The fundamental Lemma and the Hitchin fibration [After Ngô Bao Châu]
Séminaire Bourbaki Volume 2010/2011 Exposés 1027-1042. Avec table par noms d'auteurs de 1948/49 à 2009/10., Astérisque, no. 348 (2012), Talk no. 1035, 31 p.
@incollection{AST_2012__348__233_0,
     author = {Hales, Thomas C.},
     title = {The fundamental {Lemma} and the {Hitchin} fibration {[After} {Ng\^o} {Bao} {Ch\^au]}},
     booktitle = {S\'eminaire Bourbaki Volume 2010/2011 Expos\'es 1027-1042. Avec table par noms d'auteurs de 1948/49 \`a 2009/10.},
     author = {Collectif},
     series = {Ast\'erisque},
     note = {talk:1035},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {348},
     year = {2012},
     zbl = {1402.22008},
     language = {en},
     url = {http://archive.numdam.org/item/AST_2012__348__233_0/}
}
TY  - CHAP
AU  - Hales, Thomas C.
TI  - The fundamental Lemma and the Hitchin fibration [After Ngô Bao Châu]
BT  - Séminaire Bourbaki Volume 2010/2011 Exposés 1027-1042. Avec table par noms d'auteurs de 1948/49 à 2009/10.
AU  - Collectif
T3  - Astérisque
N1  - talk:1035
PY  - 2012
DA  - 2012///
IS  - 348
PB  - Société mathématique de France
UR  - http://archive.numdam.org/item/AST_2012__348__233_0/
UR  - https://zbmath.org/?q=an%3A1402.22008
LA  - en
ID  - AST_2012__348__233_0
ER  - 
%0 Book Section
%A Hales, Thomas C.
%T The fundamental Lemma and the Hitchin fibration [After Ngô Bao Châu]
%B Séminaire Bourbaki Volume 2010/2011 Exposés 1027-1042. Avec table par noms d'auteurs de 1948/49 à 2009/10.
%A Collectif
%S Astérisque
%Z talk:1035
%D 2012
%N 348
%I Société mathématique de France
%G en
%F AST_2012__348__233_0
Hales, Thomas C. The fundamental Lemma and the Hitchin fibration [After Ngô Bao Châu], in Séminaire Bourbaki Volume 2010/2011 Exposés 1027-1042. Avec table par noms d'auteurs de 1948/49 à 2009/10., Astérisque, no. 348 (2012), Talk no. 1035, 31 p. http://archive.numdam.org/item/AST_2012__348__233_0/

[1] The zeta functions of Picard modular surfaces - Université de Montréal Centre de Recherches Mathématiques, 1992. | Zbl

[2] On the stabilization of the trace formula - Stabilization of the Trace Formula, Shimura Varieties, and Arithmetic Applications, vol. 1, International Press, 2011. | Zbl

[3] J. Arthur - "A stable trace formula. I. General expansions", J. Inst. Math. Jussieu 1 (2002), p. 175-277. | DOI | Zbl

[4] J. Arthur, "The work of Ngô Bao Châu", in Proceedings of the International Congress of Mathematicians, 2010. | Zbl

[5] J. Arthur, "The endoscopic classification of representations: Orthogonal and symplectic groups", AMS Colloquium series, in preparation. | Zbl

[6] T. Barnet-Lamb, D. Geraghty, M. Harris & R. Taylor - "A family of Calabi-Yau varieties and potential automorphy II", Publ. Res. Inst. Math. Sci. 47 (2011), p. 29-98. | DOI | Zbl

[7] A. A. Beĭlinson, J. Bernstein & P. Deligne - "Faisceaux pervers", in Analysis and topology on singular spaces, I (Luminy, 1981), Astérisque, vol. 100, Soc. Math. France, 1982, p. 5-171. | Numdam | Zbl

[8] R. Bezrukavnikov - "The dimension of the fixed point set on affine flag manifolds", Math. Res. Lett. 3 (1996), p. 185-189. | DOI | Zbl

[9] M. Bhargava & A. Shankar - "Ternary cubic forms having bounded invariants, and the existence of a positive proportion of elliptic curves having rank 0", preprint arXiv: 1007.0052. | DOI | Zbl

[10] H. Carayol - "La conjecture de Sato-Tate (d'après Clozel, Harris, Shepherd-Barron, Taylor)", Séminaire Bourbaki. vol. 2006/2007, exp. n° 977, Astérisque 317 (2008), p. 345-391. | Numdam | Zbl

[11] W. Casselman - "Langlands' fundamental lemma for SL 2 ", preprint, 2010.

[12] P.-H. Chaudouard, M. Harris & G. Laumon - "Report on the fundamental lemma", Eur. Math. Soc. Newsl. 77 (2010), p. 33-36. | Zbl

[13] P.-H. Chaudouard & G. Laumon - "Le lemme fondamental pondéré. I. Constructions géométriques", Compos. Math. 146 (2010), p. 1416-1506. | DOI | Zbl

[14] P.-H. Chaudouard & G. Laumon, "Le lemme fondamental pondéré. II. Énoncés cohomologiques", preprint arXiv:0912.4512. | DOI | Zbl

[15] R. Cluckers, T. C. Hales & F. Loeser - "Transfer principle for the fundamental lemma", in On the stabilization of the trace formula, Stab. Trace Formula Shimura Var. Arith. Appl., vol. 1, Int. Press, Somerville, MA, 2011, p. 309-347.

[16] J.-F. Dat - "Lemme fondamental et endoscopie, une approche géométrique (d'après Gérard Laumon et Ngô Bao Châu)", Séminaire Bourbaki, vol. 2004/2005, exp. n° 940, Astérisque 307 (2006), p. 71-112. | EuDML | Numdam | Zbl

[17] J.-F. Dat & N. Dac-Tuan - "Lemme fondamental pour les algèbres de Lie (d'après Ngô Bao Châu)", in On the stabilization of the trace formula, Stab. Trace Formula Shimura Var. Arith. Appl., vol. 1, Int. Press, Somerville, MA, 2011, p. 229-252.

[18] P. Deligne - "La conjecture de Weil. II", Publ. Math. I.H.É.S. 52 (1980), p. 137-252. | DOI | EuDML | Numdam | Zbl

[19] M. Goresky, R. E. Kottwitz & R. Macpherson - "Homology of affine Springer fibers in the unramified case", Duke Math. J. 121 (2004), p. 509-561. | DOI | Zbl

[20] M. Goresky, R. E. Kottwitz & R. Macpherson - "Purity of equivalued affine Springer fibers", Represent. Theory 10 (2006), p. 130-146. | DOI | Zbl

[21] T. C. Hales - "Hyperelliptic curves and harmonic analysis (why harmonic analysis on reductive p -adic groups is not elementary)", in Representation theory and analysis on homogeneous spaces (New Brunswick, NJ, 1993), Contemp. Math., vol. 177, Amer. Math. Soc., 1994, p. 137-169. | DOI | Zbl

[22] T. C. Hales, "On the fundamental lemma for standard endoscopy : reduction to unit elements", Canad. J. Math. 47 (1995), p. 974-994. | DOI | Zbl

[23] T. C. Hales, "A statement of the fundamental lemma", in Harmonic analysis, the trace formula, and Shimura varieties, Clay Math. Proc., vol. 4, Amer. Math. Soc., 2005, p. 643-658. | Zbl

[24] T. C. Hales, B. Weiss, W. Werner & L. Ambrosio - "The mathematical work of the 2010 Fields medalists", Notices Amer. Math. Soc. 58 (2011), p. 453-458.

[25] M. Harris & R. Taylor - The geometry and cohomology of some simple Shimura varieties, Annals of Math. Studies, vol. 151, Princeton Univ. Press, 2001. | Zbl

[26] G. Henniart & R. Herb - "Automorphic induction for GL ( n ) (over local non-Archimedean fields)", Duke Math. J. 78 (1995), p. 131-192. | DOI | Zbl

[27] N. Hitchin - "Stable bundles and integrable systems", Duke Math. J. 54 (1987), p. 91-114. | DOI | Zbl

[28] D. Kazhdan & G. Lusztig - "Fixed point varieties on affine flag manifolds", Israel J. Math. 62 (1988), p. 129-168. | DOI | Zbl

[29] R. E. Kottwitz - "Stable trace formula: elliptic singular terms", Math. Ann. 275 (1986), p. 365-399. | DOI | EuDML | Zbl

[30] R. E. Kottwitz, "Shimura varieties and λ-adic representations", in Automorphic forms, Shimura varieties, and L-functions, Vol. I (Ann Arbor, MI, 1988), Perspect. Math., vol. 10, Academic Press, 1990, p. 161-209. | Zbl

[31] R. E. Kottwitz & D. Shelstad - "Foundations of twisted endoscopy", Astérisque 255 (1999). | Numdam | Zbl

[32] J.-P. Labesse & R. P. Langlands- " L -indistinguishability for SL ( 2 ) ", Canad. J. Math. 31 (1979), p. 726-785. | DOI | Zbl

[33] R. P. Langlands - "Letter to Singer", http://publications.ias.edu/rpl/section/24, 1974.

[34] R. P. Langlands, "On the zeta functions of some simple Shimura varieties", Canad. J. Math. 31 (1979), p. 1121-1216. | DOI | Zbl

[35] R. P. Langlands, Base change for GL ( 2 ) , Annals of Math. Studies, vol. 96, Princeton Univ. Press, 1980. | Zbl

[36] R. P. Langlands, Les débuts d'une formule des traces stable, Publ. Math. Univ. Paris VII, vol. 13, Univ. Paris VII, 1983. | Zbl

[37] R. P. Langlands, "Le lemme fondamental pour les algèbres de Lie", to appear in Math. Reviews. | Numdam | Zbl

[38] R. P. Langlands & D. Shelstad - "On the definition of transfer factors", Math. Ann. 278 (1987), p. 219-271. | DOI | EuDML | Zbl

[39] R. P. Langlands & D. Shelstad, "Descent for transfer factors", in The Grothendieck Festschrift, Vol. II, Progr. Math., vol. 87, Birkhäuser, 1990, p. 485-563. | Zbl

[40] G. Laumon & L. Moret-Bailly - Champs algébriques, Ergebnisse Math. Grenzg.. 3. Folge. A Series of Modern Surveys in Mathematics, vol. 39, Springer, 2000. | Zbl

[41] G. Laumon & B. C. Ngô - "Le lemme fondamental pour les groupes unitaires", Ann. of Math. 168 (2008), p. 477-573. | DOI | Zbl

[42] C. Mœglin - "Classification et changement de base pour les séries discrètes des groupes unitaires p -adiques", Pacific J. Math. 233 (2007), p. 159-204. | DOI | Zbl

[43] S. Morel - "The intersection complex as a weight truncation and an application to Shimura varieties", in Proceedings of the International Congress of Mathematicians, 2010. | Zbl

[44] D. Nadler - "The geometric nature of the fundamental lemma", Bull Amer. Math. Soc. (N.S.) 49 (2012), p. 1-50. | DOI | Zbl

[45] B. C. Ngô - "Fibration de Hitchin et endoscopie", Invent. Math. 164 (2006), p. 399-453. | DOI | Zbl

[46] B. C. Ngô, "Le lemme fondamental pour les algebres de Lie", Publ. Math. IHÉS 111 (2010), p. 1-169. | DOI | Numdam | Zbl

[47] B. C. Ngô, "Report on the fundamental lemma", http://www.math.ias.edu/˜ngo/cdm.pdf, 2010.

[48] B. C. Ngô, "Decomposition theorem and abelian fibration", in On the stabilization of the trace formula, Stab. Trace Formula Shimura Var. Arith. Appl., vol. 1, Int. Press, Somerville, MA, 2011, p. 253-264.

[49] D. Shelstad - "Orbital integrals, endoscopic groups and L-indistinguishability for real groups", in Journées Automorphes (Dijon, 1981), Publ. Math. Univ. Paris VII, vol. 15, Univ. Paris VII, 1983, p. 135-219. | Zbl

[50] S. W. Shin - "Galois representations arising from some compact Shimura", preprint, 2010. | Zbl

[51] C. Skinner - "Galois representations associated with unitary groups over ", draft, 2010. | Zbl

[52] C. Skinner & E. Urban - "The Iwasawa main conjectures for GL ( 2 ) ", submitted, 2010. | Zbl

[53] J.-L. Waldspurger - "Sur les intégrales orbitales tordues pour les groupes linéaires: un lemme fondamental", Canad. J. Math. 43 (1991), p. 852-896. | DOI | Zbl

[54] J.-L. Waldspurger, "Le lemme fondamental implique le transfert", Compositio Math. 105 (1997), p. 153-236. | DOI | Zbl

[55] J.-L. Waldspurger, "Endoscopie et changement de caractéristique", J. Inst. Math. Jussieu 5 (2006), p. 423-525. | DOI | Zbl

[56] J.-L. Waldspurger, "L'endoscopie tordue n'est pas si tordue", Mem. Amer. Math. Soc. 194 (2008). | Zbl

[57] Z. Yun - "Towards a global Springer theory I, II, III", preprint arXiv:0904.3372.