@incollection{AST_2011__339__203_0, author = {Guionnet, Alice}, title = {Grandes matrices al\'eatoires et th\'eor\`emes d'universalit\'e [d'apr\`es {Erdos,} {Schlein,} {Tao,} {Vu} et {Yau]}}, booktitle = {S\'eminaire Bourbaki, volume 2009/2010, expos\'es 1012-1026}, series = {Ast\'erisque}, note = {talk:1019}, pages = {203--237}, publisher = {Soci\'et\'e math\'ematique de France}, number = {339}, year = {2011}, mrnumber = {2906355}, zbl = {1357.60013}, language = {fr}, url = {http://archive.numdam.org/item/AST_2011__339__203_0/} }
TY - CHAP AU - Guionnet, Alice TI - Grandes matrices aléatoires et théorèmes d'universalité [d'après Erdos, Schlein, Tao, Vu et Yau] BT - Séminaire Bourbaki, volume 2009/2010, exposés 1012-1026 AU - Collectif T3 - Astérisque N1 - talk:1019 PY - 2011 SP - 203 EP - 237 IS - 339 PB - Société mathématique de France UR - http://archive.numdam.org/item/AST_2011__339__203_0/ LA - fr ID - AST_2011__339__203_0 ER -
%0 Book Section %A Guionnet, Alice %T Grandes matrices aléatoires et théorèmes d'universalité [d'après Erdos, Schlein, Tao, Vu et Yau] %B Séminaire Bourbaki, volume 2009/2010, exposés 1012-1026 %A Collectif %S Astérisque %Z talk:1019 %D 2011 %P 203-237 %N 339 %I Société mathématique de France %U http://archive.numdam.org/item/AST_2011__339__203_0/ %G fr %F AST_2011__339__203_0
Guionnet, Alice. Grandes matrices aléatoires et théorèmes d'universalité [d'après Erdos, Schlein, Tao, Vu et Yau], dans Séminaire Bourbaki, volume 2009/2010, exposés 1012-1026, Astérisque, no. 339 (2011), Exposé no. 1019, 35 p. http://archive.numdam.org/item/AST_2011__339__203_0/
[1] An introduction to random matrices, Studies adv. math., vol. 118, Cambridge Univ. Press, 2009. | MR | Zbl
, & -[2] Poisson convergence for the largest eigenvalues of heavy tailed random matrices, Ann. Inst. Henri Poincaré Probab. Stat. 45 (2009), p. 589-610. | DOI | EuDML | Numdam | MR | Zbl
, & -[3] Diffusions hypercontractives, in Séminaire de probabilités, XIX, 1983/84, Lecture Notes in Math., vol. 1123, Springer, 1985, p. 177-206. | DOI | EuDML | Numdam | MR | Zbl
& -[4] Correlations of nearby levels induced by a random potential, Nuclear Phys. B 479 (1996), p. 697-706. | DOI | MR | Zbl
& -[5] Spectral form factor in a random matrix theory, Phys. Rev. E 55 (1997), p. 4067-4083. | MR
& ,[6] Random matrix theory : invariant ensembles and universality, Courant Lecture Notes in Math., vol. 18, Courant Institute of Mathematical Sciences, New York, 2009. | MR | Zbl
& -[7] Strong asymptotics of orthogonal polynomials with respect to exponential weights, Comm. Pure Appl. Math. 52 (1999), p. 1491-1552. | DOI | MR | Zbl
, , , & -[8] A Brownian-motion model for the eigenvalues of a random matrix, J. Mathematical Phys. 3 (1962), p. 1191-1198. | DOI | MR | Zbl
-[9] Bulk Universality for Wigner Matrices, Comm. Pure Appl. Math. 63 (2010), p. 895-925. | MR | Zbl
, , , & -[10] Bulk universality for Wigner Hermitian matrices with subexponential decay, Math. Res. Lett. 17 (2010), p. 667-674. | DOI | MR | Zbl
, , & , & , -[11] Universality of sine-kernel for Wigner matrices with a small Gaussian perturbation, Electron. J. Probab. 15 (2010), p. 526-603. | DOI | MR | Zbl
, , , & -[12] Local Semicircle law and complete delocalization for Wigner random matrices, Comm. Math. Phys. 287 (2009), p. 641-655. | DOI | MR | Zbl
, & -[13] Wegner estimate and level repulsion for Wigner random matrices, Int. Math. Res. Not. 2010 (2010), p. 436-479. | DOI | MR | Zbl
, & ,[14] Universality of random matrices and local relaxation flow, prépublication arXiv :0907.5605. | DOI | MR | Zbl
, & ,[15] The local relaxation flow approach to universality of the local statistics for random matrices, prépublication arXiv :0911.3687. | DOI | Numdam | MR | Zbl
, , & -[16] Bulk universality for generalized Wigner matrices, prépublication arXiv : 1001.3453. | DOI | MR | Zbl
, & -[17] The spectrum edge of random matrix ensembles, Nuclear Phys. B 402 (1993), p. 709-728. | DOI | MR | Zbl
-[18] A bound on tail probabilities for quadratic forms in independent random variables, Ann. Math. Statist. 42 (1971), p. 1079-1083. | DOI | MR | Zbl
& -[19] Fourier transforms on a semisimple Lie algebra. I, Amer. J. Math. 79 (1957), p. 193-257. | DOI | MR | Zbl
-[20] The planar approximation. II, J. Math. Phys. 21 (1980), p. 411-421. | DOI | MR | Zbl
& -[21] Universality of the local spacing distribution in certain ensembles of Hermitian Wigner matrices, Comm. Math. Phys. 215 (2001), p. 683-705. | DOI | MR | Zbl
-[22] Universality for certain Hermitian Wigner matrices under weak moment conditions, prépublication arXiv :0910.4467. | DOI | Numdam | MR | Zbl
,[23] High moments of large Wigner random matrices and asymptotic properties of the spectral norm, prépublication arXiv :0907.3743. | DOI | MR | Zbl
-[24] Random matrices, Pure and Applied Math., vol. 142, Elsevier/Academic Press, 2004. | MR | Zbl
-[25] Universality in the bulk of the spectrum for complex sample covariance matrices, prépublication arXiv : 0912.2493. | DOI | Numdam | MR | Zbl
-[26] Wigner random matrices with non-symmetrically distributed entries, J. Stat. Phys. 129 (2007), p. 857-884. | DOI | MR | Zbl
& -[27] Universality of the edge distribution of eigenvalues of Wigner random matrices with polynomially decaying distributions of entries, Comm. Math. Phys. 261 (2006), p. 277-296. | DOI | MR | Zbl
-[28] Central limit theorem for traces of large random symmetric matrices with independent matrix elements, Bol. Soc. Brasil. Mat. (N.S.) 29 (1998), p. 1-24. | DOI | MR | Zbl
& -[29] Universality at the edge of the spectrum in Wigner random matrices, Comm. Math. Phys. 207 (1999), p. 697-733. | DOI | MR | Zbl
-[30] Random matrices : universality of local eigenvalue statistics up to the edge, Comm. Math. Phys. 298 (2010), p. 549-572. | DOI | MR | Zbl
& -[31] Random covariance matrices : universality of local statistics of eigenvalues, prepublication arXiv :0912.0966. | DOI | MR | Zbl
& ,[32] Random matrices : universality of local eigenvalue statistics, prepublication arXiv : 0906.0510. | DOI | MR | Zbl
& ,[33] Level-spacing distributions and the Airy kernel, Comm. Math. Phys. 159 (1994), p. 151-174. | DOI | MR | Zbl
& -[34] The distribution of the largest eigenvalue in the Gaussian ensembles : , in Calogero-Moser-Sutherland models (Montreal, QC, 1997), CRM Ser. Math. Phys., Springer, 2000, p. 461-472. | DOI | MR
& ,[35] Topics in optimal transportation, Graduate Studies in Math., vol. 58, Amer. Math. Soc., 2003. | MR | Zbl
-[36] Characteristic vectors of bordered matrices with infinite dimensions, Ann. of Math. 62 (1955), p. 548-564. | DOI | MR | Zbl
-[37] The Generalized product moment distribution in samples from a normal multivariate population, Biometrika 20A (1928), p. 32-52. | DOI | JFM
-