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VOTER MODEL PERTURBATIONS AND REACTION 
DIFFUSION EQUATIONS 

J . Theodore Cox, Richard Durrett, Edwin A. Perkins 

Abstract — We consider particle systems that are perturbations of the voter model 
and show that when space and time are rescaled the system converges to a solution of a 
reaction diffusion equation in dimensions d > 3. Combining this result with properties 
of the P.D.E., some methods arising from a low density super-Brownian limit theorem, 
and a block construction, we give general, and often asymptotically sharp, conditions 
for the existence of non-trivial stationary distributions, and for extinction of one 
type. As applications, we describe the phase diagrams of four systems when the 
parameters are close to the voter model: (i) a stochastic spatial Lotka-Volterra model 
of Neuhauser and Pacala, (ii) a model of the evolution of cooperation of Ohtsuki, 
Hauert, Lieberman, and Nowak, (iii) a continuous time version of the non-linear 
voter model of Molofsky, Durrett, Dushoff, Griffeath, and Levin, (iv) a voter model 
in which opinion changes are followed by an exponentially distributed latent period 
during which voters will not change again. The first application confirms a conjecture 
of Cox and Perkins [8] and the second confirms a conjecture of Ohtsuki et al [34] in 
the context of certain infinite graphs. An important feature of our general results is 
that they do not require the process to be attractive. 
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Résumé (Perturbations du modèle du votant et équations de réaction-diffusion) 

Nous considérons des systèmes de particules en interaction, perturbations du mo­
dèle du votant. En dimension d > 3, nous montrons qu'un rééchelonnement appro­
prié en temps et en espace du système converge vers une solution d'une équation 
de réaction-diffusion. En combinant ce résultat avec des propriétés de l'E.D.R, nous 
donnons des conditions générales, et souvent asymptotiquement optimales, pour l'exis­
tence d'une mesure stationnaire non-dégénérée, ou pour l'extinction de l'un des types 
de particules. Certaines de nos méthodes proviennent d'un théorème sur la limite 
super-brownienne d'un rééchelonnement du système issu d'une densité faible ; nous 
utilisons également un argument fondé sur une construction par bloc. Nous appliquons 
ces résultats à la description du diagramme des phases de 4 systèmes, lorsque leurs 
paramètres se situent au voisinage du modèle du votant : (i) un modèle de Lotka-
Volterra stochastique spatial de Neuhauser et Pacala, (ii) un modèle d'évolution de 
la coopération d'Ohtsuki, Hauert, Lieberman, et Nowak, (iii) une version à temps 
continu du modèle du votant non linéaire de Molofsky, Durrett, Dushoff, Griffeath, 
et Levin, (iv) un modèle du votant dans lequel les changements d'opinion sont suivis 
par une période de latence exponentiellement distribuée pendant laquelle l'électeur 
concerné ne change plus d'opinion. La première application confirme une conjecture 
de Cox et Perkins [8], et la seconde confirme une conjecture d'Ohtsuki et al. [34] dans 
le cadre de certains graphes infinis. Une importante caractéristique de nos résultats 
généraux est qu'ils ne nécessitent pas l'attractivité du processus. 
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CHAPTER 1 

INTRODUCTION AND STATEMENT OF RESULTS 

We first describe a class of particle systems, called voter model perturbations in [7]. 
The state space will be { 0 , 1 } Z , where throughout this work we assume d > 3. The 
voter model part of the process will depend on a symmetric (i.e., p(x) — p(—x)), 
irreducible probability kernel p : Zd —> [0,1] with p(0) = 0, covariance matrix a21, 
and exponentially bounded tails so that for some K G (0 ,1] , 

p(x) Ce-K|x| (1.1) 

Here and in what follows \x\ = supf \xi\. Let fi(x,£) = Y^yezdP(y ~ x)l(€(y) — 
The voter flip rates are given by 

cv(x,0 (1-€(x))f1(x,€) • £ ( * ) / о ( * , 0 - (1.2) 

The processes of interest, £t € { 0 , 1 } Z < \ are spin-flip systems with rates 

Ce(x,€) Ce(x,€) €2 CE*(x,€) :0, (1.3) 

where c*(x,£) is a translation invariant, signed perturbation of the form 

CE*(x,€) ( i - £ ( * ) ) / » ? ( z . O + £ ( * ) & § ( * , 0 -
We assume there is a law q of ( V 1 , . . . , YN°) € ZdN°, functions g\ on { 0 , 1 } ^ ° , 

i = 0 , 1 , and ei € ( 0 , oo], eo € ( 0 , 1 ] so that 

gf > o, (1.4) 

and for all £ G {0, l}zd, x G Zd, and £ G (0, eoi» we have 

hi€(x,€) -£i2fi(x,t.) • EvtfM* + Y1), + lrJVo))) , i = 0,1. (1.5) 

Here Ey is expectation with respect to q and in practice the first term in the above 
will allow us to take gf > 0. It is important to have gf non-negative as we will treat 
it as a rate in the construction of a dual process in Chapter 2. On the other hand, in 
two of the particular examples of interest (Examples 2 and 4 below), the h\ will at 
times be negative. 
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We also suppose that (decrease K > 0 if necessary) 

P ( F * x) < Ce~KX for x : 0, (1.6) 

where F* = maxfly1!,. . . \YN°\}, and there are limiting maps gi : { 0 , 1 } N ° R+ 
such that 

limila 9i\\oo 0, i 0,1. (1.7) 

The conditions (1.4) and (1.5) with e0 < £i (without loss of generality) easily imply 
the non-negativity in (1.3) for e < £o-

We now show that the conditions (1.4)-(1.7) hold for general finite range convergent 
translation invariant perturbations without any explicit non-negativity condition on 
the g\. 

Proposition 1.1. — Assume there are distinct points y i , . . . ,2/j \r0 € %d and 9i,9i : 

{ 0 , 1 } ^ ° -> R such that 

hi€(x,€) ••Ш(Х + У1): ,&x + yNo)), X Z d , £ € { 0 , l } N ° , (1.8) 

{x : p(x) 0} C { 2 / I , . . . , 2 / N 0 } > lim||Pi - ^ t l l o o 

£̂ 0 
0 i- 0,1. 

Then (1.5)-(1.7) hold for appropriate non-negative gf, gi satisfying \\gf — ^ | | o o = 

Wgf -9i\\oo, and Yl = yi. 

The elementary proof is given in Section 2.1. In terms of our original rates (1.3) this 

shows that our class of models include spin-flip systems £t G {0 ,1}Z , t > 0, with 

rates 
hi€(x,€) cv(x,0+e2c*{x,0 s2o(e) 0, (1.9) 

where p (governing cv) is now finite range, c*(x ,£) = / i (£(x) , £(x + yi),... , £ ( ^ + £iv0)) 

is a finite range, translation invariant perturbation and o(e) means this term goes 

to zero with e uniformly in (x,£). However, most of the Theorems below are formu­

lated without this finite range assumption (Theorem 1.5 being the notable exception). 

Working with the random Y*'s will allow us to include certain natural infinite range 

interactions and will also simplify some of the arithmetic to come. 

W e stress tha t condit ions (1.3)-(1.7) are in force throughout this work, 

and call such a process £ a voter model per turbat ion on Zd. To be precise 

about the meaning of our process, let t > 0 be the unique {0,1}Z -valued Feller 

process with translation invariant flip rates given by c°e(x^) in (1.3) and initial state 

£o € {0, l}zd. More formally (see [30, Theorem B.3] and [14, Section 2]) the generator 

of £ is 

the closure of fì°#(£) 

x€ZD 

Co€(x,€)(g(€x) 9(0) (1.10) 

on the space of g : 7Ld —> E, depending on finitely many coordinates. Here £x is £ with 

the coordinate at x flipped to 1 — £(x). The condition (B4) of Theorem B.3 in [30] is 

trivial to derive from (1.5). 

ASTÉRISQUE 349 



CHAPTER 1. INTRODUCTION AND STATEMENT OF RESULTS 3 

To motivate this class of spin-flip systems we will now describe our four examples. 

Example 1 (Nonlinear voter models). — Molofsky et al. [32] considered a discrete time 

particle system on Z2 in which each site is in state 0 or 1 and 

P(£n+i(x,y) 1|€n) Pk 

if k of the sites y), (x + 1, y), (x — 1, y), (x, y + 1), (x, y — 1) are in state 1. They 

assumed that po = 0 and p$ = 1, so that all O's and all l's were absorbing states and 

Pi = 1 — p4 and P2 = 1 — P3, so that the model was symmetric under interchange of 

O's and l's. 

Our goal is to study the phase diagram of a continuous time nonlinear voter model 

in a neighborhood of the ordinary linear voter model. Our perturbation is determined 

by four points chosen at random from x + N where Jsf is the set of integer lattice 

points in ([—L,L]d — { 0 } ) . Let a(i) > 0 be the flip rate at a given site when i 

(randomly chosen) neighbors have a type disagreeing with that of the site and suppose 

a(0) = 0. Let ( Y i , . . . Y4) be chosen at random and without replacement from Af. Our 

perturbation has the form given in (1.5) with e\ = 00, 

g€(€1,...,€4) a 
4 

1 

€i and 0g(fi, . . . , & ) a 
4 

4 

1 

€i 

General models of this type were introduced and studied in [9]. The long range nature 

of the interaction will make computations simpler. 

Example 2 (Lotka-Volterra systems). — Lotka-Volterra systems were introduced by 

Neuhauser and Pacala [33]. In addition to the kernel p for the voter model, the 

flip rates depend on two non-negative competition parameters, ao and ai, and are 

given by 

CLV(x,€) / i ( / o + a0/ i ) ( l - Ç(x)) + /o ( / i + a i /o ) f (*) 

cw(rc ,0 + (a0 - 1)/?(1 - t(x)) + (a, - l ) / 0 2 ^ ) - (1.11) 

In words, a plant of type i at x dies with rate /*(#, £)+a*/i-i(x> 0 an(l is immediately 

replaced by the type of a randomly chosen neighboring plant, which will be 1 — i with 

probability (#,£). Hence ai represents the effect of competition on a type i from 

neighbors of the opposite type and the interspecies competition parameters have been 

set to one. 

If 0i E R and we let ai = af = 1 + e26i then the perturbation has the form 

h . ( x , 0 0i-ifi(x,Ç)2, (1.12) 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2013 



4 CHAPTER 1. INTRODUCTION AND STATEMENT OF RESULTS 

for i = 0,1 x e Zd and f G { 0 , T o verify (1.5) take 0 < ex < (0o)~1/2 A ^ f ) " 1 / 2 , 

No = 2, y 1 , Y2 chosen independently according to p, and define for i = 0,1, 

giiVi^m) = £i m ( l - ^ ? 2 ) + (^i +5i_»)l(ï7i = r?2 = i) : 0. (1.13) 

Then we have the required form, where now /i» and are independent of e: 

hi(x,Ç) -£i2fi(x,Ç) €-2(fi-fi2)(s,€) (€-2+01-i)fi(x,€)2 

-£i2fi(x,Ç) Eig^ix + Y^ax + Y2))). 

Example 3 (The Latent voter). — The Latent voter was introduced by Lambiotte, 

Saramaki, and Blondel [27]. To motivate the dynamics, they consider the adoption of 

new technology, such as choosing between a Blu-ray and HD-DVD player, or between 

an IBM netbook and iPad. Once the customer has made her purchase it is unlikely 

that she will immediately switch. To model this latency, we introduce states 0* and 

1* which indicate that the voter is not willing to switch, and we postulate that i* —> i 

at rate A. While in state i the voter changes to state (1 — i)* at a rate equal to the 

fraction of nearest neighbors with the opposite opinion, counting both active and 

latent voters of that type. At t — 0 we assume initially the particles are all in state 1 

or 0. 

To realize this as a voter model perturbation, we will take A large. To construct 

the process we take the usual graphical representation for the voter model, and for 

each site introduce an independent Poisson process of "wake-up dots" with rate A, 

where each "wake-up" corresponds to a potential flip from i* to i. Voting events occur 

at rate 1, so the number of voter events N\ between two wake up dots has 

P(NX -k) 
' 1 

.A + l. 

k A 

A + l 
for A; = 0 ,1 ,2 , . . . 

If there is only one voter event between two wake-up dots at x then this is an 

ordinary voter event, x imitates her neighbor. If there are two or more, then this is 

Lambiotte and Redner's vacillating voter model [26]: the voter changes if at least one 

of the neighbors chosen is different. To see this note that the first neighbor that is 

different causes an opinion change and then all of the other voter events before the 

wake up dot are ignored. 

To fit this model into the framework of this paper we will take A = e~2 > 1 and 

identify state i* with state i for the spin-flip system £, although they are of course 

distinguished in the above graphical representation. Let { y i , . . . , y2d} be the nearest 

neighbors of 0 and let {Yl : i E N} be iid r.v.'s which are chosen at random from 

the above nearest neighbors. For each k G N let Sk = {h, • •., h} be chosen from 

{ 1 , . . . , 2d} with replacement so that Sk has cardinality at most k. Below Ps and Py 

will denote averaging over these random quantities only. Then multiplying the above 

ASTÉRISQUE 349 



CHAPTER 1. INTRODUCTION AND STATEMENT OF RESULTS 5 

probabilities by the rate A of the wake-up process, we see that our rates are 

coe(x,€) A 

A + l 

. 2 
Cv(x,€) 

oo 

t 4 

k=2 

A2 

(A + l)fc+J 
PY(€(x+Yj) £(*) 3 j < k) 

Cv(x,€) e2 
2€-4-€-2 

(e-2 + l)2 
cv(x,Ç) 

oo 

fc=2 

e-6 

(e-2 + i)fc+i 
•PsMx + yj) 3j e Sk) 

The first term in the square brackets and the k — 2 term in the summation are both 

O(l ) while the rest of the summation, is 0(s2) and so are error terms. If 

el2 sup 
0«r<l 

2 + £2 

(1 + e2)2' 

and 

S<(e) 

oo 

k=3 

e~6 
(e-2 + !)fc+i Ps(Ç(x + yj)-- i 3j e Sk), 

then Ej(e) < Ce2, and a bit of arithmetic shows (1.3) holds with 

hf(x,0--
-2-e2 

(l + £2)2 
fi(x,€) - ( l + e2)-3 2Py(£(* + F i ) i) 

- P ( C ( a ; + y i ) : i ,£(* + *2) i) Si(e) 

-£r2/*M- V2 2 + £2 

(1 + e2)2 

2 

(l + £2)3 
fi(x,€) 

fi(x,€)2 

(l + e2)3 

H * ( e ) 

^2/*M gei(€(x 
2/1), •• ,t(x- V2d))-

Hence we derive the required form (1.5) with ( V 1 , . . . , Y2d) = ( j / i , . . . , j/2<f) and <jf > 0. 

Moreover it is clear from the above definition of of that 

I K " S i I I o o •Ce2, (1.14) 

where 

9i(m, •, */2d) : (2d)~2 

2d 2d 

j=l fc=l 

gi(nj,nk), 

and ^ as is in the Lotka-Volterra model, i.e., as in (1.13), with the nearest neighbour 

kernel p and 6i = —1. Hence we again have a voter perturbation on Zd. Note also 

that the above implies 

&(f(a + yi), ,Ç(x + y2d)) EigiMx + Y^fa + Y2))), (1.15) 

exactly as for the limiting value of the Lotka-Volterra model. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2013 



6 CHAPTER 1. INTRODUCTION AND STATEMENT OF RESULTS 

Example 4 (Evolutionary games). — Ohtsuki et al. [34] considered a system in which 

each site of a large (N vertex) graph G is occupied by a cooperator (1) or a defector 

(0). Simplifying their setting a bit, we will assume that each vertex in G has k 

neighbors. The interaction between these two types is governed by a payoff matrix 

with real entries 

C D 

C a 3 

D 7 6 

This means that a cooperator receives a payoff a from each neighboring cooperator 

and a payoff /3 from each neighboring defector, while for defectors the payoffs are 7 
and S from each neighboring cooperator or defector, respectively. 

If rii(y) is the number of neighboring z's for site y G G, i — 0,1, and £(y) G { 0 , 1 } 

is the state at site y, then the fitness pt(y) of site y in state i is determined by its 

local payoffs through 

Pi(y) 1 — w + w(an\(y) Bno(y)) if €(y) 1 (1.16) 

Po (y) 1 — w -h w(/yni(y) ôno(y)) if Ç(y) -0. 

Here w G [0,1] is a parameter determining the selection strength. In [34] they focus 

largely on the weak selection (small w) regime. Clearly for some wo(a, / ? , 7 , S, k) > 0, 

Pi > 0 for w G [0, wo], which we assume in what follows. 

For the death-birth dynamics in [34] a randomly chosen individual is eliminated 

at x and its neighbors compete for the vacated site with success proportional to 

their fitness. We consider the continuous time analogue which is the spin-flip system 

^t{x) G { 0 , 1 } , x G G, with rates (write y ~ x if and only if y and x are neighbors) 

c ( x , 0 : ( l - £ ( 3 ) ) r i ( x , 0 £ O r ) r 0 ( x , 0 : 0 , 

ri(x,€) 
Ty-rP1(y)€(y) 

T,y~x pi(v)€(y)- Pû(! / ) ( l - f (y) ) 
e [ 0 , 1 ] . (1.17) 

More precisely, choose a symmetric (about 0 ) set Af of neighbors of 0 of size k, 

not containing 0, and consider the graph with vertex set Zd and x ~ y if and only 

if x — y G N. Assume also that the additive group generated by N is Zd and 

^2xejs/XiXj/k = a25ij, so that p(x) = k~1l(x G N) satisfies the conditions on our 

kernel given in, and prior to, (1.1). Set w = e2. For x G Zd and £ G { 0 , 1 } Z , let 

fi(2)(x,€) 
k-1 

y~r 
mv) = i)Mv,o = k-2 

y~x z~y 

i ( É ( s , ) = É ( * ) = «) e [0,1], 

0o(x,€) = G 8 f c - l ) / i ( x , £ ) H k{a-P)fj?\x,t), 

0o(x,€) ( 7 * - l ) / o ( * , 0 k{a-P)f0?\x,t), 

0(x,€) (0o+0i)(a,O-

ASTÉRISQUE 349 



CHAPTER 1. INTRODUCTION AND STATEMENT OF RESULTS 7 

Using (1.16) in (1.17), we get 

ri(x,€) fi + e2et 
1+ e20 

(x,€) (1.18) 

Expanding in powers of e we have 

f + s2e 
f + s2e f + e2(6 -f<j>) + e V W - &) 

OO 

0 
(-e24>)k 

f + e2(9-f(t>) + e4ipe(f,<t>,0), 

and so our perturbation has the form 

KM 0i(x,0-fi(x,04>(x,0 e2Mfi{x,i)A{x,0A{x,i)). (1.19) 

Note that 

|0i |V|0o|V|0|(a;,O 2fc(l + \a\ + \ß\ + M + \S\) R, (1.20) 

If e2 < (2R)-1, then (1.20) easily gives 

\M(fi,<t>A)(x,0)\ 2R(R+l). (1.21) 

Prom this and (1.19) it is clear that the hypotheses of Proposition 1.1 hold with 

\\9i-9i\\oo e22R(R+l), (1.22) 

and therefore our spin-flip system is a voter model perturbation on Zd. 

For a fifth example on the evolution of seed dispersal range see [19]. 

T h e goal o f our analysis. — Given a process taking values in {0,1}Z , or more 
generally in {0, l}eZ , we say that coexistence holds if there is a stationary distribution 
v with 

v 
X 

i{x) 
X 

1 — Ç(x) = OO 1. (1.23) 

For voter model perturbations it is easy to see this is equivalent to both types being 
present i/-a.s., see Lemma 6.1. 

We say the i ?s take over if for ali L, 

P(€t(x) • i for all x e [—1/, L)d for t large enough) = 1 (1.24) 

whenever the initial configuration has infinitely many sites in state i. 
Our main results (Theorems 1.4 and 1.5 below) give (often asymptotically sharp) 

conditions under which coexistence holds or one type takes over, respectively, in a 
voter model perturbation for small enough e. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2013 



8 CHAPTER 1. INTRODUCTION AND STATEMENT OF RESULTS 

1.1. Hydrodynamic limit 

In this section we will give condition under which the voter model perturbation on 

the rescaled lattice eLd run at rate e~2 converges to a P.D.E. For 1 > e > 0, x G Zd 

and £ G { 0 , 1 } Z define rescalings of p and £ by p£{sx) = p(#), and = £ ( # ) , so 

that £e G {0 , l}eZ . Also define rescaled local densities ff by 

f + s2e 

y€eZd 

p£{y - ex)l{£e(y) = i}, ¿ = 0,1. (1.25) 

For x, £ as above, introduce the rapid voter flip rates given by 

Ce(ex,£e) e-2cv(x,t). (1.26) 

Therefore the rescaled processes of interest, £e-2t(ear) G {0,1}£Z , will have rates 

ce(ea:,£e) = c^(ea;,^) + c*(x,£) 0, (1.27) 

where the non-negativity is immediate from (1.3), and generator equal to 

the closure of ft£g(^£) 

x£eZd 

c€(x,€E)(g(€x€) g(€E)) (1.28) 

on the space of g : eZd - » E, depending on finitely many coordinates. We call this 

rescaled process a voter model perturbation on eLd and will often denote it by £e(£). 

As d > 3, we see from Theorem V.1.8 of [29] the voter model with flip rates 

cv(x,£) = c\(x,€) has a one-parameter family of translation invariant extremal in­

variant distributions { F u : u G [0 ,1]} on { 0 , 1 } Z such that Ew(£(#)) = u. We write 

(g)u for Eu(g(0)- (1.5) and (1.7) imply 

lim I I / i f — / l i I |oo = 0 where 
eriO 
hi(x,£) = -e^fiM + EigiMx + Y 1 ) . 

,€(x+YNo))) 

(1.29) 

Define 

/(u) = ((1 - « 0 ) ) / n ( 0 , O -Ê(0)Jio(0,O>«. (1.30) 

Then / is a polynomial of degree at most iVb + 1 (see (1.40) and Section 1.8 below). 

The non-negativity condition (1.27), the fact that 

<c*(0,0>o = « ( 0 , £ » i = 0, (1.31) 

and the convergence (1.29) show that 

/ ( 0 ) > 0 , / ( 1 ) < 0 . (1.32) 

Our first goal is to show that under suitable assumptions on the initial conditions, 

as e 0 the particle systems converges to the P.D.E. 

du 

dt 

2 
f - A u + / ( « ) , u(0, •) = «(•)• 2 

(1.33) 

The remark after Proposition 2.1 in [2] implies that for any continuous v : Rd —>• [0,1] 

the equation has a unique solution u, which necessarily takes values in [0,1]. 
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1.1. HYDRO DYNAMIC LIMIT 9 

For a continuous v as above we will say that a family of probability measures {X£} 

on {0, l}eZ has local density v if the following holds: 

There is an r G (0,1) such that if a£ = \er~ll\e, Q£ = [0, a£)d neZd, \Q£\ = card ( Q e ) , 

and 

D(x,€) 1 

QE 
yeQs 

Ç(x + y) for x G a£Zd, £ G {0, l}eZd , (1.34) 

then for all R, 6 > 0, 

lim 
e->0 

sup 
xGa£Zd 

\x\<R 

Xe(|D(x,€) 
v(x)\ 8) • 0. (1.35) 

The family of Bernoulli product measures X£ given by 

Xe(€(wi) 
= l , i : l , . . . , n ) 

n 

¿=1 
Ü(ÍÍ;¿) for all n G N and w¿ G eZd . (1.36) 

certainly satisfies (1.35) for all r G (0,1). 

Theorem 12. — Assume v : Rd —>• [0,1] is continuous, and the collection of initial 

conditions { £ Q } have laws {X£} with local density v. Let xk G Rd and xke G eLd, 

k = 1,... K satisfy 

4 xk and e x\xk - xk'\ - oo as e - 0 for any k • k'. (1.37) 

Ifu is the solution of (1.33), then for any rj G { 0 , 1 } * ° ' - » L } x { i > - K } f y0,...,yL eZd 

and T>0, 

lim F 

£->-0 

€eT(xek+€yi) ni,k, i 0 , . . . ,L , k 1,...K) 

K 

JL. -I-

k=l 

<I{€(yi) ni,k,i 
~- 0,. . • , ¿ } ) « ( T , a ; * ) - (1.38) 

7n particular, if x£ G £Zd satisfies x£ —> x as £ —> 0, then 

l imP(&(xe) 1) : u(T, x) for all T 0,xe Rd. (1.39) 

De Masi, Ferrari and Lebowitz [11], Durrett and Neuhauser [18] and Durrett [15] 

have proved similar results for particle systems with rapid stirring. The local equilib­

rium for rapid stirring is a Bernoulli product measure, but in our setting it is the voter 

equilibrium. As a result there is now dependence between nearby sites on the micro­

scopic scale. However, there is asymptotic independence between sites with infinite 

separation on the microscopic scale. 

It is easy to carry out a variance calculation to improve Theorem 1.2 to the following 

L2-convergence theorem (see the end of Chapter 3 for the proof). If S > 0 and x G Md, 

let Is(x) be the unique semi-open cube IliLit^j + 1)5), h G Z, which contains x. 
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10 CHAPTER 1. INTRODUCTION AND STATEMENT OF RESULTS 

Theorem 1.3. — Assume the hypotheses of Theorem 1.2. Assume also 8(e) G £ N 

decreases to zero so that 8(e)le —> oo as e 10. If 

û£(t,x) 
yEIs(e)(x) 

&(y)(e/8(e))d, 

then as e —> 0, u£(t, x) -» u(t, x) in Lr uniformly for x in compacts, for all t > 0. 

A low density version of this theorem, in which the limit is random (super-Brownian 

motion with drift), was proved in [7] and is discussed in Section 1.8. 

To apply Theorem 1.2 to the voter perturbation we will have to evaluate f(u). 

This is in principle straightforward thanks to the duality between the voter model 

and coalescing random walk which we now recall. Let {BX : x G ZD} denote a rate 

1 coalescing random walk system on ZD with step distribution p and BQ = x. For 

A, B C ZD, let if = {Bf : x G A}, r{A) = inf{* : = 1} and T ( A , B) be the first 

time £^ n 7^ 0 (it is oo if either A or B is empty). The duality between B and 

the voter model (see [29, (V.1.7) and Theorem V.1.8]) implies for finite A,B C ZD, 

yEA 

€(y) 
zeB 

(1-€(z))> 

\A\ \B\ 

j=0 fc=0 

Ui(l-u)kP(\&\- j, \ig\=k,r(A,B) oo). (1.40) 

The k = 0 term is non-zero only if B = 0 in which case the above probability is 

P ( | £ ^ | = j ) , and similarly for the j = 0 term. It follows from (1.40) and the form 

of the perturbation in (1.5) that /(-u) is a polynomial of degree at most iVo + 1 with 

coefficients given by certain coalescing probabilities of B (see (1.90) below). 

1.2. Genera l Coexis tence and Ex t inc t ion Resu l t s 

Our results for the four examples will be derived from general results with hy­

potheses concerning properties of the solution u(t,x) to the limiting P.D.E. (1.33). 

The coexistence results for the models discussed in the opening section are obtained 

by verifying the next assumption in the particular cases. 

Assumption 1. — Suppose that there are constants 0 < vo < u* < u* < v\ < 1, and 

to, Li > 0, so that 

(i) ifu(Q,x) > vo when \x\ < LQ, then liminft~>oo mf\x\<wtu{tix) ^ u*-

(ii) ifu(0,x) < v\ when \x\ < Li, then limsupt_^oc sup|x|<u;t -u(t, x) < u*. 

We also will need a rate of convergence in (1.7), namely for some ro > 0, 

l 

2=0 

\9i-9i\\oo ciAiero (1.41) 
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Assumption 1 shows that the limiting P.D.E. in Theorem 1.3 will have solutions 

which stay away from 0 and 1 for large t. A "block construction" as in [14] will be 

employed in Section 6 to convert this information about the P.D.E. into information 

about the particle systems. In effect, this allows us to interchange limits as e —> 0 

and t —> oo and conclude the existence of a nontrivial stationary distribution, and 

also show that any stationary distribution will have particle density restricted by the 

asymptotic behavior of the P.D.E. solutions at t = oo. 

Theorem 1.4. — Consider a voter model perturbation on Zd satisfying (1.41). Suppose 

Assumption 1. If e > 0 is small enough, then coexistence holds and the nontrivial 

stationary distribution v may be taken to be translation invariant 

lfrj>0 ande > 0 is small enough, depending on rj, then any stationary distribution 

v such that 

v 
X 

i(x) =0 07 

x 

, ( l - £ ( z ) ) = 0 ) = 0 (1.42) 

satisfies v(£{x) = 1 ) G (u* — 77, tz* -f 77) for all x. 

Note that in the second assertion we do not require that v be translation invariant. 

We now turn to the complementary case when one type takes over. Results that 

assert O's will take over will require a P.D.E. input which is naturally mutually ex­

clusive from Assumption 1 but also stronger in that it prescribes exponential rates of 

convergence. 

Assumption 2. — There are constants 0 < u\ < I, C2,C2, w > 0, L0 > 3 so that for 

all L > L0, ifu(0,x) < u\ for \x\ < L, then for all t>0, 

u(t,x) C2e~C2t for all \x\ L + 2wt. 

Finally we need to assume that the constant configuration of all O's is a trap for 
our voter perturbation, that is, 

$£(0, . . . , 0) = 0, or equivalents h\ (0,0) = 0, for 0 < £ < e0 , (1.43) 

where 0 is the zero configuration in {0,1}Z<\ This clearly implies / (0 ) = 0 and is 

equivalent to it if g\ does not depend on e, as is the case in some examples. Recall 

the definition of V s take over" from (1.24) and that q is the law of (Y1,..., YN°). 

Theorem 1.5. — Consider a voter model perturbation on Zd satisfying (1.41), (1.43), 

and such thatp(-) and q(-) have finite support. Suppose Assumption 2, and / ' (0 ) < 0. 

Then for £ > 0 sufficiently small, the 0's take over. 

We believe the theorem holds without the finite range assumptions on p and q. By 

Proposition 1.1 in the above finite support setting, it suffices to assume (1.8) in place 

of (1.5), and also assume (1.41) holds for the g£,gi appearing in (1.8) instead of the 

gf,gi. Of course by symmetry there is a corresponding result giving conditions for l's 

to take over. 
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12 CHAPTER 1. INTRODUCTION AND STATEMENT OF RESULTS 

W e have formulated Theorems 1.4 and 1.5 for the original voter model 
per turbat ions on Zd. These results are clearly equivalent t o the corre­
sponding results for the (rescaled) voter model per turbat ions on eZd. In 
the proofs below we will in fact prove the results in this rescaled set t ing 
where T h e o r e m 1.2 provides a bridge with the solution o f the l imiting 
P . D . E . 

1.3. P . D . E . results 

To prepare for the discussion of the examples, we will state the P.D.E. results on 
which their analysis will be based. The reaction function / : R 3R is a continuously 
differentiable function (as already noted, in our context it will be a polynomial). 
Assume now, as will be the case in the examples, that / ( 0 ) = / ( 1 ) = 0. We let u(t, x) 
denote the unique solution of (1.33) with continuous initial data v : Rd —» [0,1]. In 
what follows it is useful to note that if it is a solution to (1.33) with reaction function 
/ and initial condition v, then 1 — u is a solution to (1.33) with reaction function — / 
and initial condition 1 — v. 

We start with a modification of a result of Aronson and Weinberger [2]. 

Proposition 1.6. — Suppose / ( 0 ) = f(a) = 0, / ' ( 0 ) > 07 f'(a) < 0 and f(u) > 0 for 
u G (0, a) with 0 < a < 1. There is a w > 0 so that if the initial condition v is not 
identically 0, then 

liminf inf u(t,x) 
t^oo \x\<2wt 

; a. 

We also will need an exponential rate of convergence in this case under a stronger 
condition on the initial condition. We formulate it for / < 0 on (0,1). The brief 
proofs of Propositions 1.6 and 1.7 are given at the beginning of Chapter 4 . 

Proposition 1.7. — Assume f < 0 on (0,1) and / ' ( 0 ) < 0. There is a w > 0, and 
if S > 0 there are positive constants L$, c = c$, and C = C$ so that if L > L5 and 
v(x) < 1 — S for \x\ < L, then 

u{t,x) Ce-Ct for \x\ ; L + 2wt. 

There are different cases depending on the number of solutions of f(u) = 0 in (0,1). 
In all cases, we suppose that / ' ( 0 ) ^ 0 and / ' ( 1 ) 7^ 0. We will consider some exam­
ples with multiple zeros in (0,1) in our treatment of the nonlinear voter models in 
Section 1.7 below, for the moment we will restrict our attention to two simple cases. 

Case I: f has zero roots in (0,1). — In this case we can apply Propositions 1.6 (with 
a = 1) and 1.7, and their obvious analogues for — / . 
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1.4. LOTKA-VOLTERRA SYSTEMS 13 

Case II: f has one root p G (0,1).— There are two possibilities here. 

(i) / ' ( 0 ) > 0 and / ' ( I ) < 0 and so the interior fixed point p G (0,1) is attracting. 
In this case we will also assume f'{p) ^ 0. Then two applications of Proposition 
1.6 show that if v ^ 0 and v ^ 1 

lim sup \u(t, x) — p\ 
t~>°° \x\<wt 

= 0. (1.44) 

(ii) / ' ( 0 ) < 0 and / ' (1 ) > 0, so that 0 and 1 are locally attracting and p G (0,1) is 
unstable. In this case the limiting behavior of the P.D.E. is determined by the 
speed r of the traveling wave solutions, i.e., functions w with w(—oo) — p and 
w(oo) = 0 so that u(t, x) = w(x — rt) solves the P.D.E. The next result was first 
proved in d = 1 by Fife and McLeod [21]. See p. 296 and the appendix in [18] 
for the extension to d > 1 stated below as Proposition 1.8. The assumption 
there on the non-degeneracy of the interior zeros are not necessary (see Fife and 
McLeod [211). These references also show that 

sgn(r) =sgn(^J f(u)duj. (1.45) 

I a; 12 will denote the Euclidean norm of x and the conditions of Case II (ii) will 
apply in the next two propositions. 

Proposition 1.8. — Suppose f(u)du < 0 and fix rj > 0. If 6 > 0 there are positive 
constants L®, Co = co(S), and CQ = Co(S) so that if L > L® and v(x) < p — 5 when 
\x\2 < L, then 

u(t, x) Ce~ct for\x\2 ( |r |-r/)t . 

For the block construction it is useful to have a version of the last result for the L°° 
norm, and which adds an L to the region in which the result is valid. 

Proposition 1.9. — Suppose f(u)du < 0. There is a w > 0, and if S > 0 there are 
positive constants L$, c — c$ and C = Cs so that if L > L$ and v(x) < p — 5 for 
\x\ < L, then 

u(t, x) Ce~ct for \x\ L + 2wt. 

The short derivation of Proposition 1.9 from Proposition 1.8 is given at the beginning 
of Chapter 4. 

1.4. Lotka-Volterra systems 

We refer to the model defined in Example 2 as the LV(ao,ai) process. Proposi­
tion 8.1 of [8] implies that 

if ao A ai > 1/2 then LV(ao,cti) is monotone (or attractive). (1-46) 
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14 CHAPTER 1. INTRODUCTION AND STATEMENT OF RESULTS 

Write LV(pt) < LV(a') if LV(a') stochastically dominates LV(a), that is, if one can 

define these processes, £ and respectively, on a common probability space so that 

£ < £' pointwise a.s. Then, as should be obvious from the above interpretation of on 

(see [8, (1.3)1), 

0 < a'0 < OLQ, 0 < QL\ < a[, and either ao A a\ : l / 2 (1.47) 

or afQ A a[ > 1/2, implies LV(a') LV(a). 

If c%i < 1 for both i = 0,1, then individuals are better off surrounded by the opposite 

type and one may expect coexistence to hold. On the other hand if both > 1, 

competition between types is stronger than within a type and one may expect one 

type to take over, depending on the oti values. 

To calculate the limiting reaction function in this case consider the system of coa­

lescing random walks {Bx : x G Zd} used in the duality formula (1.40). Let { e i , e 2 } 

be i.i.d. with law p(-) and independent of the {Bx : x G Zd}. If we abuse our earlier 

notation and let (-)u denote expectation on the product space where (ei, e2) and £ are 

independent, and £ is given the voter equilibrium with density u, then from (1.30), 

(1.12) and the fact that /i(0,£)2 = Pc(£(ei) = £(^2) = i) , we have 

f(u) 0o((l ~ «0))£(ei)£(e2)>u - 0i<£(O)(l - £(ei))(l - «c2)))tt. 

In view of (1.40) we will be interested in various coalescence probabilities. For exam­

ple, 

P(x\y,z) :P{3t >_ 0 such that Ê\ = Bzt, and V* 0, B\ ± Êf and Bzt ? êf) 

and 

p(x\y\z) P(BX B\ and Bf are all distinct for all t). 

In general, walks within the same group coalesce and those separated by at least one 

bar do not. If we define 

P2 =p (0 | e i ,e2) , P3 =p(0 |ei |e2), (1.48) 

where the expected value is taken over ei, e2, then by the above formula for / 

and (1.40), 

f{u) - 90u(l - u)p2 60u2(l - u)p3 - 0i (1 - u)up2 -0i(l- ufups 

U(l - u)[0Op2 - 0i(p2 +Ps) upstfo + Oi)]. (1.49) 

To see what this might say about the Lotka-Volterra model introduce 

u*(0i /«o): 
0\{P2 +P3) -O0P2 

Ps(0i+0o) 
(1.50) 

so that flu) = 0 for u = 0,1 or u*(0i/0o). If 

m0 • 
P2 

P2+PsJ 
(1.51) 
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01 
slope m0 1 

slope 1 

Й2 / R4 
R1 slope mo 

R3 
в0 

Ri / 

FIGURE 1.1. Phase diagram near (1 ,1) for the Lotka-Volterra model with 
the stylized shape of / in the regions. 

then u*(m) increases from 0 to 1 as m increases from mo to rriQ1. We slightly abuse 
the notation and write u* for u*(0i/0o). 

To analyze the limiting P.D.E. we decompose the 0o — 0i plane into 5 open sectors 
drawn in Figure 1.1 on which the above O's are all simple. Set 0 = (во, 0i). 
- If 0 G Ri, f > 0 on (0, it*), / < 0 on (w*, 1), so и* G (0,1) is an attracting fixed 

point for the ODE. Then (1.44) shows the P.D.E. solutions will converge to u* 
given a non-trivial initial condition in [0,1]. As a result we expect coexistence in 
the particle system. 

- If 0 G i?2, / < 0 on (0,1), 0 is an attracting fixed point for the ODE. Proposition 1.6 
implies solutions of the P.D.E. will converge to 0 given a non-trivial initial condition 
and we expect O's to win. 

- If 0 G Дз, / > 0 on (0,1), 1 is an attracting fixed point for the ODE and so by the 
reasoning from the previous case we expect l's to win. 

- On Д 4 U i?5, u* G (0,1) is an unstable fixed point, while 0 and 1 are attracting 
fixed points for the ODE. This is case 2 of Durrett and Levin [17], so we expect 
the winner of the competition to be predicted by the direction of movement of the 
speed of the decreasing traveling wave solution u(x, t) = w(x — rt) with w(—oo) = 1 
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16 CHAPTER 1. INTRODUCTION AND STATEMENT OF RESULTS 

and w(oo) = 0. If r > 0 then l's will win and if r < 0 then O's will win. Symmetry 

dictates that the speed is 0 when 0o = 0i, so this gives the dividing line between 

the two cases and the monotonicity from (1.47) predicts O's win on R4 while l's 

win on # 5 . Alternatively, by (1.45) r has the same sign as f(u)du which is 

positive in i?5 and negative in R4. 

Our next two results confirm these predictions for a close to (1,1). For 0 < 77 < 1, 

define regions that are versions of Ri, R2 U R4 and R3 U R5 shrunken by changing the 

slopes of the boundary lines: 

Cn (a0,ai) G [0,1]2 
( a o - l ) ( l - r y ) 

m0 
: ai — 1 

. m0(a0 - 1) I 

I - 7 7 

A? 
[(ao,û!i) £ (0,oo)2 0 < a0 < 1, m0(l - r])(ao - 1) < ai - 1, 

or 1 < a0, (1 + rj)(a0 - 1) < ai - 1 [ 

A ? : (a0,ai) G (0,oo)2 0 < CÏQ < 1, ai — 1 • 
a0 - 1 

m0(l - ry ) ' 

or 1 < a0, ai - 1 < (1 - rj)(&o - 1) j -

Theorem L10. — For 0 < r? < 1 there is an rn(r?) > 0, non-decreasinq in n, so that 

for the LV(a): 

(i) Coexistence holds for (c*o, G C77 and 1 — ao < ro(r]). 

(ii) / / (a?o,c*i) ¿5 as m (%) ana1 z/a ¿5 a stationary distribution with 

zya(£ = 0 or £ = 1) = 0, then 

SUp Z / a ( £ 0 * 0 = 1) — 7i* 
' O i - l \ 
V ao — 1 > 

n 

(i) is a consequence of Theorem 4 of [8], which also applies to more general pertur­

bations. The main conditions of that result translate into f'(0) > r] and / ' ( 1 ) > 77 in 

our present setting (see (1.91) in Section 1.8 below), (ii) sharpens (i) by showing that 

if 77 is small then the density of l's in any nontrivial stationary distribution is close to 

the prediction of mean-field theory. Durrett and Neuhauser [18] prove results of this 

type for some systems with fast stirring and / (1 ) < 0. Neuhauser and Pacala [33] 

conjectured that coexistence holds for all ao = a\ < 1 (see Conjecture 1 of that 

paper) and proved it for cti sufficiently small. Hence (i) provides further evidence for 

the general conjecture. 

Proof of Theorem 1.10. — For 77 G (0,1 — mo) consider 

a£0 = 1 -e2,al = 1 s29l where - (9f G 
mo 1-7/ 

. 1 — 77 ' mo J 
, limflf = 0i. 

elO 
(1.52) 

Then the rescaled Lotka-Volterra model £e remains a voter model perturbation where 

a% mav now depend on e. From (1.49) we have 

f(u) = u(l- u)[-p2 - 0i(P2 +P3) + up3(- l + 0i)], 
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which has a zero, and attracting fixed point for the ODE, at 

u*(-01) 01 (P2 +P3) +P2 

P3(01 - 1) 
G (0,1). (1.53) 

Proposition 1.6 and its mirror image, with 0 and 1 reversed, establish Assumption 1 

with u* = u* = u*(—9i) (see (1.44)). Theorem 1.4 therefore shows that for 0 < e < 

Eo (n) 

coexistence holds, and if v is a stationary distribution satisfying 

v{i = 0 or f = 1) = 0, then sup\v(£(x) = 1) - u*(-0i ) | < rj. 

(1.54) 

Suppose first that (ii) of Theorem 1.10 fails. Then there is a sequence en i 0, 

(atQl,a£1n) and So > 0 so that (1.52) holds with e = en, and there is a stationary 

measure vn for ££n satisfying i/n(£ = 0 or £ = 1) = 0 and such that 

sup|i/„(£(aO 
X 

l ) - « * ( - 6 Ç - ) | ô0. 

Since it*(—#fn) —> u*(—0i), if we choose rj < So this contradicts (1.54) for large n, 

and so proves (ii). The proof of (i) is similar using the first part of (1.54). That is, 

if (i) fails, there is a sequence en I 0 so that coexistence fails for a^n as in (1.52), 

contradicting the first part of (1.54). • 

The next result is our main contribution to the understanding of Lotka-Volterra 

models. It shows that (i) of the previous result is asymptotically sharp, and verifies 

a conjecture in [8] (after Theorem 4 in that work). We assume p has finite support 

but believe this condition is not needed. 

Theorem 1 . 1 1 . — Assume p(-) has finite support. For 0 < rj < 1 there is an 7-0(77) > 0, 

non-decreasing in rj, so that for the LV(a): 

(i) 0's take over for (ao,ai) € AQ and 0 < |ao — 1| < ro(rj), 

(ii) 1 's take over for (ao> a i ) G AJ and 0 < \ao — 1| < ro(rj). 

Conjecture 2 of [33] states that l's take over for a € A ? , ao > 1 and 0's take over for 

a G A§, CXQ > 1. Theorem 1.11 establishes this result asymptotically as a gets close 

to (1,1), at least for d > 3. 

Together, Theorems 1.10 and 1.11 give a fairly complete description of the phase 

diagram of the Lotka-Volterra model near the voter model. In Figure 1.2, C is the 

union over rj G (0,1) of the regions in Theorem 1.10 (i) on which there is coexistence, 

and Ai, i = 0,1, is the union over 77 of the regions in Theorem 1.11 (i) and (ii), 

respectively, on which i's take over, as well as other parameter values for which the 

same result holds by monotonicity. For example, if (ao><*i) € Ai, with aoAai > 1/2, 

and (QQ, a[) has a0 > ao and a[ < ai , then by (1.47), (af0, a[) G Ai. Theorem 1.10 (i) 

and Theorem 1.11 show that the three mutually exclusive classifications of coexistence, 
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a1 

Ao 

'TU) 

1 - ra0 
C 

A1 

1 - m0 a0 

FIGURE 1.2. Coexistence on C, type i takes over on A i . 

O's take over, and l's take over, occur on the three regions, C , Ao and Ai, meeting 

at (1,1) along mutually tangential lines with slopes mo, 1 and TTIQ 1 . 

Proof of Theorem 1.11. — It is enough to prove (i). Let 0 < rj < 1 and consider first 

ao = OLQ = 1 — £2, a\ = a\ = 1 — mo(l — r))e2, 

so that in the notation of Example 2. we have set 6o = —1? Oi — —wio(l — rj). 

The rescaled Lotka-Volterra process ££ is a voter model perturbation on eZd, and 

from (1.49) we have 

f(u) = -u(l - u)[rjp2 + up3(l + m0(l - r/))] Oon (0,1). 

Proposition 1.7 verifies Assumption 2 in Theorem 1.5 and / ' ( 0 ) < 0 is obvious. (1.41) 

is trivial (gf — gi) and (1.43) is immediate from (1.13). The finite range assumption 

on q = p x p is immediate from that on p. Theorem 1.5 implies O's take over for e 

small. Therefore when 0 < 1 — ao < 7*0(77) and a\ = 1 + mo(l — 77) (ao — 1), then 

O's take over for LV(a). The monotonicity in (1.47) shows this is also the case for 

ai > 1 + mo(l — rj)(ao — 1) and ao as above. 
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1.6. EVOLUTION OF COOPERATION 19 

Next consider 

a0 = al = 1 + e2, ai = a\ = 1 + (1 + rj)e2 that is, 60 = 1, 0i = 1 + 77. 

In this case we have 

f(u) = u(l - u)\p2 - (1 + rj){p2 + p3) + WP3(2 + 77)], 

and so, assuming without loss of generality (by (1.47)) 1 + rj < m0 \ from (1.50) / 

has a zero, and an unstable fixed point for the ODE, at 

u 
( l + 7 ? ) ( p 2 + P 3 ) - P 2 

P3(2 + J?) 

1 

k2: 
,1 

It follows that JQ f(u)du < 0 and Proposition 1.9 establishes Assumption 2. As above, 

Theorem 1.5 and (1.47) show that O's take over if 0 < ao — 1 is sufficiently small and 

on > l + (l + 77 ) ( a0 - l ) . • 

1.5. Latent voter model 

By (1.14) and (1.15) our f{u) is as for the Lotka-Volterra model, that is (1.49) 

holds, with #i = 62 = — 1 (which will put the Lotka-Volterra model in our coexistence 

regime C in Figure 1.2 for small e), and (1.41) holds with ro = 2. Therefore we may 

apply Theorem 1.4 exactly as in the first part of the above proof of Theorem 1.10 for 

the voter model, with u*(—1) = 1/2, to directly obtain (1.54) for small enough e and 

hence prove: 

Theorem 1.12. — Let rj > 0. There is an 7*0(77) > 0, non-decreasing in rj so that for 

the latent voter model with 0 < e < 7*0(77): 

(i) Coexistence holds. 

(ii) / / v is any stationary distribution for the latent voter model with 

= 0 or £ = 1) = 0, then 

sup|i/(£(a;) = l ) - l / 2 | 
X 

n 

1.6. Evolut ion of cooperat ion 

In their more general work Ohtsuki et al. [34] singled out the special case of the 

evolutionary game defined in Example 4, in which each cooperator pays a benefit 

b > 0 to each neighbor at a cost c > 0 per neighbor, while each defector accepts the 

benefit but pays no cost. The resulting payoff matrix is then 

a 8\ 

V7 SJ 

b — c — 

b 0 . 
(1.55) 

In this case the payoff for D always exceeds that for C. As a result in a homogeneously 

mixing population cooperators will die out. The fact that such cooperative behavior 
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may nonetheless take over in a spatial competition is the reason for interest in these 

kind of models in evolutionary game theory. In a spatial setting the intuition is that 

it may be possible to the C's to form cooperatives which collectively have a selective 

advantage. 

The authors used a non-rigorous pair approximation and diffusion approximation 

to argue that for the cooperator-defector model for large population size N and small 

selection w, cooper at ors are "favored" if and only if 6/c > k. Here "favored" means that 

starting with a single cooperator the probability that cooperators take over is greater 

than 1/N, the corresponding probability in a selectively neutral model. They also 

carried out a number of simulations which showed reasonable agreement for N ^> k 

although they noted that b/c > k appeared to be necessary but not sufficient in 

general. It is instructive for the reader to consider the nearest neighbor case on Z 

starting with cooperators to the right of 0 and defectors to the left. It is then easy 

to check that the C/D interface will drift to the left, and so cooperators take over, 

if and only if b/c > 2. This was noted in [34] as further evidence for their b/c > k 

rule. 

Our main result here (Corollary 1.14 below) is a rigorous verification of the b/c> k 

rule for general symmetric translation invariant graphs with vertex set Zd when w is 

small 

Prom (1.19) and (1.21) we have (recall hi is as in (1.29)) 

hi(x,€) (Oi-fi<l>)(x,Ç), i 0,1. 

Since h0 + h\ = #o + #i — 0 = 0, we can write 

ho(x,€) : ( 7 - / W o A ( * , 0 + k(S - 7 ) / < J 2 ) ( * , 0 
- f c / o f o O [ ( * - W i ( 2 ) - ( * - 7 ) ^ 2 ) ] ( x , 0 , 

hi(x,€) -h0(x^). (1.56) 

As before, let ei,e2,es denote i.i.d. random variables with law p. If Pe denotes 
averaging over the e '̂s then we have 

/ ¿ ( 0 , 0 Pe(€(e1) i), / i 2 ) ( o , 0 
Pe(€(e1) i,i{ei +e2) = i), (1.57) 

/ i x ( o , 0 / i 2 ) ( o , 0 = Pe{i(ei) «i,£(e2) «2,£(e2 +e3) ¿2), 

and similarly for higher order probabilities. We also continue to let (•)„ denote ex­

pectation on the product space where {e\,e2,ez) and the voter equilibrium £ are 

independent. If £ = 1 — £, then starting with (1.30) we have, 

m 
k 

k-1 (£(0)^(0,0 6(0)ho(0,£))tt *_1(/ii(0,fì)U) 

1. Recently Yu-T ing Chen has verified the b/c > k rule for a range of large finite graphs (N large, 

w small) in [4]. 
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1.6. EVOLUTION OF COOPERATION 21 

where in the last equality (1.56) is used to see that what appears to be a quartic 

polynomial is actually a cubic. Using (1.57) and some arithmetic we obtain 

/ (« ) 
k = G8-7)té(ei)É(e2)>u •(a-0)(C(ei)£(e2)£-(e2 + e3)>« (1.58) 

•(7-<5)<£(ei)£(e2)£>2+e3)>„. 

To simplify further we will use a simple lemma for coalescing random walk proba­

bilities (Lemma 1.15 below) together with the duality formula (1.40) to establish the 

following more explicit expression for / , whose proof will be given below: 

f(u) 

k 
-.[(ß-~ö) + k-1(7-o)}p(0\e1)u(l-u) (1.59) 

[ ( a - 0 ) - ( 7 - Ä ) ] [u(l-u)(p(e1\e2,e2 + e3) up(ei\e2\e2 + e3))]. 

Rather than try to analyze this cubic as in Section 1.3, assume a — ¡3 = 7 — 5 (which 

holds in our motivating example) so that / becomes a quadratic with roots at 0 and 1. 

If /3 — 6 > k~1 (6 — 7 ) , then / is strictly positive on (0,1) and so Proposition 1.6 shows 

the P.D.E. solutions will converge to 1. If /3 — S < k~1(5 — 7 ) , then / is strictly 

negative on (0,1) and so by symmetry the P.D.E. solutions will converge to 0. As a 

result for w — e2 small, in the former case we expect l's to take over and in the latter 

case we expect O's to take over, and this is in fact the case. 

Theorem 1.13. — Consider the spin-flip system on Zd (d > 3) with rates given 

by (1.17) where a — /3 — 7 — 5. If 7 — 5 > k(6 — / 3 ) , then 1 's take over for w > 0 

sufficiently small; if 7 — S < k(5 — (3), then 0's take over for w > 0 sufficiently small 

Proof of Theorem 1.13. — This is now an easy application of Theorem 1.5. Assume 

7 — S < k(S — /3). Then (1.59) shows that f(u) = c\u(l — u) for c\ < 0. Proposi­

tion 1.7 shows that Assumption 2 of Theorem 1.5 is valid for any u\ € (0,1). The 

condition (1.41) holds with r0 = 2 by (1.22) (recall \\gf - ^ | | o o = Ml - 9i\\oo by 

Proposition 1.1). The condition (1.43) is clear from the expression for h\ in (1.19). 

Since / ' ( 0 ) < 0 is clear from the above, and w = £2, Theorem 1.5 completes the 

proof in this case. The case where the inequality is reversed follows by a symmetrical 

argument, or, if you prefer, just reverse the roles of 0 and 1. • 

The particular instance of (1.55) follows as a special case. 

Corollary 1.14. — Consider the spin-flip system on Zd (d > 3) with rates given 

by (1.17) where the payoff matrix is given by (1.55). If b/c > k, then the cooperators 

take over for w > 0 sufficiently small, and if b/c < k, then the defectors take over for 

w > 0 sufficiently small. 

Proof. — In this case a — /3 = 7 — S = b, 5 — /3 = c, and so we have 7 — 5 > k(8 — /3) 

iftb>kc iff b/c >k. • 
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Turning now to the missing details. 

Lemma LIS 

(a) p(ei|e2) =p (0 |e i ) . 

(b) p(ei|e2 + e3) = ( l .+ ^)p(0|ci). 

Proof. — Let Bx denote a rate 2 random walk with kernel p starting at and note 

that for x 7^ 0, Bx — B° has the same law as Bx until it hits 0. Note also that for 

x ± 0, P(Bf ± 0 V t > 0) = ZyP(y)P(B?+y * 0 V t > 0). For (a), 

P(0|ei) 
Xi 

p(x1)P(B? 0 for all t 0) 

X\ X2 

p(x1)p(x2)P(É^ 0 for all t > 0) (use xi 7^ 0) 

X\ X2 

p(x1)p(x2)P(B^ 0 for all t > 0) (by symmetry) 

p{ei\e2). 

For (b), let Tj(x) be the time of the jth jump of Bx. Then using symmetry, 

p(ei|e2 + e3) : 

x1,x2,x3 

p(Xl)p(^2M^3)P(5f1+X2+X3 0 for all t > 0) 

x1 

p[x{)P{B^ ^ 0 for all t > T2(#i ) ) . 

Now using the above and first equality in the proof of (a), 

p(ei\e2 + e3) -p(0\ei) 
Xi 

p{Xl)P{BxT\=^ Bp 0 for all t > T2(xi)) 

h'1 

x1 

P(*i)P(B? 0 for all t > Ti) 

fe-1p(0|ci). 

The result follows. 

Proof of (1.59). — We first rewrite (1.58) as 

f(u) 

k :0-7)<£(ei)£(e2)>„- ( 7 - 5)(aei)Ì(e2)Ì(e2 + e3) + £>i)£(e2)£(e2 + e3)>„ 

((a - /?) - ( 7 - *))<£(ei)£(e2)£(e2 + e3)>„ 

7 + II + III. (1.60) 
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Some elementary algebra shows that 

II = ( 7 - WW - Eterea) - £(ei)£(e2 + e3) + £(e2)£(e2 + e3)>„ (1.61) 

Note that (1.40) and Lemma 1.15(a) imply 

<£(ei)£(e2))u : u2p(ei |e2) + u ( l - p(ei |e2)) 

M2p(0|e1) + u ( l - p ( 0 | e 1 ) ) 

^(0)£(ei ) )„ = (£(e2)£(e2 + e3))„, 

the last by translation invariance. Using this in (1.61) and again applying (1.40), we 

get 

I + /J (/3 - 7 W 1 - t*)p(ei|e2) + ( 7 - *)ft* - (£(ei)Ç(e2 + e3)> J (1.62) 

( / 3 - 7 ) u ( l - u)p(ei\e2) 

+ ( 7 - <J)[u - w2p(ei|e2 + e3) - u(l - p(ei |e2 + e3))] 

u(l - w ) [ ( /3 - 7 )p (e i | e2) + ( 7 - S)p(ei\e2 + e3)J 

= u(l - u)p(0|e!)[(/3 - 7 ) + (1 + fc-1)(7 " * ) ] , 

where Lemma 1.15 is used in the last equality. A straightforward application of (1.40) 

allows us to find the coefficients of the cubic III in (1.60) and we obtain the required 

expression for f(u)/k. • 

1.7. Nonlinear voter models 

If the states of adjacent sites were independent in the discrete time nonlinear voter 

model defined in Example 1, then the density would evolve according to the mean 

field dynamics 

Xt+l h{xt) = Pi • 5xt(l - xt)4 + P2 • 10x2(l - xtf 

+ (1 - p2) • 10x;*(l - xt)2 + (1 - Pl) • 5x?(l - xt) + x\ 

Based on simulations and an analysis of the mean-field equation, Molofsky et 

al. [32] predicted the phase diagram given in Figure 1.3. To explain this, h(x) = x is 

a fifth degree equation with 0, 1/2, and 1 as roots. ^'(0) = h'(l) = 5pi so 0 and 1 are 

locally attracting if 5p\ < 1 and unstable if 5pi > 1. hf(l/2) = (15 — 15pi — 10p2)/8, 

so 1/2 is locally attracting if 15pi + 10p2 > 7 and unstable if 15pi + 10p2 < 7. From 

the stability properties of 0, 1/2, and 1, it is easy to determine when there are addi­

tional roots a and 1 — a in the unit interval and whether or not they are stable. The 

four shapes are given in Figure 1.4. To make the drawing easier we have represented 

the quintic as a piecewise linear function. 

The implications of the shape of f(u) (= h(u) — u in the above) for the behavior 

for the system will be discussed below in the context of a similar system in continuous 

time. There we will see that the division between 4A and 4B is dictated by the speed 

of traveling waves for the P.D.E. Here we have drawn the "Levin line" 6p\ + 2p2 = 2 
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P2 

1 f 

4A coexistence 
periodic 

7 
4B \ 1 

.4 voter model 

3 2 

clustering two equil.? 

.2 .466 1 Pl 

FIGURE 1.3. Conjectured phase diagram for the discrete time two-
dimensional nonlinear voter model of [32]. 

1 2 

3 4 

FIGURE 1.4. Four possible shapes of the symmetric quintic / . Black dots 
indicate the locations of stable fixed points. 

which comes from computing the expected number of l's at time 1 when we have two 
adjacent l's at time 0. Simulations suggest that the true boundary curve exits the 
square at (0.024,1), see [32, p. 280]. 
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We abuse our notation as before and incorporate expectation with respect to an 

independent copy of Y = (F1, . . . , !^4) in our voter equilibrium expectation (-)u. 

If Y° = 0, then a short calculation shows that our reaction function in (1.30) is now 

/ ( « ) 
4 

3=1 
ati)(Qj(u)--QjO--u))> (1.63) 

where 

qj(u) 
\3J 

4 - j 

i=0 

I-€(Yi)> 
4 

i=5-j 

E (Y) >u. 

Clearly 

/ (0 ) = / (1 ) = / (1 /2 ) = 0 and / ( « ) = - / ( 1 - « ) . (1.64) 

It does not seem easy to calculate / explicitly, but if L is large, most of the sum comes 

from Y% that are well separated and so the £ values at the above sites should be nearly 

independent. To make this precise let A = { F 5 _ j , . . . , F4} , B = {Y°,..., F4--7}, 

(1 < j < 4), and note by (1.40) that 

qj(y) 
4 

Vi, 

3 5 - j 

¿=1 fc=l 
и*(1-и)кР(\&\ i,|€Boo k,r(A,B) oo) 

4N 

J'y 
uj{l-uf~j qj(u) 

where 

q3\u) 
/ 4 \ 

vi, 
- u ' ( l - u ) 5 - ' P ( | & u B | < 5 ) 

3 5 - J 

¿=1 fc=l 
l ( i + fc<5K(l-U)fcP(||^| i,|€Boo k,r(A,B) — oo) 

5 
v—> 

i=l 

di(j,L)u\ 

If rjo(L) — P(\f^B\ < 5), that is the probability that there is a coalescence among 

the random walks starting at F ° , . . . , F4, then it follows easily from the above that 

\di(j,L)\ < coTjo(L). Use this in (1.63) to conclude that f(u) = f\{u) + /2(w), where 

/2 includes the (smaller) contributions from the q^s. That is 

f2(u) 
5 

3=1 

e(j, L)u3, (1.65) 

where 

SUD \e(i<L)\ 
i< i<5 

c1n0(L) (1.66) 
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and 

/ l ( « ) -u[a(4)(l-uf - a(3) • 4u(l - uf a(2) -6u2(l -uf - a ( l ) • 4u3(l - «)1 

(1 - u) [a(4)u4 a(3) -4u3(l - u) - a(2) • 6u2(l - u)2 •a(l) -4u(l -u)3^ 

- uf • b2u2(l - uf - b2u3(l - uf - òiu4(l - u), (1.67) 

where bi = 4a( l) — a(4) and 62 = 6a(2) — 4a(3). By symmetry we have 

/ i (0) = = / i ( l / 2 ) = 0 and / i (u) = - / i ( l - u). (1.68) 

Clearly rjo(L) —>• 0 as L - » oc, in fact well-known return estimates (such as 

Lemma 2.6(a) below with to = 0, TQ = 1 and p large) and a simple optimization 

argument show that 

Vo(L) CsL-[d(d-2)/{2{d-l))]+S^ ^ • 0. (1.69) 

To prepare for the next analysis we note that 

/ î(ti) = 6 i [ ( l - ^ ) 4 - 4 ^ ( l - t i ) 3 ] 62 [2w( l -w)3 -3w2( l -w)2 ] 

- 62[3ÌÌ2(1 - uf - 2ÌÌ3(1 - u)) - 6i[4w3(l - u) - u% 

and so we have /{ (0 ) = / { (1 ) = h and / { ( 1 / 2 ) = -(66i H- 262)/16. A little calculus, 

left for the reader, shows 

rl/2 

Jo 
fi{u)du •• 

5&i + 62 

192 

ri 

J l / 2 

fi{u)du. (1.70) 

We are now ready to describe the phase diagram for the nonlinear voter. Consult 

Figure 1.5 for a picture. Note that in what follows when L is chosen large, it is 

understood that how large depends on a — ( a ( l ) , . . . , a(4)). 

(1) > 0, / { (1 /2 ) < 0 and so by (1.66) for large enough L the same is true 

for / . In this case 0, 1/2, and 1 are the only roots of / (all simple) and 1/2 

is an attracting fixed point for the ODE. An application of Proposition 1.6 on 

[0,1/2] and a comparison principle, showing that solutions depend monotoni-

cally on their initial data (see [2, Proposition 2.1]), to reduce to the case where 

v G [0,1/2], shows that any non-trivial solution u of the P.D.E. (1.33) satisfies 

liminft_+ooinf|x|<2iyt^(£>#) > 1/2 for some w > 0. The same reasoning with 

0 and 1 reversed shows the corresponding upper bound of 1/2. Therefore any 

non-trivial solution of (1.33) will converge to 1/2 and we expect coexistence. 

(2) / { ( 0 ) > 0, / { ( 1 / 2 ) > 0 and so by (1.66) for large enough L the same is true for / . 

In this case 0, 1/2, 1 are unstable fixed points for the ODE and there are attract­

ing fixed points for the ODE at a and 1 — a for some a G (0,1/2). All are simple 

zeros of / . Another double application of Proposition 1.6 now shows that any non-

trivial solution u{t,x) to the P.D.E. will have liminft^ooinf|x|<2tx;£u(t,x) > a 

and l imsup^QQ sup|a,|<2u;£ u(t, x) < 1 — a, so we expect coexistence. Simulations 

in [32], see Figure 7 and the discussion on page 278 of that work, suggest that in 
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56x + fc2 = 0 

4B \ 4A 

1 

3 36i + b2 = 0 
2 

6i = 0 

FIGURE 1.5. Phase diagram for the continuous time nonlinear voter model 
with large range in d > 3. For (6i, 62) in regions 1, 2 and 4A, Theorem 1.16 
gives coexistence for L sufficiently large and e sufficiently small. 

this case there may be two nontrivial stationary distributions: one with density 
near a and the other with density near I — a. The symmetry of / about 1/2 is 
essential for this last possibility as we note below (see Theorem 1.17). 

(3) / i (0) < 0, / { (1 /2 ) > 0 and so by (1.66) for large enough L the same is true for 
/ . In this case 0, 1/2, and 1 are the only roots of / (all simple) and 1/2 is an 
unstable fixed point while 0 and 1 are attracting. In this bistable case the winner 
is dictated by the sign of the speed of the traveling wave, but by symmetry (recall 
(1.64)) the speed is 0. One would guess that clustering occurs in this case and 
there are only trivial stationary distributions, but our method yields no result. 

(4) / { (0 ) < 0, / { (1 /2 ) < 0 and so by (1.66) for large enough L the same is true 
for / . In this case 0, 1/2, 1 are attracting fixed points and there are unstable 
fixed points at a and 1 — a for some a G (0,1/2) (all simple zeros of / ) . By the 
discussion in Case II in Section 1.3 (with [0,1/2] and [1/2,1] in place of the unit 
interval) there are traveling wave solutions Wi(x — Cit), i = 1, 2 with w\(—00) = 1, 
Wi(oo) = u>2(—00) = 1/2 and iu2(oo) = 0. Symmetry implies c2 = — ci, but we 
can have c\ < 0 < c2 (Case 4A) in which case Proposition 1.9 and its mirror 
image show that solutions to the P.D.E. will converge to 1/2 providing that the 
initial condition is bounded away from 0 and 1 on a large enough set. We again 
use the comparison principle as in Case 1 to assume the initial data takes values 
in the appropriate interval, [0,1/2] or [1/2,1], and assume L is large enough so 
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that the integrals of f\ and / on [0,1/2] (and hence on [1/2,1]) have the same 

sign. Hence we expect coexistence in Case 4A and all invariant distributions to 

have density near 1/2. If c\ > 0 > c2 (Case 4B) and L is large enough, there 

is a standing wave solution wo(x) of the P.D.E. in d = 1 with wo(—oo) = 0, 

wo(oo) = 1 (see [22, p. 284]), and our method yields no result. 

Theorem 1,16. — Assume (61,62) we as in Case 1, 2 or 4A. IfL is sufficiently large 

(depending on a) then: 

(a) Coexistence holds for s small enough (depending on L and a). 

(b) In Case 1 or J^A if rj > 0 there is an eo(rj, L,a) so that if 0 < e < So 
and v is any stationary distribution for the nonlinear voter model satisfying 

= 0 or £ = 1) = 0, then 

sup 
x 

!/(£(*) = 1) 
1 

2 ! il-

Remark. — Case 4A is of particular interest as there is coexistence even though 

/ ' (0 ) < 0. Here the low density limit theorem in [7] shows convergence to super-

Brownian motion with drift / ' ( 0 ) < 0 (see the discussion in Section 1.8 below). Prom 

this one might incorrectly guess (after an exchange of limits) that there is a.s. extinc­

tion of l's for the nonlinear voter model, while our proof of coexistence will show that 

there is positive probability of survival of l's even starting with a single 1. 

Proof of Theorem 1.16. — Consider Case 4A first. As pointed out above, in this case 

for L sufficiently large we may employ the mirror image of Proposition 1.9 on [0,1/2] 

with p — a, the unique root of / in (0,1/2), and Proposition 1.9 on [1/2,1] with 

p — 1 — a, along with the comparison principle ([2, Proposition 2.1]), to see that 

Assumption 1 holds for e < So(rj) with u* = \ — 77, u* — \ + 77, vo = 5, and v\ = 1 — 6. 

(1.41) is trivial because g\ = gi. Theorem 1.4 now implies (a) and (b) in this case. The 

proofs in Cases 1 and 2 are similar using Proposition 1.6 (note all the zeros are simple 

in these cases) to verify Assumption 1 (see the above discussion in these cases). • 

We next show that more can be said in Case 2 if we break the symmetry. This also 

demonstrates how one can handle higher degree reaction functions in the P.D.E. and 

still apply the general results in Section 1.2. Consider the nonlinear voter model £ as 

before but now for A > 0 replace g\ with 

0I,A(£I 
€4)) 

(1 + X)a 
4 

1 

€i (1.71) 

while go is unchanged. To avoid trivialities we assume Yl\ aU) > 0- A short calcula­

tion now shows that if / is as in (1.63), then our reaction function in (1.30) becomes 

/ ( A ) ( « ) = / ( « ) + A 

4 

i=1 
a(j)qj{u) / ( « ) + A/0(«) / ( « ) on (0,1). (1.72; 
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Decomposing qj (u) as before we get 

/ (A) (u) : Л,л(«) 
f2,X(u) 

where 

/ I , A ( « ) : (61 + 4Aa(l))u(l - uf (62 + 6Aa(2))u2(l - uf (1.73) 

- (62 -4Aa(3))u3(l -uf (&i - Aa(4))u4(l - u) 

/ i ( « ) + A/3(u) / i ( u ) o n ( 0 , l ) , 

/ 2 , A ( « ) 

5 

3=1 

e(jf, L, X)u3, and sup |e(.7,L,A)| 
l < j < 5 

c2(A + l)77o(L), (1.74) 

and fi is as in (1.67). We also have 

/I ,A(0) 6 i + 4 A a ( l ) , /{)A(1) 61 - Aa(4). (1.75) 

Theorem 1.17. — Suppose b\ > 0 and 0 < A < &i/a(4). 

(a) Coexistence holds for large L and small enough e (depending on L, A and a). 

(b) Assume 3&i + 62 < 0 and let 1 — a' denote the largest root of f\{u) = 0 in 
(0,1). If rj > 0, L > £1(77, a)-1, 0 < A < £1(77, a), 0 < £ < eo(rj,L,\,a) and v 

is any stationary distribution satisfying = 0 or £ = 1) = 0, Jften 

sup z/(£(x) = l ) - ( l - a O 7̂-

For a concrete example, consider a(l) = a(2) = 1, a(3) = a(4) = 3, which is 

a version of the majority vote plus random flipping. Then 61 = 4a(l) — a(4) = 1, 

62 = 6a(2) — 4a(3) = —6, and 36i + 62 = —3, and so the hypotheses of (b) hold for 

small A > 0. As L gets large and A 4- 0, for small enough e the density of any invariant 

measure approaches 1 — a' the largest root of fi(u) = 0. Of course the closer A gets 

to 0, the smaller we must make e to obtain the conclusion of Theorem 1.17, so we are 

not able to prove anything about the case A = 0. Of course we could also consider 

A < 0 in which case symmetric reasoning would show that the densities approach a!. 

Proof of Theorem 1.17 

(a) The conditions on 61 and A imply that f[ A(0) > 0 and / ( A(l) > 0. Coexistence 

for large L and small e is now established as in Case 2 (or 1) of Theorem 1.16. 

(b) By taking A and L-1 small, depending on (77,0), we see from (1.73), (1.74), 

(1.75), and our conditions on the bi that f(\)(u) = 0 will have 3 simple roots in (0,1), 

Pi(A) < P2(A) < P3(A), within 77/4 of the respective roots 

a' < 1/2 < I-a' 

of f\{u) = 0. As (1.41) is again obvious, we now verify Assumption 1 of Theorem 1.4 

with u* = 1 — a'-h | , u* = 1 —a' — | , vo G (p2,^*)5 and v\ G (u*, 1) (77 is small so these 

intervals are non-empty). The result would then follow by applying Theorem 1.4. The 
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upper bound (ii) in Assumption 1 is an easy application of Proposition 1.7, with the 

interval (^3,1) in place of (0,1), and the comparison principle. 

For the lower bound (i) in Assumption 1, we use a result of Weinberger [36]. To 

state the result we need some definitions. His habitat % will be M.d in our setting and 

his space B is the set of continuous functions from % to [0,7r+]. In our case 7r+ = 1. 

His result is for a discrete iteration un+\ = Q(un), where in our case Q(u) is solution 

to the P.D.E. at time 1 when the initial data is u. His assumption (3.1) has five parts: 

(i) if u e B then Q(u) e B. 

(ii) If Ty is translation by y then Q(Tyu) = TyQ(u). 

(hi) Given a number / 3 , let Q(/3) be the constant value of Q(u@) for up = /3. There 

are 0 < 7To < 7Ti < 7T_|_ so that if /3 £ (7TO,7TI) then Q(f3) > /3. Q(TTO) = TTQ and 

Q ( f l " l )= f lT i . 

(iv) u < v implies Q(u) < Q(v). 

(v) If un £ B and un —» u uniformly on bounded sets then Q(un)(x) —> Q(u)(x). 

Clearly (i) and (ii) hold in our application. For (iii) we let TTO = p2{X) and TTI = 

Ps(X). (iv) a consequence of P.D.E. comparison principles, see, e.g., Proposition 2.1 

in Aronson and Weinberger (1978). (v) follows from the representation of solutions 

of the P.D.E. in terms of the dual branching Brownian motion (see Lemma 3.3). 

The next ingredient for the result is 

S {x E Rd : x • £ c * ( 0 for alUeS^-1}, 

where Sd~x is the unit sphere in Rd. c*(£) is the wave speed in direction £ defined in 

Section 5 of [36]. Due to the invariance of the P.D.E. under rotation, all our speeds 

are the same, c* = p, and S is a closed ball of radius p or the empty set. Here is 

Theorem 6.2 of [36]. 

Theorem 1.18. — Suppose (i)-(v) and that the interior of S is nonempty. Let S" be 

any closed and bounded subset of the interior of S. For any 7 > no, there is an r1 so 

that if UQ(X) > 7 on a ball of radius r7 and if un+\ = Q(un) then 

liminf min un(x) 
n—>-oo xenS" 

7Ti. (1.76) 

To be able to use this result, we have to show that p > 0. Note that here we require 

lower bounds on the wave speed of solutions to the reaction diffusion equation in one 

spatial dimension. This is because traveling wave solutions in the direction £ of the 

form w(x-£ — pt) correspond to traveling waves w in one spatial dimension. Recall that 

in the decomposition (1.72) f(u) is odd about u = 1/2, and for large L has / ' (1 /2 ) > 0 

by 3bi + b2 < 0. The latter shows / has 3 simple zeros in (0,1) at a < 1/2 < 1 — a. 
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The strict inequality in (1.72) on (0,1) now easily implies (compare the negative and 

positive humps separately) 

PP3 

JP1 
fw(u)du 

* 1 - Q 

r 
a 

f{u)du = 0. (1.77) 

So by the discussion in part II(ii) of Section 1.3 there is a one-dimensional decreasing 

traveling wave solution to (1.33) (with / = / ( A ) ) OVER (P15P3) with positive wave speed 

r2(A). 

To consider traveling waves over (0,pi(A)), we note that Kolmogorov, Petrovsky, 

and Piscounov [25] have shown that if we consider 

du 

dt 

a2 

2 
au + / f a ) 

in one dimension where / satisfies 

/ ( 0 ) = / ( l ) = 0, / ( « ) 0 for 0 < u < 1, f'(u) / ' ( 0 ) for 0 < u < 1 (1.78) 

then there is a traveling wave solution with speed y/2a2f'(0) and this is the minimal 

wave speed. For this fact one can consult Bramson [3] or Aronson and Weinberger [1]. 

However, the intuition behind the answer is simple: the answer is the same as for the 

linear equation 
du 
dt 

a2 

2 
Au -f f(0)u 

which gives the mean of branching Brownian motion. For more on this connection, 

see McKean [31]. 

Now let g\ < g2 be C1 functions on [0,1] such that 

0 < g2 < /(A) on (0 ,p i ) , gi=g2 = /(A) on [pi, 1], 

fl2(0) € (o, 
r2(A)2' 

2a2 
92(u)<g2(0) on [0,pi], (1.79) 

and for some 0 < po < Pi, 

0i (0) = 0, gi < 0 on (Q,po),£i > 0 on (p0,Pi)5 
ppi 

'0 
gi(t)dt>0, g'1(0)<0. (1.80) 

The existence of such functions is elementary. By the KPP result above, the minimal 

wave speed over (0,pi(A)) for the g2 equation is 

c2 • 2a2^(0) < r2(A). (1.81) 

By [21, Theorem 2.4 and Corollary 2.3] (or the discussion in part II (ii) of Section 1.3) 

there is a unique traveling wave solution u(t, x) = w(x — c\t) (w decreasing) to the 

gi equation with unique wave speed c\ > 0 (since the integral in (1.80) is positive) 

and range (0,pi). Note here and elsewhere that the traveling waves w in [21] are 

increasing and so our wave speeds have the opposite sign. By a comparison theorem 

for wave speeds ([36, Proposition 5 .5 ] ) we may conclude that 

c2 > ci. (1.82) 
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The hypothesis of the above comparison result is easily verified using g\ < g2 and 

the standard comparison principle (e.g., [2, Proposition 2.1]). It follows from (1.81) 

and (1.82) that c\ < r2(X) which are the wave speeds of the g\ equation over (0,pi) 
and (^1,^3), respectively. We can therefore apply Theorem 2.7 of [21] to conclude the 

existence of a traveling wave over (0,p3(A)) for the g\ equation with speed r\(X) G 
(ci,r2(A)). The wave and its speed are both unique by Corollary 3.3 of [21]. Since 

/(A) > 9i on [0,^3], another application of Proposition 5.5 of [36] shows that p > ri(X) 

and in particular p > 0. 

Using (1.76), we have proved that for 0 < 2w = p, 

liminf inf u(n,x) 
n—>oo \x\<2wn 

Ps(X) l - o / 
r) 

4 ' 

providing that u(0,x) > VQ for \x\ < rVo. The same reasoning gives the same conclu­

sion with nr in place of n for any r > 0. Taking r small enough, a simple interpolation 

argument (use the weak form of the reaction diffusion equation and smoothing prop­

erties of the Brownian semigroup) now gives Assumption l(i) with u* = 1 — a' — § 

where the 2w in the above helps a bit in this last interpolation step. • 

1.8. Comparison with low density superprocess limit theorem 

To make a comparison between our hydrodynamic limit theorem (Theorem 1.3) and 

the superprocess limit theorem of Cox and Perkins [7] we will write our perturbation 

terms in a different form, which will also be useful in Chapter 7. Define 

Es(n) 

ies 

rji for 77= fai,...,rçjv0) ^ {0,l}No,S eVNo {subsets of { 1 , . . . , No}}, 

and 

X(A,x,€) 

yeA 

Ç(x + y), X£Zd,Ç { o , i } z d , 

AeVNo {subsets of %d of cardinality at most AT0}. 

By adding an independent first coordinate to Y we may assume Y1 has law p. If 

g?(€1, ,€No -€?1(€1=i) 
• f f f (£ l»--- ,&V0)> (1.83) 

and (ji is as above without the superscript e, then 

limila -9iII00 0, (1.84) 

and we may rewrite (1.5) as 

h?(x,€) Ey{gm^ + Yl) t(x + YN°))), » = 0 ,1 , (1.85) 
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and similarly without the e's. It is easy to check that : S G PN0} is a basis for 

the vector space of functions from { 0 , 1 } ^ ° to R and so there are reals (3£(S),5£(S), 

S G VN0 , such that 

9eM 

S£VN0 

ße(S)Es(v), 9£o(v) 

sevNo 

Se(S)Es(ri), (1.86) 

and similarly without the e's. If S G VNQ, let YS = {YL : z G 5 } , where y G Zd7V° 

has law q as usual. Let Ey denote expectation with respect to 7 . It is easy to use 

(1.85) to check that 

h?(x,€) 

sePNo 

ße(S)EY(X(Ys,x,t)) 

A€VN0 

ßE(A)X(A,x,Z) (1.87) 

h?(x,€) 

sef>N0 

Ss(S)EY(x(Ys,x,0) 
A€PN0 

óe(A)X(A,x,0 (1.88) 

where for A G VN0: 

ßs(A) 
sef>N0 

ße(S)P(Ys = A), öe(A) 

sevNo 

Se(S)P(Ys = A). (1.89) 

Analogous equations to (1.87), (1.88) and (1.89) hold without the e's. 

Now use (1.87) and (1.88) without the e's, and (1.40) to see that 

f{u)- < ( l - £ ( 0 ) A i ( 0 , f ì - É ( 0 ) A o ( 0 , 0 > « 

AEPNO 

B(A) 
\A\ 

-3 = 1 

^ • ( 1 - « ) P ( | ^ | J,T(A, { 0 } ) = oo) 

•ß(0)(l-u)-o(A) 

-\Au{0y 

3=1 

ujP(\&W\=j) (1.90) 

which is a polynomial of degree at most iVo + 1 as claimed in Section 1.1. If / 3 ( 0 ) = 0 , 

then / (0 ) = 0 and 

/ ' (0) 
AevNo 

ß(A)P(r(A) < oo, r(A,{0}) oo) - Ö(A)P(T(A U { 0 } ) < oo). (1.91) 

From (1.86) one easily derives 

Us) vcs 

{-l)\s\-W\mvl se{s) 

VcS 
i-irHvimv), (1.92) 

and similarly without the s's. Therefore 

\ße(S)-ß(S)\ •\Se(S)-S(S)\: 2No(\\9l-h\\oo + Wo-go\\oo), (1.93) 

and so 

AevNo 
\ße(A)-ß(A)\ \SE(A)-S(A)\ 22No(№-9i\\oo llffO - f f o l l o o ) . (1.94) 
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Our spin-flips are now recast as 

C£(£X,££) 
E-2cv(x,€) 

AeVNo 
X ( Ì 4 , X , 0 [ & ( A ) ( 1 £(*))+5£(A)£(*)] , 

which is precisely (1.17) of [7] with e = N 1//2. If we assume 

gl(0) = 0 (and hence gl(0) = $e(0) = 0) for small e, (1.95) 

and the voter kernel p has finite support, then using the fact that the right-hand side 

of (1.94) approaches 0 as e 0 (by (1.84)), it is easy to check that all the hypotheses of 

Corollary 1.8 of [7] hold. Alternatively, in place of the finite support assumption on p 

one can assume the weaker hypothesis (P4) of Corollary 1.6 of [7], and then apply that 

result. These results state that for e as above if XI — e2 YlxeeZd €t(x)°'x and XQ ~* 

weakly in the space Mp(№.d) of finite measures on Md, then XS converges weakly in 
the Skorokhod space of Mp(Rd)-valued paths to a super-Brownian motion with drift 
8 = / ' ( 0 ) (as in (1.91)). In this result we are starting 0(e~2) particles on a grid of e~d 
(d > 3) sites per unit volume, so it is a low density limit theorem producing a random 
limit, whereas Theorem 1.3 is a high density limit theorem producing a P.D.E. limit. 
The latter result gives a natural explanation for the drift 8 in the super-Brownian 
limit which was defined by the right-hand side of (1.91) in [7]. Namely, under (1.95), 
in the low density limit we would expect a drift of limu_>o f(u)/u = / ' ( 0 ) , which of 
course happens to equal the summation in (1.91). 

1.9. Outl ine of the Proofs 

In Chapter 2 we first introduce a family of Poisson processes ("graphical repre­
sentation") which we use to define our voter model perturbation £f(x) on x € eZd. 

Using this and working backwards in time we define a "dual process" X which is 

a branching coalescing random walk with particles jumping at rate e~2 according to 

pe(x) = p(x/e) and with a particle at x giving birth to particles at x + e F 1 , . . . x+eYN° 

when a reaction occurs at x. The ideas in the definition of the dual are a combination 

of those of Durrett and Neuhauser [18] for systems with fast stirring and those of 

Durrett and Zahle [20] for biased voter models that are small perturbations of the 

voter model. 

Duality allows us to compute the value at z at time T by running the dual process 

X€ backwards from time T to time 0 starting with one particle at z at time T. Most 

of the work in Chapter 2 is to use coupling to show that for small e, XS is close to 

a branching random walk X£. Once this is done, it is straightforward to show (in 

Chapter 3) that as e —> 0 the dual converges to a branching Brownian motion X ° , and 

then derive Theorem 1.2 which includes convergence of P(^(x) = 1) to the solution 

u(t,x) of a P.D.E. 
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Assumption 1 shows that the limiting P.D.E. in Theorem 1.3 will have solutions 

which stay away from 0 and 1 for large t. A "block construction" as in [14] will be 

employed in Section 6 to convert this information about the P.D.E. into information 

about the particle systems. In effect, this allows us to interchange limits as e —> 0 

and t —> oo and conclude the existence of a nontrivial stationary distribution, and 

also show that any stationary distribution will have particle density restricted by the 

asymptotic behavior of the P.D.E. solutions at t = oo. 

In order to show that O's take over, say, we will need several additional arguments. 

The P.D.E. results will only ensure we can get the particle density down to a low level 

(see Chapter 4) but clearly we cannot expect to do better than the error terms in this 

approximation. To then drive the population to extinction on a large region with high 

probability we will need to refine some coalescing random walk calculations from the 

low density setting in Cox and Perkins [8] - see Chapter 7 and especially Lemma 7.6. 

This is then used as input for another percolation argument of Durrett [13] to guar­

antee that there are no particles in a linearly growing region. Since there was an 

error in the original proof of the latter we give all the details here in Chapter 5 and 

Section 7.3. 

Quantifying the outline above, the first step in the proof of Theorem 1.5, taken in 

Chapter 4 is to use techniques of Durrett and Neuhauser [18] to show that if £§ nas 

density at most u\ on [—L, L]d then at time T\ = c\ log(l/£) the density is at most e@ 

on [—L — wT\,L + wTi]d (see Lemma 4.2). Here /3 is a small parameter. The second 

step, taken in Chapter 7, is to show that if one waits an additional T2 = c2 \og(l/e) 

units of time then there will be no particles in [—L — wT\ + AT2, L + wT\ — A2T2]d 

at time T\ + T2. The first step here (Lemma 7.6) is to show that if we start a 

finite (rescaled) block of ones of density at most e15 then with probability at least 

1 — EP/2 it will be extinct by time Clog( l /e ) . Here it is convenient that arguments 

for the low density regime of [7] (density ed~2) continue to work all the way up to 

e13 and also that the P.D.E. arguments can be used to reduce the density down to 

e&. In short, although the precise limit theorems, Theorem 1.2 and Corollary 1.8 

in [7] apply in disjoint regimes (particle densities of 1 and ed~2, respectively) the 

methods underlying these results apply in overlapping regimes which together allow 

us to control the underlying particle systems completely. Of course getting l's to 

be extinct in a large block does not give us what we want. The block construction 

in [18] is suitably modified to establish complete extinction of l's on a linearly growing 

set. A comparison result of [28], suitably modified to accommodate our percolation 

process (see Lemma 5.1), is used to simplify this construction. 
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CHAPTER 2 

CONSTRUCTION, DUALITY AND COUPLING 

In this section, we first introduce a family of Poisson processes which we use to 

define £t, our voter model perturbation on eZd, a "dual process" X and a "computation 

process" (. The duality equation (2.17) below gives a representation of £*(#) in terms 

of (X, Q. Next we show that for small £, (X, £) is close to the simpler (X, £), where 

X is a branching random walk system with associated computation process Finally 

we show by a strong invariance principle that for small e, (X, ( ) is close to a branching 

Brownian motion and its associated computation process. 

However, our first task will be to prove Proposition 1.1 and reduce to the case 

where E\ = oo in (1.5). 

2 . 1 . Prel iminaries 

Proof of Proposition 1.1. — Let p — min{p(yi) : p(yi) > 0} , choose £o > 0 so that 
M — sup0<£<£o ||̂ o IIoo V \g\ ||oo < oo and then choose e\ > 0 so that 

ex 2p > M. (2.1) 

For 0 < e < e0 define g\ on { 0 , 1 } ^ ° by 

9Ì(CI,---,CN0) • : £ Г 2 

No 

1 
i f e - = i)p(yj) • - 0 i ( É i , . - . , 6 v o ) , « = o , i , (2.2) 

and define gi by the same equation without the e's. Clearly \\gf — gi\\oo — Wgt — gt\\oo -> 

0 as e -¥ 0. We may assume j/i = 0. By replacing gf with g\l(£i = 1—i) and redefining 

h\ analogously (this will not affect (1.27)), we may assume 

9Ì(CI,---,CN0 0 if £i = ». (2.3) 

We now show that of > 0. Assume first 

No 

1 

€ip(yi)=0 (2.4) 
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Choose £ G {0, l}zd so that = If £(0) = 0, then by (1.27), (1.8), (2.2), 
and (2.4) (the latter to make the voter part of c£ in (1.27) and the first term in (2.2) 
vanish), 

0 <C £ ( ( U e ) g?(€(yi), C ( № o ) ) :5Ì(Ò,---,&v0)-

lf£(0) = l,then a = ^ ( 0 ) l and by (2.3), ffî(6,...,^0) : 0. Assume next that 

N0 

1 
€ip(yi)>0 

Then the above sum is at least p and so 

£ Ï ( £ l , - - - , 6 v o ) £ i 2 p - Uff! £l-2£ - M •o, 
the last by (2.1). This proves gf > 0 and a similar argument shows g^ > 0. Finally 

(1.5) with y* = is immediate from (1.8) and the definition of gf. • 

We claim we may assume without loss of generality that e\ = oo in (1.5), that is, 

the first term in the right-hand side of (1.5) is absent. To see why, let e-2 = e~2 — e\2 

for e < ei, and use (1.5) in (1.27) to rewrite the spin-flip rates of ££ as 

Ce(€x,€e) £ - V ( x , 0 - (1-€(x))h?(x,€) 
t(x)hUx,0, 

where 

hi(x,0 
Ey(g?(€(x+Y1) t(x + YN°))). (2.5) 

So by working with hf in place of h\ throughout, we may use (2.5) in place of (1.5) 

and effectively set e\ = oo. Note first that this does not affect the definition of the 

reaction term f(u) in the P.D.E. (1.33) since the terms involving e~2fi(x^) cancel 

in (1.30). The only cost is that e~2 is replaced with e~2. The ratio of these terms 

approaches 1 and so not surprisingly this only affects some of the proofs in a trivial 

manner. Rather than carry this e~2 with us throughout, we prefer to use e and so 

henceforth set s\ = oo in (1.5). (2.6) 

2.2. Const ruct ion o f & 

Define c* = c*(q) by 

c* SUP ||0i||oo + ||0olloo + l. 
0<e<E0/2 

(2.7) 

To construct the process, we use a graphical representation. For x G eLd, introduce 

independent Poisson processes { T ^ , n > 1} and {T*,x,n > 1} with rates e~2 and c*, 

respectively. Recall p£(y) = v{y/e) f°r V £ e^d and let q£(y) = q(y/e) for y G eZdN°. 

For x G eLd and n > 1, define independent random variables Zx?n with distribution 

Pei ^ x , n = ( ^ „ , . . . , 1 ^ ) with distribution q£, and Ux,n uniform on (0,1). These 

random variables are independent of the Poisson processes and all are independent of 

an initial condition £o € {0, l}eZ . 
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At times t = Tx,n > 1 (called voter times), we set £t(#) = Ct-(x + Zx,n)- To 

facilitate the definition of the dual, we draw an arrow from (x,Tx) -> (x + Zx>n, T*). 

At times £ = T*'x, n > 1 (called reaction times), if = z we set £t(x) = I — i if 

^x,n < 9i-i(St-(x + YlJ, ...,&-(* + Y£°))/c*, and otherwise = &-{x). 

At these times, we draw arrows from (x,T£'x) -> (x + F ^ Z ^ ) for 1 < 2 < iN/"0. 

We write a * next to (x,T*>x) and call these *-arrows. It is not hard to use ideas 

of Harris [23] to show that under the exponential tail conditions on p and g, (1.1) 

and (1.6), this recipe defines a pathwise unique process. This reference assumes finite 

range interactions but the proof applies in our infinite range setting as there are still 

finitely many sites that need to be checked at each reaction time. To verify this 

construction and to develop a useful dual process we now show how to compute the 

state of x at time t by working backwards in time. It is easy to verify that £ is 

the unique in law {0,1 }z -valued Feller process with rates given by (1.2) and (1.27). 

For example one can recast the graphical representation in terms of SDE's driven by 

Poisson point processes and use stochastic calculus as in Proposition 2.1(c) of [8] (it 

is easy to verify condition (2.3) of that reference in our current setting). 

We use B£X to denote a continuous time random walk with jump rate e~2 and 

jump distribution pe starting a,t x £ eZd and drop dependence on x if x = 0. We also 

assume 

{B£,x : x G eZd} are independent random walks distributed as above. (2.8) 

It will be convenient to extend the Poisson times to the negative time line indexed by 

non-positive integers, and hence have {Tx,n G Z } , {T*,x,n G Z } with the associated 

{Zx^n, n G Z } and { ( F x , n ? UXiTl), n G Z } , respectively. At times it is useful to work with 

the associated independent Poisson point processes of reaction events hx(db,dy,du) 

(x G eLd) on R x eZdNo x [0,1]) with points {(T£x, Yx,n, Ux^)} and intensity c*dt x 

q£ x du, and also the independent Poisson point processes of walk steps A* (eft, dz) 

(x G eZd) on R x eZd with points { ( Z ^ , Zx,n)} and intensity e~2dt x p£. 

2 .3 . T h e Dual X 

Fix T > 0 and a vector of M + 1 distinct sites z = ( z ° , . . . , z M ) , each zi G eZd. 

Our dual process X = XZ>T starts from these sites at time T and works backwards 

in time to determine the values £ T ( ^ ) - X will be a coalescing branching random walk 

with XQ = (ZQ, ..., ZM, o o , . . . ) taking values in 

V {(X°,X\...) D([0,T],RdU{oo})z+ : 

K0 G Z+ s.t. X? ooVt G [0, T] and k Ko}. 

Here oo is added to Rd as a discrete point, D([0, T], RdU { c o } ) is given the Skorokhod 

Ji topology, and V is given the product topology. The dependence of the dual on T 

is usually suppressed in our notation. 
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T 
0 dual Xt 

T-Rx 
1 / 2 3 

Ri 

T-R2 
4 5 

' 6 Ä2 

T-R3 7 \ 8 9 
R3 

T-Ri 
10 \ l l 

R4 

Ct J(T) = {4, 1, 0, 10, 2, 12, 3} 
T 

FIGURE 2.1. An example of the dual with No = 3. 

For X = X 1 , . . . ) G X>, let K(t) = max{i : X£f ^ 00} , define i - t i' iff Xt* -

^ 00, and choose the minimal index j in each equivalence class in { 0 , . . . K(t)} to 

form the set J(t). We also introduce 

I(t) = {Xt : i e J ( f ) } = {XI : X * ^ 0 0 } . 

Durrett and Neuhauser [18] call I(t) the influence set because it gives the locations 

of the sites we need to know at time T — t, to compute the values at z°,..., zM at 

time T. 

To help digest the definitions, the reader should consult Figure 2.1, which shows 

a realization of the dual starting from a single site when NQ = 3. If there were no 

reaction times T*>x then the coordinates X}, j G J(t) follow the system of coalescing 

random walks dual to the voter part of the dynamics. Coalescing refers to the fact 

that if XI — XI for some s and j,f, then X3t = X\ for all t G [s,T]. Jumps 

occur when a particle in the dual encounters the tail of an arrow in the graphical 

representation. That is, if j G J{s—) and x = XJS_ has T — s = Tx then X3S; = x + Zx. 

It coalesces with X\—xJrZ^l\i such an i exists, meaning that i V j is removed from 
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2.3. THE DUAL X 4 1 

J(s-) to form J(s). If B£ is a rate e~2 random walk on eZd with step distribution 
p£ then the coalescing random walks in the dual X follow coalescing copies of B£. 

To complete the definition, we have to explain what happens at the reaction times. 
Put Ro = 0, and for m > 1 let Rm be the first time t > Rm-i that a particle in the 
dual encounters the tail of a *-arrow. If 

j e J(Rm-) and x = XJRm_ has T - Rm = T*'* for some n, ( 2 . 9 ) 

we let Hm = j denote the parent site index. In the example in Figure 2.1 fii = 0, 
№ = 1, = 3, and /¿4 = 2 . 

We create No new walks by setting Ym = Y*n, 1 < i < No, 

K(Rm) = K(Rm-i) + No , and X^R-l)+i = x + Fm, i = 1 , . . . , N0 . ( 2 . 1 0 ) 

The values of the other coordinates X7 , f E J(Rm—)J j ' ̂  / im remain unchanged. 

Each "new" particle immediately coalesces with any particle already at the site where 

it is born, and we make the resulting changes to J(Rrn—) to construct J(i?m) D 
J(Rrn—). To compute £T(Z1), we will also need the random variables 

Um = Uxn where x, m, and n are as in ( 2 . 9 ) . (2.11) 

This computation is described in the next subsection. 

K(s) changes only at reaction times and always increases by exactly ÌVQ, SO 

K(s) = M + raiVo, for s e [Rm, JWi). ( 2 . 1 2 ) 

Let Tt be the right-continuous (time reversed) filtration generated by the graphical 

representation restricted to [T — t,T), but excluding the {Ux,n}. More precisely Tt is 

the right-continuous filtration generated by 

{Al ([T -s,T)xA):s<t,xe eZd, A c eZd}, 

{AX([T - 5, T) x B x [ 0 , 1 ] ) : s < t, B C eZdN\ x G eZd}. 

( 2 . 1 3 ) 

The {-Rm} are then (Jrt)-stopping times and X is (J^-adapted. Since 

P{Rm+i — Rm ^'\^Rm) ls stochastically bounded below by an exponential ran­

dom variable with mean (c*(M + raiVo))-1, Rm t 00 a-s- (recall our graphical 

variables were extended to negative values of time) and the definition of X is 

complete. 

Note that 

M m iS TRm measurable and òv jr 
1 m Ì ̂  m 

Ar Rm" {T-Rm} x •)• (2.14) 

As the above time reversed Poisson point processes are also Poisson point processes, 

one may easily see that 

{Ym} are iid with law q£ and Ym is J~RM — measurable, (2.15) 

and 

{Um} are iid uniform on [ 0 , 1 ] and are independent of .FQQ. (2.16) 
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4 2 CHAPTER 2. CONSTRUCTION, DUALITY AND COUPLING 

2.4 . T h e computa t ion process £ 

Given an initial time to G [0, T) , the coalescing branching random walk {XSls G 
[0, T — to)}, the sequence of parent indices {/im}, the sequence of uniforms {Um}, and 

a set of initial values in { 0 , 1 } , (t0(j) — £ t o C ^ T - t 0 ) > ^ ^(-^ ~~ *°)> we w ^ define 

{(r(k), r G [0, T] , 0 < k < K((T - r ) - ) } so that 

(r(k) = C r ( ^ r - r ) for a 1 1 r e [*o,T] and Jfe < i f ( (T - r ) - ) . (2.17) 

The left hand limits here reflect the fact that we have reversed the direction of time 

from that of X. 

In general we consider a general initial state Ct0(j) £ { 0 , 1 } , j G J(T — to). First 

we complete this initial state by setting (t0(k) = Ct0(j) if k ~T-t0 j € J(T — to). 

Suppose that for some m > 1, Rm is the largest reaction time smaller than T — to-

The values (r(k) do not change except at times T — i?n, so (r = (to for r < T — i?m. 

We decide whether or not to flip the value of £ at /im at time t — Rm as follows. Define 

F m G { 0 , l } ^ b y 

vj 
m 

C(T-Rm)-(M + (m - l)iV0 + j ) , j = 1,..., iVo. (2.18) 

Letting i = C{T-Rm)-{^m) we set 

C ( T - i l m ) ( M m ) 
' l - i 

i 
i ff™ <Sl- l (Vm ) /c* 
otherwise. 

(2.19) 

To update the dual now, for k < M + (m - 1)N0 = AT((T - (T - iJm))-) and fc ^ /xm, 

i f * M m Set CT-Rm(k) = (T-RAVrn) • (2.20) 

Otherwise we keep C(T-Rm)(k) = C(T-i?m)-(fc)-

The values (r(k) remain constant for r G [T — RmjT — Rm-i). Coming to r = 
T — Rm-i, if m — 1 > 1 we proceed as above. When we reach r = T — R0 = T we end 
by setting CT = CT-. If 6 o 0 ' ) = £P4-t0) f o r e J ( T ~ * ° ) ' t h e v e r i f i c a t i o n o f ( 2 - 1 7 ) 

is an easy exercise from the definitions of X and (. 

2 .5 . Branch ing random walk approximation X 

Due to the transience of random walk in dimensions d > 3, and the fact that the 

random walk steps are occurring at a fast rate in X when e is small, any coalescing 

in X will occur soon after a branching event and close to the branching site. As in 

Durrett and Zahle [20], such births followed quickly by coalescing are not compatible 

with weak convergence of the dual. Thus we need a way to excise these events from X. 

As in [20] we define a (non-coalescing) branching random walk X and associated 

computation process £. Later we will couple (X, Q and (X, Q so that they are close 

when e is small. 
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2.5. BRANCHING RANDOM WALK APPROXIMATION X 43 

For m G N, IIm denotes the set of partitions of { 0 , . . . , m} and for each TT G IIm, 

Jo(7r) is the subset of { 0 , . . . , ra} obtained by selecting the minimal element of each 

cell of 7r. Write i ^ j if i and j are in the same cell of 7r. Let {J3y*, i = 0 , . . . No} be 

the rate one coalescing random walk system on Zd with step distribution p and initial 

points at Y° = 0, y 1 , . . . , y ^ 0 where ( y 1 , . . . , YN°) has law q. Let i/0 denote the 

law on HN0 of the random partition associated with the equivalence relation i ~ j iff 

J5yl (£) = J3yJ (t) for some £ > 0. For e > 0 let ^ denote the law on LLJV0 of the random 

partition associated with the equivalence relation i ~£ j iff BY% (e-3/2) = B y 3 (e-3/2). 

Note that e-3/2 = e1/2^-2 so this is a short amount of time for the sped up process. 

For later use when we define the branching Brownian motion Z we note that since 
¿ - 3 / 2 

v£ converges weakly to UQ as e I 0. (2.21) 

As before we will have a fixed T > 0 and distinct sites ZQ, . . . , Z M M Our 

branching random walk X will have paths in V and an associated set of indices 

J(t) = {j : Xl ^ oo} . Let 7To G I IM be defined by the equivalence relation i ~ j 

iff Be~lzi(e~3/2) = B£~lzi(e~3/2). In words, 7r0 will be used to "mimic" the initial 

coalescence in X of the particles starting at z\ before any reaction events occur. We 

suppress the dependence of TTQ on e in our notation. 

For n > 1 let 7rn G IIJV0 be iid with law ve and independent of TTQ. From {7rn} we 

inductively define a sequence of nonempty subsets { J N } of Z+ by JQ = ./0(71*0) and for 

n > 0 

J n + i = 4 U {M + niV0 + j : j G J0(7Tn+i) \ { 0 } } . (2.22) 

Set ^ 0 = 0 and conditional on {7rn} let {^n+i — Rn : n > 0} be independent 

exponential random variables with means (c*| Jn|)_1, and let {/in} be an independent 

sequence of independent random variables where / i n , n > 1, is uniformly distributed 

over Jn-\. jjin is the index of the particle that gives birth at time Rn. 

To define X inductively we start with 

XQ — zj h° j G Jo = J(0) and 00 otherwise. (2.23) 

On [^n, Rn+i), the XJ : j £ Jn follow independent copies of B£ starting at XJ- . At 

Rn+i we define 

Rn + 1 

Rn+i — if j € Jn = J(Rn), 

Rn+i- if j £ Jn+1 - Jn , 

OO otherwise. 

Note that offspring are no longer displaced from their parents and that coalescence 

reduces the number of particles born at time Rn+i, but otherwise no coalescence 

occurs as J(t) = Jn on [Rn,Rn+i). Thus, conditional on the sequence { 7 r n } , X 

is a branching random walk starting with particles at Zj, j G JO(TTO), with particle 
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44 CHAPTER 2. CONSTRUCTION, DUALITY AND COUPLING 

branching rate c* and giving birth to |7rn| — 1 particles on top of the parent X^n (who 

also survives) at the nth branch time Rn. 

2.6 . Computa t ion process C 

As we did for X , for to £ [O»^1) we now define an computation process {(r(k) • 

0 < k < K((T-r)-),r G [t0,?1} for X . Here K(s) = M + mN0 if s G [Rm,Rm+i). 

Given are the branching random walks {Xs , s G [0,T — to]}, the associated sequence 

{7rn, Rn, (in), a sequence of iid random variables {Un}, uniformly distributed on [0,1] 

and independent of (X, {7rn, Rn, fin : n G N}) , and a set of initial values (t0(j),j € 
J(T — to). In the next section when we couple (X, Ç) and (X, £) we will set Un equal 

to [/n defined in (2.11). Define an equivalence relation on { 0 , . . . , M -f TINQ} by 

M + (ra — 1)AT0 + j ^Èn M + (ra - 1)7V0 + 2 

( l < i , j < i V o , l < m < n ) i ff j -Wmi, 

M + (ra - l)iV0 + j Am ( l < i < A ^ o , l < m < n ) iff j 0, (2.24) 

3 ~RN 
(o < i, j < M) iff j-IIo i. 

Finally if R n < t < Rn+i define i « t j iff i j for 0 < i, j < M + niV0. To prepare 

for the proof of Lemma 2.10, note that the definition of ( that follows is just the 

definition of £ with hats added and « t used in place of 

First we complete the initial state (to by setting Ct0(k) = (t0(j) if k ~T- t0 3 £ 

J(T - t0), k < K(T - t0) = K((T - t0) - ) a.s. Suppose that for some ra > 1, Rm is 

the largest branch time smaller than T — to. The values Cr{k) do not change except 

at times T — R n , so £r = C t 0 for t < T — R m . We decide whether or not to flip the 

value of C at ftm at time t — Rm as follows. Define Vm € { 0 , 1 } ^ ° by 

^ = C(r_*m)_ (M + (™ - 1)N0 + j ) , j = 1, • • •, N0. (2.25) 

Letting i = C(T-fim)-(Am) we set 

C ( T - H m ) ( A m ) 
1 -i 
2 

if c>m<^_,(Fm)/c* 

otherwise. 
(2.26) 

To update £ now, for A: < M + (ra — 1)AT0 and k ^ /im, 

^ ^ Am Set CT-£m(k) — C(r~flm)(Am) , (2.27) 

and for the remaining values of k < M + (ra — l)iVo keep 

CT-RM(K) - C(T-RM)-(K)-

The values (r(k) remain constant for r e [T — Rm,T - Rm-i). Coming to r = 

T — Rm-i, if ra — 1 > 1 we proceed as above. When we reach r — T — Ro = T we 

end by setting (T — CT- • 
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2.7. Coupling o f (X, C ) and ( X , C ) 

We now give a construction of X , ( which will have the property that with high 

probability for small e, (i) X and X are close and (ii) given identical inputs, ( and ( 

will compute the same result. As before, T > 0 and z = ( z o , . . . , ZM), Z% € £Zd are 

fixed. Recall the reaction times R m , the uniform random variables Um from (2.11), 

and the natural time-reversed filtration Ft used in the construction of the dual X 
given in (2.10). 

The following general definition will be used to construct the partitions {7rn : 
n G Z_|_} needed to define X, distributed as in Section 2.5, in terms of the graph­

ical representation. Let V be an ^-stopping time (think of V = R m ) : and let 

7o-- . ,7M' € eZd G eLd be JV-measurable. Let {Be™ : i = 0 , . . . , M ' } c eLd 

be the rescaled coalescing random walk system determined by the { T % } in the graph­

ical representation, and starting at (dual) time V at locations 7 0 , . . . , 7 M ' - That is, 

{B£,LI : i = 0 , . . . , M 1 } are as described in Figure 2.1 but now starting at time T — V 

at sites ( 7 0 , . . . , 7 M ' ) = (#o'7(\ • • • , BQ1M'). For each t > 0 let 7Ty,7(t) G n M ' be the 

random partition of { 0 , . . . , M ' } associated with the equivalence relation ii ~ if iff 

B£,7i(t) = B£,LI' (t). We call 7"V57(£) the random partition at time V + £ with initial 

condition 7 = ( 7 0 , . . . , 7 M ; ) at time V. 

Let 7To = 7ro,z(V^) ^ I I M be the random partition of { 0 , . . . , M } at time with 

initial condition 2 = ( 2 0 , . . . , ^ M ) at time 0, and note that its law is the same as the 

law, v£, of the TTQ described just before (2.21). For ra > 1 let 

7m VAiîm> A#m rm? • • • 'Ai?m "•" r m j 

and {71"^, ra G N} be an i.i.d. sequence with law ve and chosen independent of FQQ. 

For ra G N, define 

IIm 7I'i?m,7m(v/^) 

K m 

if > Rn-i + x/ë f°r all 1 < n < ra 

otherwise. 
(2.28) 

By the translation invariance and independent increments properties of the Poisson 

point processes used in the graphical representation and also (2.15), 7rm is independent 

of FRm_1+^ V a(/7T/n,n < ra) = Fm-i, and has law v£ defined just before (2.21). It 

is also easy to check that 7rm is .Fm-measurable (ra > 0) and so {7rm,ra > 0} are 

independent and distributed as in Section 2.5. 

For ra G N let 

' m - inf{s > Rm-i • 3z 7^ j both in J(Rm-i— ) , or 

i G J(Rm-l-) \ {Hm-l}J e J(Rm-l) \ « 7 ( ^ - 1 " ) , SO that X* = 

rm - inf{s > # m - i + : inf \Xls -X'a\< e7/8}, 

y ^ = m a x { | l * | : i = l , . . . , . t fo} . 
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We introduce the time, Th, that one of four possible "bad events" occurs: 

Th-- min{Rm : m > \ , R r n < Rm-i + y/ë or Ym 
e 

K 
log(l/e)} 

A min{rm : m > 1, rm < # m } A min{rm : m > 2, rm < i?m-i + x / ë } 

(recall ^ from (1.1)). Here min0 = oo. To see why the last two minima should 

be large, note that after a birth of NQ particles from particle /jim at time i?m, we 

expect some coalescence to occur between the parent and its children. After time 

y/e, particles should all be separated by at least e7/8 and remain that way until the 

next reaction time when again there may be coalescing within the family producing 

offspring but no other coalescing events. The qualifier ra > 2 is needed in the last 

minimum because we have no control over the spacings between particles at time 0. 

The collision of particles 2 and 7 in Figure 2.1, supposing it occurs before time Rs + 

y/e, is an example of a bad event that enters into the definition of r'A. We assume 

throughout that 

0 < e < €I(K) SO that £ 

K 
log(l/e) < £7/8/2. (2.29) 

Given {7rm} we now construct X and A(s) = (((ln, Rn)l(Rn < s))nen (with the 

joint law described in Section 2.5) initially up to time T = Th A TL where 

fb = min{^m : ra > 1, Rm - R m - i < y/e}. 

Once one of the five bad events (implicit in the definition of f) occurs, we will give 

up and continue the definition of the branching random walk using independent in­

formation. The coupling of X and X will be through our definition of {TT^} and also 

through the use of the random walks steps of X^ to define corresponding random 

walk steps in X7 whenever possible, as will be described below. 

We begin our inductive construction by setting RQ = 0, J(0) = Jo(^o), and define 

X0 as in (2.23). Note that 

J(0) = J(y/i) = J0(7T0) if Rx > yfi. (2.30) 

Assume now that (X , A) has been defined on [0, i?m A T]. Assume also that Rm < f 

implies the following for all 1 < i < ra: 

Ri — Ri, A * — Mi? (2.31) 

J(Ri) = J(Ri-i) U {M + (i - l ) N 0 + j : j G Jbfa) \ { 0 } } . (2.32) 

J(Ri-i) = J(s) C J(s) for all s £ [Ri-x, Ri). (2.33) 

J(s) = J(s) = J(Ri-i + y/e) for all s G [Ri-i + y/i,Ri), (2.34) 

The ra = 0 case of the induction is slightly different, due for example to the special 

nature of 7To, SO let us assume ra > 1 first. To define (X , A) on (Rm A T, Rm+i A T] we 

may assume Rm(co) < f(co) and so (2.31)-(2.34) hold by induction. On ( R m , (Rm + 

y/e) A Rm+i A T] let (X,A) evolve as in Section 2.5 conditionally independent of 
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^oo Vcr({C/m}) given {7rn} . Here it is understood that the unused partitions {ni : i > 

ra} are used to define the successive branching events as in (2.22). 

Next, to define (X,A) on ((Rm + y/e) A Rm+i A T,Rm+i A T] we may assume 

Rm(u) + y/e < Rm+i A T(u). By the definition of Th this implies #m+i > Rm + 

and so for all s G [i?m,#m + v/̂ K 

J(s) - J(Rm) J(Rm-i) U { M + (ra - 1)JV0 + j : j G J0(7rm) \ { 0 } } 

J(Rm-i + >/E) U {M + (ra - l)iV0 + j : j G J0(7rm) \ { 0 } } . (2.35) 

In the first equality we used (2.32) and in the second we used (2.33) and (2.34) with 

s = i?m_i + y/e. The fact that rm < i2m (since > Rm + v^) shows there are no 

coalescings of X on [ R m - i + v̂ > -^m) an<^ so 

J(Rm-l + V ^ ) — J(Rm — )- (2.36) 

Again use > i?m + y/e together with (2.29) to see that Ym < ^ log(l/e) < and 

so the spacings of the previously existing particles at time RM < Tm ensures that none 

of the NQ new particles at time RM will land on a previously occupied site. Therefore 

if 

Ji(Ym) = {l<j<N0:Ym£{Yi:0<i< j } } , 

then 

J(Rm) = J(Rm-) U {M + (ra - 1)JV0 + j : j G J i ( F m ) } . 

The fact that .Rm+i A rm+1 > i2m + y/e means that X has no branching events in 

(Rm,Rm + y/e] and X has no particles coalescing on [Rm,Rm + y/e] except those 

involving X£™ + 1^, 2 = 0 , . . . , NQ. Therefore, the definition of 7rm ensures that 

J(Rm + y/e) = J(Rm-) U {M + (ra - 1)W0 + j : j G J0(7rm) \ { 0 } } . 

J(s) for all S G [Rm, Rm + (2.37) 

where in the last line we have used (2.35) and (2.36). For s G [Rm + y/e, #m+i A T) 
we have s < Tm+i and so 

\Xjs-X*\ > e7/8 for all j + k both in J ( s ) , for all 5 G [#m + >/£, #m+i A T ) . (2.38) 

In particular X can have no coalescings on the above interval and so J(s) = J ( R m + 
y/e) for se[Rm + y/e,Rm+i A T ) . On (Rm + #m+i A f] let (XJ, j G J ( s ) ) follow 

the random walk steps and branching events of {X-7 : j G J(s)} (of course there is 

at most one of the latter at time i?m+i providing Rm+i < T). In particular we are 

setting 

j(s) = J(s) = J(Rm + y/e) for se[Rm + y/e,Rm+i A f) or s = f < Rm+i. (2.39) 

(2.38) shows that the random walk steps and branching events for distinct particles of 

X on (Rm + y/e, Rm+i A T] are independent. In addition, these steps and branching 

events are independent of the random walk increments used to define {iTn}. This 

shows that X evolves like the branching random walk described in Section 2.5 on 
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GRm,#m+iAT), and on (Rm, Rm+i AT] if either T < Rm+i, or Rm + y/s > i^m+lAT. 

(In the latter case the first part of the above construction did the job and in the 

former case there is no reaction event to define at T A Rm+i — T.) So to complete 

the construction at t = Rm+i A T we may assume 

Rm + \fë < Rm+i < T. (2.40) 

The above definition shows that Rm+i = Rm+i, we use (2.32) with i = ra + 1 to define 

J(Rm+i) and we set p,m+i = Clearly /im+i is uniform on J(Rm) = J(Rm + y/e) 

(given {7 rn} ) and is independent of { f i n : n < ra}. In addition the branching events 

used to define { { i n } are independent of the random walk steps used to define {7rn}. 

This completes our inductive definition of (X, A) on [0, i?m+i A T]. 

Next we complete the inductive step of the derivation of (2.31)-(2.34) for ra -f- 1 

under (2.40) which is in fact weaker than the i2m+i < T condition. (2.39) implies 

(2.34) for i = ra + 1, and (2.31) and (2.32) hold by definition. On { R m + y/e < 

Rm+i < T} J can only decrease on [Rm, Rm + y/s\ due to coalescings of the random 

walks, while J is constant on this interval by (2.37). The inclusion (2.33) therefore 

follows from the equality in (2.34). 

To complete the inductive construction of ( X , A ) on each [0,i?m A T] and proof 

of (2.31)-(2.34) it remains to give the ra = 0 step of the construction and verify the 

ra = 1 case of the induction. Both follow by making only minor changes in the above 

induction step. For example, (2.30) is used in place of the (now non-existent) induction 

hypothesis (2.32) both in defining X on the initial interval and in obtaining (2.37) for 

rn = 0. 

Since Rm t 00 a-s- we have defined (X, A)(s) on [0, T] and to complete the defini­

tion we let it evolve conditionally independently (given {7 rn} ) for s >T. 
The above construction and (2.16) show that 

(X, {7 rn} , {/xn}, X , {fin}, {Rn}) is independent of {Un}. (2.41) 

where { U n } are the uniforms from (2.11). Therefore the computation process ( for 

the above X may be defined as in Section 2.6 but with Un = U n . 

Lemma 2.1 

(a) For all m e Z+, Rm < Th and Rm < Th imply Rm = Rm < T. 

(b) For all ra <E N, if 

G m {u :(w=1(Ri - Ri-i)) A (/&{< ~ Ri-ij) > yfe, 

Ri < n Vi < m,moxYi* < - l o g ( l / e ) , ^ ( R i - RÌ-I) > Ve}, 
i<m K, 

then G m C { R m = Rm < T}. 
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Proof 

(a) The implication is trivial for ra = 0 so assume it for ra and assume also Rm+i < 

Tb, Rm+i < Tb. By induction we have j R m = Rm < T. Since Rm+i/\Rm+i > Rm+y/z, 

we also know T > Rm + y/e. The construction of X on (Rm + y/e, Rm+i A T] shows 

that the next reaction time of X on this interval must be Rm+i (if it exists) and 

so Tb > -Rm+i- Since Tb > Rm+i by hypothesis we get (Rm + y/e,Rm-\-i AT] = 

(Rm + y/e, i 2 m + i ] . Hence our construction of X on this interval shows Rm+i = Rm+i 

and so the result follows for ra + 1. 
(b) The first four conditions in the definition of Gm imply 

Tb > Rm+i A T^+2 A T m + i > Rrn. 

The last condition implies TJ, > Rm> Now apply (a). 

As an immediate consequence of the above and our inductive proof of (2.31)-(2.34) 
we get the following: 

Lemma 22 

Gm=> R m < T ^ for a l l l < i < m (2.31) - (2.34) hold. 

On Gm and on the intervals [ R m - i + y/e, R m ) our definition of X and Lemma 2.1(b) 

shows that the movement of particles in X and X are coupled (they take identical 

steps) but on [Rm-i,Rm-i + y/e) they move independently. To bound the discrep­

ancies that accumulate during these intervals we use the following lemma. 

Lemma 23. — Ifwe G m , then 

sup{\XÌ - X¡\ : j e J ( s ) , s [0,Rm)} (2.42) 

< ( ra - 1 ; 
e 

K 
log(iA) 

m—1 

/=0 
sup 

jeJ(Ri),se[Ri,Ri+V^] 

X?-X?m 
\xi-xk\-

Proof. — Suppose first that ra > 1 and we are on Gm • By the coupling of the spatial 

motions noted above, for j G J(Rm-i) 

sup 
SE[Rm-l,Rm) 

\xi-x{\ sup 
se[Rm-l,Rm-l + Vê] 

\xi-xi\ 

\^Rm-i 
X?m-1 sup 

S G [-Rm - 1, Rm - 1 + y/e\ 

|X?-X?m-1 

sup 
8£[Rm-l,Rm-l+y/£\ 

X?-X?m-1 
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On Gm, a newly born particle to XJR^_i_ may jump a distance at most Mog( l /e ) 

from its parent, while for XR it will be born on its parent site, so the above is 

at most 

sup 
keJ(Rm-i-) 

\XR ~ X R 

1 -H-m — i — rim —i — 

e 

K 
log(l/e) 

SUD 

se[Rm-l,Rrn-l + \/£] 
\xi~xLJ sup 

S G [Rm - 1, Rm -1 + Vë] 
\xi~xLJ-

Things are simpler when ra = 1 because there are no initial jumps to worry about 

and so the second term in the above is absent. The required bound now follows by 

induction in ra and the fact that Gm is decreasing in m. • 

2 .8 . Bounding the probabil i ty o f bad events 

Here and in what follows it is useful to dominate X with a branching random 

walk X, also with paths in V and with the same initial state. Particles in X follow 

independent copies of B€ and with rate c* give birth to TVo particles located at B\ + 

Ym, i = 1, . . . , iVo, where B\ is the location of the parent particle. At the rath birth 

time Rm we use xM+̂m_1)iVo+2, i = 1,. . . , No to label the new particles, so that if 

J(i) — {j : X3t ^ oo} , then J(Rm) = { 0 , . . . , M + TRNQ}. Coalescence is avoided in 

X by having the coalescing particle with the larger index have its future steps and 

branching events dictated by an independent copy of the graphical representation. 

This will ensure that J(t) C J(t) and {X?'(£) : j £ J(t)} C {X^(t) : j £ J(i)} for 

all t > 0. 

Let N T — min{ra : Rm > T} and define N T in the same way, using the branching 

times { R m } - Let 

cb = c*N0 > 1. ( 2 . 4 3 ) 

We will also need to separate the particles in X and so define 

Tm = mf{s > R m - i + Vë: inf \Xl -Xi\< e7/s},ra G N. ( 2 . 4 4 ) 

Lemma 2A. — There is a constant C2.4 so that for allT > 0 and n £ N 

(a) P(NT >n)< P(NT >n)< eCbT(M + l)(nA^o)_1. 

(b) P(mini<m<ivT R m ~ R m - 1 ^ \/e Or nimi<M<7VT R m ~ R m - 1 

c24cbeCbT{M + l)e^6. 

Proof 

(a) The first inequality follows from the domination of 1 by X . For the second 

one note that E(J(T)) — (M + l)ec»T and conclude 

P(NT > n) :P(\J(T)\\ M + 1 + nNo) (M + 1 + nNo)~x{M + l)eCbT. 
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(b) Let Z be a mean 1/c* exponential random variable. The domination of X by 

X shows that for any n > 1, 

P ( min Rm - Rm-i < Ve) < P( min Rm - Rm-i < y/ë) 

Kl<m<NT ' Kl<m<NT 

< P(NT > n) H 

n 

m=l 

P 
z 

M + 1 + (m - 1)N0 

Ve 

:eCbT(M + l)(nN0)-1 

n 

m=l 

c*(M + l + (m- i ) JV0)Vi , 

by (a). Note that the sum is at most c*(M + l)n^/£ + Chn2y/e and set n = 1/6]. 

A similar calculation gives the same upper bound for the Pm's. • 

lemma 2.5. — There is a constant C2.5 so that for all T > 0 

P ( Y m > - log(l/e) /or some m < NT) < c2.5eCbT(M + l)e1/2 

Proo/. — By (a) of Lemma 2.4, P(NT > n) < eCbr(M + l)(niVo)"1. Using (1.6) gives 

P (Y^ > - log(l/e) for some ra < n) < nCe. 

Taking n — [e-1/2] now gives the desired result. • 

The following facts about random walks will be used frequently. 

Lemma 2.6. — Let Zs denote a continuous time rate 2 random walk on Zd jumping 

with kernel p, and starting at x £ Zd under Px, and Be be our continuous time 

rescaled copy of Z, starting at z G eZd under Pz. 

(a) For any to > 0, ro > 1, x G Zd and p > 2, 

PX(\ZS\ < ro for some s > to) < c2.6 
,00. 

Jto 

[(\x\-r0)+]-p(s^2Ws) (sVl)-d/2rd ds. 

(b) supx PX{\ZS\ < e'1'8 for some s > e~^2) < c2.6£3/8. 

(c) For any z G eZd, ro > 1 

Pz(|PJ| < Toe for some s :0) С2.6СФ-1) -(2/3)(d-2) 2(d+l)/3 
r0 

Proof 
(a) Use T(to,y) < 00 to denote the time of the first visit of Z to y after time to, 

and let 

G = 
r»oo 

'0 
P°(ZS =0)ds 

be the expected time at 0 (which is finite since d > 3). Then 
poo 

Jto 
Px(Zs=y)ds = Ex l { r ( t o , y ) M < o o } 

poo 

T(t0,y)(uj) 
Py(Zs-T(t0iy)(uj) =y)ds) 

--GPx(T(t0,y)<oc). 
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Summing over \y\ < 7*0 for 7*0 > 1 and rearranging, we get 

PX(\ZS\ < rQ for some s > t0) < G~l 
\y\<r0Jt0 

oo 
Px(Zs=y)ds 

G'1 
oo 

'to 

px(\Zs\ < r0)ds. (2.45) 

A martingale square function inequality shows that for p > 2, 

PX{\ZS\ < r0) < P ° ( | Z . | > (\x\ - r0)+) < c((\x\ - r0)+)-")(s^2 V s). (2.46) 

A local central limit theorem (see, e.g., [5, (A.7)]) shows that 

PX(\ZS\ < r0) < c(s V l)~d/2rd. (2.47) 

Use the above two inequalities to bound the integrand in (2.45) and derive (a). 

(b) Set 7*0 = £-1/8 and to = £-3/2 in (a) and use only the second term in the 

infimum inside the integral. The right-hand side is c£~(d/8)-(3/2)+(3d/4). To complete 

the proof we note that exponent is smallest when d = 3. 

(c) We may assume without loss of generality that ro < \z\e~1 /2 = M/2 (or the 

bound is trivial) and so t\ = M4/^2/3 > 1. Apply (a) with p = 2d and break the 

integral at t\ to see that the probability in (c) is 

Pze 1(\Za\ < r0 for some s > 0) < c 
t1 

Jo 
M~2d(sd V s)ds + 

»00 

t 
s~dl2rd0ds 

c{M-2dti+1 + t\-W2)4) 
c M - ( 2 / 3 ) ( d - 2 ) r 2 ( d + l ) / 3 _ 

Lemma2.7. — P(Tm<Rm orfm<Rmfor somel<m<NT)<c2.7eCbT (M -\-l)2e3/Z2. 

Proof. — To bound P(rm < Rm for some 1 < m < N T ) , we start with 

P(rm < Rm^Rm-i) < P{Rm > Rm-1 + y/e, 31 ^ j both in J ( i ? m - 1 + y/i), S.t. 

inf 
y / £ - \ - R m - l < S < R m 

|X?-X?|<e7/8|FRm-1). 

Now i ^ j both in J(Rm-i + y/s) and Rm > Rm-i + y/s imply i,j 6 J{Rm-i) and 

Xls ̂  Xj for all s e [Rm-i, Rm-i + \fe\. Therefore, the above is at most 

i#jej(Rm-1) 
P(Xl - Xi Î 0, Vs € [Rm-u Rm-i + yfi), (2.48) 

\Xl -X{\< e7'* 3s > Rm^ + V i l ^ - J . 

If Z is as in Lemma 2.6, we may use (b) of that result to bound the above by 

\J(Rm-i)\2 sup PZ°(\ZS\ < e~1^ 3s > e~3/2) < (M + 1 + (m - l ) ^ ) 2 • œ3/8 
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2.8. BOUNDING THE PROBABILITY OF BAD EVENTS 5 3 

Using Lemma 2.4(a), we conclude 

P(rm < Rrn for some 1 < rn < N T ) 

eCbT(M + l)(niV0)-1 -
n 

m=l 

(M + l + (m-l)N0)2ces/8. 

To bound the sum we note that for a, b > 1, 

n 

m=l 
(a + (m - l)ò)2 

n 

^0 
(a + #6) 

1 

36 
[(a-h nò)3 - a3] <ca2(nò)3. 

Taking n = \e 3/32/iVo] gives the desired bound. A similar calculation (in fact there 

is some simplification) gives the same upper bound for 

P(TM < Rm for some 1 < m < iVr.) • 

Lemma 2.8 

P( min (T^+1 - Rm) <V~e)< c2.8eCbT(M + ifs1^. 
1 < m < NT 

Proof. — Define Sm D Gm as Gm (in Lemma 2.1) but without the lower bounds on 

A ^ V / - Ri-i or A^Ri - Ri-i. Note that Sm G JrRm and if oo G 5m, then 

lXL - XLl ^ £?/8 for a11 distinct M G J(Rrn-). 
(2.49) 

In addition, since Ym < Mog( l / e ) we have that for all i G J(Rm—) — j £ 

J(Rm) — J (Rm — ) 

\XRm-XÌJ>sy* -£-\og{l/e)>JI*/2 (2.50) 

since £ < EI(K) (recall (2.29)). 

If T0 is the return time to zero of the random walk Z in Lemma 2.6, we have (see 

[35, P 26.2] for d = 3 and project down for d > 3) 

PZQ(To<(X))<c\zç)\-1. (2.51) 

Use (2.49), (2.50), and (2.51) with scaling, and the bound 

\J(Rm-)\ < M + l + (m-l)AT0 

to see that on 5m G JRRM, 

P(r'm+1+(m-1<Ve|FRm 

c[(M + 1 + (m - l ) iVo)V/8 + (M + 1 + (m - l)AT0)iVoe1/8] 

:c (M+l)2m2JV0V/8. (2.52) 
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5 4 llllCHAPTER 2. CONSTRUCTION, DUALITY AND COUPLING 

Using the bound in Lemma 2.4(a), we conclude 

P( i^mln^ r™+i " Rrn - S n ? ) 
1 < m < A ' T 

P(NT > n) 
n 

fc=l 

P{NT = fc, Sk min r^+1 - R m < y / ê ) 
l<m<k 

:eCbT(M + l)(nN0)~1 

n k 

k=l m = l 

P(Sm,r'm+1-Em<Ve) 

Using (2.52) now, the above sum is at most 

cN2{M + l)2ne1/s 
n 

m=l 
m 2 < c ( M + l ) 2 n V / 8 . 

Take n = \e 1/40] and use Lemmas 2.4, 2.5, and 2.7 to bound P(S^T) to get the 

desired result. • 

2.9. W h e n nothing bad happens, (X , Q and ( X , () are close 

The next result gives a concrete bound on the difference between X and X and 

deals with the final interval [Rm, Rm A T] . Let 

GRN = Gmn {fm > Rm}, rn e N, 

and for 0 < /3 < 1/2, define 

GT = GNT H {sup sup \X{ -Ps\< e1/6} 
s<Tjej(s) 

n { T ^ U ^ - 1 [ i ? m , i ? m + 2 ^ ] } (2.53) 

Allowing smaller /3 values will be useful in Chapters 3 and 4, but for now the reader 

may take ¡3 = 1/2. 

Lemma 2.9. — There is a C2.9 and 82.9(1^) > 0 so that for any T > 2s13, 0 < e < 

£2.9{K>), 

P((GTY) < c2.9eCbT(M + l)2e^A3. 

On GT we have J(s) = J(s) for all s G [T - e^T], and \XT - XJT\ > e7^ for all 

i^j in J(T). 

Proof. — Dependence on ¡3 will be suppressed. For s as above, Lemma 2.2 implies 

J( s ) = J ( s ) on GT since s G [.RJVT-I -f ^ , R N T ) on G T - The last assertion of the 

Lemma holds on G T because on G T , TNT > RNT and 

T G [RNT-I + >/e> RNT) = [RNT-I + y/e, RNT)• 

Lemmas 2.4, 2.5, 2.7, and 2.8 imply 

P ( G ^ T ) < c e C B T ( M + l ) V / 4 0 . (2.54) 
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To deal with the first additional good event in GT, we note that by Lemma 2.3 

P(GNT, sup sup \X3a -X{\> e1/6) < P(NT > n) 

s<Tjej{s) 

+ P ( ( n - l ) - l o g ( l / e ) 
n-1 

sup sup 
i==0 jeJ(Ri) se[Ri,Ri+ve] 

\Xi-X>Rt\ + \Xi-XU>e1'°) 

By (a) in Lemma 2.4 the first term is at most eCbT(M + l)(nN0) 1. If 

( n - l ) - l o g ( l / £ ) < £ 1 / 6 / 2 , 
ft 

(2.55) 

then it is enough to bound 

p 
/ n—l 

> i=0 jeJ(Ri) se[Ri,Ri+y/ê] 
sup sup ixi-x^ + ixi-x^i 

£i/6 

2 ) 

n-1 

i=0 

\M + 1 + i/V0)2P sup 
e<ve 

E1/6 

4n 7 
c ( M + l)n27V0 • n2e"2/V/2, 

by the L2 maximal inequality for martingales. If n = \e 1//40] (so that (2.55) holds 

for e < €2.9(1$)) the above gives 

P (GNT J sm? SUP 
\Xi -XJS\> €1/e) < ceCbT(M + l)^1/40. 

s<Tjej(s) 

(2.56) 

The domination of X by X ensures that 

UmT=To1lRrn,Rrn + 2€P} C UmZ-01[Rm,Rrn + 2€% 

Therefore (recall T > 2ep) for any I G N 

P(T G U ^ o ' t ^ m , Rm + 2 ^ ] ) < P(7VT > + P(T G U ^ I P ™ , Pm + 2 ^ ] ) . 

Lemma 2.4(a) shows that the first term is at most eCbT (M+ l)(£iVo)_1. Conditional on 

J7Rrn_1, Rm—Rm-i is an exponential random variable with rate ( M + l + (ra—l)iV0)c*, 

so the second term is at most 

Ei 
e 

^m=l 

_ _ _ _ > 

P ( T — 2e^ — Rm-i < P m — Rm-i <T — P m _ i | J 7 ^ m l ) 

2 ^ 
£ 

m=l 

[(M + 1 + (m - l)iV0)c*) < ceCbT(M + 

Taking ^ = [e"^/3] then using (2.54) and (2.56) gives the desired bound on P(GT). 

The next ingredient required for the convergence theorem is: 

Lemma2.10. — Assume T > 2e^, t0 G [0,e% and 00 G G%. If (to(j) = Ct0U) for al1 

j G J(T - t0), then (T(i) = (r(i), i = 0 , . . . , M. In particular if £to(j) = €t0(XT_tQ) 

for j G J(T - t0), then (T(i) = fr(zi) fori = 01...1 M. 
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5 6 CHAPTER 2. CONSTRUCTION, DUALITY AND COUPLING 

Remark 2.1. — By Lemma 2.9, J(T — to) = J(T — to) on G^, and so all the necessary 

inputs required for both computations are prescribed in the above result. 

Proof. — The last statement is immediate from the first and (2.17) with r = T. 

By the definition of GNT 3 Gj, and Lemma 2.2 there is a unique n < N T SO that 

Rn + y/i<T-efi <t-t0<T< Rn+1 (2.57) 

and 

Rm = Rm and fim — for m < n + 1, K(s) = K(s) for s G [0,T]. (2.58) 

As was noted in Section 2.6 the inductive definitions of ( and ( are identical except 

the latter has hats on the relevant variables and uses « t in place of The above 

shows that in our current setting the relevant variables are the same with or without 

hats (recall we are using Un = Un in our coupled construction of £) and so it remains 

to show the equivalence relations are the same and we do this now for the initial 

extensions. That is, we extended (*0 to {0, ...,K(T — to)} by 00(fc) = Ct0{j) if 

k ~T- t0 3 ^ J(T ~ ¿0) = J{T — to) (see the above Remark) and extended Q0 in 

the same way but if k ~ j G J(T — to) which means XJT_tQ = X^_tQ, and so we 

now show these equivalencies are the same and hence so are the extensions. Note 

that in applying (2.24) to extend Q0 we are using 7rm = 7Tfim,7m(\/^) for m > 0 and 

TTO — ^0,z(V^)- This means two indices j , k in a family which has branched at time 

Rm = R m , 0 < m < n ( i f m = 0 this means two initial indices) are equivalent (in the 

« sense) at time T — to if their corresponding X paths coalesce by time Rm + y/e-

Lemma 2.2 implies that on &T there are no coalescing events in [0,T — to] (in fact 

on [0, T]) except for those in [Rm, Rm + y/e], involving a common family born at R m , 
for m < n. Therefore, the above condition is equivalent to X°T_tQ = X^_tQ and the 

required result is proved. 

The Lemma now follows easily by induction up the tree of X. In place of the 

above we must show equivalence of the equivalencies used in (2.20) and (2.27) at 

times Rm- Note here that for the indices of interest in (2.20) and (2.27) this is 

equivalent to the corresponding equivalencies at times Rm-i + y/~£ and this follows as 

above for m > 1. • 

2 .10 . T h e branching Brownian motion and computat ion process 

We now define a branching Brownian motion X° starting at x G Md with paths 

in V. Let {7r^,n > 1} be an i.i.d. sequence of partitions with law vo (defined 

in the second paragraph of Section 2.5). Particles in X° branch at rate c* and at 

the nth branching time, \TT®\ — 1 particles are born at the location of the parent 

who also remains alive. After birth, particles in X° move as independent Brownian 

motions in Rd with variance parameter a2. To couple X° with the branching random 

walk X€ from Section 2.5 we need two preliminary lemmas which allow us to couple 
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2.10. THE BRANCHING BROWNIAN MOTION AND COMPUTATION PROCESS 5 7 

the corresponding particle motions and offspring numbers, respectively, of the two 

branching processes. 

Lemma 2.11. — We may define our scaled random walk B£ and a d-dimensional 

Brownian motion B with variance a2, starting at 0, on the same space so that for 

some constant C2.11 

P(sup\Bet -Bt\ 
t<T 

Ve) < c2.iiTe. 

Proof. — Apply Theorem 2.3 (i) of Chapter 1 of [10] with H(x) = x6, to see we may 

define the unsealed random walk B1 (rate 1, step distribution p) and a Brownian 

motion as above, B' on the same space so that for all S > 0 and r > 1 

P(sup \Bl - B's\ >r)< cSr~6. 
s<S 

(2.59) 

Although the above reference applies to discrete time random walks, we apply it to 

the step distribution X^ where { X i } are i.i.d. p(-) and N(1) is an indepen­

dent Poisson(l) random variable. We arrive at the above after a short interpolation 

calculation for B1. 

To get the desired result from (2.59) we set B* = eB\_2v Bt = eBf£_2t and use 

r = e-1/2 to conclude that 

P(8up\B*-Bt\>Ve) P(sup \eB\-H - eB'£-H\ > Vê) 
t<T 

P( sup IB,1 - 3 | > e"1/2) 
t<e~2T 

ce~2Te3 = cTe 

which proves the desired result. 

Lemma 2.12. — For each e > 0 we may construct the sequence {n^ : n > 1} on the 

same space as {n^ : n > 1} so that for all n>l, 

P(IIn#IIn) c2.12€3/4 

Proof. — The obvious way to couple ir^ and 7r^ is to use the same system of rate 

one coalescing random walks {BY* : i = 0 , . . . , No}. If Z is as in Lemma 2.6, then 

by (2.45) and (2.47) 

P(IIn#IIn) ; sup PX(ZS = 0 for some s > e~3/2) 
X 

: eie-3/2)-1/2 = ce3/4. 

Let x£ E eZd for e > 0 and assume xe -> x £ Md. Our goal now is a joint 

construction of (X£, X ° ) started from (xeix), and associated computation processes 

( C e 5 C ° ) w^n ^n€ property that if C ° have the same inputs then they will have the 

same outputs with probability close to one. 
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The branching random walk Xs starting with a single particle at x£, along with 

the associated index sets Je(-)> branch times {Rm}, and parent variables { / 4 } , are 

constructed as in Section 2.5 using the sequence {irm} in Lemma 2.12. There is no 

initial coalescing step now as we are starting with a single particle. We use the coupled 

sequence {7r£ : n > 1} to define the offspring numbers, branching times {R„ : n > 1}, 

index sets and parent variables {/x^ : n > 1} with the same conditional laws 

(given {TT^}) as in the definition of X£. We may couple these two constructions so 

that for all n G Z+, on the set 

G0n,e {4, = 74 for all 0 m < n } , 

we have 

R€m = R°m, / 4 = /x^, and J°(s) = J£(s) for all s < ¿4, for all m < n. (2.60) 

Define N® — inf{m : Rm > t}. Using these sequences we follow the prescription in 

Section 2.5 for constructing X but substituting Brownian motion paths for random 

walk paths. Couple these random walks and Brownian motions as in Lemma 2.11 at 

least as long as the branching structure of the two are the same. Note that if there are 

n branching events up to time T there are at most 1 + UNQ independent random walk 

segments and Brownian motions of length at most T to couple (recall our labeling 

scheme from Section 2.5). In addition to the errors in Lemma 2.11 there will be a 

small error from the difference in initial positions at time 0, and so we get 

P(G^o,sup sup 
T s<TjeJ°(s) 

X°s>j-Xe8>*\>\xe-x\ + y/e) (2.61) 

P(N% > n) + (1 + nN0)c2A1Te + c2.i2ne3/4. 

The first time 7r^ ^ 7r£ we declare the coupling a failure and complete the definition 

of X® for t > R^ using random variables independent of Xs. 

Fix T > 0 and t0 G [0,T). Given J°(t),0 < t < T, the sequences {4}, { P ° } , 

{/J>n} an independent sequence of i.i.d. uniform [0,1] random variables {U^}, and 

initial inputs {Cto(i) : J ^ J°(T — to)}, we define a computation process (t,to<t<T. 

The definition is analogous to that of Q given in Section 2.6 for X£ started at a single 

point, but we use gi-i in place of g\_{ in (2.26). That is, as in (2.25), (2.26), we have 

V% = $T-Rom)-((rn - 1)NQ + j), j = l,...,N0, 

and if i = ((T_R0 j_(/4 )̂, we have 

C° ~ (u° ) 
1-i 

i 

if < Pi-i(V^)/c* 

otherwise. 
(2.62) 

We further couple C° and (£ by using the same sequence of independent uniforms: 

{Um} = {Um} in their inductive definitions. Just as in (2.41) we can show that 

this sequence is independent of all the other variables used to define X° and £°, as 
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required. We let denote the right-continuous filtration generated by X°, X£ and 

A°(t) = {(Rm, fim,7Tm,Um)l(Rm < t))meN as well as its counterpart for X£. 

Notation. — G°f = G%£0 n {suPs<TsupiGJo(s) |XS0 '̂ - X£/\ < \x£ - x\ + v ^ } , 

KJTrp G°/n{Um S«(«)AgI£(«) 
c* 9i(e)vsf(«) c* forall£e { 0 , 1 } ^ ° , m N&,i = 0 , 1 } . 

lemma 2.13 

(a) On , we have 

Rsm = R°m, A ™ = M l < , = n°m, for all m < N%, and Js(s) = J°(s) for all s < T. 

(b) P((G°/r) C2.i3eCi>Te3/8. 

(c) On G%£ we also have for any t0 e [0, T), if($o (j) = Q0 0 ) for al13 € J°(T-t0), 
tften^(O) = Cf(0). 

(d) P ( (G^)C) c2.i3eCbT e3/8 
] C i = 0 l l ^ f ^ | | o o 

Proof 

(a) is immediate from (2.60) and the definition of G^£. 

(b) follows from (2.61) and the now familiar bound P(N^ > n) < ~ j ^ > by setting 

= [£~3/8l. 

(c) On Gy£, we see from (a) and the inductive definitions of £° and £e, that all the 

xiables used to define CT(0) ANO^ CT(0) coincide. Therefore these outputs can only 

ffer due to the use of g%-\ in (2.62) and the use of g\_x in (2.26). By induction we 

ay assume Vm = Vm and the additional condition defining G^£ now ensures that 

ese two steps produce the same outputs. 

(d) The additional condition defining G^£ fails with probability at most (recall 
c* > 1) 

P(NT > n) + n2N° 
l 

r 

i=0 

l l ^ - ^ l l o c 

. eCbT 
' nNo 

f n2N° 
l 

¿=0 
)ll0i-0il |ool 

Now let n = \^2i=0 \\gi — 9£\\oo] ^2 and use (b) to complete the proof. 
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CHAPTER 3 

PROOFS OF THEOREMS 1.2 AND 1.3 

3 . 1 . P r o o f o f Theorem 1.2 

We start with a key estimate giving the product structure in Theorem 1.2. This 
relies on the fact that duals starting at distant points with high probability will not 
collide. For some results we will need a quantitative estimate. Let xke G eZd, yi G Zd 
and zfk = Zik = x\ + syi, for 0 < i < L and 1 < k < K. Set 

Ae min 
OShi'SL^Sk^k'SK 

|zik - zi'k'|€-1 

The notation is taken to parallel that in the statement of Theorem 1.2 and hypothe­
sis (1.37) implies 

lim A£ = oo. 
€ 

(3-1) 

Let X = XZ,T be the dual process starting at z for the time period [0, T] , with 
associated computation process Q which has initial inputs (o(j) = £o(^r)> 3 € J(T). 
Let Zk = (zik,i = 0 , . . . ,Z,) and consider the duals XZk,T, 1 < k < K defined as in 
Chapter 2 with their associated uniforms {U]^} and parent variables { / i ^ } . These 
duals are naturally embedded in Xz,Ti and although the numbering of the particles 
may differ, we do have 

{xtj-.jeJ(t)} ••u£=1{x?"i:jeJ«'№, t€[0,T\. (3.2) 

Define 

Va ,r , e= in f { te [0 ,T ] -.X?™ = xzk,,T,j' (3.3) 

for some 1 < k ^ kf K,jeJ*-(t),j' e ./*»'(*)}, 

where inf 0 = oo. 

Lemma 3 . 1 . — P(VZiT,s < oo) ; c3.i(^^)eCbT(A£)-(d-2)/(d+6). 



6 2 C H A P T E R 3. P R O O F S O F T H E O R E M S 1.2 A N D 1.3 

Proof. — We may dominate XZk>T by the branching random walks XZk'T from Sec­

tion 2.8, and define N T , N ^ in the obvious way. Then 

P(V < oo) 

P(maxNZk > n) 
k<K 1 

l<k^k'<K 

P(\x?k'j 
\x?k'j 

0 3jG JZk(t),j'e Jz«'(t),t T, N*k V N?"' n). 

The first term is bounded by KeCbTn 1 by Lemma 2.4(a). If { ¥ £ } are i.i.d., each 

equal in law to F*, and independent of B£, then for R > 1 the second term is at most 

l<k^kf<K]0<iti'<L 

(l + nJV0)2P2jfc_Vfc/(|Bft| 
n 

m=l 

e\Y£\3t<T) 

l<k^k'<K;0<i,i'<L 

(1+niVo)2 'nCe-«R + PZik.Zi,k,(\Blt\ ; neR 3t < T) 

where we used (1.6) in the last line. By Lemma 2.6(c), the probability in the last 

term is at most c2.6A7(2/3)(d"2)(n^)2(d+1)/3. and so if 6 = A£-(2/3)(D-2), 

P(V < oo) cK2{L+lfec»TNl n'1 + n3e~KR -ön2(nR)2(d+V/3] 

Now, optimizing over n and R, set Cd = KR = cd log(l/5) and n = \e"Rl% Here 

we may assume without loss of generality that A£ > M{K) SO that R > 1. A bit of 

arithmetic now shows the above bound becomes 

P(V < oo) c(K,L)eC>T6WD+12\ 

and the result follows. 

We suppose now that the assumptions of Theorem 1.2 are in force. That is, T > 0 

is fixed, £o nas law K satisfying the local density condition (1.35) for a fixed r G (0,1), 

and (1.37) holds. It is intuitively clear that the density hypothesis is weakened by 

reducing r. To prove this, note that the boundedness of the density and uniformity 

in x of the convergence in (1.35) shows that the contribution to the density on larger 

blocks from smaller blocks whose density is not near v is small in L1. We may therefore 

approximate the mass in a large block by the mass in smaller sub-blocks of density 

near v, and use the fact that the contributions close to the boundary of the large 

block is negligible to derive the density condition (1.35) for the larger blocks. As a 

result we may assume that r < 1/4. 

By inclusion-exclusion, it suffices to prove for — 1 < Lk < L, 

limP(eT(xke+eyij) 1, j = 0,...,Lk,k = l,...K) 
K 

fc=i 
I{€(yij) 1, j = o, ,Lk})u(T,xk) (3.4) 
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Allowing fc-dependence in Lk and general subsets of the y^s is needed for the inclusion-

exclusion, but to reduce eyestrain we will set ij = j and Lk = L in what follows. The 

general case requires only notational changes. By the duality equation (2.17), 

P(€T(zik) 
l,i = 0,...,L,k = l,...,K) (3.5) 

P«T(i,k) = l,i = 0,...,L,k = l,...,K), 

so (3.4) is then equivalent to 

P ( C T M ) M = 0, . . . ,L,fc = 1.....K) 
K 

fc=l 

(l{£(yi) = 1, i = 0 , . . . , L})u(7>fc) as e -> 0. (3.6) 

The proof of (3.6) uses the approach of [18], pp. 304-306. 

To work with the left-hand side of (3.6) we need the following preliminary result 

to simplify the initial inputs Co- Define 

/3 = 1.9r and t£ = e^. (3.7) 

Lemma 32. — Assume £Q is independent of the rescaled random walks {B€,w : w G 

eZd} as in (2.8). Then for anyneN and k > 0, 

lim sup 
\w1\,...,\wn\<kiwieeZd 

Wi^Wj for i^j 

E 

n 

i=1 

€?(B?,wi) 
n 

1=1 

v(Wi) 0. 

Proof — Recall the definitions of a£ and Q£ just before (1.34). For zi,..., zn G a£Zd 

define 

r ( z i , . . . , zn ) 
{B^Wi G Zi + Q£ for 1 < i < n} , 

and 7(w», Zi) = P(B€^Wi e Zi + Qe), so that P(T(zi,..., zn)) = fllLi 7(w», Let 

G be the union of the events T(zi,..., zn) over distinct zi,..., zn G a£Zd such that 

\%i — Wi\ < ^\/^£ for 1 < z < n. We claim that P(GC) is small for A: large enough. To 

see this, fix S > 0 and choose k large enough so that 

p(\Bi'Wi-Wi\>(k-i)Vr£) p(\B£tfi\>(k-i)Vre)<ô/n. (3.8) 

By a standard estimate (and also since r < 1/4), for Wi as above and i ^ j , 

P(\B£t'm -Bet'Wj\ 2ae) i c |Qe |P (B | i ° = 0) \c\Qe\{e-\rdl2 \cemri, 

which implies 

P{\Bt^-Bt^ 2ae for some 1 < i < j < n) < Cn2e05rd. (3.9) 

By (3.9) and (3.8), 

P{GC) :Cn2e05rd + ô . (3.10) 
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Now consider the decomposition 

\ 

n 

i=1 

€?(B?,wi);G 

Zi,...,Zn 

E 

n 

v ¿=1 

%(Bï:Wiy,r(Zl,...,zn)) (3.11) 

where the sum is taken over only those (z\,..., zn) used in the definition of G. A 

typical term in this sum takes the form 

ei,...,enGQe 

E\ 
n 

i=1 
este+ei)i(B£,°4 = * + 

ei,...,e„6Qe 

E 

n 

i=1 

€?(Zi + ei) 
n 

i=l 
P(BÎ>Wi =Zi + ei) . 

Since \Jt~E ^> a£, the probabilities P(B£,£Wi = zi + e*) = P(B^f = zi — Wi + e$) 

are almost constant over e$ G Q e - In fact, a calculation, using the version 

of the local central limit theorem in the Remark after P7.8 in [35] to expand 

P{Betf = Zi-Wi + e») = P(B®_2f£ = (zi -Wi + ei)/e), shows that 

lim sup 
e,e'eQe 

\zi—Wi\<ky/û 

P(Bet'° =Zi-Wi+e) 

P(BEtf = Zi-Wi+ e>) 
= 1 (3.12) 

The continuous time setting is easily accommodated, for example by noting that along 
multiples of a fixed time it becomes a discrete time random walk. 

Consequently, for all sufficiently small e > 0, we have ky/t^ < 1 and uniformly in 
\wA < k, \zi — wA < k\ftl and e € QE, 

1-6 
\Qe\Pim:Wi =zi + e) 

l{Wi,Zi) 
.1 + 6 . (3.13) 

Using this bound and the fact that the Zi are distinct we have 

ei,...,eneQe 

E 

n 

2=1 

€?(Zi + ei) 
n 

2=1 
P(B£t:Wi =Zi + ei) 

ei,...,enGQe 

E 

n 

i=1 

€?(Zi + ei) 
[1 + S)n 

\Qe\n 

n 

2=1 
y(wi,Zi) 

(l + 6)nE 
n 

2=1 
DM) P ( r ( z l 5 . . . , Z n ) ) 

The continuity of v implies that for small enough £, for all \w\ < k and \z — w\ < 

kyftl, \v(w) — v(z)\ < 5. Also for sufficiently small e and z G a£Zd, \z\ < k + 1, we 

have P(D(z,$) > v(z) + S) < S/n. Thus 

E 
n 

2=1 
D(zi,e0) 

S 
n 

2=1 
(v(zi)+S)<S+ 

n 

¿=1 

(v(wi) + 20) . 
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Returning to the decomposition (3.11), the above bounds imply that for sufficiently 

small £, 

E\ 
n 

i=l 

€?(B?,wi);G (l + 6)n 6 

n 

i=l 

(V(WÌ) + 26) 

Zl,...,Zn 

P{T{zu...,zn)) 

(l + 6)n 6 
n 

i=l 

[v(wi) + 25) 

Let £—*•() and then 6 —» 0 above and in (3.10) to obtain 

lim sup sup 
\wi\,...,\wn\<k 

f 

E< 

n 

i=0 

€?(B?,wi) 
71 

i=l 

v(Wi) 0. 

A similar argument gives a reverse inequality needed to complete the proof. 

We break the proof of (3.6) into three main steps. Introduce 

S = T-t£=T-e?. 

Step 1. Reduction to Bernoulli inputs and K = 1. — Let X = XZ,T be the modifi­

cation of the dual in which particles ignore reaction and coalescing events on [5, T], 

and let Q be the associated computation process with inputs Co(j) = £o(^r) - That 

is, Xt — Xt for t e [0, 5] , and during the time period [S, T], XJt, j G J(S) follows the 

same path as X\ until the first time a reaction or coalescence occurs, at which time 

all the X\ switch to following completely independent B£ random walks. 

On the event defined in (2.53) there are no reaction or coalescing events during 

[S,T]. Thus, Xt = Xt for all t G [0,T] on G%, so it follows from Lemma 2.9 that 

P(C± 4 Ct for some t G [0,71) < coML + l)K]2eCbTe^A* . (3.14) 

Let ip£(x) = Pf £Q(X), where 

P£f(x) = E(f(x + Bf)), x G eZd, is the semigroup of B£', T3.15Ì 

and let WiìW2ì... be an i.i.d. sequence of uniforms on the interval [0,1], independent 

of £o and the random variables used in Section 2. We will use this sequence throughout 

the rest of this section and also in Section 4. Define a second computation process 

Q,te<t< T, for X , with inputs 

C(j') = i№ v(Xj,)}, jeJ(S). (3.16) 

It is clear that conditional on <J(£Q) V J7^, the variables Qe(j), j G J(S), respectively 

Ct£(jO) j ^ Jr(*S'), are independent Bernoulli with means v(X3s), respectively ip£(XJs). 

Let X = XZ'T be the branching random walk dominating X which was introduced in 

Section 2.8. If we fix 6 > 0, then using Lemma 2.4(a) it is not hard to see that there 

exist n, k such that for all e sufficiently small, 

P(\J(S)\ : nand \X](S)\ k for all j e J(S)) 1-6 (3.17) 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2013 



66 CHAPTER 3. PROOFS OF THEOREMS 1.2 AND 1.3 

It now follows from (3.17), Lemma 3.2 and the definitions of X , £o and Qe that for 
any b : Z+ -> { 0 , 1 } , 

|P(Ct.O") bj,jeJ(S)) P(?(j) ••bj,jeJ(S))\ 

£ ( № e ( i ) 6isj€ J ( 5 ) | 7 5 v ^ ) ) - p ( c ; . 0 ' ) = Ò^JG J ( S ) | ^ V < r ( ^ ) ) | ) 

> 0 as e -> 0. 

As a consequence, since both CtiQ^£ <t <T are defined relative to X with identical 

{ £ 7 m } , { M m } and { - R m } , by conditioning on the input values, the above implies 

P(ÇT(i,k) : 1, Ì = 0, . L,k= 1. K) 

• P ( £ ( * , A ) = M = 0, j L, — 1, K ) - ^ 0 a s e - > 0 . (3.18) 

Let C * ' Z f c be the computation process associated with X2fe,T, 1 < k < K with 

inputs as in (3.16). That is, for j e JZk{S) there exists a f € J(S) with XJ' = X£fc'J' 

(by (3.2)) and we set QZk(J) = 1{WJ' < <XTJ)}- Up to time V = VZjT,e the 

duals XZk,Tì k < K, use independent random walk steps and branching mechanisms, 

and on {V = oo} the computation processes £*,Zfc also use independent uniforms and 

parent variables as well as independent inputs at time t£. It follows that (see below) 

| p ( # ( 2 , f c ) = 1,2 = 0, L,k = l K) 

K 

k=l 

p(C*T'Zk(i) •• 1,0 < i < L) 

P(V < oo) -> 0 as s -> 0. (3.19) 

The last limit follows from Lemma 3.1 and (3.1). Perhaps the easiest way to see 
the first inequality is to extend X^k,T to t € [V,T] by using independent graphical 
representations and define the corresponding computation processes £ *'2fc using in­
dependent collections of {Wj} ' s for the inputs at time t£. The resulting computation 
processes £ *,Zk are then independent, each £ *>Zk is equal in law to C*,Zk, and the two 
are identical for all k on {V = oo} . On this set we also have 

{ C r ( * > * 0 -hk}- {CrZk (г) : i,k}, 

and so (3.19) follows. It is therefore enough to set K = 1 and drop the superscript k. 
Altering our notation to z = (zA Zi = x£+syi where x£ -> it suffices now to prove 

P ( & ( i ) : 1,0 < i < L) №{VÌ) 1,0 < i < L})uiT>x) as e - » 0. (3.20) 

Step 2 . Reduction to L — 0. — Let X = Xz ' , 0 < t < T be the branching random 

walk started at z, with associated computation process Q,te < t <T. We suppose 

that X and X are coupled as in Section 2.7, and that Ct has initial inputs 

L(j) : l { ^ v(X3s)},jeJ(S). 

On the event G^, J(S) = J(S) and all the differences \X3S - j e J(S) are small. 

It therefore follows from (3.17) (if we take Yl = 0 X will stochastically dominate X ) , 
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the continuity of v, the definitions of Q and Ç^, and Lemma 2.9 that 

P(G?,C?(j) 
: Ct, (j) for all j € J ( 5 ) ) - 1 as e 0. (3.21) 

By Lemma 2.10, on the event in (3.21), the outputs and CT agree, and consequently 

P(C?(i) 1,0 < i < L) -P(Cr(») = l , 0 < i < L ) 0 as e 0. (3.22) 

Using the branching structure we can now reduce to the case L = 0. To see this, 

let XZI,T be the branching random walk started from Zi = x£ -f eyi, with associated 

computation process ,t£ < t < T with initial inputs (j) which, conditional on 

X*\0 < t < S are independent with means v(XZSU3). The branching property and 

definition of XQ in (2.23) imply (recall 7r0 = 7ro(£, z) from just after (2.21)) 

P(C?(i) M = o, L 

Treni, 

P(7T(0,z) = 7r) 

jEJ(II) 

P ( # ( 0 ) = 1). 

Since ^ = are -f- for z = 0 , . . . , L, translation invariance implies 7r0(£, 2 ) converges 

weakly to 7r(0, y), where i ~ j in 7r(0, y) means BJf* = = for some s > 0. Since 

2j —» x as € ~> 0 for i = 0 , . . . , L, if we can establish, for any x£ -> x as e -> 0, 

P ( C ^ ( 0 ) i) -ufT, x) as e 4 0, (3.23) 

for some û : R + x Rd —> [0,1], then the convergence 7r(e, 2:) => 7r(0, J/) implies 

P(Cr(*) = l ,* = 0, L)-

7renL 

P (7r (0 ,y )=7r ) (Û(T,x) )W 

= 1,0 < * < L})fi(r,x) as £ -»• 0, (3.24) 

where (1.40) is used in the last line. Combining this with (3.22) gives the desired 

result (3.20) but with u in place of u, that is, we get 

P(C?(i) 1,0 < i < L) > Win) = 1,0 < i < L})û(T,a;) as e • 0. (3.25) 

We first turn now to the proof of (3.23). 

Step 3. Convergence and identification of the limit — Let X° be the branching 

Brownian motion started at x G M.d run over the time period [0,T], with associated 

computation process CP ,££ < t < T with inputs 

C?(j) 1{WJ : Çv(X°s>%j€j°(S). 

Using the obvious analogue of (3.17) for X°, the continuity of v and the definitions 

of (t£ and Lemma 2.13 (and the uniform convergence of g\ to gi) implies 

P(G°f, ô . U) = Cl U) for all j e J°(S)) -+ 1 as e -+ 0. (3.26) 

By Lemma 2.13(c), on the event in (3.26), Cr(0) = <£(0), and thus 

P ( & ' ( 0 ) = 1) P ( & ( 0 ) = 1) 0 as e 0, (3.27) 
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where we note that both quantities in the above depend on £. If we take the initial 

inputs for the computation process C0'*, 0 < t < T, at time 0 to be 

Co°'*t7) 1{Wj<v(X?,j)} j e An (3.28; 

it is now routine to see that P(Cte = Ctè*) —> 1 as e —> 0, and so by (3.27) 

l imP(£ - (0 ) = l ) P ( C T ' * ( 0 ) = 1) \u(T, x) (3.29) 

This proves (3.23), hence (3.24) and so to complete the proof of (3.20), and hence 

Theorem 1.2, we only need show u = u: 

Lemma 33. — Let Xt°,0 < t < T be the branching Brownian motion started at x G 
Rd, with associated computation process £f'*, 0 <t<T with initial inputs as in (3.28). 

Then 

P ( # * ( 0 ) = l ) = t * ( ï > ) , 

where u is the solution of the P.D.E. (1.33). 

Proof. — This is very similar to the proof in Section 2(e) of [18]. Recall P£ is the 

semigroup of B£. Let x e Rd and x£ G eZd satisfy \x — x£\ < e and let ££ be our 

rescaled particle system where {£o(ey) y G Zd} are independent Bernoulli random 

variables with means {v(ey) : y G Zd}. If 

d£(ey^£) = i-«y))M(»,0, ( i - « y ) ) M ( » , 0 , i/^d5Ce { o , i } E d , (3.30) 

then the martingale problem for £e shows that (cf. [18, (2.25)]) 

mu**)) •-E(P?€?(xe)) T 

to 
EXcxE(d£(BsT_s,£))ds, (3.31) 

where B% = x£ under Px . Our hypotheses on imply 

E(PHoM) P^v(x£) PTV(X) as e —> 0, 

where Pt is the d-dimensional Brownian semigroup with variance a2. Recall we have 
proved ((3.24) and the preceding results) that 

iimP(&(xe + eyi) •• Vh i = 0, ,L) 1{€(yi) 
VÌI i = 0, » £ } ) u ( T » -

Now use the above with Fubini's theorem, the uniform convergence of g\ in (1.7) and 

the coupling of Be and B in Lemma 2.11 to conclude that 

lim EXE E(d£(B^s,C)) 

- lim EXE x E x Ey -tî(BET-s)9£o(ZÏ(B£T-s + £Yl: ,UB*T_s+eYN°)) 

( 1 - й (B?-s))g?(€? B?-s+EY1 ?,{B°T_,+eYN<>))) 

EX{(-№MO,0 + (1 -e(0 ) ) /n (0 ,0>û( . , f l r - . ) : 
Ex(f(u(s,BT-s)), 
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the last by (1.30). Now use the above to take limits in (3.31) to show that û solves 

the weak form of (1.33). As in Lemma 2.21 of [18] it follows that û solves (1.33) and 

so equals u. • 

The following asymptotic independence result follows easily from Step 1 in the 

above argument. 

Proposition 3A. — If K e N, there is a c3.4(K) so that if zi,..., zK G eLd satisfy 

inf7-éfc \zj — Zk\> £1//4 and £o is deterministic, then 

E 
K 

^ = 1 

€?(Zk) 
K 

k=l 

E(€?(Zk) 
:cs.4(K)e^Ts^12. 

Proof — Define V = VZ,T,S as in (3.3) but now with Zk G eZd, that is L = 0. Use 

the dual equation (3.5) and argue just as in the derivation of (3.19) to see that 

E\ 
K 

K i=l 

€?(Zi) 
K 

i=l 

Em*)) : P(V < oo). 

The fact that 1S deterministic makes the independence argument simpler in this 

setting. Now use Lemma 3.1 and the separation hypothesis on the 2fc's to bound the 

right-hand side of the above by 

csAK,0)eCbT£{3/4Kd~2)/{d^ < c3.i(^0)eCbTe1/12. • 

3.2. P r o o f o f Theorem 1.3 

Proof — Let t > 0 and choose n(e) I 0 so that rj(e)/e —> oo and n(e)/S(e) -> 0. 

Recall Is (x) is the semi-open cube containing x defined prior to Theorem 1.3. Write 

E((ue(t,x) -u(t,x))2) 
f e 

S(E) 

2d 

x1,x2EI6(x) 
E(^t(x1)^t(x2)-u(t,xm(x1)+et(x2))+u(t,x)2). 

The contribution to the above sum from \x± — x2\ < rj(e) is trivially asymptotically 

small, uniformly in x, as e —> 0. Theorem 1.2 shows that the expectation in the above 

sum goes to zero uniformly in x\, x2 G Ig(x), \x\ —x2\> n(e), x G [-K, K]d as e —> 0. 

The result follows. • 
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CHAPTER 4 

ACHIEVING LOW DENSITY 

The first step in the proof of Theorem 1.5 is to use the convergence to the partial 

differential equation in Theorem 1.2, and more particularly the estimates in the proof, 

to get the particle density in (1.34) low on a linearly growing region. 

As we will now use the partial differential equation results in Section 1.3, we begin 

by giving the short promised proofs of Propositions 1.6, 1.7 and 1.9. 

Proof of Proposition 1.9. — Set rj = |r|/3 and let Co and CQ be the constants in 

Proposition 1.8, and define 

L5 = L% C l = c 0 , ts = L°s-3y/d/\r\, d = (C0 V l )eCot* . 

Suppose t > L > Ls and \x\ < L + (\r\/3)t/Vd. Then we may write x = XQ + y, 

where 

\y\ : 
2|r| t 

3 
and \XQ\ L 

\r\t 

3Vd 
L \r\ts 

3Vd 
L-Ll (4.1) 

For t > 0 and z e Rd define u(t, z) = u(t,xo + z). If \z\ < then |#o + A < 

\xo \ + L°6 < L, which implies that £t(0, z) < p — 6. Applying Proposition 1.8 to £t, and 

recalling the bound on \y\ in (4.1), which implies \y\2 < -j^t we have that for t >ts, 

and \x\ <L + (\r\/3)t/Vd 

u(t,x) u{t,y) C0e-Cot cie-cit 

Since the right-hand side above is at least 1 if t < ts, the above bound follows for all 

t > 0, and we have proved the result with w = \r\/6\/d. • 

Proof of Proposition 1.7. — Extend /|[o,i] to a smooth function / on [0,1 + ¿0] so 

that / > 0 on (1,1 + ¿0), / (1 + So) = 0, / ' (1 + ¿0) < 0 and J^6° f(u)du < 0. The 

situation is now as in Proposition 1.9 with 0, 1 and 1 + ¿0 playing the roles of 0, p 

and 1. As the solutions take values in [0,1] the extension will not affect the solutions 

and the result follows from Proposition 1.9. • 
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Proof of Proposition 1.6. — The version of Proposition 1.7 with the roles of 0 and 1 

reversed, applied on the interval (0, a) shows there are positive constants £, c5 and C 

so that if u(0,x) > a/2 for \x\ < L, then 

u(t, x) a -Ce ct for \x\ L + 2wt. 

It is here that we need f'{a) < 0, corresponding to / ' ( 0 ) < 0 in Proposition 1.7. By 

Theorem 3.1 of Aronson and Weinberger [2] there is a T0 so that 

u(Tj x) a/2 for \x\ : L and T T0. 

Therefore we have 

u(t + T0,x) a - Ce~ct for |x| L + 2w(t + T0)-2wT0, 

and so for t > 2TQ, 

u(t,x) a-CecToe~ct for \x\ :L + wt. 

The result follows as we may replace w with 2w. 

Recall the parameter r G (0,1), and definitions of a£, t£l Q£, and D(x,£) in (1.34). 

We first show the density D(X,£T) 1S cl°se to its mean. 

Lemma 4,1. — Let T > 0 and assume ^ deterministic. 

(a) 7/0 < r < Jj, £feera /or a// x G a£Zd, 

E((D(x,€?) E ( D ( x , ^ ) ) ) 2 ) C4.1ecbT€1/12 

(b) If0<r< l/(16d) and C - y + [-L, L]d /or y G Rd; t/ien /or aft rj > 0? 

P( sup \D(x,&) 
xeCria,Zd 

E(D(x,&))\>v) C^lmLde^Trf2. 

Proof 

(a) Note that 

\{(zuz2)e(x + Q£)2: \zl-z2\<e1^}\ 

{2e-VA + l)d\Q£\ cd\Qe\2(ei-r)d- (4.2) 

If denotes the sum over 

z e {(zi ,z2) e (x + Q£)2 \z1-z2\>e1/4}, (4.3) 

then by (4.2) and Proposition 3.4 with K = 2, 

E((D(x,€?) Ä ) ) ) 2 ) 

; IQel"2 cd\Qe\2(ek*-nd + Z: [E 
II ?=1 €?(zk)) Z: [E 

cde(?-r)d 
4c3.4(2)eCbT£1/12 

: C4.iec»Te1/12, (4.4) 

where our condition on r is used in the last line. 
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(b) Note that 

\Cf\ae1d\ cdLda-d cdLde-rd i cdLde-"1&. 

The result now follows from (a) and Chebychev's inequality. 

We recall the following hypothesis from Section 1.2: 

Assumption 2. — There are constants 0 < u\ < 1, c2,C2,w > 0, L $ > 3 so that for 

all L > LQ, if U{§, X) < u\ for \x\ < L then for allt>0 

u(t,x) : C2e~~C2t for all \x\ < L + 2wt. 

We also recall the following condition from the same Section: For some r*o > 0, 

l 

2=0 

Î9Ï -9i\\oo 
c1.41ero (4.5; 

We say that £ G {0, l}£ljd has density at most K (respectively, in [ « 1 , «2]) on A C Rd 

iff D(x,£) < K (respectively G K2}) for all x G {a£Zd) n A. We set (recall 

(3.7)) 

r -
1 

16d 
hence /3 

1.9 

16d' 
te £1.9/(16d) j , A4.2 log(l/e), and S = T - te, (4.6) 

where A4.2 = cb 1 1 
^100d 

ro 
4 , 

Lemma 42. — Suppose Assumption 2 and (4.5) /io/d. Let u2 G (0 ,^ i ) and 74.2 = 

(I2- A l ) ( j ^ A2^1). T/iere 25 an £4.2 > 0, depending on {u\,u2,w,c2,C2) and satisfying 

-74.2 
£4.2 

^ 2 , (4.7) 

50 £/ia£ if 0 < e < £4.2 and 2 + Lo < L < e -°01/^ whenever £g ^ 5 density at 

most u2 in [-L, L]d, 

P(& fecw den5% a* rao5* e74-2 in [-L — wT, L + wT]d|£g) > 1 - £01. 

Note that (4.7) allows us to iterate this result and obtain the conclusion on successively 

larger spatial regions at multiples of T. 

The proof of the above Lemma will require some preliminary lemmas. 

Lemma 43. — Ifp£t{y) = e~dP{B£ = y ) , 2/ e eldy then for 0<e<l, 

\p£t(x) -p£t(x + y)\< c 4 . 3 M * ~ ( D + 1 ) / 2 for all x,ye eZd and t > 0. 

Proof — This is a standard local central limit theorem; for d = 2 this is Lemma 2.1 

of [6] and the same proof applies in higher dimensions. • 

Recall (from (3.15)) that Pte is the semigroup associated with B£. 
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Lemma 4A. — There is a C4.4 such that if 1 > a ß/2, then for 0 < e < 1? 

|P?€(x) |P?€(x) C4.4S(2a-^) / (2+d) 

/or al/ x ,x ' E eZd such that \x - x'\ < 2ea and all f e {0, l}£Zd. 

Proof — Let —00 < S < a, A = x — x' and assume |A| < 2ea. Apply Lemma 4.3 to 

see that 

|P?€(x) PteA(x')\ 

z£eZd 

P(B?=Z) -P(Bi=z + A)\ 

\z\<3ss 
c4.3ed\A\t^d+1^2 + P(\B£tJ > 3eô) + P(\B£tJ > 3e5 - A) 

; C£{5-i)d£d+*e-ß{d+i)/2 + 2P(\B£tJ > es). 

If we use Chebychev to bound the last summand by ct£e 26 = ce13 26 and optimize 

over d (setting d = f — a~2+d^ < f < a ) , we obtain the required upper bound. • 

Lemma 43. — For any rj > 0 there is an £ 4 . 5 (7 / ) > 0 50 that if 0 < e < 64.5, 

u € [0,1], L > 1, and £ £ {0, l}eZ has density at most u in [—L,L)d, then 

P^(x) <u + rj for all x E [ - L + l , L - l ] d n e Z d . (4.8) 

Proof. — By translation invariance it suffices to prove that for small enough e > 0 

and all x £ [—a£ì a£]dCìeZdì if £ has density at most u in [—1, l)d then P£££(x) < u+n. 

(This addresses the uniformity in L.) Argue as in the upper bound in (3.13) to see 

that for e < £o(ri), 

\Qe\P(Bt=z + e) 

P{B£tf ez + Q£] 
; 1 

n 

2 
for all z £ a£Zd, \z - x\ < 1 and e £ Q£. 

We therefore have 

|P?€(x) p{\Bxtf\ > 1 / 2 ; 

zea£Zd 

l(\z-x\ < 3 / 4 

eeQs 

€(z+e) 1 + fa/2) 

\Qe\ 

P(B?€z+Qe) 

Ç 4a2dt£ 

z6aEZD 

l ( |z - * | < 3/4)«(l + \)P{Bïcx ez + Q£) 
d 

4a2dt£ - h i i + | < w + r/, 

for e < Si(rj). 

We are ready for the Proof of Lemma 4.2. 
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Proof. — By the conditioning we may fix a deterministic 85 m the statement of 

Lemma 4.2. In light of Lemma 4.1 our first and main goal is to bound E(D(x,£j,)) 

for a fixed x G a£Zd U [-L - wT,L + wT]d. Let z £ x + Q£. Let X*'T be the 

modification of the dual XZ,T, starting with a single particle at z, in which particles 

ignore branching and coalescing events on [5, T] by following their own random walk 

and switching to independent random walk mechanisms when a collision between 

particles occurs. Hence Xls = Xls for all i G J(S), and on [S,T] the particles in 

XZ'T follow independent copies of B€. Let (£ be the associated computation process, 

defined just as (£ is for JP'T, with initial values = ^{XJT)J G J { S ) (for XZ'T 

the index set is constant on [5, T]). On G?£, T £ U ^ o ^ m * Rm + 2e% with ¡3 < 1/2, 

and so 

[5, T] n ( u ^ ö 1 [Äm, Rm + V^}) = 0. (4.9) 

Therefore on G^, XZ,T has no branching or coalescing events on [5, T], and so 

XZ>T = XZ'T on [0,T]. This also means (by (2.17)) that, given the common inputs 

Co£(i) = Co00 = j G J(T) = J(5) we have 

&(0) = # ( 0 ) = £ ( z ) on GßT. (4.10) 

Let V^O^) — Pt££o(x)- Conditional on .Fs, {Xj, — XJS : j G J(S)} are i.i.d. with 

law Po{B££ G •), and so, conditional on J 5 , { C f - s O ' ) = £ O ( ^ T ) : J ^ ARE 

independent Bernoulli r.v.'s with means {ip£(XJs) : j G J(S)}. Recall {Wj} is an 

i.i.d. sequence of uniform [0,1] r.v.'s independent of J7^ (that is of our graphical 

construction). Let {Ct'*(j) : 3 e J(T - t),T - S < t < T} be the computation 

process associated with XZ,T but with initial inputs C T - S C ? ) = — V ^ ( ^ s ) ) > 
j G J (5) . Then {Cf : T - 5 < t < T } and : T - S < t < T } have the same 

law because the joint law of their Bernoulli inputs and the processes Xt' , t < S and 

((^m, Um)l(Rm < t),t < S) used to define them are the same. Therefore by (4.10) 

|P (&(z ) = l ) - P ( & * ( 0 ) = l ) | 

-\pmz) = l ) - p(cf (o) = i)i < p((ößTn (4.11) 

Consider now the branching random walk X starting with a single particle at z 

and coupled with XZ,T as in Section 2.7, together with its computation process {(£ : 

te[T- S,T]} with initial inputs (T-s(j) = ±{wj < ^e(Xjs)),j G J(S). Conditional 

on Too, these inputs are independent Bernoulli r.v.'s with means {ip(X3s) : j G J(S)}. 

The computation processes (£>* and (£ are identical on [T — S,T] if given the same 

inputs at time T — S. Therefore Lemma 2.10 shows that on Gj> CT(0) and CT'*(0) wm* 

coincide if given the same inputs at time T — S. Therefore 

|P (CT (0 ) = 1 ) - P ( & * ( 0 ) = 1)| 

P{{GßTf)- E(P(C?-S(j) fe(i) 3j £ 7 ( 5 ) 1 ^ ) 1 ( 0 ^ ) ) 

P{{GßT)c) + E 

J€J(S) 

ve(X?)-ve(X?)|1 sup 
jeJ(S) 

X?-X? e1^ (4.12) 
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Use Lemma 2.9 to bound the first term above and Lemma 4.4 with a = 1/6 > /3/2 

to bound the second, and combine this with (4.11) to conclude that (use d > 3 and 

/3 = 1.9/16d) for small enough e > 0, 

| P ( £ ( z ) = l ) - P (&(0 ) = 1) : 2c2.9ec»T£<3/3 E( | J (5 ) | ) c4 .4£ (1 /3 - /3 ) / (2+d) 

2c2.9£1/(40d) ec^C4.4e(1/3-^/(2+d: 

(2c2.9+c4.4)£1/(40d). (4.13) 

To prepare with the coupling with the branching Brownian motion we must extend 

ip£(x) = Pf££o(x) from sLd to M.d in an appropriate manner. Since £Q has density at 

most U2 in [—L, L]d, Lemma 4.5 shows that for e < £4.5(1x1 — u2) we may extend ip£ 

in a piecewise linear manner so that 

i)£(x) < W i l ( | # | ; L - 2 ) + l ( |x | L-2) for all x G Rd. (4.14) 

In addition, using Lemma 4.4 with a = 1/6, we may assume the above extension also 

satisfies 

\tbJx) - ve(x') e4.4 (l/3)-/3 
; 2+d for x, 2 / G Rd such that \x — x'\ E1/6 (4.15) 

Now consider the branching Brownian motion X° starting with a single particle 

at z, coupled with Xs as in Chapter 3. Consider also its associated computation 

process C° on [T — 5, T] starting with conditionally independent Bernoulli inputs 

{(T-SU) = liW3 ^ $e{X°sJ)) : 3 e J°(s)}- We may arSue as in the derivation of 
(4.13), but now using Lemma 2.13, (4.5), and (4.15) in place of Lemmas 2.9 and 4.4, 
to conclude after some arithmetic using d > 3, 

|P (&(0) = 1) P ( # ( 0 ) = 1)1 ec>Tc2.13(e3/8 (ci.41£ro)1/2) - C4.4e1/(40<i' (4.16) 

By Lemma 3.3 (we have shifted time by T — 5) , P(£j.(0) = 1) = ue(S,z), where u£ 

is the solution of the P.D.E. (1.33) with initial condition u£(0, •) = ip£. Now combine 

this with (4.13) and (4.16) to see that for small enough e as above 

£?(&(z)) œ ( l / ( 4 0 d ) ) A ( r 0 / 4 ) . ue(S, z). (4.17) 

Now use the bound on the initial condition (4.14) and Assumption 2 in the above to 

conclude that for \z\ < L — 2 + 2wS, and small e 

E(&(z)) c£( l / (40<i))A(ro/4) 
-C2e-C2S <e7 ' , (4.18) 

where 7 ' = ^ A 1̂  (j^jg A ̂ ) > 74 .2 and we used (4.6) and some arithmetic. By 

taking e smaller if necessary we may assume 2wS — 3 > wT and so the above holds 

for \z\ < L + 1 + wT. This shows that 

E(D(x,eT)) e1' for x e asZd n [-L -wT,L + wT]d. (4.19) 
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Finally apply the above and Lemma 4.1 to conclude that for small enough e 

P\ sup 
' xe[-L-wT,L+wT]dr\a£Zd 

D(x,&) ¿74.2) 

P sup 
x£[-L-wT,L+wT]dna£Zd 

\D(x,&)-E(D(x,&))\ e 7 4 . 2 / 2 ) 

C4.i(L + wT)deCbTel'tëA£-2^ 

( ^ g . - . 0 0 1 g . - l / 1 0 0 d £ l / 4 8 £ - l / 6 0 d €.01 

Our next goal is to show that the dual process only expands linearly in time. The 

first ingredient is a large deviations result. Recall the dominating branching random 

walk {Xe'i(t) : j G J£(t)} introduced at the beginning of Section 2.8 which satisfies 

{X^:jeJHs)\ {X^:jeJ£(s)}. 

If l lXJUoo = sup{|X£'^'(s)| : j e J£(s)} and similarly for | |oo, then the above 

domination implies 

||X?||oo llXflU for all (4.20) 

Recall c* is as in (2.7). 

Lemma 4.6. — Assume Xs starts from one particle at 0. For each R > 0 there is an 

£4.6 (c*, R) > 0, nonincreasing in each variable, so that for 0 < e < £4.6 and t > 0, 

||oo > 2pt for some s < t) < (Ad + 1) exp(-*(7(p) - c&)) /or all 0 < p < R, 

where j(p) = min{/>/2, p2/3a2}. Moreover, if p > max{4o>, 2a2}, then the above 

bound is at most (Ad + 1) exp(—tp/A). 

Proof — The last assertion is trivial. Let S£ be a random walk that starts at 0, jumps 

according to p£ at rate £-2, and according to q£ at rate c*. Since -£/|-X"f | = exp(o,£) 
by summing; over the branches of the tree, it suffices to show 

^ ( l l ^ l l o o pt for some s t) < ( 4 d + l ) e x p ( - 7 ( p ) t ) . (4.21) 

As usual, B£ is the random walk that jumps according to p£ at rate e 2 and B\'£ is 

its ith coordinate. By the reflection principle 

PfsupBf'* > pt) 
s<t 

2P(B£/ > pt) < 2e-eptE(exp(6B£/)) 

for any 6 > 0. If <t>e(0) = YJX e9xlPe(x) then a standard Poisson calculation gives 

E{eM0Bf)) exp(te-2(0e(Ö) - 1)). 

By scaling 4>e(6) = <j>i{e9). Our assumptions imply </4(0) = 0 and <j>'{(0) = o1 so 

€-2(o1(e0)-1) a262/2 as e • 0. 
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If 0 < p < R and 6 = p/a2 in the above, it follows that for e < SQ(R)1 

e- (p2 / -2 ) tE(EXP((P / (T2 )ße, i ) ) exp(—p2£/3<r2), 

and so, 

P(sup\Bf\>Pt) 
S<t 

4exp(-p2t/3a2) . (4.22) 

Let J£ be the one dimensional random walk that jumps according to the law o 

eY* = emaxKiVo \Yl\ at rate c*, and notice that this will bound the L°° norm of th( 

sum of the absolute values of the jumps according to q£ in S£ up to time t. If we lei 

— E(exp(6Y*)), then, arguing as above, we obtain 

P(J! > Pt) exp(-p6t + c*t(4>j(e0)-l)). 

The exponential tail of Y* (from (1.6)) shows that (0j(e0) - l)/e6 -> EY* as e ->• 0, 

and so, if we set 6=1, then for small e, c*((j)j(e) — 1) < /o/2. (The choice of e here 

works for all p because we may assume without loss of generality that p > po > 0 as 

the Lemma is trivial for small p.) Therefore 

P{J£t > Pt) < exp(-pt/2). (4.23) 

To derive (4.21), write 

P(sup| |5J| |0O>2pi): 
s<t 

d 

i=l 

P(SVLP\Br\>pt)+P(JÏ>pt), 
s<t 

and use (4.22) and (4.23). 

Our next result uses the large deviation bound in Lemma 4.6 to control the move­
ment of all the duals that start in a region. Recall that Xx,u is the dual for ££ starting 
with one particle at x from time U. For x G Rd and r > 0 let Q(x, r) = [x — r, x + r]d 

and Q£{x,r) = Q(xJr)C)eZd. Write Q(r) for Q(0,r) and Q£(r) for Q£(0,r). 

lemma 4.7. — Forc>0,b> 4c6 V 2cr2, L > 1 andU >Tf = c log( l /e ) , to 

pe(b, c, L, J7) = P(X?'U is not contained in Q(L + 26T') 

/or some u e [U - T',U],t < T' and some x G Q€(L)). 

Let c'd = 12(4d + l)3d. There exists £4.6(c*, b) > 0 sticA £Aa£ ifO<e< S±.Q 

pe(6, c, L, [/) < c'dLd(c\og{l/e) + 1 ) ^ 

w/iere </ = - 2) A ce~2. 

Proof. — By translation invariance it suffices to take U = T'. For x G eZd let 

{Ti(x) : i > 0} be the successive jump times of the reversed Poisson process, starting 

at time X", determined by the TX,T^X> Also let Nx be the number of such jumps 

up to time T", so that Nx is Poisson with mean (c* + e~2)T'. The process is 

constant for te(Tf - Ti+i(x),T' - I*(a;)] and for such * the dual Xx^(v) is 

Xx,T'-Ti(x(v) ( T ' - T ^ x ) - * ) ) , 
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that is, one is a simple translation of the other. This means for t as above 

U„: tXx'\v) ^v<T'-Ti(x) XX'T'-T^x\v), (4.24) 

(in fact equality clearly holds). As a result, in p£(b,c,L,T') we only need consider t 

to be one of the times T' — Ti{x) for 0 < i < Nx and we may bound 1 — p£(b, c, L, T') 

by 

P(3x 6 Qe(L) s.t. Nx 3T'(£-2 + c*)) 

+P(3x G Q£(L), 0 Ti(x) 3T'(£-2 + c*) s.t. 

sup 
v<T'-Ti(x] 

Xx,T'-Ti(x(v)||oo 2bT') 

: (2Le~x + l )dexp{-3T'(e-2 + c*)}E{eN*) 

- CLE'1 + l)d{ZT'{e-2 + c*) • • l ) ( 4 d + l ) e x p ( - T ' 6 / 4 ) . 

Here we are using Lemma 4.6 and the strong Markov property at Ti(x) for the filtration 

generated by the reversed Poisson processes Tt- Some arithmetic shows the above is 

at most 

3d{LV£)d£-d exp(-3T'(£-2 + c*))exp((e-2 + c*)T'(e - 1)) 

- (4d + 1)(3T'(£-2 + c*) + l)£bc/4 

3d(L V £)d£-d 8 X P ( - T ' ( £ - 2 + C * ) ) 6(4d + l )(clog(l/e)£-2 + l)ebc/4~ 

; 3d(L v £)d£-rf €(ce-2) 6(4d+i ) (c iog( i /£ ) + i; )£bc/4-2 

c'd(LVe)d(clog(l/e) d£(bc/4-2) Ac£~ 2 
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CHAPTER 5 

PERCOLATION RESULTS 

To prove Theorems 1.4 and (especially) 1.5 we will use block arguments that involve 
comparison with oriented percolation. Let D = d + 1, where for now we allow d > 1, 
and let A be any Dx D matrix so that (i) if x has X\ H V XD = 1 then (Ax) D = 1, 
and (ii) if x and y are orthogonal then so are Ax and *4y. Geometrically, we first 
rotate space to take (1/D,.. ,1/D) to ( 0 , . . . , 0,1/y/D) and then scale x —> x\[D. 
Let CD = {vAx : x G Z D } . The reason for this choice of lattice is that if we let 
Q = {Ax : x G [—1/2,1/2]D}, then the collection {z + Q,z G C D } is a tiling of space 
by rotated cubes. When d = 1, £2 = { ( ^ 5 n) : ra + n is even} is the usual lattice for 
block constructions (see [14, Chapter 4]). 

Let Tik = {z G CD : ZD = k} = {Ax : x G ZD,^2iXi = k} be the points on 
"level" k. We will often write the elements of Hk in the form (z,k) where z G Rd. 
Let Hk = {z e Rd : (z,k) G Uk}- When d = 2, the points in W0 are the vertices 
of a triangulation of the plane using equilateral triangles, and the points in 1-L'\ are 
obtained by translation. One choice of A leads to Figure 5.1, where H[ and H'2 are 
obtained by translating HQ upward by \/2 and 2\/2, respectively, and H'3 — HQ. 

In d > 3 dimensions (the case we will need for our applications in this work) the 
lattice is hard to visualize so we will rely on arithmetic. Let {e i , . . . , e£>} be the 
standard basis in MD, and put v% = Aei, i = 1,..., D. By the geometric description 
of A given above, V{ G Hi has length \ / D , and writing Vi = (v[, 1), v\ G Md has length 
y/D — 1. For i ^ j , \\v[ — Vj\\2 = — Vj\\2 = V%D, the last by orthogonality of Vi 
and Vj. The definitions easily imply that = v[ + H'k = {v^ + x : x G for 
each z and Note that G because — ( 0 , . . . , 0, D) G 7io. This implies 
thatH'k+D = Dv'i + H'k = H'k. 

For a: G Wk let Vx C Md be the Voronoi region for x associated with the points in 
%'k, i.e., the closed set of points in Rd that are closer to x in Euclidean norm than to 
all the other points of (including ties). If V = Vo (in d = 2, Vo is the hexagon in 
Figure 5.2 inside the connected six white dots), then the translation invariance of HQ 
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FIGURE 5.1. Wo (black dots) and Wi (white dots) in £3 

FIGURE 5.2. Wo (black dots) and Voronoi region about 0 (inside white 

dots) in £3 

and fact that Wk = kv\ + W0 show that Vx = x + V for all x G VWk. It is immediate 

from the definition of Voronoi region that for each fc, 

UxEH'kVx --Rd. (5.1) 

Furthermore, Vx is contained in the closed ball of radius D centered at x. (To see 

this we may set x = k = 0 and transfer the problem to lP via A~l. It then amounts 

to noting that if x G M.D satisfies Ylxi — 0 and ||#||2 > \/D, then there are i ^ j 

s.t. xi > l,Xj < 0 or Xi < — l , X j > 0, and so ||x ± (e* — e )̂112 < IMI2O From this 

inclusion we see that for any L > 0, 

if cL = LI {2D) then cLVx C cLx + [-L, L]d, (5.2) 

and so Uxen>k cLx + L]d = Md. 
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The above also holds with 2CL in place of CL but the above ensures a certain overlap in 

the union which makes it more robust. Finally, one can check that for some positive 

C5.3(£>), 

if a G Vx, b Vx and \a - b\ < c5.3 then b G \Ji^jVx+v>.-v>.. (5.3) 

For this, note that x + v^ — v'j, 1 j < D are the D(D — 1) "neighboring points to 

xn in HkJ corresponding to the 6 black vertices of the hexagonal around 0 in Figure 5.2 

for x = 0 and D = 3. The above states that the D(D — 1) corresponding Voronoi 

regions provide a solid annulus about VX1 as is obvious from Figure 5.2 for D = 3. 

Our oriented percolation process will be constructed from a family of random vari­

ables {r](z),z £ CD} taking values 0 or 1, where 0 means closed and 1 means open. 

In the block construction, one usually assumes that the collection of rj(z) is "M de­

pendent with density at least 1 — 0" which means that for any k, 

P(rj(Zi) = l\v(zj),j + i) > (1 - 6), (5.4) 

whenever z\ G £ D , 1 < i < k satisfy \z\ — Zj\ > M for all i ^ j . 

Our process will satisfy the modified condition 

P(rj(zk) = 1\T)(ZJ)J <k)>(l-0) whenever Zj = (zprij) G CDJ l<j<k (5.5) 

satisfy rij < nk or (rij = nk and \z'j — zk\ > M) for all j < k. 

It is typically not difficult to prove results for M-dependent percolation processes 

with 0 small (see [14, Chapter 4]), but in Chapter 7 we will simplify things by applying 

Theorem 1.3 of [28] to reduce to the case of independent percolation. By that result, 

under (5.4), there is a constant A depending on D and M such that if 

1-0' 1 
01/A 

( A - 1 ) ( A - 1 ) / A , 
( 1 - ( ^ ( A - 1 ) ) 1 / A ) , (5.6) 

we may couple {rj(z)j z G CD} with a family {C(̂ )5 Z G CD} of i.i.d. Bernoulli random 
variables with P(Ç(z) = 1) = 1 — 0' such that Ç(z) < rj(z) for all z G CD-

We will now show the above conclusion remains valid in our setting with the mod­
ified condition (5.5) in place of (5.4). 

Lemma 5.1. — Assume {rj(z) : x G CD} is a> collection of {0,1}-valued random vari­

ables satisfying (5.5). There is a constant A > 2, depending on D and M such that 

if 0 < * — — a n d 0' is given by (5.6), then we may couple {q(z),z G CD} with a 

family {Ç(z),z G CD} of i.i.d. Bernoulli random variables with P(Ç(z) — 1) = 1 — 0' 

such that Ç(z) < rj(z) for all z G CD-

Proof. — The result is proved by modifying the proof of Theorem 1.3 of [28]. In that 

argument we will set A — 1 + #{zf G Hf0; \z\ < M} and G will be the graph with 

vertex set CD and edges drawn between z,zf in some %'k iff \z — z'\ < M. There 

are no edges between distinct "levels" in CD- In the proof of Theorem 1.3 of [28] 

a finite subset S = { z i , . . . , zk} is totally ordered (z\ < Z2 < . . . zk) so that each 
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Zj is adjacent in G to at most A — 1 of its predecessors. With our choice of A we 

may also order S so that zi = (z'^rii) where n\ < < • • • < nk. The proof of 

Theorem 1.3 in [28] then goes through providing the conclusion of Proposition 1.2 

holds where {rj(zSQ) = 1} is now conditioned on the corresponding values at vertices 

zSl = (z'Sl,ni),...,zSj = (zfSj1nj) where max(ni , . . . , rij) < n0 and zSo = (z'So,n0). 

It is now easy to modify the inductive proof of Proposition 1.2 so that one is always 

conditioning on values at lower or equal levels rii. In particular (5.5) suffices to derive 

the lower bound on the numerator of (1.6) in [28]. • 

Remark. — The above argument clearly applies to more general "oriented" graphs 

than Cp. 

In view of the comparison, and the fact that 8' —> 0 as 8 —> 0, we can for the rest 

of the section suppose: 

rj(z) are i.i.d. with P(rj(z) = 1) = 1 - 0. (5.7) 

We now define the edge set E^ for CD to be the set of all oriented edges from z to 

z + Vi, z G C D , 1 < i < D. A sequence of points ZQ,... ,zn-i,zn in CD is called 

an open path from zo to zn, and we write zo —> zn, if there is an edge in E\ from 

zi to Zf+i and Zi is open for i = 0 , . . . , n — 1. Note that zn does not have to be 

open if n > 1 but zo does. In Chapters 6 and 7 we will employ a block construction 

and determine suitable parameters so that (x,ri) G T-Ln being open will correspond 

to a certain "good event" occurring for our Poisson processes in the space-time block 

(cLx + [—K\T, KiT}d) x [nJiT, (n + 1) JiT] for appropriate L, Kx and Jx. 

Given an initial set of "wet" sites WQ C Ho, w^ say z G Tin is wet if ZQ —>• z for 

some initial wet site ZQ. Let Wn be the set of wet sites in Tin when all the sites in 

Tio are wet, and let Wjl be the set of wet sites in 7 i n when only 0 G Ho is wet. Let 

f j ^ = {W° ^ 0 for all n > 0} . 

Lemma 52 

(i) infxe^n P(x G Wn) > P ( ^ ) - ^ l a S ^ 0 . 

(ii) Let %rn = {{z,n) e CD - z e [-r ,r]d}. There are 95,2 > 0 and r5.2 > 0 such 

that if 8 < 85,2 and r < r^.2i then as N —> 00, 

P ( f i ^ and W° H Hrnn ^Wnn Hrnn for some n > N) -> 0. (5.8) 

Proof — The first result follows from well-known d — 1 results, e.g., see [12, Theo­

rem 4.1]. The second result is weaker than a "shape theorem" for W^, which would 

say the following, using the notation A' = {xf : (xl\ri) G ^4} for A C Hn. For 8 < 8C 

there is a convex set V cRd, containing the origin in its interior, so that on fi£o, 

0 0 ' n (Wny 

for all large n. More precisely with probability 1, if 8 > 0 there is a random n<5 such 

that (W°)' C n(l + <J)P and (W°)' D ( l - ^ n P n ^ ) ' for all n > ns. The technology 
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exists to prove such a result for oriented percolation on C D , but unfortunately no one 

has written down the details. The argument is routine but messy, so we content 

ourselves to remark that (ii) can be established by the methods used in Durrett and 

Griffeath [16] to prove the shape theorem for the d-dimensional contact process with 

large birth rates: one uses percolation in two dimensional subspaces A(mei -f ne^), 

1 < ^ < j < n and self-duality. • 

Call sites in Vn — Hn \ Wn dry. In Chapter 7, when we are trying to show that £f 

dies out, the block construction will imply for appropriate L and Ji, 

if (z, n) <E W° , then (cLz + L)d) x [(n - 1) JiT, nJXT] is £-empty, (5.9) 

where a region is £-empty if £f(x) = 0 for all (x,t) in the region. This will not be 

good enough for our purposes because the space-time regions associated with points 

in V® = Hn \ might be occupied by particles. To identify the locations where 

there might be l's in & we will work backwards in time. However in our coarser grid 

C D , l's may spread sideways through several dry regions and so we need to introduce 

an additional set of edges for CD- Let £± consist of the set of oriented edges from z 

to z — Vi for 1 < i < D, and from z to z + Vi — Vj for 1 < i ^ j < D, z G CD-

We assume for the rest of this section that 

d > 2, 

since we will in fact applying these results only for d > 3. Our next goal is to prove an 

exponential bound on the size of clusters of dry sites. Up to this point the definitions 

are almost the same as the ones in Durrett [13]. However, we must now change the 

details of the contour argument there, so that it is done on the correct graph. Let 

y G CD with yD = n > 0 (write y G In addition to P as in (5.7), for M > 0 we 

also work with a probability P = Pn,M under which rj(z) = 1 for z = (z', m) G Cp 

satisfying m < n and \z'\ > M, and the remaining 77(z)'s are as in (5.7). Therefore 

under P the sets of wet sites {Wn} will be larger, although we will use the same 

notation since their definition is the same under either probability law. If y is wet 

put Dy = 0 , and otherwise let Dy be the connected component in (CD,£I) of dry 

sites containing y . That is, z G Dy iff there are z\ = y , ¿2, • • •, ZK = z all in CD SO 

that the edge from zi to Zi+i is in £± and each Zi is dry. Since all sites in Ho are 

wet, Dy C {z G CD : n > ZD > 0} , and under Pn,M, Dy c {z G CD : n > ZD > 

0, \ (z\,..., ZD-I)\ < M}. We assume that u satisfies 

Dy{u) is finite. (5.10) 

The fact that (5.10) holds a.s. under Pn,M is the reason this law was introduced. To 

make Dy into a solid object we consider the compact solid 

Ry UZEDy(z+Q) Rd x R+ . 
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If Ry is the complement of Ry in Rd x R+, we claim that both Ry and Ry are 

path-connected. For Ry, suppose for concreteness that D = 3 and note that for the 

diagonally adjacent points y(0) = .4(0,0,1) and y(l) = .4 (1 , -1 ,1) , Ry(o) fl Ry(i) 

contains the edge A({l/2} x { - 1 / 2 } x [1/2,3/2]). For Rcy, if x G R% then there 

exists [x] G £p \ Dy such that x G [x] + Q and the line segment from x to [x] is 

contained in Ry. We first assume [x] G Wfc for some k G { 1 , 2 . . . , n}. If [x] is wet 

then there must be a path in Ry connecting [x] to Ho- Suppose [x] is dry, and let 

zo, z i , . . . , ZK be a path in connecting zo = y to ZK = [#]. At least one site on this 

path must be wet (else [x] G Dy), so let Zj be the first wet site encountered starting 

at ZK- Then for each i > j , Zi is dry and ^ ^ (or else [x] would in Dy). Thus 

^f=j{zi + Q ) is path-connected, contained in Ry, and Zj is connected to Ho by a path 

in Ry. Note that %o C (Rd x { 0 } ) n i ^ = ?i£o which is path-connected because the 

rotated cubes making up Ry can only intersect Rd x { 0 } in a discrete set of points 

(since Dy c {ZD > 0} ) . It is here that we use d>2. Now suppose [x] G Hk for some 

k > n. Ho is also connected to Hn+i by a path in Ry (assuming 8 < 1). This allows 

us to connect [x] to % and so conclude that Ry is path-connected. 

Let Ty be the boundary Ry. To study ry we need some notation. We define the 

plus faces of [-1/2,1/2]D to be [-1/2, l/2]m x { 1 / 2 } x [-1/2, l/2]D~m-\ and define 

the minus faces to be [-1/2, l/2]m x { - 1 / 2 } x [-1/2, l/2]D-m~1, m = 0 , . . . , D - 1. 

The images of the plus and minus faces of [—1/2,1/2]d under A constitute the plus 

and minus faces o fQ = 4([—1/2,1/2]d), which are used to defined the plus and minus 

faces of Ty in the obvious way. Note that the plus faces of Yy will have outward normal 

Vi for some i while the minus faces will have outward normal —Vi for some i. 

Lemma 53. — If (5.10) holds, then Ty is connected and bounded. 

Proof. — For e > 0 let Ry = {x G Rd : \x — w\oo < e for some w G Ry}- Since Ry is 

connected, so is Ry. If K(U) denotes the number of path-connected components of a 

set U, it is a consequence of the Mayer-Vietoris exact sequence with n = 0 that for 

open sets U, V C RD with U U V = RD, 

n(U H V) k(U)+k(V)-1. 

See [24, p. 149] and also Proposition 2.7 of that reference. Applying this to the open 

connected (hence path-connected) sets Ry and Ry whose union is RD, we find that 

Ry fl Ry is path-connected. 

Finally, Ry fl Ry is homotopic to Ty, and therefore Ty is also path-connected. 

Boundedness is immediate from (5.10). • 

For the next result we follow the proof of Lemma 6 from [13]. A contour will be a 

finite union of faces in CD which is connected. 
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Lemma 5.4. — There are constants and /¿5.4 which only depend on the dimension 

D so that the number of possible contours with N faces, containing a fixed face, is at 

most C5,4(fjL5.4)N 

Proof — Make the set of faces of C D into a graph by connecting two if they share 

a point in common. Note that by the above definition a contour corresponds to a 

finite connected subset of this graph. Each point in the graph has a constant degree 

v = u(D). An induction argument shows that any connected set of N vertices has at 

most N(v — 2 ) -f 2 boundary points. (Adding a new point removes 1 boundary point 

and adds at most v — 1 new ones.) Consider percolation on this graph in which sites 

are open with probability a and closed with probability 1 — a. Let 0 be a fixed point 

of the graph corresponding to our fixed face, and Co be the component containing 0 . 
If B N is the number of components of size N containing 0 , then 

1>P(\C0\=N) BNaN(l-a)N<"-Q+2. 

Rearranging, we get B N < C/iN with C = ( 1 — a)~2 and ¡1 = a~l(l — a)~^~2K 

Taking the derivative of — log a — {y — 2 ) log(l — a) and setting it equal to 0 , we see 

that a — — 1 ) optimizes the bound, and gives constants that only depend on the 

degree v. • 

lemifld 5.5. — If'65,5 = (2fi5,4)~2D, then 0 < 65,5 implies that for all y = (yf,n) G 

£+ and all M > \y'\, PnM\Tv\ > N) < ^C542~N for all N G N. 

Proof. — By Lemma 5.3 if Dy =̂ 0 we see that under PN,M? Fy is a contour which by 

definition contains the plus faces of y + Q. Given a plus face in Ty if we travel the line 

perpendicular to M.d x { 0 } and through the center of the face, then we enter and leave 

the set an equal number of times, so the number of plus faces of Ty is equal to the 

number of minus faces. Thus, if the contour Ty has size N there are N/2 minus faces. 

It is easy to see that a point of Wj adjacent to a minus face associated with a point in 

Vj+i must be closed for otherwise it would wet the point in V}+i (recall the outward 

normal of a minus face is — Vi for some i). The point of Wj that we have identified 

might be associated with as many as D minus faces, but in any case for a contour of 

size N there must be at least N/2D associated closed sites. Taking 9 < ( 2 ^ 5 . 4 ) - 2 D , 
using Lemma 5.4 to bound the number of possible contours containing a fixed plus 

face of y + Q, and summing the resulting geometric series now gives the result. • 

It follows from the above and an elementary isoperimetric inequality that there are 

finite positive constants C, c such that for all y — (yf, n) G Cp and M > \yf\, 

if 6 < 0 5 . 5 then PnfM(\Dy\ >N)< Cexp(-cAT(D-1)/D) for all N G N. ( 5 . 1 1 ) 

Now fix r > 0 and let Bn be the dry sites in l-L™^4 connected to the complement of 

Um=n/2^"^1^2 kv a path of dry sites on the graph with edges where as for open 

sites the last site in such a path need not be dry. 
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Lemma 5.6. — If 9 < 85 5 then 

P{Bn - 0 infinitely often) = 0. 

Proof. — Let M > n(r -}- V2D). We couple the i.i.d. Bernoulli random variables 

{rj(z) : z G C D } (under P) with the corresponding random field fj (under P = PN,M) 

so that 

7](z) = rj(z) \/z = (z!, m) where \z'\ < M or m > n. 

We claim that z G ^n\=n/2^rn' — is wet for n iff it is wet for rj. It clearly suffices 

to fix z = (zf,m) G ?in which is wet for f) and show it is wet for 7]. A path of 

sites Zi = i = 0 , . . . , m with edges in £^ from Ho to z satisfies maxj<m \z^\ < 

rnJr\f7lDn < M. This is because the edges in £^ have length at most y/TD. Therefore 

if the sites in the path are open in fj, then they will also be open in rj. This proves 

the claim. 

Next note that if y G H™^4, then y G Bn for r] iff y G Bn for fj. This is because 

the path of dry sites connecting y to the complement of U^=n^2W^ri//2 can be taken 

to be inside Hn and so we may apply the claim in the last paragraph. It now follows 

from the above bound on the length of the edges in £± that 

P(y e Bn) Pn,M(y e Bn) :Pn,M(\Dy\ 

c(r)nN 

- V2DJ 

The number of sites in H™^ is at most Cnd, and the bound in (5.11) shows that 

P(Bn 7^ 0 ) < ^2yenr-n/4 P(y G Bn) is summable over n. • 

Remark 5.1. — We will prove in Chapter 7 that if wet sites have the property 

in (5.9), and the kernels p(-) and q(-) are finite range, then for an appropriate r > 0, 
Bn = 0 will imply that on Qf^ all sites in [—c^rn, CL^rn]d will be vacant at times t G 
[(n— 1) J\T, nJiT]. This linearly growing dead zone will guarantee extinction of the 17s. 

ASTÉRISQUE 349 



CHAPTER 6 

EXISTENCE OF STATIONARY DISTRIBUTIONS 

With the convergence of the particle system to the P.D.E. established and the 
percolation result introduced, we can infer the existence of stationary distributions 
by using a "block construction". Recall that our voter model perturbations take values 
in {0, l}eZ and so our stationary distributions will be probabilities on this space of 
rescaled configurations. .We begin with a simple result showing that for stationary 
distributions, having some l's a.s. or infinitely many l's a.s. are equivalent. Let 

|€|=Mx€(x) 

Lemma 6.1. — If v is a stationary distribution for a voter perturbation, then 

|€| : o o v-a.s. iff |fj • 0 v — a.s. 

Proof. — It suffices to prove 

I < oo) > 0 implies = 0) > 0. (6.1) 

Assume first that the 0 configuration is a trap. Then if |fo| = K < oo, (1.27) shows 
the sum of the flip rates is finite and so it is easy to prescribe a sequence of K flips 
which occur with positive probability and concludes with the 0 state. By stationarity 
we get the implication in (6.1). 

Assume next that 0 is not a trap, which means g f (0 , . . . ,0) > 0. We claim that 
v(\£\ < oo) = 0, which implies the required result. Intuitively this is true because 
configurations with finitely many l's have an infinite rate of production of l's. One 
way to prove this formally is through generators. Let £l£ be the generator of our voter 
perturbation, Qv be the generator of the voter model in (1.2) and for i — 0,1 

^iv(€) 
x e i d 

mx) = l-i)E(gl(t;(x + Y1) X(x + YN°))) 
(v(€x)-v(€)) 

Here tp will be a bounded function on {0, \)%d depending on finitely many coordinates, 
and we recall that £x is f with the coordinate at x flipped to 1 — f (x). Recall that 
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£E(ex) = £(x) for f G {0,l}z",x e Zd . For T/> as above define ipe on {0, l}eZ<i by 

= ^ ( 0 - Then by (1.27) and (1.28), 

êve(€e) : ( £ - 2 - £ f 2 ) í í ^ ( 0 - •íío í̂O + ííiV'ÍO- (6.2) 

For 0 < r < R, let A(r, R) {x €Zd :r <\x\ < R} and 

vr,R(€) : l(£U(r,fl) : o), £ e { o , i } z d . 

Considering two cases rr £ ^4(r, i?) and a? ^ ^4(r, i?) we have 

if€(x) : 0 then Vr,ñ(D Vv,a(0 < o. (6.3) 

Since ipr,ii(£x) — i/>r,R(Q = 1 only if x is the only site in A(r, R) where f (x) = 1, we 
have 

^vVr,R(€) 
1, ttoiprMO llflSlloo. (6.4) 

Choose A so that P(Y* < A) > 1/2, where Y* is as in (1.6). Flipping a site from 0 
to 1 cannot increase ipr,R, and tpr,R(0 = 1 implies £(x) — 0 for all x £ A(r, i?), so we 

have 

i î l ^ r , H ( € ) 

rEA(r,R) 
(i-Î(ï)M(o, 0)P(í(ar + Y*) : 0 for 1 < i < N0)i¡;r,R(C) 

9 Í ( 0 , - - - , 0 ) 
2 0r,fl(O|i4(r + A , f í - A ) | . (6.5) 

The stationarity of v implies, see Theorem B.7 of Liggett [30], that if i\) = ^r,R then 

J Q£ip£dv = 0. Using (6.2), (6.4) and (6.5), and noting that 

ip£ du — i/(f = 0 on A(er, eR)), 

we have 

0 (E-2-E1-2) 
M i l c o 

a ? ( 0 , . . . , 0 ) 

2 
A(r + \,R- A)|i/(f = 0 on i4(er,eJR)). 

Rearranging this inequality we get 

z/(£ = 0 on A(er, eR)) 2((g"a-er2) +IIPSIIOQ) 

<tf(0, . . . ,0) |A(r + A , J Î - A ) | 

(recall pf ( 0 , . . . , 0) > 0). Letting R ~> oo we conclude that *v(f = 0 on ^4(er, oo ) ) = 0. 

In words, for i/-a.a. configurations there is a 1 outside the ball of radius sr. As this 

holds for all r < oo, there are infinitely many ones with probability 1 under v. • 

Assumption 1 and (1.41) are in force throughout the rest of this section and we 

drop dependence on the parameters w, Vi, Lo, Li, r*o, etc. arising in those hypotheses 

in our notation. We continue to work with the particle densities D(x, f) using the 

choice of r in (4.6). We start with a version of Lemma 4.2 which is adapted for proving 

coexistence. We let 

L 2 = 3 + Lo V i a . 
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Lemma 62. — There is a C§,2 > 0 and for every rj > 0, there are Tn > 1 and 

6̂.2(̂ 7) > 0 so that for t G [Tv, C6.2 log(l/e)] and 0 < e < 66.2, if 

£0 has density in [VQ +T),VI — rj\ on [—L2, £2]^, 

then 

P(££ has density in [u* — rj,u* + 77] on [—utf, w£]d|£o) > 1 — em. 

The proof is derived by making minor modifications to that of Lemma 4.2 and so 

is omitted. We will always assume 77 > 0 is small enough so that 

Q < VQ -t- n < u* — rj < u* + r} < vi — 77 < 1. 

The one-sided versions of the above Lemma also hold (recall Lemma 4.2 on which 

the proof is based is a one-sided result), that is, with only one-sided bounds on the 

densities in the hypothesis and conclusion. 

Theorem 1 .4 . — Consider a voter model perturbation on %d satisfying (1.41). Suppose 

Assumption 1. If e > 0 is small enough, then coexistence holds and the nontrivial 

stationary distribution v may be taken to be translation invariant 

lfrj>0 ande > 0 is small enough, depending on rj, then any stationary distribution 

v such that 

v 
X 

I £(x) = 0 or 
x 

; ( l - É ( a O ) = o ) = 0 (6.6) 

satisfies v(Ç{x) = 1) G (u* — 77, u* + rj) for ail x. 

Proof. — We use the block construction in the form of Theorem 4.3 of [14]. This 

result is formulated for D = 2 but it is easy to extend the proof to D > 3, and we 

use this extension without further comment. Recall Q(r) — \—r,r]d and Q£(r) = 

Q{r) fl eld. Let U = (C6.2/2)log(l/e), L = wU/(a0D + 1), where a0 > 0 is a 

parameter to be chosen below, and 7* = [w* — rj/4, u* + rj/4}. Next we define the sets 

H and G% which appear in the above Theorem. Let 

H = { £ G {0, l}£Zd : £ has density in I* on Q(L)} , 

that is, if Q£ = [0, a£)d fl eLd then the fraction of occupied sites in x + Qe is in 

I* = [u* - rj/4, u* + 77/4] whenever x G a£Zd fl [ -L , L]d. If V = L + 1, then {£ G i f } 

depends on £|[-z/,L']d- Here we need to add 1 as the cubes of side a£ with "lower 

left-hand corner" at x G [—L, L]d will be contained in [—L',L']d. This verifies the 

measurability condition in Theorem 4.3 of [14] with V = L + 1 in place of L which 

will affect nothing in the proof of Theorem 4.3. 

Let G% be the event on which (a) if = then £fj has density in I* on 

Q(wU) and (b) for all z G Q£(w[/ + 1) and all t < U, X*>u c Q((w + &o)^ + 1), 
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where b0 = 16(3 + d)/C6.2. Note that 

G* G a(M\ [0,[ /]xeZdNox[0,l] K\[o,U]xeZ*V € Q£((w + bo)U) + 1 ) (6.7) 

Q(Q((bo + w)U + l)x[Q,U]) 

Informally, Q ( R ) is the cr-field of generated by the points in the graphical representa­

tion that lie in R . The above measurability is easy to verify using the duality relation 

(2.17). 

Consider now the Comparison Assumptions prior to Theorem 4.3 of [14]. In our 

context we need to show 

l e m m a 6.3. — For 0 < e < £6.3(27).* 

(i) if G H, then on G^, £(j has density in I* on a$Lv[ 4- [—L,L]d, 1 < i < D, 

(ii) if£eH, then P(Gz) > 1 - £0 009 

Proof — By assuming e < £i(rj) we have U > T^/A and L > L2- Using the definition 

of L and the fact that | ^ | < ||?4||2 = y/D — 1 one easily checks that 

a0Lv- + [-L, L)d C [—wCT, wU]d for t = 1,..., D. (6.8) 

Part (a) of the definition of G% now gives (i). By Lemma 4.7 with parameters L = 

wU + 1, 2b = 60, c = C 6 . 2 / 2 and T" = U, and Lemma 6.2, for £ £ i f we have for 

£ < £6.2(77), 

P(G?) £-01+^(wC/ + l)d([/ + l)£ ; ( 6 o C6 .2 ) / 1 6 ) - 2 - d 

:em^c(\og(l/e))d^e .009 

where the last two inequalities hold for small e. We may reduce CQ.2 to ensure that 

b = bo/2 satisfies the lower bound in Lemma 4.7. This proves (ii). • 

Continue now with the proof of Theorem 1.4. Let e < 65.3 and define 

Vn = {(#, n) G Hn ' inu nas density in 7* on a0Lx + [—L, L]d}. 

(To be completely precise in the above we should shift aoLx and aoLv[ to the point 

in eLd "below and to the left of it" but the adjustments become both cumbersome 

and trivial so we suppress such adjustments in what follows.) If we let 

Ry,n = {yctoL, nU) + Q((60 + w)U + 1) x [0,17], for (y, n) G CD 

and 

M -
~2(bo + w)(a0D + l) 

aow 

then Ryiym H Ry2,n = 0 if \{yi,m) - (y2,n)\ > M. Since G(Ri), 1 < i < k are 

independent for disjoint iVs , Lemma 6.3 allows us to apply the proof of Theorem 4.3 

of [14]. This shows there is an M-dependent (in the sense of (5.5)) oriented percolation 

process {Wn} on C D with density at least 1—em9 such that Wo = Vo and Wn C Vn for 

all n > 0. We note that although a weaker definition of M-dependence is used in [14] 
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(see (4.1) of that reference), the proof produces { W n } as in (5.5). By Lemma 5.2 with 

r = T5.2 and 9 = £-009, if e < £1(77), then 

lim inf 
n-»oo (x,n)eU™ 

P(inU has density in I* on a0Lx + [—L, L]d) (6.9) 

1 n 
4, 

P(0 e Vo). 

We will choose different values of ao to first prove the existence of a stationary law, 

and then to establish the density bound for any stationary distribution. For the first 

part, set ao = 3 and take {£o(x) : x £ £^d} to be i.i.d. Bernoulli variables with mean 

u = (u* -f u*)/2. The weak law of large numbers implies that if e is small enough 

P(H has density in 7* on [-L,L]d) 
1 

2 
(6.10) 

Since ao = 3, L > 3 and \x — y\ > \\x — yfo/y/D > 1 for all x ^ y G %n, {aoLx + 

[—Z/,Z/]d : x G Tin} is a collection of disjoint subsets of Rd for each n. This and 

the measurability property of {£ G H} noted above shows that if 0 < e < £0(27) then 

{Vn} is bounded below by an M-dependent (as in (5.5)) oriented percolation process, 

{ W ^ 2 } , with density at least > 1 — £ 009 starting with an i.i.d. Bernoulli (1/2) field. 

Having established that our process dominates oriented percolation, it is now routine 

to show the existence of a nontrivial stationary distribution. We will spell out the 

details for completeness. Recall the notation introduced just prior to Lemma 4.7: 
Q(x,r) = [x-r,x + r]d and Qe(x,r) = Q(x,r) neZd. 

Lemma 6.4. — Assume ao = 3 and {£o(#) : x G eZd} are as above. There is an 

£6.4(27) > 0 so that for any e G (0,56.4(27)) and any k G N there are ti(k, e), Mi(k,e) > 

0 so that for t>t\, 

P 
| x | < M i 

€t (x) > k and 
|œ|<Mi 

1-€?(x)>k 1 
2 

k 

Proof. — As in Theorem A.3 of [14] for k G N there are n0,A),M) € N and 
21, • • . , Z4k G Q(Mo) satisfying \zi — Zj\ > 3M + 2£o -h 1 for i ^ such that for n > no 

with probability at least 1 — k~x 

Wl>2 n Q(zj,e0) ? 0 for j = 1,...,4fc. (6.11) 

where Q(ZJ,£O) = Zj + Q(£o). The above implies there are cr(^c/)-measurable yj G 
Q£(ZJ,£O) such that 

£nU has density in 7* on 3Lyj + [—L,L]d, j = I,... ,4k. (6.12) 

This proves the result for t = nU. Intermediate times can be easily handled using 

Lemma 6.2 and the finite speed of the dual (Lemma 4.7). Those results show that for 

a fixed e < £6.2 and t > (no + 1)U, if we choose n > no so that t G [(n + ! ) [ / , (n + 2)17] 
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(use Tn/4 < 2 U — C6.2log(l/e) in applying Lemma 6.2), then on the event in (6.12) 

we have 

P(f £ has density in I* on 3Ly^ + [-L, L]d, 

and Xx/ G Q(3Lyj,L' + b0U) for all x G 3LVj + [-L',L']d and s G [0,t]\£u) 

> l - r 0 1 - C l ( l o g ( l / £ ) ) d + 1 £ 
1 

2' 

where in the last inequality we may have needed to make e smaller. 

Our separation condition on the {ZJ} and L > 3 implies that Q(3Lyj,L' + boU), 

j = 1,... ,4k are disjoint and so the events on the left-hand side are conditionally 

independent as j varies. Therefore a simple binomial calculation shows that 

P(\{j < 4fc : g has density in /* on 3LVj + [-L, L]d}\ > k) 

1 l 

k 
i 

1 

k. 
: 1 2 

k' 

Here the first 1 — ^ comes from establishing (6.12) and the second 1 — ^ comes from 

the binomial error in getting fewer than k points with appropriate density at time t. 

Since the above event implies the required event with Mi = 3L(M$ -f £o) + L we are 

done. • 

Fix e < SQA- By Theorem 1.1.8 of [29] there is a sequence tn —> oo s.t. 

t~x /J71 1(£s G •) ds —> v in law where z/ is a translation invariant stationary distri­

bution for our voter perturbation. Lemma 6.4 easily shows that there are infinitely 

many O's and l's z/-a.s., proving the first part of Theorem 1.4. 

Turning to the second assertion, by Lemma 6.1 and symmetry it suffices to show 

that for e < £2(27) and any given stationary v with infinitely many O's and l's a.s. 

then 

sup /i(£(#) = 1) < -f- r]. 
x 

Start the system with law v. We claim that 

Lemma 6.5. — There is a a (^-measurable r.v. xo G eZd such that ^ = 0 on 

Q£(xo,L) a.s. More generally w.p. 1 there is an infinite sequence {xi : i G Z + } 

of such random variables satisfying \xi — Xj \ > 4L + 1 for all i ^ j . 

Proof — To see this condition on choose XQ SO that £o(xo) = 0 and note that if 

Rf is the first reaction time of the dual Xx'£, the event = 0 on Q£(xo, L)" occurs 

if for all x G x0 4- [-L,L]d, Rf > 1, X^£ = x0, and sups<! \X%>£ - x\ < 1. Call the 

last event A(XQ). The last condition has been imposed so that if \x0 — x±\ > 4L -f 1 

then the events A(xo) and A(x\) are (conditionally) independent. Clearly they have 

positive probability. Given our initial configuration with \{y : £o(y) = 0 } | = 00 a.s., 

we can pick an infinite sequence Xi, i G N , with £Q(x0 = 0 and \XJ — Xi\ > 4L + 1 

when j > i, so the strong law of large numbers implies that at time 1 there will be 
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infinitely many Xi with £f (x) = 0 for all x G Q£(xi, L). By stationarity this also holds 

at time 0. • 

Now condition on £Q, shift our percolation construction in space by XQ, set ao = 

(2D)-1 and only require the density to be at most u* + n/4 in our definition of Vn 

which now becomes 

Vn = { (x ,n ) G Hn : inU has density at most u* + rj/A on xo + cjr,£ + [—L, 

where we recall from (5.2) that CL = L/(2D). (Here we are using the one-sided version 

of Lemma 6.2 mentioned above, after its statement.) Then 0 G Vo and the one-sided 

analogue of (6.9) shows that if e < £3(77), then 

lim inf 
n->oo (x,n)EH?n 

P(x G Vn) > 1 
2? 
4' 

Recall from (5.2) that UxG^^xo -f CLX + [—L, L]d = Rd, so this implies for any x eRd 

and n large enough, 

P(^nU nas density at most u* 
77 

4 
onx + [-L,L]d) > 1 27 

3' 

and so by stationarity 

v(££ has density at most u* -
n 
' 4 

o n x + [-L,L]d) > 1 . 1 
3 

for all x G Rd. 

To complete the proof, run the dual for time t£ (t£ as in (4.6)) and apply Lemma 4.5 

with u = u* + \ to see that for x G £Zd and e < £3(77) A £4.5(77/3), 

V(€(x)=1) P ( £ » = i) 
P(i?i < te) + £(P(iîi • = iieg)) 

( 1 - е - с % ) - E(P(e0(B¡?) : 1|€?)) 

c*te + ?+u* 77 77 
h - + -

4 3 
u* + 7 7 , 

where e is further reduced, if necessary, for the last inequality. 
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CHAPTER 7 

EXTINCTION OF THE PROCESS 

7 .1 . Dying out 

Our goal in this section is to show that if / ' ( 0 ) < 0 and |£Q| is o(e~d), then with 
high probability Q will be extinct by time 0( log( l /e ) ) . Throughout this Section we 
assume that 0 < e < £o and that (1.43) holds, i.e., g£(0,..., 0) = 0 for 0 < £ < £o 

Recall from (3.30) the drift at £X in the rescaled state ££ G { 0 , l}eZ (recall the 
notation prior to (1.25)) is 

de{ex^e) ( l - £ ( s ) ) M ( * , t f €(x)h?(x,E) 

and define the total drift for |£J < oo by 

Ve(€e) 
x 

de{ex,£e). (7.1) 

Recall from (1.5) and (2.6) that 

h?(x,€) EyigHttx + Y1) .Z(x + YN°))), (7.2) 

where Ey denotes the expected value over the distribution of ( V 1 , . . . YN°), and also 
that 

c*=c*(g) sup 
0 < £ < e 0 / 2 

M o o ||Solloo + l, cb = c*N0. (7.3) 

It will be convenient to write 

££(ex + eY) (€(x+EY1) E(x+eYNo)) 

If %t is the right-continuous filtration generated by the graphical representation, 
then 

ISI = l*SI + A ^ 
t 

Jo 
Ve(E?)ds (7.4) 

where M£ is a zero mean L2-martingale. This is easily seen by writing £ f (x) as a 
solution of a stochastic differential equation driven by the Poisson point processes in 
the graphical representation and summing over x. The integrability required to show 
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M£ is a square integrable martingale is readily obtained by dominating |££| by a pure 
birth process (the rates c€ are uniformly bounded for each e) and a square function 
calculation. 

Lemma 7.1. — For any finite stopping time S 

e~cbt\m E(|€?+t||HS ecbt\m-

Proof. — By the strong Markov property it suffices to prove the result when 5 = 0. 
The fact that d€(ex,££) > — Halloo implies ^e(£J) > — ||<7olloo|£f |- It follows from 
(1.43) and (7.2) that 

de(ex,£e) M o o 

V * ( l , ) = l i==1 

N0 

PiY^y-x). 

Summing over x and then y, we get ) < No||<7il|oo|£f I and (recalling (7.3)) the 
desired result follows by taking means in (7.4) and using Gronwall's Lemma. • 

Let be the voter model constructed from the same graphical representation as 
£e by only considering the voter flips. We always assume £o'° = £o-

Lemma 7.2. — Ifc7.2 = 4(2iV0 + l)c* then 

Е(\ФеЮ v>e(e°)i) C 7 . ^ ( i V o + 1 ) s - l ] | ^ | . 

Proof. — Let £e8(ex + eY) = + eY°),...,Q(ex + eYN°)), where Y° = 0, Y is 

independent of £e, and note that in contrast to 7 , 7 contains 0. Let 

D£(r}o, 77i, . mo) = -Vo9o(Vu • • •, VN0) + (1 - m)9i(m, • • • » ^ o ) . 

and note that 

E(\i,£(C)-MC'°)\) ; E 

X 

\De(Ç(ex + eY)) - De(£'°(ex + eY))\) 

2\\D£\\ooE 
X 

max 
L0<i<Aio 

^(ex + eY^wQ'^ex + eYi)] 

l{es(ex + eY)^^°(ex + eY)}) (7.5) 

because for fixed x if the latter summand is zero, so is the former, and if the latter 

summand is 1, the former is at most 2||De||00. 

Let Xt = Xt,s, t e [0,s] be the dual of ££ starting at (20, • • • , Z N 0 ) = ex + £Y at 

time s and let i?m, m > 1 be the associated branching times. We claim that 

E\ max 
.LO<t<No 

Siex + eY*) l{es(ex + eY) C'°(ex + eY)} (7.6) 

E 

lEJ(s) 

€?(X?)1{R1<s}). 
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To see this, note that: 

(i) if JRI > s, then there are no branching events and so (Xt,t < s) is precisely the 

coalescing dual used to compute the rescaled voter model values ££,0(ex + eY). 

(ii) In the case Rt < s, if ^(Xes) = 0 for all t G J(s) then g(ex + eY1) = 0 for 

0 < i < No because working backwards from time 0 to time 5, we see thanks 

to (1.43) and (2.19) that no site can flip due to a reaction, and again we have 

£€{ex + eY) = ££>°(ex + eY). 

Similar reasoning and the fact that the dual (X£0j, j G J°(t)) of the voter model 

£e'° with the same initial condition z satisfies J°(t) C J(t) for all t < s a.s., shows 

that 

E max 

lO<i<N0 

^°(ex + eYi \{£{ex + eY) &\ex + eY)} (7.7) 

E 

ieJ(s) 

€?(X?)1{R1<S} 

If Eo denotes expectation with respect to the law of X^,s when x = 0 then, us­

ing (7.6) and (7.7), we may bound (7.5) by 

4c*£0 
ieJ(s) x 

e0(ex + Xis)l{R1<s} 

Bounding by the dominating branching random walk X , and using | J(Ri)\ = 2 No + 1 

and P(Ri < s) = 1 — e - c * ( N 0 4 - i ) ^ we see tne expected value in the last formula is at 

most 

K S | £ 7 ( | J ( * ) | l{ J i i S} ^'""EQJiRiMRi < s}) 

i (2iV0 + l)|€o|ec*JVoa(l - e-°'W°+V>) (2N0 + l)\eo\(ec'iNo+1)s-l), 

which proves the desired result. 

For the next step in the proof we recall the notation from Sections 1.1 and 1.8. 

We assume Y is independent from the coalescing random walk system {Bx : x G Zd} 

used to define r(A) and r(A,B). Recall from (1.91) and (1.89) that under (1.43) 

0 = / ' (0) 

S€VN0 

$(S)P(T(YS) < OO,T(YS, { 0 } ) = oo) - 8(S)P(T(YS U { 0 } ) < oo). 

For M > 0 define 

0'M 

sevNo 

P£(S)P(T(YS) : M < T(YS, {0} ) ) - Ô£(S)P(T(YS U { 0 } ) < M) 

It follows from (1.92) that (with or without the e's) 

S€-PJV0 

\Us)\ + \K{s)\ 22" ° ( l l 5 ? I U + l k l o o ) 2™°c*(g) (7.8) 

(recall here that g£ = g£ by our e\ = oo convention). It is clear that limM->oo,e^o @M — 

0, but we need information about the rate. 
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Lemma 73. — There is a S7.s(M) | 0 (independent of the g\) so that 

\0M-0\ 
22No M - 9i Woo + ||<?o ~ eolico -h c*{g)e7AM) 

Proof — Define 

£7.3(M) 
1 

2 
sup SEPNo P(M < T < oo) : r r ( 7 5 ) , r ( y s U { 0 } ) , r ( r s , { 0 } ) } , 

and note that e7.3(M) I 0 as M t oo. Using (1.93) and (7.8) (the latter without the 

e's) we have 

WM-6\ 
SEVNO 

\$E{S)-${S)\ + \SE{S)-S(S)\ 

S€VNO 

~0(S)\\P(T(YS) : M < T(YS, { 0 } ) ) - P(T(YS) < oo = T(YS, { 0 } ) ) | 

- \6(S)\P(M < T(YS U { 0 } ) < oo) 

: 22IVO[||<7? - 9iHoc + - 9o\U + 22N°c*(g)e7.3(M). 

The result follows. 

To exploit the inequality in Lemma 7.2 we need a good estimate of E(ip£(££i°)) for 

small s. 

Lemma 7.4. — There is a constant C7.4 (independent of g\) such that for £,S > 0, 

E(Ve(€?,0)) ei-2\e0\ + mA(e,ô), (7.9) 

where \rtrA(e,6)\<c7.4c*(g)6-d/2\$\2£d. 

Proof. — As usual we assume Y is independent of Summability issues in what 
follows are handled by Lemma 7.1 (and its proof) with g\ = 0. The representation 
(1.87) and (7.1) imply that 

E(Ve(€?,0)) 

s 

faS)E%{S) - Ô£(S)E!(S) 

E?(S) 

xezd 
E({l-&°(ex)) 

ies 

€?,°(ex+eYi)) 

El(S) 

xezd 

EUf(ex) 

iE 

tfiex + eY*] (7.10) 

We will use duality between ££'° and {Bx} (see [29, (V.1.7)]) to argue that 

E£0(S) « \$\P{T(YS) < fe"2 < r(Ys, { 0 } ) ) , 0 ^ S C { 1 , . . . , N0} 

Ef(S) « \e0\P(r(Ys, { 0 } ) < ôe~2) all S c { 1 , . . . , N0}. 
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Beginning with the first of these, note that duality implies (recall Y° = 0) 

E?(S) 

xEZd 
E ( l - « ( e B ? e - a ) ) 

ies 

[$(eêg£)l{T(x + Ys,{x}) ôe-2} 

x£Zd 

E 

iES 
e0(eê*+V)l{T(x + Ys, {x}) > ôe-2}) 

x£ld 

E 

^ e s u { o } 
&(eÊ££)l{f(x + Ys, {x}) > Se'2}] (7.11) 

- Si — E2 . 

If r(x + Ys) > fe"2 there are i ^ j G S so that r({x + F*}, {x + F-7}) > ôe~2. If 
we condition on the values of the Y1, Y"-7 in the next to last line below, 

xezd 

E 

ies 

eQ(zBxs+ï)l{T(x + Ys)>6e-2}) 

xezd i<i<j<NQ 

E{%{eÊ£X)eQ{eB£_V)l{T{{x + Y% {x + Yj}) > 6e~2}) 

wezd zezd 

E?(ew)€?(ez) 

l<i<j<N0 xezd 

P(B???=w, B??? =Z, 

T({x + Yi},{x + Yi})>6e-2) 

weZd zeZd 

E?(ew)€?(ez) 

l<i<j<N0 

P i ê ^ ^ w - z - Y + Yj) 

No(N0-l)\eo\2c(l + Zfe-2)-d/2, (7.12) 

where the local central limit theorem (e.g., [5, (A.7)]) is used in the last line. A 

similar calculation shows that 

£2 : \Zl\2c{l + 28e-2yd'2. (7.13) 

To see this, note that r(x -h Ys, { 0 } ) > 5e~2 implies that for io E S (this is where we 
require S non-empty) r({x + Yl°}, {x}) > Se~2) and we may repeat the above with 
i = io and j = 0. Returning to the study of Ei, taking any io G S we have 

xezd 

E 

ies 

eQ(eB£X)l{T(x + Ys) < ôe'2 < T(X + Ys, {x})}) 

xezd 

E{eo(ex + eBj^)l{r(Ys) < ôe~2< r(Ys,{0})}) 

\?0\P(T(Ys)<oe-2<T(Ys,{0})). (7.14) 

Together (7.12) and (7.14) bound Si . Using this with (7.13) in (7.11), we conclude 

that 

EI(S) №P(r(YS) < ôe'2 < T(YS, {0} ) ) + Vl(e, ô, S), (7.15) 
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where \rji(e,6,S)\ < CNQ\^Q\2S dl2ed. A similar, and simpler, argument shows that 

for S c { l , . . . , i V 0 } , 

EÏ(S) = m\P(r(Ys U { 0 } ) < Se-2) + m(e, 6,5), (7.16) 

where | % ( M , S ) | < cN0(N0 + l ) | ^ | 2 J " d / V . 
Now use (7.15), (7.16) and the fact that /3£(0) = 0 (by (1.43)), to obtain (7.9) with 

1*77.4 ( M ) I 
s 

(\ß£(S)\ + \ö£(S)\)cN0(N0 + l)6-d/2\e0\2ed. 

Finally use (7.8) to complete the proof. 

For 0 < T/i < 1, let T(T7I) = Te(r/i) = inf{* > e**1 : \^£_£V1 \ > ( e ^ + ^ y V ? 1 } and 

note that T(T?I) — e711 is an (%)-stopping time. 

Lemma 73. — There is a C7.5 so that if rji G (0,1), then for all s > em 

EMSM-en) < fö„le-a + c7.5e»>} \g_eVl I a.s. on {T(m) > s}. 

Proof. — Let 5 = e^. If |£M < (e'1^)^1, then Lemmas 7.2 and 7.4 imply 

mm) KSI*Se-a rj'(e) with 

W(e)\ C72[e(N0+l)c*e»i l ] ^ l + C 7 . 4 C * ( ^ - " l d / 2 + d | ^ | 2 

;7.2c*(AT0 + l)e(w»+1»c,e"|S| + C7.4C* GrtKSIe"1. 

For the second term we used the bound on |£Q|. The result now follows from the above 

by the Markov property and the definition of T(rji). • 

Lemma 7.6. — Let /3yrj2 G (0,1]. There is an e7.6(/3,ri2) G (0,1), so that if0<e< 

67,6 and 9 = / ' ( 0 ) < — r]2, then |£Q| < e~dJr^ implies 

P(№ > 0) < 6 e 2 c ^ / 2 for allt>f2 log(l /e) . 

Proof. — Let A < 772 /2, 771 = /3(2 + d)"1, T = T£(r]i) and 5 = eri1. An integration by 

parts using (7.4) shows that for t > 5, 

e A ( t A T ) l ^ r l = e ^ | a H 
t 

Js 
l { r < T}[AeAr|£| + eAp&(£)]dr + ^te, 

where ATE is a mean 0 martingale. Since {r < T} G Wr-ó, we have for 5 < s < t 

^ ( e A ( t A T ) ^ A r | - e A ( s A T ) ^ A T | | H s - , ) 
rt 

Js 
E(l{r < T}eXrE(\\£\ + ï>e(£№r-s)\Hs-s)dr. 

Using Lemmas 7.1 and 7.5 the above is at most 

E 
t 

Js 
l { r < T } e A r 7 ( £ ) l € U H ^ ) (7.17) 
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where 7 ( e ) = XeCbS + 6 > | £ _ 2 + c7,5ö. Recall (5 = and (9 = / ' ( 0 ) < -772. By 

Lemma 7.3 and the uniform convergence of the gf to there is a £1 (/3,772) > 0 so 

that if 0 < £ < £1, then 

7(e) 
n2 

2 
e*'"1 - % + 2 2 ; V o 

1 

•¿=0 
\sH"9i\\oo + 22iVoC*£7.3(£7?1£"2) + C7.5£771 

-772 /4 < 0 . 

We assume 0 < e < e\ in what follows. Since the bound in (7.17) is therefore non-

positive and our assumption on implies T > 5, we may use Lemma 7.1 and the 

fact that S < 1 to see that for t > <5, 

£(l£Ar|eA(tAT)) 
ex6E(|€?|) e(A+<%)*|£*| < eV2+ebeß-d^ (y 18) 

Now |££ | > 1 if it is positive so 

P ( | £ | > 0) < £(|£AT|eA(TAt>l{T > 0 )e-At + P(T < *)• (7-19) 

Let t > (2^/772) log(e x) and use (7.18) with À = 772/2 to see that the first term is at 

most 

eri2+cb£ß-d£d _ em+cb£ße (7.20) 

To bound P(T l< t), we note that l l |£f ,_J ll> ( e " 1 ^ ) ^ 1 if l < 00, so 

P(T <t)< E{\&_S\1{T < t } ) ^ - ^ * ) " ^ 1 . 

By making e\ smaller, depending on /3, we can assume that (2d/772) log(£-1) > e771 = 

S. Let 5 = (T — 5) A(t — 6), note { T < £} G ̂ 5 , and use the lower bound in Lemma 

7.1 to conclude the first inequality in 

EQ?T-S\1{T < *}) < eCb5meTAt\) < e2c^e^d. 

The second inequality comes from (7.18) with A = 0 (recall that t > (2d/rj2) log(£_1) > 

em = S) and S < 1. Using the last two equations with (7.20) in (7.19), we conclude 

that 

P№\>o) em+cb£ß + e2cb+r,2£ß-d(e-i+*iyd£-m 

• em+2ch[£ß + £ß-m{i+^ < 2e1+2cb£^2, 

where the definition of 771 is used in the last line. The result follows. 

7.2. T h e Dead Zone 

For the remainder of this Section we suppose (1.41), (1.43) and Assumption 2 are in 

force and —/'(0) > 772 G (0,1]. We also assume that p(-) and q(-) have finite supports. 

More specifically, RQ G N satisfies 

{x G Zd : p(x) > 0} C [-R0,Ro]d and G ZdiV° : q(x) > 0} C [-ifc, #o]diVo. (7.21) 
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In order to connect with the percolation results from Chapter 5 we need certain space-

time regions suitable for applying Lemma 4.2 to decrease particle density, Lemma 4.7 

to control the spread of duals, and Lemma 7.6 to actually kill off particles. Recall 

that Q€(r) = [~-r,r]d fl (sZd). For J0 < Ji G N , 0 < w < 1, A,K > 1, and T > 0 

define regions V(Jo, J i , w , A , K ) = VQ{JV\, where 

V0 U%{Q£{{K^jA)T) x [(j - l )T , jT] ) , 

D1 ^1-JI{Q€{{K + jw - (II; + A) J 0 ) T ) x [jT, ( j + 1)T]). 

For help with the definition consult the following picture: 

Ji = 7 

[# + (Ji - 1 - J0)w - JoA}T 

D1 

Jo = 3 [X - J0A}T 

-Do 

[K - A]T 

The speed w > 0 is as in Assumption 2 (and may be assumed to be < 1), and 

T = A4.2 log(l /e) is the same as in (4.6). For the regions T>o,T>\,£ we take 

Jo 2d 

V2A4.2 I 
- 1 , A 

8{2d + 3] 

-44.2 
• V (2cb V 2a2) 

K = 2 + A Jo, and Jx = J0 + 1 + 
K+AJ0 

w 
(7.22) 

The choice K = 2 + A J0 implies that Q£{2T) x {J0T} is the "top" of V0 and the 

"bottom" of V\. The choice of J\ implies 

the top of V contains Q£(2KT) x {J\T} and is contained in (7.23) 

Q£{{2K + 1)T) x { J i T } , and £> contains the region Q£(2T) x [0, J±T]. 

Recall from Chapter 5 that a region C in Rd x E+ is £-empty iff £f(x) = 0 for 

all (t.x) G C, where ££ is our voter model perturbation as usual. If A c Md let 
€?(A) xeA^eZd€?(x) 
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7.2. THE DEAD ZONE 105 

Lemma 7*7. — With T, w, Jo, Ji, A, K as above there exist £7 .7 , C7.7 > 0 depending on 

Ui, 112, w, C2, C2 (from Assumption 2) and ro, J4.2, V2 such that such that ifO < e < £ 7 . 7 
and 

4 § ( Q ( A T ) ) = 0, (7.24) 

then 

P(V(Jo, Ji,w, A, K) is e-empty) 1 „ -̂oi/̂  : 1 — C7.75 
14.2 

4 (7.25) 

and with probability at least 1 — C7.7£d, 

/or a// j = 1,..., Ji, (x, u) G (Q£((K + Jiti; + A( Ji - j))T) x [(j - l)TJT}) 

and t G [0, u - (j - 1)T], X^u c Q£((tf + Jiw + A(J± -j + 1))T). (7.26) 

Proof — We begin with some notation for describing events in which the dual process 

is confined to certain space-time regions. For j > 1 and 0 < r < s let TT(J, r, s) be 

the event 

X?u C Q£(sT) V x G Q£(rT), u G [(j - 1)T, j T ] , and te[0,u- (j - 1)T}. 

On TT(J, r, 5 ) , duality and (1.43) imply 

fc/-i)r(G*(*r)) = 0 imPlies Q£(rT) x [U ~ jT ] is e-empty. (7.27) 

Step L — We first check that T>o is empty with high probability. For j G { 1 , . . . Jo} 

we bound the probability of TT(J, K — jA, K — (j — I)A) by using Lemma 4.7. If we 

set c — A4.2, U = jT, L = (K — jA)T and 2b = A, then evaluating q in the lemma 

we obtain 

q 'AA4.2 
8 

• 2 ,A4.2e 2 2 d + l 

if A^e 2 > (2d + 1 ) . Hence the bound on p£ in Lemma 4.7 gives us 

P(TT(j, K - jA, K-(j- 1)A)) > 1 - c'd(K - jA)dsd (7.28) 

for e < £4.6(^4/2) such that A4.2e~2 > 2d + 1 and e(A4.2 log(l/e) + l ) d < 1. 

By (7.27), on the intersection 

^ T T ^ K - jA,K - (j -l)A), 

for each j G { 1 , . . . J0}, if ^ _ I ) T W ( ( ^ " 0" ~ WW) = 0 then Q£((K - jA)T) x 
[(j - l)T,jT] is £-empty. Iterating this, (7.24) and (7.28) imply that for some positive 

P (VQ is 6-empty) l-c'dJoKded \ie<eo. (7.29) 

Here, and throughout the proof, £o will denote a positive constant depending only on 

our fixed parameters including ro-
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106 CHAPTER 7. EXTINCTION OF THE PROCESS 

Step 2. — By taking e small enough we may assume that (recall LQ is as in Assump­
tion 2) 

2 + L0 <KT<(K + wJi)T: £-№l/d (7.30) 

For j G { 1 , . . . , Ji — Jo}, on account of (7.24), we may apply Lemma 4.2 and the 
Markov property J\ — Jo times and conclude that for e < £4.2, 

P{gT has density at most e1^ mQ£((K + wj)T) for j = 1,..., Jx - J0)) 

; 1 - ( J ! - J 0 ) r ° \ 

When the above event occurs, for any j € { 1 , 2 , . . . , J\ — Jo}, (recall that Qe = 

[0,ae)dn(eZd)) 

aT(Q*((K + wj)T)) 

x£aeZdnQ'{(K+wj)T) 

eJT(x+Qe) -
x€Q'((K+wj)T)-Q((K+wj)T-ae) 

€?T(x) 

|<5£|e74.2Card(aeZd n Qe((K + wj)T)) + cde-d[(K + wj)T]d-1a£ 

cd\Qs\e^aJd((K + wj)T)d + cde-d[(K + wj)T\d-lae 

cd(K + wJ1)dAi2(log(s-1))d[e^-d + ffd/KW)-*] 

; £ 7 4 . 2 / 2 - ^ , (7.31) 

for small enough e, where we have used 74.2 < (16d) 1 in the last line. We have 

shown that for all e smaller than some positive £0? 

P(Z£jT(Q£((K + wj)T)) < e ™ / * - * for j = 1,..., J x - Jo) > l - ( J i - J0)em. (7.32) 

Step S. — Fix j G { 1 , . . . , Ji — J0}, and define ( | f e , £ > j T ) by setting 

€??T(x) 
€?T(x) 

0 

if x€Q£((K + wj)T), 

otherwise, 

and then using our Poisson processes {A*, A* : x G eZd} to continue constructing £ f e 

in the same way as £ f is constructed. By Lemma 7.6, if e < £7.6(74.2/2 ,772), 

ejT(Qe((K+jw)T)) £(74.2/2)-«* implies 

P(|€?T) •o\ejT)- 6e2c"£74.2/4 for all t (j + Jo - 1)T. (7.33) 

Using , we will show that with high probability, 

^T(Q£((K+jw)T)) £ ( 7 4 . 2 / 2 ) - d implies 

Qe((K + jw - J0A)T) x [(j - 1 + J0)T, (j + J0)T] is e-empty. (7.34) 

To do this, define the event 

T T ( J ) = n/̂ rrO' + *. # + wj - iA, K + wj-(i- 1)A). 
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Using Lemma 4.7 as in Step 1 we have for small enough e 

P(TT(j + i,K + wj - iA, K + wj-(i- I)A)) l-c'd(K + wj-iA)ded 

and thus 

P(TT(j)) 1 - c'd(3K)dJ0ed (7.35) 

for small enough e. 
Observe that on the event Tr(j) we have 

X^u C Q£((K + jw)T) y x e Q£((K + jw - J0A)T), 

ue[(j-l + Jo)T, (j + J0)T], and t G [0, ti - jT\. (7.36) 

Therefore, by duality, on TT(J), 

€?(x) H'£(x) for all 

(x,t)eQ£((K + jw-J0A)T) :[(j-l + Jo)T,(j + J0)T}. 

Combining this observation with (7.33) and (7.35) we see that the event in (7.34) has 

probability at least 

1 - 6e2cb£74.2/4 _ cfd{3K)dJ0ed 

for e smaller than some £Q-

Step 4- — We can now sum the last estimate over j = 1,..., J\ — J0 and use (7.32) 

to obtain 

P(T>i is £-empty) 1 - Ji(r01 + 6e2cb6^4.2/4 + c'd{ZK)dJQsd) (7.37) 

for small enough e. (Actually we get a slightly larger set than V\.) Combine (7.29) 

and (7.37) to obtain (7.25). 

Step 5. — Finally, using the notation from Step 1, the event in (7.26) is just 

n / i x f r ü , K + wJi + (Ji - j)A, K + wJ^ (Ji -j + 1)A). 

As in Step 1, we can use Lemma 4.7 to bound the probability of this intersection by 

1 — cdJi(K + Ji(w + A))ded for small enough e, so we are done. • 

Let Ki = K + Ji(w -f A). For ^ G {0, l}eZd, let G\ be the event, depending on 

our graphical representation, on which V = X>(Jo, Ji, A, K) is £-empty if — 

and on which (7.26) holds. Note that (7.26) implies all the duals starting at (x, u) G 
V and run up until time u remain in Q(K\T). Hence duality implies that G | is 

Q(Q(K1T) x [0, JiT])-measurable, where we recall from (6.7) that Q(R) is the a-field 

generated by the Poisson points in the graphical representation in the region R. By 

the inclusion (7.23) we have 

on G\e, Q£(2T) x [0, JiT] is e - empty, and £eJlT(Qe (2KT)) = 0, (7.38) 
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108 CHAPTER 7. EXTINCTION OF THE PROCESS 

providing that Q € H = {£ e {0 , l }eZ : £(Qe(KT)) = 0 } . Adding the bounds in 

Lemma 7.7 we see that 

iiÇeH, then P ( G | ) : 1 - 2C7.7£01a2^ if£ ^7.7- (7.39) 

7.3 . P r o o f o f Theorem 1.5 

Proof of Theorem 1.5. — We continue to take T = A4.2 log(l/«s), and with K, J\ from 

(7.22) we define 

L = T, T' — J{T, 

and set cL = L/(2D) as before. We set ££(y) = l(\y\ > L), y e eZd, and az, z G eZd 

denote the translation operators on {0, l}eZ . For (x,ri) G CD let 

€x,n a - c L x { ^ n T ' ) 

€e 

if6-cLx(€?T') EH) 

otherwise, 

and define the percolation variables 

n(x,n) l(G|x,n occurs in the graphical representation in which the Poisson 

processes are translated by — CLX in space and —nT' in time). (7.40) 

In the percolation argument which follows it is the first part of the definition of £x'n 

that will matter; the ££ is really only a place-holder which allows us to define 7] 
when the translated configuration is not in H . As in the proof of Theorem 1.4 in 

Chapter 6, we are actually translating in space by the "lower left hand corner" in 

eLd associated with — CLX and as before suppress this in our notation. In Chapter 6 
we used Theorem 4.3 of [14]; here we copy the key definition in its proof. Using 

the measurability of G| , the independence of G{R) for disjoint regions R, and (7.39) 
one can check that for any any M > 4DKi, the family {rj(z), z G C D } satisfies the 

modified M-dependent condition (5.5) with 6 = 2cj^em/K~^L. To see this argue 

exactly as in the proof of Theorem A.4 of [14]. 

Using the percolation results from Chapter 5, we will show 

Lemma 7.8. — There exists f > 0 such that for e small enough £Q(Q£(KT)) = 0 

implies 

P ( A ) P(eT(Qs(ft)) 0 for all large t) 1 / 2 . 

Intuitively this is an immediate consequence of Lemmas 5.2 and 5.6. The first result 

implies that on fl^o ^nen f°r lar£e n> ^ne we^ s^es satisfy W® fl Hnn = Wn fl T-Lrnn-

The second result shows that if Bn is the collection of dry sites in T-Lnn^ connected 

to the complement of U ^ ^ W ^ ^ 2 by a path of dry sites on the graph with edge 

set £ 1 then Bn = 0 eventually. Wet sites in Hnn will correspond to space-time blocks 

that are empty of l's while dry sites (i.e., not wet sites) in Hnn correspond to space-

time blocks which may contain a 1. If a dry site in Tinn^4 corresponds to a block 
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containing a 1 there must be a dual path of 1 's leading from this 1 to a site outside of 

^n\=n/2^n%^2• This corresponds to a path of dry sites in £± and so cannot happen for 

large n since Bn = 0 for large n. Thinking of the corresponding space time regions 

are being filled with concrete, and the dry sites as air spaces, we see that there cannot 

be a 1 in Hn71^4 unless some air space reaches outside of U^=n^2W^n^2. We now give 

a formal proof. 

Proof. — Fix as above and recall W®, Wn, Bn and 0 ^ from Chapter 5. In partic­

ular W°, W are constructed from an i.i.d. Bernoulli field which is bounded above by 

rj(z,n), z G Hn^n > 1. By (7.39) and our condition on £Q (which implies £0,0 = £Q in 

the definition of 7 / ( 0 ,0 ) = 1) we see that 

P(TJ(0,0) = 1) > 1 - 2c7.7e-01A(74-2/4) > 3/4, 

for e small enough. By working with P(- |r /(0,0) = 1) in place of P we may assume 

77 (0 ,0 ) = 1 at a cost of proving (under our new P) that 

P(A) •3/4. (7.41) 

Assume n > 1 and (y, n) G W®. Then for some i, letting y' = y — v[, (?/, n — 1) G 
W^-i with 77(7/, n — 1) = 1 (if n = 1 we use r?(0,0) = 1 here). Continue to trace 

back the set of open sites y' = yfn_i,... ,yf0 = 0. Proceeding through the y[ values, 

using the second part of (7.38) and cLv\ + [~L,L]d C [-2L,2L]d for i = 1,..., D, 

we see that = cr-CLyf(^£T,) in the definition of r?(^,i) = 1. Therefore (7.38) and 

translation invariance, show that rjty^n — 1) = 1 implies 

€?(CLy' •QS(2L)) :0 for a l l i e [(n-l)T',nT'}. 

Since cLy + Q£(L) c cLy' + Qe(2L) we obtain 

(y, n) e W° implies Ç£t(cLy + Qe(L)) = 0 for all t e [(n - 1)7",nT'}. (7.42) 

This confirms (5.9) in Chapter 5. 
Next by Lemma 5.2 we may assume e is small enough (independent of the choice 

of £§) so that P ( ^ S o ) > 3/4 and 6 < 05.2 A 05.5. Let r = r5.2 and assume oo G fi^. By 
Lemma 5.2 there is an no G N so that 

w% n nrkk Wknnrkk Vk>n0. (7.43) 

Let f = 1Q1Dji and assume uo £ A. The latter implies that for infinitely many n > 2no 

there are t G [(n - l)T\nTf] and x G Q£{ft) with £t{x) = 1. We claim that this 

implies 

Bn ^ 0 for n as above. (7.44) 

Lemma 5.6 implies the above is a null set, so it follows that P ( 0 ^ \ A) = 0 and so 

(7.41) would be proved (recall P ( O ^ ) > 3/4). 

To prove (7.44), fix such an n and x,t and consider the dual starting at (#,£). We 

are going to make use of (1.43), which ensures that not all of the inputs to the dual can 
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be 0. By (5.2) there must exist some (y,n) G Tin such that x G CLVV C CLV + Q£{L) 

and a bit of arithmetic usiner the definition of f erives 

\y\ : 
\x\ 

CL 

L 

CL 

fnTf 

CL 
+ 2D 

rn 

4 

and we have taken no big enough for the last inequality. Hence (y, n) G H™^4 and 

so the fact that £t(x) = 1, (7.42) and (7.43) imply (y,ri) £ Wn, i.e., (y,n) is dry. By 

duality and the finite range assumption (recall (7.21)), there must exist xf G eLd and 

t' G [(n - l)T',t) such that \x - x'\ < R0e and Q(x') = 1. That is, t' > (n - 1)T' is 

the first time below t that the dual jumps or t' = (n — \)T' if there is no such time 

in which case x — x. We may assume e is small enough so that RQS/CL < C5.3, in 

which case by (5.3) x' G CLVV> for some y' of the form y + v[ — Vj (y = y' is included). 

If (yf,n) G Hnn/2 C W;n, it follows from (7.42) that (y',n) must be dry, and thus 

{y',n) G D(y,n). 

Continue the above construction until either we reach a point {y",ri) G (HIT )c 

with all earlier points in our path from (y,n) being dry, or we obtain x",y" such 

that €(n_i)T>(x") = 1» {y",n) G -D(j,,n) H and x" G CLVV" . In the former 

case Bn 7^ 0 (recall the precise definition prior to Lemma 5.6). In the latter case if 

W ~ viin ~ 1) ^ T^n-i1^2 for some i, then (7.44) holds. If not, then as one easily 

checks \cL{y" — v[) — x"\ < L, and so arguing as above, we see that (y" — v'^n — 1) 

is dry. Therefore the iteration can be continued until it stops as above or continues 

down to time ( f — 1)T', again forcing (7.44) in either case. 

Having established Lemma 7.8 the rest of the proof of Theorem 1.5 is routine. The 

proof of Lemma 6.5 shows that if we start from an initial configuration with infinitely 

many 0's then at time 1 there will be infinitely many cubes of the form CLX + Q£(L) 

with x G Tio that are e-empty. By the Markov property this will hold at all times 

N G N a.s. The above shows that if xo is chosen so that £f (#o + Q(L)) — 1, then w.p. 

at least 1/2, £f+t = 0 on CLXQ -f Q(ft) for all large t. If this fails at some time we can 

try again at a later time N by the above and after a geometric (1/2) number of trials 

we will succeed and produce a linearly growing set of 0's starting at some space-time 

location. Therefore the 0's take over. 
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