary surface, we do not change this 

surface up to homeomorphism, we only increase its area by s. Hence, we have the 

following relation between transition kernels: 

(8) 
G 

P£g,t(Xl> ' ' ' ' X*> dx<?+l' ' ' ' ' dxP~li dx)P2~,0,s(X> dxp) 

~ Pp,g,t-\-si.x^i - • - ? xqi dxq+l-> - - - i dxp) 

t 

X X 

s t + s 

FIGURE 3. Gluing a cylinder does not affect a surface up to homeomor
phism but it increases its area. 

As another example, let us consider an orient able surface with at least one incoming 

and one outgoing circle. If we glue these circles one along the other in such a way 

that the result is still orientable, then we obtain a surface with two less boundary 

components, a classical genus increased by 1, hence a reduced genus increased by 2, 

and the same area. This example is reminiscent of the situation where we obtained a 

circle by identifying the two endpoints of a segment. It is thus not surprising that in 

this case, the Markov property is best expressed in terms of the partition functions, 

rather than the transition kernels. It reads 

(9) 
wn; Zp,g,t(Xl>--->XP<^$-2>X'X ww = Zp-2,g+2,t(Xl'--^XP-2^-
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8 INTRODUCTION 

x-1 

t 

X 

t 

FIGURE 4. Gluing together two boundary components of a connected surface. 

If we identify an outgoing circle with an incoming one in a non-orientable sur
face, then the reduced genus of the surface is also increased by 2. In this case, the 
Kolmogorov-Chapman equation is 

(10) Zp,g,t(xi^-^xP-2,x,x x)dx = Z 2 +2jt(a;i,...,Xp_2). 

A more unusual topological operation consists in identifying a boundary component 
of a surface with itself by a fixed point free orientation-preserving involution (see 
Figure 2 page 28). Up to homeomorphism, this operation is equivalent to gluing a 
Möbius band along this boundary component. The resulting surface is always non-
orientable and its genus is increased by one. The corresponding relation for partition 
functions is 

(h) 
G 

ZP,g,t(Xl' * * * ' Xp-l9X2)dx = Zp_lg+lt{xU . . . , Xp_i). 

The equalities (8), (9), (10) and (11) essentially generate all the relations which 
hold between the partition functions. Using these relations, we will prove that the 
whole set of partition functions of a Markovian holonomy field is determined by just 
those associated to a disk and a three-holed sphere of arbitrary areas. Indeed, any 
surface can be built from these three elementary bricks by a finite number of gluings. 
In fact, if the Markovian holonomy field is regular enough, then we will prove that its 
transition kernels are all determined by the sole transition kernels associated to disks. 
These transition kernels (Pi0 t(dx))t>o, also written (Z^0 t(x)dx)t>o in terms of the 
partition functions, constitute a one-parameter family of probability measures on G 
which will turn out to form a continuous convolution semigroup, hence the collection 
of 1-dimensional marginals of a classical Levy process on G, a process indexed by E + 
and with independent and stationary multiplicative increments. 

We are now able to give an idea of two of our main results. After giving an axiomatic 
definition of a 2-dimensional Markovian holonomy field with values in a compact Lie 
group G (Definition 3.1.2), we will prove, under a suitable regularity assumption, that 
there is a classical Levy process with values in G associated with each Markovian 
holonomy field (Proposition 4.2.1). This Levy process is characterised by the fact 
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0.4. TWO FUNDAMENTAL EXAMPLES 9 

that its 1-dimensional distributions are the transition kernels of the holonomy field 

associated to disks. Moreover, all partition functions of the holonomy field can be 

expressed in terms of these 1-dimensional distributions (Proposition 4.1.10). Then, 

we will prove that for all Levy process which satisfies some regularity properties, 

there exists a Markovian holonomy field to which this Levy process is associated 

(Theorem 4.3.1). 

We do not tackle in this work the question of the unicity of a Markovian holonomy 

field with a given associated Levy process. When the group G is Abelian, I believe 

that this unicity holds and that the proof should be straightforward. However, when G 

is not Abelian, the question seems to be more delicate and the answer is still unclear 

to me. 

0.4. Two fundamental examples 

In this paragraph, we present two examples of stochastic processes which do not 

exactly fit into our definition of Markovian holonomy fields, but are in a sense simpler 

and should absolutely be kept in mind as fundamental examples. We will also take 

the second example as an opportunity to discuss the role of loops with finite length. 

Consider the plane R 2 endowed with the Lebesgue measure denoted by dx. Let n 

denote a Poisson point process on R 2 with intensity dx. Let I : [0,1] —> R 2 be a 

continuous loop. For each point x G R 2 \ /([0,1]), the topological index of I with 

respect to x is an integer denoted by r\i(x) and defined, if we identify R 2 with C, by 

(12) nz(z) = 
1 

2¿7T 

dz 

z — X 

where I is any piecewise smooth loop which is uniformly close enough to Z, for example 

closer than the distance of x to the range of I. Provided the range of / is negligible, 

we may define 

(x,[0L],dx 
DD 

m(x)U(dx) = 

xen 

r\i(x)dx. 

Definition 0.4.1. — The stochastic process {Ni : I has negligible range} is called the 

Poisson process indexed by loops on R 2 . 

Let us define the Brownian motion indexed by loops in parallel to the Poisson 

process. Let W : L 2 ( R 2 , dx) —> $ be a white noise, that is, an isometry into a Hilbert 

space of centred real Gaussian random variables. 

Let us say that a continuous loop I : [0,1] —> R 2 winds gently if its range is negligible 

and if nj G L 2 ( R 2 , dx). In this case, it is legitimate to define 

(13) Bi = W(nt). 
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10 INTRODUCTION 

Definition 0.4.2. — The stochastic process {Bi : I winds gently} is called the Brownian 

motion indexed by loops on R 2 . 

To each subset D of the plane, we may associate two cr-fields and £7^, which 

we define by 

&% = (t(Ni:1 has negligible range, /([0,1]) C D), 

£7"g = a (Bi : I winds gently, ¡([0,1]) C D ) . 

If J is a Jordan curve in R 2 , then we denote respectively by int(J) and ext(J) the 

bounded and unbounded connected components of R 2 \ J, which we call the interior 

and exterior of J. A basic property of the Poisson point process II (resp. the white 

noise W) is that it associates independent random variables to disjoint subsets of the 

plane (resp. to functions with disjoint supports). This implies the following property. 

Proposition 0.4.3. — Let J\ and J2 be two Jordan curves with disjoint interiors. Then 

the a-fields &*t(Jl) and &Zt(j2) {resp. SF^j^ and £7*£t(j2)) are independent. 

Proof. — If I is a loop whose range is contained in int(Ji), then the support of r\i is 

also contained in int(Ji). The same holds for J 2 and the result follows. • 

Let us now prove a Markov property. 

Proposition 0.4.4. — Let J be a Jordan curve with negligible range. The a-fields 

ff"^t(j) and ff^t(j) (resP- &ïL(j) a n ^ ^eL(j)) a r e independent conditionally on Nj 

(resp. Bj). 

Proof. — We prove the result for the Brownian motion. By the Jordan curve the

orem, a Jordan curve with negligible range winds gently. Let L be the line in 

L 2(R, dx) generated by nj = l i n t ( j ) . Let Hm (resp. Hout) be the closed linear 

subspace of L 2(R, dx) spanned by n/ for I which winds gently and /([0,1]) C int(J) 

(resp. /([0,1]) C ext(J)). The inclusions Hin C { / G L 2 (R ,dx) : supp(/) C 

int(J)} and ifout C { / G L 2(R, dx) : f is constant on int(J)} are straightforward. 

They are actually equalities but we do not need this fact. In particular, Hinr\Hout = L. 

Moreover, with the notation © for the orthogonal complement, we have 

#in G L C { / e L 2(R, dx) : supp(/) C int(J) and / i n t ( J ) / ( a ? ) d x = 0 } , 

#out G L C { / G L 2(R, dx) : / = 0 on int(J)}. 

In particular, the orthogonality relation Hm © L _L Hout © L holds and the result 

follows. 
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0.4. TWO FUNDAMENTAL EXAMPLES 11 

It is illuminating to discuss the role of loops of finite length with the example of 

the Brownian motion indexed by loops in mind. A loop with finite length admits a 

Lipschitz continuous parametrization. Hence, its range has Hausdorff dimension 1, 

unless it is constant. In any case, its range is negligible. The fact that its topological 

index is square-integrable is not at all obvious. It is granted by a generalization of 

the isoperimetric inequality discovered by T. Banchoff and W. Pohl. We denote the 

length of I by x<< 

Theorem 0.4.5 (Banchoff-Pohl). — Let I : [0,1] —> R 2 be a Lipschitz continuous loop. 

Then 

47T 
«/R2 

ni(x)2dx <£(l)2. 

The original reference for this theorem is the article [6] of T. Banchoff and W. Pohl. 

They prove the inequality for a loop of class C2. An elementary proof of the inequality 

for rectifiable curves can be found in a paper by A. Vogt [37]. 

Of course, there are many loops with infinite length whose topological index is 

square-integrable, for instance fractal Jordan curves or simply loops of infinite length 

whose range is contained in a line. It would probably be difficult to characterise 

the set of loops which wind gently in a way which significantly differs from its def

inition. Nevertheless, on the scale of roughness given by the p-variation, as defined 

by L.C.Young [42], the space of rectifiable loops is the largest which contains only 

loops which wind gently. Recall that the p-variation of a loop I : [0,1] —» R 2 is de

fined as the supremum over all subdivisions {to < • • • < tr} of [0,1] of the quantity 

(Si IIK^+i)— Kti)\\p)* • A loop has finite length if and only if it has finite 1-variation. 

A loop with finite p-variation for p < 2 has negligible range. 

Proposition 0.4.6. — There exists a loop I : [0,1] —> R 2 such that I has finite p-

variation for all p > 1 and fR2 ni(x)2dx = +oo. 

E 

I 
2 

1 
3 

rl 
4 

FIGURE 5. This loop has finite p-variation for all p > 1 but its topological 
index is not square-integrable. 
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Proof. — For each n > 1, let ln be the loop based at the origin which goes once along 
the circle of radius ^ through the origin, tangent to the horizontal axis and contained 
in the upper half-plane. Assume that ln is parametrised at constant speed by an 
interval of length 2 ~ n . Let I be the uniform limit of the finite concatenations h • • • ln 

as n tends to infinity. This limit exists because the radii of the circles ln tend to 0 as n 
tends to infinity. For all p > 1, the p-variation of I raised to the power p is equal, up 
to some constant, to J2n>i n ~ P > n e n c e ft l s finite. On the other hand, the squared L2 

norm of nj is 7T JU>1 n
2 L 

n2 
1 

(n+1)2 = -boo. 

0.5. Markovian holonomy fields and gauge fields 

The original motivation for the study of processes indexed by loops is issued from 
theoretical physics, indeed from quantum field theory and more precisely from quan
tum gauge theories. Let us explain this on the example of electrodynamics. The 
classical theory of electrodynamics, as established in the second half of the nineteenth 
century, is summarised by the Lorentz law and Maxwell's equations. Maxwell's equa
tions relate the electric and magnetic fields to the density of electric charge and the 
density of electric current in space. 

In order to derive these equations from a principle of least action, which is usually 
the first step in the procedure of quantization of a physical theory, it is convenient 
to express the electric and magnetic fields in terms of a scalar potential and a vector 
potential. These potentials are not uniquely denned by the fields and this indeter
minacy is called the gauge symmetry of the theory. It turns out that the geometric 
nature of the pair formed by the scalar and vector potentials is that of a connection 
on a principal bundle with structure group U(l) over the space-time. At the level of 
rigour of this discussion, we do not make a serious mistake by identifying this object 
with a differential 1-form on the space-time. This 1-form is usually denoted by A and 
called the gauge field. The exterior differential of the gauge field is a mixture of the 
electric and magnetic fields called the electromagnetic field and denoted by F. The 
relation F = dA implies the equality dJP = 0, which is equivalent to the two homo
geneous Maxwell equations. The two inhomogeneous equations can be put under the 
form *d * F = J, where * is the Hodge operator on space-time associated with the 
Minkowski metric, and J is a differential 1-form built from the densities of charge and 
current. 

The main fact for us in this discussion is that the gauge field, the object in terms 
of which the classical electrodynamics is best described, is a differential 1-form on 
space-time. The most natural way to evaluate a 1-form is to integrate it along paths. 
In the case of electrodynamics, the gauge symmetry of the theory implies that any 
two gauge fields which differ by a total differential describe the same physics. This 
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0.5. MARKOVIAN HOLONOMY FIELDS AND GAUGE FIELDS 13 

indicates that the natural gauge-invariant functionals of the gauge field are in fact its 

integrals along loops. 

If instead of doing quantum mechanics we prefer to do statistical mechanics, then 

we turn the Minkowski space-time into a Euclidean space-time and put on the space of 

gauge fields the Gibbs measure corresponding to the action which gives back Maxwell's 

equations through the least action principle. In an empty space-time, this action is 

called the Yang-Mills action and it is essentially the squared L 2 norm of the elec

tromagnetic field. Just as in the deterministic case, an appropriate way of studying 

a random gauge field is again to consider the random variables determined by its 

integrals along loops, sometimes called Wilson loops, and this constitutes indeed a 

stochastic process indexed by loops. The Markov property of such a process, in this 

physical context, reflects the following property of locality of the Yang-Mills action: 

if the space-time is partitioned into several regions, then each region contributes to 

the action by a quantity which can be computed from the values of the field inside 

this region only. 

In general, the random object that we are studying is thus an analogue of the 

electromagnetic field, or rather of the gauge field formed by the scalar potential of 

the electric field and the vector potential of the magnetic field. Let us suggest an 

idea of the physical meaning of the gauge field A. This field interacts with particles 

which carry an analogue of electric charge. In fact, the 1-form A takes its values 

in the Lie algebra of a Lie group G and the charge of a particle is, mathematically, 

a linear action of G on some vector space in which the wave function of the particle 

takes its values. For example, in the case of electrodynamics, the group is U(l), the 

wave functions take their values in C and for a particle of charge ne, where — e is the 

charge of the electron, the group U(l) acts on C be the representation eld • z = einez. 

The exponential of the integral of the gauge field along a certain loop, as an element 

of U(l), describes the modification of the phase of the wave function of a particle 

which travels along I. More generally, let / : [0,1] —» M be a loop. Assume that G is 

a Lie group and that A is a differential 1-form on M with values in the Lie algebra 

of G. Then, under fairly weak regularity assumptions, the differential equation 

(14) ft0 = l, hthï1 =-A(it), te [0,1] 

has a unique solution h : [0,1] —• G. The element hi determined by (14) is called 

the holonomy of A along I and this is why we call our processes holonomy fields. 

The action of this element hi of G on the left on the vector space in which the wave 

function of a particle takes its values determines how the state of a particle is modified 

when it travels along I. The reversed order in the right-hand side of (5) is due to the 

fact that the state of a particle travelling along the concatenation of li and /2 is 
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modified first by the transformation due to the displacement along l\ and then by the 

transformation due to the displacement along ¿2-

0.6. Finite groups, gauge fields and ramified coverings 

When the group G is finite, the heuristic idea that a Markovian holonomy field is 

a reflection of a probability measure on a space of connections or differential 1-forms 

with values in the Lie algebra of G becomes awkward. Indeed, this Lie algebra is the 

null vector space. Topologically, a principal bundle with finite structure group is a 

covering and it carries a unique connection, which is flat. If M is simply connected, 

then the holonomy along any loop is the unit element of G. On the other hand, there 

exist Markovian holonomy fields with values in finite groups, which are non-trivial 

processes indexed by loops, even on the sphere S2. 

When G is finite, the correct geometric picture is the following: a Markovian 

holonomy field with values in G is the monodromy of a random ramified G-bundle. By 

a ramified G-bundle, we mean a ramified covering whose regular fibres are endowed 

with a free transitive action of G, or equivalently, a principal G-bundle over the 

complement of a finite set in the surface. There is still a unique connection on a 

ramified principal bundle and this connection is flat at each point which is not a 

ramification point, but each ramification point acts like a macroscopic amount of 

curvature concentrated at a single point. For instance, if n > 2 is an integer, then 

the mapping z H-> zn from C to itself is naturally a ramified Z/nZ-bundle. The 

group Z / n Z = {e2ikn/n : k e { 0 , . . . , n - 1 } } acts by multiplication on C*, freely 

and transitively on the fibres of the covering map z i—• zn. Any loop which goes once 

positively around a disk which contains 0 has monodromy e^1, no matter how small 

this disk. This is consistent with the picture of a concentration of curvature at 0. 

The idea that a Markovian holonomy field with values in a connected Lie group 

is a probability measure on a space of connections looked at through its holonomy 

is only a guide for the intuition and has in general no firm rigourous ground. On 

the contrary, the fact that a large class of Markovian holonomy fields with values in 

a finite group G can be realised as the monodromies of random ramified G-bundles 

is a theorem that we will prove. In the intuitive picture of the Yang-Mills measure, 

the curvature of the random connection is supposed to have the distribution of a 

white noise. The correct distribution of the ramified G-bundles which correspond 

with a given Markovian holonomy field can be roughly described as follows: first 

choose the ramification locus by throwing a Poisson point process on the surface with 

intensity the measure of area, then give a weight to every ramified G-bundle with this 

ramification locus which depends on its monodromy at each ramification point and 

the Levy process associated to the Markovian holonomy field. 
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0.7. Markovian holonomy fields and the Yang-Mills measure 

The Yang-Mills measure is to Markovian holonomy fields what the Brownian mo
tion is to Levy processes. It is indeed a Markovian holonomy field, whose associated 
Levy process is the Brownian motion on G. It is also the only Markovian holonomy 
field to have been constructed before the present work. The Yang-Mills measure has 
been the object of mathematical work since around 1990. It was first constructed on 
an arbitrary compact surface by Ambar Sengupta [35]. The author gave later a dif
ferent construction of essentially the same measure in [24]. One of the by-products of 
the present work is to provide another construction of the Yang-Mills measure, which 
really is very close to that given in [24]. Yet, we would like to emphasise several 
aspects in which it differs from the previous ones. 

The first difference is a slight shift of point of view which we have already illus
trated. Instead of considering a specific surface, choosing boundary conditions and 
constructing a process indexed by some class of loops on this surface, we now consider 
as one single object a whole collection of processes indexed by loops on all possible 
surfaces. The advantage of this view is that is leads quite naturally to an axiomatic 
characterization of Markovian holonomy fields. The one which we propose is inspired 
by the classical definition of a Markov process and by the axiomatic definition of a 
topological quantum field theory (see the next section). 

Another difference lies in the class of loops that we consider on a surface. Indeed, 
on a surface M endowed with boundary conditions, a measure of the area, and a 
base point m, the Yang-Mills measure produces a multiplicative G-valued stochastic 
process (î )jGL.m(M) ^or some class of loops Lm(M). In the two previous constructions 
of the Yang-Mills measure mentioned above, the loops to which one was able to 
attach a random variable were finite concatenations of very special curves, for example 
segments of submanifolds in the author's construction. On the other hand, it was 
proved in [24] that the mapping I »—• Щ is continuous in L1 norm on the class of 
loops considered there and endowed with the topology of uniform convergence and 
convergence of the length. This suggested that it should be possible to associate a 
random variable at least to each loop of finite length. This is indeed what we achieve 
in the present construction, thus increasing the coherence between the regularity 
property of the stochastic process and the set of loops on which it is defined. Let us 
point out that it is not necessary to be able to measure lengths in order to decide 
if a loop has finite length. Indeed, a diffeomorphism does not alter the fact that a 
curve has finite or infinite length. Thus, the definition of Lm(M) as the set of loops 
on M with finite length based at m does not require the choice of a Riemannian 
metric on M, a smooth structure is more than enough. It is natural to wonder if 
one could define the Yang-Mills measure or any other Markovian holonomy field for a 
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significantly larger class of loops. As the discussion at the end of Section 0.4 suggests, 

we believe that this is not possible with only the techniques used in this work, and 

probably very difficult anyway. 

The third important difference between this work and the existing constructions 

of the Yang-Mills measure concerns the group in which the stochastic process takes 

its values, which we have already denoted by G. Since the Yang-Mills measure is 

associated with the Brownian motion on G, it was natural to assume that it was a 

connected group. In the present work, the Brownian motion is replaced by a Levy 

process, thus a process with jumps. This opens the possibility of considering non-

connected compact Lie groups and in particular finite groups. In the case of finite 

groups, the Levy processes have a very simple structure and we are able to give 

a completely geometrical picture of Markovian holonomy fields, as we have already 

briefly explained in the previous section. 

0.8. Topological quantum field theories 

So far, our presentation of Markovian holonomy fields has been based mainly on 

the analogy with usual Markov processes indexed by intervals of time. Before closing 

this introduction, we would like to indicate another analogy, between the notions of 

Markovian holonomy field and topological quantum field theory (TQFT). We will 

not pursue this analogy in this work, but still we would like to acknowledge it as an 

important source of inspiration. 

Let us start by recalling briefly what a TQFT is. Let n > 0 be an integer. There 

is a category, denoted by Cobn, whose objects are the compact oriented smooth 

manifolds without boundary of dimension n and whose morphisms are given by the 

cobordisms: if Ni and iV2 are two oriented n-manifolds, then Hom(iVi,7V2) is the 

set of oriented (n + 1)-manifolds whose boundary is endowed with an orientation-

preserving diffeomorphism with the disjoint union of iVj* and N2, where N£ denotes 

the manifold obtained from TVi by reversing the orientation. On the other hand, 

there exists a perhaps much more familiar category, denoted by Vect, whose objects 

are complex linear spaces and whose morphisms are linear mappings. 

A (n + 1)-dimensional TQFT is a covariant functor from Cobn into Vect. This 

functor is usually denoted by Z , in reference to the fact that this definition has initially 

been given as a general framework for the partition functions of certain statistical or 

quantum field theories. Thus, by definition, Z associates to each n-manifold N a 

linear space Z(N) and to each (n + l)-manifold M endowed with a diffeomorphism 

between its boundary and the disjoint union N£ U N2 of two n-manifolds, a linear 

map Z(M) : Z(N\) Z(iV2). 

This functor is required to satisfy a certain number of natural properties. 
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FIGURE 6. Two examples of cobordisms, in dimensions n + l = l e t n + l = 2. 

1) To be multiplicative: for all n-manifolds Ni and iV2, we insist that 

Z(NX U N2) = Z{NX) ® Z(N2) 

(the tensor product of linear spaces) and, for any two (n + l)-manifolds Mj and M2, 

that 

Z(Mi U M2) = Z ( M i ) 0 Z(M2) 

(the tensor product of linear maps). 

2) To be involutive: for all n-manifold iV, we insist that 

Z(N*) = Z(N)* 

(the dual linear space) and, for all (n + l)-manifold, that 

Z ( M *) = Z ( M )* 

(the adjoint linear map). 

3) To behave well with respect to the composition of cobordisms: if Mi realises a 

cobordism between JVi and JV2, and M2 a cobordism between N2 and iV3, and if M 

is formed by gluing Mi and M2 along N2, then we insist that 

Z ( M ) = Z ( M 2 ) o Z ( M i ) . 

This last axiom can be reformulated in a more general way by slightly shifting our 

point of view. If we identify the space of linear maps from Z{N\) into Z(N2) with 

Z(Ni)* 0 Z(N2) = Z(Ni U N2), we can say that the linear map Z(M) is an element 

of the linear space Z(dM). In these terms, the axiom becomes the following. 

3;) If the boundary of M can be written as N1 U N£ U N2 and if M' is formed by 

gluing the two copies of 7V1? then we insist that 

Z(M') = k(Z(M)), 

where k : Z(Ni)* 0 Z(JVi) ® Z(AT2) Z(iV2) is the natural contraction of the first 

two factors. 
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Mi M2 

Z(S1)m Z^i} Z(51)<<<^$ ®5 x<<< Z(S1)®2 

FIGURE 7. Axiom 3: composition of two cobordisms in dimension 2. 

N2 

M 

'Ni 

w< 
N2 

M' 

FIGURE 8. Axiom 3': gluing two components of the boundary of a surface. 

4) Finally, we insist that Z behaves well with respect to orientation-preserving 
diffeomorphisms of manifolds of dimension n and n + 1, that is to say that to dif-
feomorphic n-manifolds it associates isomorphic linear spaces and to diffeomorphic 
cobordisms it associates linear maps conjugated by the linear isomorphisms associ
ated to the diffeomorphisms induced on the boundaries. 

If 0 designates the empty n-manifold, then the multiplicativity condition implies 
for example that Z (0 ) = Z(0)(g>Z(0) . Thus, Z (0 ) is either the null linear space 
or C. In order to avoid trivial situations, we will assume that Z (0 ) = C. Thus, for 
all (n + l)-manifold M without boundary, Z(M) is a linear map from C into itself, 
that is, a complex number. 

If N is an n-manifold, then Z(N x [0,1]) is an endomorphism of Z(N). Since the 
cylinder N x [0,1] is diffeomorphic to two copies of itself glued together along two 
copies of JV, one has the identity 

Z(Nx [0,1]) = Z(Nx [0,2]) =<<Z(Nx [0,1]) o Z(iV x [0,1]). 

Thus, Z(N x [0,1]) is a projection in the linear space Z(N) and, since a surface is not 
modified up to homeomorphism when one glues a cylinder along one of its boundary 
components, one loses no generality in assuming that it is the identity. Then, gluing 
the two ends of this cylinder and using the axiom 3', on finds that Z(N x 51), where S1 
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is the circle, is the natural contraction of the identity of Z(N), that is, the trace of 

this linear map, which is nothing but the dimension of Z(N). 

In the context of Markovian holonomy fields, we should modify slightly the 

definition of a TQFT in order to incorporate in it the notion of volume, or area 

when n + 1 = 2. We just need to replace (n + l)-manifolds by manifolds endowed 

with a notion of (n+1)-volume, of which the only invariant under diffeomorphisms is, 

according to a theorem of Moser, the total volume. In doing this, we modify only the 

morphisms in the category Cobn. The axioms 1 to 4 are unchanged. The object thus 

defined is called an area-dependent topological quantum field theory (ad-TQFT). For 

all (n + l)-manifold M, we will denote by Zt(M) the element of Z(dM) associated 

to M when it is endowed with a measure of (n + l)-volume of total area t. 

Let us investigate a 1-dimensional ad-TQFT, which we denote by Z. There is 

only one connected 0-manifold, the point, which we denote by pt. It can have two 

orientations, denoted by + and —. There is only one linear space involved, namely 

Z(pt+), which we denote by V. Then, there are only two oriented connected 1-

manifolds, the interval and the circle. It is convenient to represent intervals as intervals 

of R endowed with their natural length. Thus, for all s < t reals, Z([s,i\) is an 

endomorphism of V, which depends only on the length of [s, t] and whiwh we denote 

by Pt-s- Moreover, the axiom 3 implies that the relation Z([s, u]) = Z([t, u])oZ([s, t]) 

holds for all s < t < i¿, so that (Pt)t>o is a semigroup of endomorphisms of V. Finally, 

according to the general argument which we have presented above, we have for all í > 0 

the relation Z^S1) = Tr(Pt). 

Finally, a 1-dimensional ad-TQFT is the same thing as a semigroup of endomor

phisms of a linear space. In contrast with the purely topological case, nothing here 

prevents this linear space from being infinite-dimensional. For instance, in a Hilber-

tian framework, it suffices that the semigroup should be of trace class. 

A sufficiently regular classical Markov process, indexed by intervals of time, gives 

rise, through its transition kernels, to a 1-dimensional ad-TQFT. Consider for instance 

the Brownian motion X on a compact Lie group G. For all t > 0, let Qt denote the 

density of the distribution of Xt with respect to the Haar measure on G. Define 

Z(pt) as the space L2(G)G of square-integrable functions on G which moreover are 

invariant by conjugation. Then, for all s < t, we can define Z([s,i]) as the mapping 

(x,y) 1—> Qt-S(x~1y), seen either as the integral kernel of a linear map from L2(G)G 

into itself, or equivalently as an element of L2(G2)G ~ L2(G)G <g> L2(G)G. 

Our definition of the 2-dimensional Markovian holonomy fields contains the defini

tion of an ad-TQFT, given by the partition functions of the field. In the 2-dimensional 

setting, there is also a unique connected 1-manifold, which is the circle 51, so that 

there is also a unique linear space involved. We set Z(S1) = L2(G)G. Note that this 
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space is finite-dimensional when G is finite. We will prove (see Proposition 4.1.4), 
that the partition functions of a Markovian holonomy field are indeed invariant by 
conjugation and square-integrable with respect to all their arguments. They are 
moreover symmetric. Each function Z^Q t can thus be seen as a symmetric tensor 
of (L2(G)G)(8>P. Let us summarise this whole section in the following result. 

Proposition 0.8.1. — Let G be a compact Lie group. Let (Zp,gj)p,g>o,t>o be the par
tition functions of a Markovian holonomy field, associated to oriented surfaces. Set 
Z(S1) = L2(G)G, the space of square-integrable functions on G invariant by conjuga
tion. For all surface M with genus g, total area t and such that dM has p connected 
components, set Z(M) = Z^gt. Then the functor Z is a 2-dimensional ad-TQFT. 

0.9. Structure 

The present work consists of five chapters. In Chapters 1 and 2, we develop the 
tools and prove most of the technical results that we use in our study of Markovian 
holonomy fields. The first chapter covers the topology of surfaces and their surgery, 
the topological space of paths on a surface, the fundamental notion of graph on a 
surface, which we treat both topologically and combinatorially, and finishes with a 
discussion of Riemannian metrics. The second chapter introduces the space of multi
plicative functions of paths with its measurable structures and its uniform measure. 
The last section is devoted to a study of the free group of loops in a graph in relation 
with this uniform measure. 

In Chapter 3, we define Markovian holonomy fields and their discrete analogues. 
We prove the first central result of this work (Theorem 3.2.9) which encapsulates in an 
abstract way and extends the procedure which allowed us, in our previous construction 
of the Yang-Mills measure, to take the continuous limit of a discrete gauge theory. In 
our present language, we prove that every regular discrete Markovian holonomy field 
can be extended in a unique way to a regular Markovian holonomy field. 

In Chapter 4, we prove that a regular Markovian holonomy field with values in 
a compact Lie group G determines a classical Levy process in G, which in turn de
termines completely the partition functions of the holonomy field (Propositions 4.2.1 
and 4.1.10). We then prove that each Levy process of a wide class can be obtained 
in this way (Theorem 4.3.1). Whether or not two distinct Markovian holonomy fields 
can have the same associated Levy process is a natural question which we do not 
settle here. 

In Chapter 5, we prove that when the group G is finite, the Markovian holonomy 
field constructed in the previous chapter is the monodromy process of a random 
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ramified covering (Theorem 5.4.2). In fact, most of the chapter is devoted to the 
construction of this random ramified covering. 

The choice that we have made of concentrating to the extent possible the technical 
results in the first two chapters has the obvious drawback that the results exposed 
there often lack their real motivation, and that a linear reading of these two chapters 
may not be very rewarding. We hope that this is compensated by the fact that the 
study of Markovian holonomy fields themselves is much more straightforward than it 
would be if one had to constantly interrupt the exposition to prove technical results. 
In order to allow as much as possible the reader to jump from a section to another, 
we have included an index of notation which should be helpful in locating the first 
occurrence of a notation or a symbol. 

0.10. References 

The original paper of C.N. Yang and R. L. Mills where they introduced non-Abelian 
gauge theories appeared in 1954 [41]. An explicit description of the Yang-Mills mea
sure on a lattice was given by A. Migdal in 1975 [31]. The importance of the 2-
dimensional Yang-Mills theory in relation with the geometry of the moduli space of 
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CHAPTER 1 

SURFACES AND GRAPHS 

In this chapter, we introduce the tools of topology and geometry of surfaces that 
we use in the rest of this work. We set up the notation, collect the necessary classical 
results and prove less classical ones. After a short review of compact surfaces, we 
describe their surgery and study in some detail the paths and graphs drawn on them. 
In particular, we describe carefully the boundary of a face of a graph. Then we define 
the group of reduced loops based at a point in a graph and recall why it is free. In 
the next chapter, we will prove the existence of sets of generators of this group with 
specific properties. Finally, we discuss Riemannian metrics on surfaces in relation 
with our problem. 

1.1. Surfaces 

1.1.1. Classification of surfaces. — Let us start by recalling the definition of a 
surface. 

Definition 1.1.1. — A topological compact surface is a Hausdorff compact topological 
space in which every point admits a neighbourhood homeomorphic to R2 or homeo
morphic to R+ x R. 

A smooth compact surface, or simply a compact surface, is a topological compact 
surface equipped with a structure of smooth 2-dimensional manifold with boundary. 

The distinction between topological and smooth surfaces is not essential, as the 
following well-known result shows (see [33]). 

Theorem 1.1.2. — Any topological compact surface is homeomorphic to a smooth com
pact surface. Moreover, two smooth compact surfaces are diffeomorphic if and only if 
they are homeomorphic. 
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The classification theorem for compact surfaces is thus the same for smooth and 

topological surfaces. We will now describe this theorem, using a slightly unorthodox 

convention about the genus of a surface. 

Recall that the connected sum of two surfaces is the surface obtained by remov

ing a small disk from both surfaces and gluing the two resulting surfaces along the 

boundaries of these disks. Of course, the connected sum of two surfaces is defined up 

to homeomorphism only. 

Let us describe two infinite series of surfaces. The first series is built from the torus, 

which is the Cartesian product of two circles. For each even integer g > 0 and each 

integer p > 0, let T,+g be the surface obtained by removing p pairwise disjoint open 

disks from the connected sum of ^g tori. For g = 0, the surface swù0 is a sphere with p 

holes. The second series is built from the projective plane, which is the quotient of 

the unit sphere of R 3 by the group of isometries { id , —id}. For each integer g > 1 

and each p > 0, let T,~g be the surface obtained by removing p pairwise disjoint open 

disks from the connected sum of g projective planes. 

Recall that a smooth compact surface is orientable if it carries a non-vanishing 

differential 2-form. We say that a topological compact surface is orientable if a smooth 

compact surface to which it is homeomorphic is orientable. The following theorem is 

proved for example in [30]. 

Theorem 1.1.3. — Any connected orientable topological compact surface is homeomor

phic to one and exactly one of the surfaces w<^$**sqqq<<au)** • P,g > 0, g even}. Any connected 

non-orientable compact surface is homeomorphic to one and exactly one of the surfaces 

<wb, • P > 0, g > 1 } . Any oriented smooth compact surface admits an orientation-

reversing diffeomorphism. 

We call the integer g which appears in this classification the genus of a surface. 

For orientable surfaces, it is twice the number which is usually called the genus. The 

advantage of our convention is illustrated by Proposition 1.1.4. We denote the genus 

of a surface M by g ( M ) and the number of connected components of its boundary 

by p ( M ) 

With this notation, we have g ( S ^ t 9 ) = 9 and p ( £ p > p ) = P- Let us define a binary 

operation A on { + , — } by setting 

+ A + = + and + A - = - A + = - A - = - . 

If M i and M 2 are two compact topological surfaces, we denote by M i # M i the con

nected sum of M i and M 2 . 
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Proposition 1.1.4. — Let g and P+P',ĝ £v̂ gf be two surfaces of the list described above. 

Then 

(15) ^p,g " ^P',9' ^P+P',g+g'' 

Proof. — It is clear that P+P',g # ^y,s ' ^as P + P* boundary components. Moreover, 

the connected sum of two manifolds is orientable if and only if both manifolds are. 

The only non-trivial point is that the value of the reduced genus is correct when 

exactly one of the two surfaces P+P',g g and P+P',g, is orientable. In this case, since the 

operation of connected sum is commutative and associative, this boils down to the 

fact that the connected sum of a projective plane and a torus is homeomorphic to 

the connected sum of three projective planes. This is a classical result, proved as 

Lemma 7.1 in [30]. 

It is useful to keep in mind that if M is a non-orientable compact topological 

surface, then the connected sum of M with the torus Ej2 ls homeomorphic to the 

connected sum of M with the Klein bottle £o)2-

The fundamental groups of surfaces are most easily described by generators and 

relations. We denote by 

X\,..., xn r*i,... ,rm 

the group generated by x i , . . . , xn subject to the relations 7 * 1 , . . . , rm. If a and b are 

two elements of a group, we denote their commutator by [a, b] = aba~1b~1. 

Theorem 1.1.5. — The fundamental groups of compact surfaces are, up to isomor

phism, the following. 

1) 7Ti(Sj0) = {1} and for all g > 1, 

^i(so,2o) = (auh,".,a>g,bg | [ai,&i] • • • [ag,bg] = l ) . 

2) For all g > 0 and all p > 1, 7Ti(T,p2g) is free of rank 2g + p — 1. 

3) For allg> 1, TTI(S^) = (au...,ag \ a\...o?g = 1). 

4) For all g > 0 and all p> 1, 7Ti(T,~g) is free of rank g + p— 1. 

It follows from this theorem that a compact surface is not characterised up to 

homeomorphism by its fundamental group. For example, a sphere with three holes 

and a torus with one hole both have a fundamental group which is free of rank 3. 

However, closed surfaces, that is, surfaces without boundary, are indeed characterised 

by their fundamental group. 

If M is a closed compact surface, then the genus of M is the minimal number of 

generators in a presentation of the fundamental group of M. On the other hand, if M 

has a non-empty boundary, then its fundamental group is free of rank g(M)+p(M) — 1. 
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The boundary of a compact surface is a compact 1-dimensional manifold without 
boundary, hence a finite union of circles. If a surface is oriented, then every connected 
component of dM carries an induced orientation, such that the surface stays on the 
left of a person walking along the boundary in the positive direction. 

Definition 1.1.6. — Let M be a compact surface. We denote by &(M) the set of con
nected components of the boundary ofM, each taken twice, once with each orientation. 
If M is oriented, we denote by 38+(M) the subset of 38 (M) formed by the oriented 
connected components of dM which bound M positively. 

Any diffeomorphism of a compact surface induces a diffeomorphism of its bound
ary. We need to know which diffeomorphisms of the boundary can be obtained in this 
way. For this, observe that if the boundary of an oriented surface M has p connected 
components, then, among the 2P distinct orientations of dM, the two distinct orienta
tions of M determine two preferred orientations. We say that a diffeomorphism of dM 
is orientation-preserving if it preserves these orientations and orientation-reversing if 
it exchanges them. Of course, if p > 2, then there exist diffeomorphisms of dM which 
are neither orientation-preserving nor orientation-reversing. 

Theorem 1.1.7. — Let M be a smooth compact surface. If M is non-orientable, then 
any diffeomorphism of dM can be extended to a diffeomorphism of M. If M is ori
entable, then any orientation-preserving (resp. orientation-reversing) diffeomorphism 
of dM can be extended to an orientation-preserving (resp. orientation-reversing) 
diffeomorphism of M. 

In order to prove this theorem, it suffices to prove the following two facts: that on a 
disk with two holes (that is, a three-holed sphere) there exists a diffeomorphism which 
fixes the outer boundary and exchanges the two holes ; and that on a Möbius band 
with one hole (that is, a two-holed projective plane) there exists a diffeomorphism 
which fixes the outer boundary and reverses the orientation of the boundary of the 
hole. In both cases, these diffeomorphisms can be constructed by hand. 

1.1.2. Surgery of surfaces. — Surfaces undergo natural operations of surgery 
such as cutting along a curve or gluing one or two boundary components. When one 
performs gluings and wants to keep track of where they have occurred, one ends up 
with surfaces which carry marks. On the other hand, when one cuts a surface along 
one or several curves, a convenient way of keeping track of what has been done is to 
maintain an involution of the set of boundary components of the current surface. 

Definition 1.1.8. — A marked surface is a pair (M, c€), where M is a smooth compact 
surface and ^ is a finite collection of oriented smooth 1-dimensional submanifolds 
of the interior of M, which are pairwise either disjoint or equal up to orientation, 
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and such that an oriented curve belongs to ^ if and only if the same curve with the 
opposite orientation belongs to ^ . The elements of^ are called marks. 

FIGURE 1. An orientable surface of genus 4 with two holes, marked by 
three curves. 

The marked surface (M, ^ ) is said to be oriented if every connected component 
of M is orientable and oriented. 

Let us emphasise that on a marked surface, even an oriented one, the marks do 
not carry a preferred orientation. Recall the notation 38(M) from Definition 1.1.6. 
The group Z/2Z acts on ^ U 38 (M) by reversing the orientation, and we denote this 
action by b i-> 6 _ 1 . 

Definition 1.1.9. — A tubular pattern is a triple (M, ^ , r ) where (M, is a marked 
surface and r is an involution of 38(M) which commutes with the orientation reversal, 
that is, which satisfies r(b~l) = r(b)~~l. Ifc& = 0, the tubular pattern is said to be 
split. 

Let (M, ^ , r) be a tubular pattern. Choose b G 38{M). If r(b) is a component 
of dM distinct from 6, then b is meant to be identified with r(b) by an orientation-
preserving diffeomorphism. If r(b) = 6, then b is not meant to be glued or altered in 
any way. Finally, if r(b) — 6 _ 1 , then b is meant to be glued on itself according to an 
orientation-preserving involution. Of course, this way of encoding the possible gluing 
operations is purely conventional. 

We define now the basic operation of surgery, which is the operation of gluing. 

Definition 1.1.10. — Let (M^,t) and (Mf ,t') be two tubular patterns. A smooth 
mapping f : M' —• M is called an elementary gluing if one of the following sets of 
conditions is satisfied. 

1) The mapping f is the quotient map which identifies b' with t'(&') by an 
orientation-preserving diffeomorphism for some b' G 38(M') such that 

{bW-^tir'ib'<<^$$$$Uibr1}-^m 
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Moreover, /(<*?' U ss<<^ùdss and, on the set 3w<<S{M') \ww^^{b<',rf(b,),Tf(bf)-1}, 

t o / = / o t'. Such a gluing is called binary, and the pair of curves {/(&').vv<xxytp^^ 

is called its joint. 

2) The mapping f is the quotient map which identifies the points of b' by pairs 

according to an orientation-preserving fixed-point free smooth involution for some b' G 

3§{M') such that 

r(bf) = b'-\ 

Moreover, /(<*f' U {&',w<klâ = V and, on SS{M') - {&',̂ :!w<<o^$ r o / = / o T'. In this 

case, the gluing is called unary and the pair of curveswx<yp^^ 
{ / ( & ' ) , / ( & ) } m called its 

joint. 

A gluing is a map which can be written as the composition of several elementary 

gluings. A gluing is complete if the involution of the set of boundary components of 

the target surface is the identity. 

r(b') 

M' 

i 

M 

b' 

FIGURE 2. Binary and unary gluings. 

Up to homeomorphism of the underlying surfaces and disregarding the markings, 

performing a unary gluing along a boundary component is equivalent to gluing a 

Mobius band along this boundary component. The result of this operation is never 

orientable. 

The other basic surgery operation is that of splitting. It is really the same thing 

as a gluing, looked at in the other direction. 

Proposition 1.1.11. — Let (M^,r) be a tubular pattern with ^ 0. Choose 

{ M - 1 } C . Then there exists a tubular pattern (Splz(M), Spl^(^), Splj(r)), and an 

elementary gluing f : Splz(M) —• M such that the joint of f is {Z,Z-1}. Moreover, 

this gluing is unique up to isomorphism: if (M''\r') and f : M' —> M satisfy the 

same properties, then there exists a diffeomorphism ip : Spl7(M) —> M' such that 

^(Splj(if))) = i?', V°Spl , ( r ) = T,o^ and f'o^ = f. 
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This result is intuitively obvious and yet it lacks a concise and rigorous proof. Con
sidering that the splitting operation is denned by a picture (Figure 21.1) in E. Moise's 
reference book [33], we feel excused for not attempting what would be a lengthy and 
uninstructive proof. The surface Splz(M) can be defined as the topological space 
underlying the universal completion of the metric space (M \ /, d), where d is the re
striction to M \ I of an arbitrary Riemannian distance on M. The universal property 
of the completion actually provides us with a continuous gluing map. 

It is easy to determine from the pair (M, O , / - 1 } ) if the gluing is binary or unary. 
In fact, the gluing is unary if and only if I does not admit an orientable neighborhood, 
which is equivalent to the fact that for every neighborhood U of I there exists a 
neighborhood V C U of / such that V \ I is connected. Another equivalent statement 
is that I admits a compact neighborhood which is homeomorphic to a Möbius band 
of which I is an equator. 

When these equivalent properties do not hold and the gluing is binary, there is an 
issue of orientation about the way in which the two boundary components of Splz(M) 
which are glued together are identified. If M is orientable, then Splj (M) is also 
orientable, because a gluing performed on a non-orientable surfaces always results in 
another non-orientable surface, and the identification must be orientation-reversing. 
If M is non-orientable, then two situations arise. Either Sp\t(M) is orientable, in which 
case the identification must be orientation-preserving, or Sp\t(M) is non-orientable. 
In this last case, any identification of the two boundary components is convenient. 
This is not in contradiction with the uniqueness part of the statement since, thanks 
to Theorem 1.1.7, any diffeomorphism of the boundary of a non-orientable compact 
surface can be extended to a diffeomorphism of the whole surface. 

Let (M, ^ ) be a marked surface. By successively applying Proposition 1.1.11 to 
the marks of M, one eventually gets a tubular pattern with no marks, from which 
one can reconstruct (M, ^ ) . 

Proposition 1.1.12. — Let (M, ^) be a marked surface. Let (M, ^ , id) be the associ
ated tubular pattern. There exists a tubular pattern (M' , 0 , r ' ) and a smooth mapping 
f : M' —> M which is a complete gluing in the sense of Definition 1.1.10. This gluing 
is unique up to isomorphism. The pattern (M;, 0 ,T' ) is called a split tubular pattern 
o/(M,tf). 

The reader may find it an amusing exercise to draw a split tubular pattern of the 
marked surface depicted in Figure 1. In the next definition, we still use our special 
convention about the genus of a surface (see Theorem 1.1.3). 
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Definition 1.1.13. — Let (M, fé7) be a marked surface. Let (M' , 0 , r') be a split tubular 

pattern of (M, fé7). Assume that M' is connected. We define the split genus of (M, fé7) 

as the genus of Mf. We denote it by sg(M,fé7). 

1.2. Curves and paths 

1.2.1. Definitions. — In the theory of Markovian holonomy fields, curves and 

paths on a surface play the role of points of a time interval for classical Markov 

processes. Please note that the words curve and path are not interchangeable in this 

work: a path is a curve with finite length. 

Definition 1.2.1. — Let M be a topological compact surface. 

A parametrised curve on M is a continuous curve c : [0,1] —* M which is either 

constant on [0,1] or constant on no open sub-interval of [0,1]. The set of parametrised 

curves is denoted by PC(M). 

Two parametrised curves on M are said to be equivalent if they differ by an in

creasing homeomorphism of [0,1]. An equivalence class is simply called a curve and 

the set of curves on M is denoted by C(M). 

A continuous loop is a curve whose endpoints coincide. A continuous loop is said 

to be simple if it is infective on [0,1). 

If c is a curve, then we denote respectively by c and c the starting and finishing 

point of c. We denote its inverse by c"1. It is defined as the class of the parametrised 

curve t i—> c(l — £), which does not depend on the particular parametrization of c. 

The concatenation of curves is defined in the usual way. It is only partially defined 

on C(M) but associative whenever this makes sense. 

The space C(M) is too large for many of our purposes. Let us define another space 

of curves which we call paths. Let M be a smooth compact surface endowed with a 

Riemannian metric. Let c : [0,1] —> M be a Lipschitz continuous curve. Then the 

derivative of c is denned almost-everywhere and its norm is bounded above. We are 

going to consider curves whose speed is also bounded below by a positive constant. 

Since the range of a curve is compact, this notion is independent of the choice of the 

Riemannian metric, as it would be on any smooth manifold. 

Definition 1.2.2. — Let M be a smooth compact surface. 

A parametrised path on M is a continuous curve c : [0,1] —> M which is either 

constant or Lipschitz continuous with speed bounded below by a positive constant. The 

set of parametrised paths is denoted by PP(M). 
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Two parametrised paths on M are said to be equivalent if they differ by an increas

ing bi-Lipschitz homeomorphism of [0,1]. An equivalence class is simply called a path 

and the set of paths on M is denoted by P ( M ) . 

A loop is a path whose endpoints coincide. The set of loops is denoted by L (M) . 

A loop is said to be simple if it is infective on [0,1). 

We use for paths the same notation as for curves. If c is a path, we denote its 

endpoints by c and c, and its inverse by c_1. The concatenation of paths is also 

associative whenever it is defined. When M is endowed with a specific Riemannian 

metric, we usually identify P(M) with the subset of P P ( M ) consisting of paths which 

are parametrised at constant speed. 

While the inclusion PP ( M ) C PC ( M ) does not strictly speaking determine an 

inclusion P (M) C C ( M ) , because we are not using the same equivalence relation 

on parametrised curves and parametrised paths, it is true that a path, as a set of 

parametrised curves, is a subset of a unique curve. Moreover, two parametrised paths 

which are equivalent as parametrised curves are also equivalent as parametrised paths. 

Hence, there is a natural injection P (M) C C (M) which we use without further 

comment. 

Let us define a relation on L (M) by saying that two loops Zi,¿2 are related if and 

only if there exists c, d £ P (M) such that l\ = cd and ¿2 = dc. It is not difficult to 

check that this is an equivalence relation. 

Definition 1.2.3. — Let M be a smooth compact surface. A cycle is an equivalence 

class of loops for the relation on L (M) just defined. We call non-oriented cycle a 

pair {I, Z-1} where I is a cycle. We say that a cycle is simple if one of its representa

tives (hence all) are simple loops. 

A cycle is simply a loop from which one has forgotten the origin. It is important to 

observe that an oriented 1-dimensional submanifold of M determines a simple cycle. 

Another definition derived from that of loops and which will be useful is the following. 

Definition 1.2.4. — A path I £ P (M) is called a lasso if there exists a path s and a 

simple loop m such that I = sms~l. 

Lemma 1.2.5. — Let I be a lasso. There exist a unique path s and a unique simple 

loop m such that I = sras-1. The path s is called the spoke of I and the simple loop m 

the meander of I. 

Proof. — Endow M with a Riemannian metric. Assume that I is parametrised at 

constant speed by [0,1]. Then the meander of I is the restriction of I to the largest 

interval of the form [| — t, | + t) on which / is injective. • 
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FIGURE 3. A lasso. The dotted path is the spoke and the solid loop is the 
meander. Note that the spoke can intersect itself and the meander can 
intersect the spoke. 

We will use the topology of uniform convergence on C ( M ) . 

Definition 1.2.6. — Let M be a compact surface endowed with a Riemannian metric, 

whose Riemannian distance we denote by d. Let c\,c2 be two curves of M. We define 

doo(ci,c2)= inf sup d(c1(t),c2(t)), 
Paramte[o,i] 

where the infimum is taken over all parametrizations of c\ and c2. The distance doo 

is known as the Frechet metric. 

The distance< ^$ depends on the Riemannian metric chosen on M. However, the 

topology on C ( M ) does not. 

Lemma 1.2.7. — Let M be a compact surface. The distances on C ( M ) associated with 

any two Riemannian metrics on M are equivalent. 

Proof. — Since M is compact, the Riemannian distances on M determined by any 

two Riemannian metrics are equivalent. • 

On P ( M ) , we will use a topology which is stronger than the trace of the uniform 

topology. We use an analogue of the topology of convergence in 1-variation of Lipschitz 

continuous paths, for which a sequence of Lipschitz continuous paths in a Euclidean 

space converges if it converges uniformly and the sequence of the derivatives of the 

paths converges in L1. For the moment, we introduce a metric on P (M) which 

depends on a Riemannian metric on M and is apparently weaker than the distance 

in 1-variation. 

When c is a path on a Riemannian surface, we denote by £(c) its length. 

Definition 1.2.8. — Let M be a compact surface endowed with a Riemannian metric. 

Let ci,c2 be two paths on M. We define 

d*(ci,c2) = doo(ci,c2) + \£(ci) -£{c2)\. 
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It is not obvious, and we will prove in the next section, that the topology induced 
by di on P (M) does not depend on the Riemannian metric on M. Moreover, we will 
prove that this topology can be metrised by a distance for which P (M) is a complete 
metric space. 

The topology on P (M) induced by the distance de is the only one that we consider 
in this work and it is always the one to which we refer when we say that a sequence of 
paths converges. We will often add a condition on the endpoints of the paths which 
we consider. 

Definition 1.2.9. — Let (cn)n>o be a sequence of paths on M. Let с be a path on M. 
We say that (cn)n>o converges to с with fixed endpoints if 

1) d¿(cn, с) —» 0 as n —• со, 
2) for all n>0, Cn = с and c~n — c. 

When M is endowed with a Riemannian metric, we will also make use of piecewise 
geodesic paths. 

Definition 1.2.10. — Let M be a compact surface endowed with a Riemannian met
ric 7. We define A7(M) as the subset of P (M) containing the piecewise geodesic 
paths, that is, the finite concatenations of segments of geodesies. 

The letter A stands for affine, instead of the letter G which will be used for many 
other things. We claim that A7(M) is dense in P(M). Indeed, there is an obvious 
way to approximate an arbitrary path by piecewise geodesic ones. 

Recall that any two points of a Riemannian manifold which are closer than the 
injectivity radius are joined by a unique minimizing geodesic. 

Definition 1.2.11. — Let M be a compact surface endowed with a Riemannian met
ric 7. Consider c G P(M), identified with a path parametrised at constant speed. 
Let n > 0 be an integer. Assume that 2~n£(c) is smaller than the injectivity ra

dius of M. For each k G { 0 , . . . , 2n — 1 } , let an^ be the minimizing geodesic which 

joins c{k2~n) to c((k + l ) 2 ~ n ) . Then define 

(x,[0,(x,[QQ<L],dx<(,LW 
(x,[0,L],dx(WxL]W,dxxWW 

Proposition 1.2.12. — Let M be a compact surface endowed with a Riemannian met

ric 7. For all path c G P(M), the sequence (Dn(c)) defined for n large enough con

verges to c with fixed endpoints. In particular, the space A7(M) is dense in P(M) for 

the convergence with fixed endpoints. 

Proof. — Let n be large enough for the path Dn(c) to be defined. It has the same 

endpoints as c by construction. Let us parametrise it in such a way that for each 
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k e { 0 , . . . , 2n - 1}, the restriction of Dn(c) to [k2~n, (k + l)2~n] is the minimizing 

geodesic which joins c(k2~n) to c((k + l)2~n). It is straightforward that 

sup d(c{t),Dn(c){t)) <2-n+1^(c). 
te[o,i] 

Hence, Dn(c) converges uniformly towards c. Since the length is lower semi-continuous 

with respect to pointwise convergence, this implies that liminf £(Dn(c)) > £(c). On 

the other hand, £(Dn(c)) < £(c), hence £(Dn(c)) converges to £(c). • 

1.2.2. The complete metric space of rectifiable paths. — The goal of this 

section is to prove that the topology that we have introduced on P(M) does not 

depend on a particular choice of a Riemannian metric on M and can be metrised by a 

complete distance. Let us start by a negative result. 

Lemma 1.2.13. — Let M be a compact surface endowed with a Riemannian metric. 

The metric space ( P ( M ) , ^ ) is not complete. 

c 

> D3(c) 

FIGURE 4. Left: a piecewise geodesic approximation of a path. Right: 
a Cauchy sequence for di which does not converge to its uniform limit, 
the dotted straight line. 

Proof. — Let c : [— | , | ] —> M be a segment of minimizing geodesic parametrised at 

constant speed. For each n > 1, define cn : [0,1] —• M by cn(t) = c(t + ^ sin(27rn£)). 

For all n > 1, doo(cn,C|[o,i]) = ^(c|[o,i])« Moreover, for all n > 1, £{cn) = 4^(c|[0,i]). 

Hence, the sequence (cn)n>i is a Cauchy sequence for di which converges uniformly 

to cno,!]. Its only possible limit is C|[0,i]» Dut ^(cn) does not converge to ^(c|[0,i]). • 

The main result of this section is the following. 

Proposition 1.2.14. — Let M be a compact surface. 

1) The topologies induced on P(M) by the distances di associated to any two Rie

mannian metrics on M are the same. 
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2) Endow M with a Riemannian metric. There exists a metric d\ on P(M) which 

induces the same topology as dn and such that (P(M),e?i) is a complete metric space. 

In order to prove this proposition, we define a new distance on P(M), which is 

the analogue of the distance in 1-variation between Lipschitz continuous paths. Let 

TM denote the tangent bundle of M. The Levi-Civita connection of 7 determines a 

splitting of the tangent bundle to TM as 

t{tm) = tv(tm) e th(tm). 

The vertical part TV(TM) is the kernel of the derivative of the bundle map 

7r : TM —> M. It is canonically identified with TM by associating to X G TmM 

the vector -&lt=0(Y + tX) G Ty(TmM). The horizontal part TH(TM) is mapped 

isomorphically onto TM by the differential of tt and the reciprocal mapping can be 

denned as follows. Consider X,Y G TmM. Let c : (—1,1) —> M be a smooth curve 

such that c(0) = m and ¿(0) = X. Let Y(t) be the unique vector field along c such 

that y (0 ) = Y and Vt{t)Y = 0 for all t. Then the element of T^(TmM) which is 

sent to X by TTT is Y(0). 

Since the tangent space to TM at each vector X G TmM splits into the direct sum 

of two subspaces isomorphic to TmM, there is a natural Riemannian metric on T M , 

which we denote by 7 0 7 . The corresponding Riemannian distance on TM can be 

described as follows: if m and n are close enough on M to be joined by a unique 

minimizing geodesic and if X G TmM, Y G TnM, then 

dTM{X,Y) = (d(m,n)2 + | | / / K n ] p 0 - Y\\2) 
1 
2 

where //[m,n] denotes the parallel transport along the unique minimizing geodesic 

from m to n. 

Definition 1.2.15. — Let M be a compact surface endowed with a Riemannian met

ric 7. Let ci,C2 be two paths on M. We define 

di(ci,c2) = inf 
par am. 

sup d(ci(t),c2(t)) 
Vt€[0,l] 

+ 
/0 

1 
drM (c1(t),c2(t))dt 

where the infimum is taken over all parametrizations of c\ and c2. 

We define also 

di(c1,c2)= sup d(ci(t),c2(t)) 
t€[0,l] 

•F 

'0 

1 

dTM{ci{t),c2(t))dt, 

where c\ and c2 are parametrised at constant speed. 

It is clear that the inequalities di < d\ < d\ hold. We are going to prove that these 

three metrics induce the same topology on P(M). The main result is the following. 
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Proposition 1.2.16. — Let M be a compact surface endowed with a Riemannian met

ric. Let c be a path on M and (cn)n>i a sequence of paths such that di{cn,c) tendt 

to 0. Then d\(cn,c) tends to 0. 

Let us start with two preparatory lemmas. 

Lemma 1.2.17. — Let M be a compact surface endowed with a Riemannian metric. 

Let c be a path on M and (cn)n>i a sequence of paths such that d^(cn,c) tends to 0. 

Then, the paths cn and c being parametrised at constant speed, the uniform convergence 

holds: 

sup d{cn(t),c(t)) 
t€[0,l] 

— • 0. 

Proof — Let us parametrise c and cn for all n > 1 at constant speed. Let us 

also choose for all n a parametrization cn of cn such that the uniform convergence 

suPt€[o,i] d(cn(t),c(t)) —• 0 holds as n tends to infinity. Consider t G [0,1]. Since 

cn |[0jt] and cn j[tjl] converge uniformly respectively to C|[o,t] and c|[t,i]> we have 

liminf^c^Kct]) > ^(c|[o,t]) = tl{c) and liminf £(cn > £(c\[tA]) = (1 - t)£(c). 

Since £(cn) tends to £(c), this implies that £{cn \ [o,t}) tends to t£(c) as n tends to infinity. 

This convergence holds for all t G [0,1] and, since the functions t H-> ^(C^ |[O,*]) ARE 

non-decreasing, a classical result ensures that the convergence is uniform: 

sup \t(cn \[0tt]) - U(c) 
t€[0,l] 

—> 0. 

Now, for all t G [0,1], cn(t) = cn(£(cn |[o,t])/^(cn))- Since cn is ^(cn)-Lipschitz contin

uous, we have thus 

d{£n{t),cn(t)) < \£{cn |[0|t]) - t£(cn)\ < \£(cn |[0,t]) - t£{c)\ + t\£(cn) - 1(c) . 

The result follows easily. • 

The second lemma is the Euclidean version of Proposition 1.2.16. 

Lemma 1.2.18. — Let N > 1 be an integer. Consider RN endowed with its usual Eu

clidean structure, with norm \\.\\. Let f and (fn)n>i be measurable functions from [0,1] 

to the unit sphere ofRN. Assume that the primitives of fn converge uniformly to the 

vrimitive of f as n tends to infinity, that is, 

sup 
*€[0,1] R0 

S 
fn(s)ds -

< 

JO 
f(s)ds —> 0. 

n—*oo 

Then fn converges in L1 towards f, that is, 

l 

'o 
Ut) - f{t) dt — • 0. 

VXW¨£ 
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The difficulty of this lemma is that the assumptions do not imply that the sequence 

(fn) converges almost-everywhere to / . For example, if / is constant, fn can be 

constant except on a small interval, which wanders around [0,1], and inside which fn 

oscillates rapidly around the value of / . 

Proof. — Since all functions take their values in a bounded subset of RN, it suffices 

to prove that the sequence (fn)n>\ converges in measure to / , that is, denoting by 

Leb the Lebesgue measure on [0,1], to prove that 

V £ > 0 , lim Leb({* G [0,1] : ||/n(t) - f(t)\\ > e}) = 0. 
XW./£ 

According to Lebesgue's differentiation theorem, 

(16) 
1 

2ft 

¨X< 

Jt-h 
/ ( r )d r —J; / (*) for a.e. t G (0,1). 

Let p, q > 1 be two integers. Sets<< 

Cp,q ~ t G [0,1] : Vft G <F W<1 

V 1 
1 

2ft 

rt+h 

t-h 
/ ( r ) d r - f(t) < 

1 

< 

The relation (16) is equivalent to the fact that for all q > 1, Leb((Jp>1 CPiQ) = 1. 

Hence, for all a > 0 and all q > 1, there exists p > 1 such that Leb(CM) > 1 — a. 

Let us fix e > 0. Then, let us choose two reals a > 0, r > 0 and an integer q > 1. 

Let p(g, a) > 1 be an integer such that Leb(Cp(g?a)>g) > 1 — a. Set ft = l/p(q, a). 

Let no(r) > 1 be an integer such that, 

Vn > no(r) sup 
¿€[0,1] '0 

<¨D 
/„(s )ds -

VW 

W 
f(s)ds < 

1 

2r 

Choose n > no(r) and t G < l^$ùaa<< Then 

1 

I 2ft 

C<% 

W< 
fn(r)dr - f(t) < 

1 

q 
+ 

L 

2ftr 

Since for all s G [0,1], | |/n(s)|| = | | / (s) | | = 1, we have 

V r G [ * - f t , * + ft], \\fn(r)-<WW№\\> 
£ 

2 
W<../% fn(T),f(t))> 

£2 

8 

Hence, 

1 

2ft 
L e b ( { r G [ t - f t , t + ft]:||/n(r)-/<<W§%£(t)||> l 

2 £ 

< 
8 

£2 

1 

2ft 

¨CVN% 

??./ 
( / (* ) - /n ( r ) , / ( t )>dr < 

8 

e2 
0 
XQ 

+ 
1 

2ftr 

The same inequality holds when fn is replaced by / . Hence, 

(17) 
1 

2ft 
Leb({r G [t - ft, t + ft] : ||/n(r) - / ( r ) | | > e}) < 

16 

e2 

1 

W< 

1C 

2ftr 
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This inequality holds for every t G Cp(g,a),g- Consider a subset T of Cp(q^fq such 
that any two distinct points of T are at distance at least h. Take T to be maximal for 
inclusion among all subsets of Cp(9, with this property. Then by the assumption 
of separation of the points of T, T has less than 1/h -f 1 points and by the maximality 
of T, the intervals [t — h, t + h] with t G T cover Cp(g>a)jg. By applying (17) at the 
points of T, we find 

Leb({t G Cp(Çfa)i9 : | | / n (« ) - / ( O i l > * } ) < 
32(1 + fe) 

e2 
W< 

<X 
+ 

1 
2hr 

Since Leb(Cp(gja))g) > 1 — a, and since h = l/p(<7, a) < 1, we have finally proved that 
for all a > 0, r > 0 and all g > 1, there exists no(r) such that 

Vn > no(r), Leb({t G [0,1] : ||/n(t) - / ( t ) | | > e}) < 
64 
e2 

1 
XW 

p(a,a) 
2r 

-ha. 

By choosing a sufficiently small and q sufficiently large, then r such that p(q,a)/(2r) 
is sufficiently small, this proves that the left-hand side of this inequality can be made 
arbitrarily small by choosing n sufficiently large. This is exactly the desired conver

gence. 

Let us now prove Proposition 1.2.16. 

Proof of Proposition 1.2.16. — Let us parametrise (cn)n>i and c at constant speed. 
For each n > 1, set Un = supte^01^ d(cn(t),c(t)). By Lemma 1.2.17, Un tends to 0 
as n tends to infinity. Hence, we need to prove that dTM(cn(t),c(t))dt tends to 0. 
Let us choose n large enough for Un to be smaller than the injectivity radius of M. 
Then 

•1 

< 
dTM(àn(t),c(t))dt = 

ri 

0 
{d(cn(t),c(t))2 + \\//[Cnit)At)]Cn(t) - C(t)\\2) 

1 
2 dt 

<Un + 
<B 

o 
[Cri(t),c(t)]àn{i) ~ c{t)\\dt. 

Nash's embedding theorem grants the existence of an isometric embedding of M in a 
Euclidean space. Let i : M —• RN be such an embedding. We denote its differential 
by di and, using the natural identification TRN ~ x RN, we see di as a map 
from TM to RN. For all X G T M , we have ||dz(X)||RIV = \\X\\. Hence, 

\\ll[cn{t),c{t))Cn{t) - c(t)\\ = \\(di O //[CN(T),C(T)])(CNW) - di(c(t))\\RN 

< \\(di o //[Cn(t))C(t)])(cn(t)) - d»(én(t))||RJV 4- \\di(cn(t)) - di(c(t))\\RN 

In order to estimate the first term, let us observe that, in local coordinates, the 
linear operator dio//^>nj — di is a rectangular matrix whose entries depend on (m, n) 
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and vanish when m — n. The square of the first term of the right-hand side above is 

bounded by 

^((dW/[c«(t),c(t)] ~ di)(dio //[Cn{t)At)] - di)*)\\cn(t)\\2. 

The trace, as a function of (cn(t), c(£)), is a sum of squares of smooth functions 

on M x M which vanish on the diagonal. Since M is compact, any such smooth 

function is dominated by the Riemannian distance. Hence, there exists a constant 

K > 0 such that for all m, n G M and all X G TmM1 

\{dio//[rnM)(X) - di(X)\\RN < Kd{m,n)\\X\\. 

Since the lengths of the paths cn converge, L = sup{£(cn) : n > 1} is finite. Hence, 

for n large enough, we have 

ri 

JO 
dTM{Cn{t),c(t))dt < (1 + KL)Un + 

•i 

R0 
di(cn(t))-di(c(t))\\RN dt. 

It suffices to prove that the last integral converges to 0. As a mapping between metric 

spaces, i is 1-Lipschitz continuous. Hence, i(cn) converges uniformly to i(c) as n tends 

to infinity. Since i is a Riemannian isometry, i(cn) and i(c) are also parametrised at 

constant speed for all n > 1, respectively £(cn) and £(c). For all n > 1, define 

/ n : [ 0 , l ] — R " , fn = 
1 

i(Cn) 
di(cn). 

Define also / : [0,1] —» by / = l /^(c) • di(c). These functions take their values in 

the unit sphere of R^. Since i(cn) converges uniformly to i(c) as n tends to infinity 

and £(cn) tends to ^(c), the primitives of (fn)n>i converge uniformly to the primitive 

of / . By Lemma 1.2.18, this implies that (fn)n>i converges in L1 to / . Using again 

the fact that £(cn) converges to £(c), we find that the derivative of i(cn) converges 

in L1 to the derivative of i(c): 

(18) 
W 

/0 
\di(cn(t)) - di(c(t))\\RN —^0. 

This is the expected convergence. 

Lemma 1.2.19. — Let M be a compact surface. The topology on P(M) induced by the 

distances d\ associated to any two Riemannian metrics on M are the same. 

Proof. — Consider two Riemannian metrics 7 and 7' on M. We will denote with a 

prime the quantities associated with 7'. 

Let c be a path and (cn)n>i a sequence of paths such that c?i(cn,c), and thus also 

de(cn,c), tend to 0 as n tends to infinity. Let us parametrise c and each path cn at 

constant speed with respect to 7. By Proposition 1.2.16, we have 

sup d(cn(t),c(t)) 
t€[0,l] 

+ 
rl 

'0 
dTM{cn(t),c(t))dt —> 0. 

n—>oo 
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Set L = sup{^(cn) : n > 1} > £(c). On the compact subset 

BL{TM) = {XeTM: | |X||7 < L} 

of T M , the distances dxM and d'TM are equivalent. Moreover, the distances d and d! 

on M are also equivalent. It follows that 

sup d'(cn(t),c(t)) -
t€[0,l] 

W< 

?N/§ 
^ T M ( c n ( * ) , c W ) d t — • 0 

7 n—>-oo 

for some parametrization of c and the paths cn. Hence, d ' ^ c ^ c ) tends to 0. • 

Lemma 1.2.20. — Let M be a compact surface endowed with a Riemannian metric. 

The metric space (P(M),di) is complete. 

Proof — Let (cn)n>i be a Cauchy sequence of P(M) for the distance d\. Let us 

parametrise all these paths at constant speed. They form a Cauchy sequence for the 

uniform distance between continuous mappings from [0,1] to M, so they converge 

uniformly to some continuous mapping c : [0,1] —> M. 

Let us use Nash's theorem again to find an isometric embedding i : M —• RN. 

Since i is 1-Lipschitz continuous, the sequence (i(cn))n>i of paths in IR^ converges 

uniformly to i(c). 

The sequence (cn)n>i is in particular Cauchy for the distance di, so that the 

sequence (^(cn))n>i converges to some real I. Set L = sup{£(cn) : n > 1} < +oo. 

The restriction to the compact set BL(TM) = {X e TM : | |X| | < L} of the smooth 

mapping di : TM —> RN is Lipschitz continuous. Hence, the sequence (i(cn))n>i of 

paths in RN is also a Cauchy sequence for the L1 distance of the derivatives. Hence, 

the derivatives di(cn) converge in L1 to some function / : [0,1] —> 1 ^ which takes its 

values in the sphere of radius limn_>oo £(cn) = I. Passing the equality 

V 

'o 
di(cn(s)) = i(cn(t)) - i(cn(0)) 

to the limit, we find that / is the derivative of i(c). Hence, i(c) is a Lipschitz contin

uous path parametrised at constant speed Z, and so is c. In particular, I = £(c). 

Finally, the sequence (cn)n>i satisfies ^ ( c n , c ) —• 0 as n tends to infinity. By 

Proposition 1.2.16, this implies that di(cn,c) tends to 0 as n tends to infinity. • 

Let us collect the results that we have proved and deduce Proposition 1.2.14. 

Proof of Proposition 1.2.14- — Since dt < di < d\ and by Proposition 1.2.16, the 

three distances d ,̂ d\ and d\ induce the same topology on P(M). By Lemma 1.2.19, 

this topology does not depend on the Riemannian metric on M. By Lemma 1.2.20, 

it is the topology of a complete metric space. • 
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1.3. Graphs 

1.3.1. Graphs and the sewing of patterns. — A graph on a surface is a finite 
set of paths or curves called edges and which satisfy several conditions. For Markovian 
holonomy fields, these finite sets of paths play the role of the finite sets of points in a 
time interval along which one considers the finite-dimensional marginals of a Markov 
process. The fact that most finite collections of paths are not the set of edges of a 
graph leads to quite a lot of technical complication: Markovian holonomy fields are 
stochastic processes of which only a small number of finite-dimensional marginals can 
be described by a simple formula. 

Recall the distinction between curves, which are just continuous (see Defini
tion 1.2.1) and paths, which are Lipschitz continuous (see Definition 1.2.2). 

Definition 1.3.1. — Let M be a topological compact surface. 
A curve on M which is infective or a simple continuous loop is called a continuous 

edge. The set of continuous edges on M is denoted by CE(M). 
Let M be a smooth compact surface. A path on M which is infective or a simple 

loop is called an edge. The set of edges on M is denoted by E(M). 

When we consider an edge or a continuous edge e, we will often abusively denote 
the range of e by e instead of e([0,1]). 

Definition 1.3.2. — Let M be a connected compact surface (resp. a topological compact 
surface). 

A pre-graph on M is a triple G = (V,E, F), where: 
1) V is a finite subset of M, 
2) E is a non-empty finite subset ofE(M) (resp. CE(M)), stable by inversion, such 

that V = \Jeefc{e,e}, and such that two edges ofE which are not each other's inverse 
meet, if at all, only at some of their endpoints, 

3) F is the set of the connected components of M — UeeE e([0> ^ e dements of 
V, E, F are called the vertices, edges and faces of the pre-graph. 

A graph on M is a pre-graph which satisfies the condition 

4) Each face of G is homeomorphic to an open disk of R2. 

The skeleton of a pre-graph G is the subset of M defined by Sk(G) = UeeE e([0> !])• 
The set of paths (resp. curves) that can be obtained by concatenating edges of G is 
denoted by P(G) (resp. C(G)). The subset o/P(G) (resp. C(G)) consisting of loops is 
denoted by L(G) (resp. CL(G)). 

IfM is homeomorphic to a sphere andm is a point of M, we include the exceptional 
triple ( { m } , 0 , {M — {m}}) in the set of graphs. 
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A graph on a non-connected surface is defined as the data of a graph on each 

connected component of this surface. 

Let (M, <€) be a marked surface. Let G be a graph on M. We say that G is a graph 

on (M, ^ ) if each cycle of^ is represented by a loop of L(G). 

In the terminology of Mohar and Thomassen [32], what we call a graph on a 

topological surface is a cellular embedding of a combinatorial multigraph. It was 

proved by Rado in 1925 that every surface can be triangulated. In particular, on 

every topological compact surface there exists a graph. On a Riemannian surface, 

the proof of the fact that there exists a triangulation given in [32] is still valid if one 

uses only piecewise geodesic paths. Hence, a Riemannian surface admits a piecewise 

geodesic triangulation. This triangulation is a graph and, by adding some vertices, 

one may assume that the edges of this graph are geodesic. Finally, a Riemannian 

surface admits a graph with geodesic edges. 

The goal of this section is twofold: to provide us with an efficient combinatorial 

tool for dealing with graphs (Proposition 1.3.8) and to establish a robust criterion 

which tells us when a pre-graph is a graph (Proposition 1.3.10). 

In order to analyze a pre-graph or a graph, an effective method consists in splitting 

it along some of its edges. This is very similar to the surgery of smooth marked 

surfaces described in Section 1.1.2. The operations described here are however less 

regular and best denned in the category of topological surfaces. 

Definition 133. — A pattern is a triple (M, G, L), where M is a topological surface, 

G is a pre-graph on M and i is an involution of the set E of edges of G such that for 

all edge e € E, 

1) c(e) * e~\ 

2) ^e-1) = o(e)-\ 

3) e gL dM => t{e) = e. 

A pattern (Af,G,i) is split */ Sk(G) C dM. 

Two patterns (M, G, ¿) and (M' , G', L') are isomorphic if there exists a homeomor-

phism ip : M —• M' such that ^ ( G ) = G' and ip o i = ¿/ o ijj. 

A pattern is meant to be sewed according to the identifications determined by 

its involution. Our convention here is slightly simpler than in the case of tubular 

patterns, in that we exclude the case t(e) = e-1 which was the purely conventional 

encoding of unary gluings. Here, an edge e is always meant to be identified by an 

orientation-preserving homeomorphism with t(e). 

When / : Mf —> M is a continuous mapping between two surfaces and e' is a 

continuous edge on M' , we denote by f{e') the curve / o e'. 
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Definition 1.3.4. — Let (M, G, C) and ( M ' , G V ) be two patterns. 
A continuous mapping f : M' —• M is called an elementary sewing if it is the 

quotient map which identifies e' with i'(e') by an orientation-preserving homeomor-
phism for some e' G E'. Moreover, it is required that / (E ' ) = E and i o / = / o i' on 

E ' - K e ' - U e ' ) , ^ ' ) - 1 } , • 
The unoriented edge { / ( e ' ) , / ( e ' ) - 1 } is called the joint of the elementary sewing. 
A sewing is a map which can be written as the composition of several elementary 

sewings. A sewing is complete if the involution of the set of edges of the target surface 
is the identity. 

We have results for sewings which are similar to those we had for gluings. In 
particular, sewings can always be performed and a surface can always be split along 
an edge, provided the interior of the edge does not meet the boundary of the surface. 

Proposition 1.3.5. — 1) Let (M',G',L') be a pattern. Consider ef G E' such that 
t(e!) ^ e'. There exists a pattern (M, G, t) and an elementary sewing f : M' —• M 
such that the joint of f is {/(e'), f(ef)~1}. Moreover, this gluing is unique up to 
isomorphism: if (M" , G", t") and f" : M1 —> M" satisfy the same properties, then 
there exists an isomorphism ijj : (M, G, t) —> (M", G", L") such that o f = f". 

2) Let (M, G, L) be a pattern. Choose { e , e - 1 } C E such that e fl dM C {e , e } . 
Then there exists a pattern (MF,Gf,tf) and an elementary sewing f : M' —> M such 
that the joint of f is {e, e-1}. Moreover, this sewing is unique up to isomorphism: 
if (M",G",L") and f" : M" —• M satisfy the same properties, then there exists an 
isomorphism i\) : (M' , G;, i!) -> (M", G", L") such that f" o ip = f. 

Just as Proposition 1.1.11, this result is obvious at a certain intuitive level but lacks 
a concise proof. The first assertion relies on the fact that the result of the identification 
of e with i(e) is always a compact surface. This fact is explained in [32], at the 
beginning of Section 3.1. The second assertion relies on the Jordan curve theorem 
and on the theorem of Schonfliess, which asserts that the group of homeomorphisms 
of R2 acts transitively on the set of parametrised Jordan curves. A self-contained 
exposition of the theorems of Jordan and Schonfliess and of results which are very 
close to the forthcoming Proposition 1.3.8 can be found in the book of B. Mohar and 
C. Thomassen [32]. 

Let us only discuss the second assertion when the edge e is a simple loop and 
the equator of a Mobius band. In this case, the surface M' has one more bound
ary component than M and this boundary component is covered by two unoriented 
edges e[ and e2, which we may assume to be oriented in such a way that the con
catenation e[e2 makes sense. In this case, e^e^ is a loop which represents the new 
boundary component of M' and the involution i exchanges e[ and e2. 
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FIGURE 5. A three-holed sphere endowed with a graph, the same surface 
cut along all edges of the graph, and the corresponding split pattern. 

Since a gluing is a special case of a sewing, Proposition 1.3.5 implies that a pre-
graph can be lifted through a splitting, in a way which is unique up to homeomor-
phism. It also implies the following result. 

Lemma 1.3.6. — Let M be a compact topological surface. The group of homeomor-
phisms of M acts transitively on the set of infective continuous edges contained in the 
interior of M. 

ASTÉRISQUE 329 



1.3. GRAPHS 45 

Proof. — An injective continuous edge contained in the interior of M determines a 

pre-graph on M. The associated split pattern is simply M to which a disk has been 

removed. The boundary of this disk is the concatenation of two edges which are 

identified with each other's inverse by the involution. Hence, this split pattern does 

not depend, up to homeomorphism, on the edge. • 

Corollary 1.3.7. — Let M be a topological compact surface. Let e be an injective 

continuous edge contained in the interior of M. There exists a graph on M of which e 

is an edge. 

Proof — Let G be a graph on M. If M is a disk and Sk(G) C dM, or if M is a 

sphere and G is the exceptional graph with no edge, let us add to G a continuous 

edge whose interior is contained in the interior of M. In any other case, G contains 

an edge whose interior is contained in the interior of M. By adding vertices to G if 

necessary, we may assume that it has an edge, say ei, contained in the interior of M. 

The image of G by a homeomorphism of M which sends e\ to e is a graph on M of 

which e is an edge. • 

By successively applying Proposition 1.3.5 in order to split all the edges of a pre-

graph which are not located on the boundary, we end up with a split pattern. 

Proposition 1.3.8. — Let M be a topological compact surface. Let G = (V, E, F) be 

a pre-graph on M. Assume that each edge of G is either contained in dM or has 

no interior point on dM. Endow E with the identity involution. There exists a 

split pattern (M',G',L) and a sewing f : M' —» M such that / (E ' ) = E. For each 

face F ofG, <W¨£ F is the interior of a connected component of M' which we denote 

by M'F. The sewing map f applies M'F \ (Sk(G') D MfF) homeomorphically onto F 

and Sk(G') fl M'F continuously onto the topological boundary of F. 

We call (M' , G', i, / ) a split pattern of the pair (M, G). 

/ / (M", G", i") is another split pattern and f" : M" —> M a sewing which sends G" 

to G, then there exists an isomorphism of patterns V> : M' —> M" such that f'oip = /. 

Finally, if M is oriented, then M' can be oriented and the sewing map can be assumed 

to be orientation-preserving. 

One of the simplest consequences of this result is that a pre-graph has a finite 

number of faces. Let us identify a simple condition under which the assumption on 

the edges of pre-graph made in Proposition 1.3.8 are satisfied. 

Lemma 1.3.9. — Let M be a topological compact surface. Let G be a pre-graph on M. 

Let c be a subset of M homeomorphic to a circle. Then c is the image of a simple 

loop o/CL(G) if and only if c C Sk(G). Moreover, if c c Sk(G); then for each edge e 

of G, either e is contained in c or e has no interior point on c. 
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Proof. — One implication in the first assertion is obvious. Assume that c C Sk(G). 

The image of (0,1) by an edge is homeomorphic to (0,1), hence it cannot contain 

a subset homeomorphic to a circle. Thus, there is at least one vertex on c. Let 

us choose a continuous parametrization of c by [0,1], injective on [0,1), such that 

c(0) = c( l ) G V. The set c fl V is finite and its complement in c is a finite union 

of open intervals. Let (a, 6) be such an interval. Each point of (a, b) belongs to one 

single edge of G. Assume that there exists u, v with a < u < v < 6, such that u and v 

do not belong to the same edge. Since for each given edge, the subset of [0,1] covered 

by that edge is closed, there should necessarily be a point between u and v which is 

covered by at least two distinct edges. Hence, (a, b) is covered by a single edge. Both 

a and b must be vertices of this edge and the result follows. 

Let e be an edge which has an interior point on c. Let us choose a parametrization 

of e and t G (0,1) such that e(t) G c. Let / C [0,1] be the largest segment containing t 

such that e(J) C c, that is, the connected component of t in {s G [0,1] : e(s) G c } . 

Assume first that J = {t}. In this case, since c is contained in Sk(G), e(t) belongs 

to the closure of another edge of G, hence to another edge, and it is a vertex of G. 

This is impossible since t £ { 0 , 1 } by assumption. Let us now assume that / = [a, 6] 

with a < b. Since e is an edge, the equality e(a) = e(b) can occur only if a = 0 

and 6 = 1 , in which case e is contained in c. Actually, in this case, e is a simple 

loop whose range is c. Assume now that e(a) ^ e(6). Then e(J) is a subset of c 

homeomorphic to a segment. Since c C Sk(G), each endpoint of this segment belongs 

to the range of another edge of G. Hence e(a) and e(6) are vertices. This forces a = 0, 

6 = 1 and in particular the fact that e is contained in c. • 

In our definition of graphs, the focus is put on edges: a graph is a set of edges which 

satisfies certain properties. It is important that we find a robust criterion which tells 

us when a pre-graph satisfies the topological condition (labelled 4. in Definition 1.3.2) 

which makes it a graph. By a robust criterion, we mean a criterion which makes it 

obvious that a pre-graph whose edges are close to those of a graph is also a graph. 

Let us apply Proposition 1.3.8 to establish such a criterion. 

Proposition 1.3.10. — Let M be a connected topological surface. Let G be a pre-graph 

on M. The following properties are equivalent. 

4) Each face of G is homeomorphic to an open disk of R2. 

4') The skeleton of G is connected, contains dM, and there exists v G Sk(G) 

such that any loop in M based at v is homotopic to a loop whose image is contained 

mSk(G). 

In particular, if G is a graph, then each connected component of dM is the image 

of a loop of CL (G) . 
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Of course, if 4' is satisfied for some v G Sk(G), it is satisfied for all such v. In the 
course of the proof, we use the following lemma. 

Lemma 1.3.11. — Let M be a topological surface. Let G be a topological pre-graph 
on M. Assume that Sk(G) is connected and contains dM. Let v be a point o/Sk(G). 
Consider the quotient topological space M/Sk(G), in which all the points o/Sk(G) are 
identified. Then the natural mapping 7Ti(M, V) —> 7Ti(M/Sk(G), [v]) is onto. 

Proof — Let (M',G',L, / ) be a split pattern of (M,G) . Since Sk(G) contains dM, 
we have Sk(G') = dM'. Hence, the ill-defined mapping f~l : M —• M' descends to 
a well-defined mapping / -1 : M/Sk(G) —> M' jdM', which is a homeomorphism. In 
particular, [v] admits in M/Sk(G) a neighbourhood homeomorphic to a finite bunch 
of disks whose centres are identified, thus a contractible neighbourhood. Hence, any 
loop in M/Sk(G) based at [v] is homotopic to a finite product of loops based at [v] 
and whose interior does not visit [v]. 

Choose a loop I based at [ v] on A//Sk(G). Assume that I is homotopic to l\ • * • ln 
and the interiors of h,... ,ln do not visit [v]. Each loop U corresponds via /_1 to a 
loop in the space M'F/dM'F for some F G F. Such a loop can be lifted to a path c» 
on MF which starts and finishes on dMF and stays in the interior of MF in the 
meantime. Since Sk(G) contains dM, the paths f(ci) are paths on M which start 
and finish in f(dMf) = Sk(G) UdM = Sk(G). Since Sk(G) is connected, it is possible 
to connect their endpoints inside Sk(G) and thus to produce a loop in M based at v 
whose image in the quotient M/Sk(G) is l\ • • • ln. • 

Proof of Proposition 1.3.10. — 4) 4'). Let us assume that assumption 4 is sat
isfied. Since the faces of G are homeomorphic to open disks, they contain no point 
of dM. Hence, the skeleton of G contains dM. Let (Mf, G', i, f) be a split pattern 
of (M, G). By Proposition 1.3.8, the interior of MF is homeomorphic to an open disk 
for each F, so that M'F is a closed disk. In particular, dMF is connected. By Proposi
tion 1.3.8 again, it follows that the boundary of each face is connected. If Sk(G) was 
not connected, there would exist a face whose boundary meets two distinct connected 
components of Sk(G). The boundary of this face would not be connected: this is 
impossible. 

For each face F of G, choose a point in< EF. Choose v< EG Sk(G). It is well 
known that any continuous loop in M based at v is homotopic to a loop which avoids 
the points xpyF e F. To see this, endow M with a Riemannian metric. Then, any 
two loops which are closer in uniform distance than the convexity radius of M are 
homotopic to each other. In particular, any loop is homotopic to a piecewise geodesic 
loop and it is possible to choose this loop such that it avoids the points xp, F G F. By 
Proposition 1.3.8, the skeleton of G is a retract by deformation of M — {xp : F G F} . 
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Hence, any loop based at v is nomotopic in M to a loop which stays in the skeleton 
of G. 

4') =>> 4). Let (M' , G', / ) be a split pattern of (M, G). Let [v] denote the class of v 
in the quotient topological space M/Sk(G). This class is nothing but Sk(G). The third 
part of assumption 4' implies that the homomorphism 7Ti(M, V) —» 7Ti(M/Sk(G), [v]) 
induced by the quotient mapping is trivial. By Lemma 1.3.11 above, this homo
morphism is surjective. Hence, assumption 4' implies that M/Sk(G) is simply con
nected. Hence, it implies that M'/dM' is simply connected. The fundamental group 
of this space is isomorphic to the free product of the fundamental groups of the 
spaces MF/dMF. Hence, assumption 4' implies that each space M'F/dM'F is simply 
connected. Up to homeomorphism, there exist only two connected compact surfaces 
which, when all their boundary points are identified to a single point, are simply con
nected: the sphere and the disk. Finally, assumption 4' implies that all surfaces MF 
are homeomorphic to disks, that is, the assertion 4. 

The last assertion follows from Lemma 1.3.9 and the fact that the skeleton of a 
graph covers dM. • 

Corollary 1.3.12. — Let M be a topological compact surface. Let G = (V, E, F) be a 
graph on M. For each n>0, let Gn = (V, En, Fn) be a pre-graph on M equipped with 
a bijection Sn : E —> En such that for all e G E, 5n(e_1) = 5n(e)_1. Assume that 
for all n > 0 and all edge e such that e C dM, Sn(e) = e. Assume also that for all 
e € E, the sequence (Sn(e))n>o converges uniformly to e with fixed endpoints. Then, 
for n large enough, Gn is a graph on M. 

Proof — It suffices to check that Gn satisfies the condition 4' of Proposition 1.3.10 
for n large enough. Firstly, for all n > 0, the skeleton of Gn contains dM because the 
skeleton of G does and every edge of G located on dM is also an edge of Gn. Then, 
for all n > 0, the skeleton of Gn is connected. Indeed, let m and m! be two points 
of Sk(Gn). They can be respectively joined inside Sk(Gn) to two vertices v and v', 
which are also vertices of G. Since Sk(G) is connected, there exist a curve e\ • • • 
in C(G) which joins v to v'. The curve Sn(e{) • • • Sn(ek) joins v to v' inside Sk(Gn). 
Finally, for n large enough and for all e G E, Sn(e) is homotopic with fixed endpoints 
to e. By choosing a point of V as base point, we find that any loop in Sk(G) is 
homotopic to a loop in Sk(Gn). This finishes the proof. • 

1.3.2. The boundary of a face. — Although a face in a graph is, by definition, 
homeomorphic to an open disk, its closure needs not be homeomorphic to a closed 
disk and even when it is the case, the topological boundary of the face may not be 
homeomorphic to a circle. The boundary of a face of a graph can in fact be defined 
as a cycle in the graph and this is the notion which matters for us. The appropriate 
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intuitive picture is that of someone walking in the interior of the face, keeping her 

right hand on the boundary. If the surface is non-orientable, the boundary of the face 

is a non-oriented cycle. 

FIGURE 6. These are two faces of the graph represented on Figure 5. The 
closure of the first is not homeomorphic to a closed disk. The closure of 
the second is homeomorphic to a closed disk, but its topological boundary 
is not homeomorphic to a circle. 

The following definition makes sense thanks to Proposition 1.3.8, in particular the 

statement of uniqueness. 

Definition 1.3.13. — Let M be a topological compact surface. Let G be a graph on M. 

Let ( M ' , G ' , £ , / ) be a split pattern of (M,G) . Let F be a face ofG. Let MF be the 

connected component of M' such that f(MF) = F. 

If M is oriented, then the boundary of F is defined as the cycle dF = f(dMF) 

in CL (G) . If M is not oriented, we may still orient MF and the boundary of F is 

defined as the unoriented cycle dF = {f(dMF), f(dMF)~1}. 

A cycle of the form dF for some face F is called a facial cycle of (M, G). 

This definition allows us to make sense of an edge adjacent to a face. 

Definition 1.3.14. — Let M be a topological compact surface endowed with a graph G. 

Let (M',G',L,f) be a split pattern of (M, G). Let F be a face of G and MF the 

corresponding connected component of M'. Let e be an edge ofG. 

We say that the unoriented edge { e , e - 1 } is adjacent to F if there exists an edge e' 

ofG1 such that e' C dM'F and f(e') G {e,e-1}. 

// M is oriented and M' is oriented accordingly, we say that e is adjacent to F if 

there exists an edge e' with the same properties as above and e' bounds MF positively. 

An unoriented edge is adjacent to a face if and only if it is contained in its topolog

ical closure. When M is oriented, it follows from Proposition 1.3.8 that each oriented 

edge is adjacent to exactly one face. It may however occur that e and e-1 are adjacent 

to the same face. 

The content of the next result is that an edge which is adjacent to two distinct faces 

can be removed from a graph. Recall that a marked surface is a pair (M, ^ ) where 
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^ is a set of smooth curves on M (see Definition 1.1.8) and that a graph on (M,^7) 

is a graph G on M such that each curve of ̂  is the range of a cycle of C(G). 

Proposition 1.3.15. — Let (M, be a marked surface. Let G = (V, E, F) be a graph 

on (M,V). 

1) Let e be an edge of G which is not contained in any curve of ^'. Assume that 

e is adjacent to two distinct faces Fi and F2. Write dFi = ce and dF2 — e~xd for 

some c,d € P(G). 

Then E \ {e, e-1} is the set of edges of a graph on (M,^), denoted by G \ e, 

with the same faces as G, except for the faces Fi and F2 which are replaced by F = 

Fx U F2 U e((0,1)). Moreover, dF = cd. 

2) Let e be an edge ofG which finishes at a vertex of degree 1, that is, such that the 

terminal point of e is the terminal point of no other edge of G. Let F be the unique 

face adjacent to e. Let c £ P(G) be such that OF = cee-1 or dF = ce~1e. 

Then E \ {e, e-1} is the set of edges of a graph on (M, ff), denoted by G\e, with 

the same faces as G, except for the face F which is replaced by FUe((0,1]). Moreover, 

OF = c. 

ML 

ML 

ML 

«F, 

FIGURE 7. Removing one edge of the graph depicted on Figure 5. 
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Proof. — The proofs of the two assertions are very similar. We prove only the first 

one. Let ( M ' , G ' , £ , / ) be a split pattern of (M,G) . By suitably orienting AT, we 

may assume that e is the image by / of an edge e[ which bounds M'Fx positively 

and e-1 the image of an edge e2 = t>{e>\) which bounds M'F2 positively. Let us 

write dMFi = c'e[ and dMF2 = e2d', where c' and d! are curves in G' which satisfy 

f(cf) = c and f(d') = d. 

Let us assume first that either d or d! is not the constant curve, that is, that either 

dM'F ^ e[ or dMF2 ̂  e2. In this case, sewing e[ and e2 results in a new surface MF 

which is still homeomorphic to a closed disk. 

By removing the inner edge of this disk, we obtain a new split pattern (M", G", ¿") 

with one connected component less than Mf. The mapping / " : M" —* M induced 

by / is a complete sewing of this pattern, so that {M",G", L", f") is a split pattern 

of (M, G \ e). It follows on one hand that G \ e is a graph and on the other hand that 

the boundary of the new face F is f"{c'd') = f{c')f{d') = cd. 

It remains to check that each curve of ^ is represented by a loop of G \ e. By 

Lemma 1.3.9, it suffices to check that each curve of ^ is contained in Sk(G \ e). 

Consider I G ^ . By the second assertion of Lemma 1.3.9, the assumption that e is 

not contained in any curve of ̂  ensures that e has at most some of its endpoints on I. 

Hence, Sk(G \ e) contains at least the complement of a finite set in Z, hence I itself 

because it is closed. This finishes the proof. 

Let us now treat the case where dMFi = e[ and dMF2 = e2. In this case, the 

image of MFi U MF2 by / is a sphere of which e is an equator. This sphere is a 

connected component of M and, ignoring possible other connected components, we 

have E = { e , e - 1 } and ^ = 0 . Hence, G \ e is indeed a graph, namely the exceptional 

graph with no edge and a single vertex. It has a unique face whose boundary is the 

constant curve at this vertex. • 

The difficulty with the definition of the boundary of a face given by Definition 1.3.13 

is the same as that regarding the topological condition on the faces of a graph and 

which led us to state Proposition 1.3.10. It is not obvious from this definition that a 

small deformation of the edges of a graph cannot significantly modify the facial cycles. 

Since there will come a point in this work at which we will need to compare graphs 

with close edges, we need to be able to extract in a fairly explicit and robust way the 

amount of combinatorial structure of a graph which determines its facial cycles. 

The content of the theorem of Schonfliess is that there is no local topological 

invariant of a simple curve in a surface. Hence, in a graph, the only place where 

some local structure arises is at the vertices. This structure at a given vertex is 

completely described by the cyclic order of the edges which share this vertex as an 

endpoint. When the surface is orientable, the information of these cyclic orders is 
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in fact sufficient to determine completely the facial cycles of the graph, hence, by 
Proposition 1.3.8, the pair (M, G) up to homeomorphism. When the surface is not 
orientable, a small amount of global information is needed to recover the facial cycles. 
Before explaining this, let us describe precisely what we mean by the cyclic order of 
the edges at a vertex. The characterization of this order which we establish now will 
be useful later. 

In the next lemma, the surface is equipped with a differentiable structure because 
we need to consider a Riemannian metric on it. Nevertheless, the graph is allowed to 
have continuous edges. Also, the result is stated on a surface without boundary. If M 
has a boundary, then the cyclic order of the edges at a vertex should be computed 
after a disk has been glued along each boundary component of M. 

Lemma 13.16. — Let M be a smooth surface without boundary. Let G be a graph 
on the topological surface underlying M. Let v G V be a vertex. Let e i , . . . ,en be n 
parametrised curves which represent the edges of G which share v as their starting 
point. Let 7 be a Riemannian metric on M, whose Riemannian distance is denoted 
by d. Let R be the injectivity radius ofy. Set 

r0 = min ({R} U {d(v, ei{\)) : i G { 1 , . . . , n } } ) . 

For each r G (0,ro) and each i G { 1 , . . . , n}, define Si(r),ti(r) G [0, | ] by 

Si(r) = inf {t G [0, \] : d(v, ei{t)) = r } , U(r) = sup {t G [0, §] : d(v, e^t)) = r}. 

If M is not oriented, choose an orientation of the ball B(y,ro). For each r G (0,r*o), 
let cjfirst(r) be the cyclic permutation of {e i , . . . , en} corresponding to the cyclic order 
of the points ei(si(r)),..., en(sn(r)) on the circle C(v, r), oriented as the boundary of 
the ball B(v, r). Similarly, let cjiast(̂ ) be the cyclic permutation of {e i , . . . , en} corre
sponding to the cyclic order of the points e\(t\(r)),..., en(tn(r)) on the circle C(v,r). 
Then the following properties hold: 

1) The cyclic order u)^TSt(r) does not depend on r G (0,r0). We denote it simply 

by Ĉ first-
2) There exists r\ G (0,r0) such that for all r G (0,ri), cjiast(r) = cjfirst. 

In the proof of this lemma, we take the following fact (which can be deduced from 
Proposition 1.3.8) for granted. On the compact cylinder [0,1] x S1, consider n injective 
continuous curves c i , . . . , cn which do not meet each other. Assume that each curve 
starts at a point of { 0 } x S1 and finishes at a point of { 1 } x S1. Assume that no 
point of these curves other than their endpoints is located on the boundary of the 
cylinder. Then there exists an orientation-preserving homeomorphism of the cylinder 
onto itself which sends each curve to a set of the form [0,1] x {z} for some z G S1. 
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In particular, the cyclic order of the initial points of c\,..., cn on the circle {0} x S1 
is the same as the cyclic order of their terminal points on the circle {1} x S1. 

Proof. — Let us choose r G (0,r*o) and r' G (0,r). For each i G {1 , . . . , n } , let us 
define 

u>i(r',r) = sup{t G [0,5i(r)] : d(v,ei(i)) = r'}. 
Thus, Ci = ei([ui(rf,r),Si(r)]) is an injective curve which joins C(v,rf) to C(v,r) and 
stays in the annulus r' < d(v,.) < r. Moreover, only the endpoints of C* lie on the 
boundary of the annulus. This annulus is homeomorphic to a cylinder and the curves 
ci, . . . , cn do not meet each other. According to the remark made before the proof, the 
cyclic order of the points e\{ui{r', r ) ) , . . . ,en(un(r \ r ) ) on the circle C(v,rf), which 
we denote by t^mixed '̂,r), is the same as the cyclic order of ei($i(r)),... ,en(sn(r)) 
on C(v,r), which is by definition ĉ first(̂ )-

Set 7*1 (r) = min({r} U {d(v, ei([s{(r), |])) : i G { 1 , . . . , n } } ) . Since the edges 
ei,...,en are injective paths, ri(r) is a positive number and Ui(r',r) = U(r'), for 
all r' < n ( r ) . Hence, for all r G (0, ro) and r' G (0, r*i(r)), 

^last^) = WmixedC ,̂̂ ) = Wfirst(r). 

Both assertions follow from this equality. • 

FIGURE 8. The cyclic order of first exit of the disk bounded by the dotted 
circle for these six edges is (123456) but their cyclic order of last exit of 
the same disk is (214365). For a disk smaller than the grey disk, the two 
cyclic orders coincide. 

Let us describe informally the algorithm which one uses to compute the facial cycles 
of a graph. First, one has to land somewhere on the surface, near the boundary of 
a face and to grasp the nearest edge with either hand. Then, one walks forward to 
the next vertex without breaking the contact with the edge. There, one performs two 
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operations. The first consists in changing the hand which holds the edge in order to 
turn round. One now has the vertex in one's back. The second operation consists in 
grasping with one's free hand the only out coming edge at this vertex that one is not 
already holding and that is accessible without crossing any edge, and finally releasing 
the first edge. When one reaches a vertex at which there is only one outcoming edge, 
one turns around this vertex and walks back along the same edge, on the other side 
and holding it with the other hand. This process has to be iterated until one comes 
back to one's initial position. 

FIGURE 9. A possible track followed by our explorer. The landing point 
is denoted by a cross. 

Formally, the facial cycles arise as the cycles of a certain permutation on a set 
which corresponds to the possible ways of our explorer holding an edge. We call this 
set a framing of the graph. 

Definition 1.3.17. — Let M be a compact topological surface. Let G be a graph on M. 
An orientation of the vertices of G is a collection (Uv)vçy of pairwise disjoint open 
subsets of M such that for all vertex v € V, Uv is an orientable and oriented neigh
bourhood of v. 

Given an orientation of the vertices of G, and for each edge e, we use the orientation 
of Ue to determine a left and a right of e, at least in the vicinity of e. If e is located 
on the boundary of M, we say that is bounds M positively if M is on the left of e. 

Definition 1.3.18. — Let M be a topological compact surface. Let G be a graph on M. 
Let (Uv)vey be an orientation of the vertices ofG. For each e € E, set 

{—1,1} if e is not contained in dM, 
fr(e) = < { 1 } if e C dM and e bounds M positively, 

{—1} if e C dM and e bounds M negatively. 

The framing ofE is the subset fr(E) ofE x { - 1 , 1 } defined by 

fr(E)= ( J { e } x f r ( e ) . 
XWW 

ASTÉRISQUE 329 



1.3. GRAPHS 55 

We have already mentioned that, without the assumption that M is orientable, 

some amount of global information is needed to determine the facial cycles. 

Definition 1.3.19. — Let M be a compact topological surface. Let G be a graph on M. 

Let (Uv)vey be an orientation of the vertices ofG. The signature of this orientation is 

the collection of signs (Ae)eeE € {—1,1}E defined as follows. For each edge e which is a 

simple loop, set Xe = life admits an orientable neighbourhood and Ae = — 1 otherwise. 

Then, for each edge e such that e^e, consider an orientable neighbourhood Ue of e 

and set Ae = 1 if there exists an orientation of Ue compatible with the orientations 

ofUe and Ue, and Ae = — 1 otherwise. 

If M is orientable, then it is possible to choose an orientation of the vertices of G 

which is induced by an orientation of M. The signature of such an orientation is 

simply given by Ae = 1 for all e E E. 

We are now ready to define the permutation on fr(E) which determines the facial 

cycles. 

Definition 1.3.20. — Let M be a compact topological surface. Let G be a graph on M. 

Let (Uv)vey be an orientation of the vertices ofG. Let fr(E) be the associated framing 

ofG. Let (Ae)eGE be the signature of this orientation. 

The collection of the cyclic orders of the outcoming vertices at each vertex relatively 

to the orientation specified by the collection (UV)v^y is the the set of cycles of a 

unique permutation o / E which we denote by a. The involution e n e"1 is another 

permutation o /E which we denote by a. 

We define now three permutations a, a and tp of fr(E) as follows. Firstly, we set 

V(e,e) £ fr(E), a(e,e) = (e-1,— \ee) and a(e,s) = {a£(e),—e). 

Then, we define (p by the relation (p o a o a = id. Hence, 

V(e,e) € fr(E), <p(e,e) = ( ^ ( e " 1 ) , Aee). 

It is easy to check that a and a, hence (p take indeed their values in fr(E). Both 

permutations a and a are involutions. They correspond respectively to the first and 

second operations performed by our explorer after reaching a vertex. The permuta

tion ip is the one whose cycles give the facial cycles of the graph. 

Proposition 1.3.21. — Let M be a connected topological surface. Let G be a graph 

on M. Let (Uv)veY be an orientation of the vertices ofG. Let fr(E) be the associated 

framing ofG. Let <p be the permutation o/fr(E) defined in Definition 1.3.20. 

The range of the mapping which to each cycle ((ei, Si) • • • (en, en)) of the permuta

tion ip associates the cycle e\ • • • en in G is exactly the set of the facial cycles of G, 

taken once with each orientation. 
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If M is orientable and oriented, and if the orientation of the sets Uv is induced by 
the orientation of M, then (p leaves fr(E) fl (E x { 1 } ) globally invariant. Moreover, 
the set of cycles of the restriction of <p to fr(E) fl (E x { 1 } ) determines exactly the 
set of facial cycles which bound positively a face. These cycles are also those of the 
permutation tp = o~~x o a-1 on E. 

The best proof of this result is probably the one which the reader will make for 
himself by drawing pictures. Another option is to read the section 3.3 of the book by 
B. Mohar and C. Thomassen [32], although their description of the permutations is 
slightly less formal than ours. This whole discussion is also a variation on the theme 
of ribbon graphs or maps, which are discussed extensively in [23]. 

Let us apply Proposition 1.3.21 to prove a result in the same vein as Corol
lary 1.3.12. If A and B are two subsets of a same set, we use the notation 

A+ZZ B <<<W=F<< (AuB)\(AnB)EZ. 

Proposition 1.3.22. — Let M be a connected compact topological surface. Let G = 
(V,E,F) be a graph on M. For each n > 0, let GN = (Vn,En,Fn) be a graph on M 
equipped with a bijection Sn : V —> Vn and a bisection Sn : E —> En such that for 
all e G E, 5n(e) is the starting point of Sn(e) and 5n(e_1) = 5n(e)_1. We assume 
that for all n > 0 and all edge e such that e C dM, Sn(e) = e. We assume also 
that for all e G E; the sequence (Sn(e))n>o converges uniformly to e. Finally, we 
assume that for all n > 0 and for some orientation (Uv)v^y of the vertices of G such 
that Sn(v) G Uv for all n > 0 and all v G V, the cyclic order of the outcoming edges 
at every vertex is preserved by the bijection Sn. 

Then for all n > 0, there exists a unique bijection Sn : F —* Fn such that for 
all F G F, dSn(F) = Sn(dF). Moreover, for all F G F, one has 

limsup (F + Sn(F)) = f l I J (F + Sm(F)) C Sk(G). 
<-X--8 n>0 m>n 

We use the following simple lemma. 

Lemma 1.3.23. — Let M be a connected compact surface endowed with a graph G. 
If M is non-orientable, then two faces cannot have the same bounding unoriented cy
cle, and if M is oriented, then two faces cannot have the same oriented bounding 
cycle. 

More specifically, assume that there exist two faces of G whose boundaries are equal 
as unoriented cycles. Then M is homeomorphic to a sphere and Sk(G) is homeomor
phic to a circle. In particular, after choosing an orientation of M, the boundaries of 
the two faces as oriented cycles are each other's inverse. 
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Proof. — Let Fi and F2 denote two faces of G which share the same unoriented 

bounding cycle. Let c be a simple loop which represents this cycle, oriented in an 

arbitrary way. Consider, in a split pattern (M' ,G' ,£ , / ) of (M, G), the two disks 

M[ and M2 corresponding to Fi and F2 respectively. They are bounded by the 

same number of edges, which is also the combinatorial length of c. Let e[ x,..., e[ 

and e21, • • •, e2 denote respectively the set of edges located on the boundary of M{ 

and M2, in such a way that dM[ = e'lx • • • e'ln and dM2 — e21 • • • e2n. Each edge on 

the boundary of M[ is sent by / to an edge of G which is also adjacent to F2, hence is 

identified by 1 with an edge bounding M2. We may assume that t(ei 1) = e'2 x. We may 

also assume that f(e[ x) = f{e2 x) is the first edge traversed by c and this characterises 

fully c among all representatives of the unoriented cycle dFi. Indeed, c traverses each 

unoriented edge of G at most once, for t does never identify two distinct edges of 

the boundary of M{, or M2. Hence, c = f(e[ 1?..., e[ ) = /(e2 1,..., e2 n), so that 

*(ei,i) = e2,i for all i G { 1 , . . . , n}. The result follows. 

Proof of Proposition 1.3.22. — The first step of this proof is a rather unpleasant 

construction whose aim is to provide us with a simple way of telling apart the faces 

of G. We achieve this by adding an edge with one loose endpoint in each face, as 

follows. 

In the case where M is a disk and Sk(G) C dM, Gn = G for all n and the result is 

true. In any other case, each face of G is bounded by at least one edge which is not 

contained in dM. For each face F of G, let us choose a point mp G F and a point vp 

in the interior of an edge ep adjacent to F and not contained in dM. Let us choose 

a continuous edge fp which crosses Sk(G) exactly once at fi?, and finishes at mp. 

We assume that vp is not the initial point of fp. We denote by fp the portion of fp 

which joins vp to mp. For n > 0 large enough, fp meets Sk(Gn), more precisely 

the edge Sn(ep) and only this edge. For such n, let vp,n De the last exit point of fp 

from Sk(Gn). It is an interior point of Sn(ep). Let Sn(fp) be the portion of fp which 

joins vpiTl to mp. 

Let us perform this construction for each face F, with the edges fp chosen to 

be pairwise disjoint. Let us define G' as the graph obtained from G by subdividing 

the edges ep at vp and adding the edges fp. Also, for all n > 0, let G^ be the 

graph obtained from Gn by subdividing the edges Sn(ep) at vp,n and adding the 

edges Sn(fp). We extend Sn : V -> Vn to S'n : V W< VN M¨% by setting Sn(vF) = vF,n, 

and extend also Sn : E —• En to S'n : E' —• E^ in the obvious way. It is not difficult to 

check that vp^n tends to vp as n tends to infinity, and hence that Sfn(fp) converges 

uniformly to fp. By considering a small ball around vp, one checks also that the 

bijections Sfn still preserve the cyclic order at each vertex, including vp and mp. 
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F 
TTlf 

Л", 

Sn(eF) 
]VF,n 

eF vF 

FIGURE 10. The construction of the graphs G and W<% 

The faces of G and G ' (respectively G n and G'n) are obviously in bijective corre
spondence which we denote simply with a prime. For instance, for all F G F, the 
cycle which bounds F' is deduced from dF by the insertion of a sequence fpfp1. 
In particular, F and F' have the same topological closure. The boundary of F' is 
the only facial cycle of G ' which involves the edge fp and it involves no other edge 
of G ' which is not contained in the skeleton of G . Hence, any facial cycle of G ' which 
involves fp must be the boundary of F'. 

The advantage of this tedious construction is that for all F G F, F' is the only face 
of F' whose closure contains the edge fp and in particular the vertex mp. 

Consider now n > 1 and a face F of G . Since Sn preserves the cyclic order of the 
edges at each vertex, it follows from Proposition 1.3.21 that the cycle Sn(dF) is a 
facial cycle of G n . By Lemma 1.3.23, two faces of G n cannot have the same boundary. 
Hence, Sn(dF) is the boundary of a unique face of G n which we denote by Sn(F). 
By construction, the equality dSn(F) = Sn(dF) holds for all F G F. 

The same construction provides us with a bijection S'n between F' and F .̂ Now 
consider F G F. By definition, S^(-F') is the face of G ^ whose boundary is the 
cycle Sn(dF) in which S,n(fp)Sfn(fp)~1 has been inserted at the occurrence of the 
vertex vp,n. Hence, mp belongs to the closure of S'n{F') and, by the discussion a few 
lines above, S'n(F') = Sn(F)'. 

Now this implies that mp belongs to the closure of S n ( F ) ' , which is equal to 
the closure of Sn(F). Since mp does not lie on the skeleton of G n , this implies 
that mF G Sn(F). 

For each face F of G , let us choose a connected open subset Up of F which con
tains mp and such that the closure oiUp is contained in F. The last assumption 
implies that for n large enough, Sk(Gn) is disjoint from Up. Hence, UF is contained 
in a unique face of G n , which must be Sn(F). 
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In particular, F + Sn(F) is contained in (FU Sn(F))\Up. Since F nor Sn(F) meet 

another subset of the form Up1 for some F\ G F, we deduce from this inclusion that, 

for n large enough, F-f Sn(F) is contained in M\(JF^ Up. Hence, limsup(F+5n(F)) 

is contained in the same set. This inclusion holds for any choice of the sets Up and 

1.3.3. Adjunction of edges. — Proposition 1.3.15 gives us a way of removing 

some edges from a graph. We will also need a way of adding edges to a graph. The 

typical problem is the following: we are given a compact surface M endowed with a 

graph G, we consider a face F of this graph, two vertices v\ and v2 on the boundary 

of F and we would like to join them by a new edge whose interior is contained in F. 

If we are working in the category of topological surfaces and graphs with continuous 

edges, then Proposition 1.3.8 suffices to guarantee the existence of a continuous edge 

with the desired properties. However, if we are working with a graph with rectifiable 

edges and insist that the new edge be rectifiable too, then we need something more. 

The problem is a purely local one and we loose nothing by formulating it in the plane. 

The difficulty is that it seems not to be known whether a rectifiable edge can be 

straightened, even locally, by a bi-Lipschitz continuous homeomorphism of the plane 

(see for instance [28]). 

In this section and in this section only, we use the symbol d to denote the topological 

boundary of a set. We denote by Jíf1 the 1-dimensional Hausdorff measure on M2. 

Proposition 1.3.24. — Let K be a compact subset o/R2. Assume that dK is connected 

and satisfies Jif1(dK) < +oo. Let v be a point of dK. Let m be a point o/R2 \ K. 

Assume that v is curve-accessible from m, that is, that there exists a continuous curve 

c : [0,1] —> R2 such that c(0) = m, c ( l ) = v and c([0,1)) fl K — 0 . Then there exists 

an injective Lipschitz-continuous curve with the same properties as c. 

We start by proving an intermediary result, whose content is that two points of 

the bounded connected component of the complement of a Jordan curve with finite 

length can be joined inside this component by a path with finite length controlled by 

the length of the Jordan curve. 

Proposition 1.3.25. — Let U be a non-empty bounded connected open subset o/R2 with 

connected boundary. Assume that Jíf1(dU) < -feo. For all a, b G U, there exists a 

rectifiable path c which joins a to b and such that £(c) = Jf?1(c) < 100^?1(9C7). 

Proof — Since U is connected and open, it is arcwise connected. Let 7 be a contin

uous curve which joins a to b inside U. Set 

the result follows. • 

e = \ min (d(7([0,1]), dU), diam(9C/)) > 0. 
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Let X be a maximal subset of dU such that for all x, y G X with x ^ y, d(x, y) > 2e. 

The assumptions on U imply that dU is compact, so that X is finite. Write 

X = { x i , . . . ,xn}. 

Let us say that a finite set of circles are in generic position if no two distinct of them 

are tangent and no three pairwise distinct of them have a common point. We claim 

that it is possible to choose n positive real number 7*1 , . . . ,rn in the interval (2e,4e) 

such that the boundaries of the balls Bi = B(xi,ri) are in generic position. 

Indeed, let us choose 7*1 = 3e. There are only a finite number of values of r2 

(actually, two values) for which dB2 is tangent to dB\. Thus, we can choose r2 G 

(2£,4e) such that dB\ and dB2 are not tangent. Assume that 7*1 , . . . ,rk have been 

chosen such that dB\,..., dBk are in generic position. Then there are only a finite 

number of values of rk+i for which dBi,..., dBk+i would not be in generic position. 

Hence, we can choose r^+i in (2e, 4e) such that this does not happen. 

Set K = UILi B(xi->ri)- This is a compact set which contains dU, by maximality 

of X. Moreover, each connected component of K meets dU, which is connected by 

assumption. Hence, K itself is connected. Finally, K does not meet 7, so that a and b 

are in the same connected component of R2 \ K. 

Consider x G dK. Then x is on the boundary of one or two of the balls Bi,..., Bn. 

In any case, x admits a neighbourhood in which dK is a simple curve composed of one 

or two arcs of circle. It follows that the boundary of K is a compact set each point 

of which admits a neighbourhood homeomorphic to 1R. Hence, it is homeomorphic to 

a finite union of pairwise disjoint circles. 

FIGURE 11. The compact set K is the union of all the small disks. In this 
case, its boundary is the union of three Jordan curves. The thicker path 
is the one of which we control the length by lOOJ^d*/). 

We have proved that K is bounded by a finite collection of pairwise disjoint Jordan 

curves. Let us call interior of a Jordan curve the bounded connected component of 

its complement. Since K is bounded and connected, dK is necessarily the union of a 
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Jordan curve Jo such that K is contained in the interior of Jo, and a certain number 

of Jordan curves J\,..., J& whose interiors are disjoint and contained in the interior 

of Jo- Since a and b belong to the same bounded connected component of M2 \ K, 

they both lie in the interior of one of the curves J\,..., J&, say J\. 

Let us give a bound on the length of J\ by bounding the total length of OK. Since 

e < diam(d?7), none of the balls B(xi,e) contains dU. Let us choose i G { 1 , . . . , n } 

and set, for y G R 2 , iti{y) = d(xi,y). Then ni(dU) is connected, contains 0 and also 

contains a real larger than e. Hence, 7ti(dU) D (0,£) and in fact iti(dUC\B(xi,e)) con

tains (0,6:). Since iti is 1-Lipschitz continuous, it follows that Jf1{dU fl B(xi,e)) > £. 

Using the fact that the n balls B(xi,e)1i G { 1 , . . . , n } are pairwise distinct, we de

duce that ne < J4?l(dU), which combined with inequality Jff1(dK) < Snne yields 
dKSnW<¨£MM+XWWr 

Let 5 be the straight path from a to b. Its length is smaller than diam(C7) < 

diam(dU) < J(f1(dU). If s does not meet K, it does not meet dU either and the 

result is proved. Otherwise, let o! and bf be respectively the first and the last point 

at which s meets dK. Let c be the path obtained by concatenating the straight path 

from a to a', then an arc of J\ from a' to b' and finally the straight path from b' to b. 

The length of c is bounded by £(c) < £{s) + ^(Ji) < lOOJf^dt/) as expected. • 

Proof of Proposition 1.3.24- — Since Jf1 is a cr-additive measure and M)X{dK) is 

finite, J4?x(dK fl B{v,r)) tends to ^x{{v}) — 0 as r tends to 0. Let (rn)n>o be a 

decreasing sequence of positive reals such that 

(19) 

n>0 

(^(dKn B(v,2rn)) +47rrn) < +oo. 

By shifting the sequence (rn) if necessary, we may assume that B(v,2ro) does not 

contain K. Since dK is connected, this implies that for all n > 0, KC\dB(v, rn) ^ 0. 

Let c be a continuous curve which joins m to v and meets K only at v. For each 

n > 0, let mn be the last point of the curve c which is on dB(v,rn). Choose n > 0. 

Consider the compact set Kn = (K fl B(v, 2rn)) U dB(v, 2rn). It is connected, as the 

image of the connected set K U dB(v,2rn) by the projection on the closed convex 

set B(v, 2rn). The points mn and ran+i belong to the same connected component of 

the complement of Kn (see Figure 12). Let Un denote this connected component. 

As a bounded connected component of the complement of a connected compact 

subset of R2, Un has a connected boundary (see [38, p. 47], where this property is 

called the Brouwer property of the sphere). Moreover, dUn is contained in dKn = 

(dK H B(v,2rn)) U dB(v,2rn). Hence, JP\dUn) < <Wx{dK fl B(v,2rn)) + 47rrn. 

So, by Proposition 1.3.25, there exists a path cn+i which joins mn to ran+i and has 

length smaller than l O O ^ ^ n ) . 
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Florae 12. The path c>, ? will join ni„ lo ÌÌÌ„ i inside ( 

Finally, let Cu he a patti of finite length which joins ni to wy outside I\ . Set 

( 1 {c\ I'UM .n(\d;h. * I )• ( ' i* is t ho Lipschit/-eont inuous intano of a segment 

alici il joins /ii lo r. Ilio sot ( ' needs noi he the image of" an infortivo patii bui 

si noe il is ooitìpaol alai connected, hy Proposition 14 ili ¡9], 1 hero oxists a» inject ivo 

hipsehit /-coitt inuous path which joins /// to r hi ( '. Such a path is exactly what we 

were look iti» for. { * 

We will lìtake uso uf this result under t \\v follow ini; forili. 

Proposition /.3.26. /a / M b( a compact surf an . /a / f" he a //re/i/i /;// J/. L< I F 

he a face of vh /a / Cj ///a/ r«j he tiro vertices trhich lit on Ilo Ixuiiohit i/ of F, Then 

crisis an i (lift f sach timi i ~ V\ , < r> and < ({0. 1}) ^ / . In ftarl teniae JAJ|̂  . t 1 } 

is tin s( f of ( dat .s of a graph on \ I. 

In this statement, t he assumpl ion t hat tin4 vertices lie on the hoinnlary of the 

face1 /•' can he underst ood in t he topological sense or, as it is equivalent. in the sense 

that t hey are traversed hy the facial cycle associated to F, 

/Voo/. hot us endow M with a Hiemannian met ric. By the sanie result used al the 

end of t he previous proof {[§], Proposition II). it suffices to prove that thero exists a 

compact connected subset ( 1 of M with finite 1-dimensional Ilausdorff measure which 

contains V\ and r_> and such that ( ' \ { C\. ic } C F. Since /- is ai (aviso coiuieeted 

hy paths of finite length (for instance pieeewise geodesic paths), it suffices to prove 

thai T], hence can he joined to at least one point of F hy a curvo of finite length 

which has only its starting point outside I**. 
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For this, choose a point n in F and choose a continuous curve c which joins n to v 
and has only its finishing point outside F. That such a curve exists is obvious in a split 
pattern of G. Choose also r > 0 such that the metric ball B(v,r) is diffeomorphic to 
a disk and each edge starting from v\ crosses the circle dB(v\,r). Choose a point m 
on c which c traverses after its last entry time in the ball B(vi,r). By applying 
Proposition 1.3.24 to m and (Sk(G) fl B(vi,r)) U dB(vi,r) inside the ball B(vur) 
smoothly identified with a ball in R2, we find the desired curve with finite length. • 

1.3.4. The group of loops in a graph. — The concatenation of paths is not a 
group operation, even when it is restricted to a set of loops based at the same point, 
in which case all pairs of loops can be concatenated. The obstruction is the fact that 
if c is a non-constant path, then there is no path d such that cc' is constant. However, 
the path cc-1 is equivalent to the constant path for a natural equivalence relation. 

Definition 1.3.27. — Let M be a compact topological compact surface. Two curves 
c, c' G C(M) are elementarily equivalent if there exist three curves a, b, d such that 
{c , c'} = {ab,add~1b}. We say that c and c' are equivalent and write c ~ c' if there 
exists a finite chain c = Co, . . . , cn = c' of curves such that Q is elementarily equivalent 
to Ci+i for each i G { 0 , . . . , n — 1}. 

This relation is an equivalence relation on C(M) similar to the equality of words 
in a free group, with the important difference that for the relation ~ , there is no 
analogue of the reduced form of a word, even if we restrict ourselves to rectifiable 
paths. For example, the class of the rectifiable infinite polygonal path in the complex 
plane which joins the points 0, ein, 0,2-1 e2 27r, 0 , . . . , 0,2~n e2 ni7r, 0 , . . . contains no 
path of minimal length. 

FIGURE 13. The equivalence class of this rectifiable path contains no short
est element. 

B. Hambly and T. Lyons have denned in [21] an equivalence relation on rectifiable 
paths for which the path described above is equivalent to the constant path equal to 0. 
This relation is strictly less fine than ~ and each class contains a unique element of 
minimal length. We plan to investigate in a future work the importance of this 
equivalence relation in the framework of the present theory. 

On a graph however, these subtleties do not arise. Until the end of this section, 
we work on smooth surfaces and consider paths instead of curves but all our results 
apply to graphs on topological surfaces. 
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Lemma 1.3.28. — Let M be a compact surface endowed with a graph G. Let c and c' 

be elements of P(G). Assume that c and d are elementarily equivalent. Then there 

exist a,b,d in P(G) such that { e , c ' } = {ab,odd"16}. 

Proof. — Let o, b, d be given by the definition of the fact that c and d are elementarily 

equivalent. Let us assume that c = ab and d = add~~xb. Since o, b, d are pieces of a 

path in G, it suffices to show that their endpoints are vertices of G to show that they 

are themselves paths in G. This is clear for a = c and b = c. 

Let us say that the curve c backtracks at a point m G M if there exists t,e > 0 

such that (t — e,t + e) C [0,1] and a parametrization of c such that c(t) = m and for 

all h G [0,£), c(t + h) = c(t — h). A point at which a path in G backtracks must be 

a vertex, hence d, which is a point at which d backtracks, is a vertex. There remains 

to prove that m = a = d = b is a vertex. 

Let G' be the graph obtained by adding m to the set of vertices of G and subdividing 

the edges of G accordingly. The graph G' has the same skeleton as G. We claim that 

either m is a backtracking point for c or c', or G; has at least three distinct outgoing 

edges at m. In both cases, it follows that m is a vertex of G. 

Let e"1 denote the last edge of a as a path in G', and and e& the first edges of 

d and b as paths in G'. Let us assume that c does not backtrack at m. Then ea ^ e&. 

Let us assume that d does not backtrack at m either. Then ad and d~lb do not 

backtrack at m, so that ea ̂  and ea ̂  e^. The claim is proved. • 

If c is a path in a graph, we call combinatorial length of c and denote by length(c) 

the number of edges which constitute c. A path is said to be reduced if it contains no 

sequence ee_1 for some e G E. Equivalently, a path is reduced if it is not elementarily 

equivalent to a combinatorially shorter path. 

Corollary 1.3.29. — Let M be a compact surface endowed with a graph G. Every class 

of equivalence of P(G) contains a unique element of shortest combinatorial length, 

which is characterised by the fact that it is reduced. 

Proof. — By Lemma 1.3.28, two paths in a graph which are equivalent differ by a 

finite number of insertions or erasures of sequences ee_1, where e is an edge of G. 

Let us consider an equivalence class of paths. This class contains paths of mini

mal combinatorial length. These paths are necessarily reduced. Thus, it suffices to 

prove that the given class contains only one reduced path. Assume that there are two 

distinct reduced paths, say c and d. Consider a chain of paths c = c0, . . . , cn = d ob

tained by successive erasures and insertions of sequences ee-1 where e G E. Assume 

that this chain minimises max{length(co),..., length(cn)} among all chains from c 

to d and that, among those minimisers, it also minimises the number of intermediate 

paths of maximal length. Consider an integer k such that Cfc has maximal length 

ASTÉRISQUE 329 



1.3. GRAPHS 65 

among Co, . . . , cn. Since Co and cn are reduced, c\ is deduced from cq by an insertion 
and cn from cn_i by an erasure. Thus, k G { l , . . . , n — 1}. So, c& is deduced from Ck-i 
by an insertion of, say, ee"1 and c^+i from Ck by an erasure of ff~l. Let us assume 
that e ^ WW<M¨Fn < Then the sequence f f~l is already present in Ck-i and could 
have been removed before the insertion of ee-1, thus diminishing the number of inter
mediate paths of maximal length. By assumption, this is impossible. Hence, e = / . 
Moreover, for the same reason, the sequence ee_1 removed between c& and Ck+i is 
not present in c^-i . It cannot be the sequence ee_1 inserted between Ck-i and c^, 
for then Ck-i = Cfc+i and by removing Ck and c^+i from the chain, we would again 
diminish the number of intermediate paths of maximal length. Hence, exactly one of 
the letters inserted in Ck is removed between Ck and c^+i. There are two cases and in 
both, it appears that c^-i = Cfc+i. This is again impossible. Finally, there is exactly 
one reduced path in each equivalence class of paths. • 

We can now define the group of reduced loops. 

Definition 13.30. — Let M be a smooth surface endowed with a graph G. Let v be 
a vertex of G. We denote by RL(G) (resp. RLV(G)) the subset of L(G) formed by 
reduced loops (resp. reduced loops based at v). 

The set RLV (G) is a group for the operation of concatenation-reduction, which to 
two loops l\ and l2 associates the unique reduced loop equivalent to /1 /2 . 

It is a well-known fact that the group RLV(G) is free. At a later stage, we will 
devote some time to finding families of generators of this group which satisfy special 
properties. For the moment, let us simply recall why it is a free group, by using 
spanning trees. 

Definition 1.3.31. — Let M be a compact surface endowed with a graph G. 
A spanning tree of G is a subset T C E such that T = T~l and such that by 

concatenating edges of T, one may construct a path from any vertex to any other but 
no simple cycle. 

For all vertices v\,v2 ofG, we denote by [VI,V2]T the unique injective path in T 
which joins v\ to V2. Let v be a vertex of G. For each edge e ofE, we define the loop 

h,T = [«,e]re[e,v]r. 

If e G T, then ZCJT is equivalent to the constant loop. Otherwise, it is reduced and in 
fact a lasso (see Definition 1.2.4). Indeed, the paths [v, e]r and [v, e]r can be written in 
a unique way as [v, W]T[W, e]r and [v, W]T[W, e]r with [w,§]TH [W, e]x = { w } - Then le 
is the lasso with spoke [v,t*;]T and meander [w,e]re[e,w]T. 

Definition 1.3.32. — Let M be a compact surface endowed with a graph G. An orien
tation of G is a subset E+ of E such that for all e G E, exactly one of the two edges 
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FIGURE 14. A spanning tree of our favourite graph. On the right, the 
position of the vertex w at which the injective paths [e, v]t and [e, v]t first 
meet, for a certain choice of v and e. 

e and e-1 belongs to E+. If M is oriented, e is an edge which lies on the boundary 
of M and which bounds M positively, we insist that e G E+. 

Given an orientation E+ of G and a subset Q C E, we use the notation 

Q+ = Q n E + . 

Given a graph G, we set 

v(G) = # V , e(G) = | # E and f(G) = # F . 

The following lemma is classical. 

Lemma 1.3.33. — Let M be a compact surface endowed with a graph G. Let v be a 
vertex ofG. Let T C E be a spanning tree ofG. Let E+ be an orientation ofG. The 
group RLV(G) is freely generated by the loops {le,T '• e G ( E \ T ) + } . In particular, it is 
free of rank e(G) — v(G) + 1. Moreover, the natural mapping LV(G) —• 7Ti(Sk(G), v) 
descends to a group isomorphism i : RLV(G) —> 7Ti(Sk(G), v). 

Proof — If Z = ei — -en belongs to LV(G), then I ~ leitT' "len,T- Hence, the 
loops ZE>T> e G E \ T generate RLV(G). Since le-i,T — C T ^or a^ e ^ this im
plies that the loops ZE,T,e G (E \ T)+ generate RLV(G). Now let X be a group. Let 
x = {xe : e G E \ T } be a collection of elements of X such that xe-i = x~l for 
all e G E \ T. Complete the collection x by setting xe = 1 for all e G T. The 
mapping from LV(G) to X which sends the loop I = e\ • • • en to x\ • • • xn descends 
to a group homomorphism from RLV(G) to X which sends ZE,T to xe for all e G E. 
Thus, RLu(G) satisfies the universal property which characterises freeness. Finally, 
since T has v(G) vertices, it has v(G) — 1 unoriented edges. Hence, RLV(G) is free of 
rank e(G) - v(G) + 1. 

It is obvious that two equivalent loops are homotopic in Sk(G). Hence, the mor-
phism i is well defined. Let us use the letter T to denote the subset \JeeT e of Sk(G). 
This subset is contractible and it is easy to check that Sk(G) has the same homo-
topy type as Sk(G)/T, the topological space obtained from Sk(G) by identifying all 

ASTÉRISQUE 329 



1.3. GRAPHS 67 

the points of T. This topological space is a bunch of circles, one for each element 

of (E \ T)+. Moreover, each loop le,T-> composed with the continuous projection 

Sk(G) —> Sk(G) /T , becomes a loop which goes once around the circle corresponding 

to e. Thus, the composition of i with the isomorphism 7Ti(Sk(G), v) —> 7Ti(Sk(G)/T, v) 

is an isomorphism, and i is also an isomorphism. • 

1.3.5. Graphs with one face. — By Proposition 1.3.8, a graph with a single face 

on a connected surface determines a way of realizing this surface as the quotient of 

a disk by a suitable identification of its boundary. On the other hand, many non-

isomorphic patterns with a single face give rise, when they are completely sewed, 

to homeomorphic surfaces. In this section, we discuss this fact in relation with the 

classical proof of the theorem of classification of surfaces (see Theorem 1.1.3) by cut-

and-paste. 

It is convenient to represent a pattern with one face by a word in a free group. This 

is what we explain now. For each integer n > 1, let us call n-gon the split pattern 

(D,Gn) formed by a closed disk D and a graph Gn with n unoriented edges on the 

boundary of D. This split pattern is unique up to homeomorphism. 

Definition 1.3.34. — Consider a set X and let (X) denote the free group over X. Let 

w be a an element of (X). Write w as a reduced word x\- — xn with x\,...,xn 

in XUX~X. We say that w is admissible if w is cyclically reduced, that is, if 

xn ^ x^1, and each letter of X appears at most twice in w, that is, for each x € X, 

#{ie{l,...,n}:xiw<<e{x,x<^^ù-1<}g<} <<<2. 

We say that an admissible word w is closed if no letter appears exactly once in w. 

The fact that a word is admissible is not changed if this word is submitted to a 

circular permutation of its letters nor if it is replaced by its inverse. Of course, it is not 

changed either by changing the names of the letters: the set X plays no special role 

and we identify two words which differ only by relabelling the letters which constitute 

them. We define now a correspondence between admissible words and graphs with 

one face. 

Definition 1.3.35. — 1) Let M be a compact surface endowed with a graph G. Assume 

that G has a single face and that each vertex of G is the starting point of at least 

two distinct edges. Let E+ be an orientation of G. Then each cycle which represents 

the boundary of the unique face of G is a cyclically reduced word in the letters of E+, 

that is, an element of (E+). We define 

W(M, G) = {w e (E+) : w is a facial cycle ofG}. 
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2) Let w = x\ • • • xn be an admissible word of length n. Let (D,Gn) be an n-gon. 

Write En = { e f . . . , e^1} in such a way that e\ • • • en represents 3D. Let tw be the 

involution o/En defined as follows: for all i G { 1 , . . . , n } , 

w< :;;mù^^ 3 
^mù 

if there exists j ^ i and e = ±1 such that x* = x%> 

otherwise. 

The closed compact surface obtained by completely sewing the pattern (D,Gn, Lw) is 

said to be associated with w and we denote it by T,(w). 

Let M be a compact surface. It follows from the definitions that for all graph G 

with a single face on M and for all w G W(M, G), the surface T,(w) is homeomorphic 

to M. On the other hand, there are in general many admissible words which are not 

in W ( M , G) whose associated surface is homeomorphic to M. Ignoring the precise 

set to which the letters of the words that we consider belong, we define a set of words 

as follows: 

W(M) = {w admissible word : M(w) is homeomorphic to M } . 

Each word of W(M) belongs to W(M, G) for some graph G, for instance the graph 

constructed by sewing the pattern associated to this word. We use this discussion to 

prove the following theorem. 

Proposition 13.36. — Let M be a compact surface. Let Gi and G2 be two graphs 

on M. There exists a homeomorphism f : M —> M which preserves each connected 

component of 3M, and which is orientation-preserving if M is oriented, and a finite 

sequence of graphs Gi}o» • • •»Gi>r such that Gi?o = Gi and Gi>r = / (G2) , and such that 

for all i G { 0 , . . . , r — 1}, Gi^-f 1 is deduced from Gi^ by erasure of an edge in the sense 

of Proposition 1.3.15 or by adjunction of an edge in the sense of Proposition 1.3.26. 

Proof. — By erasing enough edges of Gi and G2, we can transform them into two 

graphs with a single face and of which every vertex is the initial point of at least two 

distinct edges. Such graphs determine two words of W(M) which we denote by W\ 

and W2> 

The theorem of classification of surfaces as it is proved in [30] asserts that, by 

repeated operations of cutting and pasting, w\ and w2 can be put under one of the 

standard words [ai, a2] • • • [ag_i, ag] or a\ • • • if M is closed of genus g, or the same 

words multiplied by a word of the form d\C\d^1 • • -dpcpd~l if M has a boundary, 

with c i , . . . , cp corresponding to the p boundary components of M. 

The general operation of cutting and pasting, described at the level of a split 

pattern ( M ' , G ' ) of G, consists in choosing two vertices v\ and v2 on the boundary 

of M' and a pair of edges (e, t(e)) which are identified by 1 and separated by v\ and v2. 

One then adds to G; an edge inside M' which joins vi to v2, identifies e and t(e) and 
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removes the joint of this identification (see Figure 1.3.5). Seen on M, these operations 
can be described simply as follows: add an edge to Gi joining v\ to v2, thanks to 
Proposition 1.3.26, thus creating two faces, and remove the edge e, thus retrieving a 
graph with a single face. 

V2 

L(e) 

Vi 

Thus, by successively adding and erasing edges to Gi and G2, we may arrive at 
a point where W ( M , G i ) = W(M,G2). Then, by Proposition 1.3.8, there exists a 

1.4. Riemannian metrics 

1.4.1. Measured and Riemannian marked surfaces. — In the setting of 
Markovian holonomy fields, the scale of time is provided by a means to measure areas 
on each surface that one considers. 

Definition 1.4.1. — Let M be a smooth compact surface. A measure of area on M is 
a smooth non-vanishing density on M, that is, a Borel measure which has a smooth 
positive density with respect to the Lebesgue measure in any coordinate chart. 

A gluing is a diffeomorphism outside a negligible subset. Hence, a measure of area 
on a surface determines a measure of area on any other surface obtained by splitting 
this surface along a curve (see Proposition 1.1.11). 

Definition 1.4.2. — Let M be a smooth compact surface endowed with a measure of 
area denoted by vol. Let I be a mark on M and let Splj(M) be the surface obtained by 
splitting M along I. Let f : Splj(M) —» M be the associated gluing. Then vol o / is a 
measure of area on Sp\t(M) which we denote by Spl^vol). 

On an oriented surface, a measure of area is also the same thing as a non-vanishing 
differential 2-form. We are going to work with surfaces endowed with a specific mea
sure of area, on which we will choose Riemannian metrics. We would like these two 
structures to be compatible. In fact, we have the following result. 

FIGURE 15. The basic operation of cutting and pasting 

homeomorphism of M which sends Gi to G2. • 
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Proposition 1.4.3. — Let (M, ^ ) be a marked surface. Let vol be a measure of area 

on M. There exists a Riemannian metric on M whose Riemannian volume is vol and 

such that the curves offfU 38(M) are closed geodesies. 

Before proving this proposition, let us state a definition. 

Definition 1.4.4. — A marked Riemannian surface is a quadruple (M, vol, 7, where 

(M, vol, ^ ) is a marked surface endowed with a smooth density and 7 is a Riemannian 

metric on M with Riemannian volume vol and such that the curves offfU 3&{M) are 

closed geodesies. 

Proof. — We denote by vol7 the Riemannian volume of a Riemannian metric 7 

on M. Let us first assume that M is orientable and has no boundary. We write 

V = {lt\...,l?}. 

Let 70 be any Riemannian metric on M. Let / be the smooth real function on M 

such that vol = e^vol7o. Set 71 = e^7o. The Riemannian volume of 71 is vol. 

For each i G { 1 , . . . , let Ti denote a neighbourhood of U diffeomorphic to 

[-1,1] x R/2TTZ such that U corresponds to { 0 } x R/2TTZ. We assume that Ti, . . . ,Tq 

are pairwise disjoint. For each i G { 1 , . . . , we denote by (r, 0)i the natural coordi

nates in Ti. 

Let (p : [-1,1] -> [0,1] be a smooth function such that - § ] U [|, 1]) = { 0 } 

and <p(f— 7j, ¿1) = { 1 } . Let <I> be the smooth real function on M defined by 

$(ra) = 
0 

(p(r) if m = (r, 9)i for some i G { 1 , . . . , q}, 

otherwise. 

For each i G { l , . . . , g } , write Tf = [0,1] x R/2TTZ, T~ = [-1,0] x R/2?rZ, and 

define df = JT± 4>vol7l. Then, choose a smooth function \1> : M —> R + , vanishing 

outside the union of the TVs, such that the following properties are satisfied: for each 

i G { 1 , . . . , \I> = 1 in a neighbourhood of U and \I> = 0 in a neighbourhood of dTi, 

$ + \£ > 0 on T{ and JT± ^fvol(dR2+D02). = 8f. Now consider the Riemannian metric 

7 2 = (1 - *<<)7l + * 
w<n: 

9 
dr2 + d02). 

The Riemannian volume of 72 coincides with vol on M \ (Xi U • • • U Tq) and in a 

neighbourhood of dT\ U •<< • • U dTq. Moreover, for alH G { 1 , . . . , the total volume 

of T^ is the same for vol and vol72. Finally, Z1?..., lq are geodesic for 72. 

For each i G { 1 , . . . , q}, and all r G [-1,1], set V*(r) = JQr JQ27r vol. It is understood 

that Vi(r) < 0 when r < 0. Similarly, set V*)72(r) = JQr JQ27r vol72. The functions 

and Vj ~„ are both smooth, increasing, equal to 0 at r = 0 and they coincide on 
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neighbourhoods of 1 and —1. Define a diffeomorphism p of M by setting 

p(m) = 
m 

(x,[X<0,LDD],dx 
(££^^x,[0,L],¨¨£dx 

if m = (r, 6)i for some i G { 1 , . . . , q}, 

otherwise. 

The metric 7 3 = ( p _ 1 ) * 7 2 satisfies vol73 = p*vol72. Hence, the volume of any cylinder 

[r, s] x R/27rZ, r, s G [—1,1] is the same for vol73 and for vol. Moreover, since p 

preserves the curves Z i , . . . , lq, they are still geodesic for 7 3 . 

Let D and D% be the two smooth functions defined on T\ U • • • U Tq such that 

vol = Ddr A dQ and vol73 = D3dr A d8. For each i G { 1 , . . . , q}, define 

Ai(r,0) = 
n9 

'0 
D((r ,0 i )d£ and Ai|78(r,0) = 

g 

< 
(xw<<,[0,L],dx 

By construction of 7 3 , we have for each i G { 1 , . . . , q} and all r G [— 1,1] the equality 

Ai(r,2tt) = Aijl3(r,2tt). It is easy to check that the mapping a from M to itself 

defined by 

a(m) = 
m 

(x,[0<w<<<<at 
,L],dxw<<jjjjjw<< 

if m = (r, 0)i for some i G { 1 , . . . , q}, 

otherwise 

is a diffeomorphism. Set 74 = ( a - 1 ) * 7 3 . Then by construction, vol74 and vol give the 

same volume to any subset of Ti which is a rectangle in the coordinates (r, 6)i. Hence, 

they agree on Ti U • • • U Tq, hence on M. Since a preserves the curves / 1 , . . . , Zg, they 

are still geodesic for 7 4 . Thus, 74 has the desired properties. 

Let us explain how the result extends to surfaces with boundary and non-orientable 

surfaces. Let M be a non-orientable surface without boundary. Then there exists an 

orientable double of M, that is, an orientable surface D(M) and a smooth mapping 

/ : D(M) —• M which is a covering of degree 2. This surface D(M) can for in

stance be constructed as the unitary frame bundle of the real line bundle / \ T*M for 

some Riemannian metric on M. The density vol and the marks of M can be lifted 

through / . This yields an orientable marked surface (D(M)1D(C^)) endowed with a 

density D(vo\) whose total area is equal to twice that of vol. The result that we have 

proved above applied on D(M) yields a Riemannian metric 7 with Riemannian vol

ume D(vol) and such that the curves of D^) are geodesies. Let a be the non-trivial 

automorphism of the covering / : D(M) —• M, that is, the diffeomorphism of D(M) 

which exchanges the sheets of the covering. Then the Riemannian metric a*7 has 

Riemannian volume a*Z}(vol) = D(vol) and makes the curves of a~1(D(<^?)) = D(^) 

geodesies. Since the equations of geodesies are linear in the metric, the curves of D^) 

are also geodesic for the metric § ( 7 + a * 7 ) . This metric has also Riemannian vol

ume D(vo\). Moreover, it is invariant by a, hence descends to a Riemannian metric 

on M with the desired properties. 
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Finally, if M has a boundary, then we may glue a disk along each boundary com
ponent of M and extend vol to a measure of area on the surface without boundary 
thus obtained. • 

1.4.2. Partially ordered sets of graphs. — The set of graphs on a compact 
surface carries a natural partial order. 

Definition 1.4.5. — Let M be a topological compact surface. Let Gi and G 2 be two 
graphs on M. We say that G2 is finer than Gi and write 

Gi ^ G2 if C(Gi) c C(G2). 

It is straightforward that G2 is finer than Gi if and only if Ei C C(G2). The 
inclusion Ei C E2 implies Gi ^ G 2 but the converse is false. 

FIGURE 16. The graph of Figure 5 and a refinement of it. 

As a poset, the set of graphs on a surface has few good properties. In particular, 
it is not directed, which means that it contains pairs without upper bound. 

Lemma 1.4.6. — Let M be a topological compact surface. The set of graphs on M 
endowed with the partial order ^ is not directed. In other words, there exist two 
graphs G\ and G 2 on M such that no third graph G satisfies G\ ^ G and G2 ^ G. 

Proof. — Let U be an open subset of M identified through a homeomorphism with 
the disk of R2 centred at the origin and of radius 2. Let e\ and e2 be the parametrised 
curves defined by 

Wt e [0,1], ei (t) = (t, 0) and e2 (t) = (t, t2 sin n/t). 

For all k > 1, let Ak denote the open domain of R2 delimited by the restrictions of e\ 
and e2 to [ j^j , \\. The sets Ak, k > 1 are also the bounded connected components of 
the complement of the union of the ranges of ei and e2 in the plane. 

The curves e\ and e2 are edges, so by Lemma 1.3.7, there exist two graphs Gi 
and G 2 on M such that e\ is an edge of Gi and e2 is an edge of G 2 . Assume that 
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there exists a graph G such that Gi ^ G and G2 ^ G. Then Sk(G) would contain 
the union of the ranges of e\ and e2. Since the range of an edge has an empty 
topological interior, none of the sets would be contained in Sk(G). Hence, G 
would have infinitely many faces. We have observed after Proposition 1.3.8 that this 
is impossible. • 

In the lemma above, it is not difficult to check that one of the two graphs, for 
instance Gi, can even be chosen arbitrarily. This lack of upper bounds will anyway 
be a serious problem for us at a later stage. A better-behaved substitute for the set 
of graphs is the set of graphs with piecewise geodesic edges. 

Definition 1 A.7. — Let (M, ^ ) be a marked surface endowed with a Riemannian met
ric 7. We define G r 7 ( M , ^ ) as the set of graphs on (M,^) with piecewise geodesic 
edges, that is 

Gr7(M,<*?) = { G = (V,E,F) graph on (M,V) : E c A 7 ( M ) } . 

The set Gr7(M, ^ ) can be non-empty only if the marks on M are geodesic curves. 
We know by Proposition 1.4.3 that it is always possible to choose a Riemannian metric 
on M for which this is the case. 

The next result states that Gr7(M, ^ ) is indeed a better set of graphs than the set 
of all graphs. 

Proposition 1.4.8. — Let (M,^?) be a marked surface endowed with a Riemannian 
metric for which the marks are geodesic curves. Any finite family of piecewise geodesic 
paths on M is a subset of P(G) for some graph G on (M, ^ ) with geodesic edges. 
In particular, the poset (Gr7(M, ^4) is directed. 

Proof — We have observed after the definition of a graph (Definition 1.3.2) that 
there exists a graph on M with geodesic edges. Now, by induction on the number of 
curves in the finite family of curves that we consider, it suffices to prove that, given a 
piecewise geodesic path c and a graph Go with geodesic edges, there exists a graph G 
with geodesic edges such that P(G) D P(Go) U { c } . 

For this, let us subdivide c into a product of geodesic edges e = e\ • • • em in such 
a way that each edge either is contained in one edge of Go or has its interior 
contained in the interior of a face. By adding finitely many vertices to Go, which 
means subdividing some of its edges, we produce a new graph Gi which is such that 
each e*; which is contained in an edge of Go is an edge of Gi. Each other e^ has its 
interior contained in a single face of Gi. By lifting the curves 6 1 , . . . , 6m to a split 
pattern of Gi, we reduce the problem to the case of a finite collection of geodesic 
segments contained in the interior of a disk with piecewise geodesic boundary. In this 
case, since the skeleton of Gi contains the boundary of the disk, it follows from 
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Proposition 1.3.10 that any pre-graph obtained by adding edges to Gi and whose 

skeleton is connected is a graph. Thus, it suffices to join one endpoint of each of the 

curves e i , . . . , em to a point on the boundary of the disk by a geodesic segment and 

then to add a vertex at every point where two distinct geodesic curves meet. Hence, 

Gi can be refined into a graph G with geodesic edges such that e i , . . . ,em belong 

to P(G). 

In order to prove that Gr7(M, ^ ) is directed, consider two graphs Gi and G2 with 

piecewise geodesic edges. The property that we have just proved applied to Ei U E2 

provides us with a graph which is finer than both Gi and G2. • 

1.4.3. Approximation of graphs. — In this section, we prove that any graph can 

be approximated in a strong sense by a sequence of graphs with piecewise geodesic 

edges. We start by defining the lasso decomposition of a piecewise geodesic path, 

which is a variant of the more familiar operation of loop-erasure. Recall the definition 

of equivalence of paths and lassos (see Section 1.3.30). 

Proposition 1.4.9. — Let (M, 7) be a Riemannian compact surface. Let c be an ele

ment of A7(M) such that c ^ c. There exists in A7(M) a finite sequence of lassos 

/ 1 , . . . , lp with meanders m i , . . . , mp and an injective path d with the same endpoints 

as c such that 

1) c ~ /1 • • • lpd, 

2) 1(c) > e(rm) + • • • + £(mp) + £(d). 

If c is a loop, the same decomposition holds with the single difference that d is a 

simple loop. In both cases, we call d the loop-erasure of c and denote it by LE(c). 

FIGURE 17. A path, the two lassos involved in its lasso decomposition and 
its loop-erasure. 

Proof. — By Lemma 1.4.8, we may assume that c is a path in a graph. By adding 

vertices to this graph, we may also assume that no edge of this graph is a simple loop. 

Let us write c = e^ • • • ein as a product of edges. We proceed by induction on n. If 

n — 1, then c is its own loop-erasure. Now assume that n > 1. If c is not reduced, 

that is, if it contains at least one sequence ee_1, then we reduce it. This can only 

shorten c. Now set r = min{j > 1 : 3k G { 1 , . . . , j — 1}, = e ~ } . This is the first 

time at which c hits itself. Assume that e~ir = e*p with 1 < p < r. By definition of r, 

p is uniquely determined by this relation. Set t = e^ • - eip_1, m = e$p • • • ê r and 
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c' = teir+1 — m€in. Then c ~ tmt""V. By construction, m is a simple loop and c7 is a 

path shorter than c with the same endpoints. Moreover, £(c) = £(c') + £(m). The 

result follows. • 

Proposition 1.4.10. — Let (M, vol, 7, ̂ ) be a marked Riemannian surface. Let G = 

(V,E,F) be a graph on (M, <€). Let e > 0 be a real number. There exists a graph 

GF = (V7, E7, F7) on (M, ff) with piecewise geodesic edges and two bisections S : E —> E7 

and 5 : F —> F7, denoted by the same letter, such that the following properties hold. 

1) V7 = V. 

2) The bisection S : E —> E7 commutes with the inversion and preserves the end-

points: for all e G E, 5(e_1) = S^e)""1, S(e) = e and S(e) = e. 

3) The bijection S : P(G) P(G7) induced by S is such that d(S(F)) = S{dF), 

for all F e F. 

4) For allee E, d€(e,S(e)) < £ and /or aHF € F, vo l ( (FU5(F) ) \ (Fn5(F) ) ) < e. 

Notice that it would not solve the problem to simply replace each edge by the loop-

erasure of a fine dyadic approximation of it. Indeed, the new edges thus produced may 

behave badly near the vertices. For example, several edges may form a complicated 

spiral near a vertex that they share. In this case, it is neither certain that their loop-

erased dyadic piecewise geodesic approximations do not intersect each other nor that 

they leave the vertex in the same cyclic order as the original edges. 

If x,y G M and d(x,y) is smaller than the injectivity radius of (M, 7), we denote 

by [x, y] the segment of minimizing geodesic joining x to y. 

Proof — Let R be the injectivity radius of M. Let ro G (0,i?) be such that the 

balls B(y,ro),v G V are pairwise disjoint, an edge e meets a ball B(v,ro) only if v 

is an endpoint of e, and the cyclic order of the out coming edges at every vertex v is 

the cyclic order of their last exit points from the ball B(v,r) for all r G (0, ro). The 

existence of such an ro is granted by Lemma 1.3.16. Let us choose an orientation of 

each ball B(v, ro),v G V. Thanks to the Riemannian metric, we parametrise all edges 

at constant speed. 

For all real r G (0, ro) and all e G E, define 
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te(r) = sup {t G [0,1] : d(e, e(t)) = r}. 

Observe that 1 - te-i = inf{t G [0,1] : d(e(t), e) = r } . Define 

Ar(e) = [e,e(tc(r))]e|[te(r),i_te_l(r)][e(l-tc-i(r)),e]. 

The path Ar(e) is the concatenation of three injective paths which meet only at their 

endpoints, so that it is injective. Thus, Ar(e) is an edge with the same endpoints 

as e. Let e and e7 be two edges such that e7 ̂  {e, e -1} . The central portions of Ar(e) 
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and Ar(e') are contained in e and e7 respectively, so that they are disjoint. By the 

assumption made on r, they do not enter any ball B(v,r),v G V. Hence, Ar(e) 

and Ar(e') meet, if at all, in one of these balls and this can occur only at one of their 

endpoints. 

e Ar(e) 

Cr,n(e) = Dn(Ar(e)) = S£(e) S2(e) = LE(Sj(e)) 

FIGURE 18. The successive stages of the definition of the approximation 
of an edge. 

Let e be an edge. The continuity and injectivity of e imply that te(r) —• 0 as 

r —> 0. Since de(Ar(e),e) < 2(te(r) + £E-I(r))^(e), this implies that Ar(e) tends to e 

as r tends to 0. Moreover, one always has the inequality £(Ar(e)) < £(e). 

Let r G (0, r0) be fixed. Let no > 1 be an integer such that for all e G E, 

2~n°£(e) <r < R. For all integer n > nn, define 

Cr,n(e) = DN(I4r(e)); 

where Dn is the dyadic approximation of order n (see Definition 1.2.11). The 

path Cr?n(e) is piecewise geodesic, with the same endpoints as e, but it may not 

be injective, even for large n. On the other hand, it coincides with Ar(e) near its 

endpoints, more precisely, on a segment of length at least r — 2~n£(e). When n tends 

to infinity, Cr^n(e) converges to Ar(e). We claim that for all e,e' G E such that 

e' £ {e , e -1} , the paths Cr>n(e) and Cr,n(ef) intersect only at some of their endpoints 

for n large enough. Indeed, consider for all e G E the segment 

^R(E) = {m e Ar(e) : d(ra,e) > |r,d(ra, e) > \r) 

Choose n\ > no such that 

2"ni max{^(e) : e G E} < min ( | r , \ min{d(Ar(e), ^ ( e 7 ) ) : e,e' G E,e7 £ { e , e - 1 } } ) . 

Choose e, e; G E such that e! £ { e , e - 1 } . For all n > ni, Cr?n(e) and ^ ^ ( e 7 ) are 

respectively contained in the sets Ar(e) U {m G M : d(m,A'r(e)) < 2~n£(e)} and 

Ar(ef) U {m G M : d(m,Afr(e')) < 2_n^(e)}, whose intersection is the same as the 

intersection of e and e7. 
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For each integer p > 1, choose r G (0, ro) such that c^(e, Ar(e)) < ^ for all e G E. 

Then choose n > ni such that de(Ar(e), Cr?n(e)) < ^ for all e. Set 5^(e) = Cr?n(e). 

Then for each e G E, the sequence (Sp(e))p>i converges to e with fixed endpoints, 

and satisfies £(S%(e)) < £(e). For each e G E and each p > 1, set S£(e) = LE(S£(e)). 

We claim that a subsequence of the sequence (S^(e))P>i tends to e when p tends to 

infinity. 

Indeed the sequence (Sp(e))P>i is uniformly bounded in length by £(e). Hence, the 

paths being parametrised at constant speed, it is relatively compact in the uniform 

topology and we can extract a sequence (Spq(e))q>i which converges uniformly to a 

path e. The image of e is contained in the image of e and it joins e to e. Hence, the 

images of e and e coincide. In particular, £(e) > £(e). Using the lower semi-continuity 

of the length with respect to the uniform convergence, we find 

£(e) < £(e) < liminf ^ (5^ (e ) ) < s u p ^ q ( e ) ) < 1(e). 

It follows from these inequalities that £(Spq(e)) converges to ^(e), hence Spq(e) to e, 

as q tends to infinity. Let us choose a subsequence (pq)q>o such that the convergence 

holds for each edge e G E and define Sq(e) = Spq(e) for all q > 0. 

For all e G E and all q > 0, Sq(e) is a piecewise geodesic edge with the same 

endpoints as e. Moreover, by construction, Sq(e~1) = 5q(e)_1. If e is geodesic, then 

Sq(e) = e. Finally, the set EQ = {Sq(e) : e G E} is the set of edges of a pre-graph 

on (M, ^ ) . By Corollary 1.3.12, EQ is in fact the set of edges of a graph on (M, ^ ) , 

which we denote by GQ. 

By construction, the bijection Sq between E and EQ preserved the cyclic order 

at every vertex of V. Let us apply Proposition 1.3.22. Since vol(Sk(G)) = 0, the 

graph GQ satisfies all the desired properties for q large enough. • 
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CHAPTER 2 

MULTIPLICATIVE PROCESSES INDEXED BY PATHS 

In this chapter, we begin the study of the class of objects to which Markovian 
holonomy fields belong: stochastic processes indexed by paths on a compact surface 
and with values in a compact Lie group, which satisfy a condition of multiplicativity. 
We discuss the canonical space of such processes, two distinct a-fields on it, and 
prove the version of Kolmogorov's theorem that is best suited to our situation. We 
then study a kind of uniform measure on the canonical space, thus providing the first 
example of what will be called in the next chapter a discrete Markovian holonomy 
field. We conclude by constructing a set of generators of the group of reduced loops 
in a graph for which we are able to determine the finite-dimensional marginal of the 
uniform Markovian holonomy field. 

Prom now on, the expression compact surface will mean smooth compact surface. 

2.1. Multiplicative functions 

Let G be a group, on which we make for the moment no assumption at all. Recall 
that P(M) denotes the set of paths on the surface M (see Definition 1.2.2). 

Definition 2A.1. — Let M be a compact surface. Let P be a subset of P(M). A 
function h : P —> G is said to be multiplicative if h(c~x) = ft(c)"1 for all c 6 P such 
that cyc~x € P and h(cic2) = h(c2)h(ci) for all ci,c2 € P such that c{ = c^ and 
c\c2 G P. The set of multiplicative functions from P to G is denoted by M(P7G). 

For an explanation of the reversed order in this definition, see the introduction, 
Section 0.5. 

The gauge group is the symmetry group of the physical theory from which our 
objects are issued. 

Definition 2.1.2. — The group GM of all mappings from M to G is called the gauge 
group of M and it acts by gauge transformations on the space M(P(M), G), as follows. 

SOCIÉTÉ MATHÉMATIQUE OE PRANCE 2010 



80 CHAPTER 2. MULTIPLICATIVE PROCESSES INDEXED BY PATHS 

V3 = (Jm)meM belongs to GM and h belongs to M(P(M), G), then j - h is defined by 

VCGP(M) , (j-h)(c)=Jt1h(c)U 

More generally, given a subset P ofP(M), the group Gv acts on M(P, G) in the same 
way, where V is defined as the set of endpoints of the paths of P. 

Example 2.1.3. — Assume that Z i , . . . , ln are n simple loops based at the same point m 
of M. Write L = {Z i , . . . ,Zn} . The concatenation of two loops of L is never a simple 
loop, hence never an element of L. If we assume moreover that the inverse of a loop of 
L is never in L, then any G-valued function on L is multiplicative, so that J%(L, G) = 
GL. The action of the gauge group on M(L, G) is simply the action of G = G^171^ on 
GL by simultaneous conjugation of each factor. This fundamental example should be 
kept in mind when one reads Lemma 2.1.5. It explains the importance of this action 
of G in our context. 

We cannot do much if we do not make a few assumptions on G. For the rest of this 
section, we assume that it is a compact topological group. We do not assume that it 
is connected, so that it can in particular be finite. Also, for the moment, we do not 
assume that it is a Lie group. The group G carries its normalised Haar measure and 
we denote simply by fG f(x)dx the integral of a function / : G —> 1R with respect to 
this measure. 

Let P be a subset of P(M). The object of this paragraph is to discuss two natural 
cr-fields on M(P,G). The simplest one is the cylinder cr-field, denoted by 6, which 
is defined as the smallest cr-field which makes the evaluation mapping h »-» h(c) 
measurable for all c G P. The gauge group acts by bi-measurable transformations 
and it makes sense to speak of measures on M(P, G) which are invariant under gauge 
transformations. 

It is also natural to consider a smaller cr-field which consists in events which are 
invariant under the action of the gauge group. In order to discuss this cr-field, let us 
first associate an abstract graph to each subset of P(M). 

Definition 2.1.4. — An abstract graph is a pair of sets (V,E), whose elements are 
called vertices and edges, endowed with two mappings s,t : E -+ V, called respectively 
source and target. 

Let P be a subset of P(M). The configuration graph of P is the abstract graph 
(V,E,s,t) defined by setting V = \JceP{c} U { c } C M, E = P and, for each e G E, 
s(e) = e and t(e) = e. 

In what follows, we will make use of the diagonal adjoint action of G on Gn defined 
by g- (x1,...,xn) = {gxig~1,...,gxng-1). 
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Lemma 2.1.5. — Let M be a compact surface. Let P be a subset of P(M). Assume 

that P is stable by concatenation and inversion, and the configuration graph of P is 

connected. Let m be a vertex of this configuration graph. Let C\,...,cn ben elements 

of P. There exists n loops l\,...,ln in P all based at m such that the following 

property holds. For all continuous function f : Gn zz—> R such that the function 

h i—• f(h(c\)âz,...,h(cn)) is gauge-invariant on M{P,G), there exists a continuous 

function f : Gn —> R invariant under the diagonal action of G such that 

Vfc G M(P, G), f(h(Cl),..., h(cn)) = f(h(h),h(ln)). 

Proof. — Consider the configuration graph of {c\,..., cn}. If it is not connected, let 

us choose one vertex in each connected component not containing m and add to the 

collection { c i , . . . , cn} a path of P joining m to this vertex. That such a path exists 

follows from the assumptions made on P. The collection has become {c\,..., cr} for 

some r > n. We denote the configuration graph of this enlarged collection by (V, E). 

Let T C E be a spanning tree of (V, E). Recall the notation [vi, V2]T introduced in 

Definition 1.3.31. For each i G { 1 , . . . , n } , the path [m, cj]tQ [q, m]T is a loop based 

at m. When written as a product of edges, it becomes a word in c\,..., cr and this 

word makes sense as an element of P. More precisely, it is a loop of P based at m, 

which we denote by U. 

Let h be an element of M(P, G). Let us define a gauge transformation j G GM by 

setting j(p) — 1 if p £ V and, for all v G V, j(v) = h([m, V]T)- If e is an edge which 

belongs to T, then it is easy to check that (j • h)(e) = 1. Hence, for all i G { 1 , . . . , n } , 

(j • h)(k) = (j • h)(ci) and, by the invariance property of / , f{h(c\),...,h(cn)) = 

f(h(h),...,h(ln)). 

Choose g G G. Since the loops Zi,...,Zn are all based at ra, the action of the 

gauge transformation j defined by j(p) = 1 if p =^ m and j(m) = g~x transforms 

h(l\),... ,h(ln) into gh(li)g~x,... ,^(Zn)^_1- Let us define / : Gn —> R by 

f(x\,..., xn) — 
G 

f(gx±g 1,...,gxng x)dg. 

Then f(h(l\),..., h(ln)) = f(h(li),..., h(ln)) and / is invariant under the diagonal 

action of G. The result is proved. • 

This result motivates the following definition. 

Definition 2.1.6. — Let P be a subset of P(M) stable by concatenation and inversion. 

The invariant cr-field on M(P,G), denoted by J, is the smallest a-field such that for 

all m G M, all integer n > 1, all finite collection h,... ,ln of loops based at m and 

all continuous function f : Gn —» R invariant under the diagonal action of G, the 

mapping h i-> f(h(l\),..., h(ln)) is measurable. 
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If P can be written as the disjoint union of Pi and P2 which are both stable by con

catenation and inversion and whose configuration graphs are disjoint, then M(P, G) is 

canonically isomorphic to M(P\,G) x M(P2, G) and the invariant cr-field on M(P, G) 

is the tensor product of the invariant cr-fields on M(P\,G) and M(P2, G). 

Let M and M' be two surfaces. Let ij; : M' ss—• M be a smooth mapping. Let P ' 

be a subset of P(M') and P = ip(P'). Then ip induces a map from P' to P, hence a 

map from M(P,z G) to M(P\ zG). 

Lemma 2.1.7. — Let M and M' be two surfaces. Let t/j : M' —> M be a smooth 

mapping. Let P' be a subset of P(M') and P = t/;(Pf). Then the induced map 

xjj : M(P,G) —> M{P\G) is measurable with respect to the cylinder cr-fields, and also 

with respect to the invariant a-fields. 

Proof. — Let / : G —> R be continuous and consider c' € P. The function h »-> 

f(i/>(h)(cf)) on M(P, G) is equal to the function h i-> f(h(ij)(c'))), which is measurable 

with respect to *6 because ^(c ; ) belongs to P. This proves the first assertion. 

Now let / : Gn —> R be continuous and invariant under the diagonal action 

of G by conjugation. Let l[,...,lfn be n loops of P' based at the same point. 

Thenzz <<;mù . . •, ijj(ln) are n loops of P based at the same point and the function 

h i * f(iP(h)(l[),...,iP{h)(l'n)) = f{h(tP(h),...^(ln))) on JK(P,G) is measurable 

with respect to y . This proves the second assertion. • 

Let us conclude this paragraph by discussing the case where P is the set of paths in 

a graph, in the sense of Definition 1.3.2. Let M be a surface endowed with a graph G. 

Let E+ be an orientation of G, that is, a subset of E which contains exactly one element 

of each of the pairs {e , e_1} , e € E. It is plain that a multiplicative function on P(G) 

is determined by its values on the edges E or even just those of E+. More precisely, 

the natural surjective mapping J^(P(G),G) —> J^(E+,G) induced by the inclusion 

E+ C P(G) is one-to-one. Indeed, if c belongs to P(G), then c = ê 1 • • • ê n for some 

e i , . . . ,en € E+ and £ i , . . . ,£n € {—1,1}- Then, for all multiplicative function ft, one 

has ft(c) = h(en)£n • • • ft(ei)£l. 

Since the interior of an edge contains no vertex, the concatenation of at least two 

edges is never an edge. Hence, every mapping from E+ to G is multiplicative. We will 

often make the identifications 

M(P{G), G) = M(E, G) = J^(E+,G) = GE+ 

without further comment. In particular, we will sometimes use a collection (<?e)eeE+ 

of elements of G to denote an element of M(P(G),G). Recall the definition of the 

group of reduced loops {Definition 1.3.30). 
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Proposition 2.1.8. — Let M be a compact surface endowed with a graph G. Let v be a 

vertex ofG. Let { Z i , . . . , lr} be a generating subset of the group RLV(G) of reduced loops 

in G based at v. The invariant a-field J on M(P(G), G) is generated by the functions 

of the form / ( / i (Z i ) , . . . , h(lr)) where f : Gr —> R is continuous and invariant by 

diagonal conjugation. 

Proof. — By definition of the invariant a-field and by Lemma 2.1.5, it suffices to 

prove that for all l[,... ,l'n G LV(G) and all continuous / ' : Gn —> R invariant by 

diagonal conjugation, the function ff(h(l[),..., h(l'n)) can be put under the form 

f(h(li),..., h(lr)) for some invariant function / . This is easily done by expressing, 

modulo the equivalence relation on paths, the loops l[,..., Vn as words in the genera

tors Z i , . . . , lr. One then uses the multiplicativity of the elements of M(P(G), G) and 

the fact that the group operation of G, seen as a map G2 —» G, is equivariant with 

respect to the diagonal actions of G by conjugation. • 

2.2. Multiplicative families of random variables 

Let M be a compact surface and P a subset of P(M). A probability measure on 

(M(P,G), *6) determines a family of G-valued random variables (Hc)c€p which are 

just the evaluation functions on 3U(P, G), defined by Hc(h) = h(c). These random 

variables form a multiplicative family in the sense that Hc-i = H'1 and HClC2 = 

HC2HCl almost surely whenever this makes sense. If P is countable, then the converse 

is true since one can dismiss the negligible event on which the equalities do not hold. 

We prove in this section that the converse is in fact true even if P is not countable. 

Let us recall the definition of a projective family of probability spaces. 

Definition 2.2.1. — A projective family of probability spaces is the data of the follow

ing ingredients. 

> A partially ordered set (A, =4), 

> For each X £ A, a probability space ^x^mx). 

> For each pair (A, /x) G A2 such that A =̂  /x, a measurable mapping px^ : ̂  —» £lx> 

These ingredients are assumed to satisfy the following conditions. 

1) The poset (A, ^ ) is directed: for all A, fi G A7 there exists v G A such that A ^ v 

and ¡1 ^ v. 

2) For all A,/i, v G A such that A ^ ¡1 ^ v, one has the equality pxp, o p^v = pxv> 

3) For all A, ¡1 G A such that A =̂  fi, one has mM o = mx-

Let us state a general result of existence and uniqueness. 
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Proposition 2.2.2. — We keep the notation of Definition 2.2.1. Let Q denote the set-

theoretic projective limit of the family ({ft\}, {pXfj,}), endowed for each A G A with 

the canonical mapping p\ : Q —• Let denote the smallest a-field on ft which 

makes all the mappings p\ measurable. 

Assume that for each A G A, w;,^ùùùùxazzzz is a compact metric space endowed with the 

Borel o-field. Assume also that for all A, ¡1z G A such that A zz^ pt, the mapping px^ is 

continuous. 

Then there exists a unique probability measure zm on z^zz such that for all A G A, one 

has m o p~l = m\. 

This result belongs to a wide family of theorems whose prototype is due to Kolmo-

gorov and whose common ground is Caratheodory's extension theorem. The most 

common versions assert the existence and uniqueness of m under less restrictive con

ditions on the probability spaces but more restrictive conditions on the poset. Typ

ically, A is the set of finite subsets of a finite-dimensional Euclidean space and the 

probability spaces are Polish spaces. The form which we have stated is in fact fairly 

easy to prove thanks to the stronger assumptions which we make on the probability 

spaces. We think wiser to give a proof than to refer to several places in the literature 

from which the reader would have to collect the various pieces of the argument. 

Proof. — Let IIA denote the Cartesian product of the sets A G A. Recall that 

the set-theoretic projective limit of the family ( { ^ A } 5 {P\fi}) is> by definition, the set 

N = {(^A)A<EA € nA : VA, pt G A, A pi =^ Px^n) = ^ A } -

The set IIA, endowed with the product topology, is a compact topological space of 

which Q, as intersection of closed subsets, is a compact topological subspace. It is 

endowed with the continuous coordinate mappings p\ : Q —d> Q\, A G A. 

For each A G A, let 5A denote the closed support of the probability measure m\. It 

is a non-empty compact subset of Q\. Consider A =̂  pi. The equality mM o = m\ 

implies that p^S^) = S\. We claim that for all £ G A, p^(ft) D S%. Indeed, choose 

£ G A and S£ G S%. Define, for all pt ^ is, 

ft(/L4,i/;0 = {(ujx)\eA € nA : p^{usu) = OJ^ = s^}. 

Then on one hand, H/ẑ i/ v\ 0 —<xx P^^i)- On the other hand, no finite intersec

tion of the sets Q(pL, v\ £) is empty. Indeed, given pb\ ^ ..., pik =4 ^k-> consider £ G A 

such that /¿1, i / i , . . . , pik, Vk, £ x=^ C Since p^(Sc) — there exists G S\ such that 

P£C(sc) = S£. Then, the collection (p^(sc), p^d<(5c)>..., pMfcC(sc), ^feC(5C), 5^), arbi

trarily extended to an element of IIA, belongs to fi(/zi, v\\£) n • • • fl fi(/Xfc, £)• Since 

the sets z/;£) are compact, their intersection is non-empty. Hence s% G p^{ft)-

Define a collection ??A of subsets of Q, by setting 6 A = UAGA PA H^A)- The co^ec-

tion 6 A is not a a-field, but it is stable by complementation, finite unions and finite 
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intersections. Consider A G 6A- Assume that A = pxl(A\) and A = ptl1(All) for 

some A, /x G A and A\ G *6\, A^ G Let v be such that A ̂  v and ix ̂ v. Then 

^ = p-1(p^1(<<AA))=P;1(p^(^) ) . 

Since ww;mù D 5,/, this equality implies Pxl{A\) C\SU = p~l{A^ fl S^. Hence, 

mx(Ax) = ra^^A)) = mu(pl<l{Ax) D 5,,) 

= rn^p-^A^) fl S,,)<< = m ^ ^ 1 ^ ) ) = m^Afj). 

We have proved that p^1(A\) = p~1(AfM) implies m\(A\) = m|1(A/i). Hence, for all 

A G î A? it is legitimate to call m(A) the common value of all m\(A\) for A G A 

and A\ G *6\ such that A = p^l(A\). Thus, we have defined m : g \ —• [0,1]. It is 

not difficult to check that m is finitely additive. 

We claim that m is <j-additive on 8A- In order to prove this, it is sufficient to prove 

that if (An)n>i is a decreasing sequence of elements of SA such that f]n>1 An = 0 , 

then limra(An) = 0. Let us choose such a sequence (An)n>i. Let us also choose e > 0. 

For each n, let us write An = P\*(A\n) for some An G A and some A\n G *6\n* For 

each n, the inner regularity of the measure mAn implies the existence of a compact 

subset K\n of A\n such that m\n{A\n — K\n) < e2~n. Since endowed with the 

trace of the product topology of HA is compact, the sets Kn = p^(K\n), n > 0 

are compact. Since Kn c An for all n > 1, the intersection 0n>1Kn is empty. 

Hence, there exists N > 1 such that f)n=i = 0- Now, for each u G An, there 

exists at least one n G { 1 , . . . , N} such that u) £ Kn, so that u G An — Kn. Hence, 

tyi(An) < Z)n=i m(^n — -Kn) < £• This proves that m(An) tends to 0 when n tends 

to infinity. 

Caratheodory's extension theorem asserts that m admits a unique a-additive ex

tension to the cr-field generated by 8A > which is by definition the smallest cr-field on Q 

such that the mappings p\ are measurable. This extension of m, which we still denote 

by m, satisfies m o p " 1 = m\ for all A G A by definition.^ x<< kmùùùo^$$^w<tt^^^$$$ • 

In our setting, this theorem can be applied as follows. 

Proposition 2.2.3. — Let P be a subset ofP(M). Let (7 be a collection of finite subsets 

of P whose union is P and which, when ordered by the inclusion, is directed. For all 

J G &, let mj be a probability measure on (M(J,G), Assume that the probability 

spaces (M{J, G), (6, mj) endowed with the restriction mappings pjK : M(K,G) —• 

M(J, G) defined for J C K form a projective system. Then there exists a unique 

probability measure m on (M(P,G), such that for all J C P, the image of m by 

the restriction mapping pj : M(P, G) —> M(J, G) is mj. 

In particular, if (Hc)cep is a collection of G-valued random variables such that 

1) Vc G P, c"1 G P implies Hc-i = H~la.s.; 
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2) Vci ,C2 6 P, c\C2 6 P implies HClC2 = HC2HCla.s., 
then there exists a unique probability measure m on (M(P,G), *6) such that the dis
tribution of the canonical process under m is the same as the distribution of (Hc)cep. 

Proof — Let J, K be elements of 57" such that J C K. Then M(J, G) is a compact 
subset of GJ, actually a smooth compact submanifold. The evaluation mappings on 
M(J, G) generate both the topology and the cr-field g\ Hence, *6 is the Borel cr-field. 
Moreover, the restriction mapping M(K, G) —• M(J, G) is continuous. 

Proposition 2.2.2 ensures the existence of a probability measure on the projective 
limit of the sets underlying our probability spaces, endowed with a certain cr-field. In 
the present case, the projective limit of the sets M(J, G) is easily identified with the 
set M(P, G) in such a way that the mappings pj : M(P, G) —> M(J, G) are simply 
the restrictions. Through this identification, the cr-field on which Proposition 2.2.2 
constructs a measure is the usual cylinder cr-field. The first assertion follows. 

Let (Hc)cep be a collection of random variables which satisfies the assumptions 1) 
and 2). For each finite subset J of P, the distribution of (Hc)cej is a Borel probability 
measure on GJ, which we denote by mj and which is actually supported by M( J, G). 
By applying the first assertion to the collection of probability spaces (M(J, G), mj) 
where J spans the collection of finite subsets of P, we find the desired probability 
measure m on M(P, G). • 

2.3. Uniform multiplicative functions on a graph 

Let M be a compact surface. Let G = (V, E, F) be a graph on M. In this para
graph, we discuss the uniform measure on J^(P(G),G) and some of its natural dis
integrations. The disintegrations that we have in mind are associated with random 
variables associated to marking curves or boundary components. Before we define the 
measures, let us set up some notation. 

2.3.1. Constraints on marked surfaces. — Let us denote by Conj(G) the set of 
conjugacy classes of G. The inversion map x h x " 1 on G descends to an involution 
of Conj(G) which determines an action of Z /2Z on Conj(G). Recall that if ( M , ^ ) 
is a marked surface (see Definition 1.1.8), then Z /2Z acts on 3§(M) by reversing 
the orientation. 

Definition 23.1. — Let (M, ^ ) be a marked surface. A set of G-constraints on (M, ^ ) 
is a rL/2rL-equivariant mapping 

C:tfU 3S(M) —> Conj(G). 
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A set of G-constraints on a marked surface determines a set of G-constraints on 

any splitting of this surface. In the case of unary splittings, we need the following 

observation. If 0 is a conjugacy class of G, then the set of squares of elements of 0 

is also a conjugacy class, which we denote by 0 . 

Definition 2.3.2. — Let (M, ^ , C) be a marked surface endowed with a set of G-

constraints. Consider I e %\ Let f : Sp\t(M) —> M be the elementary gluing with 

joint {Z,Z-1}. The marked surface (Splz(M), S p l f ( ^ ) ) carries the set of G-constraints 

Spl/(G) defined by 

SPl , (C) (0 = C(f(l')), V I ' e SpljOO, 

with the following exception: if f is a unary gluing and f(V) = l±x, then 

spi,(c)(0 = c(i)±2. 

Consider a marked surface (M, ^ , C) with G-constraints. The set of elements of 

M(P(M),G) which satisfy the constraints G, that is, the set of elements h such that 

for all Z G ^ U 38(M), h(l) £ G(Z), is globally invariant under the action of the gauge 

group. 

2.3.2. Uniform measures. — Let us start with a simple definition. 

Definition 2.3.3. — Let M be a compact surface. Let G = (V,E,F) be a graph on M. 

Let E+ be an orientation of G. The Haar measure on GE+, seen as a probability 

measure on (M(P(G),G), is called the uniform measure and denoted by 0. 

Plainly, the uniform measure does not depend on the choice of E+. The reason for 

the subscript 0 will become apparent soon. We would like now to incorporate bound

ary conditions and constraints along marking curves into the uniform measure 0. 

Let 0 C G be a conjugacy class. Let n > 1 be an integer. The set 

9(n) = { ( x i , . . . , xn) e Gn : xx... xn e 0} 

is a Gn-homogeneous space under the action 

(9u--i9n) * (xi,...,xn) = (g\Xig2 1ì...ìgnXn9i1)-

Let 6g(n) denote the extension to Gn of the unique Gn-invariant probability measure 

on 0(n) C Gn. In particular, 0(1) = 0 and 5g^ is the G-invariant probability 

measure on 0, which we also denote simply by 5g. For each element x of G, we 

denote by 0X the conjugacy class of x. Thus, 

(20) V x e G , 5Qx = 
'G 

(x,[0,Lx],x 
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Lemma 2.3.4. — Consider f G G°(Gn), g G C°(Gn~1), u G C°(G) and a continuous 

map h : Gn_1 —• G. Let 9 be a conjugacy class ofG. The following relations hold: 

(21) 
'Gn 

<(x,[0,L],w< 

JGn 
f(x1,...,xn-1,(x1...xn-1) 1y)dx1 '"àxn-i8g{dy), 

(22) 
J Gn 

u(h(xli... ,xn_i)xi • • -xnh(xi,...,xn-i) 1) 

x g(xi,... ,xn-i)8Q(n)(àxi • • • dxn) 

x<ù 
*G 

udôg 
Gn-1 

g(xi,.. .,xn-i)dxi • • • dxn_i, 

(23) 
$x<< 

f(xix2,x3,... ,xn)Sg(n+1)(dg1 •••d^n+i) = 
w<lm 

fdsO(n)> 

(24) 
$ 

f(x2,... ,xn,xi)5g^(dxi --dxn) = 
/Gn 

^xw;mù 
nwayy^$ 

(25) 
$ Qn 

/ (xi , . . .,Xn)6gtn\(dXi ... dxn) dy 

xw 
f(xi,...,xn)dx1--dx wwn.^$$ 

Proof — The right-hand side of (21) defines a measure supported by 9(n) and invari

ant under the action of Gn. Hence, it is <%(n). The relations (22) and (23) follow form 

the fact that the mappings ( # i , . . . , xn+i) i-> (xix2, £ 3 , . . . , xn) and (x\,..., xn) h-> 

(x2,..., xn, x\) are G-equivariant maps, respectively from 0(n + 1) to Q(n) and from 

0(n) to 0(n). The relation (25) follows from (20) and a simple change of variables. • 

Let (M, ^ , C) be a marked surface with a set of G-constraints, endowed with a 

graph G. Let us choose q simple loops li,..., lq in L(G) which represent the unoriented 

cycles of ^ U ^ ( M ) , that is, such that V U &(M) = {/i, I f1 , . . . , lq, l'1}. Recall that 

for the sake of simplicity, we denote in the same way a cycle and the corresponding 

simple loop. We label the elements of E in such a way that li = e^ i . . . e^ni for 

i G { 1 , . . . , q}. Let E+ be an orientation of G such that G E+ for all i G { 1 , . . . , q) 

and j G { 1 , . . . , ni]. Let us label e i , . . . , em the other edges of E+. 

Lemma 2.3.5. — Let (M^yC) be a marked surface with G-constraints. Let G = 

(V,E,F) be a graph on ( M , ^ ) . The uniform measure on GE+ with G-constraints C 

is defined as the probability measure 

dgx <g) • • • <g> dgm ® *c(Zi)(m)(d^i,rn • * • d0i,i) 0 • • • ® *C(z,)(n,)(d^,n, * • • ^ g , i ) . 
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It is denoted by w<!ù$ c(dg). The corresponding probability measure on M(P(G),G), 

also denoted by V<M<gc> depends neither on the choice of the simple loops which 

represent the marking of M nor on the choice of E+. 

Proof — The invariance of the measures Sg^ by cyclic permutation of the variables, 

granted by (24), ensures that the measure ;:<<< ̂  c does not depend on the simple 

loops which we have chosen to represent the cycles of the marking of M. Since the 

Haar measure on G is invariant by inversion, the measure induced on M(P(G),G) 

by bnù$< c does not depend on the choice of E+. nw • 

Let us state two basic properties of the measure ^ c . 

Proposition 2.3.6. — Recall the notation of Lemma 2.3.5. 

1) The event 5^ = {3 Z G U 3è(M), h(l) i C(l)} satisfies ^M^c(9f) = 0. 

2) The action of GY on M(P(G),G) preserves the probability measure U ^ ^ c . 

Proof — 1) By definition of <̂  c , the support of c# c is contained in the closed 

set {V/ G V U &{M\ h(l) G C(l)} = <KC. 

2) Choose v G V and x G G. Set jw = 1 if w ^ v and jv = x. If v is not located 

on a curve of fé7, then the translation invariance of the Haar measure implies that j 

leaves the measure U^ <̂  c invariant. Assume now that v is on the curve l\ which 

is represented by the cycle e\ • • -en. Assume that ei is outcoming at v and en is 

incoming. Then the action of j translates the variables associated to the edges adja

cent to v other than e\ and en and it replaces (en, . . . , ei) by (x~1eni..., e\x). This 

leaves the measure #c(ZI)(N)(d#N • • -dgi) invariant. Finally, the action of j preserves 

the measure ^ c . Since the group Gv is generated by elements which are equal 

to 1 at all vertices but one, the result follows. ................................................................... • 

Let us state precisely the fact that the measures ^ c disintegrate each other. 

We use the notation ^ = {Zi, l^1,..., lq, Z"1}. In contrast with the notation used 

befor Lemma 2.3.5, this set does not include the boundary components of M anymore. 

Let us define % = 0 and for each r G { 1 , . . . , c/}, ^r = {Zi, Z f 1 , . . . , Zr, Z"1}. For each 

r G { 1 , . . . , q}, any collection (Oi,..., 9r) of r conjugacy classes of G determines the 

set of G-constraints on ^r which maps U on &i for all i G { 1 , . . . , r } . We denote this 

set of constraints simply by ( 0 i , . . . , Qr). 

The following lemma is a direct consequence of the definition of c and (25). It 

shows that the measures ^ ^ g g g y seen as functions of a?r+i,..., xq, 

provide us with a regular disintegration of cwww ^ g ^ with respect to the random 

variables ft(Zr+i),..., h(lq). 
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Lemma 2.3.7. — Let r be an integer between 0 and q — l. Let 0 i , . . . , 0r be conjugacy 

classes of G. Let f : Gq~r —• R be a continuous function. Then 

(26) 
JM(P{G),G) 

/ ( / i (ZR+1) , . . . , h(lq)) ^M^r,(9u...,9r)(dh) 

fQq-r 
f(xr+i,..., xq)àxr+i • • • dxqi 

(27) UAf,tfR,(0I,...,0R) - wn, 
<</(/i(XWZR+1),..., h(lq)) ^M^r,(9u...,9r)^^ 
/(/i(ZR+1W),..., h(lq)) ^M^r,ww<ù9u...,9r)(dh) 

2.3.3. Surgery of uniform measures. — Let us investigate the behaviour of the 

uniform measures that we have just defined under the basic operations of surgery. So 

far, we have used the letter / to denote gluing maps and also test functions on G. In 

the proof of the next result, we need to use both. This is why we change our notation 

for gluings. 

Proposition 2.3.8. — Let (M, ^ , C) be a marked surface with G-constraints endowed 

with a graph G. Let ( M ' , C") be a splitting of M and let 7r : M' —• M denote 

the gluing map. Let G' be the graph on M' obtained by lifting G. Then the mapping 

7T : (M(P(G),G),J) -> (JW(P(G') ,G),/) induced by it satisfies 

(28) I \G' I IG ^ - 1 
uM',<*F',C" — UM,^,C 07r • 

In this proposition, it is crucial that we consider the invariant a-fields, not only 

because in general one should consider exclusively gauge-invariant quantities, but 

because the equality (28), although meaningful with cylinder a-fields thanks to 

Lemma 2.1.7, would simply be false. For instance, consider a binary gluing along two 

curves b[ and b'2 with joint b = f(b[) = f{b'2). Then the event {h' : h'(b[) = h'(bf2)} 

belongs to J?' and has measure zero. On the other hand, the pull-back by of this 

event is the event {h : h(b) = h(b)} of which has full measure. The point is that 

the first event does not belong to Jf. 

Proof. — Let / : M(P(Gf)iG) —> R be a continuous function invariant under the 

action of Gv . Then / induces a continuous function / : M{P(G),G) —> R and we 

need to prove that 

(29) 
^(P(G),G) 

^w<wv,mmmw 
cxupll<<<i^$$ 

(̂P(G'),C?) 

/(/i(W<<ZR+1),..., h 

We treat separately the cases of binary and unary gluings. 

1) Binary gluing. — Let { 6 , b e the joint of the gluing. Let b[ and b'2 be the 

two boundary components of M' which are identified by 7r, oriented in such a way 

that 7r(&i) = TT(62) = b. 
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Let E&, E'x and E2 denote respectively the set of edges located on 6, b[ and 62. 

These three sets are naturally identified by the gluing. Set E'Q = E' — (E^ U E2) and 

E0 = E-Efe = TT(E'0). The gluing identifies naturally E'Q with EQ. With this notation, 

we have the partitions 

(30) E = E0 U Eb and E' = E'G U Ei U E2. 

The partition of E above determines the equality M(E, G) = M(EQ,G) xM(Eb, G), 

according to which we denote by g = (g0,9b) the generic element of M(E, G). Simi

larly, we have the decomposition J^(E',G) = ^(E'0,G) x ^(E' l5G) x M{E'2,G) and 

we write g' = (gf0,gfi,g2) for the generic element of ^ ( E ' , G ) . 

With this notation and these identifications, the function / is denned by the equal

ity f(9o,9b) = f(9o,9b,9b)' 

Since each curve of ^ is covered either by EQ or by E&, the decomposition of 

M(E, G) above determines a decomposition of the measure w<<<hjk^ùù as the tensor 

product of two measures U0 and Ub on M(EQ,G) and M(Eb,G) respectively, each of 

which is invariant under the action of the gauge group Gv. Let us assume that 6 is the 

product of n edges of E. Then M(Eb,G) can be identified with Gn and the measure 

Ub corresponds to #c(6)(n) under this identification. 

Similarly, the measure U^, c, splits as the tensor product of three measures U'0, 

U[ and U'2, on M(E'OJG), M^E'^G) and M(E'2,G) respectively. The last two spaces 

can be identified with Gn and the measures U[ and U2 both correspond to #c(6)(n) 

under this identification. 

The measures U0 and U'Q correspond to each other via the identification of M(EQ, G) 

and M(E'Q, G). Hence, the equality which we need to prove is 

/^(P(G),G) 
f(9o, 9b,9b) U0(dg0)Ub(dgb) 

M(E0,G)xM(Eb,G)2 
f(9o, 9u92) U0(dg0)Ub(dg1)Ub(dg2). 

Let V2 denote the subset of V consisting of the vertices which lie on b2. The group 

GV2 is a compact Lie group and the invariant measure of its transitive action on the 

subset C(b)(n) of M(E'2,G) is the measure #c(6)(n) = U2. Let us denote by j2 the 

generic element of GV2 and by dj' the Haar measure on this group. Since / is invariant 

under the action of the gauge group, we have for all (<7o>#i>#2) M M(P(G'),G) the 

equality /(j2-g'Q,g[ J2'g'2) = f(g'0,g'i,g2). Observe that some edges of E'G have some of 

their endpoints in V2, so that the term g'Q is affected by the gauge transformation j2. 

On the contrary, the term g[ is not affected because b[ and b2 are disjoint. Hence, 
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with the identifications made earlier, 

rĵ (P(G),G) 
f(9o,9b, gb) U0(dg0)Ub(dgb) 

/̂ (P(G),G)xGV2 
/(¿2 * 9o,9b,J2 ' 9b)U0(dg0)Ub(dgb)dj2. 

Since the measure UQ is invariant under the action of Gv, the last term is equal to 

J%(P(G),G)xGV2 
, f (90,9b, f2 ' 9b)U0(dg0)Ub(dgb)dj2. 

It suffices now to prove an equality about the function fM^E G^ f{g0, •) U0(dg0) 

on G2n. Indeed, let us denote this function by u : G2n —• R. All we need to prove is 

that, for all conjugacy class 0, 

1G2n 
u(9i, • • -,9n,ji9iJ2 \ • • • JngnJi x) 5#(n)(d#i • • • dpn)dji • • • djn 

w< 
G2n 

w<lq)u...,9r)(dh)xw 

But the left-hand side is equal to 

Gn ww 
U(gi, • . .,9n,9n+U • • • >02n)*0, .Sn(n)(d0n+1 * * * d02n)*0(n)(d01 ' * * d#n) 

by the very definition of Sgg^ gn(n), hence it is equal to the right-hand side. 

2) Unary gluing. — Let {6,6"1} be the joint of the gluing. Let b' be the component 

of the boundary of Mf such that 7r(&') = b. Let us write b = e\ • • • en and b' = 

ei i''' en iei 2 ' ' ' en 2 m sucn a waY that 7r(6^ x) = 7r(6^ 2) = bi for all i € { 1 , . . . , n } . 

Let Eb denote the set of edges located on b. Set E[ = {e[ji±1, •. •, e'n,i±1} and 

E2 = {eif2±1,.-- ,Cnf2±1}- SetEo = E , - ( E i u E 2 ) andE0 = E - E 6 = TT(E,0). We will 

identify freely EQ with E'Q. 

With this notation, the equalities (30) hold, as well as the subsequent decomposi

tions of M(E, G) and M{E' ,G). The function / is also still defined by the equality 

f(9o,9b) = f(9o,9b,9b)-

The decomposition c = UQ ® Ub is valid just as in the binary case, but the 

decomposition of U^, c , is now different. Indeed, this measure splits into the tensor 

product of U'Q and a measure U[2 on M{Efx,G) x M(E2,G) which is <̂ c(fe)2(2n) under 

the natural identification of M(E[,G) x j%(E'2,G) with G2n. The formula which we 

need to prove is 

JjH(P(G)tG) 
f(9o,9b,9b)Uo(dg0)Ub(dgb) 

x< 
f̂ (E0,G)xj%(EiuE^G) 

f (9o, 91,92) U0(dg0)U[2(dgi, dg2). 
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Let V12 denote the set of vertices which lie on b'. By using the invariance of / 
under the action of the subgroup Gv'12 of the gauge group and the invariance of the 
measure Ua under the same action, we find just as in the binary case that the left-hand 
side of the equality to prove is equal to 

'M(E0 yG)xM(Eb,G) x Gvi2 
f(9oj[2 ' 9b J'i2 ' 9b) Uo(dg0)Ub(dgb)dj'12. 

The notation here is misleading, since the two occurrences of j12 * 9b do not denote the 
same object. Indeed, the two occurrences of gb in the arguments of / are identified 
respectively with an element of M(E[, G) and an element of J^(E2, G), on which GVl2 
acts differently. 

Now what we have to prove is really an equality about the function 

JSH(E0iG) 
/(£o,.,.)^o(d#0) 

on G2n. Let us call this function u : G2n —> M. We need to prove that for all conjugacy 
class 0 in G the following equality holds: 

JG3n 
u (jo 9iJif ' ' ' ?3n—i9nJni Jn 9i3n+i, • • • iJ2n-i9nJo) àg(n)(dgi • • • d#n)dj 

= i lG2n 
U602,2ny 

Recall that 02 is the conjugacy class constituted by the squares of the elements of 0. 
We claim that this equality holds for all continuous function u. Indeed, the integral 

fG2n 
uUo 19iji, • • • Jn-ignJnJn 1Piin+i, • •., J2n-i9nJo)djo • • • dJ2n 

is the integral of u with respect to the measure Sg^ )2(2n)> by ^ne verY defi
nition of this measure as the invariant measure under the natural action of G2n 
on 0(9l...gn)2(2n). Hence, by a simple particular case of (22), the integral that we 
are computing is equal to 

JGn JG2n 
u(x)S9{9ï...gn)2(2n)(dx))ô0{n)(dg1 • •. dgn) 

*^$ù 
JG2n 

u(x){ 
J G 

,*0B2(2n)M^))(^)' 

The measure Sg2^2n^ is equal to #o2(2n) f°r ^^-almost all g. Hence, the measure 
between the brackets is Sg2^2ny This concludes the proof. • 

Let us conclude this section by a much simpler result, which is the simplest instance 
of invariance under subdivision. 
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Proposition 2.3.9. — Let (M, ^ , C) be a marked surface with G-constraints. Let Gi 
and G2 be graphs on ( M , ^ ) . Assume that Gi ^ G2. TTien the inclusion P(Gi) C 
P(G2) induces a measurable restriction map r : ̂ (P(G2),G) —> ^ ( P ( G i ) , G ) which 
satisfies 

^(P(G2),G) —> ^(P(Gi),^(P(G2), 

Proof. — Let us choose an orientation for Gi and G2. The restriction map, seen as a 
map from GE* to GE*, multiplies the components which correspond to the edges of E2 
which constitute each edge of Ei and forgets about the components which correspond 
to edges which do not lie in the skeleton of Ei. 

Since the product of independent uniform variables on G is still uniform, the only 
non-trivial thing to check is what happens along the marking curves or the boundary 
components. There, the invariance follows from (23). • 

2.4. Tame generators of the group of reduced loops 

Consider a surface (M, 0 , C) with G-constraints along its boundary (see Definition 
2.3.1), endowed with a graph G. Our objective in this section is to exhibit a family 
of lassos (see Definition 1.2.4) which generates the group of reduced loops in G (see 
Definition 1.3.30) and to compute the distribution of the G-valued random variables 
associated with these lassos under the constrained uniform measure defined in the 
previous section. Moreover, we are going to do this in a way which is consistent with 
the partial order on the set of graphs. The main result of this section will not be used 
until Chapter 5. 

Definition 2.4.1. — Let M be a compact surface endowed with a graph G. Let v be a 
vertex of Q. A lasso I € RLV(G) is said to be facial if its meander represents a facial 
cycle of G. It is said to be bounding if its meander covers a connected component 
ofdM. 

We want to prove the existence of systems of generators of RLV(G) which consist 
in one bounding lasso for each connected component of 9M, one facial lasso for each 
face of G, and as many supplementary lassos with non-contractible meander as the 
genus of M (see Section 1.1.1). 

Recall the notation W(M) from Section 1.3.5. If w is a word in some set of letters, 
we denote by w the word obtained by reversing the order of the letters of w. 

Proposition 2.4.2. — Let M be a connected compact surface. Let g = g(M) denote 
the genus of M. Let p = p(M) be the number of connected components ofdM. Write 
&(M) = {&i, frf \ • • •, bp, b^1}. If M is oriented, we assume that 61,..., bp bound M 
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positively. Let G be a graph on M. Let v be a vertex ofG. Let f denote the number 
of faces ofG. 

1) There exists, in the group RLV(G), g lassos a i , . . . , a g ; p bounding lassos 
c\,..., cp whose meanders are equivalent to b\,..., bp up to permutation; f facial 
lassos l\,..., If whose meanders bound the f faces of G, positively if M is oriented; 
and there exists an word w in the letters a i , . . . , ag which belongs to W(M) such that 
the group RLV(G) admits the presentation 

( a i , . . . , a s , c i , . . . , cp , / i , . . . ,/f I w(au . . . , ag)c i . . . cp = h ... If) 

and, for all continuous function f : Gg+P+ —• R and all set C of G-constraints along 
the boundary components ofG, 

JSU(P{G),G) 
/ ( fe(a i ) , . . . , fc(og), ft(ci),..., h(cp), fc(Zi),..., h(/f)) 0 Mdh) 

!* 
^(P(G2),G) — 

/ ( x i , . . . , ag,î/i, • • • ,2/p, • . . , *f-i, Zf) 

dxi • • • dxgdc(6l)(dî/i) • • 'dc(bp){dyp)dz1 • • • dzf_i, 

where we have set Zf = yp - — yiw (xi,..., xg)(^f_i • • • zi) . 
A collection of lassos such as { a i , . . . , ag, c i , . . . , cp, / 1 , . . . , If} will be called a tame 

system of generators associated with the word w. 

2) Let Gi and G2 be two graphs on M such that Gi ^ G2. Set fi = f(Gi). Let v be 
a vertex of Gi. Let {a\,..., ag, C\,..., cp, / 1 , . . . , lfx} be a tame system of generators 
of RLv(Gi) associated with the word w. Assume that the faces of Gi are labelled 
Fi = {Fl : i G { 1 , . . . , fi}} in such a way that for all i G { 1 , . . . , f i}, the meander of 
the lasso k bounds F-1. For all i G { 1 , . . . , n}, let F2,» = {F2 e F 2 : F 2 C F^} be the 
set of faces 0/G2 contained in F / and set ^2,1 = #^2,i> 

Then there exists a set of facial lassos {l{j : i G { 1 , . . . , f i}, j G {1,. . . ,̂ 2,2}} in 
RLV(G2) such that for all i,j, the meander of the lasso l{j bounds a face of ¥2,1, for 
all i the equality U = l^i — -li,f2 i holds and 

{ a i , . . . , ag ,c i , . . . ,cp,/i5i,.. . j/f^fa^ J 

is a tame system of generators of RLV(G2) associated with the word w. 

Until the end of this chapter we will use the notation 

g = g(M), p = p(M) and f = f(G) 

By Lemma 1.3.33, we know that RLV(G) is free of rank e(G) - v(G) + 1 . By Euler's 
relation for the graph G, which writes v(G) — e(G)+f(G) = x(M) = 2 — g — p, the rank 
of RLV(G) can also be written asg-hp-hf—1. In order to find families of generators 
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whose cardinal decomposes naturally a s g + p + f — 1, we introduce the dual graph 
of G. 

Definition 2.4.3. — Let M be a compact surface endowed with a graph G. Let 
( M ' , G ' , t , / ) be a split pattern of (M, G). Let V denote the set of connected compo
nents of M', which is in canonical bisection with F. Then, set 

E = { { e , , e , " 1 } : e / G E '} . 

For each element e = {e',e'-1} of E, define the source s(e) of e as the connected 
component of M' which contains e' and the target t(e) of e is the connected component 
of M1 which contains t(ef). 

The abstract graph G = (V,E, s,£) is called the dual graph ofG. 

Properly speaking, the dual graph of G depends on the choice of the split pattern 
of G and it is unique only up to an obvious notion of isomorphism. We shall in fact 
choose a split pattern and work with the associated dual graph. 

The involution ¿ of the split pattern induces an involution on E, which we still 
denote by i. This involution is similar to an orientation reversal, but one should 
observe that it may have fixed points. For example, if an edge e' G E' is sent by / 
on a boundary component of M, then ¿(6') = e' and the dual edge e = {e', e/_1} also 
satisfies t(e) = e. 

The orbits of i on E, which we call unoriented edges of the dual graph, correspond 
bijectively by / with the unoriented edges of the graph G, that is, the pairs {e,e-1} 
for e G E. 

Definition 2.4.4. — Let M be a compact surface endowed with a graph G. Let 
(M' ,G ' ,6 , / ) be a split pattern of (M, G). Recall that a spanning tree of the dual 
graph (V, E, s, t) is a subset T c E stable by the involution t and such that any two 
vertices of the dual graph are joined by a unique infective path made with edges of T. 

Let T be a spanning tree of the dual graph. An orientation of M' is said to be 
adapted to T if for all e = {e,e-1} G T, the edges e and t{e) are neither both 
positively oriented nor both negatively oriented with respect to this orientation of M'. 

Assume that M1 is endowed with an orientation adapted to T. Then we define the 
image by f of an edge e = {e^e'-1} ofT as an edge ofG by setting / (e) = f(e') if e' 
is positively oriented as a subset of dM' and / (e) = f(e'~ ) otherwise. 

It is not difficult to check that there are exactly two orientations of M', among 
the 2f possible, which are adapted to any given spanning tree in the dual graph. 
Moreover, for all e G T, we have the equality f{i{e)) = fie)-1 in E. 

It follows from Proposition 1.3.15 that E \ f(T) is the set of edges of a graph Go 
on M with a single face. This graph has e0 = e(G) - (f(G) - 1) edges, so by Euler's 
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ê s(è) 
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m 

FIGURE 1. The split pattern of our favourite graph as its dual graph. The 
edge /(è) of G bounds positively the face corresponding to the face of the 
split pattern on the boundary of which è sits. 

relation, it still has vo = v(G) vertices. Moreover, its skeleton contains dm and every 
edge of G which lies on dM is also an edge of Go- Let B+ C EQ be a collection of 
edges of Go comprising exactly one edge on each connected component of dM. If M 
is oriented, we assume that the edges of B bound M positively. The set of edges 
of Go located on dM and which do not belong to B = B+ U {B+)~x form a cycle-free 
subgraph of Go- Hence, it is possible to extend this subgraph to a spanning tree T 
of G0 such that T n B = 0 (see Figure 2). 

Recall that for all e e Eo, the lasso le^> is defined as Ze,T = [v, ej^efe, V]T-

Lemma 2.4.5. — With the notation above, for each edge e G B, the lasso Ze,T is a 
bounding lasso whose meander covers the connected component ofdM on which e lies 
and whose spoke contains no edge lying on this connected component. 

Proof. — Let b be the connected component of dM on which e lies. If the base point 
v is located on 6, then le^ is a simple loop which represents the cycle b. Otherwise, 
since any two vertices located on b can be joined by a path in T which stays in 6, 
there exists a unique vertex w on b which is joined to the base point v by a path 
in T with no edge lying on 6. Hence, Ze,T = [v, W]T([W,e]re[e,[W,e]re[e[W,eV]T- The three 
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paths between the brackets form the meander of the lasso, which is a simple loop 
covering b. • 

Let us carry on with our construction. We have a partition E0 = T U B U R, where 
R = Eo\ (TUB). It follows from Euler's relation that R contains exactly g unoriented 
edges. Prom the fact that EQ has v(G) vertices, we deduce that T is in fact a spanning 
tree of G. Hence, Lemma 1.3.33 implies the first assertion of the following result. 

Proposition 2.4.6. — Let M be a compact surface endowed with a graph G. Let 
(M', G', ¿5 / ) be a split pattern of (M, G ) . Let T be a spanning tree of the dual graph 
of G. Let B+ be a collection of edges comprising exactly one edge on each connected 
component of dM, which we assume to be positively oriented if M is oriented. Set 

B = B+U(B+)~1. 

Let T be a spanning tree ofE\f(T) such that Tfl B = 0. Set 

R=E\{f(T)UBUkmT). 

Choose an orientation E+ of G such that B+ C E+. Write B+ = {e i , . . . ,ep}. Let 
b\,..., bp be the boundary components of M enumerated in such a way that for all 
i G {1 , . . . , p}, bi is the meander of the lasso lEI,T- Then R+, B+ and / (T)+ contain 
respectively g, p and f — 1 edges and the following properties hold. 

1) The group RU(G) is freely generated by the loops {Ze,T : e G R+ UB+ U / ( f ) + } . 

2) Under the probability measure 0 c on J^(P(G), G), the collection of random 
variables {/i(/e,T) • e G R+ U B+ U f(T)+} is a collection of independent variables. 
For all e G R+ U/(T)+, the variable h(le^) is uniformly distributed on G and for all 
i G {1 , . . . , p}, the variable /i(/Ci,T) has the distribution ^c(6i)-

Proof. — Let us prove the second assertion. By definition of the measure 0 c , 

the random variables {h(e) : e G i?+U/(T)+} are independent, uniformly distributed 

on G, and independent of {h(e) : e G E+ \ (R+ U / ( T ) + ) } . It is a general fact that 

if X i , . . . , X n are independent uniformly distributed random variables on G, inde

pendent of Y i , . . . , Yn, Z i , . . . , Zn, then the n variables Y\X\Z\,..., YnXnZn are in

dependent, uniformly distributed, and independent of Y i , . . . , Yni Z i , . . . , Zn. Hence, 

the variables {h(le^) ' e G i?+ U / ( T ) + } are independent, uniformly distributed 

and independent of the variables {h(le^) - e G which do not involve any edge 

of i*U/ ( f ) . 
Now choose i G {1 , . . . , p}. Consider the loop lEIIT and the corresponding bounding 

cycle bi. By Lemma 2.4.5, the spoke of the lasso lEUT does not involve any edge lying 
on the boundary component bi of M. However, it may involve edges located on other 
boundary components of M. 
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FIGURE 2. Two examples of partitions of the set of edges of a graph as 
R\J BU f(T) U T. The first example is our favourite graph, and since it 
is a graph on a sphere, albeit with three holes, R is empty. In the much 
simpler second example, R contains one edge. 

We claim that for every subset I C {1 , . . . , p}, there exists %Q G / such that for all 
j € / — {io}, the spoke of lejyx does not involve edges located on bi0. Assume to the 
contrary that for some subset / there does not exist such an Then there would 
exist ¿1,..., ik-\ G / all distinct and ik = h such that for all j G { 1 , . . . , k — 1}, the 
spoke of the lasso ,r involves an edge which lies on the boundary component . 
This would in particular imply that for each j G { l , . . . , f c — 1} there exists a path 
in T from bij to bij+1 and, since ik = i i , that T contains a cycle. 

By relabelling the boundary components of M, we may assume that for all k 
in { 1 , . . .,p}, the element k of the subset {fc, . . . ,p} C { ! , . . . , p} has the prop
erty described above. Since under U ^ 0 c , the random variable h(bk) has the dis
tribution Sc(bk) and is independent of the variables h(e) for e G E not located 
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on the variable /i(/efc,r) itself has the distribution ^c(6fc) and is independent 
of /i(Zefc+i,T)j • • • > h(le T)- This implies easily the result. • 

With the proof of Proposition 2.4.2 in mind, the next step is to express the loops Ze,T 
for e G f(T) in function of facial lassos. The exact way in which these lassos decom
pose into products of facial lassos depends on, and in fact encodes completely, the 
geometry of the tree T. 

Let M' be endowed with an orientation adapted with T. Let v = M'F be a vertex 
of G which corresponds to a face F. The set of edges of G whose source is v is in 
one-to-one correspondence with the set of edges of G' located on the boundary of M'F 
and which bound it positively. This set carries a natural cyclic order, which is the 
order in which the edges are traversed by a cycle bounding M'F. By restriction, the 
set of edges of T which share v as their source is endowed with a cyclic order. 

Let us root T by not only choosing a reference vertex but also by choosing among 
the edges issued from this vertex which one is the first. The simplest way to do this is 
to choose a vertex of G'. This determines a root vertex for T, namely the connected 
component of M' which carries this vertex, and this also breaks the cyclic symmetry 
of the edges issued from this connected component, which are now totally ordered. 

The object that we are now contemplating is a tree (that is, an abstract graph 
without simple cycle) endowed with a distinguished vertex, a total order on the edges 
issued from this distinguished vertex and a cyclic order on the set of edges issued from 
any other vertex. Such an object is called a rooted planar tree and it has a canonical 
representation as a set of words of integers, according to a formalism due to J. Neveu. 
Let us simply describe how the vertices are labelled by words of integers, that is, finite 
sequences of non-negative integers. 

The root vertex is labelled by the empty word 0 . Let k(0) be the number of 
children of 0 , that is, the number of vertices to which it is joined by an edge. These 
vertices are labelled by words of length 1, namely l , 2 , . . . , f c ( 0 ) , according to the total 
order on these edges. 

Then, consider a vertex labelled by a word u = u\... un. The integer n is called the 
height of u and it is denoted by h(u). Let 7r(u) = u\... un-\ denote the predecessor of 
u and let k(u) denote the number of vertices other than ir(u) to which u is joined by an 
edge. Then the edge from u to 7r(w), denoted by (u, 7r(w)), breaks the cyclic symmetry 
among the edges issued from u and determines a total order on the k(u) other edges 
issued from u. The k(u) targets of these edges are labelled u\... txnl , . . . , u\... unk(u) 
in this order. 

Thus, the choice of a rooting of T and an adapted orientation of M' determines a 
labelling of F by words of integers (see Figure 3). As we shall see now, it determines 
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also a specific facial lasso for each face of G and one of the loops leT for each face 
distinct from the root face. 

l 
, 2 , 

21 
11 

112 111 0 

3 

31 311 
3112 

3111 

FIGURE 3. The labelling of the faces of a graph by words of integers. The 
vertex vf determines the rooting of T. 

Definition 2.4.7. — Let M be a compact surface endowed with a graph G. Let 
(M', G', 6, / ) be a split pattern of (M, G). Let T be a spanning tree of the dual graph 
o/G. Endow M! with an orientation adapted to T. Choose a root for T. Label the 
faces of G with words of integers accordingly. 

Consider a face F of G labelled by the word u. If u = 0 , let dfF be the unique 
representative of dM'F which starts at the root vertex chosen in V and bounds posi
tively dMF. Otherwise, consider the edge (u, 7r(u)) ofT, which we identify with an 
edge o/G' which bounds M'F positively. Let dfF be the unique simple loop represent
ing dM'F which starts with this edge. Write dfF as a product of edges e\ • * • er. We 
define the facial lasso lu € RLU(G) (also denoted by If) by 

lu — lei ,T * ' * êT-,T-

Consider a face labelled by u ^ 0 . The edge (u, 7r(u)) of T determines the edge 
f((uy7t(u))) o/G and we define 

lu,7ï(u) = /̂({u,7r(u))),T-

We also define l0^(0) as ^e constant loop at v. 

Let u and u' be two vertices of T. We say that u is a prefix of u! if there exists a 
word of integers u" such that uf = W , the concatenation of u and unGenealogically, 
this can be phrased by saying that u is an ancestor of u'. This is also equivalent to 
the fact that the unique injective path in T from v to uf visits u. 
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Lemma 2.4.8. — Recall the notation of Definition 2.4.7. Let F be a face ofG labelled 
by u. There exist k(u) +1 elements tu^{u),tu,ui, • • •, tu,uk(u) of the subgroup o/RLv(G) 
generated by {le^ : e £ RU B} such that 

(31) lu — 1и,тг{и)г

и^{иуи1,иги,и1 ' ' ' 1ик(и),иги,ик(и)' 
Moreover, there exists an element t of the subgroup of RLV(G) generated by {lv : 
u prefix of v} and {lE,T : e e RU B} such that 

(32) ^(P(G2),G) —> ^( 

In the course of the proof of this result, we use an argument of downwards induction 
along the branches of T. We say that a vertex u of T is a leaf if k{u) = 0. The 
induction argument says that if a property is satisfied by all leaves of T and if it 
satisfied by a vertex as soon as it is satisfied by all the vertices of which it is a 
predecessor, then it is satisfied by all vertices. 

Proof. — Let us write dfF — e\ • • • en. By definition, e\ is the edge of G which cor
responds to the edge (u, n(u)) of T. Hence, Zei,T = lutn(u)- Then, the list (e2 , . . . , en) 
consists of the images by / of the edges of T which join u to ul,... ,uk(u), in this 
order, and in the midst of which occur some edges of T and some edges oi RUB. The 
claimed expression for lu follows. In the case where F is the root of T, the edge e\ 
does not play a special role, it is either the image by / of the edge which joins 0 to 1 
in f, or an edge ofTURUB. 

The second expression of lu reduces to the first if u is a leaf. Let us now consider 
a vertex u and assume that (32) holds for each vertex of which u is the predecessor, 
that is, for ul,..., uk(u). For every vertex v, the fact that uj is a prefix of v for some 
j G { 1 , . . . ,k(u)} implies that u is a prefix of v. Hence, by applying (31) to u and 
then (32) to t i l , . . . ,uk(u), we find that (32) holds for u. 

By downwards induction along the branches of T, the second expression of lu holds 
for all u € f. • 

Corollary 2.4.9. — Recall the notation of Proposition 2.4.6 and Definition 2.4.7. The 
group RL„(G) is freely generated by {le,r • e G R+ U B+} and {lu : u ^ 0 } . More
over, under \)%0 c, the random variables {h(lu) : u ^ 0 } are mutually independent, 
uniformly distributed and independent of {h(le^) • e G R* U B+}. 

Proof. — Let us call the height of T and denote by h(T) the maximal height of a 
vertex of T, which is necessarily a leaf. We claim that for all integer n > 1, RLV(G) is 
freely generated by the set X(n) defined by 

X(n) = {l€iT :eeR+UB+}u {luMu) : h{u) < n) U {lu : h(u) > n}. 
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For n — 1, it is the statement which we wish to prove. For n > h(T)y it is the 
content of Proposition 2.4.6. The fact that the claim is true for all n is easily proved 
by descending induction. Indeed, for all n > 1, the set X(n) is deduced from X(n +1) 
by replacing, for all labels u of T such that h(u) = n, the loop lu^{u) by the facial 
lasso lu. If X(n + 1) is a basis of RLV(G), then it follows immediately from (32) 
that X(n) is another basis of RLV(G). 

Since the sets {v : u prefix of v} are disjoint for the distinct labels u of height 
n, the assertion on the distribution of the variables {h(l) : I G X(n)} follows easily 
from (32) and the distribution of {h(l) : I G X(n + 1)}. • 

At this point, we have proved most of the first assertion of Proposition 2.4.2. We 
have exhibited a family of generators of the group RLV(G) which generate it freely. 
We know that if we add one element to this family, we get a presentation of RLV(G) 
with one relation. The next result helps us to get a relation of the form that we 
expect. 

Lemma 2.4.8 defines tUyV for each ordered pair of adjacent vertices (u, v) in T, and 
also an extra element t0^(0y Now for each pair of vertices (u, uf) of T, not necessarily 
adjacent, let us define tu,u> — tVl,V2 - —tVrn_liVin, where u = v i , . . . ,vm = v! is the 
unique injective path in T from u to u'. 

Lemma 2.4.10. — Endow the set of vertices of T with the lexicographic order associ
ated to the reversed order on N. Enumerate its elements accordingly: 

F = {ui < ••• < Uf}. 

Then 

(33) luitui,U2^U2^U2,U3 ' ' ' ÛF_I,TTF̂Uf̂Uf,0̂ 0 ,Tt(0) — I* 

Moreover, the loop (tUl,U2tU2iU3 • • *tUf_1}UftUfi0t0>7R(0))~1 is the boundary of the 
unique face of Go- It is equal to a word in the lassos {lE,T • e G R+ U B+} where 
each lasso of the set {lE,T : e G R*} appears exactly twice, possibly sometimes with 
exponent — 1, and each lasso of the set {lE,T : e G B+} appears exactly once, possibly 
with exponent —1. If M is oriented, then each lasso of the set {lE^T ' e G B+} appears 
with exponent 1. 

Proof — Equation (31) can be rewritten as 

^(P(G2),G) —> ^(P(Gi),^(P(G2),G) —> ^(P(Gi),^(P( 

Let us apply this relation to u= 0. We find 

(34) 1 — l0t0ik(0}lk(0),0 —'t0,ih,zt0M0)' 
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FIGURE 4. The lexicographic order on F associated to the reversed order 
on N is the same order in which the faces are discovered for the first time 
by an explorer who wanders around the dual tree along the track depicted 
above. 

Let us define, for all integer n > 1 and all vertex u of T such that h(u) < n an 
element ^ of RLV(G) by setting 

/"(n) _ lu if h(u) < n 
luMu) if M«) = n. 

Also, for each n, let u" < • • • < w"n be the vertices of T of height at most n listed in 
the lexicographic order corresponding to the reversed order on N. Then (34) can be 
written as 

1^(P(G2) ,G)) , ' • •y1.1^1v;M0)< 
By applying (31) iteratively to the terms of the form ZU)7r(u) in this equality, one 

finds that the equality 

1 — íun tuntU*lun •••í«p ..U^'up С0,7Г(0) 
holds for all n > 1. Here, £WiU' has the meaning explained before the statement of 
Lemma 2.4.10. For n larger than the height of T, this formula is exactly what we 
wanted to prove. 

Finally, (tUl,u2£u2,u3 •••tuf_lluf*uf,0*0,7r(0))~1 is the product of the loops le,T 
where e goes around the unique face of the pattern of Go obtained from Mf by sewing 
the edges of T. The result follows. • 

We are now ready to prove the main result of this section. 

Proof of Proposition 2.4-2. — Let us consider the relation given by Lemma 2.4.10. 
Let us define, for all i e {1, . . . ,f}, 

h (̂ Ui,tli+1 * * * Ûf_ 1 ,Uf tllf ,0̂ 0,7r(0) ) lui (̂ U,,Ui + i tllf- 1 ,Uf tltf ,0̂ 0,7r(0) )• 
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Then relation (33) becomes 

(35) {tui,U2 ' ' ' ̂ Uf_l,Uf̂ Uf,0^0,7r(0)) — 1>l'''lf' 

By Corollary 2.4.9 and the general result of independence invoked at the beginning 

of the proof of Proposition 2.4.6, RLV(G) is freely generated by 

{le,T : e G R+ U B+} U {lu . . . , Zf_i} 

and, under U ^ 0 C , the variables h(l\),...,h{lf-\) are independent, uniformly dis

tributed and independent of {h{le^) • e G i2+ U B+}. 
Let us write B+ = {&i,... ,6P}. By the last part of Lemma 2.4.10, there exists 

p + 1 elements to,...,tp of tne subgroup generated by {Je,T • e G p signs 

£ i , . . . , ep G {—1,1}, and a permutation a G <5P such that 

(̂ Ui,U2 * * * £uf_i,Uf̂ Uf,0^0,7r(0)) — ^^!(l)>r^ ' * ^̂ 6ff(p),T̂ P' 

with £i = • • • = £p = 1 if M is oriented. 

By Lemma 2.4.10 again, the loop to • • • tp can be written as a word in {le : e G R~*~} 
where each loop appears exactly twice, possibly sometimes with exponent —1. Recall 

that = g. Let us name a i , . . . ,ag the loops {le : e G R+} and let w denote 

the element of the free group of rank g such that w(ai,..., ag) = to . . . tp. Let us 

also define, for all k G { 1 , . . . , p}, Q = (U- • £p)_1^(i),T(**''' *P)- Then relation (35) 

becomes 

(36) w(ai,..., ag)ci • • • cp = l\ - • • If. 

The first assertion result now from Proposition 2.4.6, Corollary 2.4.9 and the defi

nition of Zi , . . . , If and c i , . . . , cp. 

2) Let us prove the second assertion. By adding vertices to Gi, we do not change 

the group RLv(Gi) nor the distribution of the associated random variables, according 

to the property of invariance by subdivision (Lemma 2.3.9). Hence, we may add 

to Gi the vertices of G2 located on Sk(Gi) and, without loss of generality, assume 

that Ei C E2. 

For the sake of simplicity, let us treat the case where only one face of Gi contains 

the interior of an edge of E2 \ Ei. Once the result is proved under this restrictive 

assumption, the general result follows by iteration. So, let us denote by F\ the only 

face which contains the interior of some edges of G2. 

Let (Mf,Gi,L,f) be a split pattern of (M,Gi). Let M'F be the closure of the 

preimage by / of F\. Let G2 be the restriction to MFi of the lift to M' of G2 (this 

lift can be rigourously defined by successive applications of the second assertion of 

Proposition 1.3.5). Let v\ be the finishing point of the spoke of the lasso l\. Let us 

choose a vertex v[ of G2 which is sent by / on v\. 
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The first assertion of the proposition that we are proving applied to the graph G2 
on the disk MFi, whose reduced genus is 0, provides us with f 1 facial lassos l[,..., l'^ 
based at v[ which bound the faces of G2 and such that such that l'imm'lf21 bounds M2. 
By projecting these lassos on M by / and conjugating them by the spoke of ¿1, we 
get lassos based at v which we denote by Z^i, . . . ,/i?f2 . 

Let £fi denote the tame set of generators of RL„(Gi) that we are given. Let us prove 
that the set 2̂ of loops obtained by replacing /1 by . . . , hj21 in ^ is a set which 
generates RLV(G2). Let c be a loop based at v in G2. Let us split c into a concatenation 
of paths which are either paths in Gi or concatenation of edges of E2 \ Ei. We get 
an expression of the form c = c\d\ • • • cndn, where the paths c i , . . . , cn are in Gi and 
the paths d i , . . . , dn are concatenations of edges of E2 \ Ei. Choose k € { 1 , . . . , n} 
and consider the path dk. It can be lifted in a unique way to a path in G2, which we 
denote by dfk. Even if dk is a loop, d'k needs not be a loop. However, there exist two 
paths ak and bfk in G2 which stay on the boundary of MFi and such that oJkd'kbk is a 
loop based at v[. Let us write a& = and bk = f(bk), and denote the spoke of 
the lasso l\ by S\. Finally, let fk be a path in Gi from dk to v. We have the equality 
in RU(G2) 

c = {ciax 1s1 l)[siaid1b1s1 l](sibx Vi) * • * Un-icnan1sl 1)[s1andnbns1 ^ ( s ^ 1 ) . 

The loops between brackets are loops of RLv(Gi) and the loops between square brack
ets are the image by / of loops in G2, conjugated by the spoke of /1, hence, equal 
to words in the loops ¿1,1,.. •,/i,f21. Hence, the loops of £f2 generate RLV(G2). They 
satisfy the equation 

w(au . . . ,ag)ci • • - cp = /1,1 • -hfrh -'lh-

In particular, the set % \ {¿1,1} for instance has cardinal g + p + f (G2) — 1 and generates 
RLV(G2) which is free of rank g + p + f (G2) — 1. Hence, it is a free basis of this group 
(see Proposition 2.7 in Chapter 1 of [29]). 

There remains to determine the distribution of {h(l) : I € under 0 c . It fol
lows from the way in which the loops /1,1,..., /i,f21 were constructed that the random 
variables / i ( / i , i ) , . . . , MJi,f2)i-i) are independent, uniformly distributed, and indepen
dent of a(h(l) : / € ^1). Moreover, h(li) is independent of o~(h(l) : i € #1 \ {/1}). 
Hence, the three cr-fields 

cr(ft(li,i),...,Mii,fa|1-i)), <r(h(h))> < t ( M 0 ^ € ^ i \ { / i } ) 

are independent. Since . . . , h(lij2,1-1) h(li) are uniformly distributed, 

and hj2A — (¿1,1 • • • 'i,f2,i—l)""1^? follows that ft(Zi,i),..., h(h,f2,i) are uniformly 

distributed and independent of a(h(l) : I € % \ • • • > h,f2,i})' ^ 
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CHAPTER 3 

MARKOVIAN HOLONOMY FIELDS 

In this chapter, which is the core of this work, we define Markovian holonomy fields 
and their discrete analogues. We prove in full generality that the partition functions 
of a discrete Markovian holonomy field do not depend on the graph in which they are 
computed. We then prove the first main result of this work, which asserts that any 
discrete Markovian holonomy field which satisfies some regularity conditions can be 
extended in a unique way to a Markovian holonomy field. 

3.1. Definition 

Recall the definitions of a marked surface (Definition 1.1.8) and of a set of G-
constraints (Definition 2.3.1). 

Definition 3.1.1. — A measured marked surface with G-constraints is a quadruple 
(M, vol, C) where (M, ^) is a marked surface, vol is a smooth non-vanishing den
sity on M and C is a set of G-constraints on (M,^). 

Two measured marked surfaces (resp. oriented measured marked surfaces) with 
G-constraints (M, vol, C) and (M', vol7, G7) are isomorphic if there exists a dif-
feomorphism (resp. an orientation preserving diffeomorphism) ip : M —> M' such that 
^*vol = vol7, ip sends each curve of ^ to a curve of and, for all I £ ^, 

c ( m ) = c ( i ) . ^ ( P 

Prom now on, we will make the assumption that G is a compact Lie group, not 
necessarily connected. If dimG > 1, we endow G with a bi-invariant Riemannian 
metric which we normalise in such a way that the total Riemannian volume of G is 1. 
In this way, the Riemannian density coincides with the normalised Haar measure 
on G~ If G is finite, we endow it with the distance da(x,y) = Sx^y and with the 
uniform probability measure. 
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108 CHAPTER 3. MARKOVIAN HOLONOMY FIELDS 

The set Conj(G) of conjugacy classes of G inherits the quotient topology from G 
and the corresponding Borel cr-field. The space of G-constraints on a marked surface 

(Af,Sf), which we denote by ConstG(M, <*f), is a subset of Conj(G)^u"^M) and thus 

carries the trace topology and a-field. 

Let us introduce a last piece of notation. Let (M, vol, ̂ , C) be a measured marked 

surface with G-constraints. Let I be a curve which belongs to ^ U &(M). Let x be 

an element of G. We define a new set of G-constraints C\^x as follows: 

Q„x(l) = 9X, G z ^ r 1 ) = Qx-i and CU* = G o n ^ U ^ ( M ) - {J,/"1}. 

The main definition of this work is the following. 

Definition 3.1.2. — A G-valued two-dimensional Markovian holonomy field is the 
data, for each quadruplet (M, vol, ̂ , G) consisting of a marked surface endowed 
with a density and a set of G-constraints, of a finite measure HFm,VO1,^,c on 
(M(P(M), G), J) such that the following properties are satisfied. 

A I ) For all (M,vol,<T,G), HFM,VOI,^,c (3 / G ̂ U ^ ( M ) , h{l) $ C(l)) = 0. 

A2) For all (M, vol, ̂ ) and all event T in the invariant a-field of M(P(M),G), the 
function C 1—• HFM,voi,^,c(r) is a measurable function on the set ConstG(M, ^ ) . 

A3) For all (M, vol, V, C) and all I G 

HFMfvoiLY-{I,Z-i}lc|̂ (Af)uVN{I>l_1} -
G 

HFM,voi,^,Cj^xdx. 

A4) Let t/j : (M, vol, G) —> (M', vol', G') 6e a homeomorphism such that 
vol o = vol7, ^O^) — and C = Cf oip. Let / 1 , . . . , ln be loops based at the same 
point on M. Assume that their images l[,..., Vn by are also rectifiable loops. Then, 
for all continuous function f : Gn —> G invariant under the diagonal action of G by 
conjugation, 

'm(P(M),G) 
f(h(h),...,h(ln))HFù*^$**ùM^ol^c(dh) 

mù*^ 

M(P(M'),G) 
/ ( fc ' (ZI) , . . . , h'(l'n)) HFM,,voV^>,c>(dh'). 

In particular, if ^ is a diffeomorphism, then the mapping from M(P(M'),G) to 

M(P{M),G) induced by sends the measure HFjvf/jVOi,,<̂ /,c/ t° HFm.VOI/t.c-

A5) For all (Mi, vol i ,^i ,Gi) and (M2, v o ^ , ^ , G 2 ) ; one has the identity 

HFMiUM2,voliUvol2,̂ iU<r2,CiUC2 = HFm15VO1I,̂ I,CI ® HFj^voh,^,^ > 

w/iere Mi UM2 denotes the disjoint union of Mi and M2, and voli U vol2, ^11^2 and 

C\ UG2 denote respectively the natural density, set of marks, and set of G-constraints 

onM1UM2. 
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A6) For all (M, v o l , C ) , all I G ^ and all gluing i\) : Splj(M) —• M along I, one 
has 

H Fsp̂  (m) ,sPi, (vol) ,sP!j (V) ,sPiz (C) = H FM,voi,^,c ° V7 1 • 
A7) For all (M, vol, 0 , C) and for all l G âS(M), 

Jg 
HFM,voi,0,c^x(l)d^ = 1. 

A G-valued two-dimensional oriented Markovian holonomy field is the data, for 
each quadruplet (M, vol, ̂ , C) consisting of an oriented marked surface endowed with 
a density and a set of G-constraints, of a finite measure HFm,VO1X,c on measurable 
space (M(P(M),G),J) such that the seven properties above are satisfied. 

It is important to notice that the measures HF are not probability measures in 
general. They are finite measures, whose masses carry a lot of information about the 
holonomy field. It is actually possible that they characterise it completely, but this is 
a question which has yet to be answered. 

Let us discuss briefly the significance of these axioms. The axioms Ai, A2 and A3 
express the fact that the measure HFm,VO1,^,cs seen as a function of the G-constraints, 
provides a regular disintegration of HFm,VO1,0,cwm) with respect to the value of the 
holonomy field along the curves of tf. The simple expression of A3 is permitted 
by the fact that we consider finite measures rather than probability measures. The 
axiom A4 expresses the invariance of the field under area-preserving diffeomorphisms. 
The axioms A5 and A6 express the Markov property of the field. Finally, A7 is a 
normalization axiom. Without it, if HF was a given Markovian holonomy field, then 
for any real a, the measures eAVOL^M^HFM,voi,^,c would constitute another Markovian 
holonomy field. 

Our purpose is not to study Markovian holonomy fields in full generality. In the 
rest of this paper, we are going to make strong regularity assumptions and investigate 
the corresponding fields. 

Recall that do denotes a bi-invariant distance on G. Let c and d be two 
paths with the same endpoints. Then, although hc and hci are not measur
able with respect with the invariant cr-field J, unless c and d are loops, the 
function h 1—• dG(h(c),h(d)) is ./-measurable, because it can also be written as 
h »-> dciXi h(c)~lh(d)) = dG(l,h(dc"1)) and dc~1 is a loop. 

Definition 3.1.3. — Let HF be a G-valued two-dimensional Markovian holonomy field. 
1) We say that HF is stochastically continuous if, for all (M, vol, ̂ , C) and 

for all sequence (cn)n>o of elements of P(M) which converges with fixed endpoints to 
c G P(Af), 

r (̂P(M),G) 
dG(h(cn),h(c)) HFM,voi/*\c(dA) —> 0. 
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2) We say that HF is Fellerian if, for all (M,vol, ff), the function 

(£, C) I—• HFM,tvoi,^,C(l) 

defined on x ConstG(M, ^ ) is continuous. 
3) We say that HF is regular if it is both stochastically continuous and Fellerian. 

In the definition of stochastic continuity, we use L1 convergence of G-valued random 
variables. Since G is compact, this is equivalent to convergence in probability and to 
convergence in LP for any p E [1, +oo). 

From now on, the expression (regular) Markovian holonomy field will stand for 
two-dimensional G-valued (regular) Markovian holonomy field. 

3.2. Discrete Markovian holonomy fields 

It is not easy to construct a Markovian holonomy field. Indeed, one has to construct 
a stochastic process indexed by loops. To do this, one must naturally specify the finite-
dimensional marginals of this process. Thus, to each finite collection of loops, one has 
to associate a probability measure on some power of G. But unlike points on a time 
interval, loops on a surface may form a very complicated picture. In fact, in most 
cases, it is impossible to determine a probability measure from a finite set of loops. A 
way around this problem is to start by describing a restriction of the process to a class 
of loops which are nice enough, like piecewise geodesic loops, and then to extend the 
process by continuity. In fact, the very first step is to build a process indexed by the 
set of loops in a graph for every graph on a surface. This is what we call a discrete 
holonomy field. Recall the partial order on the set of graphs (Definition 1.4.5). 

Definition 3.2.1. — A G-valued two-dimensional discrete Markovian holonomy field 
is the data, for each measured marked surface (M, vol, C) with G-constraints, and 
each graph G on (M,^7), of a finite measure DF^ vol ^ c on (M(P(G),G),J) such 
that the following properties hold. 

Di) For all (Mrvo\7tf\C) and all G, 

V^MMC(31 evua(M)№) i C(t)) = 0. 

D2) For all (My vol, all G and all event F in the invariant a-field ofM(P(G)r G), 
C • D F ^ voI ^ Q(T) is a measurable function on ConstG(Af,^f). 

D3) For oil (M,vo l ,^ ,C) , all G and allied, 

^(P(G2),G) —> ^(P(Gi),^(P(G2),G) —> ^(P(Gi 

Jg 
^(P(G2),G) —> ^(P(Gi), 

D4) Consider (M, vol,if, C) and (Mr,vo\fr^"yCf), endowed respectively with G 
and G'. Let $ : M —• M' be a homeomorphism. Assume that vol o and vof give 
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the same area to each face ofG', that i\)(^>) = , C o ip = C and I/j{G) = G'. Then 
the mapping from M{P{Gf), G) to M{P{G), G) induced by ip satisfies 

^(P(G2),G) —> ^(P(Gi),^(P(G2),G) —> ^(P(Gi), 

D5) For all (Mi, vol i ,^ i ,Ci) and (M2, v o ^ ^ C ^ ) , endowed respectively with two 
graphs Gi and G2 one has the identity 

pipGiUG2 _ NFGL 6?) DF^2 
L,rMiUM2,voliUvol2,̂ iU<ir2,C'iUC2 ~~ iyrMi,voli,< î,Ci ^ u,rM2,vol2,<̂ 2,C'2-

D6) For all (M, vol, ̂ , C), all G, all I etf and all gluing i\) : Sp\t(M) —> M along I, 

one has 
NFSP,'(G)^(P(G2),G) —> ̂ (P(Gi),- DFG^(P(G2),G) —> ̂ (P(Gi),OR1 

D7) For all (M, vol, 0 ,C) , a// G and a// / G ^ ( M ) , 

G 
DFGf,vol>0,Ci_(l)dx = l. 

D/) For all (M, vo l ,^ ,C) , a// Gi and G2 graphs on (M,^7) suc/i £/&a£ Gi ^ G2, 

the restriction map r : M{P{G2),G) —> J^(P(Gi),G) satisfies 

DFG2̂ (P(G2),G) —> ̂ (Po r-1 — DFGL 

I4 G-valued two-dimensional discrete oriented Markovian holonomy field is the 
data, for each oriented measured marked surface (M,vol ,^ , C) with G-constraints 
and all graph G on ( M , ^ ) , of a finite measure DF^ vol^c on {M{P{G)y G), J) such 
that the properties above are satisfied. 

The axiom Dj is specific to discrete holonomy fields. It is an axiom of consistency 
and is usually called the property of invariance under subdivision. 

Lemma 3.2.2. — Any {oriented) Markovian holonomy field determines a discrete 
{oriented) Markovian holonomy field. 

Proof. — For all surface M endowed with a graph G, the set P(G) is a subset of P(M). 

Hence, a Markovian holonomy field determines by restriction a discrete Markovian 

holonomy field, except perhaps for the axiom Dj. In fact, this axiom is satisfied by the 

restriction of a Markovian holonomy field because the finite dimensional marginals of 

a stochastic process constitute a consistent system of probability measures. • 

Our main goal in this chapter is to prove a result in the other direction and to 

extend, when it is possible, a discrete holonomy field to a continuous one. For the 

moment, let us discuss briefly discrete holonomy fields in themselves. It turns out 

that we have already constructed a fundamental example of a discrete Markovian 

holonomy field. 
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Proposition 3.2.3. — The family of measures <gC is a discrete Markovian holon-
omy field. We call it the uniform G-valued discrete holonomy field. 

Proof. — The measure c is a probability measure on the cylinder a-field of 
M(P(G),G). By restriction, it defines a measure on the invariant cr-field. The ax
iom Di is satisfied by Proposition 2.3.6. By Proposition 2.1.8 and the definition of 
the measures 6g^, it is possible to write ^ ^(T) as an expression which is explic
itly measurable with respect to the G-constraints. Hence, the axiom D2 is satisfied. 
Axiom D3 is satisfied by (25) (Lemma 2.3.4). That axioms D4, D5 and D7 hold is 
straightforward. Axiom DQ is satisfied thanks to Proposition 2.3.8. The invariance 
property Dj holds by Proposition 2.3.9. • 

This discrete Markovian holonomy field is very special in that is consists only in 
probability measures. 

Definition 3.2.4. — Let DF be a collection of finite measures as in Definition 3.2.1, 
which does not necessarily satisfy any of the axioms listed in this definition. To each 
(M, ^ , vol, C) and each graph G, we associate the number 

^M,voi,<r,c — DF^vol ^ c ( l ) , 

which is called the partition function. 

We have said earlier that these numbers carry a lot of information about the field. 
A crucial property is that they do not depend on the graph G. 

Proposition 3.2.5. — Let DF be a collection of finite measures as in Definition 3.2.1, 
which satisfies axioms D4, D5, Dg and Dj . Consider (M, vol, C) and two graphs 
Gi andG2 on(M^). Then 

(37) r7&l^(P(G2),G) —> ̂ (P(Gi), 

The common value of all Z^VOL ^ c, where G spans the set of graphs on (M,ff), is 
denoted by Zm,VO1,^,c-

If there exists a graph G3 such that Gi G3 and G2 ^ G3, then (37) is a 
straightforward consequence of the axiom Dj . Unfortunately, by Lemma 1.4.6, the 
set of graphs on M is not directed and such a graph G3 does not always exist. 

Proof. — By Proposition 1.1.12, it is possible to split M along each of the curves 
of <io. Thus, there exists a measured surface (M', vol', 0 , C) with G-constraints and 
no marks and a gluing / : M' —> M whose joint is . We can lift Gi to a graph G[ 
on M' (see the comment before Lemma 1.3.6) and the axiom Dg enforces the equality 
Zj^, ^ 0 Cr = ^Mvoi c Since we can do the same for the graph G2, it suffices to 
prove the result when ^ = 0 . Then, the axiom D5 implies that the partition function 
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associated to Gi (resp. G2) is the product of the partition functions associated to 
the connected components of M endowed with the corresponding restrictions of Gi 
(resp. G2). 

Hence, it suffices to prove the result when M is connected and ^ = 0 . In this 
case, the axiom Dj implies that we can remove or add edges to Gi, in the sense of 
Propositions 1.3.15 and 1.3.26, without altering the partition function. 

By Proposition 1.3.36, by such transformations we can go from Gi to a graph which 
is sent to G2 by a homeomorphism of M. By D4, this implies the result. • 

Let DF be a discrete holonomy field. In order to produce a Markovian holonomy 
field from DF, the first natural step is to apply Proposition 2.2.2 to put together the 
measures which DF associates to a directed subset of the set of graphs on a surface. 
For this, we need to consider Riemannian metrics. 

Let (M, vol, 7 , ^ ) be a Riemannian marked surface (see Definition 1.4.4). Axiom Dj 
and Proposition 2.2.3 imply that the collection of the measures DF^ vol c, where G 
spans the set Gr7(M, ^ ) of graphs with piecewise geodesic edges, determines a finite 
measure on J#£(A7(M), G), where A7(M) is the set of piecewise geodesic paths on M. 

Definition 3.2.6. — Let DF be a discrete holonomy field. Let (M, vol, 7 , ^ , G) be a 
Riemannian measured marked surface with G-constraints. The finite measure on 
J^(A7(M),G) obtained by taking the projective limit of the measures DF^vol<isfc 
where G spans Gr7(M, *$) is denoted by DF^ vol ^ c. 

At this point, there are two things to do. Firstly, one needs to extend the measure 
^^Xfvoi^c ^° M(P(M),G) for all (M,vol, ^ , G) and secondly, one needs to prove 
that the result of this procedure would have been the same with another Riemannian 
metric. The first step requires some regularity from the holonomy field. We denote 
by 1 the unit element of G. 

Definition 3.2.7. — Let DF be a discrete holonomy field. We say that DF is stochas
tically I-Holder continuous if the following property holds. 

Let (M, vol, 7 , G) be a Riemannian marked surface with G-constraints. Then 
there exists a constant K > 0 such that for all graph G on M and all simple loop 
I G P(G) with 1(1) < K~x bounding a disk D, 

M(P(G),G) 
dG(l,h(l)) DF&|VoWC(dÄ) < Kyfid{B). 

Our unique example so far of a discrete holonomy field, the uniform holonomy 
field, does unfortunately not satisfy this property. Indeed, it assigns uniform random 
variables to arbitrary small simple loops. We will construct other more regular discrete 
holonomy fields later. 
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The second step of the program outlined above requires another regularity condi
tion, which is more global but less quantitative. 

Definition 3.2.8. — Let DF be a discrete holonomy field. 

1) We say that DF is continuously area-dependent if the following property holds. 
Let (M, vol, ̂ , C) be a marked surface with G-constraints. Let (voln)n>i be a 

sequence of surface measures on M. Assume that for all F e F , voln(F) converges 
to vol(F). Then we have the weak convergence 

urM,voln,^,C 
n—»oo 

^(P(G2),G) —> 

2) We say that that DF is Fellerian if for all measured marked surface (M,vol, ff), 
the mapping which to a set of G-constraints C associates the number ZM,VO\^,C is 
continuous on Const<3 (M, ^ ) . 

3) We say that DF is regular if it is stochastically ^-Holder continuous, continuously 
area-dependent and Fellerian. 

It is tempting to conjecture that a stochastically \-Holder continuous discrete 
Markovian holonomy field is continuously area-dependent. At least, the two properties 
are not equivalent, as our unique example so far shows. For the moment, let us state 
our main result concerning the construction of Markovian holonomy fields. 

Theorem 3.2.9. — Every regular discrete Markovian holonomy field is the restriction 
of a unique regular Markovian holonomy field. 

The proof of this theorem occupies the rest of this chapter. 

3.3. An abstract extension theorem 

The core of the proof of Theorem 3.2.9 is the next result, which we formulate in a 
way which is mostly independent of the context of Markovian holonomy fields. Recall 
the notation A7(M) for the set of piecewise geodesic paths on M (Definition 1.2.10). 

Theorem 3.3.1. — Let (M, 7) be a compact Riemannian surface. Let vol denote the 
Riemannian volume 0/7. Let (I \d) be a complete metric group on which translations 
and inversion are isometries. Let H G J%(A7(M),T) be a multiplicative function. 
Assume that there exists K > 0 such that for all simple loop I G A7(M) bounding a 
disk D and such that £(l) < K~x, the inequality d(l, if(/)) < KyJvo\{D) holds. 

Then H admits a unique extension to an element of M(P(M),G), also denoted 
by H, such that if a sequence (cn)n>o of paths converges with fixed endpoints to a 
path c, then H(cn) —> H(c). 

n—»oo 
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Let us state right now the application of this theorem to the extension of holonomy 
fields. 

Corollary 3.3.2. — Let DF be a stochastically ^-Holder continuous discrete Marko
vian holonomy field. Let (M, vol, 7 , C) be a Riemannian marked surface 
with G-constraints. There exists a unique probability measure DF^voI ^ c on 
(M(P(M),G), *6) whose image by the restriction mapping 

M(P(M),G) - ^ ^ ( A 7 ( M ) , G ) 

is the measure DF^fvol<^c and such that for all sequence (cn)n>o of paths which 
converges with fixed endpoints to a path c, one has 

JM(P(M),G) 
dG(h(cn),h(c))DF^MC(dh)^(P(G2),G)n->oc 

Proof. — The canonical process (Hc)ceA^(M) on (^(A7(G),G), g\ DF^?vol#jC) can 
be seen as a mapping from A7(M) to the set T = L1{M{/K1{M), G), g7, DF^ vol ^ c\ G). 
In general, the set L1(Q, S,P;G) of G-valued random variables on any probability 
space (£1, S, P) is a group for the multiplication of random variables. The metric 
d(H\,H2) = E[dc(Hi,H2)] makes it a complete metric space. The two structures 
are compatible in that the product and inverse mappings are continuous. Moreover, 
the translations and the inversion map are isometries. 

The assumption of stochastic Holder continuity ensures that the regularity condi
tion is satisfied by the family (-fiTc)cGA7(M)- Hence, we can apply Theorem 3.3.1. It pro
duces a family of random variables (#c)ceP(M) which is multiplicative and continuous 
with respect to the convergence of paths with fixed endpoints. Proposition 2.2.3 ap
plied to this family asserts that there exists a probability measure on (j^(P(M), G), *6) 
under which the canonical process has the distribution of (#c)ceP(M)-

The uniqueness of the measure DF^vol ^ c follows from Proposition 1.2.12 which 
asserts that A7(M) is dense in P(M) for the convergence with fixed endpoints. • 

The rest of this section is devoted to the proof of Theorem 3.3.1. A basic tool for this 
proof is the lasso decomposition of a piecewise geodesic path (see Proposition 1.4.9). 

Proposition 3.3.3. — Under the assumptions of Theorem 3.3.1, there exists a constant 
K > 0 such that for every loop l G A7(M) with £(l) < K~l, 

d(l,H(l)) <K£(l). 

Proof. — Assume first that I is a simple loop. If £(l) is small enough, then I bounds 
a disk, which we denote by D. Moreover, a local isoperimetric inequality holds on M: 
if £(l) is small enough, say £(l) < L, then y/vol(D) < K\£{1) for some constant 
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K > 0. Then, if K denotes the constant given by the assumptions of Theorem 3.3.1, 
d(l,iJ(Z)) < Ky/vo\(D) < KK^U). The result is proved in this case. 

Let us now treat the general case. Let us apply Proposition 1.4.9 to find the lasso 
decomposition I = l\ • • • lpd of Z. By the multiplicativity of H, which is part of the 
assumptions of Theorem 3.3.1, H(l) = H(d)H(lp) • • • H(li). Since the distance d on T 
is invariant by left translations and inversion, we have, for all rr, y € T, 

d(l,xy) = d(x-\y) < d(l ,x"1) + d(l,y) = d(l,x) + d(l,y). 

Hence, d(l,tf(Z)) < d(l,ff(<0)+^(P(G2),G) —> ̂ (P(Gi), < Ki(d) + KZÏ=iWi)- By Propo
sition 1.4.9, £(d) +^(P(G2),G) —< ¿(0 and the result follows. • 

This result tells us that if Z is a simple piecewise geodesic loop close to the constant 
loop, then H (I) is close to the image by H of the constant loop. Our next generalises 
this statement to the case of a piecewise geodesic path which is close to a geodesic 
segment. 

Proposition 3.3.4. — Under the assumptions of Theorem 3.3.1, there exists a constant 
K > 0 such that the following property holds. Let s G A7 (M) be a segment of min
imizing geodesic. Let c be a piecewise geodesic path with the same endpoints as s. 
Assume that £(c) < K~x. Then 

d(H(c),H(s)) < K£(c)i\£(c)-£(s)\*. 

The assumptions imply that s is shorter than c. If we take £(s) =. 0, then c is a 
loop and we recover the estimate of Proposition 3.3.3. 

In order to prove this proposition, we use a decomposition result similar to the 
lasso decomposition and the following isoperimetric inequality. Needless to say, the 
constant 7r/3\/2 which appears in this Euclidean case is not optimal. 

Lemma 3.3.5. — Let R, r > 0 be real numbers. 
Let J be a rectifiable Jordan curve of length 2R + r in the Euclidean plane such 

that a piece of this curve is a segment of length R. Then the area A of the bounded 
component of R2 \ J satisfies the inequality 

A< 7T 
3V2 

•2(iî + r)2. 

Let M be a compact Riemannian surface. There exists a constant K > 0 such that 
the following property holds. Let J be a rectifiable Jordan curve of length 2R+r < K~l 
such that a piece of this curve is a segment of minimizing geodesic of length R. Then 
the area A of the smallest disk bounded by J satisfies the inequality 

A < Kr^(R + r)%. 

ASTÉRISQUE 329 



3.3. AN ABSTRACT EXTENSION THEOREM 117 

R + r 

R 

R + r 

a 

R 
*$ù 

R + r 

R 
p^$* P 

FIGURE 1. The generic case and two optimal cases. 

Proof. — The Riemannian case can easily be deduced from the Euclidean case by 
working in normal coordinates at one end point of the geodesic part of J. The 
compactness of M ensures that the resulting distortions of lengths and areas are 
bounded. 

Let us consider the Euclidean case. Under the constraints on J, A is maxi
mal when J is the concatenation of a segment of length R and an arc of circle of 
length R + r. In this case, let p be the radius of this circle and a G [0,2n) the angle 
under which the arc of circle is seen from the centre of the circle. Then R + r = pa 
and R = 2/?sin \a. Now one has the relations 

(38) A=Ç(a-sma)<^(P(G2),G)Gi),^ ^(R + rf, 

(39) 
s i n | a _ R 

\a ~ R + r' 

One checks easily that for all x G [0,7r], sinx/x < 1 — x2/ir2. Hence, (39) implies 
a < 27Ty/r/R, and since a G [0,27r), we have a < 2n(y/r/R A 1). Combining this 
with (38), we find 

A< ?:{R + r)iVr'(y/l + r/RAy/l + R/r ) < r*(fl + r ) * . 
6 3v 2 

This is the expected result. 

The generalization of the lasso decomposition that we need is the following. 

Proposition 3.3.6. — Let M be a Riemannian compact surface. Let s be a geodesic 
segment on M and c an infective piecewise geodesic path with the same endpoints as s. 
It is possible to decompose c and s as concatenations c = c\- • • cp and s = si • • • sp in 
such a way that, for each k = 1 , . . . ,p; Ck = Sk or CkS^1 is a simple loop. In particular, 
if we set Ik = (ci • • • Cfc_i)cfc5^"1(ci • • • Ck-i)'1, then Ik is a lasso and cs~l ~ l\ • • • lp. 

Proof — Consider the set c([0,1]) fl s([0,1]). It is a reunion of isolated points and 
closed subintervals of s([0,1]). Let V be the reunion of these isolated points and 
the end points of these intervals. The set V contains the two end points of s. 
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FIGURE 2. The pieces C6 and eg of c (thicker on the picture) intersect s, 
but not S6 nor 59 respectively (dotted on the picture). 

Set n = # V — 1. Then V dissects both c and s into n edges: c = e\ • • • en and 

* = /1 •••/n-
For each i G { 1 , . . . , n } , define j(i) by the relation ei = f(x) ij Since c is injective, 

the mapping j from { 1 , . . . , n} to itself is one-to-one. Hence, it is a permutation. We 
look for records in the sequence j ( l ) , j ( 2 ) , . . . , j (n) : define 

I={i:l<i<nJ mù*$^ùùj(i) = max(j(l),... J(i))} 

and write / = {zi < • • • < ip}. Set J = = {j{h) < • • • < j{iP)}- Observe that 
ip = n = j(ip). Set i0 = j(i0) = 0. For each k = 1 , . . . ,p, set = eik_1+i '-eik and 
sk = /i(tfc_i)+i *'' /i(tfc)- BY construction, c = ci • • • cp and s = sx • • • sp. 

Choose k G {1,.........,p} and consider = e ^ ^ + i • • • e2fe. Assume first that 
ijt = ik-i + 1. Then Cfc = eik. Either this edge is contained in 5, in which case 
Cfc = £ik = fj(ik) = ĵt, or it meets s only at its endpoints, which are also those of s^. 
In this case, CfeŜ "1 is a simple loop. Assume now that > ik-i + 2. We claim that 
any point of Ck other than one of its end points which is located on s is in fact located 
on one of the edges /i> • • •»/j(tfc_i)- Indeed, if this was not the case, there would exist 
I G {ik-i + 1 , . . . , ifc — 1} ^ 0 such that ei is located on s between e~i~k and s. But 
then we would have > j(ik) which contradicts the definition of i^. Hence, in this 
case, CfcŜ 1 is a simple loop. • 

We are now ready to prove Proposition 3.3.4. 

Proof of Proposition 3.3.4- — Assume that c and s are shorter than the bound K~x 
of Proposition 3.3.3. Let LE(c) be the loop-erasure of c. By the properties of the 
lasso decomposition of c (Proposition 1.4.9) and Proposition 3.3.3, 

d(H(c),H(LE(c))) < K(l(c) - d(c(0),c(l))) = K\t(c) - l(s)\. 

Now we are reduced to consider c' = LE(c) which is an injective path. Let c' = c[ • • • c'p 
and s = s\ • • • sp be the decomposition given by Proposition 3.3.6. We have 

d(H(c%H(s)) < j^dihHtis-1)) <KJ2V*> 
1=1 t=l 
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where Ai is the area enclosed by c'isi 1. By Lemma 3.3.5 and since £(s) < £{c') < £(c), 

Ai < K^Cif^^Ci) - £(Si)\K 

By Holder inequality, it follows that 

d(H(<f),H{8)) < K£(c)*\£(c) -£(s)\*. 

Hence, 

d(H(c)9H(s)) < K(\£(c) -£(s)\ +t(c)i\t(c) -£(s)\i) 

<2K£(c)U£(c)-£(s) ) \!ù* 

The estimate given by Proposition 3.3.4 will allow us to associate an element of T 
to every element of P(M). Recall the definition of the dyadic piecewise geodesic ap
proximation of a path (Definition 1.2.11). For a given path c, Dn(c) is in general only 
defined for n larger than a certain integer no(c). Nevertheless, by Proposition 1.2.12, 
the sequence (Dn(c))n>no(c) converges to c in 1-variation. 

Proposition 3.3.7. — Let c E P(M). Under the assumptions of Theorem 3.3.1, the 
sequence (iJ(Dn(c)))n>no(c) is a Cauchy sequence in T. 

Proof. — Let K be the constant given by Proposition 3.3.4. Let ni(c) be an integer 
such that 2-ni(c^(c) < K'1. Choose m>n> max(n0(c), rci(c)). Write 

Dn(c) = <T0-'O'2"-l 

according to the notation of Definition 1.2.11. Write also Dm(c) = 770 • • • r/2™-i, where 
for each k € {0 , . . . , 2n - 1}, rfk = Dm_n(c|[fc2—,(fe+i)2—])• By Proposition 3.3.4, for 
all k e {0, . . . ,2n - 1}, 

d(H(rik),H(ak)) < K£(rik^£(rik) - £(ak)\*. 

Hence, by Holder inequality, and since ^(Dn)(c) < ^(Dm(c)) < £(c), 

d(H(Dn(c)),H(Dm(c)))^(P(G2),G)c)i\£(c)-£(Dn(c))\\ 

The result follows now from the fact that ^(Dn(c)) converges to £(c). • 

By Proposition 3.3.7 and the assumption that (r, d) is complete, it is now legitimate 
to set the following definition. 

Definition 3.3.8. — For each c € P(M) \ A7(M), we define 

H(c) = lim H(Dn(c)). 

Proposition 3.3.9. — The mapping H : P(M) —• T thus defined is continuous at fixed 
endpoints. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2010 



120 CHAPTER 3. MARKOVIAN HOLONOMY FIELDS 

Notice that we have not proved yet that H is continuous even on A7(M). 

Proof. — Take c G P(M) and consider a sequence (cn)n>o in A7(M) converging 
to c with fixed endpoints. We claim that H(cn) converges to H(c). An elementary 
argument shows that this implies the continuity of H with fixed endpoints on P(M). 

Choose e > 0. Choose an integer m > 0 such that d(#(Dm(c)), H(c)) < \e. Such 
an integer exists by definition of H(c). Now for each n > 0 and each k G { 0 , . . . , 2m}, 
let rjnik be the geodesic segment joining cn(A;2~m) to c(k2~m). If k ^ 2m, let us also 
denote by cn^k the portion of cn parametrised by the interval [k2~Tny{k -f l)2~m]. 
Observe that 77̂ ,0 and r/n)2™ are constant paths. The equivalence of paths 

Cn = Cn,0 * ' * Cn,2™ — (^„,ocn,0^n,l) ' * * (̂ n,fcCn,fcf?n,fc+l) • * • (f7n,2™-lCn,2™-lf?n,2™) 

implies the following inequality: 

d(#(cn),#(Dro(c))) < 
2m-l 

k=0 
d{H(nn\cn,kr)n,k),H(ak)), 

where Dm(c) = a$.. . <72m-i is the decomposition given by the definition of Dm(c). 
The path r)~\cn^,nn,k is piecewise geodesic and shares the same endpoints as the 
segment ok. Hence we can apply Proposition 3.3.4 to find 

d(H(Vn\cn,kVn,k), Hfaj) < K(e(cn,k) + 2d«,(c^ c))1 (^(cn,fc) - i(ak) + 2d00{cn, c)) J. 

By Holder inequality again, 

d(tf(cn),#(Dm(c))) < K(t(cn) + 2m+1doo(c„, c))1 (^(cn) - €(c) + 2m+1d00(cri,c))i. 

Since £(cn) converges to £(c) and doo(cn5c) tends to 0, the right hand side tends to 
zero as n tends to infinity. For n large enough, it is smaller than \e. For such n, 
d(H(cn),H(c))<e. • 

Remark 3.3.10. — The factors 2m+1 in the last expression are very unpleasant, be
cause they give the feeling that H is not uniformly continuous on P(M). In fact, the 
last proof reveals that, on P(M) endowed with the distance d ,̂ if is uniformly contin
uous on subsets where £ o Dn converges uniformly to £. It is likely that a much better 
result can be achieved by considering the stronger distance d\ on P(M). Ideally, one 
could expect H to be ^-Holder continuous on (P(M),di). I have not been able to 
prove or disprove this statement. 

3.4. Extension of discrete holonomy fields 

Let (M, vol, 7 , ^ , C) be a Riemannian marked surface with G-constraints. Starting 
from a discrete Markovian holonomy field DF satisfying a condition of regularity, we 
have constructed a measure DF^vol<^c on (M(P(M), G), *@) (see Corollary 3.3.2). 

ASTÉRISQUE 329 



3.4. EXTENSION OF DISCRETE HOLONOMY FIELDS 121 

The construction of this measure involves a Riemannian metric and we must now prove 

that the result is independent of this choice. We start by identifying the distribution 

of (#c)c€P(G) under DF^VOL ^ c for an arbitrary graph G. 

Proposition 3.4,1. — Let DF be a stochastically ^-Holder continuous and continuously 
area-dependent discrete Markovian holonomy field. Let (M, vol, 7 , ^ , C) be a Rieman
nian marked surface with G-constraints. Let G = (V,E,F) be a graph on (M,^7). 

Recall the notation DF^VOL ̂  c from Corollary 3.3.2. 

1) The distribution of (He)e€E under DF^VOL^C ¿5 DF^|VolfyfC. 

2) The measure DF^VOL ^ c does not depend on the Riemannian metric 7 . We 

denote it by DFM,VO1,^,C-

3) The distribution of (He)eeE under DFM,VOI,^,C is DF^VOL<^C. 

Let us emphasise that the graph G considered in this statement is not assumed to 

have piecewise geodesic edges. 

Proof. — 1) For each n > 1, let Gn be the graph produced by Proposition 1.4.10 

with e = n_1. Let Sn : E —• En denote the corresponding bijection. By the 

stochastic continuity of the process (#c)ceP(M) under DF^VOL c , which follows from 

Theorem 3.3.1, the distribution of (Не)е€Е *s ^ne limit; of the distributions of the 
families (HSn(e))e€E as n tends to infinity. 

Since Sn preserves the cyclic order at each vertex of G, there exists for each n a 
homeomorphism of M which preserves ^ and which sends G on Gn and which induces 
the bijection Sn. Let фп be such a homeomorphism. Since for each face F of G, the 
boundary of ipn(F) is ^n(dF) = Sn(dF) = dSn(F), the face ipn(F) is Sn(F). 

Moreover, the distribution of the family (Н$п(е))ееЕ under DF^VOL <̂  c is the dis
tribution of the same family under DF^VOL ̂  c , hence the distribution of (He)eEE 
under D F ^ volo^n c , where vol о фп denotes any measure of area on M which gives 
to each face F of G the area vol(^n(F)). 

By the fourth assertion of Proposition 1.4.10, vol(V>n(^)) tends to vol(F) as n 
tends to infinity for all F G F. Hence, the assumption that DF is continuously area-
dependent implies that the distribution of the family (HSn(e))eeE under DF^VOL ^ C 

converges weakly to DFM VOL c as n tends to infinity. 
2) Let 7 and 7 ' be two Riemannian metrics on (M, vol, *#). By Lemma 1.4.8 and the 

property that we have just proved, the distributions of (#c)ceA7(M) under DF^VOL ^ C 

and D F ^ O L c# c agree. Since A7(M) is dense in P(M) for the convergence with fixed 
endpoints (see Proposition 1.2.12), the continuity property granted by Theorem 3.3.1 
implies that DF$VOL^C = D F ^ O L ^ C . 

3) This property follows immediately from the first two. • 
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We can now finish the proof of the main theorem of this section. 

Proof of Theorem 3.2.9. — Let DF be a regular discrete Markovian holonomy 
field. By applying Corollary 3.3.2 and Proposition 3.4.1, we get for all measured 
marked surface with G-constraints (M, vol, ̂ , G) a finite measure DFM,VO1,^,C on 
(M(P(M),G), J?) which by restriction produces a measure on the invariant cr-field. 
The total mass of the measure DFM,VO1,^,C is the common value of the masses 
of the measures DF^VOL^C for all graph G on ( M , ^ ) , which we have denoted 
by ^M,voi,^,c- In particular, this mass is finite. 

Now, we check that the seven axioms of Definition 3.1.2 are satisfied. We choose 
a measured marked surface with G-constraints (M, vol, ̂ , G). We endow (M,^7, G) 
with a Riemannian metric 7 and use without further comment the fact, granted by 
Proposition 3.4.1, that DFM,voi,^,c = dfm!VO1,^,c 

A I ) Let Jf denote the event {31 G U SS(M), h(l) <£ G(/)}. Let G be a graph 
on (M, ^ ) . By Proposition 3.4.1 and the axiom Di for DF, 

DFM,VOIf*.cOT = DF&>vol|yfC(5tO = 0.lm 

A2) The set of bounded measurable functions from (M(P(M), G), J) to R whose 
integral against DFM,VO1,^,C depends measurably of the G-constraints G is a vec
tor space which contains the constant functions and is stable by uniformly bounded 
monotone limit. Thus, by a monotone class argument, and by definition of the in
variant cr-field <y, in order to show that this space contains all bounded functions 
measurable with respect to y, it suffices to show that it contains all functions of the 
form h 1—• f(h(li),..., h(ln)) where / 1 , . . . , ln are loops based at the same point and 
/ : Gn —• G is continuous and invariant under the diagonal action of G by conjugation. 

Let us choose i i , . . . , Zn and / as above. For each i G { 1 , . . . , n} and all m > 1 
large enough, let Dm(Zi) denote the dyadic piecewise geodesic approximation of U 
of order m. Let us define a function F and a sequence of functions Fm on the set 
ConstG(M,^) of G-constraints on (M, ^ ) as follows: 

F(C) = 
JM(P(M),G) 

f(h(h),/I(W)DFM,VOIX,C(dfc)*$ù* 

and, for all m > 1 

Fm(C) = 
M(P(M),G) 

/(MDm('i)), • • •, h(Dm(ln)))DFMtyoitvtC(dh). 

Our goal is to prove that the function F is measurable. For all G G ConstG?(M, ^ ) , 
the fact that Dm(Zi) converges to U with fixed endpoints implies, according to the 
conclusion of Theorem 3.3.1, that HDm^ converges in probability to if"/., so that 
Fm(C) tends to F(C) as m tends to infinity. Hence, it suffices to prove that Fm is 
measurable for m large enough. This follows immediately from the axiom D2. 
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A3) Just as in the last point, it suffices to check the equality when it integrates a 
function of the form h / ( / i(Zi) , . . . , h(ln)), where Zi , . . . , Zn are piecewise geodesic 
and / is invariant by diagonal conjugation. Hence, it suffices to prove the equality 
for DF f̂ vol <£> c for any graph G with piecewise geodesic edges. In this last case, the 
property follows from the axiom D3 satisfied by DF. 

A4) The metric 7 ' = (,0~1)*7 is a Riemannian metric on (M', vol', in the sense 
of Proposition 1.4.3. We need to prove that the image measure of DF^vol ^ c by the 
mapping induced by -0 is DF^vol, c,. Again, we may restrict ourselves to functions 
of the form h \-> / ( / i(Zi) , . . . , A(Zn))> where Zi , . . . , Zn are piecewise geodesic, hence to 
the discrete measures associated to graphs with piecewise geodesic edges. Let G be 
a graph on (M, ^ ) with piecewise geodesic edges. Then G', the graph constituted by 
the images by ip of the edges of G, is a graph on ( M ' , ^ ' ) with piecewise geodesic 
edges and, by the axiom D4 for DF, the distribution of (He)eeE under DF^ vol c is 
the same as the distribution of (iJE/)E/GE/ under DF^/ vol, c,. The property follows. 

A5, A6 and A7 follow respectively from the axioms D5, DQ and D7 satisfied by DF 
and the same approximation argument as in the previous points. 

The fact that the new Markovian holonomy field DF is stochastically continuous 
is a part of the conclusion of Theorem 3.3.1. Finally, the Feller property follows from 
the Feller property of DF. • 
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CHAPTER 4 

LEVY PROCESSES AND MARKOVIAN HOLONOMY 
FIELDS 

In this chapter, we apply the extension theorem proved in the previous chapter 
in order to construct a whole family of Markovian holonomy fields. Before that, we 
study the partition functions of an arbitrary regular Markovian holonomy field and 
prove that they are completely determined by a Levy process on the group G with 
some nice properties, essentially a continuous density. We then construct a Markovian 
holonomy field for each such Levy process. The case of the Brownian motion on a 
connected Lie group yields the Yang-Mills measure. 

4.1. The partition functions of a Markovian holonomy field 

In this section, we establish some fundamental properties satisfied by the masses 
of the finite measures which constitute a Markovian holonomy field. 

To start with, we describe the isomorphism classes of connected surfaces with G-
constraints on the boundary. If M is oriented, we denote by 38+ (M) the subset 
of &(M) which consists of the curves which have the orientation induced by that 
of M. 

Proposition 4.1.1. — Let (M,vol, 0 , C ) and (M', vol', 0 , C") be two connected mea
sured marked surfaces with G-constraints. If M and M' are orientable, we assume 
that they are oriented. They are isomorphic if and only if the following conditions 
hold simultaneously. 

1) M and M' are homeomorphic. 
2) vol(M) = vol'(M'). 
3) If M and M' are oriented, there exists a bisection tp : &+{M) —• 3ë+(M') such 

thatC = C'oi/j on # + ( M ) . 
3') If M and M' are non-orientable, there exists a Z/2Z-equivariant bisection tp : 

Ot(M) — 3B(M') such that C = Cfoip. 
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We use this result to associate to every Markovian holonomy field a family of 

functions of one or several variables in Conj(G). 

Let HF be a Markovian holonomy field. Let g and p be two non-negative integers, 

with g even. Let t be a positive real number. Recall the notation of Section 1.1. Let M 
be a surface homeomorphic to endowed with a density vol of total area t. Let 

&i, . . . , bp denote the positively oriented connected components of dM. Let x\,..., xp 
be elements of G. Let C be the unique set of G-constraints on (M, 0 ) such that, 

for all i G { l , . . . , p } , C(bi) = 0Xi. By Proposition 4.1.1 and the axiom A4 , the 

number HF(M,VO1,0,C)(1) depends on M, vol and G only through p,g,t, the unordered 

list 0Xl,..., 0Xp and the fact that M is orientable. Hence, it is legitimate to set 

^(P(G2),G) —> ^(P(Gi),^(P(G2),G) —> ^(P(Gi), 

This defines a symmetric function Zpgt of p conjugacy classes of G. If the Marko

vian field is Fellerian, then this function is continuous with respect to . . . ,xp). 

If p = 0, Z^gt is just a number, namely the total mass of the measure HF(M,Voi,0,0) 
where M is the connected sum of \g tori endowed with a density of total area t. 

Similarly, let g and p be two integers, respectively positive and non-negative. Let M 
be a surface homeomorphic to £p)P, endowed with a density vol of total area t. Let 

61,..., bp denote the disjoint connected components of dM endowed with an arbitrary 

orientation. Let # i , . . . , xp be elements of G. Let G be the unique set of G-constraints 

on (M, 0 ) such that, for all i G { 1 , . . . C(b{) = QXi. When HF is not oriented, we 

define 

ZP,9,t(Xl> • ' * »Xp) = HF(M,vol,0,C)(l)-

Again, if p = 0, Z0gt is just the total mass of the measure HF(Mvoi)00) where M is 

the connected sum of g projective planes endowed with a density of total area t. 

Definition 4.1.2. — Let HF be a Markovian holonomy field. The functions 

Z€p,gy.Gp^R%mù*^$ 

where (e,p,g,t) spans ({+} x N x 2N x R*.) U ( { - } x N x N* x R^), are called the 

partition functions of the field HF. 

In the rest of this section, we fix a Markovian holonomy field HF and study its 

partition functions. They are infinitely many but the Markov property of the field 

implies that they satisfy an infinite set of relations and that they are in fact completely 

determined by a small number of them. 

Let us introduce several operations on functions of conjugacy classes of G. Firstly, 

we identify functions of a conjugacy class of G and functions on G which are constant 

on the conjugacy classes. Thus, we may speak of continuous or integrable functions 

of a conjugacy class. This point of view is consistent with our previous definition of a 
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topology and a-field on Conj(G) (see Section 3.1). Of particular interest is the space 
of square-integrable functions of one conjugacy class of G, which we identify with the 
space L2(G)G of conjugation-invariant square-integrable functions on G. If p > 1 is an 
integer, we identify the elements of the p-th symmetric tensor power Symp (L2(G)G) 
with symmetric functions of p conjugacy classes. We use the shorthand notation SP(G) 
for Symp(L2(G)G). 

Definition 4.1.3. — For all integers p, g, r > 1 and s > 2, the three linear mappings 

v : Sr(G) —• Sr~1(G), A : SS(G) —> SS~2{G), 

fa : SP{G) <g> Sq(G) —• SP-1(G) ® Sq~1(G) 

are defined by 

(40) V / e S r ( G ) , (* / ) (*! , . . . , sr_i) = 
!ù*$ 

/ (x i , . . . , x r_ i , x2 )dx , 

(41) V / e S s ( G ) , ( A / ) ( x i , . . . , x . - 2 ) = / (x i , . . . ,xs_2, :z ,z x)dx, 

(42) V/ G SP(G), Vf € 5«(G). 

(#2(/ ^ / ')) («i » • • • > *p-i »2/i » • • • > Vp-i) 

= / ( x i , . . .,Xp-1,z)f'(yu..., yq-!,z x)dz. 
G 

We will now use these linear mappings to formulate the relations between the par
tition functions of the holonomy field. The operation v expresses the transformation 
of the partition function under a unary gluing, and the contractions /?i and fa cor
respond to binary gluings, respectively of two boundary components which lie on the 
same connected component of the surface and two boundary components which lie on 
two distinct connected components. 

Recall that we use the notation e A e' for e, e' € {—, +} with the meaning 

e As' =. 
+ if e = e' = +, 

— in all other cases. 

Proposition 4.1.4. — Let (Zp t)Pig>Qit>o be the partition functions of a Markovian 
holonomy field HF. 

1) For all (e,g) G ({+} x 2N) U ( { -} x N*), all integers p > q > 1 and all real 
t > 0, the function Z^gt is square-integrable with respect to any q of its variables for 
any value of the p — q other. 

2) The following equality holds: 

(43) ^(P(G2),G) —> ^(P(Gi),^(P(G 
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Moreover, if p> 2, then 

(44) ^(P(G2),G) —> ^(P(Gi),mù*^$ù* 

Finally, for all (e',g') G ({+} x 2N) U ( { - } x N*), all pf > 1 and all real t' > 0, 

(45) ^(P(G2),G) —> ^(P(Gi),^(P(G2),G) —> ^(P(Gi), 

Proof — Let us start by proving the second assertion. Choose e,p,g,t as above. 

It follows from the axiom A2 that Zpgt : Gp —> is a measurable function. Since it 

takes non-negative values, the integral which defines v(Zpgt) is well defined, possibly 

infinite. Let us prove that the identity (43) holds. 

Let M be a surface homeomorphic to E£ , endowed with a surface measure vol of 

total area t. Consider b G &(M) and let / : M —> Mi be a unary gluing along 6, 

with joint {I,I'1} = {/(6), fib'1)}. Thus, M = Spl,(Afi). The surface Mx is not 

orientable and it has p—1 boundary components. According to the observation made 

after Definition 1.1.10, it is homeomorphic to the connected sum of a projective plane 

and the surface obtained by gluing a disk along one boundary component of M. Thus, 

it is homeomorphic to E~_ljP+1. Finally, vol induces on Mi a surface measure voli 

with total area t. 

Let C be a set of G-constraints on (M, {/, Z-1}). Applying axioms A3 and then A6 

gives us the relation 

HFM1,VO11,0,C(1) = 
G 

HFMl)VOll}{j)Z-i})C^x(l)dx = 
'G 

HFM,VO1I0,SpIi(CImx)(1)<^-

Recall from Definition 2.3.2 that, since we are considering a unary gluing, 

Sp\i(Ci^x) puts the constraint 0X2 on b G 3§{M). Translating the last relation in 

terms of the partition functions gives (43). 

The proofs of the relations (44) and (45) are very similar. For the relation (44), 

one considers a binary gluing in which one identifies two boundary components of 

a connected surface. If the surface is orientable, the two boundary components are 

identified by an orientation-reversing diffeomorphism. The result of this gluing can 

be described as the connected sum of a torus and the surface obtained by gluing 

two disks along two boundary components of the original surface. Thus, it has two 

boundary components less, and reduced genus increased by 2. For the relation (45), 

one considers a binary gluing in which one identifies two boundary components located 

on two distinct connected components of a surface. Proposition 1.1.4 settles the issue 

of orientation and reduced genus of the resulting surface. 

The assertion of square-integrability follows from (44) and (45) as we shall see 

now. Firstly, observe that Theorem 1.1.7 and the axiom A4 imply that the value of 

a partition function is not affected by simultaneously replacing each argument by its 
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inverse. Now, for all . . . , xp G G, 

*$ù*$ 
Zp,gAxi>'''>xp)2dxi"'dx<i 

<g« 
Zl,gÀx^ • • • >xp)ZP,g,t(xi 1T->xp X)dxi '"àxq 

la 
^(P(G2),G) —> ^(P(Gi),^(P(G2),G) —> ^(P(Gi),^(P(G2),G) 

^(P(G2),G) —> ^(P(Gi),^(P(G2),G) —> ^(P(Gi),^(P(G2 

The last number is indeed finite and the assertion is proved. • 

Corollary 4.1.5. — The partition functions of a Markovian holonomy field are com

pletely determined by the functions (Zi0t)t>o and (^o,t)*>o-

Proof. — For all non-negative p and such that g is even and p+g > 0, the following 

identity holds: 

(46) Zp,g,t = (01 9 0 P%+9 ^(^O.t/fr+j) ® Z3,0,t/(p+g) 
®(p+9-l)\ 

Then, the equalities 

(47) Vp, g > 0, Z~2g+ht = v(Z;+lt2g:t) and Z~2g+2<t = v2(Z£+2t2gtt) 

determine all non-orientable partition functions. Finally, the equality 

zt0,t = HztMt®zlQ,t) 

determines the only remaining partition function. • 

An important consequence of Proposition 4.1.4 is that for all e, p, g, t, the function 
Ztp,g,t, t is the density with respect to the Haar measure of a measure on Gp. According 

to the axiom A7, this measure is a probability measure. In the next proposition, 
we will study the behaviour of these probability measures as t tends to 0, under 
the assumption that the holonomy field is stochastically continuous. Recall that we 
denote by 1 the unit element of G and that we use the notation Sgx for the unique 
G-invariant probability measure on 0X, the conjugacy class of x G G. 

Proposition 4.1.6. — Let (ZPig)t)p,g,t be the partition functions of a stochastically con

tinuous Markovian holonomy field. Then, as t tends to 0, one has the following weak 

convergences of measures on G. 

1) Z+0>t(x)clx=^«i. 

2) for all x,y G G, 

^(P(G2),G) —> ^(P(Gi),^(P(G2),G) —> 

JG2 
Svxv-iwyw-idvdw. 
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Proof. — 1) Let M be the disk of radius 1 centred at the origin in E2 endowed with 
the Lebesgue measure, which we denote by vol. We denote by dM the positively 
oriented boundary of M. For each r G [0,1], let sr be the path which goes straight 
from the origin to the point (r, 0) and let cr be the loop based at (r, 0) which goes once 
counterclockwise around the circle of radius r centred at the origin. For all y G G, we 
denote by (ftc)ceP(M) the canonical process on j^(P(M), G), we consider the measure 
HFM,voi,0,dM>-+2/ on M(P(M), G) and we denote by Ky the corresponding expectation. 
Let / be a continuous invariant function on G. We compute Ey[f(hs cf(hs c By the 
multiplicativity property of ft, it is equal to Ey[f(hj^hCrhSr)] = Ey[/(ftCr)]. By the 
axiom A3, we can disintegrate this expectation with respect to the value of ft(cr). 
We find 

Ey[f(hCr)] = 
GxM(P(M),G) 

/(ft(cR))HFM 1{c -i}(aM r_x)(dft)da: 

IG 
f\X)^M,Vo\,{cr,c-1},(dM^y,cr^x)\^)0^X' 

We use now the axioms A6 and A5 to split M along cr and we find 

^(P(G2),G) —> 
IG 

ztfi,^)f{x)Z+0M1_r2){x \y)dx. 

By integrating over y and using the axiom A7, we find 

(48) 
'G 

Ev\f(hc)]dy = 
IG 

^(P(G2),G) —> ^(P 

Our goal is now to prove that the left-hand side tends to /(1) as r tends to 0. For 
this, we use the stochastic continuity of the holonomy field. Indeed, as r tends to 0, 
the loop srcrs~x converges with fixed endpoints to the constant loop Co at the origin. 
Hence, for all y G G, 

^(P(G2),G) —> ^(P(Gi),^(P(G2),G) — 

as r tends to 0. By the multiplicativity of ft and the fact that CQ = CQCq the mapping 
ftCo : P(M) —> G is identically equal to 1. Hence, 

^(P(G2),G) —> ^(P(Gi),^(P(G^(P(G2),G) — 

In order to integrate this convergence with respect to we use the fact that 

№y[f(hCr)]\ <|| / |U z + o » 

and the right-hand side is continuous, hence integrable, with respect to y. Hence, the 
dominated convergence theorem applies and we deduce that the left-hand side of (48) 
tends to /(1) as r tends to 0. 

2) Let M be the closed disk of radius 4 centred at the origin in E2 from which 
one has removed the two open disks of radius 1 centred respectively at the points 
a = (2,0) and ¡3 = (—2,0). We endow M with some density denoted by vol. Let a 
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(resp. b) be the loop which starts at (1,0) (resp. (—1,0)) and goes once around the 
circle of radius 1 centred at a (resp. /?), counterclockwise. Let d be the path which 
goes straight from (1,0) to (—1,0). Choose r G (0,1). Consider the union of the two 
closed disks of radius 1-j-r centred at a and /3 and the rectangle [—1,1] x [—r, r]. Let cr 
be the loop which starts at (2 — \ / l + 2r, r) and bounds this domain with positive 
orientation. Let sr be the path which goes straight from (1,0) to (2 — y/1 + 2r , r ) . 
As r tends to 0, the loop SrCrS"1 converges with fixed endpoints to the loop dbd~1a. 
However, in order to apply our axioms, we need to replace cr by a loop based at the 
same point and whose image is a smooth submanifold of M. We do this in such a 
way that the convergence of srcrs~l to dbd~1a is preserved. 

We consider the measure HFM,voi,0,cx,y,z on M(P(M),G), where CXiViZ is charac
terised by the fact that C(a) = x, C(b) = y and C maps the circle of radius 4 centred 
at the origin to z. We denote the corresponding expectation by EX)2/>Z. Let / be a 
continuous invariant function on G. For all r G (0,1), we have 

(49) ^(P(G2),G) —> ^(P(Gi), 
G 

^(P(G2),G) —> ^(P(Gi),^(P(G2),G) —> ^(P(Gi), 

where tr is the area of the domain delimited by a, b and cr and T is the total area of M. 
By the same arguments as in the previous proofs, the left-hand side converges as r 
tends to 0 to EX)y^[/(/idM-ia)] and the convergence is dominated with respect to z. 
Since the two endpoints of d are distinct and the measure HFM,VO1,0,CX)J,)Z is invariant 
under gauge transformations, the distribution of hd is both left and right-invariant 
on G. Thus, hd has the uniform distribution on G. Hence, Ex>2/)2[/(/id6d-i0)] = 
fG f(xwyw~1)dw. By integrating (49) with respect to z, we find 

J G 
Z3,o,tr(x>y'z)f(z)dz ^ 

IG 
f(xwyw 1)dw. 

We will now use this result to prove that the partition functions a stochasti
cally continuous Markovian holonomy field are completely determined by the func
tions (ZiQt)t>0' Let us introduce two probability measures on G. 

Definition 4.1.7. — Let n and k be the two invariant probability measures on G defined 
respectively by the fact that for all continuous function f on G, 

(50) 
IG 

fdr,= 
RG2 

f(aba lb l)dadb and 
JG 

fdn = 
G 

f(a2)da. 

The letters rj and « correspond to the words handle and cross-cap. We start by 
proving some important properties of these measures. 

Let Irr(G) denote the set of isomorphism classes of irreducible representations 
of G over C. Given a G Irr(G) with character \a and a measure /i on G, the 
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Fourier coefficient jl{a) is defined by ji{a) = fGx^d/j,. Recall that an irreducible 

representation is said to be complex if its character is not real valued, otherwise real 

(resp. quaternionic) if it preserves a non-degenerate symmetric (resp. skew-symmetric) 

complex bilinear form. 

If is a measure on G, we denote by /iv the measure defined by 

*$ù* 

^(P(G2),G) 

'G 

^(P(G2),G) —> ^ 

By an invariant measure we mean a measure which is invariant by conjugation. 

Lemma 4.1.8. — Let /x, be three invariant probability measures on G. If jl(a) = 0 

for every complex representation a, then = /x*i/v. In particular, = «*£*i/v. 

Moreover, k*t) = K*3 . 

Proof. — The Fourier coefficients of 77 and k can be computed easily by using the 

elementary theory of characters: for all a G Irr(G), 

77(a) = 
1 

dima 
and k(a) = 

1 if a is real, 

0 if a is complex, 

- 1 if a is quaternionic. 

The Fourier coefficients of the convolution product of two measures is given by the 
relation fjL*fjLf(a) = /À(a)/i/(a)/dima. Moreover, the Fourier coefficients of i/v are 
the complex conjugate of those of v. Hence, on real and quaternionic representations, 
whose character is real, the Fourier coefficients of v are real and agree with those 
of i/v. Hence, /z * v and /z * vy have the same Fourier coefficients. Since they are both 
invariant, they are equal. The equality «*£* I / = K * £ * I / v follows immediately. The 
last assertion is proved by computing the Fourier coefficients of both sides. • 

Remark 4.1.9. — This equality n * 77 = «*3 should be compared to the fact that the 

connected sum of a projective plane and a torus is homeomorphic to the connected 

sum of three projective planes (or the connected sum of a projective plane and a Klein 

bottle). 

In the next proposition, we use the notation /x(/) for the integral of a function / 

against a measure /x and we denote by * the convolution of probability measures. 

Proposition 4.1.10. — The partition functions of a regular Markovian holonomy field 
are completely determined by the functions Z^0 t for t > 0. One has the following 
explicit formulas. 

For all p>0, all g > 0 even, allt>0 and all xi,..., xp G G, one has 

(51) Z+gtt(Xl, ...,xp) = n'b * 8qxi *•••* 50xp (Z+0it). 
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Moreover, for all p>0, all g > 0, allt>0 and all xi,..., xp G G, one has 

(52) ZPi9yt(xu ...,xp) = k*9* S9xi * • • • * S0xp (Z^t). 

Proof — Let us start by proving (51) when g = 0 and p > 0, by induction on p. For 
p = 1, it is a consequence of the fact that Z+ot is invariant by conjugation. Assume 
that p > 1 and the result has been proved for Zp_10t. Then, for all x i , . . . ,xp G G 
and all s G (0,£), (45) yields 

^(P(G2),G) —> ^ 
'G 

Z£_10t_s(xu • • •, sp_2, y)Zl0s{xp-1, xp, y ^dy. 

Since the Markovian holonomy field that we consider is Fellerian, the function 

(s, a?i,..., xp_2, y) »-> Z+x n t-a(«i> • • • > 2/) 

is continuous on the compact set [0, \t] x Gp_1. Hence, when s tends to 0, it converges 
uniformly as a function on Gp~x towards Z+_x^t. Thus, using the convergence proved 
in Proposition 4.1.6, we find 

ZP,o,t -
' G 

z£-i,o,t(Xl>- • • »xp-2»Î/)(*ox * &oXp)(dy). 

Using the induction hypothesis, we find 

Zp,o,t -
G ù*^$* 

^(P(G2),G) —> ^(P(Gi), 
p-2 

i=l 
60xi (dwi)ô0y (dz) J (*OXP_1 * S0xp )(dy) 

!ù*$ù 
JGP 

ztoAWi '"wp) 
i=l 

p 
S0xi(dwi) 

because SoXp_*&oXp is already an invariant measure on G. This is the expected result. 

Let us now treat the case where p + g > 0. We have 

^(P(G2),G) —> ^(P(Gi),^(P(G2),G) —> ^(P(Gi),^(P(G2),G 

ù*$ù 
JGi9 zUg,oAXl> ' ' ' ' Pi' 2/1 *> ' • ' ' 2>È<?' ^ p ) ^ 1 ' ' ' dy \9 

ù$ù* 
zto,t(wi ' • • wpZlz[ • • • zigz\g) 

X 
p 

i=l 
^(P(G2),G) 

!mù* 

¿=1 
ÔQ (dZi)S0 ^(dz'J 

\9 

1=1 
:mù*$ 

The result follows now from the equality JG Sgy * ôg _1 dy = 77 which one checks easily 
using the elementary properties of the Haar measure. 

In order to prove (51), we still have to prove that ZQ01. = Z^ot(l). This fol
lows from the equality ZQQ T = JQ Z^Qt_s(y)Z^Q8(y~1)dyJ Proposition 4.1.6 and the 
argument of uniform convergence that we have already used above. 
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By (4.1j and the hrst part of this proof, we have for all p,g > 0, all t > 0 and 
all # 1 , . . . ,xp G G, 

^(P(G2),G) —> ^(P(Gi),^(P(G2),G) —> ^(P(Gi),^(P(G2), ^(P(G2),G )(^;o,t) 

= « * rf* * ̂  * • • • * Sgxp ( Z j ^ ) , 

and 

Zp,2<H-2,t(*l> • • • , ^p) = r/*5 * J0jbi * • • • * Sgxp * 
'G2 

S€2*SV 2d2/id2/2 
! *1 2̂ 

ù*$ù$* 

= « * 2 * ^ * ^ x i * . . . * ^ x p ( z + 0 ) t ) . 

The result is now a consequence of the last assertion of Proposition 4.1.8. 

It is now easy to complete the result obtained in Proposition 4.1.6. We leave the 
proof of the following corollary to the reader. 

Corollary 4.1.11. — Let (Zpi9j)p,g,t be the partition functions of a regular Markovian 
holonomy field. Then, as t tends to 0, one has the following weak convergences of 
measures on G. 

1) For all p>0, all g > 0 even and all x i , . . . xv-\ G G, 

Z+gj(xu...,xp-Ux *)dx =>rj*29*6&xi *'-*S9xp_i. 

2) For all p>0, all g > 0 and all xi,... £p_i G G, 

zP,g,t(Xl>- " »xp-I»X 1)DA? j=> k*9 *ôgxi *'"*àoXp_1-

Remark 4.1.12. — In the proofs so far, we have used the axiom A7 only for cylinders. 
Let us call h!7 the axiom A7 restricted to cylinders. By using Propositions 4.1.6 
and 4.1.10, one could easily prove now that A7 could be replaced by A7 without 
affecting the notion of regular Markovian holonomy field. 

4.2. The Levy process associated to a Markovian holonomy field 

In the previous section, we have reduced the description of the partition functions 
of a regular Markovian holonomy field to the description of the one-parameter family 
of functions Z+o t : G —> [0, +00), t > 0. This allows us to state a classification result. 

Proposition 4.2.1. — Let H F be a regular Markovian holonomy field. Then the prob
ability measures (Z^ot(x)dx)t>Q on G are the one-dimensional distributions of a 
unique conjugation-invariant Levy process issued from the unit element. If the Marko
vian field is not oriented, then the distribution of this Levy process is invariant by 
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inversion. Moreover, this Levy process determines completely the partition functions 
of HF. 

It is conceivable that a regular Markovian holonomy field is completely determined 
by its associated Levy process, but we have warned the reader in the introduction 
that we are not yet able to settle this question. 

Proof. — It suffices to prove that the probability measures vt = Z^Qt(x)dx form a 
convolution semigroup. Let us fix s,t > 0. We have Z^Q s(x,y) = JG ZiQ^xwyw'1) 
by (51). Now, 

vt * vs{ày) = 
'G 

ZtoÂx)Z+Ax-ly)dxày*$ù*$ùù$ 

'G2 
%iQt(wxw 1)Zi0s(w xx lwy)àwàxày 

JG 
zUÂx)ztoAx l,ù*$ùy)àxày 

= ACZiVt ® Z+0f,)(y) = Z+0f,+t(y)dy = vt+.(dy). 

Proposition 4.1.6 ensures that vt tends to the Dirac mass at the unit element as t 
tends to 0. Moreover, the conjugation invariance of the partition functions implies 
that the measure vt is invariant for a l l í > 0. 

If the Markovian field is not orientable, then for all t, it follows from the axiom A4 
applied to an orientation-reversing diffeomorphism of a disk of area t that Z^ot (x) = 
Z^0jt(x_1). It follows that the 1-dimensional distributions of the Levy process are 
invariant by inversion, hence the distribution of the process itself. 

The fact that the measures (vt)t>o determine the partition functions is the main 
content of Proposition 4.1.10. • 

Let us recall some classical facts about Levy processes in compact Lie groups and 
use them to prove that the function Z^0 t is positive on the connected component of 
the identity of G for all t > 0. Our constant reference in this section is the M. Liao [27] 
book. 

Let X be an arbitrary Levy process on G with a conjugation-invariant distribution. 
Let us describe briefly the generator of X. Let 9 be the Lie algebra of G. Let 
A : G —» g be a smooth mapping such that A(l) = 0, d\A = idc and, for all x, y € G, 
A(xyx~l) — Ad(x)A(y). For example, let r > 0 be such that the exponential mapping 
is a diffeomorphism from the ball B(0,r) in 0 to the ball jB(l,r) in G. Let log 
denote the inverse mapping. Let <p : [0, -foo) —> [0,1] be a smooth function with 
compact support contained in [0, | r ] and equal to 1 in a neighbourhood of 0. Then 
A(x) = log(x)<¿?(dG(l,x)) satisfies the required properties. 
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In what follows, we identify the elements of g with left-invariant vector fields on G. 

Proposition 4.2.2. — Let X be a Levy process on G whose distribution is invariant by 
conjugation. Let {Ai,..., Ad} denote a basis of g. Let 3 denote the centre of g. There 
exists a symmetric non-negative definite matrix (ajk)j,k€{i,...,d}> an dement Ao G 3, 
and a Borel measure II on G which satisfies II({1}) = 0 and JG dci^-, x)2H(dx) < +00, 
such that the generator L of X is the following: for all f G G2(G), all g G G, 

Lf(g) = 
1 

2 
ù!*$ù* 

d 
ajk{AjAkf)(g) + {AQf)(g) + 

G 
[f(gh)-f(g)-(A(h)f)(g)]U(dh)m*$ù*.!*$ù 

The differential operator 

Ld — 
1 

2 
:mù$* 

d 
ajkAjAk 

and the measure IT are both invariant by conjugation. They are called respectively the 
diffusive part of the generator of X and the Levy measure of X. Both are independent 
of the choice of the mapping A : G —• g. 

Proof. — The unique point in which this presentation differs from that of [27] is the 
fact that Ao G 3. The mapping A : G —• g has been chosen to be equivariant under 
the adjoint action of G. This makes the third term of the generator invariant by 
conjugation. Since Lp is also invariant, the second term must be invariant as well. 
This implies that AQ belongs to the invariant subspace of g under the adjoint action, 
that is, 3. • 

Let us now assume that, for all t > 0, the distribution of Xt has a density with 

respect to the Haar measure on G, which we denote by Qt. The function Qt is a central 

function and, if X is invariant by inversion, it satisfies the relation Qt(x) = Qt(^_1) 

for all £ > 0 and all x G G. 

Let Irr(G) denote the set of isomorphism classes of irreducible representations of G. 

For each a G Irr(G), let Xa ' G —> C denote the character of a. Also, set 

(53) mù*^$ (LdX«)(1) 
XA(L) 

6a = (4>x«)(i) 
X«(L) 

7Ta = 
G 

1 -
!ù*$ù* 

XA(L) 
EI(dx). 

The results of [27, Chapter 4] show that Qt is square-integrable for all £ > 0 if and 

only if, for alH > 0, 

(54) 

aGlrr(G) 

^(P(G2),G) —> ^(P(Gi),^(P(G2),G) 

It is also proved in [27] that Qt is square-integrable for all t > 0 if and only if 

(£, x) »-> Qt{x) is continuous on (0, +00) x G. Let us assume that these equivalent 
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properties are satisfied. In this case, the following expansion is uniformly absolutely 
convergent on [77, +00) x G for all rj > 0: 

(55) Qt(x) = 
a€lrr(G) 

^(P(G2),G) —> ^(P(Gi),^(P( 

In the following result, we use the compactness of G to prove that, in this situation, 
Qt is positive for alH > 0. 

Proposition 4.2.3. — Let G be a compact connected Lie group. Let (Xt)t>o be a Levy 
process on G issued from 1 and invariant in law by conjugation. Assume that, for 
all t > 0, the distribution of Xt has a square-integrable density Qt with respect to the 
Haar measure on G. Then (t,x) \—• Qt(x) is a continuous function on (0,+00) x G 
and 

Vt > 0, Vz G G, Qt(x) > 0. 

Proof. — The continuity property follows from the results presented above. We focus 
on the assertion of positivity. 

We claim that there exists to > 0 such that Qt(x) > 0 for all x G G and all t>to. 
Indeed, since JGQi(x)dx = 1, there exists an open subset U of G on which Qi is 
positive. Hence, for all n > 1, Qn is positive on Un. Since G is a compact topological 
group, there exists no > 1 such that Un° = G. Then to = no satisfies the expected 
property. 

We write the generator of X as the sum of the diffusive part, a drift and the 
jump part: 

L = LD + Ao + Lj. 

Since Ao belongs to 3 and Lp is invariant by conjugation, these three operators 
commute to each other. Let XD and X3 be independent Levy processes on G with 
respective generators Lp and Lj. Then we have the identity in distribution 

(56) Vt > 0, Xt {^ exp(tA0)X?XtJ. 

The term exp(£^40) modifies the subset of G where Qt is positive by a simple transla
tion. Hence, we may and will assume that Ao = 0. 

The topological support of the distribution of X^ does not depend on t. We denote 
it by D . It is the closure of the exponential of a Lie subalgebra of g which depends 
on Ljr). Since Ld is invariant by conjugation, D is a closed normal subgroup of G. 

The topological support of the distribution of Xf does not depend on t either and 
we denote it by J. It is the closure of the submonoid of G generated the topological 
support of n. Since G is compact, the closure of the submonoid generated by any 
element of G contains the inverse of this element. Hence, J is also the closed subgroup 
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generated by the support of II. Since II is invariant, J is also a closed normal subgroup 
of G. In particular, DJ = JD is a closed subgroup of G. 

For each t > 0, set 

St = {xeG:Qt(x)>0}. 

We claim that St = DJSt. Indeed, consider x G 5*, d G D and j G J . Let E/, V, W be 
three open neighbourhoods of x, d, j respectively. We claim that Juvw Qt(y)dy > 0. 
Since (tyx) Q^(x) is continuous, there exists e > 0 such that Qt-e(^) > 0. Now, 
P ( X f G V) > 0 and P{X{ eW)>0. Hence, by (56), ¥(X€ G VW) > 0 and 

2£ 2£ 

uvw 
Qt(y)dy > 

u 
Qt-£(x)dx 

!ù*$ù 
Qe(y)dy > 0. 

Since this holds for any choice of J7, V, W, the integral of Qt over any neighbourhood 
of xdj is positive. Hence, xdj G 5*. The claimed equality follows. 

Now, it follows from (56), after the simplification AQ = 0, that 

P(Vt > 0, Xt G DJ ) = 1. 

If the inclusion DJcG was a strict one, we would find a contradiction with the fact 
that Qt is eventually everywhere positive on G. Hence, DJ = G. 

Putting our results together, we find St = G for all t > 0. Now choose 
t > 0, x G G and consider the mapping y i—> Qit(y)Qit(y~1x). It vanishes on 
(G — Sit) U X(G — Sit)"1 which is the union of two closed sets with empty interior. 
This set has thus empty interior, so the mapping which we consider is continuous, 
non-negative and not identically zero. By integrating it with respect to y, we 
find Qt{x) > 0. • 

If G is not connected, let G° denote the connected component of 1. It is a normal 
subgroup of G and the quotient group G/G° is finite. The measure n induces a 
measure on the group G/G° which is finite excepted possibly on the unit element. 
This measure, restricted to the complement of the unit element, is the jump measure 
of the projection of X on this finite group. 

Corollary 4.2.4. — Let G be a compact Lie group. Let (Xt)t>o be a Levy process on G 
which satisfies the assumptions of Proposition 4.2.3. Let G° denote the connected 
component of the unit element of G. Let H be the subgroup of G generated by G° 
and the support of n. Then for all t > 0, Xt G H almost surely and for all t > 0, 
all xeH, Qt(x) > 0. 

Proof. — Let n° denote the restriction of n to G°. Since G° is a normal subgroup 
of G, both n° and n—n° are Levy measures on G invariant by conjugation. Moreover, 
n — n° is a finite measure. Let X° be the Levy process whose generator is that of X 
in which n is replaced by n°. It is a Levy process in G°. Let XJ be the pure jump 
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process with jump measure II — II0. Then the generators of X° and XJ commute, so 
that we have in distribution, for all t > 0, Xt = X®Xf. 

For all a € G, we have supxGG |Xa(̂ )| = Xa(l)- Hence, changing the measure n by 
adding or subtracting to it a finite measure of mass m changes each coefficient 7ra 
by at most 2m. The condition (54) is not affected by such a change, so neither is the 
existence of a square-integrable density. This proves that the process X° satisfies the 
assumptions, hence the conclusions, of Proposition 4.2.3. 

The set of connected components of G visited by the process XJ is the set of 
the connected components of the elements of the submonoid of G generated by the 
support of n —H°. Since G is compact, this submonoid is also the subgroup generated 
by the same set. The conclusion follows easily. • 

Corollary 4.2.5. — Let HF 6e a regular Markovian holonomy field. There exists a 
subgroup H of G which contains the connected component of the unit element and 
such that 

(57) V t > 0 , Vp,0>O, Vxu...,xpeH, Z+P|t (s i , . . . ,xp )>0 . 

Proof. — By Propositions 4.2.1 and 4.1.4, the Levy process associated with H F satis
fies the assumptions of Corollary 4.2.4. Hence, (57) holds for Z+0 t. The general case 
follows by Proposition 4.1.10. • 

From now on, we will always assume that H = G. 

Definition 4.2.6. — Let (Xt)t>o be a Levy process on G. We say that X is admissible if 
it is issued from 1, invariant in law by conjugation, and if for allt > 0 the distribution 
of Xt admits a continuous density Qt with respect to the Haar measure on G, such 
that the function (t,x) »-> Qt{x) is continuous and positive on x G. 

Let us discuss briefly the existence of a square-integrable density for the distribu
tion of X. If G is a finite group, this condition is always satisfied. An admissible 
Levy process in this case is simply a continuous-time random walk on G whose jump 
distribution is invariant by conjugation and has a support which generates G. In the 
case of the symmetric group, where every element is conjugated to its inverse, this 
invariance property implies that the jump distribution, hence the distribution of X, 
is also invariant by inversion. 

If G is connected and dimG > 1, an assumption under which the condition (54) is 
always satisfied is the ellipticity of X. In general, the hypoellipticity is sufficient to 
ensure the existence of a density, but a conjugation-invariant hypoelliptic process is 
necessarily elliptic. Indeed, if G is Abelian, hypoellipticity is equivalent to ellipticity 
and if G is simple, the invariance of X implies that the diffusive part of the generator 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2010 



140 CHAPTER 4. LEVY PROCESSES AND MARKOVIAN HOLONOMY FIELDS 

of X must be a non-negative multiple of the Laplace operator, hence elliptic or zero. 
The general case is a combination of these two. 

In the case where the process is not elliptic, the distribution of X may or may 
not have a density, depending on the jumps of X. The discussion of ellipticity and 
hypo-ellipticity above implies that if X is not elliptic and has no jumps, then X 
has no square-integrable density. The remark made in the course of the proof of 
Corollary 4.2.4 implies that this is still true if the Levy measure of X is finite. 

Let us conclude this section by giving an example of an admissible pure jump 
processes. Let us work on SU(2). Choose a real s and consider the measure 

U(dx) = d(l,x)sdx. 

Since the dimension of SU(2) is 3, the integral /su^2) d(l,x)2H(dx) converges if and 
only if s > — 5 and II is a finite measure for s > —3. The irreps of 5(7(2) are 
labelled by their dimension, which can be any positive integer. Accordingly, the 
Fourier coefficient 7rn, which is given, thanks to Weyl's integration formula, by 

!ù*$ù* 
2 
7T 

!ù*$ 

/0 
1 -

sin(n#) 

nsin0 
}sin2(0)0sd<9, 

is non-negative and grows faster than a constant times n~s . In particular, if s < —3, 
the series ]Cn>i e-7rnt converges and the condition (54) is satisfied. Finally, for all 
s e (—5, —3), the pure jump process on SU(2) with Levy measure II(dx) = d(l, x)sdx 
is admissible. 

4.3. A Markovian holonomy field for each Levy process 

In this section, we prove the following theorem, which is the second main result of 
the present work. Recall Definitions 3.1.3 and 4.2.6, and Proposition 4.2.1. 

Theorem 4.3.1. — Every admissible Levy process is the Levy process associated to a 
regular oriented Markovian holonomy field. 

Every admissible Levy process whose distribution is invariant by inversion is the 
Levy process associated to a regular Markovian holonomy field. 

Whether this regular Markovian holonomy field is unique is a natural question 
which we hope to be able to answer in a future work. 

In order to prove this theorem, we use the results of the previous chapter. We 
start by constructing a discrete Markovian holonomy field, prove that it is regular 
and extend it to a Markovian holonomy field. 
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4.3.1. A discrete Markovian holonomy field. — Let X be an admissible Levy 
process. Let Qt denote the density of the distribution of Xt. Let (M, vol,^7, C) be a 
connected measured marked surface with G-constraints. Let G be a graph on (M, 
For each face F of G, recall that dF is a cycle, oriented or non-oriented depending on 
the orientability of M. Assume first that M is orientable. For each h G J%(P(G),G), 
different choices of the origin of dF lead to different elements h(dF) of G, but these 
elements belong to the same conjugacy class of G. Hence, for all t > 0, the assump
tion that the distribution of Xt is invariant by conjugation makes the positive real 
number Qt(h(dF)) well-defined. 

If M is non-orientable, then h(dF) is defined only up to conjugation and inversion. 
In this case, we make the further assumption that the distribution of X is invariant 
by inversion. Then, for all t > 0, the non-negative real number Qt(h(dF)) is also 
well-defined. 

Definition 4.3.2. — Let X be an admissible Levy process. Let (M, vol, ̂ , C) be a mea
sured marked surface with G-constraints. Let G be a graph on (M,ff). We define the 
following measure on (^(P(G) ,G), ??): 

DFM,voi,^,c(d/l) 
Few 

Qvol(F)(/ i(9F))U^,c(d/l) . 

We denote the collection of these measures by DF . 

Proposition 4.3.3. — Let X be an admissible Levy process. The collection of measures 
DFX satisfies the axioms Di to DQ of a discrete Markovian holonomy field. 

Proof. — For each quadruple (M, vol, ̂ , G), DF^'^ol c is a measure on the invari
ant cr-field of M(P(G),G). It has a bounded density with respect to the probability 
measure ^ c, so that it is a finite measure. Let us prove that the axioms Di to DQ 
are satisfied. 

The fact that the discrete Markovian holonomy field U satisfies Di and D3 implies 
immediately that DFX also satisfies them. The argument used for U in the proof 
of Proposition 3.2.3 shows that DFX satisfies D2. Let ^ be a homeomorphism as 
in the statement of the axiom D4. The measure DFM'vol<^c depends only on the 
combinatorial structure of the graph G, on the cycles which represent the curves 
of ^ , on the set of G-constraints and finally on the areas of the faces of G. These 
characteristics are all preserved by the homeomorphism The axiom D5 is obviously 
satisfied. Let us finally check that DFX satisfies D6. 

Let us denote by M1 the surface Splz(M) and by G' the graph Splz(G). Let us 
also denote by D' : M(P(G'),G) R the density of the measure D F ^ o l , ^, c, with 
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respect to U%,t<v',c" Then D' ° ^ : M(P(G),G) -> R is the density of D F ^ o l ^ c 
with respect to c . Hence, the property follows from Proposition 2.3.8. • 

We prove now that the collection of measures that we consider satisfies the property 
of invariance under subdivision. 

Proposition 4.3.4. — Let X be an admissible Levy process. The collection of measures 
DPX satisfies the axiom Dj of a discrete Markovian holonomy field. 

Proof. — Consider (M, vol, ̂ , G) endowed with two graphs Gi and G2 such that 
Gi ^ G2. Let r : JW(P(G2),G) -> J^(P(Gi),G) denote the restriction map. Let us 
first make the assumption that Ei C E2 and choose orientations E+ and E^ of Gi 
and G2 such that E+ C E^". The restriction map r can be thought of as a map 
from GE* to GE*. Let us write E j = E^ U (E2 \ Ei)+ and decompose the generic 
element of GE* as g = (<7i,p2) accordingly. With this notation, r(^i,^2) = g\. Let 
/ : GEÎ —> R be a continuous function. We need to prove that 

!ù*$ù 
/(Si)DF£t,*.C(dSi,d52) = 

ù!*$ù 
^(P(G2),G) —> ^(P(Gi), 

We are going to perform the integration on the left-hand side with respect to d#2. 
For this, let us observe that the curves of ^ belong to P(Gi), so that the measure 
UM,voi><*f,c(d#i> d92) on GE* can be written as Û 1 vol <g> c(d#i)d#2. This is in fact an 
instance of Proposition 2.3.9. Hence, if we put together the faces of G2 according to 
the face of Gi in which they are contained, we find the following expression for our 
integral: 

(58) 
3E+ / (5 i ) 

:mù*^$ F2EF2 
F2CF! 

QvoHF,)(g(dF2)) 
eGE+\E+ 

eCFi 

d9e] U m ^ C ( ^ i ) ' 

The integral between the brackets is over G^eeE^E^:eCFlK It suffices to prove that 
this integral is equal to Qvoi(Fi)(^aFi(^))-

We proceed by induction on the number of faces of G2 contained in Fi . Let us 
assume first that this number is 1 and denote by F2 the unique face of G2 contained 
in F\. In order to treat this case, we proceed by induction on the number of edges 
of G2 whose interior is contained in Fi . If this number is zero, then F\ = F2 and the 
expression between the brackets is exactly Qvoi(Fi)(^(^i))- Now let us assume that 
there is at least one edge of G2 whose interior is contained in F\. Let us consider a split 
pattern M' of (M,Gi) and let MrFi denote the connected component corresponding 
to Fi . Let G2 be the graph on Mr induced by G2. The restriction of G2 to M'Fi is 
a graph with a single face on a disk. By Euler's formula, this graph has the same 
number of edges and vertices. By assumption, there is at least one vertex of degree 
at least 3 on the boundary of M'Fi. Hence, G2 has at least one vertex of degree 1, 
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which must be in the interior of M'Fi and hence is sent to a vertex of G2 of degree 1 

contained in JF\. 

FIGURE 1. A graph with one face on a disk is a collection of trees grafted 
on the vertices located on the boundary of the disk. The leaves of these 
trees are vertices of degree 1. 

Let e be an edge of G2 adjacent to a vertex v of degree 1. The cycle dF2 contains 
either the sequence ee-1 or the sequence e_1e. This sequence can be removed without 
affecting the value of the expression between the brackets. The cycle dF2 with the 
sequence removed is the boundary of the face F2 U e((0,1)) U {v} of the graph whose 
set of edges is E2 \ {e, e-1}. This graph has one edge less inside Fi than G2 and the 
result follows by induction. 

Let n > 2 be an integer and let us assume that the result has been proved when Fi 
contains at most n — 1 faces of G2. Consider the case where Fi contains n faces of G2. 

Let F2, F2 be two distinct adjacent faces of G2 which are both contained in JFi. The 
boundaries of F2 and F'2 are respectively of the form e\ • • • e^e" and (e//)_1e/1 • • - e{, 
where { e i , . . . , 6 ,̂ e[,..., e{} C and e" £ Ef \Ef . When we integrate with respect 
to the component of g corresponding to e" between the brackets in (58), we find 

'G 
Qvo\{F2){9e"9ek ' ' * 9ex )Qvol(F )̂ (9e{ ' ' ' 9e[ (#e") 1)&9e", 

which, by the Markov property of X, is equal to QVO\(fuF')(9i " ' 9\9k" ' 9i)- We are 

thus reduced to the graph obtained from G2 by merging F2 and F2 along the edge e". 

By Proposition 1.3.15, the result of this operation is indeed a graph. The induction 

hypothesis applied to this new graph yields the desired result. 

Finally, let us treat the case where Ei <£. E2. In this case, there are vertices of G2 
located on the edges of Gi which are not vertices of Gi. Adding these vertices to Gi 

and splitting its edges accordingly produces a new graph G such that Gi =̂  G =̂  G2 
and E C E2. It remains to prove that the restriction r : M{P(G),G) -+ ^ (P (Gi ) ,G) 

sends the measure D F ^ O L c to D F ^ ^ ^ c. This follows directly from (23). • 
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In order to prove that DFX is a discrete Markovian holonomy field, there remains 

to prove that it satisfies the axiom D7. Combining Propositions 3.2.5, 4.3.3 and 4.3.4, 

we find the following result. 

Proposition43.5. — Let X be an admissible Levy process. Let ZM' c denote the 

partition functions associated with the collection of measures DFx. Let (M, vol, E, C) 

be a measured marked surface with G-constraints. Then ZM\ol^>c does not depend 
on the graph G. We denote it by Zfa ol<g c. 

We are now going to compute this partition function. For this, we start by as

sociating a probability measures on G to each connected surface (M, 0 , C ) with G-
constraints along the boundary. Recall the definition of the measures 77 and k from 

Definition 4.1.7 and the properties that they satisfy proved in Proposition 4.1.8. 

Definition 4.3.6. — Let (M, 0P C) be a connected surface with G-constraints along the 
boundary. 

If M is oriented, write &+(M) = {61,..., bp} and set 

mM,0,A = 77*2g(M) * <JC(6I) * . . . * SC(bp)-

If M is non-orientable, write &(M) = {bf1,... , &p *} and set 

™M,0,C = *> * ̂ C(bx) * • • • * <*C(6P)' 

Remark 4.3.7. — 1) The second definition is meaningful thanks to Lemma 4.1.8. In

deed, the orientation chosen on the boundary components of M does not affect the 

definition of mM,0,c-

2) Assume that (M, 0 , C) is an oriented surface with G-constraints. Write Mv for 

the same surface with the opposite orientation. Then ITIMV,0,C — MM,0,c* 

Lemma 4.3.8. — Let M be a connected compact surface. 

1) The mapping which to a set C of G-constraints on 3S(M) associates the probabil

ity measure nriM,0,c on G is continuous from Consto(M, 0 ) to the space of probability 

measures on G endowed with the topology of weak convergence. 

2) For all b e £8(M), the measure fG mM,^,c6_.xda; is the Haar measure on G. 

Proof. — 1) This property follows from the continuity of the mapping x \-> 8qx and 

the continuity of the convolution of measures. 

2) This follows from the fact that fG Sgxdx is the Haar measure on G. • 

Proposition 4.3.9. — Let X be an admissible Levy process. Consider the collection 
of measures DFX. Let (M, vol, ̂ , C) be a connected measured marked surface. Let 
( M ' , v o l ' , 0 , C ) be a split tubular pattern of (M^^C) endowed with the induced 
G-constraints. Let M[,...,M'S be the connected components of M' and for each i 
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in { 1 , . . . , s}, let (M/, 0 , CD be the associated connected surface with constraints. If M 
is oriented, then M' carries the induced orientation. If M is non-orientable, then let 
us assign an arbitrary orientation to each orientable connected component of M'. 
Then the following equality holds: 

(59) 7X^(P(G2),G) — 
s 

!*ù$ù* 
QvoV (M()dm M{, 0 ,CT' • 

Proof. — When M is non-orient able, there is a choice made in assigning an ori
entation to each orientable connected component of M'. However, in this case, the 
distribution of X, hence the function Qt for alH > 0, is invariant by inversion. Hence, 
by the second part of Remark 4.3.7, the right-hand side of (59) is well defined. 

The proof of this equality is of the same vein as that of Proposition 3.2.5. By De, 
^M,vo.,tf,c = Z£',VOI',0,c- Then, by D5, Z£,iVol/>0iC, = X\U^0y^a. (vol,O, Ci) The 
problem is thus reduced to the case of a connected surface with G-constraints along 
the boundary. 

Let us assume that M is connected and ^ = 0 . In order to compute the partition 
function in this case, we choose a graph on M with a single face and, by cutting and 
pasting, transform it so that the boundary of its unique face has a canonical form. 
Then, we find, if M for instance is non-orientable of reduced genus g > 1 with p 
boundary components, 

7X^(P(G2),G)^(P( 
^(P(G2),G) 

Qvoi(M)(«i ' * * a2guiciux 1 • • • upcpup *) 

dai • • • da^dwi • • • dup(5C(fel)(dci) • • • SC(bp)(àcp) 

!ù*$ù 
G9+P 

Qvoi(M)(a? • "a29ci ' "Cp)da1 • • • dap5C'(6l)(dci) • -ôC(bp)(dCp) 

'G 
Qvo\(M)dn\M,0,C-

The other cases are similar. 

We can summarise our results. 

Proposition 4.3.10. — Let X be an admissible Levy process. The collection of mea
sures DFX defined in Definition 4.3.2 is a discrete Markovian holonomy field. 

Proof. — For all (M, vol, ̂ , G), the measure D F ^ o l ^ c is a measure on the cylinder 
cr-field of J%(P(G),G), hence it determines by restriction a measure on the invariant 
a-field. By Proposition 4.3.9, it is a finite measure. 

The collections of these measures satisfies the axioms Di to DQ by Proposition 4.3.3, 
D/ by Proposition 4.3.4 and D7 by the combination of Proposition 4.3.9, the second 
assertion of Lemma 4.3.8 and the fact that for all t > 0, JG Qt(x)dx = 1. • 
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4.3.2. A Markovian holonomy field. — Our next goal is to prove that the dis
crete Markovian holonomy field DFX is regular in the sense of Definition 3.2.8. 

Proposition 4.3.11. — Let X be an admissible Levy process. The discrete Markovian 
holonomy field DFX is continuously area-dependent and Fellerian. 

Proof. — For all segment [s,t] C R+, the mapping (t,x) »-* Qt{G) is uniformly 
continuous on [s,t] x G. Hence, for all face F G F, Qvo\n{F) converges uniformly 
to Qvoi(F) as n tends to infinity. The fact that DFX is continuously area-dependent 
follows immediately. 

The fact that DFX is Fellerian, that is, that the partition function vol ̂  c 
depends continuously on C G ConstGr(M, ^ ) , follows at once from Proposition 4.3.9 
and the first assertion of Corollary 4.3.8. • 

In order to prove that DFX is stochastically ^-Holder continuous, we need to es
tablish the corresponding property for the Levy process X. 

Proposition 4.3.12. — Let (Xt)t>o be a Levy process on the compact Lie group G is
sued from 1. Then there exists a constant K such that 

Vt > 0 , E[dG(l,Xt)] <K\Tt. 

This property follows from Lemma 3.5 in the book of M. Liao [27], but we still 
offer a short proof. 

Proof — We use the It6 formula for Levy process on Lie groups, which has been 
proved by Applebaum and Kunita [3]. We borrow the statement from [27, Sec
tion 1.4]. In fact we use the following weak statement. Let L be the generator of X. 
Let / be a smooth function on G. Then / belongs to the domain of L and 

(60) f(Xt) - f(X0) -
0 

Lf(Xs)ds, t > 0 

is a square-integrable martingale. This is the equation (1.18) of [27]. We apply this 
to a function / which is close to the function dc?(l, .)2. 

Let {Ai,..., Ad} be a basis of the Lie algebra of G, which we identify with the 
space of left-invariant vector fields on G. Let a i , . . . be smooth functions on G 
such that for all z, j G {1, . . . a^(l) = 0 and Aidj(l) = 5ij. Set S = ^?=i • It 
follows readily from the definition of S and the fact that G is compact that there exists 
a constant Ki such that for all x G G, dc(l ,^)2 < K\8(x). Now the fact that (60) 
is a martingale implies that E[5(Xt)] <|| LS ||oo t. Hence, by Jensen's inequality, 
E[dG(l, ^t)]2 < Kx || LS Hoc t for all t > 0. • 
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In order to deduce the stochastic Holder continuity of DFX from this property, 
we need to be able to compare the values of some integrals with and without G-
constraints. Actually, we introduce random holonomy fields with free boundary con
ditions. Recall the definition of the uniform measure 

UM,0 (Definition 2 .3 .3) . 

Definition 4.3.13. — Let X be an admissible Levy process. Let (M, vol) be a measured 
surface endowed with a graph G. We define the measure DFM'vol 0 0 by setting 

DFM,vol,0,0(D/L) = 
Few 

Qvol(jF)(/i(0F))U^>0(d/i). 

In the following proofs, we use the fact that the functions 11-> sup{Qt(x) : x G G} 
and t »-> mi{Qt(x) : x G G} are respectively non-increasing and non-decreasing. This 
follows from (Qt)t>o being a convolution semigroup of positive continuous functions. 

Lemma 4.3.14. — Let (M, vol, ̂ , C) be a measured marked surface with G-constraints. 
Let G be a graph on (M,tf). Consider Ei C E and Fi C F. Assume that Ei = Ei-1. 
Assume that for each l G ̂ U ^ ( M ) , at least one edge of'Ei is located on I, and each 
face adjacent to an edge of'Ei belongs to Fi . Set r = J(Fi, 

A = mm{vo\(F) : F e¥x} and K = sup {QA{x)/QA(y) : x,y e G}. 

Let f : G) —• [0, +00) be a non-negative continuous function. Assume that f 
factorises through the restriction map M(&, G) —• M{E \ Ei, G). Then 

K-r 
M(EyG) 

/ d D F M vnl 0.(Я < 
M(E,G) 

^(P(G2),G) —> ^(P(Gi),!ù*$ 

J M{E,G) 
^(P(G2),G) —> ^(P 

Proof. — Increasing the number of edges in Ei can only increase Fi, hence make A 
smaller and K larger. So, without loss of generality, we may assume that Ei contains 

exactly one non-oriented edge on each curve / G ̂  U &B(M) and Fi is exactly the set 

of faces adjacent to these non-oriented edges. 

Let us choose an orientation E+ of G and identify M(E, G) with GE+. Let us enu

merate Fi as {Fi,..., Fr} and denote the generic element of GE+ as g = (#1,#2) ac

cording to the partition E = EiU(E\Ei). The assumption on / expresses that / (p i , #2) 
depends only on g2. 
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By (21), the integration against ^ c can be decomposed into the integration 

with respect to the Haar measure on M(E\Ei,G) and then with respect to the explic

itly known conditional distribution of g\ given #2> which we denote by c(&gi \g2)' 

!ù*$ù 
^(P(G2),G) —> ^(P(Gi), 

!ù*$ù 
JSU(E,G) 

f(g) 
m:ù^* 

Qvoi(F)(5(5F))U^XiC(d5) 

G(E\E1) + 
./(52 

F6F\Fi 

Qvoi(F)(92(dF)) 
1 FGFa 

Qvol(F) 
(g(dF))[)GMX,c(d9l\g2) \dg2. 

Changing the probability measure with respect to which the integral between the 

brackets is taken can at most multiply the integral by maxu/minu and at most divide 

it by the same number, where u denotes the integrand. In the present situation, the 

definition of K implies that maxtt/mintx < Kr. 
Hence, focusing for example on the upper bound, we have 

M(E,G) 
/DFM,vol,^,C ^ ^ 

ù!*$ù 
f{92) 

Few 
Qvo\(F){9(dF))dg1dg2 

= Kr 
'jM(E,G) 

fdDFM'vol 0 0. 

The derivation of the lower bound is similar. 

Proposition 4.3.15. — Let X be an admissible Levy process. The discrete Markovian 
field DFX is stochastically ^-Holder continuous. 

Proof. — Let (M, vol, 7 , ^ , C) be a measured marked surface with G-constraints. 

Write ^ U &(M) = {Zi, Zj"1,..., lq, I'1}. Let M i , . . . , Ms denote the connected com

ponents of M\€. Set A = \ min{vol(Mi) : i G { 1 , . . . , s}}. For each i £ { 1 , . . . , <?}, let 

us write li as the product of three edges: U = e^ie^e*^. Let L > 0 be such that any 

Riemannian ball of radius smaller than L intersects at most one curve of ^ U SS(M) 
and at most two of the edges {eij : i G { 1 , . . . , q}, j G {1,2,3}}, and has a Riemannian 

area smaller than A. 
Let I be a piecewise geodesic loop such that £(l) < L and / bounds a disk which we 

denote by D. lil bounds two disks, we choose the one included in the ball of radius L 
centred at the basepoint of I. By assumption on L, there is at most one i G { 1 , . . . , q} 
such that / meets one of the edges e^i, e^? e*,3 and it does not meet the three of them. 

We may assume that / meets none of the edges except possibly eif2 and e i^ . 

Let G be a graph on (M, ^ ) such that the edges eitj are edges of G. By repeated 

applications of Proposition 1.3.15, we may assume that G has exactly one face in each 

connected component of M \ (ffl) {/}). The number of these components depends on 
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the relative position of I and the curve l\. Nevertheless, G has the following property: 
each face adjacent to one of the edges ei}i, e2,i,..., ePji or their inverses has an area 
greater or equal to A. 

Let us define Ei = {ei,i, J , . . . , e^i, e~\} and Fi as the subset of F consisting of 
all faces adjacent to an edge of Ei. We have # Fi < 2q. Set 

KXìa = sup {Qa(x)/Qa(v) 'x,y£ G}. 

Then, by Lemma 4.3.14, 

(ei) 
M(P(G),G) 

dG(l,h(l))DF%G,« c(dh) 

*$ù*$ùmù* 

M(P(G),G) 
dG(l,h(l))DF^olt0t0(dh). 

By the axiom Dj, we can remove edges from G so that it becomes a graph Gi with 
only two faces, D and another one, denoted by F, of area vol(M\D), without altering 
the value of the integral above. Hence, by Proposition 4.3.12, 

l.h.s. of (61) 

:m!:ù*$ 
'^(P(Gi),G) 

dG (1, MO) Qvoi(S) (HI)) Qvoi(M-D) (HdF)) U^i0 (dh)klmù* 

:!ù*$ù 

G 
dG(lìx)Qvoì(D)(x)dx 

= K$ù*$$+1E[dG(lìX„l(D))]<Kmù*̂ $K^̂ (P(G2),G) —> ̂ (P(G 

This is the expected result. 

We can conclude this chapter by proving Theorem 4.3.1. 

Proof of Theorem J^.S.l. — Let X be an admissible Levy process. Let DFX be de
fined by Definition 4.3.2. By Proposition 4.3.10, it is an oriented discrete Markovian 
holonomy field, and a discrete Markovian holonomy field if X is invariant in law by 
inversion. By Propositions 4.3.11 and 4.3.15, it is regular. By Theorem 3.2.9, DFX is 
the restriction of a regular Markovian holonomy field, which we denote by HFX. By 
Proposition 4.3.9, the Levy process associated with HFX is indeed X. • 
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CHAPTER 5 

RANDOM RAMIFIED COVERINGS 

In this chapter, we investigate the Markovian holonomy field that we have asso
ciated to a Levy process in the case where G is a finite group. In this case, the 
structure of the Levy process is particularly simple. It is a continuous time random 
walk with a jump distribution invariant by conjugation and, depending on the issue 
of orient ability, by inversion. 

It turns out that in this case, the canonical process associated to the Markovian 
holonomy field is the process of monodromy in a random ramified covering picked un
der a probability measure which depends in a simple way on the Levy process. This 
is consistent with the usual heuristic interpretation of the Yang-Mills measure as a 
probability measure on the space of connections on a principal bundle. Indeed, ram
ified coverings can be naturally interpreted as discrete models for principal bundles, 
endowed with a connection which is flat everywhere but at the ramification points, 
where its curvature is concentrated. 

5.1. Ramified G-bundles 

Let us choose once for all a finite group G. Let (M,vol, 0 , G ) be a measured 
surface with G-constraints on the boundary. For the sake of simplicity, we treat the 
case ^ = 0 . 

Let Y C M\DM be a finite subset. A principal G-bundle over M — Y is a smooth 
covering 7 r : P — > M \ Y o f M \ y b y a surface P on which G acts freely on the right, 
by smooth automorphisms of covering and transitively on each fibre. The surface P 
is not compact unless Y = 0 and in general it is not connected. Two G-bundles 
7r : P —> M \ Y and n' : P' —» M \ Y are isomorphic if there exists a G-equivariant 
diffeomorphism h : P —• P' such that n' o h = it. 

A ramified covering over M with ramification locus Y is a continuous mapping 
7r : P —• M from a surface P such that the restriction of tt to tt~1(M \ Y) is a 
covering and, for all y G Y and all p G Tr~1(y), there exists a neighbourhood U of p 
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and an integer n > 1 such that the mapping ir\u : (Uyp) —• (7r(E/),y) is topologically 
conjugated to the mapping z »—• zn : (C,0) —> (C, 0). This means that there exists 
homeomorphisms hi : U —> C and h2 : tt(^) —> C such that h2 o o h^1 is the 
mapping z ^ zn. The integer n is called the order of ramification of p. We assume 
that for all y G Y, there exists p G 7r_1(y) whose order of ramification is at least 2. 
Two ramified coverings n : P —> M and it' : P' —» M are isomorphic if there exists a 
homeomorphism h : P —> P' such that n' oh = tc. 

Prom the classical fact that the only connected coverings of finite degree of C* are, 
up to isomorphism, the mappings z i—• zn : C* —+ C* for n > 1, it follows that a 
principal G-bundle it : P M \ Y can always be extended to a ramified covering 
of M by a suitable compactification of P , and that any two such extensions give rise 
to isomorphic ramified coverings. Moreover, it is possible to endow the total space of 
the ramified covering with a differentiable structure in such a way that the covering 
map is smooth. 

Definition 5.1.1. — A ramified principal G-bundle over M with ramification locus Y 
is a smooth ramified covering n : R —> M of M with ramification locus Y, together 
with an action ofG on /k~1(M\Y) which endows the restriction ofn to n~1(M\Y) 
with the structure of a principal G-bundle. 

Two ramified principal G-bundles ir : R —> M and n : R' —* M with ramification 
locus Y are isomorphic if their restrictions to M \ Y are isomorphic as principal 
G-bundles. 

Remark 5.1.2. — By the discussion before the definition, two isomorphic ramified 
G-bundles are also isomorphic as ramified coverings. However, an isomorphism of 
ramified coverings between two ramified G-bundles is not necessarily an isomorphism 
of ramified G-bundles. Consider for example, for n > 3, the trivial Z/nZ-bundle 
R = M x Z/nZ. The group &n acts on R by permuting the sheets and this is 
an action by automorphisms of covering. Nevertheless, only a cyclic permutation 
of the sheets is an isomorphism of Z/raZ-bundle. In general, the group of covering 
automorphisms of a principal G-bundle is bigger than G. This is related to the fact 
that the total space of the covering is not always connected, so that the group of 
covering automorphisms does not always act freely. 

Remark 5.1.3. — In the case where G is the symmetric group 6n, ramified G-bundles 
are the same thing as ramified coverings of degree n. Indeed, let tt : P —> M be a 
principal 6n-bundle, ramified over Y. The group 6n acts naturally on {1 , . . . , n} and 
the associated bundle ? X 6 n { l , . . . , n } , which is the quotient of Px { 1 , . . . ,n} by the 
relation 

(p,k)~(p\kf^(P(G2),G)3<7G6n, (p/,fc,) = (pa,a-1(fc))> 
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is a ramified covering of M of degree n with ramification locus Y. 
Conversely, let n : R —• M be a ramified covering of degree n with ramification 

locus Y. Let m be a point of M\Y. By a labelling of R at m we mean a bijection 
between 7r_1(m) and the set { 1 , . . . , n} . For each m € M\Y, let Lsbm(R) denote the 
set of labellings of R at ra. The group &n acts on the right, transitively and freely 
on Labm(.R). Then Lsb(R) = Um6MLabm(i?) endowed with the natural topology and 
projection on M, is a principal 6n-bundle over M ramified over Y. At a point y G Y, 
the ramification type of i? is a partition of n and the monodromy of Lab(i2) around y 
is the corresponding conjugacy class of 6n . 

It is easy to check that, if P is a <5n-bundle, then Lab(P x@n { 1 , . . . , n}) is canon-
ically isomorphic to P. 

Let <$(M) (resp. «$(M, y) ) denote the set of isomorphism classes of ramified 
principal G-bundles over M (resp. with ramification locus Y). 

Definition 5.1.4. — A based ramified G-bundle is a pair (R,p) where n : R —> M is a 
ramified bundle and p G R is a point such that 7r(p) does not belong to the ramification 
locus of R. The pair (i?,p) is said to be based at 7r(p). 

Two based ramified G-bundles (R,p) and (R* ,pr) are isomorphic if there exists an 
isomorphism f : R—> R' of ramified G-bundles such that f(p) = p'. 

The importance of this notion comes from the fact that the automorphism group 
of a based ramified bundle over a connected surface is trivial. 

Let m be a point of M. We denote by «$m(M) (resp. «$m(M, Y)) the set of 
isomorphism classes of based ramified G-bundles based at m (resp. with ramification 
locus Y). 

5.2. Monodromy of ramified G-bundles 

From now on we will assume that the surface M is connected. Consider R in 
$ ( M , Y). Choose m G M\Y. Choose p G 7r-1(m). For each loop / G Lm(M) which 
does not meet the lift of / starting at p finishes at pg for a unique g G G, called the 
monodromy of R along / with respect to p. This monodromy depends on / only through 
its homotopy class in M\Y. Hence, the choice of p determines a group homomorphism 
monp : 7Ti(M \ Y,m) —• G, which characterises the based ramified G-bundle (i?,p) 
up to isomorphism. Another choice of p would lead to another homomorphism, which 
differs from monp by composition by an inner automorphism of G. The class of the 
homomorphism monp modulo inner automorphisms of G characterises the ramified 
G-bundle R up to isomorphism (see [36]). 
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The words monodromy and holonomy are synonymous in this work, but we use the 

first in the context of ramified bundles and the second in the framework of Markovian 

holonomy fields. 

An automorphism of the ramified G-bundle R is completely determined by the 

point to which it sends p. This point is of the form pg for a unique g G G, hence 

the choice of p allows us also to identify the group Aut(i2) of automorphisms of R 
with a subgroup of G which we denote by Autp(i2). Let Monp(.R) be the image 

of the homomorphism monp : TTI(M \Y,m) —• G. Then Autp(R) is the centraliser 

of Monp(R). Again, changing p to ph for some h G G would conjugate Monp(R) 
and Autp(R) by h. 

In order to study $ ( M , Y), it is convenient to choose a system of generators of 

7Ti(M \ Y, m). To do this, let us first assume that Y is not empty and set k = # Y. 
Let us choose on M a graph G such that m is a vertex of G and each face of G 
contains exactly one point of Y. Throughout this chapter, we use the notation 

g = g(M) for the genus of M, p = p(M) for the number of boundary components 

of M, and f = f (G) for the number of faces of G. In the present situation, f = k. 
By Lemma 1.3.33, the group RLV(G) of reduced loops in G (see Definition 1.3.30) 

is naturally isomorphic to 7Ti(M \ Y,m). Thanks to Proposition 2.4.2, let us choose 

a tame system = { a i , . . . , ag, c i , . . . , cp, ¿ 1 , . . . , Ik} of generators of RLV(G), associ

ated with a certain word w in the free group of rank g. This means that the loops 

a\,..., ag generate the fundamental group of the surface obtained by gluing a disk 

along each boundary component of M, the loops c i , . . . , cp are lassos whose meanders 

cover the boundary components of M, the loops Zi , . . . , Ik are lassos whose meanders 

cover the boundary of the faces of G, and all these loops generate RLV(G) with the 

single relation w(a i , . . . , ag)ci • • • cp = h — -lk- For all ramification point y G Y, we 

denote by 9(R, y) the conjugacy class of the monodromy along the facial lasso whose 

meander goes around y. This is also the conjugacy class of the monodromy along any 

small loop which circles once around y, positively if M is oriented. In particular, it 

does not depend on the choice of G. 
Recall that the surface M is endowed with a set C of G-constraints along its 

boundary. Thus, to each oriented connected component b of 9M, the G-constraints 

C associate a conjugacy class C(b) of G. Let us write &(M) = { 6 1 , • . . , &p, bp-1} 

and, for all i G { 1 , . . . , p}, 0* = <?(&»). We define the sets # ( M , G), (resp. $ ( M , Y, G), 

<$m(M, G), <$m(M, y,G)) as the sets of isomorphism classes of ramified G-bundles 

(resp. with ramification locus Y, based at m, based at m with ramification locus Y) 
such that the monodromy along bi belongs to Qi for all i G { 1 , . . . , p}. 
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Let us use the information gathered so far to build concrete models for the various 
spaces of isomorphism classes of ramified G-bundles. Let us define 

M(MìkìCìw) = {(alì...ìagìclì...,cpidll...ìdk)eGmù** x 0 I X . . . x 9px{G\{l})k : 

w(ai,...,ag)ci - --Cp = di '-dk}. 

We denote by a*, c«, : &(M, k, C,w) —> G the obvious coordinate mappings. 
If Y is empty, then we choose G with a single face. In this case the appropriate 

concrete model is the following space: 

${(M,0,G,w) = { (a i , . . . ,ag ,c i , . . . , cp) G Gg x 9\ x • • • x 9P : 

w(ai, . . . ,ag)ci ...Cp = 1). 

The group G acts on .#(M, k,C,w) by simultaneous conjugation on each factor. 
Let us consider the diagram 

(62) 

<£m(M,y,C) M(M,k,C,w)!ù*$ù 

&(M,Y,C) tf(M,k,C,w)/G:mù*^$ 

The vertical arrow on the left is the map which forgets the base point. The vertical 
arrrow on the right is the quotient map. The top horizontal arrow is given by the 
monodromy with respect to the base point along the elements of if. The bottom 
horizontal arrow is also given by this monodromy, but since no base point is specified, 
it is defined up to global conjugation. 

This diagram is commutative and, according to the discussion at the beginning of 
this section, its horizontal arrows are bijections. 

The preimage of an element R G «$(M, Y, C) by the vertical arrow consists 
in # G / # Aut(iJ) elements. It follows that, for all function / : $ ( M , Y, C) —• C, 
which can alternatively be seen as an invariant function on ^ ( M , fc, G, w), we have 
the counting formula 

(63) 
^(P(G2),G) —> ^ 

1 

^(P(G2),G) —> 
mù^*$ 1 

# G 
(RiP)ettm(M,Y,C) 

ù!*$ù 

:mù*$ l 
# G 

hew(M,k,c,w) 

f(h) 

5.3. Measured spaces of ramified G-bundles 

Let us start by putting a topology on the sets of ramified G-bundles. For each 
based ramified G-bundle (R,p) based at 7r(p) = m with ramification locus Y, and 
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each open subset U of M \ {m} containing Y, we define 

V{(R,p),U) = {(R',p') e &m(M,C) : (R,p)lM\u * (R\p')\M\U as G-bundles}. 
The sets V((i?,p), U) form a basis of a topology on ,$m(M, C) and from now on we 
consider this space endowed with that topology. Similarly, we endow 91{M, G) with 
the topology generated by the sets 

V(R,U) = {R' e # ( M , C ) • R\M\U - R\M\u}, 
where U contains the ramification locus of R. These topologies make the projection 
<$m(M, C) —• <$(M, G) continuous. However, observe that the number of ramifica
tion points is not a continuous function with respect to these topologies, it is only 
lower semi-continuous. In fact, these topologies are the roughest which make the 
monodromy along any loop on M a continuous functions on its definition set. 

Let F(M) denote the set of finite subsets of M. For each k > 0, let c Mk denote 
the subset of Mk on which at least two components are equal. We endow F(M) with 
the topology which makes the bijection F(M) ~ Ufc>o(^fc \ ^k)/&k a homeomor
phism. Once again, the natural mapping Ram : ^ ( M , C) —• F(M) which associates 
to a covering its ramification locus is not continuous. 

It is now time to introduce the Levy process. Let X be a continuous time ran
dom walk on G, with jump measure invariant by conjugation, and also invariant by 
inversion if M is non-orient able. Its Levy measure II is a finite invariant measure 
supported by G \ {1}. We assume that the support of n generates G. 

We denote by Hi the probability measure n/n(G) on G. We define now the weight 
of a ramified G-bundle with respect to n. Recall that if R is ramified at y, then 0(R, y) 
denotes the conjugacy class of the monodromy of a small circle around positively 
oriented if M is oriented. 

Definition 5.3.1. — Consider R G &{M). Let Y denote the ramification locus of R. 
The weight of R is the non-negative real number 

Ili(fl) = 
y E Y 

III № , ? / ) ) 
# 0(J*,y) 

IfR is represented by an element h of&(M, fc, G, w), then Ui(R) = Ili=i Ri{{di(h)}). 

The notion of weight of a ramified G-bundle allows us to define positive measures 
on the spaces of bundles. The choice of the normalization will be justified by later 
results. 

Definition 5.3.2. — The Borel measure BB^m YC on ^m(M,y ,G) is defined by 

B&M,m,Y,C 
#G1-« 

^(P(G2),G) —> ^ 
? (R,p)e&m(M,Y,C) 

ni(fl)S(R,p). 
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By the left vertical arrow of (62), this measure is projected on the Borel measure 

RBM,y,c on &(M' Yic) defined by 

^(P(G2),G) —> n,;l!mù 

# 0 i - - - # 0 p R€&(M,Y,C) 

ni(fi) 
#Aut(Ä) 

Sr. 

Thanks to the counting formula (63), we can roughly bound above the total mass 

of BB* iV>c by 

(64) BBM,m,y,c(1) -
#G1-« 

^(P(G2),G) —> ^ 
9 heM(M,k,C,w) 

n x ( Ä ) < # G . 

Our next objective is to put measures on &m(M,C) and &(M,C), the sets of 
ramified bundles in which the ramification loci are not fixed. We have endowed 
both spaces with topologies. Thus, they carry a Borel cr-field. Let J#£+(«$(M, C)) 
and M+(&m{M,C)) denote the spaces of positive Borel measures on $(M,C) 
and dim (M, C) respectively, endowed with the topology of weak convergence. 

Proposition533. — The mapping from F(M) to M+{&(M,C)) which sends Y to 
R B ^ y c is continuous. Similarly, the mapping from F(M) to M+(&m(M, C)) which 
sends Y to BB^m YC is continuous on its definition set. 

Proof. — We prove only the first statement. The second one is very similar. 
By definition of the topology on F(M), it suffices to prove that the mapping from 

Mk \ Ak to J^+(i£(M, C)) which sends Y = (2 /1 , . . . ,yk) to RB^ y c is continuous 
for all k > 0. Consider k > 0, Y = { 2 / 1 , . . . ,yk} and a bounded continuous function 
/ : 5#(M, C) —» R. Choose e > 0. For simplicity, assume that M is endowed with a 
Riemannian metric. 

Since <$(M, Y, C) is a finite set, the continuity of / implies the existence of r > 0 
such that the balls B(yi,r) are contained in M \ 5M, pairwise disjoint and such that 
the neighbourhood U = B(yi,r) x • • • x B(yk, r) of Y in Mk \ Ak satisfies 

VR G #(M, y, C), Vi? G f/), \f(ff) - (f (R) - f (R) 
6 

#^(M,y,C)' 

Let Y' = {y[,... ,y'k} be an element of U. Let (j> be a diffeomorphism of M such 
that <j)\M\u = idM\u and o (yi) = 2/* for all i G E (1,..... k) For each bundle 7r : 
R -> M belonging to $ ( M , y , C ) , the bundle </>(R) = (<£ o tt : i? Af) belongs 
to 9i{M, Y\C). Replacing (/> by its inverse in the definition of <j> : &(M,Y,C) —> 
^ ( M , y ' , C ) yields the inverse mapping, hence 0 is a bijection. Moreover, for each 
i G {! , . . . , fc} , 0(0(i*),yt9 = &(R,yi), so that III(<£(#)) = n i ( # ) . Also, the conju
gation by <f> determines an isomorphism between Aut(i?) and Aut(0(J?)). Finally, R 
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and 4>{R) are isomorphic outside U. Altogether, 

|RBM,y',c(/) - RBM,Y,c(/) < 
Re&(M,Y,C) 1 

ni(il) 
#Aut(.R)1 

\№R))-f(R)\<e 1 1 1Ù*$. 

Since fc, y , / and e were arbitrary, the result follows. 

We choose for the ramification locus a very simple probability distribution which 

incorporates the measure vol on M. Let H be the distribution of a Poisson point pro

cess of intensity II(G)vol on M. It is a Borel probability measure on F(M). Moreover, 

for all m G M, E({Y : m G Y}) = 0. According to Proposition 5.3.3, the following 

definition is legitimate. 

Definition5.3.4. — The Borel measures RB^VOLC on $,{M,C) and BB^MVOLC 

on Ul^MiC) are defined by 

RBM,VO1,C — 
Jf(M) 

R B * S(dY) = 
'F(M) ñ€Í^(M,y,C) 

n i (il) 
# Aut(fi) 

Sr) E(dY), 

^(P(G2),G) —> ^(P(Gi), 

F(M) 
B B * E(dY) 

F(M) 

1 

:!mù*^$ 
(fi,p)6^m(M,y,C) 

ni(n)<5(fi)P) H(dY). 

Since £({Y : m G Y}) = 0, the subset of i#(M, C) which consists in bundles rami

fied over m is negligible for the measure R B ^ VOL c. Hence, the measure B B ^ OL C 
projects on RB^VOLC by the left vertical arrow of the diagram (62). In particular, 

these measures have the same total mass. Thanks to (64), this total mass is finite. 

Hence, RB^f ol c and B B ^ OL c are finite measures. We will denote by N R B ^ VOL C 
and N B B ^ VOI c the corresponding probability measures. 

Although this is not absolutely necessary, let us compute B B ^ M vol c ( l ) . Recall 

that (55) gives an expression of the density of the 1-dimensional marginals of the Levy 
process X with respect to the uniform measure on G: setting, for all a G Irr(G), 

ñ(a) 
xeG 

Xa(x)U({x}), 

we have 

(65) Vt > 0, Vx e G, Qt(x) = e-*n(G) ' 

a€lrr(G) 

etn(a)/x„(l)Xa(1)Xa(x)-

In the present context, this equality can be checked by an elementary computation, 

using the following formula, which we will need again later and which is proved by 

using the standard properties of characters. 
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Lemma 5.3.5. — For all k>l and all x € G, the following equality holds: 

xi,...,Xk EG 
n({Xl})---U({xk})^(P(G2),G) —> ̂ (P(Gi), 

1 
mù*^$* •eirr(G) 

/ 0 (a ) 
VXa(l)/ 

k 
Xa(l)XaW-

We can now compute the mass of BB^ m vol 

Proposition 5.3.6. — The total mass of the measure BB^ m vol c is equal to 

(66) 
l 

^(P(G2),G) —> ^(P(Gi), 
ai,...,ageG 

i€0i,..-,Cp€0p 

Qvoi(M) ' * ' ag)ci * * * cP), 

which, with the notation of Definition 4.3.6, ¿5 equal to 

'G 
<2voi(M)dmM,0,c-

Proof — Choose Y G F(M). Set k = # Y C h o o s e a graph G, a vertex t; of G 
and a tame system of generators of RLV(G) associated with some word w, as we did 
in Section 5.2. This determines a bijection ,$m(M,Y,G) ~ $C{M,k,C,w). By the 
counting formula (63), 

BB^mjy|C(l) -
#G1"g 

RU # ft, i€Ĵ (M,fc,C,№) t=l 

fc 
Ih ({*(/»)}) 

^(P(G2),G) —> 

^(P(G2),G) 
ai,...,agGGr d 

ciE0i,...,cpG0p 
di,...,dfe€G ¿=1 

n(R( / i ) } ) 
11(G) •̂di---dfc=ii;(oi-"ag)ci...Cp' 

By Lemma 5.3.5, this is equal to 

1 

# G g n ^ i # f t o-i ,...,agGG 
:i€0i,...,cp€0p 

aGlrrfG) 

1 
n(G)fc V 

fi(o)\ 
Xa(l)> 

)Ca(l)Xa(^(ai • • * ag)ci • • • Cp). 

Integrating this expression with respect to Y under the probability measure S amounts 
to replacing by a Poisson random variable with parameter II(G)vol(M) and taking 
the expectation. Using (65), we find that this expectation is equal to (66). • 

5.4. The monodromy process as a Markovian holonomy field 

Let m be a point of M. Let I G Lm(M) be a loop based at m. Since I is rectifiable, 
its range is negligible for the measure vol. Hence, the ramification locus of a ramified 
G-bundle based at m distributed according to the probability measure NBB^ vol c 
is almost surely disjoint from the range of I. The mapping Pi : ^m(M, G) —* G which 
sends a pair (R,p) to the monodromy of R along / with respect to p is defined on 
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the subset where the ramification locus is disjoint from I and thus is a well-defined 
random variable under the probability measure NBB^j vol c . 

Let I1J2 G Lm(M) be two loops. Let (R,p) be an element of $!m(M, C). Let gi 
and g2 be the monodromies of l\ and l2 respectively. Let us compute the monodromy 
of ¿1/2- The point p is sent to pgi by the parallel transport along h. Then, on one hand 
the parallel transport along l2 sends p to pg2 and on the other hand the the parallel 
transport commutes to the action of G on the right on 7r-1(m). Thus, the parallel 
transport along l2 sends pg\ to pg2g\. It appears that monodromies are multiplied 
in the reversed order of concatenation. Coming back to the probabilistic setting, this 
implies that 

VhM € Lm(M), Ptli2 = Pi2Pix almost surely. 

It is even easier to check that for all I G Lm(M), Pt-i = Pf1 almost surely. 
Thanks to Proposition 2.2.3, these two relations ensure that the collection of ran

dom variables (P/)zei_m(M) defined on the probability space (&m(M, G), NBB^ ol c) 
determines a probability measure on the space (j^(Lm(M), G), £?) (see Section 2.1). 
We denote this probability measure by NMF^ m vol c. By restriction, this probability 
measure is also defined on the invariant a-field and, by Lemma 2.1.5, determines a 
probability measure on the measurable space (M(P(M), G), J), which we denote by 
NMF^ (m) volc. Finally, we define a finite measure on (J%(P(M), G), J) by 

MF (̂m))Vol)C — BB^V0l)C(l)NMF^(m))V0l)C. 

Lemma 5.4.1. — The measure MF^(m) volc on (M(P(M),G),J) does not depend on 
the point m. We denote it by MF^ vol c. 

Proof. — By Definition 2.1.6, it suffices to show that if Zi,...,Zn are loops on M 
based at the same point mo, and / : Gn —> C is a function invariant under the 
action of G by diagonal conjugation, then the distribution of / ( / i ( / i ) , . . . >h(ln)) un
der NMF^ (m) vol c does not depend on m. By definition, this distribution is that of 
/(Pc;lC-i,...,PcinC-i) under BB^ m vol c , where c is an arbitrary path from m to mo-
Let m and vnl be two points. Let us chose a path c from m to mo and a path c' 
from m! to m. It suffices to prove that the distributions of /(PcilC-i, . . . ,Pc/nC-i) 
under BB^mjVol)C and /(Pc/dlC-ic/-i,...,Pc^c/nC-ic/-i) under BB^m,volc coincide. 

Let Y be a finite subset of M which does not meet c'. Let (R,pf) be an element of 
^m/(M, y, C). Then, for each i G { 1 , . . . , n}, the monodromy of R along dcliC~xc'~ 
relatively to p' is equal to the monodromy of R along c^c-1 relatively to the image of p' 
by parallel transport along c', which we denote by p. Thus, it suffices to prove that 
the mapping ,#m/(M, Y,G) —> $m(M, Y,G) which sends {R,p') to (i?,p), where p is 
the image of p' by parallel transport along c;, sends the measure BBjv/,m',Y,c to the 
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measure BBM,m,Y,c- This follows from the definition of these measures and the fact 
that the mapping which we consider is a bijection which preserves the weight. • 

The main result of this chapter is the following. 

Theorem 5.4.2. — The finite measures HF^ vol 0 c and MF^ vol c on the measurable 
space (M(P{M),G),J) are equal. 

This theorem expresses, at least when the surfaces carry only G-constraints along 
their boundary, the fact that the holonomy process associated with the Markovian 
holonomy field HFX is the monodromy process associated to a random ramified G-
bundle taken under the appropriate distribution. 

The proof of this theorem consists in two main steps. In the first step, we prove 
that the monodromy process is stochastically continuous. Then, we prove that the 
holonomy process and the monodromy process coincide in distribution on the set of 
piecewise geodesic loops for some Riemannian metric on M. 

Proposition 5.4.3. — The measure MF^ vol c is stochastically continuous, in the sense 
that is satisfies the first property of Definition 3.1.3. 

Proof. — We need to prove that for all ra E M, all Z E Lm(M) and all sequence 
(ln)n>o of loops based at m converging to Z, the sequence (Pjn)n>o converges in 
measure to Pi. Let us endow M with a Riemannian metric and choose ra, I and 
(ln)n>o as above. We assume that all loops are parametrised at constant speed, 
so that the sequence of parametrised paths (Zn)n>o converges uniformly to I. 

Choose e > 0. For each r > 0, let 9fr{l) denote the r-neighbourhood of the image 
of I. Since the distribution of the ramification locus Ram(i?) of R under the finite 
measure B B ^ VOL c is absolutely continuous with respect to S, 

UieiBB^mMC({(H,p) : Ram(i?) n ^ r ( 0 ± 0 } ) = 0. 

Choose r > 0 such that this probability is smaller than e. Assume also that r is smaller 
than the convexity radius of our Riemannian metric on M. Finally, let no be such that 
n > UQ implies doo(Zn,Z) < r. Then, if n > no, ln and I are homotopic inside j7Tr(Z) 
which, with probability greater than 1 — e, does not contain any ramification point. 
Hence, 

Vn > n0, BB£im)VoliC({(fl,p) : Pln(R) ? Pi(R)}) < e. 

Since e is arbitrary, this proves that Pin converges to Pi in measure. 

Theorem 5.4.2 asserts the equality of two finite measures. We consider the two 
stochastic processes (#j)jei_m(M) and {Pi)ieLm(M) which are both the canonical pro
cess on ^(Lm(M),G) , the first considered under the measure HF^vol0C and the 
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second under the measure MF^ ^ vol c. Although these measures are not in general 
probability measures, we use the language of stochastic processes for H and P. 

By Proposition 5.4.3 and Theorem 3.3.1, it suffices to endow M with a Riemannian 
metric and to show that the restrictions of P and H to piecewise geodesic loops agree 
in distribution. For this, as we have already observed several times, it suffices to show 
that they agree in distribution when restricted to the set of loops in a graph with 
piecewise geodesic edges, or in fact any graph. 

Proposition 5.4,4. — Let G = (V, E, F) be a graph on M such that m G V. The 
families of random variables (Pi)ieLm(G) and (#z)z€LM(G) have the same distribution. 

Proof. — It suffices to prove that the equality holds when the processes are re
stricted to a family of loops which generate the group RLm(M). Consider a tame 
family of generators — { a i , . . . , ag, c i , . . . , cp, li,..., If} of RLm(G) associated with 
a word w. The loop If is a function of all other loops, so that it suffices to compute 
the distribution of H = (Hai,..., Hag, HCl,..., HCp, ,..., Hif_ x ). Let us choose 
h = (gai, • - •, 9ag, 9Cl, • • •, 9cp, 9h, - - , gif-J in Gg x Gi x ••• x 0p x Gf_1. By Propo
sition 2.4.2, 

HFM,vol,0,c(# - h) 
# G i - G - F 

n ? = i # & 1 i=l 

f 
Qvol{Fi)(9li), 

where we have set gu = w(gai1...,gag)gCl • • • 9cp(9h '''9u~i) X-
Now let us compute the corresponding quantity for the monodromy field. Let Y 

be a finite subset of M which does not meet G. Let us refine G inside each face which 
meets Y in order to get a new graph G', finer than G, such that each face of G' either 
does not meet Y and is equal to a face of G, or contains exactly one point of Y. 

By applying the second assertion of Proposition 2.4.2, we can construct a tame 
family of generators (SI of the group of reduced loops of G' which is finer than in 
the sense that for each face F , the facial lasso of corresponding to F is the product 
in a certain order of the facial lassos of & corresponding to the faces of G' contained 
in F. 

For each i G { 1 , . . . , f}, let us write Y* = Y D Fi = . . . , 2/*,^}- Let 

{litj; : t € { l , . . . , f } , j G { ! , . . . , M } 

be the set of facial lassos of CSI indexed accordingly. We may assume that for all 
i G { 1 , . . . , f} , h = k,i - -k,ki> 

The family (S' determines a bijection between <$m(M, Y, C) and ttf(M,k,C,w). 
This allows us to compute the distribution of the random variable 

M = (Mai,... ,Mag,MCl,... ,MCp,M/l,.. . ,Mif_1) 
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under BB^m y c . We find 

(67) BB* c ( M = fc) 

^(P(G2),G) —> ^(P( 

n?=i#0< 

f 

t=lgl.1,...igl.kieG 
Hi ({gittl}) • • • nx ({#. ki}) ^...^ fi =9li. 

Using Lemma 5.3.5, we find that the quantity (67) is equal to 

# G i - g - f 
^(P(G2),G) — 

f 

»=lai€lrr(C?) 

n(o4) 
^n(G)Xa.(l) 

Cai(l)Xai(№i)-

By integrating this expression with respect to Y under the measure S, we find 

BBS m.voi.C(M = fc) 
# G i - g - f 

m:ù*^$ùù$^*$ 

f 

2=1 

e-vol(FOn(G) 

a€lrr(G) 

^(P(G2),G) —> ^(P(Gi),^(P(G2) 

# G i - g - f 

^(P(G2),G) 

f 

1=1 
Qvol(Fi)(#i)-

This proves that BB^m)Vol>c(M = ft) = HF£jVo1,05C(# = ft). 
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n, 136 
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