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Séminaire BOURBAKI 
62e année, 2009-2010, n° 1022, p. 305 à 321 

Juin 2010 

F U N D A M E N T A L G R O U P S O F K A H L E R M A N I F O L D S 
A N D G E O M E T R I C G R O U P T H E O R Y 

by M a r c B U R G E R 

I N T R O D U C T I O N 

The aim of this note is to report on some recent progress in the problem of 
characterizing fundamental groups of compact Kahler manifolds, henceforth called 
Kahler groups. More precisely we will illustrate, by means of a specific result, the 
program outlined by Delzant and Gromov in [16]: "Identify the constraints imposed 
by the Kahler nature of the space on the asymptotic invariants of its fundamental 
group and then express these invariants in terms of algebraic properties". 

The result we have in mind is the theorem of T. Delzant [15] which says that a 
solvable Kahler group contains a nilpotent subgroup of finite index. This is based 
on the explicit description of the Bieri-Neumann-Strebel invariant of a Kahler group 
7Ti (M) in terms of factorizations of M over hyperbolic Riemann surfaces. 

Before we come to this main topic we will recall what a Kahler manifold is, then 
list in telegraphic style results giving restrictions on Kahler groups and give a series 
of examples. For a more complete account of the theory of Kahler groups up to 1995, 
see [1]. 

Let M be a complex manifold with a Hermitian metric ft, that is a collection of 
Hermitian metrics hx on each tangent space TXM, varying smoothly with x. Then 
the real part g := Jftft gives a Riemannian metric on the underlying real manifold 
and the imaginary part u) := 9ft gives a real two-form. Together with the complex 
structure J we have 

(i) u(X,Y) = g{X,JY). 

The Hermitian manifold (M, ft) is Kâhler if duj = 0. An elementary consequence 
of this relation is that at each point of M there exist holomorphic coordinates such 
that the Hermitian metric equals the flat metric on Cn up to and including terms 
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of first order, [43, 3.14]. This readily implies the Kahler identities ([43, 6.1]) which 
are at the basis of the Hodge decomposition of the cohomology of compact Kahler 
manifolds. The compatibility condition (1) implies that ujn = n\d volg, in particular UJ 
is non-degenerate at each point, i. e. it is a symplectic form and, when M is compact, 
defines therefore a non-zero class in H2(M, R) . 

The following two observations lead to an important class of Kahler manifolds: 

- the induced Hermitian structure on a complex submanifold N c M of a Kähler 
manifold is Kahler; 

— up to a positive multiple, there is a unique SU(n + l)-invariant Hermitian metric 
on CPn; since its imaginary part UJ is an invariant two-form, it is closed. Nor­
malizing the metric so that JCPi a; = 1, one obtains the Fubini-Study metric. 

Thus every smooth projective manifold is a Kahler manifold. In our context this leads 
to the question whether every Kahler group is also the fundamental group of a smooth 
projective variety, to which we do not know the answer. Remarkably, concerning 
homotopy type, we have, thanks to Voisin [44], examples of compact Kahler manifolds 
which do not have the homotopy type of a smooth projective variety. Finally, it is 
a natural question whether the existence of a complex structure and/or a symplectic 
structure on a compact manifold imposes additional restrictions on its fundamental 
group, beyond being finitely presentable. In fact, every finitely presentable group 
is the fundamental group of a complex threefold which is also symplectic ([18], see 
also [30, 7.2]); it is thus the compatibility between these two structures, that is the 
defining property of a Kahler structure, which will give restrictions on its fundamental 
group. 

1. R E S T R I C T I O N S 

In this section Y = TTI(M) is the fundamental group of a compact Kahler mani­
fold M with Kahler form UJ. 

1.1. T h e first B e t t i n u m b e r bi(T) is e v e n 

The vector space Hom(r, R ) = H1(T, R) is isomorphic to the space ^fX(M) of real 
harmonic 1-forms on M; precomposition of 1-forms with J gives a complex structure 
on ${1 (M) and hence its dimension b\ (T) is even. 

1.2. T h e r e is a n o n - d e g e n e r a t e s k e w - s t r u c t u r e o n H1(T,R) 

On H1(r,R) the form (a,/3) JMa A (3 A ujn~x is skew-symmetric and 
non-degenerate (Hard Lefschetz Theorem). Noting that the classifying map 
M —> B Y induces in cohomology an isomorphism in degree 1 and an injection 
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in degree 2 shows that this skew-symmetric form factors through the cup product 
A ^ ^ R ) -> H2(I\R), which is therefore not zero if &i(r) > 0, [24]. In this 
context there is a conjecture of Carlson and Toledo, namely that if V is infinite, there 
is r7 < T of finite index with 62(r') > 0. For more on this, see [29, 18.16], [26], [27], 

[28]. 

1.3. T h e M a l c e v Lie a lgebra £T of T is quadrat ica l ly p r e s e n t e d 

Associated to T there is a tower of nilpotent Lie algebras 

LvT Ln-1M 

say over R, where £nT is the Lie algebra of the R-unipotent algebraic group deter­
mined by the quotient r/i?nr, where í?nr is the n-term of the descending central 
series. "Quadratic presentation" then means loosely that this tower of Lie algebras is 
determined by the map H2(r) —• A2Hi(r) (see [1, Chap. 3] and references therein). 

1.4. A Káhler g r o u p has zero or o n e end(1) 

The ideas and methods introduced by Gromov [21] leading to this result have 
been very influential in this field in the last twenty years. Here are some high­
lights. Recall that for the number e(r) of ends of a finitely generated group we have 
e(r) G {0, l ,2,oo}, with e(r) = 0 precisely when T is finite and e(r) = 2 precisely 
when T is virtually Z; then Stallings' theorem says that e(r) = oo precisely when T 
is a nontrivial amalgam or an HNN-extension, both over a finite group. This theorem 
will however not be used in the proofs. The first step, which has nothing to do with 
Káhler manifolds, is the following 

PROPOSITION 1.1. — IfT = 7Ti(M), where M is a compact Riemannian manifold 

and e(r) = +oo; then the space ^{^2){M) of square integrable harmonic 1-forms on 

M is non-trivial, and in fact infinite dimensional. In particular, the reduced L2-co-

homology group H (T,£2(T)) does not vanish, as it is isomorphic to &^2)(M) by a 

variant of Dodziuk's de Rham theorem. 

The central result is then the following factorization theorem: 

T H E O R E M 1.2 ([3]). — Let X be a complete Káhler manifold with bounded geometry 

and H1(X,R) = 0. Assume that ^^{X) ^ 0. Then there exists a proper holomor-

phic map with connected fibers h : X —> D to the Poincaré disk; moreover the fibers 

of h are permuted by Aut(X). 

We obtain then the following purely group theoretical consequence: 

(1) A general reference for this section is [1, Ch. 4]. 
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COROLLARY 1.3 ([3], [21]). — Let T be a Kâhler group with H^r^T)) + 0. Then 

r is commensurable to the fundamental group Tg of a compact orientable surface of 

genus g > 2. 

More precisely there are a subgroup Tf < T of finite index and an exact sequence 

1 - f T Tg 1 

with F finite. In particular e(r) = e(r') = e(Tg) = 1 and thus a Kahler group has 
zero or one end. 

The factorization Theorem 1.2 follows from a general stability theorem for compact 
leaves in singular holomorphic foliations, which also plays a central role in the work 
of Delzant and Gromov on "Cuts in Kahler groups", [16] (see also § 1.5). Recall that 
the singular holomorphic foliation £7^ associated to a closed holomorphic 1-form n on 
a complex manifold X is generated by the relations x ~u y , where U is an open set 
on which rj = df with / holomorphic and x, y are in U and are in the same connected 
component of a fiber of / . 

T H E O R E M 1.4 ([16, 4.1]). — Let X be a complete Kahler manifold of bounded 

geometry, rj a closed holomorphic 1-form on X and £7^ the associated singular 

holomorphic foliation. If {7V has one compact leaf all leaves are compact 

One important principle here, which is an immediate consequence of the volume 
monotonicity property of analytic subsets of Cn leading to the definition of Lelong 
numbers [13, 15.1, Prop. 1], is the following uniform boundedness property of sub-
manifolds of finite volume. 

PROPOSITION 1.5. — If X is Kahler, complete and of bounded geometry, then for 

every T > 0 and e > 0 there is N(T, e) G N such that every closed (as a subset 

ofY) complex submanifold Y C X with vol(Y) < T can be covered by N(T,e) balls 

of radius e. In particular Y is compact 

The proof of Theorem 1.2 then proceeds as follows: let a G ^2)(X) and r)a be 
the L2-holomorphic 1-form with a = SRr/a. Let / : X —• C be holomorphic with 
df = r)a; the co-area formula together with the L2-condition implies that / has a fiber 
of finite volume. This implies by the above fact that 5rr?a has a compact leaf and by 
Theorem 1.4 that all leaves are compact, so that one can apply Stein factorization. 
The final point consists in showing that Srr?a does not depend on the particular choice 
of a; this follows from a tricky argument in L2-Hodge theory, using the boundedness of 
rja ([22] or [1, lemma 4.16]) which gives that r]aAr)p = 0 for any choice a, (3 e M^iX), 
and hence £7^ = £7^. 
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1.5. A Kahler g r o u p w i t h at least t h r e e re lat ive ( s table ) e n d s "fibers" 

We have seen that if M is compact Kahler, then the number e(M) of ends of the 
universal covering M is 0 or 1. By taking M to be a Riemann surface of genus g > 2, 
one sees that the number of ends e(X) of an arbitrary covering X —> M can take 
any value in Nu{oo}. This leads naturally to the question whether the existence of 
a many ended covering X —• M of a compact Kahler manifold imposes restrictions 
on its fundamental group Г. An answer is given by Delzant and Gromov under a 
stability condition: let Л < Г be the subgroup corresponding to X; then the Г-space 
Г/Л is stable if Г/Л is infinite and Н1(Г,^2(Г/Л)) is reduced, equivalently, if there is 
no asymptotically invariant sequence of unit vectors in £2(T/A). Recall also that e(X) 
equals е(Г/Л), where the latter is the number of ends of the quotient by A of any 
Cay ley graph of Г relative to a finite generating set. The following result says that 
if е(Г/Л) > 3 and Г/Л is stable, then A comes essentially from a Riemann surface 
situation. More precisely: 

T H E O R E M 1.6 ([16]). — Let T = ni(M) be a Kahler group and A < T a subgroup 
such that the T-space T/A is stable and e(T/A) > 3. Then there are a finite covering 
M' —> M and a holomorphic map with connected fibers h : M1 —» S to a compact 
Riemann surface of genus g > 2 such that Ker/i* C A D ir\(Mf). 

Remark 1.7. — Napier and Ramachandran recently showed that, without the stabil­
ity condition, the covering X associated to A admits a proper holomorphic mapping 
onto a Riemann surface, [32]. 

The number of relative ends e(r/A) introduced by Houghton had been studied by 
Scott [36] in the context of obtaining a relative version of Stallings' theorem. It was 
then realized by Sageev [35] that the proper context for this problem is the one of 
group actions on CAT(O) cubical complexes; he showed that for a finitely generated 
group r there is A < T with e(T/A) > 2 if and only if T admits an essential action on 
a CAT(O) cubical complex. Since this result, the question of cubing natural classes of 
groups has become a center of attention for geometric group theorists. In particular, 
right angled Artin groups and groups satisfying certain specific small cancellation 
properties have been shown to act properly and cocompactly on finite dimensional 
CAT(O) cubical complexes (see Example 5 in § 2). 

When T is word hyperbolic, the condition on the number of ends in Theorem 1.6 
can be somehow relaxed, but then a geometric condition has to be imposed on A. 

COROLLARY 1.8. — Assume that T is Kahler, word hyperbolic and that A < T is 
quasiconvex with e(T/A) > 2. Then T is commensurable to Tg for some g > 2. 
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Remark 1.9. — The case in which e(T/A) = 2 can be reduced to the situation of 

Theorem 1.6 after a rather involved argument which fully exploits hyperbolicity (see 

5.5 and 6.5 in [16]). 

This corollary has striking consequences in complex hyperbolic geometry. Let 

be the complex hyperbolic n-space and Y < AU^HQ) a cocompact lattice; the 

quasiconvexity assumption on a subgroup A < T means that the quotient by A of the 

closed convex hull in Elg of the limit set £ ( A ) C dM.^, of A is compact, that is, A is 

convex cocompact. 

COROLLARY 1.10. — Let T < Aut(HQ) be a cocompact lattice and assume that 

n>2. 

1. If A <T is convex cocompact, then OWQ \ £(A) is connected. 

2. The space T\WQ does not have the homotopy type of a locally CAT(O) cubical 

complex. 

The second assertion follows from Corollary 1.8 and a result of Sageev [35] saying 

that if T acts on a finite dimensional CAT(O) cubical complex with an unbounded 

orbit, then there is a hyperplane J C X with e(T/ Stabr(ciZ)) > 2. 

2. E X A M P L E S 

The following is a list of examples of Kahler groups. All of them are actually 

fundamental groups of smooth projective varieties. 
I 

1. Finite groups are Kahler, |[37]. 
2. Let c#2fc+i be the real Heisenberg group of dimension 2k + 1; this group can 

be seen as the central extension of a 2fc-dimensional real vector space V by R 
where the cocycle is giver), by a symplectic form. Then a lattice T < &2K+i is 

Kahler if and only if k > 4 ([11], [1, Ch. 8, 4.1]). 

3. The group given by the presentation 

Tg= a1, .. ,ag,ß1, ..., ßg 
9 

i=l 

\oLi,Bi\ = et 

is Kahler. It is the fundamental group of a smooth projective curve of genus g. 
These groups are ubiquitous in the theory of Kahler groups as they appear often 

in factorization theorems (see e.g. Corollary 1.3) and are usually referred to as 
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surface groups. Incidentally, let Tg be the central extension by Z generating 
H2(r^,Z), that is 

Tg = a i , . . . , a 9 , / ? l 5 . . . , / 3 ^ , 2 
9 

i=l 
\a.i,3A = z, z is central 

Then the cup product map A H ^ r ^ R ) —> B.2(Tg,R) is the zero map, while 
bi(Tg) > 0 and hence Tg is not Kahler by § 1.2; observe that in this example 
b2(Tg) > 0. 

4. A Kahler group is the fundamental group of a real compact 3-manifold if and 
only if it is finite and hence a finite subgroup of 0(4) , [17]. 

5. If a Kahler group is a C"(|)-small cancellation group then it is commensurable 
to TG ([16], [45]). 

6. Let r x X —• X be a properly discontinuous action by automorphisms of a 
Kahler manifold X such that T\X is compact. If there is Tf < T of finite index 
acting freely on X then T is Kahler; this observation is due to J. Kollar. 

7. The class of Kahler groups is closed under taking finite products and passing to 
subgroups of finite index. 

8. Let G be a semisimple connected Lie group without compact factors and with 
finite center. Assume that the associated symmetric space X has a G-invariant 
complex structure; combining the Riemannian metric with the complex struc­
ture gives a G-invariant two-form on X (see (1)) which is therefore closed. Thus 
X is Kahler. If now G is linear and r < G is a cocompact lattice, it follows from 
Selberg's lemma and Example 6 that T is Kahler. The fact that if V is torsion 
free and cocompact, then Y\X is biholomorphic to a projective manifold, is a 
theorem. This leads to the following natural questions: 

(A) What about the case when Y\X is not compact, but just has finite 
volume? Then, unless X is the Siegel upper half space of genus 1, 2 
or the complex two-ball, V is Kahler (see [41] for more details also on 
these exceptional cases). 

(B) What about the case when X is not Hermitian? Then it is conjectured 
that r is not Kahler. This is now established in many cases for instance 
if T is cocompact and G is almost simple of rank at least 20 (see [27] and 

(C) What about the case when G is not linear? This leads in very specific 
cases to examples of Kahler groups which are not residually finite (see 
[1, Ch. 8] and [42]). 
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3. THE BIERI-NEUMANN-STREBEL INVARIANT OF A KAHLER 
GROUP 

In this section we will illustrate the interplay between geometric group theory and 
Kâhler geometry by explaining some aspects of the description of the Bieri-Neumann-
Strebel invariant—hereafter called the BNS invariant—of a Kàhler group. 

3 . 1 . T h e B N S invariant*2) E^T) 

Let T be a group, T a set endowed with a fixed point free involution x t-> x 
and a map £ : T —» T with £(x) = £{x)~l. The associated Cayley graph Ca(T,T) 
has T as its set of vertices and E = {{g,x) : g G T,x G T} as its set of edges 
with origin and terminus maps o, t : E —> T given by o(g,x) = g, t(g,x) = g£(x); 
see [38] for conventions concerning this notion. We say, by abuse of language, that 
T is generating if £(T) generates T. Given a homomorphism \ : T —> R, here­
after called character, let Ca(T,T)x denote the subgraph of Ca(T,T) whose set of 
vertices is the submonoid Tx = {g e T : x(#) > 0} and whose set of edges is 
{(<7,x) G E : xid) > QiX{9t(x)) ^ 0}. The following fact is then the starting point of 
the theory of BNS-invariants: 

PROPOSITION 3.1 ([8, Theorem 2.1]). — LetT,T' be finite generating sets ofT and 

X : r —• R a homomorphism. Then Ca(T,T)x is connected if and only if Ca{T,T')x 

is. 

For a finitely generated group V we say that \ € Hom(r,R) \ {0} is regular 
if Ca(r,T)x is connected and exceptional otherwise. Let 5(r) denote the sphere 
consisting of all half-rays in Hom(r,R) \ {0}; the BNS invariant of Y is the subset 
Ex(r) C S(T) represented by regular characters, that is: 

D E F I N I T I O N 3.2. — Let 

EHI1) :={[X] = R>oX: KGHom (r ,R ) \{0},Ca (r ,T)x is connected) 

and let E1^) denote the complement ofT,1^) in S(T). 

The following examples are obtained by direct computation: 

<2) For a comprehensive treatment, see [6] or [8]. 
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E x a m p l e s 

1. For a finitely generated abelian group A, = S(A). 
2. For the free group Fn on n > 2 generators, E1(Fn) = 0 . 

3. For the solvable exouD T = 
( 2n x 

0 1, 
n e z,x e Z[\]\ , ^ ( r ) = {[-*]}, 

where y 
2 0 \ 

0 V 

= 1, whereas S(T) {[xli-x]}. 

A fundamental aspect of the theory for a finitely generated group T is the connec­
tion between the finiteness properties of the kernel N of a surjective group homomor-
phism 7r : T —> Q and the BNS invariants of T and Q. We start with the following 
simple observations. A finite generating set T for T, and hence for Q, leads to a 
Galois covering 7r* : Ca(r, T) —> Ca(Q,T) with Galois group iV and, for any non-zero 
character v : Q —> R, to a Galois covering; 

(2) 7T*jX : Ca(r, T1)^^ Ca(Q,T)x 

This implies at once that if S(T,N) C S'(r) denotes the great sphere cut out by the 
non-zero characters of T vanishing on N, then 7r* (E1(Q)) C ^(r ) fl 5(r, N). If now 
N is finitely generated, in which case one can choose T finite so that £(T) contains a 
generating set of N, the covering map (2) has connected fibers, and thus 

7T*jX : Ca(r, T1)^^ 7T* (E1(Q)) 

If in addition Q is abelian we deduce, using Example 1.1, that S(T,N) C E1(r). 
We have then the fundamental 

T H E O R E M 3.3 ([8, Theorem 4.2]). — Let 1—>iV—>T—>Q—>16ean exact sequence 

where T is finitely generated and Q is abelian. The group N is finitely generated if 

and only if S(T,N) C Ex(r). In particular the commutator subgroup [r,T] is finitely 

generated if and only if E1(r) = S(T). 

An important point in the proof is a characterization of E1(r) in terms of a "locally 
finite set of inequalities" implying in particular that D1(r) is open. Thus: 

PROPOSITION 3.4. — E1^) c 5(r) is a closed Aut(r)-invariant subset. 

Recall that a group Q is metabelian if its first commutator subgroup [Q, Q] is 
abelian; Example 3 above is metabelian. The invariant E1 is particularly relevant 
for the study of metabelian groups: for example a metabelian group Q is finitely 
presented if and only if S(Q) = EX(Q) U (-E^Q)) (cf. [7]). Also in our context 
metabelian groups will play an essential role. For the moment we wish to have the 
following application of the results stated so far: 
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PROPOSITION 3.5. — Let Qg be the largest metabelian quotient of the surface group 
Tg and assume that g > 2. Then E1(Qg) = S(Qg). 

The largest metabelian quotient Q of a group T is the quotient of V by 2)^r , 
where <Z)Y := [r,T] and 0(2)P = [g)r, 2>r]. 

Proof — The group <3)Qg is not finitely generated since it is the first homology group 
of a connected surface which is an infinite, non-simply connected Galois covering of a 
compact surface. By means of a symplectic basis, indentify S(Qg) with P(R2y); then 
every element in Sp(2g, Z) lifts to A\itQg, since it even lifts to AutT^. Using that 
every Sp(2g, Z)-orbit in P(R2p) is dense and that E1(Qg) is closed (Proposition 3.4) 
and not empty, one concludes that E1(Qg) = S(Qg). • 

3 .2 . A finiteness t h e o r e m of B e a u v i l l e 

An important ingredient in the study of solvable quotients of Kahler groups is the 
following structure theorem of their metabelian quotients, in a situation which is quite 
opposite to the one of surface groups. 

COROLLARY 3.6 ([5]). — Let Q = T/$P^Y be the largest metabelian quotient of a 
Kahler group Y. Assume that El(Q) = 0 . Then Q is virtually nilpotent. 

Recall that the condition EX{Q) = 0 is equivalent to the condition that 2)Q is 
finitely generated; under this condition the solvable group Q acts linearly in the finite 
dimensional space 0 Q ® C and it is therefore clear that the set 

(S1(r,Cx) {peHom(r ,Cx) : HHr.c^o} 
has to play an important role. This set is the Green-Lazarsfeld set of Y and has been 
the topic of numerous investigations (see [2], [5], [12], [19], [20], [33], [40]) culmi­
nating in [14], where the precise structure of S1(Y,KX)—where K is an arbitrary 
field—is described; it relies on the description of the BNS invariant of Y. 

We have: 

PROPOSITION 3.7 ([5]). — Let Y be a Kahler group and Q = T/2)(2)r its largest 
metabelian quotient. Assume that 0Q is finitely generated. Then (51(T, Cx) is finite 
and consists of torsion characters. 

Proof — Consider the restriction map 

1 "pC R 

H1 (Q,Cp) Hom(2)Q,C) 

obtained by restricting cocycles to 0 Q . It is a linear algebra exercise involving 
the Vandermonde determinant, that this map is injective. In particular if 0Q is 
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finitely generated, then 8 (Q,CX) is finite. Since elements in & (r ,Cx) corre­
spond to homomorphisms of T into the affine group of C which is metabelian, then 
(51(r,Cx) = (S1(Q,CX). By Corollary 3.6 of [5], we know that isolated points in 
(§1(r,Cx) are unitary, thus <51(r, Cx) consists of a finite number of unitary ho­
momorphisms; since Aut(C) acts by postcomposition on 51(r,Cx), a theorem of 
Kronecker then implies the proposition. • 

Proof of Corollary 3.6. — The subgroup Q° = f)xegi Ker% is of finite index in Q and 
its action on 0Q (8) C is by unipotent endomorphisms. • 

3.3. T h e factor izat ion t h e o r e m 

Here we will discuss the central result which is a description of the set of exceptional 
characters of the fundamental group T = TTI(X) of a compact Kahler manifold. This 
description is in terms of factorizations of X over certain Riemann surfaces, but leads 
ultimately to a purely group theoretical description of £'1(r). 

We use the notation x l—* 00x f°r ^ne canonical isomorphism between Hom(r, R) 
and the space & 1 ( X ) of harmonic real 1-forms on X. 

T H E O R E M 3.8 ([15]). — The homomorphism x : r —» R is exceptional if and only 

if there are a holomorphic map with connected fibers f : X —> Sorh onto a hyperbolic 

orbi-Riemann surface Sorh of genus g > 1 and a closed holomorphic 1-form rj on Sorh 

with u>x = $l(f*r)). 

In the case x(r) = Z, the result is due to Napier and Ramachandran (see [31, 
Thm 4.3]). 

The object Sorh consists of an underlying Riemann surface S and finitely many 
marked points p i , . . . ,pn in S each having an integer "multiplicity" > 2; then 5orb 
is hyperbolic if 

X(5°rb) := ( 2 - 2 f l ) 
n 

i=l 

1 -
1 

mi 
< 0 . 

In this case 5orb can be uniformized by the Poincaré disk D and occurs as the quotient 
of D by a faithful proper action of the orbifold fundamental group 

7Tl(SOTb) = ai,...,aa ßl,---,ßg, fi 5 • • • 5 fri * 
hj 

i=1 
ai, ßi 

n 

i=l 

fi = e, fr = e 

The marked points form the set of critical values of / ; in this context for / to 
be holomorphic means that if x is a critical point with f(x) = pi, then locally / 
lifts to a holomorphic map into a cover with a branching point of multiplicity mi 
above pi. In this situation the m a p / i n Theorem3.8 induces a surjective homomor­
phism /*:r^7n(Sorb). 
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For the "easy" implication in Theorem 3.8, observe that if x(5orb) < 0 then every 
(nonzero) character of ni(SOTh) is exceptional. If Sorh is a genuine surface of genus 
g > 2, this follows from Proposition 3.5; the general case can be reduced to the 
previous one by passing to an appropriate subgroup T of finite index in 7Ti(Sorh) 
and using that a character x of iri(Sorb) is regular if and only if x|r is as well 
([6, Prop. 3.2(h)]). 

We now indicate the strategy for the proof of the factorization statement in 
Theorem 3.8, which relies on the following theorem of Simpson. 

T H E O R E M 3.9 ([39]). — Let X be a compact Kahler manifold, 0 a closed holomor­
phic 1-form on X which is non-zero, p :Y —• X a covering such that p*(0) is exact, 
and let g : Y —> R be a primitive of$l(p*6). Then either 

1. the fiber g 1(v) is connected and 7T] (g-1(v)) —>r1(Y) surjects for all v G R, 

or 

2. there are a hyperbolic orbi-Riemann surface SOTh, a holomorphic map 
f : X —• 5orb with connected fibers and a closed holomorphic 1-form rj on 
S with /*(ry) = 0. 

With this at hand we can sketch a proof of Theorem 3.8. Let \ : T —» R be an 
exceptional character, p : Y —• X the maximal abelian cover of X and g : Y —• X a 
primitive of p*(ux). Then 

(3) g(iy) = xabh) + g(y) 

for all y G Y and 7 G Tab := T/<DT, where \ah € Hom(rab, R) corresponds to x- Since 
Ta6 is finitely generated abelian, xab is regular (see § 3.1) and thus Ca(Tab, T)XAB is 
connected; here T is some finite generating set of T. From this and the equivariance 
property (3) one deduces easily that the set g~l ([0,00]) has a unique connected com­
ponent, say Yo, on which g is unbounded. Consider now gon, where n : X —• Y is the 
universal covering projection. Clearly any connected component of (g o 7r)-1([0,00]) 
on which g o n is unbounded is a connected component of 7r-1(Yb); since X is excep­
tional, Ca(r, T)x is not connected and hence there are several connected components 
of (<7O7r)-1([0,00]) on which gon is unbounded, which, by the preceding remark, im­
plies that TT~1(YO) is not connected. This implies that the morphism TTI(YQ) —* TTI(Y) 

is not surjective. Now pick y G Y0 and v = g(y). Then either g~l(v) C Y is not 
connected, or g~x(v) C Yo and thus 7ri(p_1(i;)) —> TTI(Y) is not surjective. At any 
rate, it is the second alternative of Simpson's theorem which applies. 
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3 .4 . So lvable g r o u p s a n d m e t a b e l i a n quot i en t s 

What allows one to get applications of the factorization theorem (Theorem 3.8) is 
a very efficient way to detect solvable groups which are not virtually nilpotent. Such 
groups must have special quotients. We will in the sequel say that a group R is just 
not virtually nilpotent if every proper quotient of R is virtually nilpotent but R itself 
is not. We observe the following: 

PROPOSITION 3.10. — Every finitely generated group which is not virtually nilpotent 
admits a quotient which is just not virtually nilpotent. 

This follows easily from the fact that finitely generated nilpotent groups are finitely 
presented and Zorn's lemma. The following result is based essentially on arguments 
of Groves [23] and a proof can be found in [9]. Here we present a sketch, with a few 
simplifications. 

THEOREM 3.11 . — Let Q be finitely generated, solvable and just not virtually nilpo­
tent. Then Q is virtually metabelian. 

If Q is such a group, it has the Noetherian property: every ascending chain 
Ni C N2 C • • • of normal subgroups stabilizes: indeed, if Nj ^ e, G/Nj is finitely 
generated nilpotent and has this property. In particular the Fitting subgroup Fit(Q), 
which is the subgroup of Q generated by all normal nilpotent subgroups is nilpotent 
as well. Then in the situation of Theorem 3.11 we have 

LEMMA 3.12. — The subgroup Fit(Q) is abelian, and it is either torsion-free or 
p-torsion for some prime p. 

Proof. — ( l ) I f i V < Q is a normal nilpotent subgroup with 2 W ^ e, let H < Q be 
of finite index with H/&N nilpotent. Clearly HN/0N c G / 2 W is nilpotent and 
N < HN is nilpotent, so that by Hall's criterion, [34, 5.2.10], HN is nilpotent; this 
is a contradiction and hence 2 )N = (e). 

(2) Any pair Ni,N2 of nontrivial normal subgroups must intersect since Q/NiC\N2 
is a subgroup of the virtually nilpotent group Q/Ni x Q/N2. Thus if Fit(Q) is not 
torsion free, it can only have p-torsion for a unique prime. • 

Without loss of generality, assume that L := Q/Fit(Q) is nilpotent (instead of 
virtually nilpotent). Let A = Z or FP[T]; if Fit(Q) is p-torsion we make it into an 
A-module by letting T act via conjugation of some fixed central element of infinite 
order in L. At any rate one verifies that Fit{Q) is a torsion free A-module and a 
finitely generated A[L]-module; the latter follows again from the Noetherian property. 
By applying a theorem of Hall (see [34, 15.4.3]), one shows: 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2011 



318 M. BURGER 

PROPOSITION 3.13. — If K = Q or FP(T), Fit(G) ®A K is finite dimensional 
over K. 

Let p : Q —> GL(Fit(Q) <S>A K) be the resulting n-dimensional representation. 
Then, since p(Q) = p(L) is linear nilpotent, p(2)Q) acts unipotently and thus for 
every v G Fit(Q) and gi,...,gn € one has that [# i , . . . , [gn, v]\ = e. Thus 2)Q 
is nilpotent and hence in Fit(Q). 

3.5 . So lvable q u o t i e n t s a n d factor izat ion 

We are now in a position to deduce: 

COROLLARY 3.14 ([15]). — Let T = TTI(X) be the fundamental group of a compact 
Kahler manifold. Then either 

(1) Any solvable quotient ofT is virtually nilpotent 

or 

(2) there is a subgroup Tf <Tof finite index and a surjection Tf —> Tg onto a surface 
group of genus g > 2. 

Remark 3.15. — This result had been obtained previously in the case of solvable 
linear quotients by Campana [12], following previous work by Arapura and Nori for 
fundamental groups of projective varieties [4]; see also [25] and [10]. 

Observe that we can deduce now from Corollary 3.14 the result announced in the 
introduction, namely: 

COROLLARY 3.16 ([15]). — A Kahler group which is solvable is virtually nilpotent. 

Proof. — Assume that 5 is a quotient of Y which is solvable but not virtually nilpo­
tent. Let R be a just non virtually nilpotent quotient (see Proposition 3.10). Since 
R is solvable, let R' be a metabelian subgroup of finite index (Theorem 3.11) and 
T; its inverse image in V which is of finite index again and hence Kahler. Then R' 
is a quotient of Q' :— Tf/^2\vf) and Q' cannot be virtually nilpotent, which by 
Corollary 3.6 implies that 0Q' and hence 2)r7 is not finitely generated; but then 
Theorem 3.3 implies that ^1(r / ) ^ 0 and the factorization theorem (Theorem 3.8) 
applies. • 
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