@book{AST_2011__337__R1_0, author = {Bunke, Ulrich and Schick, Thomas and Spitzweck, Markus}, title = {Periodic twisted cohomology and $T$-duality}, series = {Ast\'erisque}, publisher = {Soci\'et\'e math\'ematique de France}, number = {337}, year = {2011}, mrnumber = {2797285}, zbl = {1245.55004}, language = {en}, url = {http://archive.numdam.org/item/AST_2011__337__R1_0/} }
Bunke, Ulrich; Schick, Thomas; Spitzweck, Markus. Periodic twisted cohomology and $T$-duality. Astérisque, no. 337 (2011), 140 p. http://numdam.org/item/AST_2011__337__R1_0/
[1] Twisted -theory", Ukr. Mat. Visn. 1 (2004), p. 287-330. | MR | Zbl
& - "[2] Sheafifiable homotopy model categories", Math. Proc. Cambridge Philos. Soc. 129 (2000), p. 447-475. | MR | Zbl | DOI
- "[3] Twisted -theory and -theory of bundle gerbes", Comm. Math. Phys. 228 (2002), p. 17-45. | MR | Zbl | DOI
, , , & - "[4] -duality: topology change from -flux", Comm. Math. Phys. 249 (2004), p. 383-415. | MR | Zbl | DOI
, & - "[5] Sheaf theory, second ed., Graduate Texts in Math., vol. 170, Springer, 1997. | MR | Zbl | DOI
-[6] The topology of -duality for -bundles", Rev. Math. Phys. 18 (2006), p. 1103-1154. | MR | Zbl | DOI
, & - "[7] On the topology of -duality", Rev. Math. Phys. 17 (2005), p. 77-112. | MR | Zbl | DOI
& - "[8] -duality for non-free circle actions", in Analysis, geometry and topology of elliptic operators, World Sci. Publ., Hackensack, NJ, 2006, p. 429-466. | MR | Zbl | DOI
& , "[9] Sheaf theory for stacks in manifolds and twisted cohomology for -gerbes", Algebr. Geom. Topol. 7 (2007), p. 1007-1062. | MR | Zbl | DOI
, & - "[10] Inertia and delocalized twisted cohomology", Homology, Homotopy Appl. 10 (2008), p. 129-180. | MR | Zbl | DOI
, & , "[11] Duality for topological abelian group stacks and -duality", in -theory and noncommutative geometry, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich. 2008, p. 227-347. | MR | Zbl | DOI
, , & - "[12] Grothendieck duality and base change, Lecture Notes in Math., vol. 1750, Springer, 2000. | MR | Zbl
-[13] Cohomologie à supports propres", in Théorie des topos et cohomologie étale des schémas. Tome 3 (M. Artin, A. Grothendieck & J.-L. Verdier, eds.), Lecture Notes in Math., vol. 305, Springer, 1973, Séminaire de Géométrie Algébrique du Bois-Marie 1963-1964 (SGA4), p. 250-480. | Zbl | DOI
- "[14] Notes on differentiable stacks", in Mathematisches Institut, Georg-August-Universität Göttingen: Seminars Winter Term 2004/2005, Universitätsdrucke Göttingen, 2005, p. 1-32. | MR | Zbl
- "[15] Model categories, Mathematical Surveys and Monographs, vol. 63, Amer. Math. Soc., 1999. | MR | Zbl
-[16] Model category structures on chain complexes of sheaves", Trans. Amer. Math. Soc. 353 (2001), p. 2441-2457. | MR | Zbl | DOI
,"[17] Sheaves on manifolds, Grund. Math. Wiss., vol. 292, Springer, 1990. | MR | Zbl
& -[18] The six operations for sheaves on Artin stacks. I. Finite coefficients", Publ. Math. Inst. Hautes Études Sci. 107 (2008), p. 109-168. | MR | Zbl | EuDML | Numdam | DOI
& - "[19] Chern character in twisted -theory: equivariant and holomorphic cases", Comm. Math. Phys. 236 (2003), p. 161-186. | MR | Zbl | DOI
& - "[20] Étale cohomology, Princeton Mathematical Series, vol. 33, Princeton Univ. Press, 1980. | MR | Zbl
-[21] Triangulated categories, Annals of Math. Studies, vol. 148, Princeton Univ. Press, 2001. | MR | Zbl
-[22] Foundations of topological stacks I", preprint arXivrmath. AG/0503247. | Zbl
- "[23] Sheaves on Artin stacks", J. reine angew. Math. 603 (2007), p. 55-112. | MR | Zbl
- "[24] Topological -duality and Kaluza-Klein monopoles", Adv. Theor. Math. Phys. 12 (2008), p. 185-215. | MR | Zbl | DOI
- "[25] Introduction to étale cohomology, Universitext, Springer, 1994. | MR | Zbl | DOI
-[26] Dualité dans la cohomologie des espaces localement compacts, Séminaire Bourbaki, exp. n° 300, Soc. Math. France, 1995. | MR | Zbl | EuDML | Numdam
-