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FAMILIES OF AUTOMORPHIC FORMS 
ON DEFINITE QUATERNION ALGEBRAS 

AND TEITELBAUM'S CONJECTURE 

by 

M a s s i m o Ber to l in i , Henr i D a r m o n &; A d r i a n Iov i t a 

Abstract. — The main goal of this note is to describe a new proof of the "exceptional 
zero conjecture" of Mazur, Tate and Teitelbaum. This proof relies on Teitelbaum's 
approach to the j£?-invariant based on the Cerednik-Drinfeld theory of p-adic uni­
formisation of Shimura curves. 
Résumé (Familles de formes automorphes sur les algèbres quaternioniques et conjecture de Tei­
telbaum) 

Cet article fournit une nouvelle démonstration de la conjecture de Mazur, Tate et 
Teitelbaum sur les « zéros exceptionnels » des fonctions L p-adiques. Cette démons­
tration repose sur une définition de l'invariant Jèf proposée par Teitelbaum, qui repose 
sur la théorie de l'uniformisation p-adique des courbes de Shimura. 

I n t r o d u c t i o n 

Let / = ^2anq
n be a newform of even weight fco + 2 > 2 on To(Np)1 where TV > 4 is 

a positive integer and p is a prime which does not divide N. We denote by L ( / , s) the 
complex L-function at tached to / , and by L ( / , x, s) its twist by a Dirichlet character 
X- A theorem of Shimura asserts the existence of a complex periodv Mf such tha t the 
special values 

L(/,X,j)AV with 1 < j < k0 + 1 

belong to the subfield Kf of C generated by the Fourier coefficients of / , and even to 
its ring of integers. These special values (when x ranges over the Dirichlet characters 
of p-power conductor) can be interpolated p-adically, yielding the Mazur-Swinnerton-
Dyer p-adic L-function L p ( / , 5 ) , a p-adic analytic function whose definition depends 
on the choice of tif. Denote by 

L*(f,X, 1 + ko/2) := L(f,x, 1 + *o /2 ) / f i / , 

the algebraic part of L ( / , x? s) at the central critical point s = 1 + ho/2. 
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3 0 M. BERTOLINI, H. DARMON & A. IOVITA 

The modular form / is said to be split multiplicative if 

f\UP=pk°/2f. 

In tha t case, Lp(f,s) has a so-called exceptional zero at 5 = 1 + k$/2 arising from 
the p-adic interpolation process'. In fact, like its classical counterpart , the p-adic 
L-function Lp(f, s) has a functional equation of the form 

(i) Lp(f,k0 + 2-s) = ep(f)(Ny-1-k°/2Lp(f,s), 

and the sign ep(f) = ± 1 tha t appears in this equation is related to the the sign eOQ(f) 

in the classical functional equation for L ( / , s) by the rule 

cp (f) = - C o o ( / ) if / is split multiplicative; 

CooCf) otherwise. 

In the case where / is a split multiplicative newform, Mazur, Tate and Teitelbaum 
made the following conjecture in [18]: 

Conjecture 1. — There exists a constant -£f ( /) 6 Cp, which depends only on the re­
striction of the Galois representation attached to f to a decomposition group at p, and 

such that 

(2) L' p(f, x,1 + k0/2 = ^ f ( / ) i * ( / , X , l + *ö/2) , 

for all x with x ( - l ) = x(p) = 1-

The constant L (f) , which Mazur, Tate and Teitelbaum called the L-invariant, 
was only defined in [18] in the weight two case ko = 0. In the higher weight case 
ko > 0, several a priori inequivalent definitions of J£f ( / ) were subsequently proposed. 

1. In [23], Teitelbaum offered the first definition for -if ( / ) . This invariant, denoted 
j£fr( /) , is based on the Cerednik-Drinfeld theory of p-adic uniformisation of 
Shimura curves and is only defined for modular forms which are the Jacquet-
Langlands lift of a modular form on a Shimura curve uniformized by Drinfeld's 
p-adic upper half plane. This occurs, for example, when the conductor of / can 
be writ ten as a product of three pairwise relatively prime integers of the form 

pN = pN+N~, 

where N~ is the square-free product of an odd number of prime factors. A 

modular form which satisfies this condition will be said to be p-adically uni-

formisable. 

2. Coleman [5] then proposed an analogous but more general invariant «ifc(/) by 

working directly with p-adic integration on the modular curve at tached to the 

group T0(p)nr1(N). 
3. Fontaine and Mazur [17] gave a definition for the so-called Fontaine-Mazur 

Jz?-invariant J£FM(S) (F) in terms of the filtered, Frobenius monodromy module of 

the p-adic Galois representation at tached to / . 
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4. In [19], Orton has introduced yet a further Jzf-invariant j£fo(/), based on the 

group cohomology of arithmetic subgroups of GL2(Z[ l /p ] ) , extending to forms 

of higher weight the approach taken in [12] for ko = 0. 

5. Finally Breuil defined in [2] the j£f-invariant J^Brif) in terms of the p-adic 

representation of GL2(QP) at tached by him to / . 

We now know tha t all the above j£f-invariants are equal (when they are defined) as 

result of work of many people, which we briefly list below (see [9] for a more detailed 

account of these various articles and preprints). 

The equality of the L -if- invariants Lc{f) and L F M ( f ) was proved in [7] by making 
explicit the comparison isomorphism between the p-adic etale cohomology and log-
crystalline cohomology of the modular curve Xo(Np) with respective coefficients. The 
equality of Lr(f) and £c(f) (when they are both defined) was proved in [16] by 
interpreting J&r{f) as the Jz?-invariant of a filtered, Probenius monodromy module. 
Breuil proved in [2] the equality LBr(f) = Lo(f)> which is a manifestation of the 
local-global compatibility for the p-adic Langlands correspondence. 

It was first observed by Greenberg and Stevens for weight two (in [15]) and by 

Stevens in general (in [22]) tha t p-adic deformations of / , i.e. p-adic families of 

modular eigenforms are relevant for conjecture (1). To describe these objects precisely, 

let 

W:= Homcont(Z*,Q*) 

denote the weight space, viewed as the Qp-points of a rigid analytic space. There is 

a natural inclusion Z C W by sending k to the function x \-+ xk. Write A(U) for the 

ring of rigid analytic functions on U, for any affinoid disk U C W. 

A p-adic family of eigenforms interpolating / is the da ta of a disk U with ko G U1 

and of a formal g-expansion 

(3) foo — 

CO 

71=1 

an qn 

with coefficients in A(U) satisfying: 

1. For every k G f / f l Z ^ 0 , 

fk := 

oo 

n=l 
an{k)qn 

is the ^-expansion of a normalized eigenform of weight k + 2 on the congruence 

group r i (p)nr0(JV); 

2- fk0 = /• 

The existence and essential uniqueness of the family interpolating / is proved in 
[6]. 

Greenberg and Stevens for weight two and Stevens in general first proved tha t 

<&c(f) = —2(dlogap),c=fe0. Colmez generalized the Galois cohomology calculations 

in [15] by working inside Fontaine's rings and proved the equality J^FM (F) = 

-2(dlogap)K=fc0 in [11]. He also proved the equality LBr(f) = -2(dlogap)/c=fco in 
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3 2 M. BERTOLINI, H. DARMON & A. IOVITA 

[10] by using the p-adic local Langlands correspondence for trianguline represen­

tat ions. Let us remark tha t in fact the quanti ty ^{f)NoName •= —2(dlogap)/c=fc0 

behaves like an .if-invariant: it satisfies the equation (2) of conjecture 1 (see [22]) and 

it is a local invariant of / in the sense tha t it is invariant to twists of / by Dirichlet 

characters trivial at p (in fact it is invariant to all twists by Dirichlet characters.) 

Conjecture (1) was first proved in [15] for weight two, and several different proofs 

have been announced in the higher weight case: 

1. By Kato-Kurihara-Tsuji , working with the invariant J^FMU)', 

2. By Glenn Stevens, working with j£fc(/) ; 

3. By Orton, working with -%>(/) in [19]; 
4. By Emerton working with J^BrU) in [14]. 

The first two proofs are still unpublished but an account of the approach of Kato-

Kurihara-Tsuji can be found in [8] while Stevens gave a series of lectures on his theory 

during the Automorphic Forms semester in Paris, 1998. Notes to these lectures, 

to which we will refer as [22], although not yet published circulated widely in the 

mathematical community and greatly influenced articles like [3], [4] and the present 

note. As these notes have not been published we will sketch proofs of all the results 

quoted from them. 

The main goal of this note is to describe a new proof of Conjecture 1 which applies 

to forms which are p-adically uniformisable. 

Theorem 2. — Assume that f is p-adically uniformisable. Then 

(4) L ' ( / , X , 1 + W 2 ) = ^ T ( / ) L * ( / , X , 1 + * o / 2 ) , 

for all Dirichlet characters \ satisfying \{~ 1) = x(p) = 1-

Our proof of Theorem 2 is based on Teitelbaum's definition of the L-invariant: 
this is why it needs to be assumed tha t / is p-adically uniformisable. Thus the 
Cerednik-Drinfeld theory of p-adic uniformisation of Shimura curves and the Jacquet-
Langlands correspondence, which play no role in the earlier proofs of Stevens and 
Kato-Kurihara-Tsuji , are key ingredients in our approach. Section 1 supplies the 
necessary definitions concerning automorphic forms on definite quaternion algebras, 
and Section 2 recalls a few basic facts concerning p-adic integration on Shimura curves, 
including Teitelbaum's theory of the "p-adic Poisson kernel" and his definition of the 

invariant J&rif)-
Guided by the Jacquet-Langlands correspondence between classical modular forms 

and automorphic forms on quaternion algebras, Section 3 describes a theory of 

p-adic families of automorphic forms on definite quaternion algebras, based on ideas 

of Stevens, Buzzard and Chenevier. The resulting structures are used to prove 

the following theorem in Section 4, which relates Teitelbaum's L-invariant to the 

derivative of the Fourier coefficient ap(k) with respect to k. 

Theorem 3. — Suppose that f is p-adically uniformisable. Then 

(5) Jz?r(/) = -2dlog(ap)K=fco. 
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The ideas of Orton in [19], which are recalled in Section 5, make it apparent tha t 
the definition of the invariants J&r(f) and J2?o(/) are very similar in flavour. The 
calculations of Sections 1 to 4, when transposed to the context of a modular form 
on GIi2(Q), with the "integration on J(fp x Jffn defined in terms of modular symbols 
playing the role of the p-adic line integrals on Drinfeld's upper half-plane, leads to 
the proof of the following analogue of Theorem 3, which is described in Section 6: 

Theorem 4. — Let f be a modular form of weight k on TQ (N) which is split multi­
plicative at p. Then 

(6) i f o ( / ) = -2dlog(ap)K=fco. 

Theorem 2 now follows directly from Theorems 3 and 4, in light of Orton's proof 
of Conjecture (1). 

The remainder of the text will focus on explaining the proofs of Theorems 3 and 
4, which are independent (both in their statement, and their formulation) of the 
existence and basic properties of either the p-adic L-function or the p-adic Galois 
representation attached to / and the Coleman family interpolating it. 

We emphasize tha t the proof of Theorem 2 owes much to the ideas tha t are already 
present in the earlier (although still unpublished) approaches of Stevens and Kato-
Kurihara-Tsuji. The main virtues (and drawbacks) of our method are inherently 
the same as those in Teitelbaum's approach to defining the .if-invariant: a gain in 
simplicity (because the method involves p-adic integration on a Mumford curve rather 
than a modular curve, and requires no information about Galois representations) offset 
by a certain loss of generality (since the method only applies to automorphic forms 
tha t can be obtained as the Jacquet-Langlands lift of a modular form on a p-adically 
uniformized Shimura curve). A second, less immediately apparent advantage of our 
approach lies in the insights arising from the connection tha t is drawn between the 
two-variable p-adic L-function Lp(k, s) at tached to /<*> and the p-adic uniformisation 
of Shimura curves. In particular, the new ideas introduced in this article form the 
basis for the proof of the main result of [1], which, in the case where / corresponds to 
a modular elliptic curve E over Q and e00(f) = —€p(f) = — 1, relates the leading term 
of Lp(k,s) at the central critical point (k,s) = (2,1) to the formal group logarithm 
of a global point on E(Q). 

1. A u t o m o r p h i c forms o n quatern ion a lgebras 

Suppose from now on tha t / is p-adically uniformisable, so tha t its level pN can 
be factored as 

(7) PN=pN+N~, where gcd(iV+,iV-) = l , 

and where N is square-free and has an odd number of prime factors. Let B denote 
the quaternion algebra over Q ramified exactly at N~oo, and let S% denote a maximal 
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3 4 M. BERTOLINI, H. DARMON & A. IOVITA 

order in B. For each £ not dividing N we fix an isomorphism 

ll : B O Ql = M2(Ql) , with ll : (R O Ql) = M2(Ql) , 

Let Z denote the profinite completion of Z and let B := B <S>z 
Let E = E^ be any compact open subgroup of Bx, and let V be any Q p -vector 

space equipped with a right action by E p . The following definition is taken from 
Section 4 of [3]. 

Definition 1.1. — A V-valued automorphic form on B of level E is a function 

(8) (f : ê x —>V satisfying (fi(bsa) = <p(s)ap, 

for all & E l ? x , s G . B x , and a £ E, where <rp denotes the component of cr at p. 

The space of all ^-valued automorphic forms on B of level E will be denoted 
5 ( E , F ) . It is equipped with the action of Hecke operators Ti with £ J[N as well as 
the operator Up, defined as in [3], section 4. 

Let 

T = Lp mi/p\x n 

lo= p 

El 

and let T denote the subgroup of T of elements of determinant 1. The strong approx­
imation theorem for B asserts tha t 

Bx = £ X G L 2 ( Q P ) E , 

so tha t we may write 

(9) S(E,V) = {if : GL 2(Q P) — V ip(jgu) = tp(g)u} 

for all 7 € r , g e G L 2 ( Q P ) , and u € Sp. 
We will be mostly interested in a specific choice of level s tructure E. Let S(JV,p) := 

IIl Zl C Bx be the compact open subgroup defined by 

- E p = ^ 1 ( r 0 ( p Z p ) ) ; 
- E , = ( ^ ® Z * ) x , if £ divides TV"; 

= Zl = (R O Zl) x , if £ divides ÌV+; 
- E^ = ( ^ ® Z ^ ) X , otherwise. 

The group E(iV, 1) is defined in a similar way, with Fo(pZ p ) replaced by G L 2 ( Z P ) in 

the definition of E p . 

W e i g h t s . If k is a positive integer, let &k:=QP[z]de9^k be the space of polynomials 
of degree < fc, equipped with the right action of G L 2 ( Q P ) given by 

(Pß)(z) = (cz + d)kP 
az + b 

,cz + d 
, for ß = 

a 

c 

b 

d 
e G L 2 ( Q P ) . 

Let Vk = KomQp (&k,Qp) denote its Q p -dua l , equipped with the left action given by 

(ßh)(p) = h(pß) for P E Rk and h e Vi. 

ASTÉRISQUE 331 



FAMILIES OF AUTOMORPHIC FORMS 35 

We may also make Vk into a right GL2(Qp)-module by the rule 

hß = ß^h, for fteVfe and ß e GL2(QP). 
The module Vk is isomorphic to @*k as a GL2(Qp)-module, and hence the following 
definition of the space of (classical) automorphic forms on B of weight k + 2 and level 
E(iV,p) is equivalent to the one given in Section 4 of [3]: 

Sk+2(N,p):=SMN,p),Vk). 
Of crucial importance for our arguments is the Hecke operator Up acting on the 

space Sfc+2(iV,p), whose precise definition we now describe. Let a.\ be the matr ix 
1 

0 

0 

P 
and decompose the double coset space Zpa1 Zp as a disjoint union of left 

cosets: 
Zp a1Zp = Upj = ajZp 

Then 
( C ^ ) ( 0 ) = de t (a i )* '2 

3 
Y (gaj) aj-1 

It is useful to have a geometric interpretation of automorphic forms in terms of 
certain functions on the edges of the Bruhat-Ti ts tree 2T of PGL2(QP). Recall tha t 
& denotes the tree whose vertices are in bijection with the homothety classes of 
Zp-lattices in Q2, two vertices being joined by an (unordered) edge if they admit 
representatives which are contained one in the other with index p. Let J0 and ^ [ 
denote the set of vertices and edges of 2? respectively, and let L(T) denote the set of 
ordered edges of J, i.e., the set of ordered pairs of adjacent vertices. If e = (v3,Vt) is 
such an ordered edge, we will call the vertex s(e) := vs the source of e, and t(e) := vt 
its target. The edge e := (vt,vs) obtained from e by interchanging its source and 
target is called the edge opposite to e. 

Let v* be the vertex associated to the homothety class of the s tandard lattice l?p. 
The index p sublattices of Z2p are naturally in bijection with Px(Fp) by setting 

Lj:={(x,y)eZ2p such tha t [x:y}= j (mod p )} , j = 0 , 1 , . . . , p - l ,oo . 

Let VJ be the vertex associated to the homothety class of Lj, and let 

rj = (u*, uj) E L (J) . 
A vertex in 3T§ is said to be even or odd if its distance from u* is even or odd. Likewise, 
an ordered edge in S'(^) is even (resp. odd) if its source is even (resp. odd). 

The groups GL2(QP) and P G L 2 ( Q P ) act naturally on ST via their left action on Q2, 
viewed as column vectors. The resulting actions of these groups on J0, J1, and E(J) 
are transitive, while the subgroup PSL2(QP) preserves the even and odd elements in 
% and E(J). The stabilizer of u* in PGL2(QP) is the group PGL2(ZP), while the 
stabilizer of the ordered edge e00 is the projective image of the group To(pZp). Hence 
the assignment g i—> ge^ identifies the quotient PGL2(Qp) /To(pZp) with Z(J) . 
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If g G GL2(QP) we denote by \g\ := pordp(det(P)) To each n £ sk+2(N,p), viewed 
as a function on GL2(QP) via the description (9), is at tached a V^-valued, T-invariant 
function Cn on E(j) by setting, for all e = ge^ with g G GL2(QP), and for all 
P E P k , 

(10) cJe)(P) := \g\-k/\gV(g))(P). 

It is easy to see that the expression on the right of equation (10) depends only on the 
class of g in PGL2(Qp) / ro (pZp) , so tha t the value of cv is well-defined. Moreover, if 
7 is any element of Г, and e = ge^ is any edge in £ { ^ ) , we have 

cn (ye(P) = \l9\-k/4l9Vb9))(P) = i(\g\-k/29v{g))(P) 
Ьсп(е))(Р) = с„ (е ) (Р7) . 

Since rj can be recovered from the da tum of c^, the assignment n —>cn identifies 
rf £ Sk+2(N,p) with an element cv in the space ^ (<f, V/-)r of T-invariant V^-valued 
functions on E(J). Let us spell out the action of the Hecke operator Up which is 
deduced from this identification. 

Lemma 1.2. — For all rjeSk+2(N,p)} we have 

Ы , ) ( е ) = / / 2 
s(e') = *(e) 

е'Фе 

Cr,(e ) . 

Proof. — This follows from a direct calculation. 

2. T e i t e l b a u m ' s L- invariant 

Let / be the normalized eigenform of weight fco + 2 on T0(N) tha t was discussed 
in the introduction. The definition of Teitelbaum's invariant J^T ( / ) rests crucially on 
the Jacquet-Langlands correspondence which associates to / an automorphic form on 
a definite quaternion algebra in the sense of the previous section. 

Theorem 2.1. — There exists an automorphic form <j> G Sko+2(N,p) which is an eigen­
form for the Heche operators and satisfies 

ф\Т£ = а£(к0)ф, for all l/ Np, ф\ир=рко/2ф. 

This ф is unique up to multiplication by a non-zero scalar in p 

Let </> G Sko+2(N,p) be the modular form obtained from / via Theorem 2.1, and 
recall the T-equivariant V^-valued function c^ on S(^) t ha t was associated to it in 
the previous section. A function c on $ is called a harmonic cocycle if 

c(e) = - c ( e ) , 
s(e)=v 

c{e) = 0, for all v G % . 

Lemma 2.2. — The function Сф attached to ф is a Vko-valued harmonic cocycle on S/ . 
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Proof. — The fact tha t c^(e) = —c^(e) follows directly from the fact tha t the Atkin-

Lehner involution Wp acts as multiplication by —1 on c^. Let v be any vertex of 

£ and let e be an ordered edge of 2? satisfying t(e) — v. Since c$\Up — pk°/2c<f,, it 

follows from the description of Up given in Lemma 1.2 tha t 

Ph0/2cje) = (<*\Up)(e) = pko/2 

s(e') = v 
e'=e 

eQ(e'), 

so tha t 

s(e')=v 

C4,(e') = 0 

for all e G £ { & ) and v = t(e). 

We now explain how the cocycle cq gives rise to a locally analytic distribution on 

P1(Qp)? denoted /x^. To do this, let W := Qp — {0}, equipped with its natural p-adic 

topology. There is a natural continuous projection 

TT : W — » P ^ Q p ) , r ((x,y)) = x/y. 

If L is any Zp-lattice in Q2, let 2 / := L — pL be the compact open subset of W 

consisting of the primitive vectors in L. If e = (s, t) G £(3?) is an ordered edge of J, 

let Ls and L* denote Zp-lattices whose homothety classes correspond to the source 

and the target of e respectively, chosen in such a way tha t Ls contains Lt with index 

p. To the edge e are associated the subset We C W and the compact open subset 

Ue C P ^ Q p ) by the rules 

We = L',nL't, Ue=7T(We). 

Note tha t the set We depends on the choice of Ls and Lt, so tha t We is only well-
defined (as a function of e) up to multiplication by elements of Qp . The subset Ue, 
on the other hand, depends only on e and not on the choices of representative lattices 
Ls and Lt tha t were made to define it. 

Let us now briefly recall some of the theory of locally analytic distributions. Let X 

be a compact open subset of W C Qp. For each integer n > 0, denote by B[X,p~n] 

the affinoid subdomain of Cp given by 

B[X,p-n] := {z € C2p I there exists x G X with \z-x\ <p~n}. 

The region B[X,p~n] is a finite disjoint union of closed polydisks of radius p~n de­

fined over Qp. Therefore B[X,p~n] is also defined over Qp. Let An(X) denote the 

Qp-affinoid algebra of B[X,p~n]. It is a Banach algebra over Qp under the spectral 

norm, 

INUnpO := sup 
zeB[xiP-"} 

\h(z)\. 

If m > n > 0, restriction defines a continuous map 

An(X) —> Am{X). 
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3 8 M. BERTOLINI, H. DARMON & A. IOVITA 

The direct limit 

A (X, Qp) := lim AJX) 
—•.n 

is called the space of locally analytic functions on X. It is endowed with the inductive 

limit of the Banach topologies on each of the An(X)'s. Let 

Dn{X) := Homcont(An(X),Qp) 

denote the Qp-Banach-dual to An(X) and let 

@(X,QP) := limDn(X) = 
r—,n 

Homcon t (^ (X ,Qp) ,Qp) . 

This space, endowed with the projective limit of the Banach topologies of the Dn(X) ' s , 

is called the space of locally analytic distributions on X. It is a Frechet space over 

Qp 
These definitions can be extended without difficulty to the case where X is a 

compact open subset of the projective space P1(QP). (see [22].) 
Following the approach described in [23], the harmonic cocycle cq can be used to 

define a locally analytic distribution µq on P1(QP), determined by the property: 

(ii) 
Ue 

P(t)/i*(t) = <*(e)(P), 

for all e e f (J) and P E Pk0 
Let Hp:= PX(CP) - Px(Q p) denote the p-adic upper half-plane. In [23], the 

distribution jiA is used to define a rigid analytic function 

Y = Yf : Hp —> Cp 

by the rule 

(12) Y(z) = 
rPx(Qp) 

1 
t - z 

dii<t>{t). 

By Theorem 3 of [23], the function ip is a rigid analytic modular form on T\Jfp of 

weight ko + 2, i.e., it satisfies the relation 

^ z ) = (cz + d)k^2^{z) , for all 7 = 
a 

c 

b 

d 
e r . 

The p-adic Coleman line integral attached to ^ , a polynomial P G Vfc0, and two 
endpoints TI and r2 € ^ is defined in terms of the distribution ¡1$ by the rule 

(13) 

'f2 

t 
iP(z)P(z)dz := 

p1 (Qp) 
log 

t - r 2 

t-T1 
P(t)µq(t). 

This formula can be used as a definition for the Coleman line integral in this setting, 

in light of Teitelbaum's theory of the "p-adic Poisson kernel". (See [23] for a more 

complete discussion.) In particular, it satisfies the additivity properties suggested by 

the line integral notation. 

Let us now fix base points vo € % and ZQ G 3^v. (For example, one could take v0 = v*, 

but this is not necessary.) The harmonic cocycle c<f> gives rise (after extending scalars 
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from T40 to Vfc0 ® Cp) to a Vfc0 0 Cp-valued one-cocycle on T (where Vjt0 is viewed as 
a left T-module) defined by the rule: 

(14) K«ordr(7)(P) = 
e; vo —> y uo 

c*(e)(P), 

where the sum is taken over the ordered edges in the pa th joining VQ to 7^0- Likewise, 
the associated rigid analytic modular form ip gives rise to the Vk0 ® Cp-valued one-
cocycle on r defined by 

(15) klog q (y) (p) = 
yko 

zo 
tjj(z)P(z)dz. 

The images [*£rd] and [K%6] of *£rd and «£g in F 1 ( r , 1 4 0 <S> Cp) are independent of 
the choices of vo and ZQ tha t were made to define them. These classes lie in the 
one-dimensional /-isotypic component of i?1(T, Vk0 ® Cp) for the action of the Hecke 
operators. Furthermore, Theorem 1 of [23] shows tha t the class of K°£D is non-zero. 
We are now in a position to recall the definition of J ^ T ( / ) given in [23]. 

Definition 2.3. — The Teitelbaum L-invariant at tached to / is the unique scalar 

-S?r(/) € Cp such tha t 
[klog q] = LT (f) [kord q] 

Note tha t multiplying 0, and the resulting cocycle and locally analytic distribution, 
by a non-zero scalar multiplies both ftord and ^iog by tha t same scalar and hence does 
not affect the value of Jê^r(/), which is therefore a genuine invariant of / (once the 
factorisation (7) has been fixed) in light of the uniqueness of (j) described in Theorem 

2.1. 

3 . Famil ies of a u t o m o r p h i c forms o n B 

The group GL2(QP) acts naturally on W := Qp — {0} on the left, by viewing 
elements of W as non-zero column vectors. Of considerable importance is the resulting 
action of the scalar matrices in Z*, which commutes with the GL2(QP) action, and 
preserves V for any Zp-lattice L C Qp. This latter action is denoted by 

\-(x,y) := (\x,\y). 

Recall the s tandard lattice L* = Zp, and let £/(Z/+,Qp) denote as above the space 
of locally analytic Qp-valued functions on . It is equipped with a right action by 
GL2(Zp) given by: 

(f\u)(x, y) = f(ax + by, cx + dy) for u = 
a 

c 

b 

d 
e GL2(Zp). 

Let 

D : = ®(L'„QP) 
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be the space of locally analytic distributions on L'*. The natural , continuous left 

action of GL2(ZP) can be turned into a right action by the rule: 

/ I • u := u 1 ¡1, for u G GL2(ZP), µ E D . 

Let R := &(Zp , Qp) be the Qp-algebra of locally analytic distributions on Zp . 

The Zxp -action on L'* equips D with a natural ^ -module structure 

RxD —• D sending (a,jz) to a . µ, 

where a • \x is defined by the rule: 

l' 
F(x,y)(a- fi)(x,y) := 

ZxP x L'* 
F(tx,ty)a(t)ix(x,y), 

where F(x, y) belongs to srf(Z/*, Qp) and the variables of integration t and (x, y) range 

over Zp and L'* respectively. 

Let us now fix an integer ko > 0 and let U be an affinoid disk defined over the finite 

extension K of Qp such tha t ko G U C W. Let A(17) denote the K-affinoid algebra of 

U. Then we have a natural Qp-algebra homomorphism R —• A(U) defined by rule 

(i6) a —+ ( f t —> 

Zp 
k( t) a (t)) , for all a e R,K eU. 

Remark3.1. — Let ft G U(K), then ft can be uniquely writ ten ft = e(t)x(t)(t)c for 
e :Zxp —•Kx if* a character of order dividing p — 1, x '• %p —* Kx &, character of order 
a power of p and c G Gk- SO we may think of ft as determined by the pair (ex, c). 
Let us remark tha t if K is fixed and the radius r of U is small enough the associated 

pair (ex, c) is characterized by: E (t) = t 
(t) 

) \ x(t) = ] and \c - kQ\ < r. In other 

words ft is entirely determined by c. 

Denote by B>u := A(J7)<â>flB and let G L 2 ( Q P ) act on the right on 1D>u via its action 

on D. 
A natural i?-module structure on S(AT,p) is obtained by setting 

(a. Ф)(g) •=a Ф(д), for a G # , $G§(AT,p) , and g G G L 2 ( Q P ) . 

Definition 3.2. — Fix ko and Î7 as above. The space 

§u(N,p) := S f f i W . a D t , ) 

is called the space of p-adic families of automorphic forms on B of level E(iV,p) 
parametrized by weights in U. 

Remark 3.3. — Note tha t the space Su(N,p) is defined using a level s tructure E(AT, 1) 
in which the prime p has been removed. In other words, these functions satisfy an 
equivariance property, on the right, by the full group GL2(ZP) and not just r0(pZp) . 
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The terminology introduced in Definition 3.2 is justified by the fact tha t Su(N,p) 

is equipped with natural Hecke-equivariant specialization maps pk to Sk+2 (N,p) for 

every even integer k > 0 in U. In order to define pk, it is convenient to introduce 

Woo := KnL'œ = Zï ®pZp C W, 

where L00 = Zp G pZp , as before. If P E Pk is a polynomial (of degree < fc), let 

P(x,y) = ykP{x/y) 

denote the corresponding homogeneous polynomial in x and y of degree k. More 

generally let K € 17 and let k > 0 be an integer and define for X = L'^ or W: 

A(k) (x) : = { f : L''* —> K locally analytic f(tx,ty)=K(t)f(x,y) 
for all teZ*(x,y)eX} 

and 

^K\W) := {/ : W —* K locally analytic f(tx,ty)=K(t)f(x,y) 
and f(px,py) =pkf(x,y) for all teZ^(x,y)eW} 

Let us fix K G U(K) and define 

BK : A(U) x D — • Horn cont,Qp (s/*(L:)9K) 

by 

BK(a,p)(f) := a(«) 
M 

f(x,y)fJL(x,y), 

where / G ^ ( L ' J , a G A(Ï7), and u G D. Moreover we have 

\BK(a,»)(f)\K = |a (k) | k.| 
Lo 

/^|q„ < INI • \\<*\\a(U) l l / l l-IMIo 

= IWHI/IHI(«,m)I|. 

Therefore, for every (a , p) G i4(C/) x D, BK (a , //) is continuous and Qp-linear, therefore 

an element of HomcontjQp (A(k) (L'J,) i f ) , and 2?K is a continuous, Qp-bilinear map. 

Moreover if r G R, a G A(?7), // G D we have 

BK(a,rp)(f) = a (k 
L* 

/ M = 
Dxp xL'* 

f(tx,ty)r(t)p(x,y) 

= a (k) r(k) 
L'* 

f(x,y)p(x,y) = BK(ra,p)(f). 

By the universal property of completed tensor product, there is a unique continuous, 

Qp-linear map LK : A(U)®RD — • Homcont?Qp(^*(Z/J, K) such tha t the following 
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diagram is commutative 

A(U) x D bk Homcont,Qp ' A(k) (L'*), K) 

A(U)®RB LK Homcont?Qp ' A(k) (L'*), K) 

Finally, if fi e Bu = A(U)®rB and ' A(k) (L'*), K) we denote 

Lk(µ) (f) = 
%' 

/m. 

Let now k > 0 be an integer such tha t k eU and P E < f̂c. Let us remark tha t as the 
Z*-action on L'* preserves Woo, the function PxWoo E A(k)(L'*) where XWoo is the 
characteristic function of W^ in L'^. Let $ € Su (N, p). 

Definition 3.4. — The specialization map in weight k + 2 is the map 

pk:Su(NiP) Sfc+2(iV,p) 

defined by 

pfc(*)(s)(P) = 
WOO 

P(x,y)$(g)(x,y), 

for 0 G GL2(QP) and Pe&k. 

Remark 3.5. — Note tha t the stabilizer of the ordered edge e00:= ([L*], [Loo]) in 
PGL2(Zp), and therefore of Woo, is the image of r0(pZp). This is why the prime 
p arises in the level of the specialization Pfc($), even though Q was taken to be 
equivariant under the larger group E(iV, 1). 

The group Bx can be writ ten as a finite disjoint union of double cosets 

B*=Uqi=1BxdiZ(N,p), 
for elements di, i =1,.., q in Bx. The condition N > 4 insures tha t the groups 
d~xBxdi fl E(iV,p) are trivial, so tha t there is a natural identification 

S(JV,p) —>D9, given by Y > (^(d»))i<t<g-
The spaces i? and D with their natural topologies are Frechet spaces. Thus S(N,p) 
inherits from D a topology under which it becomes a Frechet space (just like R and 
D). Moreover Su(N,p) = S(E(iV, 1 ) ,D^) ^ S(JVr,p)®flA(C^). See Section 4 of [3] for 
more details. 

Definition 3.6. — Let M be a Frechet space which is an ^-module. We'll say that 
M is an orthonormalizable iî-module if, for each n > 0 there are orthonormalizable 
Rn = Dn(Zx)-Banach modules Mn such that M = lim Mn as fl-modules. 

Theorem 3.7. — The Frechet spaces D and S(N,p) are orthonormalizable R-modules. 
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Proof. — We have a natural projection it : W00 —> Zp given by (x, y) — • y/x, whose 
fibers are isomorphic to Z * . Moreover ir is equipped with a natural continuous section 
s defined as follows. For each i = 0 , l , . . . , p - l , o o G F1(¥p) let d C P^Qp) denote 
the residue class of i. The we can write L'* as the disjoint union (Z* ©pZp) U (ZP©Z*) 
such tha t TT(Z* ® pZp) =C00 and TT(Zp © Z*) = P^Qp) -C00 = U^d. Define 
s : Px(Qp) —•L'* by s(z) = (1,1/z) if ^ G Coo and s(z) = (z, 1) else. Then both TT, 5 
are locally analytic functions and they induce locally analytic isomorphisms: 

u: L'* —> E*p G P1 (Qp) and u : Z*p G p1 (Qp) —> L'* 

by: ((u(x,y) = (x,7R(x,y)) and u(a,z) = as(z). 
Moreover we have actions of I/* and Z* © P (Qp) as follows: if a G Z * , (a;,y) G 

L^(a,z) G Z * 0 P 1 ( Q p ) then a(x,y) = (ax, ay) and a ( a , * ) = (aa , z)- Then both 
г¿, v are equivariant with respect to these actions and they induce, for each n > 1 
natural isomorphisms as Banach spaces 

An(L't) = An(Zp )êAn(P1(Qp)). 

By duality they induce Dn (Z * )-linear isomorphisms 

Dn (L'*) = Homcont,Qp (An(L;),Qp) 

= Homcont (An (Z£ )®^„ (P1 (Qp)), Qp) 

= Homcont (A„(P1(Qp)),/Jn(ZpX)). 

The last term in the sequence naturally contains D^F1 (Qp))<8>£>n(Z* ) as the subspace 
of completely continuous (or compact) Qp-linear maps from An(F1(Qp)) to Dn(Zx). 

(See [20] section 4.) Since Dn(F1(Qp)) is a Banach space over Qp, it is orthonormal-
izable and therefore Dn(F1(Qp))<S>Dn(Zp ) is an orthonormalizable Banach module 
over Dn (Zp ). Now we claim tha t the natural inclusions above induce isomorphisms 

lim 
<—,n 

A i C P ^ Q p ) ) ® ^ ^ ) lim 
<— ,n 

Homcont,Qp (yl„(P1(Qp)),Dn(ZpX)). 

The map above is clearly injective. Let us show tha t it is surjective. Let 

(fn)n e lim 
«— ,71 

Homcont (^4n(P1(Qp)),^n(ZpX)). 

We have the following commutative diagram: 

An(Px(Qp)) Fn ^n(ZpX) 

er 

An +1 (P1(Qp)) 
/n+1 Dn+i(K), 

rn 

where rn is the restriction and sn is dual to restriction. Therefore, 

fn — ^n/n+l^nj 

and because rn is the restriction induced by the inclusion 

B\P1(QP),p-n-1] cBpP^Qp) , ? - " ] , 
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it is completely continuous. (See [20], Section 8.) Therefore fn is completely 
continuous for all n > 0. So we have an isomorphism as i?-modules D = 
lim 
—>,n 

eVi(p4Qp)® D n A i ( z £ ) which implies tha t D is an orthonormalizable i^-module. 

As S(N,p)=Dq it is an orthonormalizable Я-module as well. 

Corollary 3.8. — Let U be an affinoid disk contained in the weight space W. Then 
Be/ and Su(N,p) are orthonormalizable A{U)-modules. 

Theorem 3.7 can be used to define actions of Hecke operators Te for £ not dividing 
Np and Up, as in Sections 6 and 8 of [3]. The following theorem now follows from a 
s tandard argument. 

Theorem 3.9. — Let U be an affinoid disk contained in the weight space W. The 
operator Up : Sjj{N,p) —> Su(N,p) is a compact A(U)-linear operator. 

Proof. — See [22] and [3]. 

Recall the Coleman family /oo of eigenforms on Ti(N) D To(p) interpolating / 
t ha t is given in equation (3) of the introduction. The Fourier coefficients an(k) of 
/oo correspond to elements of A(U) for some rigid analytic disk U containing ko and 
contained in the weight space W. We will be making crucial use of the following 
"Jacquet-Langlands correspondence" applied to the family /oo. 

Theorem 3.10 (G.Chenevier, [4]). — To the expense of possibly shrinking U, there exists 
an eigenfamily Ф G Su(N,p) such that 

Ф\Тг = аеФ for (e,NP) = i and &\UP = арФ. 

4. A g e o m e t r i c in terpre ta t ion of p-adic 
famil ies of a u t o m o r p h i c forms 

In this section, we at tach to any family $ G Su{N,p) a collection of locally analytic 
distributions (µL) LCQ2 on W, indexed by the Zp-lattices in Qp. 

Definition 4.1. — Let us first fix a weight K eU. Let L = gL* be a Zp-lattice in Qp, 
for some g e GL2(Qp). The distribution p ^ on srf^K\W) is defined by 

'w 
F(Z)ial(Z) = 

L' 
F(z)tiL(z) := 

W 
(F\g)(zmg) = 

W 
Р(дг)Ф(д), 

where F : W —> Qp is any function in £/(K>(W). 

Note tha t if F G s/(">(W) then (F\g) G AK\W) for any g G GL2(QP) and tha t 
JJLL is supported, by definition, on the compact subset V of W. 

Here are some elementary properties of the collection {//L}-
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1. The distribution µL is well defined, i.e. it does not depend on the choice of g. 
Indeed, let #i,#2 £ GL2(QP) be such tha t g\L* = ^ 2 ^ * = L. Then gi =g2u with 
u G G L 2 ( Z p ) and we have 

L' 
(F|g1) (z) Q (g1) = 

L'* 
(F|#2^)(*)$(#2^) = 

L'* 
(F\92u)(z)(u-^(g2)) 

= 
L'* 

( F l p a u t i " 1 ) ^ ) * ^ ) = 
L'* 

(F|g2) (z) Q (g2) 

for all functions Fes/("\W). 
2. Let 7 be any element of I \ Then 

(y,L) ' 
F(z)fJL~L{z) = 

L' 
(F\j)(z)pL(z) 

for all locally analytic functions F in the space A k(k)(W) In particular for 

7 = 
P 

0 

0 

p 
G r we have 

(pLy 
F(z)/ipL(z) = 

V 
F(pz)fiL(z). 

3. For any a G A(U) and any lattice L C Qp, there is a natural multiplication a • µL, 

such tha t a • fiL is a locally analytic distribution on 1/ , and the family (a • P>l)l<ZQI 

is associated to a $ G S(N,p) by the procedure described above. 

The specialization map 

pk:Su{N,p) Sk+2(N,p) 
can be reinterpreted geometrically as a map assigning a 14-valued cocycle on & to a 
family of distributions (p>l)l indexed by lattices in Q^ and satisfying properties 1 to 
3 above. More precisely, for all P G Pk, let 

P(x,y) := yhP{x/y) 

denote the homogeneous polynomial in x and y, satisfying P(z,l) = P(z). Let us 
also denote \L\ : = p°rdp(det(£))? for B any Zp-basis of L. 

Lemma 4.2. — For each even integer k > 0, the T-invariant cocycle on £? attached 

to the specialisation Pk{$), 

CQ, k :E (J) —>Vk 

is expressed in terms of the system of distributions (µL)L associated to $ by the rule: 

c*,fc(e)(P) = \L\ -k/2 

We 
P{x,y)HL{x,y). 

where the lattice L above is any representative of the origin of e. 

Proof. — The proof is a direct consequence of the definitions. 
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Let k > 0 be an even integer and let K G U. Let us recall t ha t we have defined 

the space A(k)k(W) of locally analytic functions on W, homogeneous of degree K for 

the action of Zp and homogeneous of degree k for the action of p on W. Let us 

remark tha t if P is a locally meromorphic function on P1(QP) with at worst a pole 

of order k at oo then P(x,y) := ykP(x/y) E A(k)k(W). In particular if P G &>k then 

P E A(k)k (W) 
Suppose now tha t <£ G Su(N,p) is an eigenvector for the operator Up, so tha t 

Q |Up= apQ, with ap G -4(17). 

Lemma 4.3. — Suppose that L2 C Li are Zp-lattices in Qp with [Li : L2] = p. Let 
e = ([Li], [L2]) G &(&) be the corresponding edge. Then 

W 
F(x,y)pL2(x,y) = 

W 
F(x,y)(apfiLl)(x,y), 

for every locally analytic function F in A(k)k(W) where k > 0 is an even integer and 

K£U. 

Proof. — Let D(:\W) be the continuous dual of A ( k ) k < K \ w ) . We will extend the 

definition in 4.2 and will a t tach to $ a D<£\W) -valued cocycle on £F as follows: let 

Cq,k,k : E(T) D(:\W) be denned by 

C$)K,fc(e)(F) = L -fc/2 

we 
F(x,y)pL(x,y), 

where e = [L,Lf] with L, L' lattices in Q2p such tha t L ' c L has index p and 

F G ̂ ^ ( W ^ ) . Let us remark tha t due to the homogeneity of F with respect to the 

action of p, the definition is independent of the choice of L,L'. Then C$,K,k enjoys 

the same formal properties as c ^ , in particular we have 

CUp*,Ktk(e) = P 
s(e')=*(e),e'#ë 

CG,k, (e') 

for all eES(J). 
Let us now prove the lemma. We have 

|£i|-fc/2 

We 
F(x,y)(apfiL)(x,y) = CUp G ,k,k(E) (F) . 

= Pk 

CUp G ,k,k(E) (F) . 

C*,K,k(e')(F). 

For every e' in the above sum let us choose lattices e' = ( [ L 2 ] , [ M ) , then we have 

(17) \Ll\~k'2 
we 

F(x,y)(apnLl)(x,y) = \Li\ -k/2 k 

e' we 
F(x,y)pL2(x,y) = 

= |L1 -k/2| 
we 

F(x,y)fiL2 (x,y). 
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For every Z p - lat t ice L C Qp we define a distribution 7R*(/ix) on P 1 (Q P ) by the formula 

P1(Qp) 
P{t)r*(µ^L)(t):=|L|-fco/2 

w 
P{x,y)v>L{x,y), 

where P is any locally meromorphic function on P 1 (Q P ) , with at worst a pole of order 
kn at oo. 

Assume now tha t Pfc0(3>) = </>, where 0 G Sfc0+2(Af,p) is the automorphic form on 
jB at tached to / via Theorem 2 . 1 . In particular, $ is an eigenvector for Up whose 
associated eigenvalue ap(k) satisfies 

ap(k0)=pko/2. 
Recall the distribution attached to <f> tha t was defined in Section 2 . 

Proposition 4.4. — For all Zp-lattices L inQ2

p, 

r * (µL) = µQ. 

Proof. — First note tha t the function (x,y) —> P(x,y) is a locally analytic homo­
geneous function of degree &o with respect to the action of Q* on W, in particular 

P G A(ko)ko ( w ) . The relationship between /IPL and /XL described after Definition 4 . 1 
implies tha t 7T*(/XL) only depends on the homothety class of L. Moreover, let L\ 
and L2 be any two Z p -latt ices in Q2. Suppose without loss of generality tha t L2 is 
contained in L\ with index p, and tha t |L i | = 1, and | L 2 | = p. Let e = ([Li], [L2]) be 
the corresponding edge. Using Lemma 4 . 3 we have 

Ue 
P(t)7r*(fiL2)(t) \L2\~k^2 

We 

P(x,y)fiL2(x,y) 

p-ko/2 
We 

P(x,y)(aPnLl){x,y) 

p-ko/2ap(k0) 
We 

P{x,y)/j,Ll(x,y) 

Ue 

P{t)MfiLl)(t). 

Arguing in the same way for e=([(l/p)L2},[L1}), one finds tha t 

Ue 
P(t)K*(l*L2№ = 

Uë 
P(t)7T*faLl)(t), 

for all locally meromorphic functions P on P 1 (Q P ) with at worst a pole of order 
ko at 00. Because P 1 (Q P ) = Ue U Ue, we conclude tha t the distribution 7r*(/zL) is 
independent of the lattice L. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2010 



4 8 M. BERTOLINI, H. DARMON & A. IOVITA 

On the other hand, for all P as above we have 

Ue 
P ( t W t ) = CQ, Ko, ko (e) (P) = |Ll|-fco/2 

We 
P\xi Vjl^Li (x, y) 

= 
W 

P(t)µq(t) = 
Similarly, it follows tha t 

Ue 
P(t)n4>(t) = 

Uë 
P(t) r* (µL2)(t) 

which allows us to conclude. 

Given r G P1(CP), let f denote the natural image of r in P1(FP) obtained by 
reducing r modulo the maximal ideal of the ring of integers of Cp. Let J ^ (Qpr ) 
denote the unramified p-adic upper half-plane, consisting of elements in Qpr — Qp. 

Finally, let 

log(a;-ry)P(x,y)n, 
denote the so-called reduction map which is determined by the rules 

1. r ( r ) = V* if and only if T E PGL2(Qp) 

2. r ( 7 r ) — tK7" ) for all 7 G PGL2(QP). 

(See Chapter 5 of [13], for example, for more details.) 
We will now extend the definition to a more general class of functions. Let us 

fix r G J£p(Qpr), ko > 0 an integer and let U be an affinoid disk containing ko and 

contained in the weight space W. Let P G £/(fco)(L'J and JJL G We'd like to define 

L'* 
log(a;-ry)P(x,y)n, 

where the branch of log in the above formula and to the end of this article is such 

tha t log(p) = 0. 
Let F : U(K) x L i — Cp be defined by: 

F(K,(x,y)) = P(x,y)(x-ry) 
By the above expression we mean the following. Suppose first t ha t the radius r of U 

is small enough and let K be determined by the pair (e, c) as in remark 3.1. Here e is 

the character t 
t 

(t) 
ko and c G &K such tha t \c — ko\ < r. Then by (x - ry) K — ko 

we mean (x - ry) c—ko = exp((c - fc0) log(x - ry)). 
Let us remark tha t if t E Zxp we have F(k,((tx,ty)) = /c(t)F(«,(x,y)) , i.e. 

F ( K , - ) g ^ W ( L ' . ) . 

Lemma 4.5. — Let p G Dt/. The function U(K) —> cp defined by 

K 
L'* 

F(K,{x,y))n{x,y), 

is analytic near ko. 
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Proof. — Let us remark tha t we have the following expansion 

F(K, (x,y)) = P(x,y) 
oo 

71 = 0 

(k-k0) n 
n 

\ogn(x-ry), 

which converges for all (x,y) E L'* as log(x — ry) G p£?Q%r. Moreover, for all 

n > 0 the function (x,y)—• P(x, y) \ogn(x — ry) is locally analytic, more pre­

cisely P(x,y)logn(x — ry) G Am(L^) with m depending only on r and P. Let us 

fix an orthonormal basis {/^}^o °f Dm(L*), so tha t the ra-th component of /i in 

A(U)<S)RrnDrn(L^)y /z(m) can be uniquely writ ten 

µ (m) = 
oo 

i=0 

OLi <g> where a, G i4(l7) with HqjII — > 0 . 

We have, according to our definition 

L'* 
F{K, (X,y))/JL = 

L'* 
F(K, (x,y))µ (m) = 

OO 

i=0 
ai (k) 

L'* 
F(/c, (x,y))fj,i 

= 

oo 

i=0 
ai , (k) 

oo 

n=0 

(« - k0)n 

nl L'* 
P(x,y)\ogn(x- ry)ni(x, y). 

The lemma now follows from the fact tha t a»(/c) is analytic around ko for all i > 0. 

Let notations be as above, i.e. let ¡1 G B t / and P G A(ko) (L'*). 

Definition 4.6. We define 
v 

P(x,y) ìog(x - ту)ц{х,у) to be 

d 
dk L* 

F(K, (x,y))ti 
K=ko 

Remark 4.7. — Let us give an explicit formula for 
L'* 

P ( x , y) \og(x - ry)p(x, y). Let 

us suppose tha t P ( x , y ) l o g n ( x — ry) G Am(L+) for some m independent of n and 
let us fix an orthonormal basis i /x^l^n as m ^ne Pro°f °f lemma 4.5. We write 

M = 
oo 

¿=0 
ai G µ i, with OFT E A (U) such tha t ||ai| o. Then we have 

L'* 
P(x,y) \og(x - Ty)/j,(x, y) = 

oo 

i=0 

d 

dK ai) k= ko 
L'* 

P(x,y)fJLi(x,y) + 

+ 
oo 

2=0 
o>i(k0) 

L'* 
P{x,y) log(x-ry)ßi(x,y). 
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Let now $ G Sjj(N,p) and let {PL}LCQI ^e ^ e ^amuy °^ distributions attached to it. 

Let as above r <E JPP(Q^R), P G ^k°\W) and define ffay) := P(x,2/) log(x - ry). 

Let L C Q2p be a lattice and let g G GL2(QP) be such that L = gL*. For z = 2/) G 

W,(/|^)(^) can be written 

(f\9)(z) = f(gz) =C(9iT)(P\g)fay) + (P\g)fay) \og{x-r'y), 

where C(g,r) is independent of fay) and T' G J É p ( Q ^ ) Therefore it makes sense to 

define 

W 
P(x,y) log(X - T2/)/IL = C(g,t) 

L'* 
( P ^ ) ^ , ? / ) / ^ (#,?/) + 

+ 
L'* 

(P\g)fay) \og{x - r'y)^ fay). 

We are now ready to define the main object of this section. Given r G ̂ p(Qpr), let 

i?r = r(r) G ̂ ) and let LT be any Zp-lattice in the homothety class of vT. Recall the 

rigid analytic modular form tp defined in equation (12) of Section 2. 

Definition 4.8. — For all P G < f̂c0, the indefinite integral a t tached to r and I/J is 

defined by the formula 

(18) ip(z)P{z)dz := ||Lt -k0/2 

W 
log(x - ry)Pfa y)^LT fa V), 

where the branch of the p-adic log used above is the one satisfying log(p) = 0. 

Note tha t because 

log (pa; - pry)P(px,py) =phoìog(x-ry)P(x,y)i 

formula (18) only depends on the homothety class of Lr , so that the indefinite integral 

is well-defined. 

The main properties of the indefinite integral of Definition 4.8 are summarized in 

the following two propositions. 

Proposition 4.9. For all 7 G r and P E R ko , 

7T 
i>(z)P(z)dz = 

T 
i;(z)(P^)(z)dz. 

Proof. — Let 

7 = 
a b 

c d 
er. 

Then 

7T 
tl>(z)P(z)dz = \iLT\ -k0/2 

W 
log(x-(lT)y)Pfay)faLTfay). 
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Performing the change of variables 

u 

v 
= y -1 

x 

y 
= 

dx — by 

—cx + ay 

we obtain 
7R 

ip{z)P{z)dz = \Lr\ 
-k0/2 

W 
log 

U — TV 

er + d 
(P-f)(u,v)flLT(u,v) 

= iß(z){Py)(z)dz 

- loff(CT + d) L J -FCO/2 

w 
(Py)(u,v)µLt(u,v). 

On the other hand by proposition 4.4 we have 

|LT|-fco/2 
w 

(P^f)(u,v)fJLLT(u,v) = 
P (qp) 

(Py)(t)µq(t)= o. 

Proposition 4.9 follows. 

The next proposition relates the indefinite integral to the p-adic line integral of 
equation (13). 

Proposition4.10. — Let T\,T2 E Hp (Qurp) and let Vi = r(r<) =[Li] E Jo 6e £/ie 
corresponding vertices. For all P E Pko 

r2 
iP(z)P(z)dz -

Tl 
ip(z)P(z)dz 

= 
T2 

P 
^j(z)P{z)dz+2p-k°/2a'p(k0) 

e:vi—*v2 

c*(e)(P). 

Proof. — Suppose without loss of generality tha t L2 C L\ and [Li : L2] = P- Let 

e = ( [L1] , [L2] )€<f (^ ) . Then 

(19) 
T2 

ip{z)P{z)dz -
Li 

*p(z)P(z)dz 

(20) = |L2|"fco/2 
W 

l0g(x - T2y)P(x, y)ßL2 (x, y) 

(21) _ | L l | - W 2 

W 
log(x - Tiy)P{x, y)pLl (x, Î/) 

(22) = |L2|-*°/2 
W 

log 
x- t2y 
A: - ny 

P{x,y)VL2(x,y) 

(23) + 
w 

\og(x-r1y)P(x,y) (\L2\-^pL2-\Ll^o/2ßLiy 
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By proposition 4.4, the first integral (22) appearing in the last expression is equal to 

PX(Qp) 
log 

t-r2 

t-t1 
P(t)i*(t) = 

T2 

Tl 
il>(z)P(z)dz. 

In order to calculate the second integral (23), we will need the following describing 

the distribution a • JJLL for a G A(U). 

Lemma 4.11. — Let a be an element of ACU). For all e G F(J),T G Jt Hp, and 

P E Pko , 

We 
log(x-ry)P(xì y)(ap,L)(x, y) = a'(k0)\L\k°/%(e)(P) 

+a(fc0) 
we 

log(x - ry)P(x, y)fjLL(x, y). 

Proof of Lemma J^.ll: This proof is a consequence of the following calculation: 

We 
\og{x-Ty)P(x,y){cL[iL){x,y) 

= 
d 

dx, 
(«(«)( 

We 
P(x,y)(x-Ty)K *°/*L (« , ! / ) 

x= ko 

= a' (ko) 
We 

P(x,y)fj,L(x,y) 

+ a(ko) 
We 

log(x - Ty)P(x, y)/JLL(x, y) 

= a'{kQ)\L\k^2 
Ue 

P(z)tA4,(z)+ a(ko) 
We 

l0g(x - Ty)P{x, y)llL(x, y). 

This proves the lemma. 

End of proof of Proposition J^.10: We return to the evaluation of the integral 

J : = 
w 

\og{x-r1y)P{x,y) \L2\-k0/2»L2 - |L1| -ko/2 µ L1) 

appearing in (23). It is useful to express J as a sum of two contributions Je and Jë 

obtained by integrating over the disjoint subsets We and We of W associated to the 

ordered edge e = ( [ la] , [L2]) of J By Lemma 4.3, 

Je = 
We 

log(x - Tiy)P(x,y) (iLil-^X-lLil-^2) µ l1 (x,y) 

= |Ll|-fc0/2 
We 

log(x-ri2/)P(a;,2/) ( ( p - ^ o p - i K ) µ L 1 ) (x,y) 

Now applying Lemma 4.11 with a= p~k°'2ap-l, and noting tha t a(ko) = 0, we find 

(24) Je=p~k°'\ /2 a'p (fco)c0(e)(P). 
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On the other hand, e = ([( l /p)L2], [la]) and [(1/p)^2 • L\] = P so we have 
JJLLI\W_ = aP//(I/P)L2|wi- and the same computat ion gives: 

J e = 
We 

log(x - r1y)P(xiy) log(x - r1y)P(xiy)log(x - r1y)P(xiy) 

= -p-W2a'p{ko)ct{ê)(P) = p-k^afp(k0)c4e)(P). 

Therefore 

J = Je + Jë = 2p -k^ap(k0)C(t)(e)(P). 

This concludes the proof of Proposition 4.10. 

We are now able to prove Theorem 3 of the introduction: 

Theorem 4.12. — Let J&r(f) denote Teitelbaum's L-invariant attached to f. Then 

-2p-k°/2a'p(k0) = <?T(f). 

Proof. — Let $ be the family of automorphic forms associated to /<*> by Theorem 

3.10. Fix r G J^p(Qpr) and let vT = [Lr] G % be the corresponding vertex. Let 

hT G Vk0 ® Cp be the map sending P G &k0 to 

nt(P) := 
t 

i/;(z)P(z)dz. 

For all 7 G T and P G < f̂c0, Proposition 4.10 gives 

h1T{P) - hT(P) = 
7T 

T 
i>(z)P(z)dz+2p-k°/2a'p(k0) 

log(x - r1 

log(x - r1y)P( 

In the notations of Section 2 this formula can be rewritten as 

h1T -hT = ^°g(7) + 2p-FC°/2A;(fc0)Ko;d(7). 

On the other hand, Proposition 4.9 implies tha t 

[K£g] = -2p-fco/2a; 
is a Vfc0 ® Cp-valued coboundary for T. It follows tha t 

[K£g] = -2p-fco/2a;(A;o)[Kord]_ 

Theorem 4.12 now follows from Definition 2.3 of «^(7)-

5. Orton ' s j£f-invariant 

This section recalls the definition of Orton 's Jf- invar iant , which involves the theory 

of modular symbols. The reader is referred to [19] for more details. 

Write A for the group D i v ^ P ^ Q ) ) of degree zero divisors supported on the rational 

cusps of the Poincaré upper half plane. For any unitary commutative ring A of C, let 

^fc(A) denote the A-algebra of polynomials of degree < k with coefficients in A, and 
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let Vk(A) be the A-dual of 0>k(A). When A is a subfield of C, the group GL2(Q) 
acts on the right on ^k(A) by the rule 

(P7)(z) = (cz + d)kP(1z)) 7 = 
a 

c 

b 

d 

This induces a right action of GL2(Q) on Vk(A) by setting 

(4n)(P) = HP^1)-

A modular symbol with values in a GL2(Q)-module Y is a homomorphism from 
A to y. The space of all such modular symbols is denoted 

MS(V) : = h o m ( A , r ) . 

It is equipped with a right GLi2(Q)-action by the rule 

(7717) (<*) = m(7<J)7, 

for m G MS(y), ô G A, and 7 G GL2(Q). If the divisor S is of the form (s) - ( r ) , 
write m{r —• s} for m(S). 

A modular eigenform g of weight A: + 2 on ro(iVp) gives rise to a T0(Np)-invariant 
Vfe(C)-valued modular symbol 

[K£g] = -2p-fco/2a;(A;o 

by the rule 

*p(*) (P) = 27Tt 
5 

g(z)P(z)dz, 

with £ G A and P G «^fc(C). Write W-+g for the projection of Yw to the ±-eigenspace 
of Hom(A, Vfc(C)) for the action of the involution 

c = 
- 1 

0 

0 
1g 

Let Kg be the extension of Q generated by the Hecke eigenvalues of g. By a result of 

Shimura, there exist complex periods M+-g such tha t 

[K£g] = -2p-fco/2a;(A;o) 

takes values in Vk(Kg). Note tha t the modular symbols ^ g and $f are all 

Tq (Np)-invariant. 

Let / be the newform on T0(Np) considered in the introduction. Fix a choice of 

sign w00 £ {—lj 1} and let 

<3>J = 
Q-f if Woo = i; 

* 7 
if Woo = - 1 . 

be the modular symbol in MS(Vk0(Kf)) a t tached to / . Define 

f = 7 = 
a 

c 

b 

d 
G M2(Z[l /p]) : AT I c and det (y) = p2h, for hez 
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Write T for the group of elements in f having determinant one. For (s) — (r) G A, 

define a harmonic cocycle 

cf{r - s} : S{ST) Vk0(QP) 

by the rule 

cf{r- s}(e)(P) = $ / ( (7« ) - ( 7 r ) ) ( P 7 _ 1 ) , 

where 7 G T is such tha t ye = e00. This definition is independent of the choice of 7 

such tha t 7e = e ^ : for if 7 ' is another such element, the element 7 / 7 - 1 belongs to 

To(Np), the stabiliser of eoo. The claim then follows from the To(Np)-invariance of 

Qf 
The cocycle c /{ r —> s} gives rise to a locally analytic distribution on P 1 (Q P ) , 

denoted /x/{r —> s } , and determined by setting 

U2 
P(t)fAf{r - s}(t) = cf{r-+s}(e)(P) 

for all e EC(J) and P G &k0(QP), and extending to functions on P ^ Q p ) which 

are locally analytic on QP and have a pole of order at most k0 at infinity. Note the 

analogy between this definition and the definition of the locally analytic distribution 

FJITJ) in equation (11) of Section 2. 

The following definition is modelled on the description of the Coleman line integral 

given in equation (13) of Section 2. 

Definition 5.1. — For T I , T 2 G J4?p and r, s G P*(Q), the definite double integral is 
defined by 

T2 

t 

S 

r 
LUfP = 

p2 (qp) 
log 

t — T2 

t - n 

P(t)»f{r- s}(t). 

The notation ujf in Definition 5.1 is meant to suggest tha t the definite double integral 
should be thought of as the integration of a form of parallel weight (ko + 2, ko + 2) on 
J4?p x J ^ 7 associated to / . This point of view is explained in detail in [13], Chapter 9 
and [19], Chapter 2. 

Set 
[K£g] = -2p-fco/ [K£g] = -2p-f and write 

Jlk:=MS(Vib)=Hom(A, VK) . 

The following definitions are motivated by the definition of the 1-cocycles « ? r d and 

K4> given in equations (14) and (15) respectively. 

Definition 5.2. — 

1. The 1-cocycle K°f

Td G Zl{T,JKkQ) is defined by choosing v G % and setting 

« ° f r d ( 7 ) { r - - s } ( P ) = 
E:T>—YU 

C / { r - s}(P)(e). 
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2. The 1-cocycle K?g G Z 1 ( r , ^ C o ) is defined by choosing r G <fflv and setting 

« 1 ; « ( 7 ) { r ^ 4 ( p ) = 
'7T 

r 

s 

R 
WfP , 

Lemma 5.3. — 

1. The image [ft™] of Kf in H1 {T, <siïk^) ^s independent of the choice of base 

vertex v. 

2. The image [«^g] of Kljg in HX(T, <Jtko) is independent of the choice of base point 

r G J%p. 

Proof — See [19], Lemma 5.1 and 5.2. Note tha t the one-cocycles /^rd and Kjg are 

denoted oc/> and lcfjT respectively in [19]. 

Proposition 5.4. — The class [/^rd] is non-zero. 

Proof. — Proposition 13 of Section II.2.8 of [21], applied to the case M = ^ko and 
G = T acting on J, yields a linear transformation 

d:H°(T0(Np),^ko) e H\T,Jtk0) 

whose kernel is identified with the p-old subspace of the space of modular symbols on 
Fo(Np). The map 9 is described explicitly in Section 3.1 of [12], where it is shown 
tha t O(Qf) = [«/rd]- (Although [12] assumes k0 = 0, the t rea tment of the general 
case is no different.) Proposition 5.4 follows from the fact tha t the form / is new at 

P-

Let 

H\T,JtkQy, H\T,JtkQ) f,Woo cH\T,Jtko) 

denote, respectively, the /- isotypic subspace and its Woo-eigenspace for the action of 

the involution c defined at the beginning of this section. The classes [«^rd] and [K^S] 
both belong to H1(T,Mko)fw00. In [19], Proposition 7.1, it is shown tha t this space 

is one-dimensional over CP. This makes it possible to define Orton 's «5f-invariant 

Lo (f) in a way which parallels closely Definition 2.3 of Teitelbaum's j£f-invariant. 

Definition 5.5. — The Orton L-invariant at tached to / is the unique scalar 

Lo(f) € Cp such tha t 

[K£g] = -2p-fco/hjdf2a;(A;o) 

Remark 5.6. — Note tha t J £ b ( / ) depends a priori on the choice of sign Woo which 

determines whether Qf is taken to be the even or odd modular symbol at tached to / . 

Hence there are two a priori distinct Orton J^f-invariants at tached to / , which could 

be denoted L+0(f) and Lo-( f ) . A by-product of our s tudy of Lo(f) is a direct proof 

tha t these two invariants are in fact equal. (Cf. Theorem 6.8.) 
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Recall the Shimura period ftf (depending on the choice of sign Wqq) tha t was used 
to define the modular symbol at tached to / . Let Lp(f,x,s) denote the Mazur-Tate-
Teitelbaum p-adic L-function at tached to / and x> which is constructed in terms of 
the modular symbol of / and hence depends on the choice of Q,f. Set w = 1 if / 
is split multiplicative at p, and w = — 1 if / is non-split multiplicative at p. The 
following theorem of Orton is crucial for the proof of Theorem 2 of the Introduction. 

Theorem 5.7 (Orton). For all Dirichlet characters x satisfying x(p) = w anà 
X ( - l ) = Woo, 

L ' ( / , X , 1 + V 2 ) = J % ( / ) £ * ( / , X , l + *ò/2)-

It is worth noting tha t it is at this stage, and this stage only, tha t a connection is 
made between the cohomologically-defined =Sf-invariants and special values of L-series. 

Let us briefly recall some of the ideas tha t go in Orton 's proof of Theorem 5.7. 
Fix a positive integer c prime to Np. For any positive integer v prime to c, define an 
embedding Wv: Q x <Q> -> M2(Q) by setting 

Wv (a,a) = 
a 

0 

0 

a 
*„(c ,0) = 

c 

0 

v 

0 

When v varies in a full set of representatives for (Z /cZ)x , Wv describes the set of all 
T-conjugacy classes of oriented optimal embeddings of conductor c: see [12], Section 
2. Set 

r^u — oo, 5Ф„ = - v/c, 7*„ = * l / ( p ~ , p - ) = 
pu 

0 
[pu -p-u)v/c 

p-u 

where u denotes the order of p2 in (Z /cZ)x . The element is a generator for the 
image of \J>((Q)X x Q x ) n T in PGL2(Q) . Moreover, r^v, resp., syv is the repulsive, 
resp., at tractive fixed point for the action of ^ ( 7 ^ ) on PX(Q). Define the polynomial 

[K£g] = -2p-fco/2a;(A;o)[Kord]_dfgj[K£g] = -2 
Note tha t Pq,v is invariant under the weight ko + 2 action of 7 ^ . 

The one-cocycles K,J°D and / ^ g can be used to associate to the embedding tyu the 
following numerical invariants: 

(25) [K£g] = -2p-fco/2a;(A;o) [K£g] = -2p-fco/2a;(A;o)[K 
kdjslgsjgk 

[K£g] = -2p-fco/2a;(A;o)[[K£g] = -2p-f 

(26) [K£g] = -2p-fco/2a;(A;o)[ [K£g] = -2p-fco/2a;(A;o 
jkdbkd 

xc 

zr 

ds 
UfP^v. 

Remark 5.8. — Note tha t 

b(rt*v){r*t,^89l,}(Pvu) = 0 
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for any coboundary b G 5 1 ( r , «/#fc0). This implies tha t the quantities J£rd and JX^g 
do not depend on the choice of cocycles representing the cohomology classes [«yrd] 
and [Kfg] respectively, and hence, by the definitiono f j£o( / )> tha t 

(27) J^ = J?o(f)Jt-
Let x be a Dirichlet character of conductor c, such tha t x{p) = w and x ( ~ l ) — ^oo-

The following formula of Orton relates the numerical invariants J£rd and J^g defined 
in (25) and (26) to special values of L-series, and derivatives of the corresponding 
p-adic //-functions, respectively: 

(28) 
^€(Z/cZ)x 

[K£g] = -2p-fco/2a; ( 2 « ) L * ( / , x , l + fco/2); 

(29) 
i/E(Z/cZ)x 

[K£g] = -2p-fco/2 -2p-fco/2a;(A;o)[Kord/ 2) 

The first formula is Corollary 6.1 of [19], while the second formula is Corollary 6.2 of 
[19]. 

Theorem 5.7 now follows directly from these formulae and equation (27). 

6. D i s t r i b u t i o n - v a l u e d m o d u l a r s y m b o l s 

Recall from the introduction the p-adic family of eigenforms 

foo — 
oo 

71=1 
[K£g] = -2p-fco/2a 

with an G A(U) 

interpolating the given newform 
[K£g] = -2p-fco/2a;(A;o 

of weight k0 + 2 on To(Np). This 
means tha t 

fk = 
oo 

t =T 

a{k)qn 

is a normalised eigenform of weight k+2 on Ti(N)nTo(p), for all k G C/nZ>o, and tha t 
fk0 = / • Let $fk be the modular symbol in MS(Vk) defined in section 5, associated 
to the choice of sign w^. Note tha t 3>/fe also depends on a choice of complex period 
f2/fc, and thus is only really well-defined up to multiplication by a non-zero scalar. 
Two modular symbols m i and rri2 in MS(Vk) are said to be equivalent if there exists 
a non-zero scalar A G C * such tha t m\ = \m2\ one then writes m i ~ m<i> 

Assume throughout this section tha t / = fk0 is split multiplicative at p , so tha t 

w = -hi, p-fco/2a;(A;o)[Kord]_ 
As in section 3, let D be the space of locally analytic distributions on I/*, with 

L* = Zp. Recall tha t the Qp-algebra R of locally analytic distributions on Z * acts on 
D. The space MSr0(N)№) °f T0(iV)-invariant D-valued modular symbols is equipped 
with a natura l action of the Hecke operators Tn with p J(n, as well as an action of R 
arising from the P-module structure on D. Let us fix as in the previous sections an 
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affinoid disk U, defined over K, containing ko and contained in the weight space W 

and let Du:= BGrA(U). 

Proposition 6.1. — There exists a distribution-valued modular symbol $f00 G M S (Du) 

satisfying the following properties: 

1. (Ti(N)-invariance) Gf00 is TQ(N)-invariant, that is, 

$/oo (7*) - 7 = */OO(*) 

for all 7 G r i(7V). 

2. (Weight specialisation) Following the notations of Definition 3.4, for k G U(K)D 

Z>o and P G &k, define a V^-valued modular symbol 

pk($fJ : A —> Vk 

by the rule 

Pk($fJ(S)(P) = 
W00 

[K£g] = -2p-fco/2a;(A;o)[Kord]_ 

Then, 

[K£g] = -2p-fco/2a;(A;o)[ and P * O ( * / J = * / -

Proof. — When / has weight 2 (i.e., ko = 0), the existence of a modular symbol with 

values in the module of bounded distributions on L* is proved in [15]. In general, it 

follows from results of Stevens in [22]. 

For a divisor 6 = (s) — (r) in A, write µL'* {r —> 5 } for the locally analytic distribution 

^foo(S). It will be viewed as a distribution on W, supported on L*. 

Definition 6.2. — For any lattice L in Qp, the locally analytic distribution µL{—>$} 

on W is defined by the rule 

w 
F(x,y)fJ<L{r -> s}(x,y) = 

W 
F{g 1(x,y))fiL^{gr -> gs}(x,y), 

where F : W — • Qp is any locally analytic function, and g G T is any element such 
tha t gL = L* 

Note tha t the above definition does not depend on the choice of g G T such tha t 

gL = L*: if g' is another element of T such tha t g'L = L*, it follows tha t g'g~l 

belongs to the stabiliser of L* in f, which is the group r0(iV). The claim then follows 

from the ro(iV)-mvariance of 3?/^, s ta ted in par t 1 of Proposition 6.1. 

The system of distributions µL{—> $} satisfies similar properties to those of the 

system /i£ introduced in section 4. Since the proofs of these new properties are 

analogous to those presented in section 4, details are usually omitted. 

Lemma 6.3. — Let K G U(K), L2 C L I be Zp-lattices in Qp with [L\ : L2] = p, and 

let e = ([Li], [L2]) G S(^) be the corresponding edge. Then 

ML2{r-»s}|vye =appLl{r—> s}\We, 
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so that 

We 
F(x,y)VL2{r—>s}(x,y) = 

We 
F(x,y)(aPnLl {r -+ s})(x,y), 

for every locally analytic function F G &/W(W). 

Proof — The proof is identical to tha t of lemma 4.3. 

Let 7r be as before the projection of W onto P (Qp). For every Zp-lattice LcQ2p, 

define a locally analytic distribution KAULW —• s}) on P (Q«) by the formula 

P1(Qp) 
P{t)7T^L{r ^ S}) (t) = |L|-*û/2 

w 
r]koP(x/y)iiL{r -> s}(x,y), 

where P is any locally meromorphic function on ¥1(QP) with a pole of order at most 

ko at oo. 

Proposition 6.4. — For all 7jp-lattices L in Q2p 

K*(ll<L{r S}) = flf{r S} , 

where jif is the locally analytic distribution on P1(QP) defined in section 5. 

Proof. — The proof is similar to tha t of Proposition 4.4. It uses lemma 6.3 instead 

of lemma 4.3, and par t 3 of Proposition 6.1, which guarantees tha t the specialisation 

at ko of Qf00 is the modular symbol at tached to / . 

Let [K£g] = -2p-fco/2a;(xdc and let vT = [LT] e % be the vertex corresponding to r under 
the reduction map. The following definition is modelled on tha t of the indefinite 
integral of Definition 4.8: 

Definition 6.5. — For all P 6 «^fc0, the indefinite integral a t tached to r G J^>, to 
r, s G P1 (Q), and to / is defined by the formula 

(30) 
P s 

r 

UJfP = |Lr|-fc°/2 
w 

log(x - ry)P(x, y)fjLLr {r -» s}(x, y). 

Since 

log(px - pry)P(px,py) = pko log(x-ry)P(x,y), 

formula (30) depends only on the homothety class of Lr , and hence only on r . The 

main properties of the indefinite double integral of Definition 6.5 are summarized in 

the following two propositions. 

Proposition 6.6. — For all 7 G T and P e &ko, 

7T 7S 

7r 
UJfP = 

p s 

r 
UJfP 7. 

Proof. — It is identical to the proof of Proposition 4.9. 
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Proposition6.7. — Let n , r 2 G J^p(QpT), and let vi = [L1],v2 = [L2] G % be the 
corresponding vertices under the reduction map. For all P G &k0, 

'T2 

'r 
UJfP-

ui s 

r 
UJfP 

uiu 
T2 

Tl 

•S 

r 
ufP + 2p-k°'2a'Jko) 

e:vi—*V2 

cf{r—> s}(e)(P). 

Proof. — Assume without loss of generality tha t L2 C L\ and [L\ : L2] = p. Set 

e=({L1},[L2}) E C ( J ) . Then 

T2 S 

r 
LJfP-

•Ti s 

r 
UfP 

= ¿2 -fco/2 

W 
\og(x - T2y)P(x, y)pL2 {r -+ s}(x,y) 

-\Li\ -k0/2 

W 
\og(x - r1y)P(x,y)p>Ll {r -+ s}(x,y) 

— -Aog H" -̂ ord? 

where 

îog = \L2\ -k0/2 

W 
log 

x - r2y 

x - ny 
P(x,y)pL2 {r -> s}(x,y), 

and 

Lord — 
W 

\og(x - Tiy)P(x,y) (\L2\-k^^L2{r - ,} - {L^-^^ir - 8}) 

Using Proposition 6.4, and the fact tha t the function involved in the integral defining 
/log is constant along the fibers of 7R, one finds tha t 

/log = 
D (Qp) 

log 
t-r2 

T - T1 
P(t)»f{r - 8}(t) = 

To 

ri 

>s 

r 
UfP. 

Now, write the integral defining 7ord as the sum of two contributions Je and Jë, 
obtained by integrating over the disjoint subsets WE and WË. By Lemma 6.3, 

Je = 
We 

logix - T^Plx.y) ( | L 2 | - ^ L 2 _ I L X I - W V O {R - > s}(x,y) 

= 
We 

\og(x-r1y)P(x,y) [K£g] = -2p-fco/2a;(A;o)[Kord]_ 
[K£g] = -2p-fco/2a;(A;o)[ 

= \Li\ -fco/2 

We 
\og(x - ny)P(x,y) ( ( P - W 2 A P - l K { R - 5 } ) (Z,2/). 

The formula 

(31) 
w 

log(x - ry)P(x, y) 
[K£g] = -2p-fco/2a;(A;o)[Kord]_ 

[K£g] = -2p-fco/2a;(A;o)[Kord]_ (e)(P) + a(fc0) 
We 

log(x - ry)P(x,y)pL {r -> s}(x ,y) 
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(e G g{&\ a G A{U), r G J%p, and P C Pko is obtained by adapting the approach 

tha t is followed in the proof of lemma 4.11. By applying (31) with a = p ko/2ap - 1, 
the above expression for Je becomes 

Je=p-k°/2a'Jk0)cf {r—>s}(e)(P). 

Moreover, a similar argument proves tha t 

J-e = -p-k°/2a'p(k0)cf {r - s}(ë)(P) = p-k°/2ap(k0)cf [r - s}(e)(P). 

Hence, 

Jovd — Je H" Je — 2p -k^2a'p(k0)cf{r - *}(e) (P) , 

as was to be shown. 

We are now ready to prove the main result of this section. 

Theorem 6.8. — The equality 

-2p-k°/2a'p(k0)= J?o(f) 

holds. In particular, Orton's J£-invariant Jifo(f) is independent of the choice of sign 
Woo that was made in defining it. 

Proof. — Let r be a point in J#p(QpT), and let vT = [LT] G <% be the corresponding 
vertex. Fix a divisor (s) — (r) in A. Given r G Jffp, one defines an Pvko -valued modular 
symbol hr by the rule 

hT{r - s}(P) = 
r s 

r 
UJfP. 

Proposition 6.7 gives 

hT{7-lr -> 7 - 1 s } ( 7 - 1 P ) - M r a}(P) = L , { r - • s} (P) _ M r _> S}(P) 

(32) 
7T 

r 

s 

r 
LjfP + 2p-k°/2a'Jk0) 

2p-k°/2a'Jk0) 

c /{r - *}(e) (P) , 

for all 7 G T. In the notations of Definition 5.2 of Section 5, this relation can be 

rewrit ten as 

(33) M 7 - 1 r - 7 _ 1 s } ( 7 - 1 P ) - M . r - *} P 

= 4 o g ( 7 ) { r ^ S } + 2p -fco/2a;(fco)«7d(7){r - a}. 

Since the expression on the left of (33) is a Mko -valued one-coboundary, it follows 

upon projecting this equation to ^T1(r,^fc0) tha t 

[«'og] = -2p-fco/2a'(fc0)Krd]. 

Theorem 6.8 is now a direct consequence of Definition 5.5 of JS?O(/). 

Corollary 6.9. — 

1. The equality JfT(f) = &o(f) holds. 
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2. For all Dirichlet characters x satisfying X\P) — 1? 

L'Jf,xA + ko/2) = &r(f)L'(f,x,l + ko/2). 

Proof — Part 1 follows by combining theorem 6.8 with theorem 4.12. Part 2 follows 
by combining part 1 of this corollary with theorem 5.7. 
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